AU2006200646B2 - A method of modulating cellular activity - Google Patents

A method of modulating cellular activity Download PDF

Info

Publication number
AU2006200646B2
AU2006200646B2 AU2006200646A AU2006200646A AU2006200646B2 AU 2006200646 B2 AU2006200646 B2 AU 2006200646B2 AU 2006200646 A AU2006200646 A AU 2006200646A AU 2006200646 A AU2006200646 A AU 2006200646A AU 2006200646 B2 AU2006200646 B2 AU 2006200646B2
Authority
AU
Australia
Prior art keywords
agent
activity
sphingosine
sphingosine kinase
ability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
AU2006200646A
Other versions
AU2006200646A1 (en
Inventor
Philip Baxter
Jennifer Gamble
Stuart Pitson
Kerry-Anne Rye
Matthew Vadas
Brian Wattenberg
Pu Zia
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Janssen Research and Development LLC
Original Assignee
Johnson and Johnson Pharmaceutical Research and Development LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2003204254A external-priority patent/AU2003204254B2/en
Application filed by Johnson and Johnson Pharmaceutical Research and Development LLC filed Critical Johnson and Johnson Pharmaceutical Research and Development LLC
Priority to AU2006200646A priority Critical patent/AU2006200646B2/en
Publication of AU2006200646A1 publication Critical patent/AU2006200646A1/en
Application granted granted Critical
Publication of AU2006200646B2 publication Critical patent/AU2006200646B2/en
Anticipated expiration legal-status Critical
Expired legal-status Critical Current

