AU2005229688B2 - Tartrate salts of thiazolidinedione derivative - Google Patents

Tartrate salts of thiazolidinedione derivative Download PDF

Info

Publication number
AU2005229688B2
AU2005229688B2 AU2005229688A AU2005229688A AU2005229688B2 AU 2005229688 B2 AU2005229688 B2 AU 2005229688B2 AU 2005229688 A AU2005229688 A AU 2005229688A AU 2005229688 A AU2005229688 A AU 2005229688A AU 2005229688 B2 AU2005229688 B2 AU 2005229688B2
Authority
AU
Australia
Prior art keywords
tartrate
solvate
methyl
ethoxy
amino
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU2005229688A
Other versions
AU2005229688A1 (en
Inventor
Bernadette Marie Choudary
Andrew Simon Craig
Tim Chien Ting Ho
Donald Colin Mackenzie
Deirdre O'keeffe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SmithKline Beecham Ltd
Original Assignee
SmithKline Beecham Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SmithKline Beecham Ltd filed Critical SmithKline Beecham Ltd
Priority to AU2005229688A priority Critical patent/AU2005229688B2/en
Publication of AU2005229688A1 publication Critical patent/AU2005229688A1/en
Application granted granted Critical
Publication of AU2005229688B2 publication Critical patent/AU2005229688B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Landscapes

