AU2007242939A1 - Materials and methods for the production and purification of chlorofluorocarbons and hydrofluorocarbons - Google Patents

Materials and methods for the production and purification of chlorofluorocarbons and hydrofluorocarbons Download PDF

Info

Publication number
AU2007242939A1
AU2007242939A1 AU2007242939A AU2007242939A AU2007242939A1 AU 2007242939 A1 AU2007242939 A1 AU 2007242939A1 AU 2007242939 A AU2007242939 A AU 2007242939A AU 2007242939 A AU2007242939 A AU 2007242939A AU 2007242939 A1 AU2007242939 A1 AU 2007242939A1
Authority
AU
Australia
Prior art keywords
process according
compound
mixture
isomer
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2007242939A
Inventor
Janet K Boggs
Stephan M Brandstadter
John Chengping Chien
Mitchel Cohn
Vicki E Hedrick
Yuichi Iikubo
Stephen Owens
Julie Sacarias
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Great Lakes Chemical Corp
Original Assignee
Great Lakes Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2002343436A external-priority patent/AU2002343436B2/en
Application filed by Great Lakes Chemical Corp filed Critical Great Lakes Chemical Corp
Priority to AU2007242939A priority Critical patent/AU2007242939A1/en
Publication of AU2007242939A1 publication Critical patent/AU2007242939A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Description