Links

Description

AUSTRALIA
Patents Act 1990 (Cth) Complete Specification (Divisional) Johnson Johnson Pharmaceutical Research Development LLC Invention Title A method of modulating cellular activity The invention is described in the following statement: Blake Dawson Waldron Patent Services Level 39, 101 Collins Street Melbourne VIC 3000 Telephone: 61 3 9679 3065 Fax: +61 396793111 16 February 2006 Ref: WJP 03 1395 4482 200574030 1 A METHOD OF MODULATING CELLULAR ACTIVITY FIELD OF THE INVENTION The present invention relates generally to a method of modulating cellular activity and agents useful for same. More particularly, the present invention contemplates a method of .modulating endothelial cell activity and even more particularly endothelial cell adhesion molecule expression. Most particularly, the present invention provides a method of treating coronary heart disease by preventing or reducing endothelial cell adhesion molecule expression.
BACKGROUND OF THE INVENTION Bibliographic details of the publications referred to by author in this specification are collected at the end of the description. Sequence Identity Numbers (SEQ ID NOs.) for the nucleotide and amino acid sequences referred to in the specification are defined immediately before the bibliography.
Atherosclerotic coronary heart disease is one of the major causes of death in the western world (World Health Statistics Annual). An earlier event in atherogenesis is the adhesion of monocytes to the endothelium via adhesion molecules such as VCAM-1, ICAM-1 and E-selectin, all of which are rapidly synthesised in response to cytokines. VCAM-1 is primarily involved in the adhesion of mononuclear leukocytes to the endothelium. It is rapidly induced by the inflammatory cytokines IL-1 and TNF-a, and its induction is sustained for 48 to 72 hours.
ICAM-1 is expressed on many cells types and is involved in both monocyte and lymphocyte adhesion to activated endothelium. E-selectin is an endothelial specific adhesion molecule important in capturing leukocytes from the axial stream to roll along the endothelium (Abbassi et al., 1993).
There is considerable evidence for the involvement of adhesion molecules in the development of early atherosclerotic lesions and in mature atherosclerotic plaques (Van der Wal et al., 1992).
-2- Variable and low levels of E-selectin and VCAM-1 have been detected in the arterial endothelium over plaques (Van der Wal et al., 1992; Wood et al., 1993). VCAM-1 has also been observed in areas of neovascularization and in inflammatory infiltrates at the base of plaques, suggesting that intimal neovascularization may be an important site of inflammatory cell recruitment into advanced coronary lesions (O'Brien et al., 1993). ICAM-1 has been shown to be expressed on the endothelium overlaying atheromatous plaques (Johnson-Tidey et al., 1994).
The signals that lead to upregulation of cellular activities such as expression of adhesion molecules have not been defined. Elucidating these cellular signalling mechanisms is necessary for the development of therapeutic strategies to disease conditions in which said cellular activities are harmful such as coronary heart disease and inflammatory conditions.
In work leading up to the present invention, the inventors have identified a sphingosine kinase signalling pathway via which cellular activities such as adhesion molecule expression are achieved. By regulating the expression and activity of individual components of this pathway, these cellular activities can be modulated. The inventors have also developed a rapid, high volume assay for detecting agents exhibiting sphingosine kinase activity and agents which can act as agonists and antagonists of sphingosine kinase activity.
SUMMARY OF THE INVENTION Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" and "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.
One aspect of the present invention relates to a method of modulating cellular activity in a mammal said method comprising administering to said mammal an effective amount of an agent for a time and under conditions sufficient to modulate the activity of one or more components of a sphingosine kinase signalling pathway.
-3- Another aspect of the present invention provides a method of modulating adhesion molecule expression in a mammal said method comprising administering to said mammal an effective amount of an agent for a time and under conditions sufficient to modulate the activity of one or more components of a sphingosine kinase signalling pathway.
Yet another aspect of the present invention provides a method of modulating adhesion molecule expression in a mammal said method comprising administering to said mammal an effective amount of an agent for a time and under conditions sufficient to modulate the activity of one or both of sphingosine kinase and/or Sph-1-P.
Still another aspect of the present invention relates to a method of modulating endothelial cell adhesion molecule expression in a mammal said method comprising administering to said mammal an effective amount of an agent for a time and under conditions sufficient to modulate the activity of one or more components of a sphingosine kinase signalling pathway.
Still yet another aspect of the present invention provides a method of downregulating endothelial cell adhesion molecule expression in a mammal said method comprising administering to said mammal an effective amount of an agent for a time and under conditions sufficient to downregulate the activity of one or both of sphingosine kinase and/or Sph-l-P.
A further aspect of the present invention relates to a method of modulating adhesion molecule expression in a mammal said method comprising administering to said mammal an effective amount of one or more components of a sphingosine kinase signalling pathway or functional equivalents thereof.
Another further aspect of the present invention relates to a method of treatment or prophylaxis of a disease condition involving inflammatory mechanisms said method comprising administering to said mammal an effective amount of an agent for a time and under conditions sufficient to modulate the activity of one or more components of a sphingosine kinase signalling pathway wherein said modulation results in modulation of adhesion molecule expression.
-4- Still another further aspect of the present invention provides a method of treating a mammal exhibiting coronary heart disease said method comprising administering to said mammal an effective amount of an agent for a time and under conditions sufficient to downregulate the activity of one or more components of a sphingosine kinase signalling pathway wherein said downregulation results in downregulation of endothelial cell adhesion molecule expression.
Still yet another further aspect of the present invention provides a method of treatment or prophylaxis of a disease condition involving inflammatory mechanisms said method comprising administering an effective amount of one or more components of a sphingosine kinase signalling pathway or functional equivalents thereof to said mammal.
In still yet another further aspect the present invention relates to the use of an agent capable of modulating the activity of one or more components of a sphingosine kinase signalling pathway in the manufacture of a medicament for the modulation of adhesion molecule expression in a mammal.
Another aspect of the present invention relates to the use of one or more components of a sphingosine kinase signalling pathway or functional equivalents thereof in the manufacture of a medicament for the modulation of adhesion molecule expression in a mammal.
Yet another aspect of the present invention relates to agents for use in modulating one or more components of a sphingosine kinase signalling pathway wherein modulating said components modulates adhesion molecule expression.
Yet another aspect of the present invention relates to one or more components of a sphingosine kinase signalling pathway or functional equivalents thereof for use in modulating adhesion molecule expression in a mammal.
Still another aspect of the present invention relates to a pharmaceutical composition comprising an agent capable of modulating one or more components of a sphingosine kinase signalling pathway wherein said modulation results in modulation of adhesion molecule expression, together with one or more pharmaceutically acceptable carriers and/or diluents.
Still yet another further aspect of the present invention relates to a pharmaceutical composition comprising one or more components of a sphingosine kinase signalling pathway or functional equivalents thereof together with one or more pharmaceutically acceptable carriers and/or diluents.
A further aspect of the present invention provides a method of detecting an analyte structurally or functionally reactive with a lipid, said method comprising the steps of contacting either: said analyte which analyte is radio labelled; or (ii) said analyte and a reporter molecule which reporter molecule is radio labelled, said analyte being contacted with said lipid simultaneously with or separately to said reporter molecule; with said lipid in the presence of a scintillant for a time and under conditions sufficient for a lipid-radio label complex to form and to excite said scintillant, and detecting said excited scintillant.
Another further aspect of the present invention relates to a method of detecting an analyte structurally or functionally reactive with sphingosine, said method comprising the steps of contacting either: said analyte which analyte is radio labelled; or (ii) said analyte and a reporter molecule which reporter molecule is radio labelled, said analyte being contacted with said sphingosine simultaneously with or separately to said reporter molecule; -6with said lipid in the presence of a scintillant for a time and under conditions sufficient for a sphingosine-radio label complex to form and to excite said scintillant, and detecting said excited scintillant.
Still another further aspect of the present invention provides a method for detecting an analyte exhibiting sphingosine kinase activity, said method comprising the steps of contacting said analyte and "P-ATP with sphingonsine in the presence of a scintillant, said analyte being contacted with said sphingosine simultaneously with or separately to said 3 P-ATP, for a time and under conditions sufficient for 3 P-sphingosine complex to form and to excite said scintillant, and detecting said excited scintillant.
BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a graphical representation of the effect of high density lipoprotein (HDL) on tumour necrosis factor (TNF) mediated induction of adhesion proteins VCAM- and E-selectin. Mean fluorscence intensity is a flow cytometric measurement signifying the intensity of expression of adhesion molecules on the cell surface.
Figure 2 is a graphical representation of the effect of sphingosine kinase inhibitor on adhesion protein expresssion. Intensity of cell surface expression was measured as a percent of the mean fluorescence intensity stimulated by 100U of TNF. Figure 2A filled symbols show the effect of the cell-permeable ceramide (C2-ceramide) on adhesion proteins. The open symbols show the effect of ceramide in the presence of 100U/ml TNF. In Figure 2B the effect of sphingosine-1phosphate (Sph-l-P) is shown. Figure 2C shows the effect dimethylsphingosine (DMS) on adhesion protein expression (MFI) stimulated by TNF or Sph-1-P. In Figure 2D the effect of these agents on E-selectin mRNA is shown.
Figure 3 is a graphical representation of the time course of changes after TNF treatment of HUVECs on key components of sphingomyelin pathway are shown. Open symbols in Figure 3A show hydrolysis of sphingomyelin, in Figure 3B generation of ceramide, in Figure 3C sphingosine kinase activity and in Figure 3D formation of sphingosine- 1-phosphate, all as percent of amount -7at time 0. Filled circles represent the effect of pre-treatment of HUVECs with HDL.
Figure 4 is a photographic representation of the effect of Sph- TNF and HDL on generation of ERK (Figure 4A) and NF-KB (Figure 4B). The bar graph provides a summary of three independent experiments on ERK activation 1 SEM). show p value of difference from TNF by <0.01 and t by <0.05, shows p <0.01 versus nil counted. Figure 4B top shows gel retardations with NF-KB. Figure 4B bottom shows supershifts with antibodies specific for and p65 components of NF-KB and demonstrates the similar composition of NF-KB stimulated by TNF and Sph-1-P.
Figure 5 is a schematic representation of the sphingosine kinase pathway by which HDL inhibits TNFa-induced adhesion protein expression.
Figure 6 is a schematic representation of the multi-well assay for sphingosine-kinase activity.
The basis of the assay is the phosphorylation of sphingosine bound by absorption to the walls of a multi-well plate in which the walls have been impregnated with scintillant (Flashplates, New England Nuclear). y-_ 33 labelled ATP is incubated in the presence of the source of enzyme. If active enzyme is present the 3 3 P is transferred to the sphingosine. The wells are then washed to remove unbound 3 3 P. The 33 P bound to the sphingosine excites the scintillant and a signal is produced that is measured in a scintillation counter.
Figure 7 is a graphical representation showing that sphingosine kinase activity is linear for up to 400 minutes when measured in the multi-well assay. 50 pl of an endothelial cell extract (prepared as described above in example 8, containing sphingosine kinase activity) plus ul of an ATP solution containing 400 pM ATP/20pCi/ml 3 P-ATP was incubated with flashplates coated with phospholipid mixes either with (filled squares) or without (open squares) sphingosine and incubated at 37 0 C for the indicated lengths of time before washing.
Figure 8 is a graphical representation of a survey of tissues for sphingosine-kinase activity.