  • Plural Heterocyclic Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

P/00/011 Regulation 3.2
AUSTRALIA
Patents Act 1990 COMPLETE SPECIFICATION STANDARD PATENT
(ORIGINAL)
Name of Applicant: Actual Inventors: Address for Service: Invention Title: SmithKline Beecham of 980 Great West Road, Brentford, Middlesex TW8 9GS, UNITED KINGDOM Bernadette Marie CHOUDARY, Andrew Simon CRAIG, Tim Chien Ting HO, Donald Colin MACKENZIE, and Deirdre
O'KEEFFE
DAVIES COLLISON CAVE, Patent Trademark Attorneys, of 1 Nicholson Street, Melbourne, 3000, Victoria, Australia Ph: 03 9254 2777 Fax: 03 9254 2770 Attorney Code: DM "Tartrate salts of thiazolidinedione derivative" The following statement is a full description of this invention, including the best method of performing it known to us:- TARTRATE SALTS OF THIAZOLIDINEDIONE
DERIVATIVE
This is a divisional of Australian Patent Application No. 2001276509, the entire contents of which are incorporated herein by reference.
This invention relates to a novel pharmaceutical, to a process for the 00 preparation of the pharmaceutical and to the use of the pharmaceutical in 00 O medicine.
European Patent Application, Publication Number 0,306,228 relates to tt certain thiazolidinedione derivatives disclosed as having hypoglycaemic and hypolipidaemic activity. The compound of example 30 of EP 0,306,228 is 5-[4-
N
[2 -(N-methyl-N-(2 -pyridyl)amino)ethoxy]benzyl]thiazolidine-2,4-dione (hereinafter also referred to as "Compound International Patent Application, Publication Number W094/05659 discloses certain salts of the compounds of EP 0,306,228 one of which is the tartrate salt. The preferred salt of W094/05659 is the maleic acid salt.
It has now been discovered that Compound forms a novel tartrate salt (hereinafter also referred to as the Tartrate") that is particularly stable and hence is suitable for bulk preparation and handling. The Tartrate also has a high melting point and possesses good bulk flow properties The Tartrate is therefore surprisingly amenable to large scale pharmaceutical processing and especially to large scale milling.
The novel form can be prepared by an efficient, economic and reproducible process particularly suited to large-scale preparation.
The novel Tartrate also has useful pharmaceutical properties and in particular it is indicated to be useful for the treatment and/or prophylaxis of diabetes mellitus, conditions associated with diabetes mellitus and certain complications thereof.
Accordingly, the present invention provides 5-[4-[2-(N-methyl-N-(2pyridyl)amino)ethoxy]benzyl]thiazolidine-2,4-dione tartrate salt or a solvate thereof.
Suitably, the Tartrate is a mono-tartrate salt Mono tartrate salts also optionally comprise another monovalent salting ion such as an alkali metal or ammonium cation.
In one favoured aspect, the Tartrate provides an infrared spectrum substantially in accordance with Figure 1.
In one favoured aspect, the Tartrate provides a Raman spectrum substantially in accordance with Figure 2 0 Z In one favoured aspect, the Tartrate provides an X-Ray powder g diffraction pattern (XRPD) substantially in accordance with Table 1 or Figure 3.
In one favoured aspect, the Tartrate provides a Solid State 13 C NMR oO spectrum substantially in accordance with Figure 4.
0 In one favoured aspect, the Tartrate provides a melting point in the range of from 180 to 1850C, such as 180 to 183 OC, for example 181.6 OC In a preferred aspect, the invention provides 5-[4-[2-(N-methyl-N-(2pyridyl)amino)ethoxy]benzyl]thiazolidine-2,4-dione, Tartrate salt, Scharacterised in that it provides: an infrared spectrum substantially in accordance with Figure 1; and (ii) a Raman spectrum substantially in accordance with Figure 2; and (iii) an X-Ray powder diffraction pattern (XRPD) substantially in accordance with Table 1 or Figure 3;and (iv) a Solid State 13 C NMR spectrum substantially in accordance with Figure 4.
The present invention encompasses the Tartrate or solvate thereof isolated in pure form or when admixed with other materials. Thus in one aspect there is provided the Tartrate or solvate thereof in isolated form.
In a further aspect there is provided the Tartrate or solvate thereof in a purified form.
In yet a further aspect there is provided the Tartrate or solvate thereof in crystalline form.
Also, the invention provides the Tartrate or solvate thereof in a solid pharmaceutically acceptable form, such as a solid dosage form, especially when adapted for oral administration.
Moreover, the invention also provides the Tartrate or solvate thereof in a pharmaceutically acceptable form, especially in bulk form, such form being particularly capable of being milled.
Furthermore, the invention provides the Tartrate or solvate thereof in a pharmaceutically acceptable form, especially in bulk form, such form having good flow properties, especially good bulk flow properties..