Australian Patents Act 1990 Regulation 3.2A ORIGINAL COMPLETE SPECIFICATION STANDARD PATENT Invention Title "Materials and methods for the production and purification of chlorofluorocarbons and hydrofluorocarbons" The following statement is a full description of this invention, including the best method of performing it known to us:- Q:\OPER\MAL\2O07\Decembcr\3O432593 Div 0712.doc P ~OPERMAL20070432593 di ddoc-7112/2007 S-1-
O
SMATERIALS AND METHODS FOR THE PRODUCTION AND PURIFICATION OF CHLOROFLUOROCARBONS AND HYDROFLUOROCARBONS This is a divisional of Australian Patent Application No. 2002343436, the entire contents of which are incorporated herein by reference.
FIELD OF INVENTION The present invention is directed to production methods, as well as, synthetic and separation methods. More particularly, the present invention is directed to methods for manufacturing selective isomers of chlorofluorocarbons and hydrofluorocarbons from aliphatic, olefinic or partially halogenated hydrocarbons.
BACKGROUND OF THE INVENTION.
Since the beginning of global warming concerns, chlorofluorocarbon manufacturers have had to produce compounds that perform substantially the same as fully halogenated chlorofluorocarbons without the adverse environmental impact. Only through the introduction of these new compounds have their environmental impact been completely understood. In certain instances, some of these new compounds have been removed from the marketplace. These types of issues make the flooding agent, extinguishant, propellant and refrigerant production industry a dynamic and ever-changing marketplace where processes for the production of chlorofluorocarbons and fluorocarbons are advancing quickly to accommodate both environmental as well as economical requirements.
Some useful compounds in this area include both saturated and unsaturated fluorocarbons, such as 1,1,1,2,3,3,3-heptafluoropropane (CF 3
-CFH-CF
3 HFC-227ea), 1,1,1,2,2,3,3-heptafluoropropane
(CF
3
-CF
2 -CHF2, HFC-227ca) and hexafluoropropane (hexafluoropropylene, HFP, CF 3 -CF=CF2, FC-1216). One well known method of synthesizing these compounds begins with the chlorofluorination of propane, propylene or partially halogenated C-3 hydrocarbons with hydrogen fluoride (HF) and chlorine (Cl 2 in the presence of a metal-containing solid catalyst. Examples of this chlorofluorination step can be found in U.S. Patents 5,057,634 and5,043,491 to Webster. As taught by Webster, the chlorofluorination step produces a number of saturated perhalogenated chlorofluorocarbons, including: C 3 Cl 5
F
3
C
3 C14F 4
C
3 C1 3
F
5
(D)
1,2-dichlorohexafluoropropane (CF 3 -CCIF-CCIF2, CFC-216ba); 2,2dichlorohexafluoropropane (CF 3 -CC1 2
-CF
3 CFC-216aa); 1t"- O chloroheptafluoropropane
(CF
3 CF2CCIF2, CFC-217ca); 2- N chloroheptafluoropropane
(CF
3 CCIFCF3, CFC-217ba); and octafluoropropane
(CF
3 -CF2-CF 3 FC-218). While the FC-218 is useful and can be separated from other Sperhalogenated reaction products, it is not an efficient or economical intermediate in the synthesis of HFC-227ea, HFC-227ca or FC-1216. As indicated in the '491 patent, the predominant reaction products resulting from the chlorofluorination of propane a with HF and Cl 2 is CFC-216aa, which is fluorinated and then dehalogenated to hexafluoropropene (FC-1216).
Due primarily to environmental as well as toxicological concerns, demand is 10 increasing for isomerically pure chlorofluorocarbons and hydrofluorocarbons.
c Teachings such as those described above cannot begin to address these issues and concerns because efficiency of production as well as isomeric purity were not contemplated. Prior art of similar chemistry does not allow for the exclusive production of the HFC-227ea, but only as a mixture or by-product with FC-1216.
The unsuitability of FC-1216 for a fire suppressant does not make this a viable or efficient route.
A need exists to develop a method ofchlorofluorinating inexpensive C-3 reactants that eliminates one or more by products of chlorofluorination, particularly FC-218 and undesired isomers which cannot be recycled to produce HFC-227ea or HFC-227ca. Moreover, a long felt need exists for extending the lifetime of catalysts used in these reactions.
Furthermore, the reaction products generated from these steps require purification. U.S. Patents 6,018,083 to Manogue and 6,211,135 to Miller respectively teach the partial separation (azeotropes) of chlorofluorocarbons
C
3
CIF
7 (CFC-217) and C 3 C1 2
F
6 (CFC-216) from HF. These references demonstrate the practical difficulty of separating reaction product mixtures with conventional distillation techniques. The formation of azeotropes requires the use of subsequent or expensive distillation techniques to produce a pure product that can be used as a final product or as an intermediate reactant. A need remains for processes that separate chlorofluorination reaction products without forming azeotropes.
The present invention provides processes for the chlorofluorination of aliphatic, olefinic or partially halogenated hydrocarbons in the presence of a catalyst that results in the substantial elimination of FC-218 as a by-product in the O chlorofluorination reaction and that efficiently converts the starting material to the desired isomer. The present invention also provides processes for the efficient 0 purification of reaction product streams.
Q)
SUMMARY OF INVENTION I One embodiment of the present invention is directed to a process for the manufacture of HFC-227ea, including a novel and highly selective method of preparing a CFC-216aa intermediate by chlorofluorinating C-3 reactants with HF and Cl 2 without the formation of substantial or even detectable amounts of FC-218 or undesired isomers.
In accordance with the present invention, the C-3 reactants are chlorofluorinated in a first step with hydrogen fluoride and chlorine in the presence of a metal containing catalyst at a first temperature. The reaction products from this first step are then fluorinated with hydrogen fluoride at a second temperature resulting in an unexpectedly high yield of CFC-216aa without the formation of FC-218. One aspect of the present invention is to provide a method of manufacturing a CFC-216aa intermediate by chlorofluorination of C-3 reactants such as aliphatic, olefinic or partially halogenated hydrocarbons having at least three carbon atoms, wherein the process provides new and unexpected selectivity for the CFC-216aa reaction product.
Another aspect of the present invention provides a method of manufacturing a CFC-216aa intermediate for preparing CFC-217ba and subsequently preparing HFC- 227ea with excellent selectivity and yield, without the formation of FC-218 or undesired isomers.
Another embodiment of the present invention includes a process step for hydrodehalogenating CFC-217ba to produce HFC-227ea by contacting CFC-217ba with Hz in the presence of a metal containing catalyst. According to another embodiment of the present invention, the hydrodehalogenation step is provided as just described, with the addition of water to prolong catalyst life.
The present invention also provides a process for separating the isomers HFC- 227ea and HFC-227ca by combining the isomeric mixture with a chlorofluorocarbon and subsequently separating the mixture by distillation. In one embodiment the chlorofluorocarbon is CFC-217ba.
Another process according to the present invention provides for the purification ofhalogenation reaction products into HF and chlorofluorocarbons. In a more specific embodiment, the halogenation reaction product includes CFC-216aa.
O Still another process for separating halogenation reaction products is provided o wherein the reaction products are combined with water and cooled to a sufficient S temperature to form a gas phase and top and bottom liquid phases. According to one embodiment, the gas phase contains primarily C-3 chlorofluorinated compounds having at least six fluorine atoms, the top liquid phase is primarily an aqueous liquid phase and the 0 bottom liquid phase contains C-3 chlorofluorinated compounds having less than six 0\ fluorine atoms.
4 An additional process according to this invention provides for separating C-3 chlorofluorinated compounds from a halogenation reaction product. One embodiment of 8 this invention includes the adjustment of a halogenation reaction product to a sufficient Stemperature to separate the reaction product into three phases: an upper gas phase and top and bottom liquid phases, wherein the upper gas phase contains primarily HCI, the top liquid phase contains HF and the bottom liquid phase contains essentially acid-free C-3 chlorofluorinated compounds.
In still another process of the present invention methods are provided for synthetically increasing the isomeric purity of a mixture. According to one embodiment, an isomeric mixture of C-3 chlorofluorinated compound isomers is heated in the presence of a catalyst to a sufficient temperature to increase the isomeric purity. In a more specific embodiment, the C-3 chlorofluorinated compound isomers are CFC-217ba and CFC- 0 217ca.
In still another embodiment of the present invention a process is provided for selectively halogenating isomers within an isomeric mixture. In a particular embodiment, the isomeric mixture is exposed to C12 in the presence of a catalyst at a sufficient temperature to halogenate at least one isomer. Preferably the isomeric mixture includes the isomers HFC-227ea and HFC-227ca.
The above and other embodiments, aspects, alteratives and advantages of the present invention will become more apparent from the following detailed description of the present invention taken in conjunction with the drawings.
SDESCRIPTION OF THE FIGURES SFigure I is a schematic representation of one embodiment of the present invention.
Q Figure 2 is a graphical representation of the isotherms observed during the processes of the present invention.
Figure 3 is a block diagram of an embodiment of the present invention.
CC Figure 4 is a block diagram of an embodiment of the present invention.
Figure 5 is a block diagram of an embodiment of the present invention.
SFigure 6 is a block diagram of an embodiment of the present invention.
Figure 7 is a graphical representation of catalyst life observed according to an embodiment of the present invention.
DESCRIPTION OF THE PREFERRED
EMBODIMENTS
0) Referring now to Fig. 1, in one embodiment this invention provides processes for Sthe production of chlorofluoropropanes and fluoropropanes from aliphatic, olefinic, or partially halogenated hydrocarbons having at least three carbon atoms. Other embodiments of this invention provide specific processes for hydrodehalogenation, as well M as, isomer and reaction product purification. Selected embodiments of this invention will N be described in turn beginning with the broad chemical process steps used to produce selected chlorofluorocarbons and fluorocarbons.
SIn part, this invention stems from the discovery that the majority of the isomer in the final chlorofluorocarbon or hydrofluorocarbon product originates as an undesired isomer which forms in the initial reactions. This isomer and its downstream counterparts are passed to subsequent reactions undergoing the same chemical transformation as the desired isomeric material. Fortunately, CFC-216ba and its downstream counterparts, have different reaction profiles allowing for their reduction with each subsequent step. Unlike S CFC-217ca and HFC-227ca, CFC-216ba is not a "dead end" isomer. A majority of this material is directly converted to the desired isomer CFC-217ba in subsequent steps performed in accordance with the present invention.
Without being confined to any theory, the formation of the undesired isomer takes place in these early reactions by the premature fluorination of the geminal C-2 carbon of 0 aliphatic, olefinic, or partially halogenated hydrocarbons having at least three carbon atoms. The production of CFC-216ba is but just one example of this type of chemistry.
Referring now to Fig. 2, formation of excess amounts of CFC-216ba during halogenation has been observed when the reaction is allowed to exotherm excessively.
The large amounts of energy released during this exotherm are probably the ultimate reason for 8 excess CFC-216ba isomer formation. When these types of conditions are allowed to prevail, ratios as low as 2:1 CFC-216aa:CFC-21 6 ba can be observed in these early reaction streams.
SOne way to control this phenomenon can be to carefully operate the initial halogenations so as to avoid uncontrolled exotherms. The reactor used according to the present invention has the ability to use cool heat transfer oil and includes conventional chemical and engineering controls to insure suppression of exotherms. In another aspect S of the present invention, HF can be replaced as the main diluent for the reaction. Figs. 3show a schematic flow diagram for a process according to the present invention that i includes a two temperature zone chlorofluorination of a C-3 reactant selected from propane, propylene, partially halogenated C-3 acyclic hydrocarbons, and mixtures thereof, with hydrogen fluoride and chlorine in the presence of a chlorofluorination catalyst. The process is highly selective in the production of CFC-216aa, without the formation of any significant amount of FC-218 (0 to less than 0.5 percent by weight). The high yield and selectivity of the process of the present invention in the synthesis of CFC-216aa is very advantageous for the subsequent production of HFC-227ea as discussed below.
The present invention provides, in one aspect, two step processes for efficiently producing CFC-216aa. The chemical steps can include the sequential replacement of hydrogen with chlorine and the subsequent partial replacement of chlorine with fluorine !0 atoms. Multiple products may be formed with intermediate fluorinated materials being the majority. Careful temperature control may minimize by-product formation. Typical reaction products may include C-3 molecules with 2 to 7 fluorine atoms, the rest being chlorine. The cracking of the C-3 backbone to form C-1 and C-2 materials as undesired impurities has also been observed. According to one embodiment, the output of this reactor can be fed directly into a subsequent reactor as shown in Fig. 4, which is run at a higher temperature. Individual reactants may be fed under flow control to vaporizer(s) 14, as shown in Fig. 3. The vaporized chlorine and HF are mixed and fed into a superheater. It has been determined that careful mixing of the reactants and temperature regulation may help to control reaction exotherms and lack of control may lead to the formation of undesired by-products arising from cracking the C-3 backbone.
The predominant reaction occurring in exemplary chlorofluorination Steps I and II may be summarized, as follows, with high selectivity in the production of CFC-216aa: O CH 3 CH:CH3, CH3CH=CH: and/or C 3 HyX,+HF+C12-CFC-216aa+HCl (X=halogen; y=0-8, z=8-y; or y=0- 6 z=6-y) According to one aspect, the process includes a first step, wherein C-3 reactants selected from the group consisting of aliphatic, olefinic or partially halogenated rn hydrocarbons having at least three carbon atoms are contacted with Cl 2 and HF in the presence of a metal containing catalyst. As illustrated in Fig. 3, this reaction is preferably N performed in the gas phase by the careful mixing of C-3 reactants with a mixture of hydrogen fluoride (HF) and chlorine (Cl 2 in the presence of a metal containing catalyst at a sufficient temperature to form perhalogenated compounds.
In one embodiment of the present invention, the C-3 reactant is selected from the group consisting of aliphatic, olefinic and/or partially halogenated hydrocarbons. The C-3 reactant may be premixed with hydrogen fluoride, and then mixed with chlorine before i entering chlorofluorination reactor 16 containing a fixed bed of metal containing catalyst.