High speed "supernatant" (open bar) and "pellet" (filled bar) fractions from 50 p/ of extract were then assayed for sphingosine kinase activity.
-8- DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Accordingly, one aspect of the present invention relates to a method of modulating cellular activity in a mammal said method comprising administering to said mammal an effective amount of an agent for a time and under conditions sufficient to modulate the activity of one or more components of a sphingosine kinase signalling pathway.
The term "mammal" includes humans, primates, livestock animals horses, cattle, sheep, pigs, donkeys), laboratory test animals mice, rats, rabbits, guinea pigs), companion animals (e.g.
dogs and cats) and captive wild animals kangaroos, deer, foxes). Preferably, the mammal is a human or a laboratory test animal. Even more preferably the mammal is a human.
Reference to "modulating cellular activity" is a reference to up-regulating, down-regulating or otherwise altering any one or more of the activities which a cell is capable of performing such as, but not limited to, one or more of chemokine production, cytokine production, nitric oxide synthesase production, adhesion molecule expression and production of other inflammatory modulators. Preferably said cellular activity is adhesion molecule expression. Reference hereinafter to adhesion molecule expression should be read as including reference to other cellular activities.
Accordingly, there is provided a method of modulating adhesion molecule expression in a mammal said method comprising administering to said mammal an effective amount of an agent for a time and under conditions sufficient to modulate the activity of one or more components of a sphingosine kinase signalling pathway.
The term "expression" refers to the transcription and translation of a nucleic acid molecule resulting in the synthesis of a polypeptide.
Reference to "adhesion molecule" should be understood as a reference to a molecule which mediates the binding of a cell to another cell or to a protein such as an extracellular matrix -9protein. Examples of adhesion molecules include, but are not limited to, integrins, selectins (e.g.
E-selectin, P-selectin), members of the immunoglobulin-gene superfamily VCAM-1, ICAM- 1) and CD44.
Reference to modulating the "activity" of sphingosine kinase signalling pathway components is a reference to modulating the functions which said components are capable of performing such as but not limited to increasing or decreasing the role or extent to which a given component performs its function or modifying the nature of the function which a given component performs.
Modulating said "activity" should also be understood to encompass increasing or decreasing the concentration levels of a given component. Modulation of said "activity" may be achieved by: modulation of the catalytic activity of sphingosine kinase by competition with substrate (for example, sphingosine or ATP); (ii) interference with the catalytic activity of sphingosine kinase by an allosteric mechanisms (binding to sites on the molecule other than the substrate-binding sites); or (iii) interfering with enzyme activation, such as by altering: post-translational covalent modification such as phosphorylation, lipid modification non-covalent coupling to a required co-activator such as a protein, lipid or ion subcellular localisation of the enzyme.
A "sphingosine kinase signalling pathway" is defined as a signalling pathway which utilises one or both of sphingosine kinase and/or sphingosine-1-phosphate. Without limiting the present invention to any one theory or mode of action, it is thought a sphingosine kinase signalling pathway cascade which results in adhesion molecule expression may take the form of: the generation of ceramide from sphingomyelin via S.Mase activity, said ceramide being converted to sphingosine; (ii) sphingosine-1-phosphate (referred to hereinafter as "Sph-l-P") generation by stimulation of sphingosine kinase; and (iii) the activation of MEK/ERK and nuclear translocation of NF-KB downstream from Sph-l-P generation, said downstream events leading to adhesion molecule expression.
Accordingly, the term "components" should be understood to refer to any molecule which is or may be involved in a sphingosine kinase signalling pathway cascade and includes, but is not limited to, cellular proteins, metabolites sphingomyelin, ceramide, sphingosine and Sph-lkinases S.Mase, sphingosine kinase, protein kinase C and ERK) and transcription factors NF-KB). Preferably, said components are sphingosine kinase and/or Sph-l-P.
According to this preferred embodiment there is provided a method of modulating adhesion.
molecule expression in a mammal said method comprising administering to said mammal an effective amount of an agent for a time and under conditions sufficient to modulate the activity of one or both of sphingosine kinase and/or Sph-1-P.
A key event in many disease conditions is the upregulation of cellular activities such as those which lead to inflammation. For example, upregulation of the production of inflammatory mediators such as cytokines, chemokines, eNOS and upregulation of adhesion molecule expression. Said upregulation may be induced by a number of stimuli including, for example, inflammatory cytokines such as tumour necrosis factor-a (TNF-a) and interleukin-1 (IL-1), endotoxin, oxidised or modified lipids, radiation or tissue injury. In a preferred aspect said cellular activity is endothelial cell activity.
Accordingly, the present invention relates to a method of modulating endothelial cell adhesion molecule expression in a mammal said method comprising administering to said mammal an effective amount of an agent for a time and under conditions sufficient to modulate the activity of one or more components of a sphingosine kinase signalling pathway.
-11- Most preferably said components are sphingosine kinase and/or Sph-1-P.
While most of the components involved in a sphingosine kinase signalling pathway are stimulatory for a given cellular activity, inhibitory signalling components are also evident. For example, Sph-l-P is generated from sphingosine by sphingosine kinase. Stimulation of endothelial cells causes a rapid and transient increase in cytosolic sphingosine kinase activity which leads to upregulation of adhesion molecule expression. The production of Sph-l-P is induced in parallel with sphingosine kinase activity. However, inhibitory components of a sphingosine kinase signalling pathway result in inhibition of adhesion molecule expression.
Accordingly, the term "modulate" in relation to the activity of any one or more components of the sphingosine kinase signalling pathway refers to upregulating or downregulating or otherwise altering said activity. The preferred method is to downregulate sphingosine kinase pathway activity either by inhibiting or reducing the activity of one or more stimulatory components of a sphingosine kinase signalling pathway or by upregulating the activity of one or more inhibitory components of said pathway. However, modulation of the activity of said components wherein adhesion molecule expression is upregulated may be desired under certain circumstances. Most preferably, the biological activity of said stimulatory components is down-regulated.
According to this most preferred embodiment, there is provided a method of downregulating endothelial cell adhesion molecule expression in a mammal said method comprising administering to said mammal an effective amount of an agent for a time and under conditions sufficient to downregulate the activity of one or both of sphingosine kinase and/or Sph-l-P.
Modulation of said activity by the administration of an agent to a mammal can be achieved by one of several techniques, including but in no way limited to introducing into said mammal a proteinaceous or non-proteinaceous molecule which: modulates synthesis of said components; (ii) functions as an antagonist to said component; -12- (iii) functions as an agonist to said component.
Said proteinaceous molecule may be derived from natural, recombinant or synthetic sources including fusion proteins or following, for example, natural product screening. Said nonproteinaceous molecule may be derived from natural sources, such as for example natural product screening or may be chemically synthesised. The present invention contemplates chemical analogs of said components capable of acting as agonists or antagonists of said components. Chemical agonists may not necessarily be derived from said components but may share certain conformational similarities. Alternatively, chemical agonists may be specifically designed to mimic certain physiochemical properties of said components. Antagonists may be any compound capable of blocking, inhibiting or otherwise preventing said components from carrying out their normal biological functions. Antagonists include monoclonal antibodies specific for said components, or parts of said components, and antisense nucleic acids which prevent transcription or translation of genes or mRNA in mammalian cells.
The method of the present invention is exemplified herein utilising high density lipoprotein (referred to herein as Treatment of endothelial cells with HDL inhibits both the amplitude and duration of TNF-a induced sphingosine kinase activation. HDL treatment substantially blunts the amplitude and duration of Sph-1-P formation by inhibiting sphingosine kinase activity. The inhibition of Sph- 1-P formation results in blunting of downstream pathway events including blunting of MEK/ERK activation and NF-KB nuclear translocation thereby reducing adhesion protein expression. Similarly, N,N-dimethyl sphingosine decreases TNF-a induced adhesion protein expression and mRNA levels by competitively inhibiting sphingosine kinase activity. Interruption of the sphingosine kinase signalling pathway at this point prevents the downstream formation ofintracellular Sph-l-P thereby preventing the further downstream events of MEK/ERK and NF-KB stimulation which lead to adhesion protein expression.
In a most preferred embodiment the present invention relates to a method of downregulating endothelial cell adhesion molecule expression in a mammal said method comprising administering to said mammal an effective amount of HDL for a time and under conditions sufficient to downregulate sphingosine kinase activity.
-13- An "effective amount" means an amount necessary to at least partly obtain the desired response or to delay the onset or inhibit progression or halt altogether the onset or progression of adhesion molecule expression. This amount varies depending upon the health and physical condition of the individual to be treated, the taxonomic group of the individual to be treated, the assessment of the medical situation and other relevant factors. It is expected that the amount will fall in a relatively broad range that can be determined through routine trials.
Modulation of cellular adhesion molecule expression can also be achieved by the administration of one or more sphingosine kinase signalling pathway components or functional equivalents thereof.
Accordingly, another aspect of the present invention relates to a method of modulating adhesion molecule expression in a mammal said method comprising administering to said mammal an effective amount of one or more components of a sphingosine kinase signalling pathway or functional equivalents thereof.
The term "functional equivalents" used herein includes but is not limited to derivatives having the functional activity of said components.
Derivatives include fragments, parts, portions, chemical equivalents, mutants, homologs, mimetics from natural, synthetic or recombinant sources including fusion proteins.
Derivatives may be derived from insertion, deletion or substitution of amino acids. Amino acid insertional derivatives include amino and/or carboxylic terminal fusions as well as intrasequence insertions of single or multiple amino acids. Insertional amino acid sequence variants are those in which one or more amino acid residues are introduced into a predetermined site in the protein although random insertion is also possible with suitable screening of the resulting product. Deletional variants are characterized by the removal of one or more amino acids from the sequence. Substitutional amino acid variants are those in which at least one residue in the sequence has been removed and a different residue inserted in its place. Additions to amino acid sequences including fusions with other peptides, polypeptides or proteins.
-14- The derivatives of said components include fragments having particular epitopes or parts of the entire component fused to peptides, polypeptides or other proteinaceous or nonproteinaceous molecules. For example, said components or derivative thereof may be fused to a molecule to facilitate its entry into a cell. Analogs of said components contemplated herein include, but are not limited to, modification to side chains, incorporating of unnatural amino acids and/or their derivatives during peptide, polypeptide or protein synthesis and the use of crosslinkers and other methods which impose conformational constraints on the proteinaceous molecules or their analogs. Derivatives of nucleic acid sequences may similarly be derived from single or multiple nucleotide substitutions, deletions and/or additions including fusion with other nucleic acid molecules. The derivatives of the nucleic acid molecules of the present invention include oligonucleotides, PCR primers, antisense molecules, molecules suitable for use in cosuppression and fusion of nucleic acid molecules.