A suitable solvate is a hydrate.
The invention also provides a process for preparing the Tartrate or a solvate thereof, characterised in that 5-[4-[2-(N-methyl-N-(2pyridyl)amino)ethoxy]benzyl]thiazolidine2,4-dione (Compound or a salt thereof, preferably dispersed or dissolved in a suitable solvent, is reacted with a
O
source of tartrate ion and thereafter, if required, a solvate of the resulting D(- S) Tartrate is prepared; and the Tartrate or a solvate thereof is recovered.
O A suitable reaction solvent is an alkanol, for example propan-2-ol or ethanol, or a hydrocarbon, such as toluene, a ketone, such as acetone, an ester, 00 such as ethyl acetate, an ether such as tetrahydrofuran, a nitrile such as 00 N acetonitrile, or a halogenated hydrocarbon such as dichloromethane or water, or NC an organic acid such as acetic acid; or a mixture thereof.
SConveniently, the source of tartrate ion is tartaric acid. The 0 tartaric acid is preferably added as a solid or in solution, for example in water or a sl lower alcohol such as methanol, ethanol, or propan-2-ol, or a mixture of solvents.
An alternative source of tartrate ion is provided by a suitably soluble base salt of tartaric acid for example ammonium tartrate, or the tartaric acid salt of an amine, for example ethylamine or diethylamine.
The concentration of Compound is preferably in the range 2 to weight/volume, more preferably in the range 5 to 20%. The concentration of tartaric acid solutions are preferably in the range of 5 to 130% weight/volume.
The reaction is usually carried out at ambient temperature or at an elevated temperature, for example at the reflux temperature of the solvent, although any convenient temperature that provides the required product may be employed.
Solvates, such as hydrates, of the Tartrate are prepared according to conventional procedures.
Recovery of the required compound generally comprises crystallisation from an appropriate solvent or mixture of solvents, conveniently the reaction solvent, usually assisted by cooling. For example, the tartrate may be crystallised from an alcohol such as propan-2-ol or ethanol. An improved yield of the salt may be obtained by evaporation of some or all of the solvent or by crystallisation at elevated temperature followed by controlled cooling, optionally in stages. Careful control of precipitation temperature may be used to improve the reproducability of the product form.
Crystallisation can also be initiated by seeding with crystals of the Tartrate or a solvate thereof but this is not essential.
When the mono tartrate salt comprise another monovalent salting ion such as an alkali metal or ammonium cation the said ion is conveniently formed by reacting the mono tartrate salt with a solution of the chosen monovalent salting
O
z ion for example a metal or ammonium ion. Alternatively Compound(I) may be treated with a mono tartrate salt of the said monovalent salting ion.
O Compound is prepared according to known procedures, such as those disclosed in EP 0,306,228 and W094/05659. The disclosures of EP 0,306,228 00 and W094/05659 are incorporated herein by reference.
O tartaric acid is a commercially available compound.
c, When used herein the term "Tonset" is generally determined by V Differential Scanning Calorimetry and has a meaning generally understood in Sthe art, as for example expressed in Pharmaceutical Thermal Analysis, Techniques and Applications", Ford and Timmins, 1989 as "The temperature corresponding to the intersection of the pre-transition baseline with the extrapolated leading edge of the transition".
When used herein in respect of certain compounds the term "good flow properties" is suitably characterised by the said compound having a Hausner ratio of less than or equal to 1.5, especially of less than or equal to 1.25.
"Hausner ratio" is an art accepted term.
When used herein the term 'prophylaxis of conditions associated with diabetes mellitus' includes the treatment of conditions such as insulin resistance, impaired glucose tolerance, hyperinsulinaemia and gestational diabetes.
Diabetes mellitus preferably means Type II diabetes mellitus.
Conditions associated with diabetes include hyperglycaemia and insulin resistance and obesity. Further conditions associated with diabetes include hypertension, cardiovascular disease, especially atherosclerosis, certain eating disorders, in particular the regulation of appetite and food intake in subjects suffering from disorders associated with under-eating, such as anorexia nervosa, and disorders associated with over-eating, such as obesity and anorexia bulimia.
Additional conditions associated with diabetes include polycystic ovarian syndrome and steroid induced insulin resistance.