Aliphatic hydrocarbons having at least three carbon atoms are known to those skilled in the art to be alkanes, hydrocarbons characterized by a straight or branched carbon chain. These types of compounds include propane. Olefinic hydrocarbons having at least three carbon atoms are known to those having ordinary skill in the art to be unsaturated aliphatic hydrocarbons having at least one double bond. These types of compounds include propene. Partially halogenated hydrocarbons having at least three carbon atoms are known to those having ordinary skill in the art as aliphatic or olefinic hydrocarbons wherein one or more hydrogens have been replaced by halogens.
According to one embodiment of the present invention, the HF and C-3 reactants are premixed before being combined with the chlorine gas and conveyed into a chlorofluorination reactor. It is preferred to premix (dilute) the C-3 reactant with the hydrogen fluoride reactant prior to combining the HF/C-3 gas reactants with the chlorine gas reactant in order to minimize the potential reaction of the C-3 reactant, propane and/or propylene with concentrated chlorine gas. Accordingly, at least one of the C-3 reactant or the chlorine, preferably both the C-3 reactant and chlorine, may be diluted with hydrogen fluoride prior to combining the C-3 reactant with the chlorine gas.
In one embodiment of the present invention the HF is anhydrous. It has been determined that recycled or reagent grade HF may used. The type of HF used to perform this aspect of the invention is not critical and specific types and qualities will be recognized by those skilled in the art. The Cl 2 likewise is a matter of choice to those having skill in the art. In one embodiment, technical or pure-grade anhydrous Cl, is utilized.
The halogenation of aliphatic, olefinic, or partially halogenated hydrocarbons having at least three carbon atoms is a highly exothermic reaction which may be controlled through the use of excess quantities of hydrogen fluoride, a diluent, or an external heat transfer medium together or in combination, to absorb the heat evolved and to maintain temperature control of the mixture.
To reduce the impact of exotherms, preferably, a stoichiometric excess of hydrogen fluoride may be maintained in order to minimize decomposition of the C-3 reactant to C-l and C-2 by-products, and the formation of the less desired CFC-216ba. Preferably, about 6 to about 64 moles of HF per mole of C-3 reactant may be utilized. It is preferred to provide an excess of chlorine gas as well, preferably about 8 to about 10 moles of Clz per mole of C-3 reactant. However, an excess of Clz is not required. In a preferred embodiment, the ratio of Cl 2 to C-3 reactants can be about 8.2:1. The molar ratio of HF to Cl 2 may be from about 0.75:1 to about 8:1. Preferably, the molar ratio of HF to Cl1 may be !0 about 4:1. Moreover, in another embodiment, a diluent may be added to the reaction to decrease undesired isomer and formation of cracking materials.
Preferably, the chlorofluorination reactor 16 used to perform this invention may be maintained at a reaction pressure of about 0 psig to about 750 psig, preferably about 0 psig to about 750 psig and at a temperature in the range of about 150*C to about 450 0
C,
and preferably about 220 0 C. Residence time in chlorofluorination reactor 16 may be in the range of about 0.5 seconds to about 30 seconds and preferably about 5 to about 10 seconds.
An exemplary reaction mixture exiting Step I shown in Fig. 3 is rich in C 3 CI.. and
C
3 Cl 3 Fs, but may also contain CFC-216aa and many other under fluorinated compounds.
In an exemplary aspect, reaction products of this first step are conveyed directly to Step II, as shown in Fig. 4. However, it is recognized that the reaction products of Step I, as shown in Fig. 3, may be further purified or supplemented prior to continuing on to Step II.
A main goal in Step II can be the selective fluorination of under-fluorinated compounds to the desired isomer CFC-216aa.
SIn the illustrated embodiment, the second step in this process may replace all of the terminal chlorine substituents with fluorine to produce CFC-216aa. According to one aspect of the present invention, this is accomplished through the use of one or more of high CN temperature reaction conditions, excess HF. and a metal containing catalyst.
As shown in Fig. 4. the Step I reaction stream is directly fed into a superheater 24.
Optimally, this stream is then fed to Step II reactor 26. Again, as before in Step I, careful Stemperature regulation can be used to control the reaction.
SThe second reaction can take place either in the same reactor as exemplary Step I r or, preferably, in a second reactor. The second reaction can be carried out at a higher 8 temperature than the first reaction with a stoichiometric excess of hydrogen fluoride.
According to one embodiment, a stoichiometric excess of chlorine can be used to ensure chlorofluorination of the first reaction products.
Reactor 26 can be a fixed-bed reactor having a metal containing catalyst, maintained at a reaction pressure of about 0 psig to about 750 psig and preferably about 100 psig, and at a temperature higher than the temperature required in exemplary Step I.
Step I may occur at a temperature ranging from about 300cC to about 550 0 C, and preferably at about 470'C. It is preferred that the molar ratio of reactants in Step II, should be maintained at about 6 to about 64 moles of hydrogen fluoride per mole of perhalogenated compounds. As in Step I, the source and quality of anhydrous HF used in Step I is not critical. It is to be understood by those skilled in the art that anhydrous, recycled, and/or differing grades of HF can be used in Step II. As in Step I, a diluent may be added to control exotherms and increase isomeric yield.
The metal containing catalyst used in Step I or Step II can be any known catalyst useful for reacting C-3 reactants or perhalogenated compounds with HF and/or Cl 2 including those described in U.S. Patent Nos. 5,177,273 and 5,057,634 to Webster, hereby incorporated by reference. These catalysts include catalysts consisting essentially of chromium; catalysts consisting essentially of chromium oxide in combination with a support refractory oxide); catalysts consisting essentially of chromium oxide modified with up to about 10 percent by weight based upon the weight of chromium in the catalyst of metal selected from the group consisting of manganese, iron, cobalt, nickel, copper, zinc, other metals and mixtures thereof; and catalysts consisting essentially of chromium oxide in combination with the refractory oxide and modified with up to about 10 percent by weight based upon the 8 weight of chromium in the catalyst of metal selected from the group consisting of Smanganese, iron, cobalt, nickel, copper, zinc, other metals and mixtures thereof.
Chromium oxide catalysts and their preparation in the art of perhalogenation are well ,1 known.
The chromium oxide and metal modified chromium oxide catalysts may be unsupported or supported. Catalysts consisting essentially of either chromium oxide or metal modified chromium oxide in combination with a support alumina) may be prepared by conventional procedures impregnation of the support using a suitable soluble chromium salt alone or in combination with a suitable soluble salt of the metal modifier). In addition, catalysts of this invention can also be prepared by C' co-precipitation methods, which are known in the art. Typically for refractory oxide containing catalysts, the refractory oxide constitutes from about 80 to 99.5 weight percent of the catalyst.
Catalysts consisting essentially of fluorinated chromium oxide, or fluorinated chromium oxide in combination with a refractory oxide, or fluorinated metal modified chromium oxide or fluorinated metal modified chromium oxide in combination with a refractory oxide may also be used. Indeed, the catalysts are preferably fluorinated prior to use for the halogenation process of this invention by treatment with a suitable fluorine-containing compound HF, SF 4
CCI
3
F,
CCI
2
F
2
CHF
3 or CC12F-CCIFz) at elevated temperatures. Pretreatment of catalysts containing refractory oxides such as alumina are considered particularly useful. Such treatments are well known to the art. The treatment with HF or other fluorinecontaining compound can conveniently be done in the same reactor which is to be used for the production of the selected halohydrocarbon product(s). Iron and nickel containing catalysts, specifically iron chloride and nickel chloride catalysts, supported or unsupported may be employed as well.
The catalysts of this invention can undergo changes in composition and/or structure during use. One skilled in the art will recognize, for example, that during use the catalyst may be in the form of an oxyfluoride, an oxychloride, an oxychlorofluoride and/or an oxide, and/or may have a different crystalline structure from the catalyst charged to the reactor. Charging the reactor with these compounds an oxyfluoride, etc.) or with any compound(s) convertible to these compounds under reaction conditions isconsidered an equivalent procedure within the scope of this 0 invention.
Q In this and the other reaction sequences, reaction with HF ir.:ludes either high N temperature vapor phase reaction or lower temperature reaction in e presence of a liquid phase catalyst such as SbCls/HF or SbF 5 s the vapor phase process is preferred.
Two metal containing catalysts that have been found to be particularly useful for E) the chlorofluorination reactions include: FeCl 3 on a support, particularly active carbon, that is dred and then fluorinated, Se.g., with HF, preferably an HF/N 2 mixture, with or without 02, at about 200°C to about 8 270°C and then treated with HF, with or without 02 or Cl 2 activation, within the range of about 270 0 C to about 320 0 C. It is preferred that the percent by weight of FeCl; in the metal containing catalyst be in the range of about 2% to about 36%c by weight on a catalyst support, which is preferably activated carbon, preferably at about 5-"c to about 10% by weight FeCl3. It is useful to fluorinate the metal containing catalyst for a period of at least about 2 hours, preferably about 2 to about 16 hours, more preferably about 8 hours, gradually increasing the temperature within the rage of from about 200 0 C to at least the chlorofluorination reaction temperature, up to about 320 0 C; and CrCI3, particularly chromium chloride hexahydrate (CrCI3 6HzO) on a support, particularly active carbon, that is dried and then fluorinated, with hydrogen fluoride gas in the same manner as fluorination of the FeCI3 catalyst with or without 02 or C12 activation.
Non-limiting examples 1, 2 and 3 demonstrate the preparation of catalysts suited for the present invention and non-limiting example 4 demonstrates the activation of catalyst suited for this invention.
Generally, all fluorination catalyst can be prepared by mixing appropriate amounts of the selected metal salt and support (if necessary) in DI Water. This mixture may be allowed to stand for approximately 0.5 hour and the excess water can be filtered off by vacuum filtration. The resulting solid may then be dried overnight in a gravity oven at 115 0 C and then charged to the reaction tubes where it can be further dried at 150 0 C with a inert gas purge and then activated with HF before the reaction feeds are started.
Example 1: FeCli/Activated Carbon Catalyst Preparation: N Iron (III) chloride hexahydrate (20 grams) was dissolved in deionized water (300 cc). The solution was then mixed into and absorbed by 200 grams of active c, carbon pellets and air-dried overnight.
Example 2: CrCi,/Activated Carbon Catalyst Preparation: Chromium (III) chloride hexahydrate (12.6 grams) was dissolved in deionized water (100 cc). The solution was mixed into and absorbed by 75 grams of active carbon pellets and air-dried overnight.
SExample 3: NiCL]/Activated Carbon Catalyst Preparation: 10 Nickel (II) chloride hexahydrate (13.8 grams) was dissolved in deionized water (100 cc). The solution was mixed into and absorbed by 75 grams of active carbon pellets and air-dried overnight.
Example 4: Metal Chloride/Carbon Catalyst Activation Methods: The chlorofluorination catalyst was activated using a chlorofluorination reactor with HF. The following description gives the detailed procedures for three methods of chlorofluorination catalyst activation.
The FeCl 3 /carbon catalyst of Example 1 was added to both Step I and Step II reactors and the catalyst in each reactor was dried with N 2 and fluorinated with HF/N 2 to provide a stoichiometric excess ofHF in the range of about 1.5 to about 3 moles of HF mole of active metal in the catalyst at 250*C for 9 hours. The metal containing catalyst in the Step I reactor was then further activated with HF/N 2 to provide a stoichiometric excess of HF in the range of about 1.5 to about 3 moles of HF per mole of active metal in the catalyst at 285°C for another 14 hours. The metal containing catalyst in the Step II reactor was then further activated with HF\N 2 to provide a stoichiometric excess of HF in the range of about 1.5 to about 3 moles of HF per mole of active metal in the catalyst at 465°C for another 14 hours.
The same procedure discussed above in method was performed for drying metal containing catalyst with N 2 and fluorination with HF/N 2 The metal containing catalyst was further activated with 2% by weight 02 along with HF/N 2 to provide a stoichiometric excess of HF in the range of about 1.5 to about 3 moles of HF per mole of active metal in the catalyst for 12 hours, then another 2 hours without 02.
0 The same procedure was performed for the catalyst activation as described above in method except using 2% by weight C12 instead of 2% by weight 02.
SFor all reactions exemplified herein, except where noted, two 41.6 cc, 12.7 N mm Incone® reactor tubes heated with ceramic fiber, radiant heat electric ovens were utilized as reactors. The tubes were utilized alone or in tandem to perform the reaction examples.
SNon-limiting example 5 demonstrates the results of chlorofluorination, according to the present invention.
SExample 5: Chlorofluorination ofC-3 Reactants: Step I was conducted according to the parameters indicated in Table 1 below.
The reaction products of Step I were conveyed to the Step II reactor. The Step II reaction was also conducted according to the parameters indicated in Table 1.
Like Step I, Step II was performed with a fixed-bed reactor containing a metal containing catalyst. The specific types of catalyst are described in Table I below.
The hydrogen fluoride used in Step I and Step II was anhydrous liquid HF that was vaporized to provide anhydrous HF gas. The results of the present example are shown below in Table 1.
2007242939 T~~iI~~~Irid 1aals Stn Inn 5e 1 wt Mta 12 Dec 2007 Step I Run Conditions Sep 11 Run Conditions Reactant Flows Reactants Mole HF/C1 2
/C
3 Hs Ratio Temperature Contact Temperature Contact Catalyst (cc/Min) (H/1/ 3 a (...Tme(sec) (ie sc FeChI/ Activated Carbon 109.1/44.8/3.2 49120/1 400 6.4 450 5.8 CrCI 3 1 Activated_______ Carbon 106.5/43.9/2.5 48/20/1 300 7.8 480 5.9 NiCI 2 Activated Carbon 137.3/31.112.5 61/14/1 3017480 15.3 nd Not detected. GC Area Results*
%CFC-
21 6aa, 79. 8 81.9 3W.6 CFC-216ba nd -6.3 8.6 i r-- SAs demonstrated in Table 1 above, iron and chromium chloride catalysts are O particularly well suited for use as metal containing catalysts according to the present invention. In particular, when utilizing the iron catalyst no detectable levels of the Sundesired CFC-216ba isomer were found.