Examples of side chain modifications contemplated by the present invention include modifications of amino groups such as by reductive alkylation by reaction with an aldehyde followed by reduction with NaBH 4 amidination with methylacetimidate; acylation with acetic anhydride; carbamoylation of amino groups with cyanate; trinitrobenzylation of amino groups with 2, 4, 6-trinitrobenzene sulphonic acid (TNBS); acylation of amino groups with succinic anhydride and tetrahydrophthalic anhydride; and pyridoxylation of lysine with pyridoxal-5-phosphate followed by reduction with NaBH 4 The guanidine group of arginine residues may be modified by the formation of heterocyclic condensation products with reagents such as 2,3-butanedione, phenylglyoxal and glyoxal.
The carboxyl group may be modified by carbodiimide activation via O-acylisourea formation followed by subsequent derivitisation, for example, to a corresponding amide.
Sulphydryl groups may be modified by methods such as carboxymethylation with iodoacetic acid or iodoacetamide; performic acid oxidation to cysteic acid; formation of a mixed disulphides with other thiol compounds; reaction with maleimide, maleic anhydride or other substituted maleimide; formation of mercurial derivatives using 4 -chloromercuribenzoate, 4-chloromercuriphenylsulphonic acid, phenylmercury chloride, 2 -chloromercuri-4-nitrophenol and other mercurials; carbamoylation with cyanate at alkaline pH.
Tryptophan residues may be modified by, for example, oxidation with N-bromosuccinimide or alkylation of the indole ring with 2-hydroxy-5-nitrobenzyl bromide or sulphenyl halides.
Tyrosine residues on the other hand, may be altered by nitration with tetranitromethane to form a 3-nitrotyrosine derivative.
Modification of the imidazole ring of a histidine residue may be accomplished by alkylation with iodoacetic acid derivatives or N-carboethoxylation with diethylpyrocarbonate.
Examples of incorporating unnatural amino acids and derivatives during protein synthesis include, but are not limited to, use of norleucine, 4-amino butyric acid, 4-amino-3-hydroxy-5phenylpentanoic acid, 6-aminohexanoic acid, t-butylglycine, norvaline, phenylglycine, omithine, sarcosine, 4 -amino-3-hydroxy-6-methylheptanoic acid, 2-thienyl alanine and/or Disomers of amino acids. A list of unnatural amino acid contemplated herein is shown in Table 1.
16 TABLE 1 Non-conventional Code Non-conventional Code amino acid amino acid a-amninobutyric acid a-amino-a-methylbutyrate aminocyclopropanecarboxylate amninoisobutyric acid amninonorbomylcarboxylate cyclohexylalanine cyclopentylalanine D-alanine D-arginine D-aspartic acid D-cysteine D-glutamnine D-glutamnic acid D-histidine D-isoleucine D-leucine D-lysine D-methionine D-omnithine D-phenylalanine D-proline D-serine D-threonine Abu Mgabu Cpro Aib Norb Cpen Dal Darg Dasp Dcys Dgln Dglu Dhis Dile Dleu Dlys Dmet Dom Dphe Dpro Dser Dthr L-N-methylalanine L-N-methylarginine L-N-methylasparagine L-N-methylaspartic acid L-N-methylcysteine L-N-methylglutamine L-N-methylglutamic acid Chexa L-N-methylhistidine L-N-methylisolleucine L-N-methylleucine L-N-methyllysine L-N-methylmethionine L-N-methylnorleucine L-N-methylnorv aline L-N-methylomithine L-N-methylphenylalanine L-N-methylproline L-N-methylserine L-N-methylthreonine L-N-methyltryptophan L-N-methyltyrosine L-N-methylvaline L-N-methylethylglycine L-N-methyl-t-butylglycine L-norleucine Nmala Nmarg Nmasn Nmasp Nmcys Nmgln Nmglu Nmnhis Nmile Nmleu Nmlys Nmnmet Nmnle Nmnnva Nmom Nmphe Nmpro Nmser Nmthr Nmtrp Nmtyr Nmval Nmetg Nmtbug NMe 17 D-tryptophan D-tyrosine D-valine D-a-methylalanine D-a-methylarginine D-a-methylasparagine D-a-methylaspartate D-a-methylcysteine D-a-methylglutamnine D-a-methylhistidine D-a-methylisoleucine D-a-methylleucine D-a-methyllysine D-a-methylmethionine D-a-methylornithine D-cz-methylphenylaianine D-a-methylproline D-a-methylserine D-a-methylthreonine D-a-methyltryptophan D-a-methyltyrosine D-a-methylvaline D-N-methylalanine D-N-methylarginine D-N-methylasparagine D-N-methylaspartate D-N-methylcysteine D-N-methylglutamine D-N-methylglutarnate D-N-methylhistidine Dtrp Dtyr Dval Dmala Dmarg Dmasn Dmasp Dmcys Dmgln Dmhis Dmile Dmleu Dmlys Dmmet Dmom Dmphe Dmpro Dmser Dmthr Dmtrp Dmty Dmval Dnala Dnmarg Dnmasn Dnmasp Dnmcys Dnmngln Dnmglu Dnmhis L-norvaline a-methyl-amninoisobutyrate a-methyl-y-aminobutyrate a-methylcyclohexylalanine a-methylcylcopentylaianine a-methyl-a-napthylaianine a-methylpenicillamnine N-(4-aniinobutyl)glycine N-(2-amninoethyl)glycine
N-(
3 -aminopropyl)glycine N-amnino-a-methylbutyrate c-napthylalanine N-benzylglycine N-(2-carbamnylethyl)giycine N-(carbamylmethyl)glycine N-(2-carboxyethyl)glycine N-(carboxymethyl)glycine N-cyclobutylglycine N-cycloheptylglycine N-cyclohexylglycine N-cyclodecylglycine N-cylcododecylglycine N-cyclooctylglycine N-cyclopropylglycine N-cycloundecylglycine
N-(
2 2 -diphenylethyl)glycine N-(3 3 -diphenylpropyl)glycine
N-(
3 -guanidinopropyl)glycine 1-hydroxyethyl)glycine N-(hydroxyethyl))glycine Nva Maib Mgabu Mchexa Mcpen Manap Mpen Nglu Naeg Nomn Nmaabu Anap Nphe Ngln Nasn Nglu Nasp Ncbut Nchep Nchex Ncdec Ncdod Ncoct Ncpro Ncund Nbhm Nbhe Narg Nthr Nser 18- D-N-methylisoleucine Dnmile D-N-methylleucine Dnmleu D-N-methyllysine Dnmlys N-methylcyclohexylalanine Nmchexa D-N-methylornithine Dnmom N-methylglycine Nala N-methylamninoisobutyrate Nmaib 1-methylpropyl)glycine Nile N-(2-methylpropyl)glycine Nleu D-N-methyltryptophan Dnmtrp D-N-methyltyrosine Dnxntyr D-N-methylvaline Dnmval y-amninobutyric acid Gabu L-t-butylglycine Tbug L-ethylglycine Etg L-homophenylalanine Hphe L-a-methylarginine Marg L-a-methylaspartate Masp L-a-methylcysteine Mcys L-a-methylglutamnine Mgln L-cz-methylhistidine Mhis L-a-methylisoleucine Mile L-a-methylleucine Mleu L-a-methylmethionine Mmet L-a-methylnorvaline Mnva L-a-methylphenylalanine Mphe L-a-methylserine Mser L-a-methyltryptophan Mtrp L-a-methylvaline Mval N-(imidazolylethyl))glycine N-(3-indolylyethyl)glycine N-methyl-y-aminobutyrate D-N-methylmethionine N-methylcyclopentylalanine D-N-methylphenylalanine D-N-methylproline D-N-methylserine D-N-methylthreonine 1-methylethyl)glycine N-methyla-napthylalanine N-mnethylpenicillamnine N-(p-hydroxyphenyl)glycine N-(thiomethyl)glycine penicillamnine L-a-methylalanine L-a-methylasparagine L-a-methyl-t-butylglycine L-methylethylglycine L-a-methylglutamate L-a-methylhomophenylalanine
N-(
2 -methylthioethyl)glycine L-ca-methyllysine ,L-a-methylnorleucine L-a-methylomithine L-a-methylproline L-a-methylthreonine L-a-methyltyrosine L-N-methylhomophenylalanine Nhis Nhtrp Nmgabu Dnminet Nmcpen Dnphe Dnmpro Dnrnser Dnmthr Nval Nmanap Nmpen Nhtyr Ncys Pen Mala Masn Mtbug Metg Mglu Mhphe Nmet Mlys Mnle Morn Mpro Mthr Mtyr Nmhphe -19- N-(N-(2,2-diphenylethyl) Nnbhm N-(N-(3,3-diphenylpropyl) Nnbhe carbamylmethyl)glycine carbamylmethyl)glycine 1-carboxy-l-(2,2-diphenyl- Nmbc ethylamino)cyclopropane Crosslinkers can be used, for example, to stabilise 3D conformations, using homobifunctional crosslinkers such as the bifunctional imido esters having (CH2)n spacer groups with n=l to n=6, glutaraldehyde, N-hydroxysuccinimide esters and hetero-bifunctional reagents which usually contain an amino-reactive moiety such as N-hydroxysuccinimide and another group specific-reactive moiety such as maleimido or dithio moiety (SH) or carbodiimide (COOH). In addition, peptides can be conformationally constrained by, for example, incorporation of C, and NI -methylamino acids, introduction of double bonds between C, and Cp atoms of amino acids and the formation of cyclic peptides or analogues by introducing covalent bonds such as forming an amide bond between the N and C termini, between two side chains or between a side chain and the N or C terminus.
The present invention is useful in relation to human disease conditions. For example the present invention is particularly useful, but in no way limited to, use as a prophylactic or as a therapy in relation to disease conditions which involve inflammatory mechanisms, such as coronary heart disease.
Accordingly, another aspect of the present invention relates to a method of treatment or prophylaxis of a disease condition involving inflammatory mechanisms in a mammal said method comprising administering to said mammal an effective amount of an agent for a time and under conditions sufficient to modulate the activity of one or more components of a sphingosine kinase signalling pathway wherein said modulation results in modulation of adhesion molecule expression.
Preferably modulation of said adhesion molecule expression is modulation of endothelial cell adhesion molecule expression.
Even more preferably, said components are sphingosine kinase and/or Sph-l-P. Most preferably said components are downregulated said downregulation resulting in downregulation of adhesion molecule expression.
In a most preferred embodiment there is provided the method of treating a mammal exhibiting coronary heart disease said method comprising administering to said mammal an effective amount of an agent for a time and under conditions sufficient to downregulate the activity of one or more components of a sphingosine kinase signalling pathway wherein said downregulation results in downregulation of endothelial cell adhesion molecule expression.
Most preferably said components are sphingosine kinase and/or Sph-l-P.
Another aspect of the present invention provides a method of treatment or prophylaxis of a disease condition involving inflammatory mechanisms in a mammal said method comprising administering to said mammal an effective amount of one or more components ofa sphingosine kinase signalling pathway or functional equivalents thereof wherein said modulation results in modulation of adhesion molecule expression.
Administration of the agent or compohent or functional equivalent thereof, in the form of a pharmaceutical composition, may be performed by any convenient means. The agent or component or functional equivalent thereof of the pharmaceutical composition is contemplated to exhibit therapeutic activity when administered in an amount which depends on the particular case. The variation depends, for example, on the human or animal and the agent chosen. A broad range of doses may be applicable. Considering a patient, for example, from about 0.1 mg to about 1 mg of the agent or component or functional equivalent thereof may be administered per kilogram of body weight per day. Dosage regimes may be adjusted to provide the optimum therapeutic response. For example, several divided doses may be administered daily, weekly, monthly or at other suitable time intervals or the dose may be proportionally reduced as indicated by the exigencies of the situation.
The agent or component or functional equivalent thereof may be administered in a convenient manner such as by the oral, intravenous (where water soluble), intraperitoneal, -21 intramuscular, subcutaneous, intradermal or suppository routes or implanting using slow release molecules). With particular reference to use of the agent or component or functional equivalent thereof, said agent or component or functional equivalent thereof may be administered in the form of pharmaceutically acceptable nontoxic salts, such as acid addition salts or metal complexes, e.g. with zinc, iron or the like (which are considered as salts for purposes of this application). Illustrative of such acid addition salts are hydrochloride, hydrobromide, sulphate, phosphate, maleate, acetate, citrate, benzoate, succinate, malate, ascorbate, tartrate and the like. If the active ingredient is to be administered in tablet form, the tablet may contain a binder such as tragacanth, corn starch or gelatin; a disintegrating agent, such as alginic acid; and a lubricant, such as magnesium stearate.
In a preferred embodiment of the present invention, the agent used in the method is linked to an antibody specific for coronary endothelial cells to enable specific delivery of said agent to these cells.
In yet another aspect the present invention relates to the use of an agent capable of modulating the activity of one or more components of a sphingosine kinase signalling pathway in the manufacture of a medicament for the modulation of adhesion molecule expression in a mammal.
Preferably modulation of said adhesion molecule expression is modulation of endothelial cell adhesion molecule expression.
Even more preferably, said components are sphingosine kinase and/or Sph-l-P. Most preferably said components are downregulated said downregulation resulting in downregulation of adhesion molecule expression.
Another aspect of the present invention relates to the use of one or more components of a sphingosine kinase signalling pathway or functional equivalents thereof in the manufacture of a medicament for the modulation of adhesion molecule expression in a mammal.
-22- Yet another aspect of the present invention relates to agents for use in modulating one or more components of a sphingosine kinase signalling pathway wherein modulating said components modulates adhesion molecule expression.
Preferably modulation of said adhesion molecule expression is modulation of endothelial cell adhesion molecule expression.
Even more preferably, said components are sphingosine kinase and/or Sph-l-P. Most preferably said components are downregulated said downregulation resulting in downregulation of adhesion molecule expression.
A further aspect of the present invention relates to one or more components of a sphingosine kinase signalling pathway or functional equivalents thereof for use in modulating adhesion molecule expression in a mammal.
Yet another further aspect of the present invention relates to a pharmaceutical composition comprising an agent capable of modulating one or more components of a sphingosine kinase signalling pathway wherein said modulation results in modulation of adhesion molecule expression,together with one or more pharmaceutically acceptable carriers and/or diluents.
In another further aspect, the present invention relates to a pharmaceutical composition comprising one or more components of a sphingosine kinase signalling pathway or functional equivalents thereof together with one or more pharmaceutically acceptable carriers and/or diluents.