The complications of conditions associated with diabetes mellitus encompassed herein includes renal disease, especially renal disease associated with the development of Type II diabetes including diabetic nephropathy, glomerulonephritis, glomerular sclerosis, nephrotic syndrome, hypertensive nephrosclerosis and end stage renal disease.
1 As mentioned above the compound of the invention has useful therapeutic g properties: The present invention accordingly provides the Tartrate or a solvate thereof for use as an active therapeutic substance.
More particularly, the present invention provides the Tartrate or a O0 solvate thereof for use in the treatment and/or prophylaxis of diabetes mellitus, D conditions associated with diabetes mellitus and certain complications thereof.
1 The Tartrate or a solvate thereof may be administered per se or, Spreferably, as a pharmaceutical composition also comprising a pharmaceutically Sacceptable carrier. Suitable methods for formulating the Tartrate or a solvate thereof are generally those disclosed for Compound in the above mentioned publications.
Accordingly, the present invention also provides a pharmaceutical composition comprising the Tartrate or a solvate thereof and a pharmaceutically acceptable carrier therefor.
The Tartrate or a solvate thereof is normally administered in unit dosage form.
The active compound may be administered by any suitable route but usually by the oral or parenteral routes. For such use, the compound will normally be employed in the form of a pharmaceutical composition in association with a pharmaceutical carrier, diluent and/or excipient, although the exact form of the composition will naturally depend on the mode of administration.
Compositions are prepared by admixture and are suitably adapted for oral, parenteral or topical administration, and as such may be in the form of tablets, capsules, oral liquid preparations, powders, granules, lozenges, pastilles, reconstitutable powders, injectable and infusable solutions or suspensions, suppositories and transdermal devices. Orally administrable compositions are preferred, in particular shaped oral compositions, since they are more convenient for general use.
Tablets and capsules for oral administration are usually presented in a unit dose, and contain conventional excipients such as binding agents, fillers, diluents, tabletting agents, lubricants, disintegrants, colourants, flavourings, and wetting agents. The tablets may be coated according to well known methods in the art.
Suitable fillers for use include cellulose, mannitol, lactose and other similar agents. Suitable disintegrants include starch, polyvinylpyrrolidone and starch derivatives such as sodium starch glycollate. Suitable lubricants include,
O
Z for example, magnesium stearate. Suitable pharmaceutically acceptable wetting agents include sodium lauryl sulphate.
Solid oral compositions may be prepared by conventional methods of 0o blending, filling, tabletting or the like. Repeated blending operations may be used 00 to distribute the active agent throughout those compositions employing large quantities of fillers. Such operations are, of course, conventional in the art.
Oral liquid preparations may be in the form of, for example, aqueous or Soily suspensions, solutions, emulsions, syrups, or elixirs, or may be presented as a dry product for reconstitution with water or other suitable vehicle before use.
Such liquid preparations may contain conventional additives such as suspending agents, for example sorbitol, syrup, methyl cellulose, gelatin, hydroxyethylcellulose, carboxymethyl cellulose, aluminium stearate gel or hydrogenated edible fats, emulsifying agents, for example lecithin, sorbitan monooleate, or acacia; non-aqueous vehicles (which may include edible oils), for example, almond oil, fractionated coconut oil, oily esters such as esters of glycerine, propylene glycol, or ethyl alcohol; preservatives, for example methyl or propyl p-hydroxybenzoate or sorbic acid, and if desired conventional flavouring or colouring agents.
For parenteral administration, fluid unit dose forms are prepared containing a compound of the present invention and a sterile vehicle. The compound, depending on the vehicle and the concentration, can be either suspended or dissolved. Parenteral solutions are normally prepared by dissolving the active compound in a vehicle and filter sterilising before filling into a suitable vial or ampoule and sealing. Advantageously, adjuvants such as a local anaesthetic, preservatives and buffering agents are also dissolved in the vehicle.
To enhance the stability, the composition can be frozen after filling into the vial and the water removed under vacuum.
Parenteral suspensions are prepared in substantially the same manner except that the active compound is suspended in the vehicle instead of being dissolved and sterilised by exposure to ethylene oxide before suspending in the sterile vehicle. Advantageously, a surfactant or wetting agent is included in the composition to facilitate uniform distribution of the active compound.