Non-limiting example 6 demonstrates the reaction efficiency of the present invention.
Example 6: Mass Balance Demonstration: Step I was conducted at a temperature of about 280 0 C with a molar ratio of 0 HF:CI2:C-3 reactant, 6:9:1. Residence time in the Step I reactor was about seconds. The reaction products of Step I were conveyed to the Step II reactor. The Step II reaction was carried out at about 465*C. Like Step 1, Step II was performed with a fixed-bed reactor. The chlorofluorination catalyst used in both balogenation reactors (Step I and Step II) was a supported chromium containing catalyst.
The reaction products, contained predominantly CFC-216aa, hydrogen fluoride and hydrogen chloride gas, and were conveyed into a central portion of a strip column for HCI removal.
The chlorofluorination reaction products were collected for analysis by gas chromatography. The amount of the specific compound is indicated in terms of chromatographic area percent. For this, and the following examples, area percent is consistently utilized to demonstrate the advantages of the present invention.
The reaction products were collected for analysis and reported in Table 2 below.
U
Table 2. Mass Balance of Reactants and Products of the Present Invention Total Feed Materials
C
3 H8 3.1 kg Cl 2 46 kg HF 8.7 kg Total Products Collected HCI 41 kg
C
3 C1 2
F
6 11 kg Underfluorinated compounds 3.4 kg Recovery As Table 2 shows, (mass balance) of the present invention is good at approximately 95% recovery of reactants.
Non-limiting example 7 demonstrates the flexibility of starting material selection of the present invention.
Example 7: Use of Varving Starting Materials and Reagent Proportions: Tandem Incone® pipes were charged with supported chromium oxide catalyst. Liquid HF was vaporized and the HF vapor was then mixed with propylene/propane gas through an in-line static mixer and then mixed with Cl 2 at the top of the Step I pipe, according to the parameters shown below in Table 3. The reaction products from the Step I pipe were conveyed to the Step II pipe and the Step II reaction products were fed into a strip column to separate HCI, Clz and light components from HF, CFC-216aa and heavy components that were removed from the bottom of the strip column. The strip column bottom components were then fed into a phase separator to separate HF from organic materials, including C 3 Cl 2
F
6 for analysis by gas chromatography. Recovered or recycle HF was fed back to the Step I pipe vaporizer. The underfluorinated organic materials were collected and recycled back to the Step I pipe for further fluorination.
The results of using propane or propene as a C-3 reactant is shown below in Table 3, propene (C3H 6 Runs A and B) or propane (C 3 Hs, Runs C and D) as the raw material (C-3 reactant) for the present invention. The results of using varying proportions of reactants and the effects of additions of a diluent are shown below in Table 4. The exotherms observed during run conditions dictated in Table 4 are CN demonstrated in Figure 2.
0I 2007242939 12 Dec 2007 D I u i. /I -t-U As Table 3 above demonstrates, the present invention is equally efficient regardless of the starting material. It was concluded that the selection of an under halogenated compound as a C-3 reactant will demonstrate similar results.
2007242939 12 Dec 2007 TABLE 4 DEMONSTRATION OF UTILIZING VARYING REACTANTS AND DILUENTS Sep I Reaction Paamters Stlep II Rction Paramcta j Results
%CFC-
TEMP. CONTACT MOLE CONTACT MOLES 216a IN CFC-216ba IN Diluent TIME MOLE RATIO RATIO TEMP. TIME HF: OAS GAS SELECTIVITY RUN (seconds) (X:HF:CI,:PROP.) HF: C11 (seconds) PROPANE STREAM STREAM I none 200 10.2 0:4.7:7.4:1.0 0.64 450 3.7 15.1 51.0 4.16 56.4 S CFC- 200 9.7 1.6:4.8: 6.3:1.0 0.77 450 3.6 15.2 55.S 5.79 73.8 217ba S CFC- 200 10.1 4.0:5.1:7.9:1.0 0.65 450 3.7 19.2 61.6 old 87.5 217ba I
I
none 200 9.2 0: 5.3:4.4:1.0 1.20 450 3.4 13.3 13.17 1.74 32.2 HFC- 200 11.0 4.3:4.6:9.1 :1.0 0.50 450 3.9 20 32.01 18.57 69.9 227ca S CFC- 260 9.2 2.9:4.4: 6.1:1.0 0.72 450 3.7 16.1 72.1 nd 85.1 217ba I 0. none 200 10.7 0: 17.5 :4.3:1.0 4.04 450 3.9 36.2 39.6 nld 48.5 As Table 4 above demonstrates, with particular reference to runs C and F, the present invention is highly selective for CFC-216 aa. As in Figure 2, Table 4 demonstrates the exotherms observed are consistent with the formation of undesired isomers.
8 In non-limiting example 8 below, the benefit of combining reagents in a U specified order according to the present invention is demonstrated.
SExample 8: Raw Material MixingEffect: Two tests were performed by: using a static mixer to first mix HF with
C
3 H8 and then mix the HF/C 3 Hs mixture and Cl 2 in another mixer before the Step I reactor; and first mixing the HF with C12 using a static mixer, and then adding the N HF/Cl 2 mixture to C 3 Hg in another mixer before the Step I reactor. The reaction parameters and results of this example are listed in Table 5 below.
2007242939 12 Dec 2007 Table 5. Mixing Affect on Product Formaion According to the Present Inventio SAs Table 5 demonstrates, the combination of reactants plays no role in the Soverall selectivity of C3C1 2 F6. Even though it appears conversion is increased it is probably due to increased residence time in the reactor, rather than order of mixing of reactants.
Another process according to the present invention provides for purifying halogenation reaction products. For purposes of the present invention, halogenation C reaction products encompass those reaction products as described above and refers to C reaction products of reactions wherein chlorine and/or fluorine atoms replace Shydrogen or halogen atoms along carbon atom backbones. In most cases the products of these reactions include HF and organic chlorofluorinated compounds. In another embodiment of the present invention the C-3 chlorofluorinated compounds have at least six fluorine atoms.
Referring to Fig. 4, according to one embodiment of the present invention to separate HF from C-3 chlorofluorinated compound reaction products, the temperature of the chlorofluorination reaction product is reduced to a sufficient point within phase separator 28 to separate the reaction products into separate top and bottom liquid phases. According to one embodiment, the temperature used to accomplish this separation is from about -30 0 C to about -10 0 C. In a preferred embodiment the temperature is about -20 0
C.
To complete the separation of the HF from the C-3 chlorofluorinated compounds (which can have at least six fluorine atoms) the top phase (formed by lowering the temperature of the chlorofluorination reaction products) is removed to obtain essentially organic free HF and/or simultaneously the bottom phase is removed to obtain essentially acid free C-3 chlorofluorinated compounds. This separation can be performed on an industrial scale continuously in a unit operation or in a batch operation. Persons skilled in the chemical engineering arts will routinely be able to select the type of apparatus necessary to perform this liquid/liquid phase separation.
One of the distinct advantages of this process for separation HF from C-3 chlorofluorinated compounds is that expensive distillation is not required. Nor is there a production of the HF/C-3 chlorofluorinated compound azeotrope. Problems associated with distillation processes and the production of HF/chlorofluorocarbon azeotropes are discussed in U.S. 6,211,135 to Miller, herein incorporated by reference. Referring now to Figure it has been found during the course of the N present invention that at low temperatures, the HF phase 30 is virtually free of organic C-3 chlorofluorinated compounds and likewise the organic phase 32 having SC-3 chlorofluorinated compounds are virtually free of HF. Moreover, because the separation according to the present invention results in two product streams, either product may without further purification be sent on to additional reaction steps or o returned or recycled to previous reaction steps.
N Because the phase separation of the present invention is performed in the liquid phase, any pressure sufficient to maintain the materials in the liquid phase can be used according to the present invention. Preferred embodiments of the present invention use low temperatures and ambient pressures. However, the resulting nonazeotropic mixtures of HF and organic C-3 chlorofluorinated compounds exist at different temperatures depending on the pressure of the system.
The present invention providing for HF/organic separation is demonstrated below by non-limiting example 9.
Example 9: HF/Organic Phase Separation: A chlorofluorination reaction product including HF, C12 and CFC-216aa was purified according to the present invention. The reaction feed stream included 0.04 kg/s Cl 2 ,0.003 kg/s propane, 0.006 kg/s HF and 0.084 kg/s recycled HF with a reaction product stream containing 75 weight percent CFC-216aa on an acid free basis. The HCI was removed by distillation and the bottoms of the distillation column (HF and organic chlorofluorination reaction products) was cooled and sent to a 757 liter liquid phase separation tank where it was chilled. The vapor pressure of the mixture in the phase separator was 1.97 Pa at 21.8 0 C. The mixture separated into two phases, a bottom phase and a top phase. The bottom phase comprised a liquid organic phase that was decanted off and scrubbed and purified to produce pure CFC- 216aa. The top phase comprised a liquid HF phase that was decanted off and recycled to a previous reaction step. The organic phase was analyzed and the results are represented in Tables 6 and 7 below.
Table 6. Chlorofluofnation Oranic Phase Removed from HF According to a CK, b Process of the Present Invention O Area Cl, Area HF Area HCI Area Organic Separated 1.21 0.3872 0.6097 97.79 Organic Phase Table 7. Halogenated Organics Se arated from -F According to the Present Cc, Invention------ Haloenated Organics Percentage of Total Organics CCl 3 F-CCIF3 not detected 0.05 Liohts 0.05
C
3 C--6 64.59
C
3
C
3 2Fs 11.82
C
3 C1 4 F4 5.75 C3Cl F4 3.65 Heavies 3.65 As this example demonstrates the organic phase, once separated according to an embodiment of the present invention, is essentially acid-free. This allows for the immediate isolation of specific chlorofluorination reaction products without the need for costly and inefficient distillation. Moreover, Table 7 demonstrates that other halogenated organics can be separated from HF, according to the present invention. These chlorofluorination reaction products can be isolated according to another process of the present invention as herein described next.
Another process according to the present invention is the separation of the C-3 chlorofluorinated compounds having at least six fluorine atoms from C-3 chlorofluorinated compounds having less than six fluorine atoms. This separation process is extremely useful in order to maintain the compound purity of chlorofluorinated compounds sought to be produced.
According to one embodiment of the present process, a solution comprising C-3 chlorofluorinated compounds having at least six fluorine atoms and C-3 chlorofluorinated compounds having less than six fluorine atoms is provided. This solution is derived from a reaction product or a refined reaction product of a chlorofluorination reaction or the phase separation or distillation product after a chlorofluorinated reaction. In one embodiment of the present invention the C-3 chlorofluorinated compounds having at least six fluorine atoms comprises CFC-216aa. However, this invention is not limited to the source of this mixture.
r-- 0 According to the present invention, the solution is contacted with the water to form a C N mixture of organics and water. This may be performed using various blending or mixing apparatuses, the particular type of apparatus is not critical and those skilled in the art will recognize apparatus suited for preparing this mixture.
It is preferred that deionized water be added to the solution to obtain the mixture. However, other forms of water can be used having various salt concentrations and/or pH levels. According to another embodiment, the water mixed CN with the solution comprising the chlorofluorinated compounds may include a basic C compound, such as potassium hydroxide. Persons having skill in the art will 0 10 understand that a compound that is basic is a compound that is more alkaline than
C
N
I other compounds. These are known to those skilled in the art as compounds that when added to water raise the pH of the water from its neutral pH to a higher than neutral pH.
According to one embodiment of the present invention, after mixing, the temperature of this water mixture is then adjusted to a sufficient temperature to separate the water mixture into at least three phases, including an upper gas phase containing C-3 chlorofluorinated compounds having at least six fluorine atoms, a top aqueous phase, and a lower liquid phase containing C-3 chlorofluorinated compounds having less than six fluorine atoms. The temperature sufficient to obtain the three distinct phases described above is from about 25*C to about 75C. The preferred temperature used to obtain these three phases is about 50 0
C.
The above process of separating the C-3 chlorofluorinated compounds alleviates the need for cost intensive and inefficient distillation. The separation of the C-3 chlorofluorinated compounds can be performed as a continuous phase separation process or as a batch phase separation process, applying techniques known to those having skill in the art of phase separation. The upper gaseous phase can be removed to obtain essentially pure C-3 chlorofluorinated compounds having at least six fluorine atoms while at the same time or, alternatively in a batch process, the bottom liquid phase containing C-3 chlorofluorinated compounds having less than six fluorine atoms can be removed either leaving behind or allowing for the removal of the top aqueous phase. Upon removal, these phases can be further processed or retained as end products. According to one embodiment of the present invention, the Schlorofluorinated compounds having at least six fluorine atoms are conveyed to an 0 additional reaction step to increase the number of fluorine atoms present.
Example 10: Separation of Fluorinated Compounds: The containers of crude C 3 C1 2
F
6 from various production runs of Steps I and II contained
C
3 C1 2
F
6 and numerous other unidentified underfluorinated compounds, and ON possible small amounts of H 2 0, HF, C12, and HCI.
0 Approximately 73 kg of crude C 3 C1 2
F
6 were fed from a heated cylinder to a 57 liter t Halar® lined scrubber tank. The scrubber tank contained a level gauge and an extemal heat tracing with a skin temperature thermocouple. The feed line into the tank was through a 0 dip tube.
The tank was initially filled with a 5% KOH/water solution and the temperature of the tank was heated to 50 0 C. The mixture separated into three phases: an upper, primarily gaseous phase; a top liquid, primarily aqueous phase; and a bottom primarily organic phase. The top gas phase was removed as a vapor stream and fed to a Halar® lined scrubber. The vent gas was open to a molecular sieve dryer bed which fed into a chilled collection cylinder on a scale. Upon completion of the scrubbing of the C 3 C1 2
F
6 the underfluorinated organics collected from the bottom phase was approximately 9.1 kg of material. The primary components of this organic liquid were C 3 C1 4 4 and C 3 Cl 3 F5 and
C
3 C1 2
F
6 Table 8. Results of Separation of Underfluorinated Separation According to the Present Invention Separated Phase Constitutents Vapor Essentially pure C 3 C1 2
F
6 Bottom 6% C 3 Cl 2
F
6 and -94% underfluorinated compounds As table 8 demonstrates, underfluorinated compounds can be efficiently separated from C 3 C1 2