The pharmaceutical forms suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion or may be in the form of a cream or other form suitable for topical application. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for -23 example, water, ethanol, polyol (for example, glycerol, propylene glycol and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of superfactants. The preventions of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.
Sterile injectable solutions are prepared by incorporating the active compounds in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filtered sterilisation. Generally, dispersions are prepared by incorporating the various sterilised active ingredient into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and the freeze-drying technique which yield a powder of the active ingredient plus any additional desired ingredient from previously sterile-filtered solution thereof.
When the active ingredients are suitably protected they may be orally administered, for example, with an inert diluent or with an assimilable edible carrier, or it may be enclosed in hard or soft shell gelatin capsule, or it may be compressed into tablets, or it may be incorporated directly with the food of the diet. For oral therapeutic administration, the active compound may be incorporated with excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like.
Such compositions and preparations should contain at least 1% by weight of active compound. The percentage of the compositions and preparations may, of course, be varied and may conveniently be between about 5 to about 80% of the weight of the unit. The 24 amount of active compound in such therapeutically useful compositions in such that a suitable dosage will be obtained. Preferred compositions or preparations according to the present invention are prepared so that an oral dosage unit form contains between about 0.1 Itg and 2000 mg of active compound.
The tablets, troches, pills, capsules and the like may also contain the components as listed hereafter: a binder such as gum, acacia, corn starch or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid and the like; a lubricant such as magnesium stearate; and a sweetening agent such as sucrose, lactose or saccharin may be added or a flavouring agent such as peppermint, oil of wintergreen, or cherry flavouring. When the dosage unit form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier. Various other materials may be present as coatings or to otherwise modify the physical form of the dosage unit. For instance, tablets, pills, or capsules may be coated with shellac, sugar or both. A syrup or elixir may contain the active compound, sucrose as a sweetening agent, methyl and propylparabens as preservatives, a dye and flavouring such as cherry or orange flavour. Of course, any material used in preparing any dosage unit form should be pharmaceutically pure and substantially non-toxic in the amounts employed. In addition, the active compound(s) may be incorporated into sustained-release preparations and formulations.
The pharmaceutical composition may also comprise genetic molecules such as a vector capable of transfecting target cells where the vector carries a nucleic acid molecule capable of modulating the expression of a component of the sphingosine kinase signalling pathway.
The vector may, for example, be a viral vector.
To facilitate the identification of agents suitable for use in the method of present invention, the inventors have developed a rapid, facile, high volume assay for screening for agents which are either structurally or functionally reactive with a lipid. In the context of identifying agents for use in the method of the present invention, this assay provides a means of easily and rapidly identifying agents which either mimic the activity of a component of sphingosine kinase signalling pathway or act as an agonist or antagonist to a component of sphingosine kinase signalling pathway.
Accordingly, another aspect of the present invention provides a method of detecting an analyte structurally or functionally reactive with a lipid, said method comprising the steps of contacting either: said analyte, which analyte is radio labelled; or (ii) said analyte and a reporter molecule which reporter molecule is radio labelled, said analyte being contacted simultaneously with or separately to said reporter molecule; with said lipid in the presence of a scintillant for a time and under conditions sufficient for a lipid-radio label complex to form and to excite said scintillant, and detecting said excited scintillant.
Preferably said analyte or analyte and reporter molecule are contacted with lipid and scintillant coupled to a solid support.
Reference to "lipid" should be understood as a reference to any molecule comprising a lipid component. Preferably said lipid is a lipid component of the sphingosine kinase signalling pathway and even more preferably sphingosine. This aspect of the present invention is exemplified herein with respect to sphingosine, however this should not be understood as imposing any limitation on the application of this method.
Accordingly, the present invention more particularly provides a method of detecting an analyte structurally or functionally reactive with sphingosine, said method comprising the steps of contacting either: -26said analyte which analyte is radio labelled; or (ii) said analyte and a reporter molecule which reporter molecule is radio labelled, said analyte being contacted simultaneously with or separately to said reporter molecule; with said sphingosine in the presence of a scintillant for a time and under conditions sufficient for a sphingosine-radio label complex to form and to excite said scintillant, and detecting said excited scintillant.
Preferably, said analyte or analyte and reporter molecule are contacted with sphingosine and scintillant which sphingosine may be coupled to a solid support having a scintillant already coupled thereto using a method as described in Example 9.
Reference to an analyte which is "structurally" reactive with a lipid should be understood as a reference to a molecule which either binds, links or otherwise associates with said lipid.
Said association may be due to the formation of a peptide bond, ionic bond, hydrogen bond or other interactive bonding mechanisms. Reference to an analyte which is "functionally" reactive with a lipid should be understood as a molecule which, when it interacts with said lipid, directly or indirectly causes a functional process to take place. A functionally reactive analyte may or may not also structurally interact with said lipid. An example of a functionally reactive analyte is an enzyme (for example, a sphingosine kinase equivalent) the substrate of which is a lipid (for example, sphingosine). In accordance with this example, an enzyme exhibiting sphingosine kinase activity is functionally reactive in that it will phosphorylate sphingosine in the presence of ATP. The occurrence of the structural or functional activity is detected by the method of this aspect of the present invention.
The detection of functional or structural reactivity is based on the formation, by the lipid, of a radio labelled complex. Due to the proximity of the complexed radio label with the scintillant, the scintillant becomes excited.
-27- The analyte which is being assayed may be directly radio labelled. This is useful where, for example, said analyte directly associates with said lipids. Alternatively, a reporter molecule may be radio labelled. Reference to "reporter molecule" should be understood as a reference to any molecule, other than the analyte, which detects reactivity between the analyte and lipid. For example, the reporter molecule may be an antibody which recognises one or more epitopes present on the surface of the analyte of interest. This method of detection is an indirect method of detection, commonly referred to as a "sandwich assay". Alternatively, the reporter molecule may be a molecule required to both facilitate reactivity between the analyte and the lipid, for example the reporter molecule may be a substrate, in addition to facilitating detection. In the method exemplified herein, the reporter molecule is 3
P-ATP.
An analyte exhibiting sphingosine kinase activity will phosphorylate sphingosine in the presence of 3 3 P-ATP resulting in the coupling of 33 P to the sphingosine. In the absence of a phosphate reporter molecule, the analyte would be unable to phosphorylate the lipid.
Further, since the analyte does not structurally interact with the lipid sufficiently to facilitate detection, the method of detection of the functional reactivity is based on the phosphorylation of the lipid with radio labelled phosphate.
It should be understood, that even where the analyte is radio labelled and said analyte binds to the lipid, it may nevertheless be necessary that a molecule other than the analyte is present in the reaction mixture to facilitate reactivity of the analyte with the lipid.
Solid supports suitable for use in the present invention include, but are not limited to, microtitre plates, 96 well plates, columns and micro-beads.
Preferably, the present invention provides a method for detecting an analyte exhibiting sphingosine kinase activity, said method comprising the steps of contacting said analyte and 3 3 P-ATP with sphingosine in the presence of a scintillant, said analyte being contacted with said sphingosine simultaneously with or separately to said 33 P-ATP, for a time and under conditions sufficient for 33 P-sphingosine complex to form and to excite said scintillant, and detecting said excited scintillant.
28 Preferably said analyte and 3 P-ATP are contacted with sphingosine and scintillant coupled to a solid support.
Detection of the excited scintillant may be by any suitable means including, but not limited to, a scintillation counter.
The analyte which is assayed in the method of this aspect of the present invention may be in any suitable form. A fluid form is particularly useful as are tissue extracts such as lysates or homogenates. Said analyte may be a proteinaceous or a non-proteinaceous molecule derived from natural, recombinant or synthetic sources.
In another aspect, the method of the present invention should be understood to extend to the detection of agents which act as agonists or antagonists of analytes which either structurally or functionally react with a lipid. For example, the present invention is particularly useful for detecting agonists or antagonists of sphingosine kinase activity. This may be achieved, in accordance with this embodiment of the present invention, by contacting the sphingosine with sphingosine kinase in the presence of the potential agonistic or antagonistic agent.
Comparison of the degree of sphingosine-radio label complex formation relative to a control assay in which addition of said agent was omitted is indicative of agonistic or antagonistic agent activity. Specifically, an increase in sphingosine 3 3 P complex formation relative to the control is indicative of agonistic activity while a decrease in sphingosine 33 P complex activity is indicative of antagonistic activity. This aspect of the present invention should not in any way be taken as limited to the embodiment described above. Rather this aspect of the present invention can be applied to detect antagonists or agonists of any analyte which either structurally or functionally react with a lipid.
Agents suitable for testing in the method of the present invention include, but are not limited to compounds isolated from chemical libraries or broths produced from fermentation of an organism.
-29- With respect to the preferred embodiment detailed above, sources of sphingosine kinase suitable for use in the method of this aspect of the present invention include, but are not limited to: partially purified sphingosine kinase derived from mammalian tissue, (ii) crude homogenates of mammalian tissue exhibiting enzyme activity, (iii) recombinant enzyme or (iv) HUVEC crude lysate.
Further features of the present invention are more fully described in the following examples.
It is to be understood, however, that this detailed description is included solely for the purposes of exemplifying the present invention. It should not be understood in any way as a restriction on the broad description of the invention as set out above.
EXAMPLE 1 HDL isolation HDL were isolated from normal healthy adult donors by sequential ultracentrifugation in the density range of 1.07-1.21 g/ml. Resulting preparation of HDL contained two main populations: one with particles of Stokes' diameter 10.45 nm (HDL) and one with particles of diameter 8.6 nm (HDL 3 Since the inhibition of adhesion molecules expression of HDL, was stronger than that induced by other native or reconstituted HDL particles from purified Apo-A-1 and egg phosphatidylcholin or sphingomyelin, HDL 3 was thus used in this study.
In the examples we have used the human HDL, subfraction (d=1.13-1.21 g/ml) in order to minimise possible confounding effects of variations in the relative proportions of HDL, and HDL 3 in the plasma of different subjects. As shown in Figure 1 HDI inhibited the TNFa-induced expression of VCAM-1 and E-selectin by human umbilical vein endothelial cells (HUVECs) by EXAMPLE 2 Sphingosine kinase signalling pathway methodology Effect of HDL on TNFa-induced adhesion protein expression by HUVECs Confluent monolayers of HUVECs were preincubated with or without HDL that was isolated as the fraction of density 1.13-1.21 g/ml from human plasma at a concentration of 1 mg/ml of apoA-1. After 16-h preincubation, the cells were treated with TNFa (100 U/ml).
Following 4-h treatment of TNFa, the cell-surface expression of VCAM-1 and E-selectin was measured by using flow cytometry.