As is common practice, the compositions will usually be accompanied by written or printed directions for use in the medical treatment concerned.
As used herein the term 'pharmaceutically acceptable' embraces C compounds, compositions and ingredients for both human and veterinary use: for example the term 'pharmaceutically acceptable salt' embraces a veterinarily acceptable salt.
00 The present invention further provides a method for the treatment and/or Sprophylaxis of diabetes mellitus, conditions associated with diabetes mellitus and certain complications thereof, in a human or non-human mammal which comprises administering an effective, non-toxic, amount of Tartrate or a solvate thereof to a human or non-human mammal in need thereof.
Conveniently, the active ingredient may be administered as a pharmaceutical composition hereinbefore defined, and this forms a particular aspect of the present invention.
In a further aspect the present invention provides the use ofD(-) Tartrate or a solvate thereof for the manufacture of a medicament for the treatment and/or prophylaxis of diabetes mellitus, conditions associated with diabetes mellitus and certain complications thereof.
In the treatment and/or prophylaxis of diabetes mellitus, conditions associated with diabetes mellitus and certain complications thereof the Tartrate or a solvate thereof may be taken in amounts so as to provide Compound in suitable doses, such as those disclosed in EP 0,306,228, W094/05659 or W098/55122.
No adverse toxicological effects are indicated in the above mentioned treatments for the compounds of the invention.
The following examples illustrate the invention but do not limit it in any way.
EXAMPLES:
Example 1 5-[ 4 2 -(N-methyl-N-(2-pyridyl)amino)ethoxy] benzyl]thiazolidine-2,4-dione D-(-)-tartrate A mixture of 5-[4-[2-(N-methyl-N-(2-pyridyl)amino)ethoxy] benzyl]thiazolidine-2,4-dione (2.0 D-(-)-tartaric acid (0.84 acetone ml) and deionised water (5 ml) was stirred and heated to 70C to give a clear solution. The reaction mixture was then cooled to 21 0 C, and the solvent was removed under reduced pressure. Toluene (50 ml) was added and'the mixture stirred and the solvent evaporated under reduced pressure. Ethyl acetate (50 ml) Z and denatured ethanol (20 ml) were added to the residue and the mixture stirred and heated to reflux. and then cooled to 210C. The product was collected by filtration and dried under vacuum to give 5-[4-[2-(N-methyl-N-(2pyridyl)amino)ethoxy]benzy]thiazolidjfle..2,4-.dion tartrate as a white 00 IH NMR (d 6 DM50) :consistenlt with 5-[4-[2-(N-methyl-N-(2pyridyl)aznino)ethoxy]benzyl]thazolidine-2,4-dione D(-)-tartrate.
ci Example 2 5-[ 4 2 -(N-mnethyl-N-(2-pyridyl)amino)ethoxyI benzyljthiazolidine-2,4-dione D-(-)-tartrate A mixture of 5-4[-Nmty--2prdlamn~toybny~haoiie 2,4-dione (4.5 g) and denatured ethanol (120 mlA) was heated to reflux to give a clear solution. The solution was cooled to 70 0 C and D-(-)-tartaric acid (1.9 g) was added and the stirred mixture heated to reflux. The solution was cooled to 0 C, seeded with crystals of 5-[ 4 -[2-(N-methyl-N-(2pyridyl)arrnino)ethoxy]benzyl]thiazoidine.2,4.dj 0 n tartrate and sonicated for 5 minutes to give a white suspension. The mixture was cooled to 21 0 C and the product collected by filtration, washed with denatured ethanol (20 nil) and dried under vacuum for 3 hours to give 5-[4-[2-(N-methyl-N-(2pyridyl)amino)ethoxy]benzyl]thiazoldine.2,4.dj 0 ne D-(-)-tartrate as a white crystalline solid (5.8 g).
Example 3 5-[ 4 2 (N-nethyl-N-(2 -pyridy)amino)ethoxyI benylJ thiazolidine-2,4-dione D-(-)-tartrate A mixture of 5-[ 4 2 -(N-methyl-N-(2-pyridyl)amino)ethoxy]beazyl] thiazolidine-2,4-dione (5.0 g) and propan-2-ol (100 ml) was stirred and heated to reflux until a clear solution was observed. A solution of D-(-)-tartaric acid (2.1 g) in propan-2-ol (30 ml), at 60-70*C, was added to the reaction mixture which was then stirred at reflux for 5 minutes. The mixture was then cooled to 21 C over a period of 90 minutes. The product was collected by filtration, washed with propan-2-ol (50 ml) and dried under vacuum to provide 5-[4-[2-(N-methyl- D(-)-tartrate (6.7 g) as a white crystalline solid.
Example 4 5-14[.
2 .(N..Methyl-N.(2pyridyI)amino)ethoxy~benzyI thiazolidine-2,4-dione, D-(-)-tartrate A solution of D-(-)-tartaric acid (8.4 g) in propan-2-ol (70 Ml) was added to a stirred suspension of 5-4[-Nmty--2prdlaioehx~ezl
O
0 thiazolidine-2,4-dione (20.0 g) in propan-2-ol (400 ml) at reflux. The reaction mixture was stirred at reflux until a clear solution was observed, then cooled to S21 0 C. The white solid was collected by filtration, washed with propan-2-ol (100 ml) then dried under vacuum for 2 hours at 21 0 C to provide 5-[4-[2-(N-methyl-N- (2-pyridyl)amino)ethoxy]benzyl]thiazolidine-2,4-dione D-(-)-tartrate (26.9 g) as a 00 white crystalline solid.