F
6 according to the present invention.
As shown in Fig. 5, the present invention provides a third reaction step (Step III) for the selective fluorination of C 3 C1 2
F
6 to CFC-217ba. The predominant reaction occurring in this step is as follows:C 3 Cl2F 6 HF CF 3 -CFCI-CF 3
HCI
Preferably, Step III proceeds in the gas phase with excess anhydrous HF over a metal containing catalyst. According to one embodiment of the present invention, the reactants of Step I11 are fed under flow control to vaporizer(s) 34. These vaporized reactants include CFC-2 16aa which are fed to reactor 36.
In Step III isomer formation can be controlled by selective fluorination. Since N the undesired CFC-21I6ba contains 2 chlorine atoms it is not technically a "dead end" material. It has been demonstrated that by selective fluorination CFC-216ba will lead to CFC-21I7ba but CFC-2 16aa does not readily convert to CFC-2 17ca. Isomer formation is also effected by conversion.
According to one embodiment, the high yield CFC-2 16aa chlorofluorination product recovered from Step 11 reaction described previously is mixed with hydrogen fluoride and contacted with a metal containing catalyst. Residence time of Step III is in the range of about two seconds to about 60 seconds, and preferably about seconds to about 30 seconds.
Referring to Figure 5, according to one embodiment, reactor 36 is a fixed b~d reactor having a metal containing catalyst on a suitable solid support. The metal containing catalyst can be any catalyst known as being usefal for the fluorination of C-3 chlorinated hydrocarbons with hydrogen fluoride.
Preferred catalysts for the synthesis of CFC-217ba are supported metal containing catalysts. Metals such as iron, zinc, chromium and mixtures thereof are particularly useful as catalysts for the conversion Of C 3 C1 2
F
6 to CFC-217ba.
Acceptable results can be obtained with other metal-containing catalysts, provided the temperature, contact time, and other reaction conditions are suitably selected.
Suitable catalysts are supported catalysts that are dried and HFIN2 treated at 250 0 C, for 9 hours, and then HF/N2 treated at 465'C, for another 14 hours using a stoichiometric excess of HF, about 1.5-3 moles of HF per mole of active metal in the catalyst. This catalyst activation process can include 02 or Cl 2 gas at a concentration of about 0.5% to about 5% by weight, 2%.
The catalysts are particularly effective when activated according to one of the following three methods or described below: The catalyst is dried with N 2 fluorinated with HF/N 2 at 250*C for 9 hours.
The catalyst is then ftirther activated with HF/N 2 at 465*C for another 14 hours.
The same procedure is performed for catalyst drying and fluorination as described above in method The catalyst is then further activated with 2% by weight 02 along with I-F/N2 for 12 hours, then another 2 hours without 02.
29 The same procedure for the catalyst activation as described above in method is used except using 2% by weight C12 instead of 02.
SNon-limiting examples 11 and 12 demonstrate the preparation of catalysts Ssuited for the present invention and non-limiting example 13 demonstrates the activation of catalyst suited for this invention.
Example 11: FeC I/Activated Carbon Catalyst: Iron (lit) chloride hexahydrate (3.78) moles was dissolved in deionized water (1000 cc). The solution was mixed into and absorbed by 1000 grams of active carbon pellets and air-dried overnight.
Example 12: CrClActiatd Carbon atalyst Chromium (111) chloride hexahydrate (5.14 moles) was dissolved in deionized water (2100 cc). The solution was mixed into and absorbed by 3000 grams of active carbon pellets and air-dried overnight.
Exam le 13: Metal Chloride/Carbon Catalyst Activation Methods: The catalyst was activated using a fluorination reactor with HF. The following description gives the detailed procedures for three methods of fluorination catalyst activation.
The FeCl 3 /carbon catalyst of Example 11 was added to Step III reactor (herein, the reactor is identical to those reactors described previously) and the catalyst was dried with N 2 and fluorinated with HFN 2 to provide a stoichiometric excess of HF in the range of about 1.5 to about 3 moles of HF per mole of active metal in the catalyst at 250C for 9 hours. The catalyst was then further activated with HF/N 2 to provide a stoichiometric excess of HF in the range of about 1.5 to about 3 moles of HF per mole of active metal in the catalyst at 465 0 C for another 14 hours.
The same procedure discussed above in method was performed for metal containing catalyst drying with Nz and fluorination with HF/N 2 The metal containing catalyst was further activated with 2% by weight 02 along with HF/N2 to provide a stoichiometric excess of HF in the range of about 1.5 to about 3 moles of HF per mole of active metal in the catalyst for 12 hours, then another 2 hours without 02.
The same procedure was performed for the catalyst activation as described above in method except using 2% by weight Cl 2 instead of 2% by 0 weight 02.
The HF:C-3 reactant molar ratio utilized in Step III is preferably in the range of about 1-30 moles of HF per mole of C-3 reactants and the reaction pressure is in the range of about 1-53 Pa, and preferably about 8 Pa at a temperature of about 200 0
C
Sto about 550 0 C, and preferably about 485'C. Like Steps I and II previous, Step III Smay combine a diluent with the reactants.
By way of non-limiting example 14, a reaction according to an embodiment of the present invention is shown below.
Example 14: STEP III (CCl12, CFC-217ba A 51 mm I.D. x 1.3 m long Incone® pipe reactor was heated to 485*C by an electric heater. The reactor was connected to a distillation column, which had a pressure control valve to maintain the system pressure at 5 Pa. The reactor was charged with a supported chromium oxide catalyst.
13.88 g/min HF and 6.05 g/min CFC-216aa were fed into a vaporizer. The gas mixture was conveyed to the reactor, and products were removed and fed into a distillation column to separate HC1, CFC-217ba and light components. It is to be understood that the Step III reaction can be carried out using a fluorine-containing gas other than HF.
The heavier Step III reaction products were separated from the CFC-217ba reaction product. The CFC-217ba reaction product included unreacted
C
3 C1 2
F
6 The mass balance results are shown below in Table 9.
o Table 9. Mass Balance Results STotal Feed Materials:
C
3
C
2
F
6 9.4 kg HF 0.9 kg Total Products Collected: HC 1.2 kg HF 0.13 kg SC 3 CIF7= 4.1 kg
C
3 Cl 2
F
6 3.3 kg SRecovery 84.8% As is demonstrated above in Table 9, approximately 85% of the reactants are recovered as products that can either be further refined, recycled or purified.
Non-limiting example 15 demonstrates the impact of the catalyst selection on the process of the present invention.
Example 15: Comparison of Catalyst The Step III reaction was performed as described in Example 14 above with the exception that the catalyst parameters noted in Table 10 below were utilized.
Over a 12-hour period, multiple reaction product samples were taken. The average
C
3
CIF
7 selectivity is shown in Table 10 below.
Table 10. Average CCIF, Selectivity (12 hours average) Chromium Oxide Chromium Chloride Activated by Activated by Activated by Activated by Activated by method method method method method(c) 82.74 82.29 84.10 76.19 81.40 As seen from these results, the Step III process according to the present invention selectively fluorinates the desired C 3 C1 2
F
6 resulting in increased C 3 CIF7 production using catalysts of varying chemistry and activation.
To further demonstrate the flexibility of fluorination according to the present invention, numerous catalysts were employed. These catalysts were prepared following the same general preparation methods detailed in examples 1 through 4 8described above. These catalyst and reaction parameters are shown below in Table 0 11.
OU
II
e¢3 2007242939 12 Dec 2007 Catalyst Temnp.(C) Time (5c") 300 27.7 ~ie. 400 29.6 Activated Cwbon 450 18.9 400 19.7 450 18.4 430 10.1 300 10.4 400 19.1 450 9.2 430 19.6 400 11.2 450 10.3 300 1.6 400 39.5 Z-nC I iAC cC I 3 1
AC
6% FeC I d/AC TAME I. ~C3F' o FC,217b wit Differet 0 3lys System! UN CN~rrONSRESULTS UN COD~rTI% GC Atca Molers~f Ratio Seccibst to -1 CF23CCl3 -217ba CFC-1134 CFC.216aa CFC-216b5 IICF-226da 3. 0. 0.03 0.01 0.04 0.34 1.01 71.39 7.97 16.34 6.3 43.0 3.3 0.64 0.00 0.07 0.69 0.86 78.920 7.30 0.9 4.221.4 63.6 0.3 0.03 0.23 3322 0.67 52.40 5.8 12.60 52.55.7 0.60 0.00 0.09 67.67 0.61 79.36 8.74 .54 5 .3 98.7 .61.40.9 06 5 .86 0.8 43.265W 2.33303 6. 8.6 8.7 0.9 0387 0.37 7.9 0.5 3.46.7 69 6.5 21.3 3.3 0.02 0.00 0.01 0.690 0.649 7.30 .30 1.34 4.2 21.9 51.6 0.36 0.02 0.130 1.03 0.52 72.96 5.9d 9.64 5. 14.4 3.2 0.61 0.36 0.29 3.53 0.60 7.24 8.74 5 8.5 8.4 1.246 0.397 0.6 7.05 0.33 3.69 .34 3.02 6.5 8.1 86. 0.05 0.00 0.04 20.05 .3 64.92 7.15 6.42 5.7 4.9 71.2 0.44 .04 .42 29.35 .27 5.36 0.9d .31 6. 66.4 3.6 0.0 0.33 0.34 398 .53 ?5.31 .49 73.50 4.2 39.6 34.6 0.23 0.02 0.109 1.0 0.21 7.637 3.3 9.33 4 89.5 63.7 1.46 0.40 0.46 77.03 0.55 3.69 0.72 5.02 .5 79..2 68. .94 .5 0. 66 75.04 0.5 .87 3.92 3.72 36.96 2.575. 3 6.7.75 .46 0.07 2.39 2.93 32d 6.82 m/d 5.31 19 84.2 63 4.074 0.0 72.3618d 40 0.54 5 07 .47 CC I /AC KF IAC 480 19.7 300 10.5 400 20.0 450 38.9 480 13.3 400 39.6 450 39.6 480 19.4 400 16.1 430 33.98 IChrome Gel 0* Pld -not detected AC Activated CaiboO 0 Kun Ini 12.7 ma, 41 cc all-y.
600 tubc. All COWe Ctalyst PmrealOfSnai '11 0.S in 34 cc alloy-A 00 tube.
O As the results of Table 11 demonstrate various catalysts and reaction parameters prove useful. Particularly useful are iron, zinc and chromium chloride Scatalyst systems.
C, The reaction products of the Step III reaction can be purified according to another process of the present invention. A process of the present invention is provided for separating C-3 chlorofluorinated compounds from a halogenation reaction product. The halogenation reaction products contemplated in this invention include the reaction products of Step III described above. This reaction product will include chlorofluorinated compounds having at least three carbon atoms. According 8 10 to one embodiment of the present invention, the halogenation reaction product includes CFC-217ba. Accordingly, a halogenation reaction product is provided which comprises C-3 chlorofluorinated compounds, HCI and HF. These types of halogenation reaction products will typically result from the halogen exchange of fluorine for chlorine on a chlorofluorocarbon.
According to one embodiment of the present invention, the temperature of the halogenation reaction product is lowered sufficiently to separate the reaction products into at least three phases, including a upper gas phase containing HC1, a top liquid phase containing HF and a bottom liquid phase containing essentially acid free C-3 chlorofluorinated compounds. The temperature sufficient to separate the reaction product into at least three phases is from about 20 0 C to about 75°C. Preferably, the temperature is about 25 0 C. Like the separations previously described, the particular apparatus used for performing this separation is not critical. Examples of apparatus that would perform sufficiently include temperature regulated tanks and continuous phase separators.
The process according to the present invention allows for the continuous and/or batch separation of HF and HCI from C-3 chlorofluorinated compounds. This is desirous in any industrial halogenation reaction scheme or small scale reaction scheme because it is often necessary to remove HCI and HF from the reaction product. Typically, this is a costly endeavor, requiring the separate stripping of the HCI and subsequent distillation of the HF.
Example 16: Hetero eneous Phase Separation of CCIF7 The fluorination reaction of HF and C 3 C1 2
F
6 comprised a reaction product stream containing approximately 40-45 weight
C
3
CIF
7 and 50-55 wt C 3 C1 2 F6 on Oan acid free basis. The reaction product was cooled and sent directly to a 3.9 liter Sliquid phase separation tank. The vapor pressur of the mixture in the phase separator Qwas 6.5 Pa at 25cC. The reaction product separated into three phases. The top gaseous phase was primarilY HCI gas. The bottom liquid organic phase was decanted gaseous decantHC off to be purified to produce essentially pure C 3 CIF7. The top liquid HF rich phase can be decanted off and pumped directly back as recycled HF, but for purposes of this S example, it was discarded. The bottom phase contained mainly organics which measured 54 weight CFC-21 6 and 42 weight
C
3
CIF
7 The breakdown of the bottom phase composition is shown below in Table 12: N Table 12. Contents of Bottom Phase of Hetero enous Se aration %HF 96.0 The top vapor phase gas stream contained primarily HCI and was fed directly to a distillation column for simple distillation. The pressure was controlled for the entire system via this distillation pressure controller to distill HCI out the top. The HF phase composition is shown below in Table 13: Table 13. Contents of T Li uid Phase of Hetero enous Se aration Tabe3Cotents o To %HCOam %HF 6.56 8924 4.20 As Table 12 and 13 demonstrate, HF, HC and organic fluorination reaction products can be efficiently separated in a one-step process. This process is extremely useful because it negates the high costs associated with expensive multi-step distillation and separation techniques.
Once separated according to this invention the reaction compounds can be used as final products or returned to a reaction scheme for further processing.
According to the present invention the compounds thus separated have such high purity that they may proceed immediately to the next step without further purification.
In accordance with still another process of the present invention, a halogenated organic compound is provided to be contacted with
H
2 and a catalyst to form a hydrodehalogenation reaction product In a preferred embodiment the halogenated organic compounds are the Step I reaction products which include CFC-217ba. Accordingly, the halogenated organic compounds are premixed with hydrogen and contacted with a metal containiag catalyst at sufficient tempeature to produce a hydrodehalogenation reaction product. In still another embodiment the 36 hydrodehalogenation reaction products include HFC-227ea. A reaction of this O embodiment is shown below: Q
C
3
CCIF
7
H
2 HFC-227ea HCI ,A slight molar excess of H: can be used if desirable but is not necessary. The H,:halogenated organic compound molar ratio is in the range of about 0.2:1 to about 10:1, optimally about 1.2:1.
Referring now to Fig. 6. the hydrodehalogenation is performed in fixed bed reactor 42 containing a suitable catalyst. such as palladium on a refractory oxide support, such as alumina or other suitable supports, in which case the reactor is operated at a temperature of about 30°C to about 275°C, and preferably at about 185 0 C. Alternatively, a ferric chloride (FeC 3 catalyst on a solid support, such as active carbon can be used in which case the reactor is operated at a temperature of about 200 0 C to about 600°C, and preferably at about 450°C to about 500 0
C.
The pressure in reactor 42 should be in the range of about 1.2 Pa to about 15 Pa, and preferably about 7.9 Pa. The reaction is largely insensitive to pressure in the range of 0.9 7.9 Pa, however, reaction selectivity is slightly favored by lower pressures.
Residence time in reactor 42 should be in the range of about 10 seconds to about seconds, and preferably about 15 to about 60 seconds.