Effect of ceramide and Sph-l-P on adhesion protein expression HUVECs were treated with an increasing concentration of C 2 -ceramide with or without TNF a(100 U/ml), or an increasing concentration of Sph-l-P for 4 h. The cell-surface expression -31 of VCAM-1 or E-selectin was measured by flow cytometry. Effect of sphingosine kinase inhibitor (DMS) on the expression of VCAM-1 and E-selectin. The cells were treated with a vehicle (Nil), DMS (5PM), Sph-l-P (5AM), C 2 -ceramide (10M) or TNFa (100 U/ml) for 4 h, then measure VCAM-1 or E-selectin expression. Effect of agents on E-selectin mRNA levels and the comparison between the effect of HDL and DMS. After the indicated treatment for 4 h, E-selectin mRNA levels were measured by Northern blotting assay.
Results shown in are representative of three similar experiments.
Effect of HDL on TNFa-induced sphingomyelin hydrolysis, ceramide generation, sphingosine kinase activation, and Sph-1-P production HUVECs were labelled with 3 H]sphingomyelin was measured at the desired time point of TNFa treatment. The unlabelled cells were treated with HDL and/or TNFa as indicated, cells were lysed to measure ceramide levels and sphingosine kinase activity, respectively.
The cells were permeabilized to measure the production of Sph-1-P in vivo.
Effect of HDL and sphingosine kinase pathway on ERK and NF- cB activation After the cells were treated with an agent for 30 min, ERK activities were assayed with myeline basic protein (MBP) as substrate after immunoprecipitation with antibodies against p42/p44MAPK (Berra et al., 1995; Li et al., 1996; Lee et al., 1997). The kinase reaction products were separated on 10% SDS-polyacrylamide gels. Bar graph depicting ERK activities were quantified by Phosphoimager. NF-KB binding activity was measured by electrophoretic mobility shift assay after 30 min treatment as indicated. The specific NF-KB binding complexes were identified by the super-shift gel assay with anti-p50 and antibodies and by competition analyses with the addition of a 50-fold molar excess of unlabelled NF-KB oligonucleotides.
-32- EXAMPLE 3 Sphingosine kinase signalling pathway To determine the role of sphingolipid metabolites in adhesion protein expression, either a cell-permeable form of ceramide (C 2 -ceramide) or sphingomyelinase that generates endogenous ceramide, or Sph-l-P were added to endothelial cells. C 2 -ceramide (Figure 2A) or sphingomyelinase were poor stimulators of E-selectin and VCAM-1 expression, reaching levels that were less than 10% of that stimulated by TNF-a. By contrast Sph-l-P was a potent and dose-dependent inducer of E-selectin and VCAM-1, reaching levels at 5/M that were approximately equivalent to 100U/ml TNF-a (Figure 2B). The potency of Sph-l-P was further shown by its induction of E-selectin mRNA (Figure 2D). To examine the role of Sph-l-P was inhibited by the competitive inhibitor of sphingosine kinase, N,Ndimethylsphingosine (DMS). DMS decreased the TNF-a-induced adhesion protein expression and mRNA levels by between 50 and 70% (Figures 2C and This demonstrates that sphingose kinase activation is an important event in the TNF-a action.
As a control, the same concentration of DMS inhibited sphingosine kinase activity and Sph- 1-P formation by >90% induced either by TNF-a or PMA in endothelial cells, PMA has been shown to activate sphingosine kinase via protein kinase C activation In contrast to its effect on TNF-a DMS did not prevent Sph-l-P induced adhesion protein expression (Figure 2C), indicating a specific effect of DMS on the generation of Sph-l-P. These results show a new signalling pathway for TNF-a-induced adhesion molecule expression.
Exogenous cell-permeable ceramide was a potent inhibitor (by 60%) of TNF-a induced adhesion protein expression (Figure 2A).
EXAMPLE 4 HDL inhibition of sphingosine kinase signalling Figure 3A shows that TNFa stimulation of HUVECs rapidly reduced cellular sphingomyelin content to 40% of control within 30 min with return to near basal levels by 2 h. In parallel, the cellular ceramide levels were rapidly increased (approximately 2 fold) peaking at 30 min -33 after TNFa treatment (Figure 3B). Treatment of endothelial cells with HDL had a potent effect: it delayed the reversion of post TNFa sphingomyelin levels to base line and sustained the increased ceramide levels after TNFa stimulation.
TNFa stimulation of HUVECs caused a rapid and transient increase in cytosolic sphingosine kinase activity, reaching a maximum of 165 13% (p<0.01) of basal within 5 min. HDL pretreatment profoundly inhibited both the amplitude and duration of TNFa-induced sphingosine kinase activation (Figure 3C). The production of Sph-l-P was induced in parallel with the sphingosine kinase activity. HDL treatment again substantially blunted the amplitude and duration of Sph-l-P formation (Figure 3D).
EXAMPLE HDL inhibition of ERK cascade Figure 4A shows that both TNFa and Sph-l-P were approximately equipotent in stimulating ERK activities, whereas C 2 -ceramide did not. Treatment with DMS inhibited TNFaactivated ERK by 50% showing a role for sphingosine kinase in the TNFaactivated ERK signal cascade. Preincubation of HUVECs with HDL also reduced TNFastimulated ERK activation, consistent with its effect on reducing cellular levels of Sph-l-P (Figure 4A, bar 4).
EXAMPLE 6 HDL inhibition of NF-KB activation To measure the NF-KB binding activity, electrophoretic mobility-shift assays were performed. Nuclear extracts were prepared from HUVECs treated for 30 min with vehicle or the indicated agents. The double-stranded oligonucleotides used as a probe in these experiements included 5'-GGATGCCATTGGGGATTTCCTCTTTACTGGATGT-3'
(SEQ
ID NO: l)which contains a consensus NF-KB binding site in E-selection promoter that is underlined. Gel mobility shift of a consensus NF-KB oligonucleotide was performed by -34incubating a 32 P-labelled NF-KB probe with 4mg of nuclear proteins. The Sph-l-P induced formation of NF-KB specific complexes were similar us that induced by TNFa. These specific DNA-protein complexes were completely abolished by addition of a 50-fold molar excess of unlabeled E-selectin NF-KB oligonucleotides. The specificity of NF-KB binding complex was further identified by the super-shift analyses. Anti-p50 and polyclonal antibodies (purchased from Santa Cruz Biotechnology, CA) were added prior to addition of radiolabeled NF-KB probe. The same phenotype of gel retardation was shown in the gel shift assay after the the preincubation of nuclear extracts from both Sph-l-P and TNFa-treated cells with the antibodies. Electrophoretic mobility shift assay shows that treatment of HUVECs with Sph-l-P induced a significant nuclear NF-KB accumulation (Figure 4B). The composition of Sph-l-P induced NF-KB specific protein-DNA complexes were identical to that induced by TNFa which was revealed to be p50/p65 heterodimer by antibody supershift assay and by competition analyses (Figure 4B, the bottom). Treatment of cells with HDL or DMS markedly inhibited the TNFa-induced activation of NF-KB by 45-60%, but did not inhibit that induced by Sph-l-P.
EXAMPLE 7 RNA preparation Total RNA was prepared from HUVECs that was treated with the indicated agents for 4h.
Equal aliquots of total RNA (12/g) were electrophoresed in a 1% formaldehyde gel and transferred to nylon membrane. The blots were hybridized with a 2 P-labeled E-selection cDNA probe. The mRNA levels of E-selectin were quantified by Phosphoimager and normalised to radiolabeled GAPDH probe.
EXAMPLE 8 Spingomyelin measurement To measure sphingomyelin, the HUVECs were labeled with ['H]serine (5/,Ci/ml) for 48h and preincubated with or without HDL for another 6h. The cells were then washed three times and incubated for additional 2h in the presence or absence of HDL. After the treatment with TNFa for the indicated times, cellular lipids were extracted and resolved by thin-layer chromatography (TLC) with chloroform:methanol: acetic acid: water (50:30:8:5, Sphingomyelin spots were visualized by fluorography, quantitated by scintillation spectrometry, and normalized by radioactivity recovered in total cellular lipids. In the uptake of 3 H]serine there are no significant differences between the cells that were preincubated with HDL and with HDL. To measure ceramide levels, cellular ceramide was extracted and quantified with the diacylglycerol kinase reaction (Kolesnick, 1991; Hannun Bell, 1993). Sphingosine kinase activity was measured in vitro as previously described with some modification (Mattie et al., 1994; Ghosh et al., 1994; Choi et al., 1996). Cells were lysed by passing through 26/2 G syringe 6 times in 0.1 M HEPES buffer (pH 7.2) containing 10mM MgCl 2 20% glycerol, ImM mecaptoethanol. ImM EDTA, 20uM ZnCI 2 ImM Na 3 V0 4 15mM NaF, 10g/ml leupeptin and aprotinin, ImM PMSF and 0.5mM 4deoxypyridoxine, Cytosolic fractions were prepared by ultracentrifugation at 105,000xg for 90min. Sphingosine kinase activity was measured by incubating the supernatant with sphingosine-BSA complex and [y 32 P]ATP (ImM, 5puCi/ml) for 15min at 37 0 C. Labeled lipids were extracted and separated by TLC along with Sph-1-P standard. Radioactivity of the spot corresponding to Sph-l-P was quantified using Phosphoimager system. The measurement of Sph-l-P formation in vivo was performed as previously described (Olivier, 1996). The cells were permeubilized for 15min at 37 0 C in hypotonic buffer HEPES, 5mM MgCl 2 20/M ZnCl 2 20M Na 3
VO
4 10/g/ml leupeptin and aprotinin, ImM PMSF and 0.5mM 4-deoxypyridoxine, pH 7.2) with sphingosine (10pM) and [y 32
P]ATP
(1lM, lOyCi/ml). Lipids were extracted and resolved by TLC, and [y 32 P]Sph-l-P was quantified as described above.
EXAMPLE 9 A multi-well assay for sphingosine-kinase activity.
Flashplates were coated with lipid substrate by adding 200 Pu1 of a mix of phosphatidylcholine (19.5 pg/ml), phosphatidylserine (5.5 pg/ml), and sphingosine -36pg/ml) in methanol and evaporating at 30°C under N 2 for 3 hours. A source of sphingosine kinase is added in a buffer consisting of 50mM HEPES pH 7.2/20% glycerol/lOmM MgCI 2 /lmM DTT/20/pM ZnCl 2 /lmM Na 3
VO
4 /15mM NaF/0.5mM 4 -deoxypyridoxine along with 33 P]-y-ATP (Bresatech, 1,Ci/well/200uM) and incubated for up to 2 hours at 37 0
C.
The plates are then washed with 400 ul of 50mM sodium pyrophosphate, 4 times and radioactivity was measured in a scintillation counter (Top count, Packard).
EXAMPLE Preparation of homogenates of tissues for survey of sphingosine kinase activity Tissues were collected from freshly sacrificed animals and rapidly frozen in liquid nitrogen, grams of wet tissue were homogenized with a Polytron tissue homogenizer in 2 volumes of 50mM Tris pH 7.4/20% glycerol/lmM DDT/lmM EDTA, containing a protease inhibitor cocktail (Boehringer-Mannheim). The material was subjected to centrifugation at 7 500g for 30 minutes to remove large fragments. The resulting supemants were further centrifuged at high speed (100,000 X g for 1 hour) to generate "supernatant" and "pellet" fractions.
EXAMPLE 11 The multi-well assay is linear over time and specific.
Figure 7 illustrates the results of assaying for sphingosine kinase activity from a lysate made from human umbilical endothelial cells. It can be seen that the signal increases linearly over a period of approximately 400 minutes. This signal is specific to sphingosine kinase since omitting sphingosine from the lipid mix used to coat the plates reduces the resulting signal to background levels. This demonstrates that it is sphingosine, and not some other component of the lipid or assay mix, that is being phosphorylated in the assay. This is remarkable since this assay was done with a crude lysate which would be expected to contain a number of lipid and protein kinases.
-37- EXAMPLE 12 Sphingosine-kinase agonist and antagonist activity measurement Plates are prepared as described in Example 9. Sphingosine kinase (prepared in buffer together with 33 P-ATP as described in Example 9) is added in the presence of an agent to be tested for antagonistic or agonistic activity. The agent is added to a level of enzyme activity yielding a linear response with respect to time from 0 3 hours of incubation. Plates are incubated for two hours at 37 0 C, washed as in Example 9 and phosphorylation of sphingosine is determined by scintillation counting.
Inhibition (antagonstic activity) is detected as diminshed incorporation of 33 P and stimulation (agonistic activity) is detected as increased incorporation of 33 P relative to a control incubation containing an equivalent amount of the vehicle solvent used to deliver the agents tested.
Those skilled in the art will appreciate that the invention described herein is susceptible to variations and modifications other than those specifically described. It is to be understood that the invention includes all such variations and modifications which fall within its spirit and scope. The invention also includes all of the steps, features, compositions and compounds referred to or indicated in this specification, individually or collectively, and any and all combinations of any two or more of said steps or features.
38
BIBLIOGRAPHY
Abbassi 0, Kishimoto Mclntire Anderson Smith J. Guin. Invest.
92:2719-2730 (1993) Berra E. et at., EMBO J. 14:6 157 (1995) Choi Kim Kinet Nature 380:634 (1996) Ghosh Bian Gill J. Biol. Chemn. 269:22628 (1994) Hannun Y. Bell R. Adv. Lipid Res. 2S:27 (1993) Johnson-Tidey R. McGregor J. Taylor P. Poston R. Am. J. Pat/wi. 144:952- 961 (1994) Kolesnick Prog. Lipid Res. 30:1 (199 1) Lee Hagler Chen Maniatis Cell 88:213 (1997) Li Y.S. et al., Mol. Cell. Bil. 16:5947 (1996) Mattie Brooker Spiegel J. Bilt. Chem. 269:3181 (1994) O'Brien K.D. et at., J. Clin. Invest. 92:945 (1993) O'Brien Allen McDonald Chait Harlan Fishbein McCarty Furgerson 1-udkins Benjamin Lobb Alpers J1. Guin. Invest.
92:945-951 (1993) -39- Olivier C. et al., Nature 381:800 (1996) Van der Wal Das Tigges Becker Am. J. Pathol. 141:161-168 (1992) Wood Cadogan Ranshaw Parumns Histopathology 22:437-444 (1993) World Health Organization. World Health Statistics Annual. Geneva, Switzerland (1993)