OO
00 Characterising data recorded for the product of Example 1: SThe infrared absorption spectrum of a mineral oil dispersion of the product was Sobtained using a Nicolet 710 FT-IR spectrometer at 2 cm-1 resolution (Figure 1).
Data were digitised at 1 cm- 1 intervals. Bands were observed at: 3385, 2792, 1751, 1700, 1646, 1621, 1545, 1512, 1466, 1416, 1377, 1357, 1304, 1267, 1233, 1217, 1168, 1153, 1076, 1060, 1033; 999, 927, 901, 835, 773, 752, 716, 688, 618, 603, 589, 556, 527, 507 cm- 1 The infrared spectrum of the solid product was recorded using Perkin-Elmer Spectrum One FT-IR spectrometer fitted with a universal ATR accessory. Bands were observed at: 3384, 2937, 2787, 1751, 1694, 1645, 1620, 1609, 1543, 1511, 1466, 1415, 1384, 1357, 1303, 1267, 1232, 1217, 1167, 1153, 1141, 1075, 1059, 1032, 998, 927, 899, 832, 772, 751, 715, 686, 658 cm- 1 The Raman spectrum of the product (Figure 2) was recorded with the sample in an NMR tube using a Nicolet 960 E.S.P. FT-Raman spectrometer, at 4 cm- 1 resolution with excitation from a Nd:V04 laser (1064 nm) with a power output of 400mW. Bands were observed at: 3101, 3065, 3043, 2920, 1748, 1700, 1610, 1584, 1545, 1471, 1439, 1390, 1358, 1320, 1293, 1236, 1207, 1177, 1146, 1060, 1035, 982, 930, 901, 828, 774, 741, 659, 638, 621, 604, 507, 468, 431, 397, 349, 281, 99.8 cm- 1 The X-Ray Powder Diffractogram pattern of the product (Figure 3) was recorded using the following acquisition conditions: Tube anode: Cu, Generator tension: kV, Generator current: 40 mA, Start angle: 2.0 *20, End angle: 35.0 020, Step size: 0.02 *20, Time per step: 2.5 seconds. Characteristic XRPD angles and relative intensities are recorded in Table 1.
Table 1 7.9 9.7 10.6 12.2 12.8 13.1 14.1 14.7 15.8 16.5 17.5 17.9 18.2 18.6 19.4 21.3 21.6 22.6 23.7 24.3 25.2 25.7 26.4 27.2 27.4 28.3 29.2 29.6 30.4 30.7 31.1 31.6 32.1 33.3 33.8 3.6 4.3 11.9 10.4 7.9 7.3 4.9 22.9 100 29.7 11 13.4 36 29.3 21.4 24.3 75.9 15.8 49 34 43 14.3 28.6 22.3 15.1 29.6 8.7 9.4 14.3 14.9 13.6 12.4 15.2 16.6 The solid-state NMR spectrum of the product (Figure 4) was recorded on a Bruker AMX360 instrument operating at 90.55 MIHz: The solid was packed into a 4 jm Szirconia MAS rotor fitted with a Kel-F cap and rotor spun at ca. 10 kHz. The 13
C
8 MAS spectrum was acquired by cross-polarisation from Hartmann-Hahn matched protons (CP contact time 3ms, repetition time 15 s) and protons were decoupled during acquisition using a two-pulse phase modulated (TPPM) composite sequence.
Chemical shifts were externally referenced to the carboxylate signal of glycine at 00 176.4 ppm relative to TMS and were observed at: 181.2, 179.0, 177.4, 174.7, 173.0, 158.2, 156.9, 150.3, 145.6, 144.7, 141.9, 139.3, 136.1, 131.7, 126.6, 118.1, 113.7, 111.0, 110.0, 75.2, 74.6, 73.7, S73.0, 64.6, 56.6, 55.7, 50.8, 47.4, 40.6, 38.8, 36.7, 34.8 ppm.
Properties of the Tartrate, recorded for the product of Example 4 Solid State Stability of the Tartrate The solid state stability of the drug substance was determined by storing approximately 1.0 g of the material in a glass bottle at i) 40 0 C 75 Relative Humidity open exposure, for 1 month and b) at 50 0C closed, for 1 month. The material was assayed by HPLC for final content and degradation products in both cases.
a) 40 0 C 75% RH: No significant degradation observed (HPLC assay 96% initial).
b) 50 0 C: No significant degradation observed (HPLC assay 98% initial).
Flow Properties of the Tartrate: The ratio between the bulk density and the tapped bulk density (Hausner Ratio) of the Tartrate was determined using standard methods ("Pharmaceutics The Science of Dosage Form Design", editor M. Aulton, 1988, published by:Churchill Livingstone).
Hausner Ratio: 1.2 Melting Point of the Tartrate The melting point of the Tartrate was determined according to the method described in the U.S. Pharmacopoeia, USP 23, 1995, <741 "Melting range or temperature, Procedure for Class la", using a Buchi 545 melting point instrument.
Melting Point: 181.6 0
C
Tonset of the Tartrate The Tonset of the drug substance was determined by Differential Scanning Calorimetry using a Perkin-Elmer DSC7 apparatus.
Tonset (10oC/minute, closed pan): 187 OC PAOPERNMALUO08NI 2692320 I spa doc221/208 00 -llAt The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgment or 00 admission or any form of suggestion that that prior publication (or information derived 00 N 5 from it) or known matter forms part of the common general knowledge in the field of endeavour to which this specification relates.
SThroughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" and "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.