While any hydrodehalogenation catalyst could be used, the most active catalysts, such as Pt and Pd, are good selections because, in addition to the desired products, they lead to the addition of hydrogen across any double bond present or to the substitution of hydrogen for chlorine. Catalysts which may be utilized include, as charged to the reactor, common hydrogenation catalysts such as Cu, Ni, Cr, Ru, Rh or combinations thereof. It is not critical whether the catalysts are supported or not. However, supports which are unreactive to halocarbons, HF, and oxygen at hydrogenation temperatures up to 100°C higher such as metal fluorides, carbon, and titanium, may be used.
Referring now to Fig. 7, the high cost of noble metals led to concerns regarding catalyst lifetime. Initial testing demonstrated that the catalyst is somewhat fragile with activity dropping off within 5 days. Fortunately, it has been discovered that the addition of a small amount of water to the reaction stream extended catalyst lifetime. The addition of water allows the catalyst to perform in excess of 15 days.
with no apparent loss Of activity. The chemistry is not particularly sensitive to the U amount of water present above a minimum of It has been determined that this process enhancement will test favorably with various catalysts. In one particular embodiment, water was added to the 1-12 and halogenated organic compound and contacted with a catalyst. The additional water is from about 0.04 to about 12 percent by weight of the halogenated organic compound, and preferably, about 0.8 percent by weight of the halogenated organic compound. The previous description of the preferred embodiments will now be further demonstrated by way of non-limiting examples.
Example 17- StMEp VCCF 7 HC-227ea: A 12.7 mm, I.D. x 0.6 m long stainless steel pipe heated by an electric heater was used to combine materials as described Tables 14 and 15 and Fig. 7 below. The crude organic gas was then washed with water to remove acids and the gas was analyzed by gas chromatography. Table 14 demonstrates the results of this selective hydrodehalogenation with varying catalysts at varying temperatures. Table demonstrates the extension of catalyst life according to the present invention.
a F 0c it ifrn .Metal Support Additive contact H2/ Temp.
catalyst Time(s) CCIF7
(C)
LoadingCa Results HFC-227ea version Selectivity 1.5
ISO
Pd Activated 16.6 1.5
ISO
Cabo ISO8 16.4 69.5 IP Activated 19.1 2 150 12.2 83.6 %Pd Carbon IO47.9 89.8 200 78.8 91.2 225 96.8 87.6 250 99.9 97.0 1% Pd Activated 36.7 1.8 150 26.7 83.5 Carbon ISO 67.3 90.2 200 72.0 90.0 225 92.8 87.1 0.%P Activated 15.4 1 IS0 3.1 74.4 0%Pd Carbon IO596.
200 9.6 75.8 0.%P ciae 0321200 4.8 8.2 225 87.6 83.7 3250 97.7 80.7 Cu/ Activated 13. 2. 150 42.7 87.4 0.6% Pd CarbonIS 089.
200 7.5 85.4 225 B3.4 85.9 250 98.3 83.4 200/Ct Activated 10.2 2.4 150 7.1 6.
0.6 Pd Carbn .a 6 ;Pf abn 2 5 67.5 200 28.2 76.9 225 54.0 78.5 250 80.0 77.9 275 95.0 75.9 Difrnt 0.7 u Auia22.4 1.3 150 2.5 22.4 Metalmina 4.0 32.5 Meas200 5.0 39.4 Rh Almn 236 1.5 150 12.9 67.1 0.%Rh Aui0 S 26.0 77.5 200 26.6 83.6 Pt Alumina 2.3.1 1.5 150 2.8 180 6.1 50.8 200 14.3 80.3 Adtvs 0.5% Pd Alumina 2. 1.4 180 63.1 98.1 AddiivesH20 Pd Alumina 21.9 1.4 180 73.8 97.2 Pd Alumina none 22.1 1.4 I80 59.51 96.9 Pd 01310- none 23 1.4 380 96.6 95.7 As Table 14 demonstrates, the selectivity of the present invention is O substantially the same when performed at less than optimum temperature parameters.
SThis allows for the selective production of selected isomers.
Table 15 and Fig. 7 demonstrate the catalyst life extension effectiveness of the present invention at varying levels of water addition. All conversions represented in Table 15 were performed at 180 0 C with a Hz to C 3
CIF
7 molar ratio between 0.9- S1.5:1, a contact time of 20-30 seconds over a 0.5% Pd on Al catalyst.
Table 15. Catalyst Life Extension RUN TIME 450 ppm H20 (days) CONVERSION
SELECTIVITY
4C 3 CIF, HFC.227ea N 0.1 94.90 97.31 0.2 93.87 97.31 S0.3 84.70 97.13 0.96 80.90 97.92 1.03 79.94 99.35 1.05 79.98 96.91 RUN TIME 450ppm H20 (days) CONVERSION
SELECTIVITY
C
3
CIF
7 HFC-227ea 0.1 93.67 95.61 0.7 96.63 96.00 0.8 95.53 95.79 1.1 90.69 97.30 1.7 78.82 97.15 2.1 81.26 97.72 49.15 95.84 4.1 44.07 78.73 RUN TIME 0.29%0/ H20 (days) CONVERSION
SELECTIVITY
C
3 CIF7 HFC-227ea 0.1 95.81 96.09 0.3 98.40 95.54 1.2 98.36 96.40 1.3 98.40 96.44 1.3 98.31 96.26 1.3 96.58 96.13 4.1 96.53 96.30 4.2 95.88 95.76 4.3 95.87 95.89 4.3 95.77 95.74 96.48 95.78 5.1 94.84 95.79 5.2 92.59 95.36 5.3 91.89 97.39 6.2 89.60 97.32 6.3 91.18 97.44 cI6.3 90.91 98.14 85.48 97.10 7.1 83.84 97.22 7.3 79.20 97.20 ci7.3 77.89 97.13 69.32 97.10 8.2 71.62 97.04 8.3 76.70 97.17 8.380.16 97.50 11.0 60.41 96.61 11.0 58.41 96.41 11.2 56.68 96.36 11.9 57.05 96.40 c-I 2.1 5.9796.35 12.3 55.96 96.33 12.9 54.04962 12.9 54.0 96.22 RUN TDAE%% 0.8% H20 (days) CONVERSION
SELECTIVITY
C
3
CIF
7 HFC-227ea 0.0 90.10 94.47 0.7 93. 60 95.35 0.8 94.19 95.81 92.39 95.65 1.9 99.60 96.96 96.71 96.59 4.7 99.73 96.00 4.8 98.96 97.89 97.93 96.00 98.16 96.10 5.8 98.27 96.08 97.96 95.95 6.9 96.76 95.64 7.8 90.03 94.96 8.7 96.52 95.42 94.70 95.20 11.7 97.19 97.90 12.0 93.80 97.45 12.8 91.60 97.51 13.0 91.49 97.48 14.0 96.78 96.04 15.0 95.11 95.83 15.1 94.57 94.96 To demonstrate the increased catalyst life utilizing water in the dehydrohalogeflation reaction according to this invention, catalyst,
H
2 and C 3 CIF7 were prepared as described above with the addition of water as demonstrated in Table 17 above. It is clearly evident, particularly from Fig. 7, that the addition of water N significantly increases catalyst life without affecting the conversion and selectivity.
Like Steps I, I and III control and reduction of the undesired isomer in N Step IV can be achieved by selective reaction. Example 18 demonstrates this isomer control throughout the entire process when Steps I-IV are utilized in sequence. Of course the combination of the steps of the present invention include the following c combinations: I, II and III (production of essentially isomerically pure CFC-217ba); and I, II and IV (production of essentially isomerically pure HFC-227ea); and I and I (production of essentially isomerically pure CFC-216aa). Data from a variety of sources has all shown that even at 90% conversion there is effective reduction of the isomer content.
Example 18: Steps 1-IV: Reactors of the type described in the previous example were placed in series and prepared as previously described. The specific reaction conditions are denoted in the Table 16 below.
2007242939 12 Dec 2007 Table 16. Ioe eeciiyi Steps
I-IV
93.5i-o 6h ion4 CC ve S tep IRatrC nattu RFA dd =WCFC-216b8 CFC-2FC2273 27ba iu 43.i3 56414004 32 5 .3 7 4 5 1. 6 41 3210424357 20 I39 1.034 0.4536 94.309 0.695 ____tt2Ztd5.22/.791 As Table 16 above demonstrates, the selectivity for a desired isomer at each step carries through when the steps are combined. It is apparent that the four step Sprocess may likewise produce HFC-227ea via three steps by performing heretofore, S Step IV following Step II. As shown above in Table 16 CFC-217ba is produced following Step II.
According to another aspect of the present invention, a process is provided for Sthe separation of a mixture of isomers of HFC-227ea and HFC-227ca. This mixture Scan come from different sources, however, it is contemplated the mixture will stem Sfrom a hydrodehalogenation reaction as described above. According to one embodiment of the present invention a mixture of these isomers is combined with a Schlorofluorocarbon. Preferably, the chlorofluorocarbon is C 3 CIF7. This solution comprising the HFC-227 isomers and the chlorofluorocarbon are fed to a multiple stage distillation column operated under conditions such that HFC-227ea can be effectively distilled as a pure isomer. Distillation as it is known to those skilled in the art is a separation process in which a liquid is converted to a vapor and the vapor then condensed to a liquid. The latter is referred to as the distillate and the liquid material being vaporized is the charge or distillant. Distillation is thus a combination of the evaporation, or vaporization, and condensation.
The usual purpose of distillation is purification or separation of the components of the mix. This is possible because the composition of a vapor is usually different from that of the liquid mix from which it is obtained. Alcohol has been so purified for generations to separate it from water, fuel oil, and aldehydes produced in the fermentation process. Gasoline, kerosene, fuel oil, and lubricating oil are produced from petroleum by distillation. It is the key operation in removing salt from sea water. Regrettably, isomeric mixtures cannot typically be separated by distillation.
Embodiments of the present isomer separation process include the use of a ratio of chlorofluorocarbon to HFC-227ea from about 0.1 to about 10 and preferably about 1 to about 7. Upon distillation of this mixture essentially pure HFC-227ea is recovered as the distillate. The apparatus necessary to conduct this process will be apparent to those skilled in the art. Fractional distillation columns known in the industry will be readily useful to perform the process of the present invention.
Example 19: Distillation Separation of HFC-227ea from HFC-227ca 44 r To demonstrate the separation of HFC-227 isomers, a standard distillation apparatus was utilized and configured according to the parameters shown in Tables 17 and 18 below. As indicated, Table 17 demonstrates distillation with a Schlorofluorocarbon and Table 18 demonstrates distillation without a chlorofluorocarbon.
Table 17. Distillation with C3CIF, Table 18. Distillation without
C
3
CIF
7 As shown in Tables 17 and 18, the addition of a chlorofluorocarbon significantly increases the ability, through distillation, to separate the isomers of HFC-227.
The present invention also provides a process that selectively destroys undesired isomers, thereby increasing the overall isomeric purity in a mixture of isomers. According to one embodiment, this process includes providing a mixture of C-3 chlorofluorinated isomers. In another embodiment of the present invention, the C-3 chlorofluorinated isomers are CFC-216aa and CFC-216ba. In still another embodiment of the present invention, the C-3 chlorofluorinated compound isomers are CFC-217ba and CFC-217ca. Other isomer mixtures that can be purified according to the present invention will be apparent to those skilled in the art.
In accordance with the present invention, chlorofluorinated isomers are heated in the presence of a catalyst to a sufficient temperature to reduce the amount of at Sleast one of the chlorofluorinated isomers. The isomers are heated in the presence of
Q
a catalyst in like fashion to the reaction Steps I, II, and III described above.
5 According to one embodiment the catalyst used is a chromium containing catalyst. A suitable temperature to increase isomeric purity has been found to be from about S250°C to about 350°C. A more preferred temperature is about 280°C. By way of C' non-limiting example embodiments of this invention will now be demonstrated.
Example 20: Selective destruction of CFC-216ba: I 10 In accordance with the present invention, a mixture of CFC-216aa and CFC- 216ba was provided having a relative ratio of CFC-216aa to CFC-216ba of 96:1..
This mixture was heated in the presence of a pre fluorinated Chrom-gel® (provided by Englehard) catalyst at various temperatures outlined below with the results shown in Table 19 below.
Table 19. Selective Destruction of CFC-216ba Isomer Reaction Relative Ratio Temperature(OC) of CFC-216aa:CFC-216ba 325 257:1 250 325.03:1 250 309.53:1 As can easily be seen from Table 19 the process according to the present invention effectively doubled the ratio of preferred isomer, CFC-216aa, to the undesired isomer, CFC-216ba. The differences between the ratio determinations at 2500 C are believed to be acceptable analytical error.
To demonstrate still another embodiment of the present invention, non-
S
limiting example 21 is provided.
Q Example 21: Selective Destruction of CFC-217ca: N In accordance with the present invention, a mixture of CFC-217ba and CFC- 217ca was provided having a relative ratio of CFC-217ba to CFC-217ca of 81:1.
This mixture was heated in the presence of a pre-fluorinated Chrom-gel® catalyst at Svarious temperatures outlined below with the results shown in Table 20 below.
STable 20. Selective Destruction of CFC-217ca 0 Isomer Reaction Relative Ratio Temperature(oC) of CFC-217ba:CFC- 217ca S250 252.79:1 280 548.11:1 As can easily be seen from Table 20, the process according to the present invention effectively at least doubled the ratio of the preferred isomer, CFC-217ba, to the undesired isomer, CFC-217ca and in some instances more than quadrupled the ratio. Once purified in this fashion the resulting isomer is an excellent reactant for hydrodehalogenation according to Step IV of the present invention.
In keeping with the selective destruction process previously described, a process for selectively halogenating specific isomers within an isomeric mixture is also provided. Isomer selective reactions play an important role when isomerically pure products are desired. According to one embodiment of the present invention a mixture of C-3 fluorinated isomers is provided and these isomers are contacted with C1 2 in the presence of a catalyst at a sufficient temperature to halogenate at least one isomer.
According to one embodiment of the present invention the mixture of C-3 fluorinated isomers contains HFC-227ea and HFC-227ca. It is contemplated that other hydrohalogenated compounds may be selectively halogenated according to this invention as well. Hydrohalogenated compounds suited for selective halogenation according to this invention will be obvious to those skilled in the art.
According to still another embodiment of the present invention the catalyst is activated carbon. The specific type and preparation of the catalyst used to selectively halogenate are consistent with those catalysts described above in Steps I-IV.
One aspect of the invention provides for the heating of the isomeric mixture to a sufficient temperature. According to one embodiment the temperature is from about 200 0 C to about 350C. According to a more preferred embodiment, the C temperature is about 300*C.
SAccording to still another embodiment of the present invention the molar ratio of 02 to the isomeric mixture is from about 0.16:1 to about 3:1 and preferably about By way of non-limiting example 22, embodiments of the present invention Swill now be demonstrated.
Example 22: Selective Haloenation ofHFC-227ea: The specific quantities and types of reactants and the condition of the reactor S 10 utilized to demonstrate this invention are shown in Table 21 below. The reaction products were monitored for the isomers of CFC-217.
2007242939 12 Dec 2007 Table 21. Seective Chlorination of HFC-227es S As Table 21 demonstrates, the present invention can be used to even further reduce the 0 content of the undesired isomer. It is contemplated that once reduced the more isomerically pure reaction product can be recycled or further refined.
O,
(,N
P.\OPERMALU20OT3O412593 divdo-.71122007 -52- SAs Table 21 demonstrates, the present invention can be used to even further reduce the C, content of the undesired isomer. It is contemplated that once reduced the more isomerically pure reaction product can be recycled or further refined.
Throughout this specification and the claims which follow, unless the context requires Nj otherwise, the word "comprise", and variations such as "comprises" and "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.
The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgment or admission or any form of suggestion that that prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavour to which this specification relates.

Claims (38)

1. A hydrogenation process comprising contacting a compound with a catalyst in the presence of water to form a hydrogenated compound.
2. A process according to claim 1 wherein the contacting further comprises contacting the compound with H 2
3. A process according to claim 1 wherein a ratio of the H 2 to the compound is 0 from 0.2:1 to 10:1.
4. A process according to claims 2 or 3 wherein a ratio of the H 2 to the compound is at least about 1.2:1. A process according to claims 2 or 3 wherein the water is from about 0.04 to about 12 percent by weight of the compound.
6. A process according to claims 2 or 3 wherein the water is at least about 0.8 percent by weight of the compound.
7. A process according to claims 2 or 3 wherein the catalyst contains a metal.
8. A process according to claims 2 or 3 wherein the catalyst comprises palladium and a catalyst support.
9. A process according to claims 2 or 3 wherein the compound comprises C 3 F 7 C and the hydrogenated compound comprises C 3 F 7 H.
10. A process for purifying CF 3 CFHCF 3 comprising distilling a mixture comprising CF 3 CFHCF 3 CF 3 CF 2 CF 2 H, and at least one chlorofluorocarbon to form a solution comprising CF 3 CFHCF 3
11. A process according to claim 10 wherein the at least one chlorofluorocarbon comprises C 3 C1F 7
12. A process according to claim 11 wherein the mixture comprises a mole ratio of the chlorofluorocarbon to the CF 3 CFHCF 3 of from about 0.1 to about
13. A process according to claim 11 wherein the mixture comprises a mole ratio of the chlorofluorocarbon to the CF 3 CFHCF 3 of at least about 1:2.
14. A process for purifying chlorofluorinated compounds comprising: P \OPER\MAL2007G0432593 div doc-10/1/2007 0 -54- Sproviding a reaction product comprising HCI, HF, and a C-3 chlorofluorinated CN compound; phase separating the reaction product into a gas phase comprising the HC1, a top liquid phase comprising the HF, and a bottom liquid phase comprising the C-3 chlorofluorinated compound; and Sremoving the bottom liquid phase to form a solution comprising the C-3 chlorofluorinated compound. A process according to claim 14 wherein the C-3 chlorofluorinated compound comprises C 3 F 7 C1.
16. A process according to claim 15 wherein the phase separating comprises altering the reaction product temperature to a temperature of from about 20 0 C to about 0 C.
17. A process according to claim 16 wherein the temperature is about 25 0 C.
18. A process for purifying reaction products comprising: providing a reaction product comprising HF and at least one C-3 chlorofluorinated compound; phase separating the reaction product into a top liquid phase comprising HF and a bottom liquid phase comprising the at least one C-3 chlorofluorinated compound; and physically separating the top and bottom phases to form a solution comprising the at least one C-3 chlorofluorinated compound.
19. A process according to claim 18 wherein the C-3 chlorofluorinated compound comprises a C-3 chlorofluorinated compound having at least six fluorine atoms. A process according to claim 19 wherein the phase separating comprises altering the reaction product temperature to a temperature of from about -30°C to about -10 0 C.
21. A process according to claim 20 wherein the temperature is about -20 0 C.
22. A process for separating chlorofluorinated compounds comprising: providing a first solution comprising both first and second C-3 chlorofluorinated compounds, the first compound having at least six fluorine atoms and the second compound having less than six fluorine atoms; preparing a mixture comprising the first solution and water; P:\OPER\MAL207U30432S93 divdoc-Oi2/2M 7 phase separating the mixture into at least three phases; a gas phase comprising the CN first compound, an upper liquid phase comprising the water, and a lower liquid phase comprising the second compound; and removing the gas phase from the upper and lower liquid phases to form a second solution comprising the first compound.
23. A process according to claim 22 wherein the mixture further comprises a basic compound.
24. A process according to claim 22 or claim 23 wherein the basic compound comprises KOH.
25. A process according to claim 22 or claim 23 wherein the first compound comprises C 3 F 6 C1 2 and the second compound comprises C 3 F 5 C1 3
26. A process according to claim 22 or claim 23 wherein the first compound comprises C 3 F 6 C1 2 and the second compound comprises C 3 F 5 C1 3 the phase separating comprises altering the first solution reaction temperature to a temperature of from about 25 0 C to about 75 0 C.
27. A process according to claim 22 or claim 23 wherein the first compound comprises C 3 F 6 Cl 2 and the second compound comprises C 3 F 5 C1 3 the phase separating comprises altering the first solution reaction temperature to a temperature of about 50 0 C.
28. A process for purifying chlorofluorinated compounds comprising: providing a first mixture comprising both first and second isomers of a C-3 chlorofluorinated compound, the first mixture having a first ratio of the first isomer to the second isomer; and contacting the mixture with a catalyst to form a second mixture comprising a second ratio of the first isomer to the second isomer, wherein the first ratio is less than the second ratio.
29. A process according to claim 28 wherein the contacting further comprises heating the mixture to a temperature of from about 250 0 C to about 350 0 C. A process according to claim 28 wherein the contacting further comprises heating the mixture to a temperature of about 280°C. P:\OPER\M AL\2007lM432593 div doc-1012/2007 -56-
31. A process according to claim 28 further comprising separating at least a cI portion of the first isomer from the second mixture wherein the separating comprises distilling the second mixture to form a solution comprising the portion of the first isomer.
32. A process according to any one of claims 28, 29, 30, or 31 wherein the C-3 chlorofluorinated compound comprises C 3 F 6 C1 2 the first isomer comprises CF 3 CCl 2 CF 3 Sand the second isomer comprises CF 3 CCIFCF 2 CI.
33. A process according to any one of claims 28, 29, 30, or 31 wherein the C-3 0chlorofluorinated compound-comprises C 3 F 7 C1, the first isomer comprises CF 3 CCIFCF 3 and the second isomer comprises CF 3 CF 2 CF 2 CI.
34. A process according to any one of claims 28, 29, 30, or 31 wherein the catalyst comprises chromium. A process for halogenating compounds comprising: providing a first mixture comprising both first and second isomers of a hydrofluorinated compound, the first mixture having a first ratio of the first isomer to the second isomer; and contacting the mixture with a halogenating agent to form a second mixture having a second ratio of the first isomer to the second isomer, the first ratio being less than the second ratio.
36. A process according to claim 35 further comprising separating at least a portion of the first isomer from the second mixture wherein the separating comprises distilling the second mixture to form a solution comprising the portion of the first isomer.
37. A process according to claim 35 further comprising contacting the mixture with the halogenating agent in the presence of a catalyst.
38. A process according to any one of claims 35, 36, or 37 wherein the hydrofluorinated compound comprises C 3 F 7 H, the first isomer comprises CF 3 CFHCF 3 and the second isomer comprises CF 3 CF 2 CF 2 H.
39. A process according to any one of claims 35, 36, or 37 wherein the contacting comprises heating the mixture to a temperature of from about 200 0 C to about 350 0 C. P\OPER\MAL2007\30432593 div doc-10//2007 0 -57- A process according to any one of claims 35, 36, or 37 wherein the C, contacting comprises heating the mixture to a temperature of at least about 300°C.
41. A process according to any one of claims 35, 36, or 37 wherein the halogenating agent comprises Cl 2
42. A process according to any one of claims 35, 36, or 37 wherein the Shalogenating agent comprises Cl 2 and a molar ratio of the Cl 2 to the mixture is from about 0.16:1 to about 3:1.
43. A process according to any one of claims 35, 36, or 37 wherein the halogenating agent comprises Cl 2 and a molar ratio of the Cl 2 to the mixture is at least about 2.5:1.
44. A process according to any one of claims 36 or 37 wherein the catalyst comprises activated carbon.
AU2007242939A 2001-09-28 2007-12-12 Materials and methods for the production and purification of chlorofluorocarbons and hydrofluorocarbons Abandoned AU2007242939A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2007242939A AU2007242939A1 (en) 2001-09-28 2007-12-12 Materials and methods for the production and purification of chlorofluorocarbons and hydrofluorocarbons

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/966,158 2001-09-28
AU2002343436A AU2002343436B2 (en) 2001-09-28 2002-09-27 Materials and methods for the production and purification of chlorofluorocarbons and hydrofluorocarbons
AU2007242939A AU2007242939A1 (en) 2001-09-28 2007-12-12 Materials and methods for the production and purification of chlorofluorocarbons and hydrofluorocarbons

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2002343436A Division AU2002343436B2 (en) 2001-09-28 2002-09-27 Materials and methods for the production and purification of chlorofluorocarbons and hydrofluorocarbons

Publications (1)

Publication Number Publication Date
AU2007242939A1 true AU2007242939A1 (en) 2008-01-10

Family

ID=38961385

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2007242939A Abandoned AU2007242939A1 (en) 2001-09-28 2007-12-12 Materials and methods for the production and purification of chlorofluorocarbons and hydrofluorocarbons

Country Status (1)

Country Link
AU (1) AU2007242939A1 (en)

Similar Documents

Publication Publication Date Title
US7663007B2 (en) Process for the preparation of 1,3,3,3-tetrafluoropropene and/or 1,1,3,3,3-pentafluoropropene
JP3465865B2 (en) Method for producing 1,3,3,3-tetrafluoropropene
US7659435B2 (en) Process for the preparation of 1,1,1,3,3-pentafluoropropane and 1,1,1,2,3-pentafluoropropane
US7928271B2 (en) Process for producing 1,2,3,3,3-pentafluoropropene and related azeotropic compositions
JP2005536539A (en) Process for producing 1,1,1,2,2-pentafluoroethane
AU2002343436B2 (en) Materials and methods for the production and purification of chlorofluorocarbons and hydrofluorocarbons
AU2002343436A1 (en) Materials and methods for the production and purification of chlorofluorocarbons and hydrofluorocarbons
US7659436B2 (en) Process for the preparation of 1,1,1,3,3-penta-fluoropropane and/or 1,1,1,3,3,3-hexafluoropropane
US20050020863A1 (en) Method of making fluorinated propanes
AU2007242939A1 (en) Materials and methods for the production and purification of chlorofluorocarbons and hydrofluorocarbons
JPH10510206A (en) Hydrogenation catalyst and hydrogenation method
JP2773390B2 (en) Preparation of pentafluoroethane
CA2614530A1 (en) Materials and methods for the production and purification of chlorofluorocarbons and hydrofluorocarbons

Legal Events

Date Code Title Description
MK4 Application lapsed section 142(2)(d) - no continuation fee paid for the application