Claims (17)

  1. 2. Use of an agent for modulating one or more components of a sphingosine kinase signalling pathway wherein modulating said components modulates cellular activity in a mammal, wherein the agent is identified in a method of screening an agent for the ability to modulate adhesion molecule expression, the method comprising assessing the ability of the agent to N D modulate the sphingosine kinase signalling pathway.
  2. 3. Use according to claims 1 and 2, wherein the method comprises assessing the ability of \the agent to inhibit adhesion molecule expression comprising assessing the ability of the agent to disrupt the sphingosine kinase signalling pathway. C 4. Use according to claims 1 and 2, wherein the method comprises assessing the ability of the agent to modulate the activity of sphingosine kinase. Use according to claims 1 and 2, wherein the method comprises assessing the ability of the agent to modulate the activity of sphingosine-1-phosphate.
  3. 6. Use according to claims 1 and 2, wherein the method comprises assessing the ability of the agent to inhibit the activity of sphingosine kinase.
  4. 7. Use according to claims 1 and 2, wherein the method comprises assessing the ability of the agent to inhibit the activity of sphingosine-1-phosphate.
  5. 8. Use according to claims 1 and 2, wherein the method comprises comparing the activity of sphingosine kinase in the presence of the agent to the activity of sphingosine kinase in the absence of the agent.
  6. 9. Use according to claims 1 and 2, wherein the method comprises comparing the activity of sphingosine-1-phosphate in the presence of the agent to the activity of sphingosine-1- phosphate in the absence of the agent. Use according to claims 1 and 2, wherein the method comprises the following steps: providing a solid support to which sphingosine is bound; (ii) contacting the solid support with sphingosine kinase and "P-ATP in the presence or absence of the agent; and (iii) comparing the amount of bound 3P produced in the presence of the agent with that produced in the absence of the agent.
  7. 11. Use according to any one of claims 1 to 10, wherein said cellular activity is adhesion molecule expression.
  8. 12. Use according to any one of claims 1 to 11, wherein the mammal is a human.
  9. 13. A pharmaceutical composition when used for modulating cellular activity in a mammal comprising an agent when identified in a method of screening an agent for the ability to modulate adhesion molecule expression, the method comprising assessing the ability of the agent to modulate the sphingosine kinase signalling pathway, wherein the agent is capable of modulating one or more components of a sphingosine kinase signalling 205035709_1 00 pathway wherein said modulation results in modulation of cellular activity together with one 0 or more pharmaceutically acceptable carriers and/or diluents. S14. A pharmaceutical composition when used for modulating cellular activity in a mammal comprising one or more components of a sphingosine kinase signalling pathway or functional equivalent thereof when identified in a method of screening an agent for the ability to modulate adhesion molecule expression the method comprising assessing the ability of the agent to modulate the sphingosine kinase signalling pathway, together with one or more pharmaceutically acceptable carriers and/or diluents. A pharmaceutical composition according to claim 13 and 14, wherein the method comprises assessing the ability of the agent to inhibit adhesion molecule expression O comprising assessing the ability of the agent to disrupt the sphingosine kinase signalling Spathway.
  10. 16. A pharmaceutical composition according to claims 13 and 14, wherein the method Scomprises assessing the ability of the agent to modulate the activity of sphingosine kinase.
  11. 17. A pharmaceutical composition according to claims 13 and 14 wherein the method Scomprises assessing the ability of the agent to modulate the activity of sphingosine-1- Cl phosphate.
  12. 18. A pharmaceutical composition according to claims 13 and 14, wherein the method comprises assessing the ability of the agent to inhibit the activity of sphingosine kinase.
  13. 19. A pharmaceutical composition according to claims 13 and 14, wherein the method comprises assessing the ability of the agent to inhibit the activity of sphingosine-1- phosphate. A pharmaceutical composition according to claims 13 and 14, wherein the method comprises comparing the activity of sphingosine kinase in the presence of the agent to the activity of sphingosine kinase in the absence of the agent.
  14. 21. A pharmaceutical composition according to claims 13 and 14, wherein the method comprises comparing the activity of sphingosine-1-phosphate in the presence of the agent to the activity of sphingosine-1-phosphate in the absence of the agent.
  15. 22. A pharmaceutical composition according to claims 13 and 14, wherein the method comprises the following steps: providing a solid support to which sphingosine is bound; (ii) contacting the solid support with sphingosine kinase and "P-ATP in the presence or absence of the agent; and (iii) comparing the amount of bound "P produced in the presence of the agent with that produced in the absence of the agent.
  16. 23. A pharmaceutical composition according to any one of claims 12 to 22, wherein said cellular activity is adhesion molecule expression.
  17. 205035709.1
AU2006200646A 1997-09-08 2006-02-16 A method of modulating cellular activity Expired AU2006200646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2006200646A AU2006200646B2 (en) 1997-09-08 2006-02-16 A method of modulating cellular activity