Claims (13)

1. A compound 5-[ 4 2 -(N-methyl-N-(2-pyridyl)amino)ethoxy]benzyl]thiazolidine- 2,4-dione tartrate salt or a solvate thereof.
2. (i) (ii) (iii) Table (iv) A compound according to claim 1, characterised in that it provides: an infrared spectrum substantially in accordance with Figure 1; a Raman spectrum substantially in accordance with Figure 2; an X-Ray powder diffraction pattern (XRPD) substantially in accordance with 1 or Figure 3; or a Solid State 3 C NMR spectrum substantially in accordance with Figure 4.
3. (i) (ii) (iii) Table (iv) A compound according to claim 1, characterised in that it provides two or more of: an infrared spectrum substantially in accordance with Figure 1; and a Raman spectrum substantially in accordance with Figure 2; and an X-Ray powder diffraction pattern (XRPD) substantially in accordance with 1 or Figure 3; and a Solid State 3 C NMR spectrum substantially in accordance with Figure 4.
4. A compound according to any one of claims 1 to 3, in purified form.
A compound according to any one of claims 1 to 3, in a solid dosage form.
6. A compound according to any one of claims 1 to 3, in a pharmaceutically acceptable form capable of being milled.
7. A compound according to any one of claims 1 to 3, in a pharmaceutically acceptable form having good flow properties.
8. A process for preparing the 5-[4-[2-(N-methyl-N-(2- pyridyl)amino)ethoxy]benzyl]thiazolidine-2,4-dione tartrate salt or a solvate thereof P lOpcrwlM iOOSSU6 I Iio0041 dc-I .1402 -13- 0 Swherein 5-[ 4 2 -(N-methyl-N-(2-pyridyl)amino)ethoxy]benzyl]thiazolidine-2,4-dione (Compound or a salt thereof is reacted with a source of tartrate ion and thereafter, 00 if required, a solvate of the resulting tartrate is prepared; and the tartrate or a 00 11 solvate thereof is recovered.
9. A pharmaceutical composition comprising 5-[4-[2-(N-methyl-N-(2- pyridyl)amino)ethoxy]benzyl]thiazolidine-2,4-dione tartrate or a solvate thereof and a pharmaceutically acceptable carrier therefor.
10. A compound 5[ 4 2 -(N-methyl-N-(2-pyridyl)amino)ethoxy]benzyl]thiazolidine. 2,4-dione tartrate or a solvate thereof for use as an active therapeutic substance.
11. Use of 5-[ 4 2 -(N-methyl-N-(2-pyridyl)amino)ethoxy]benzyl]thiazolidine-2,4- dione tartrate or a solvate thereof, in the manufacture of a medicament for the treatment and/or prophylaxis of diabetes mellitus, conditions associated with diabetes mellitus and certain complications thereof.
12. Method of treating or preventing diabetes mellitus, conditions associated with diabetes mellitus and certain complications thereof including the step of administering to a patient 5-[ 4 2 -(N-methyl-N-(2-pyridyl)amino)ethoxy]benzyl]thiazolidine-2,4-dione tartrate or a solvate thereof.
13. A process according to claim 8 substantially as hereinbefore described with reference to the Examples. DATED this 3 rd day of November, 2005 SmithKline Beecham p.l.c. By DAVIES COLLISON CAVE Patent Attorneys for the Applicants
AU2005229688A 2000-08-04 2005-11-03 Tartrate salts of thiazolidinedione derivative Ceased AU2005229688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2005229688A AU2005229688B2 (en) 2000-08-04 2005-11-03 Tartrate salts of thiazolidinedione derivative

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0019228 2000-08-04
AU2001276509 2001-08-03
AU2005229688A AU2005229688B2 (en) 2000-08-04 2005-11-03 Tartrate salts of thiazolidinedione derivative

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2001276509 Division 2000-08-04 2001-08-03

Publications (2)

Publication Number Publication Date
AU2005229688A1 AU2005229688A1 (en) 2005-11-24
AU2005229688B2 true AU2005229688B2 (en) 2008-04-03

Family

ID=35465407

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2005229688A Ceased AU2005229688B2 (en) 2000-08-04 2005-11-03 Tartrate salts of thiazolidinedione derivative

Country Status (1)

Country Link
AU (1) AU2005229688B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994005659A1 (en) * 1992-09-05 1994-03-17 Smithkline Beecham Plc Substituted thiazolidinedione derivatives

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994005659A1 (en) * 1992-09-05 1994-03-17 Smithkline Beecham Plc Substituted thiazolidinedione derivatives

Also Published As

Publication number Publication date
AU2005229688A1 (en) 2005-11-24

Similar Documents

Publication Publication Date Title
US7291740B2 (en) 5-[4-[2-(N-methyl-N-(2-pyridyl)amino)ethoxy]benzyl]thiazolidine-2,4-dione Mesylate salt
EP1305312B1 (en) Tartrate salts of thiazolidinedione derivative
EP1446404B1 (en) Rosiglitazone edisylates and their use as antidiabetics
US20040034066A1 (en) Hydrochloride salt of 5-[4-[2-(n-methyl-n-(2-pyridyl)amino)ethoxy]thiazolidine-2,4-dione
US20040014791A1 (en) Thiazolidinedione derivative and its use as antidiabetic
AU2005229688B2 (en) Tartrate salts of thiazolidinedione derivative
EP1305310B1 (en) Tartrate salts of thiazolidinedione derivative
US20040014790A1 (en) Tartrate salt of thiazolidinedione derivative
AU2001292034B2 (en) A thiazolidinedione derivative and its use as antidiabetic
AU2005229687B2 (en) Tartrate salts of thiazolidinedione derivative
AU2005229694B2 (en) Tartrate salt of thiazolidinedione derivative
WO2003050111A1 (en) Toluenesulfonate salts of a thiazolidinedione derivative
AU2001292034A1 (en) A thiazolidinedione derivative and its use as antidiabetic

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired