AU2007251522B2 - Oval gear meter - Google Patents

Oval gear meter

Info

Publication number
AU2007251522B2
AU2007251522B2 AU2007251522A AU2007251522A AU2007251522B2 AU 2007251522 B2 AU2007251522 B2 AU 2007251522B2 AU 2007251522 A AU2007251522 A AU 2007251522A AU 2007251522 A AU2007251522 A AU 2007251522A AU 2007251522 B2 AU2007251522 B2 AU 2007251522B2
Authority
AU
Australia
Prior art keywords
oval
meter
gears
permanent magnet
gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU2007251522A
Other versions
AU2007251522A1 (en
Inventor
Teuvo Moilanen
Rauno Vehmaa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SKF AB Oy
Original Assignee
SKF AB Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FI20065318A external-priority patent/FI119298B/en
Application filed by SKF AB Oy filed Critical SKF AB Oy
Publication of AU2007251522A1 publication Critical patent/AU2007251522A1/en
Application granted granted Critical
Publication of AU2007251522B2 publication Critical patent/AU2007251522B2/en
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

OVAL GEAR METER
[0001] The invention relates to an oval gear meter for flow measurement, the meter comprising: two oval-shaped gears arranged to rotate in synchronism in a chamber provided in a housing, through which chamber a medium to be measured is arranged to flow, the rotating motion of the gears being proportional to the flow rate and the meter being equipped with means for detecting the rotating motion of the oval gears.
[0002] Oval gear wheels of the above type are currently well known in connection with the flow measurement of a medium, such as a liquid, carried out in different fields of technology, for example.
[0003] An essential aspect relating to the use of oval gear meters is the detection of the rotating motion of the gears. The data obtained from the rotating motion of the gears enables the flow rate to be determined. In prior art solutions the rotating motion of the gears is often detected by providing the gear with a detection piece or a plural number of detection pieces. When a gear and a sensor housing structure made of an electrically non-conductive material is used, a detection piece made of metal may be detected using an inductive sensor. In case an electrically conductive, non-magnetizing gear and housing are used, the detection piece may be a magnet that is detected by means of a Reed- or Hall-type sensor placed outside the housing.
[0004] An advantage of the above solution principles is that the sensor may be placed outside a meter part enclosed in a housing. A disadvantage, in turn, is that they enable only a few pulses per gear revolutions, for example 1 to 4 pulses per gear revolution, to be obtained and therefore the information about the flow rate remains inadequate.
[0005] To eliminate problems relating to the inaccuracy of the above solutions, solutions in which an angle sensor is mounted to the oval gear shaft have been presented in the field. An advantage of such solutions is the number of pulses obtained, which may be 1000 pulses per revolution, for example, depending on the sensor type.
[0006] However, a problem with solutions employing an angle sensor arises from how to seal the rotating shaft to the housing of the measurement part. [0007] Examples of cited prior art solutions include those described in Japanese publications 7190828, 8285654, 5264315 and in US publication 5992230.
[0008] It is an object of the invention to provide a solution that allows the disadvantages of the prior art to be eliminated. This is achieved by an oval gear meter of the invention. The oval gear meter of the invention is characterized in that the means for detecting the rotating motion of the oval gears comprise a permanent magnet arranged to one of the oval gears, centrically with the rotating shaft thereof, and a sensor circuit arranged on the outer surface of the wall of the housing at a location coinciding with that of the permanent magnet.
[0009] An advantage of the invention is, above all, that it allows a precise measurement to be provided, without any problems associated with sealing. In other words, the invention succeeds in combining the advantages of the prior art solutions and eliminating their disadvantages.
[0010] In the following the invention will be disclosed with reference to an example of an embodiment illustrated in the accompanying drawings, in which
Figures 1a to 1e provide a series of schematic views of the operating principle of an oval gear meter;
Figure 2 illustrates an example of a prior art solution for the detection of gear movement;
Figure 3 is a view illustrating the example of Figure 2 from another direction;
Figure 4 illustrates the basic principle of a sensor used in the solution of the invention;
Figure 5 is a schematic view of the detection of an oval gear in a meter of the invention; and
Figure 6 is a block diagram of a sensor function and different coupling alternatives of the solution of the invention.
[0011] Figures 1a to 1e provide a series of schematic views of the operating principle of an oval gear meter. The oval gears are indicated with reference numerals 1 and 2. The gears 1 , 2 are arranged to rotate in synchronism inside a chamber 4 formed in a housing 3, a medium to be measured being arranged to flow through the chamber. The rotating motion of the gears 1 , 2 is proportional to the flow rate. [0012] Since the technology relating to the operating principle of an oval gear meter is generally known among skilled persons, aspects related to it are not discussed in greater detail in this context.
[0013] Further, an essential feature in the operation of the oval gear meter is the detection of the rotation of the gears. Figures 2 and 3 illustrate an example of a prior art gear motion detection principle.
[0014] Like reference numerals are used in Figures 2 and 3 for like parts shown in Figures 1a to 1e. The operation of the example shown in Figures 2 and 3 is based in the use of a Hall sensor. The Hall element is indicated in the figures by reference numeral 5 and a magnet arranged to the gear, in turn, by reference numeral 6. In addition, Figure 3 clearly shows shafts 7 on which the oval gears are arranged to rotate.
[0015] A solution that operates on the basis of a Hall element also represents technology that is generally known to a skilled person and therefore aspects related to it are not disclosed in closer detail in this context. Figures 2 and 3 also show that a disadvantage of the solution is that the amount of pulses obtained per gear revolution is small and therefore the meter does not provide the best possible characteristics as regards precision.
[0016] A basic idea of the invention is to provide an oval gear meter solution that combines the advantages of the prior art, i.e. detection of gear motion from outside the housing and use of an angle-sensor-type measurement principle, whereby a large number of pulses per gear revolution are obtained and a high measurement resolution is achieved.
[0017] According to the invention, gear motion is detected by means of a magnetic angle sensor the basic principle of which is shown in Figure 4. The construction consists of a permanent magnet 8 and a sensor circuit 9. The permanent magnet 8 is placed to one of the oval gears, centrically with the rotating shaft 7 thereof, and is arranged to rotate along with the gear. The sensor circuit 9 is placed on the outer surface of the wall of the housing 3, at a location coinciding with that of the permanent magnet 8. Figure 5 is a schematic view of the construction of the invention. Figure 5 also shows a circuit board, indicated by reference numeral 10, on which the sensor circuit 9 is arranged.
[0018] The thickness of the housing 3 wall between the sensor circuit 9 and the permanent magnet 8 may be 0.5 - 1.8mm, for example. The housing may be made of any suitable material, such as non-magnetizing steel. [0019] The sensor circuit 9 is arranged to produce one pulse per revolution for the angular position of the permanent magnet 8 preferably at intervals of less than one degree, for example 0.35 degrees. Any suitable sensor circuit may be used as the sensor circuit 9. Examples of suitable sensor circuits include Austria Microsystems AS5040, whose resolution is 10 bits, which means that 1024 pulses are obtained for each full turn of the permanent magnet 8, i.e. the pulse interval is 0.35 degrees. In addition to providing the pulses the sensor circuit 9 indicates the direction of rotation and the absolute position of the permanent magnet 8 in the form of both a digital and a PWM signal. Suitable sensor circuits are available from other circuit manufacturers, too.
[0020] Figure 6 is a block diagram illustrating an example of the sensor functions and different coupling alternatives of the solution of the invention. Like reference numerals are used in Figure 6 for like parts shown in the figures discussed above. In addition, reference numeral 11 indicates a power source and reference numeral 12 a coupling part.
[0021] The above example of an embodiment is in no way meant to restrict the invention, but the invention may be fully freely modified within the scope of the claims. Consequently, it is obvious that the oval gear meter of the invention or details thereof do no necessarily need to be exactly as shown in the figures, but other solutions are also possible. For example, Figure 6 is not to be considered as any kind of restrictive solution, but only as an example of various other alternatives, etc.

Claims (3)

1. An oval gear meter for flow measurement, the meter comprising: two oval-shaped gears (1, 2) arranged to rotate in synchronism in a chamber (4) provided in a housing (3), through which chamber a medium to be measured is arranged to flow, the rotating motion of the gears (1, 2) being proportional to the flow rate and the meter being equipped with means for detecting the rotating motion of the oval gears (1 , 2), c h a r a c t e r i z e d in that the means for detecting the rotating motion of the oval gears (1, 2) comprise a permanent magnet (8) arranged to one of the oval gears (1 or 2), centrically with the rotating shaft (7) thereof, and a sensor circuit (9) arranged on the outer surface of the wall of the housing (3) at a location coinciding with that of the permanent magnet (8).
2. A meter according to claim 1, characterized in that the sensor circuit (9) is arranged to deliver a pulse for the angular position of the permanent magnet (8) on each revolution at intervals of less than one degree.
3. A meter according to claim 2, characterized in that the sensor circuit (9) is arranged to deliver a pulse for the angular position of the permanent magnet (8) at intervals of 0.35 degrees.
AU2007251522A 2006-05-12 2007-05-09 Oval gear meter Ceased AU2007251522B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FI20065318A FI119298B (en) 2006-05-12 2006-05-12 The oval gear meter
FI20065318 2006-05-12
PCT/FI2007/050262 WO2007132062A1 (en) 2006-05-12 2007-05-09 Oval gear meter

Publications (2)

Publication Number Publication Date
AU2007251522A1 AU2007251522A1 (en) 2007-11-22
AU2007251522B2 true AU2007251522B2 (en) 2013-08-08

Family

ID=

Similar Documents

Publication Publication Date Title
US20090126478A1 (en) Oval Gear Meter
JP5680962B2 (en) Non-contact multi-turn absolute position magnetic sensor
EP1889014B1 (en) Oval gear meter
US7942070B2 (en) Flow rate sensor
EP1826534B1 (en) Rotation angle detecting device
US10175066B2 (en) Sensor system for detecting absolute rotational angle of a shaft
AU1962800A (en) Device and method for detecting the relative position of a rotatable body
US7710110B2 (en) Rotary sensor with rotary sensing element and rotatable hollow magnet
EP3151017B1 (en) Amr speed and direction sensor for use with magnetic targets
WO2006087627A1 (en) Monitoring device
AU2007251522B2 (en) Oval gear meter
EP3783319B1 (en) Flow meter
KR101859768B1 (en) Torque Index Sub Angle Sensor
US7007558B1 (en) Pulse transmitter
JP5331505B2 (en) Rotation angle detection device and steering device
JP3063809B2 (en) Volumetric flow meter
KR20130128549A (en) Angle sensor
CN214951545U (en) Single-flow water meter with state detection function
JP3251852B2 (en) Flowmeter
JP2008164295A (en) Flow measuring apparatus
JP2007078402A (en) Apparatus for detecting angle of rotation of throttle valve
AU2010206097B2 (en) Improved positive displacement flowmeter
US20130047744A1 (en) Positive displacement flow meter
JPH0316026Y2 (en)
JPH04318426A (en) Flowmeter