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AUPO9002 1997-09-08
AU2003204254A AU2003204254B2 (en) 1997-09-08 2003-05-19 A Method of Modulating Cellular Activity
AU2006200646A AU2006200646B2 (en) 1997-09-08 2006-02-16 A method of modulating cellular activity

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2003204254A Division AU2003204254B2 (en) 1997-09-08 2003-05-19 A Method of Modulating Cellular Activity

Publications (2)

Publication Number Publication Date
AU2006200646A1 AU2006200646A1 (en) 2006-03-09
AU2006200646B2 true AU2006200646B2 (en) 2008-09-18

Family

ID=36102814

Family Applications (2)

Application Number Title Priority Date Filing Date
AU2006200646A Expired AU2006200646B2 (en) 1997-09-08 2006-02-16 A method of modulating cellular activity
AU2006201939A Expired AU2006201939B2 (en) 1997-09-08 2006-05-01 A method of modulating cellular activity

Family Applications After (1)

Application Number Title Priority Date Filing Date
AU2006201939A Expired AU2006201939B2 (en) 1997-09-08 2006-05-01 A method of modulating cellular activity

Country Status (1)

Country Link
AU (2) AU2006200646B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988009345A1 (en) * 1987-05-20 1988-12-01 The Rogosin Institute Reconstituted hdl particles and uses thereof
WO1995003039A1 (en) * 1993-07-23 1995-02-02 The Biomembrane Institute N,n,n-trimethylsphingosine derivatives
US5466716A (en) * 1990-12-31 1995-11-14 The Biomembrane Institute Liposomal trimethylsphingosine
WO1996020170A1 (en) * 1994-12-23 1996-07-04 Urea Casale S.A. Process and plant for urea production with reaction spaces having differentiated yields

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988009345A1 (en) * 1987-05-20 1988-12-01 The Rogosin Institute Reconstituted hdl particles and uses thereof
US5466716A (en) * 1990-12-31 1995-11-14 The Biomembrane Institute Liposomal trimethylsphingosine
WO1995003039A1 (en) * 1993-07-23 1995-02-02 The Biomembrane Institute N,n,n-trimethylsphingosine derivatives
WO1996020170A1 (en) * 1994-12-23 1996-07-04 Urea Casale S.A. Process and plant for urea production with reaction spaces having differentiated yields

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Wang F et al. Biochem J. 1997 Jun 1;324 ( Pt 2):481-8 *

Also Published As

Publication number Publication date
AU2006201939B2 (en) 2008-09-25
AU2006201939A1 (en) 2006-06-01
AU2006200646A1 (en) 2006-03-09

Similar Documents

Publication Publication Date Title
US7172879B2 (en) Detection of sphingosine kinase activity and sphingosine kinase agonist or antagonist activity
AU757358B2 (en) A method of modulating cellular activity
RU2326690C2 (en) Treatment method and related agents
US8575307B2 (en) Protein kinase C inhibitors for prevention of insulin resistance and type 2 diabetes
KR20050091716A (en) Glycogen synthase kinase-3 inhibitors
AU2006200646B2 (en) A method of modulating cellular activity
AU2003204254B2 (en) A Method of Modulating Cellular Activity
US20080039364A1 (en) Modulating serum amyloid a interaction with tanis and agents useful for same
US20080279897A1 (en) Method of Treating Cellular Damage
EP1910524A1 (en) Modulation of sphingosine kinase signalling
US20070265196A1 (en) Method of Modulating Pro-Inflammatory and Inflammatory Activity Mediated by C-Reactive Protein
EP1910525A1 (en) Modulation of sphingosine kinase signalling
US20080131406A1 (en) Angiotensin I Derivatives
AU2002344670A1 (en) Modulating serum amyloid A interaction with tanis and agents useful for same
AU2005207081A1 (en) A method of modulating pro-inflammatory and inflammatory activity mediated by C-reactive protein
US20060111286A1 (en) Method of modulating endothelial cell activity
AU2006207818A1 (en) A method of treating cellular damage
AU2006261584A1 (en) Modulation of sphingosine kinase signalling
US20050009732A1 (en) Method of treatment and agents useful for same
AU2006261583A1 (en) Modulation of sphingosine kinase signalling
Xia 2. An isolated polynucleotide according to claim 1, the polynucleotide comprising a sequence at least 95% identical to SEQ ID NO: 1. 3. An isolated polynucleotide sequence that hybridizes to the nucleotide sequence of claim 2 stringency conditions of about 65 C C. and about 50% v/v formamide and about 0.15 M salt. 4. An isolated polynucleotide according to claim 1, the polynucleotide encoding a polypeptide having the sequence of SEQ ID NO: 2. 5. An isolated polynucleotide according to claim 1, the polynucleotide comprising the sequence of SEQ ID NO: 1. 6. An expression system comprising a polynucleotide according to claim 1.

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired