AU2005220244B2 - Pipelayer crane excavator apparatus and methods - Google Patents

Pipelayer crane excavator apparatus and methods Download PDF

Info

Publication number
AU2005220244B2
AU2005220244B2 AU2005220244A AU2005220244A AU2005220244B2 AU 2005220244 B2 AU2005220244 B2 AU 2005220244B2 AU 2005220244 A AU2005220244 A AU 2005220244A AU 2005220244 A AU2005220244 A AU 2005220244A AU 2005220244 B2 AU2005220244 B2 AU 2005220244B2
Authority
AU
Australia
Prior art keywords
pipelayer
adaptor
boom
attached
winch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU2005220244A
Other versions
AU2005220244A1 (en
Inventor
Daniel E. Davis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volvo Construction Equipment AB
Original Assignee
Volvo Construction Equipment AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2003213849A external-priority patent/AU2003213849A1/en
Application filed by Volvo Construction Equipment AB filed Critical Volvo Construction Equipment AB
Priority to AU2005220244A priority Critical patent/AU2005220244B2/en
Publication of AU2005220244A1 publication Critical patent/AU2005220244A1/en
Priority to AU2007201045A priority patent/AU2007201045B2/en
Priority to AU2007201043A priority patent/AU2007201043B2/en
Application granted granted Critical
Publication of AU2005220244B2 publication Critical patent/AU2005220244B2/en
Priority to AU2007202084A priority patent/AU2007202084B2/en
Assigned to VOLVO CONSTRUCTION EQUIPMENT AB reassignment VOLVO CONSTRUCTION EQUIPMENT AB Request for Assignment Assignors: DAVIS, DANIEL
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Landscapes

  • Jib Cranes (AREA)

Description

S&FRef: 739213D1
AUSTRALIA
PATENTS ACT 1990 COMPLETE SPECIFICATION FOR A STANDARD PATENT Name and Address of Applicant: Actual Inventor(s): Address for Service: Invention Title: Daniel E. Davis, of PO Box 2427, Harlingen, Texas, 78551-2427, United States of America Daniel E. Davis Spruson Ferguson St Martins Tower Level 31 Market Street Sydney NSW 2000 (CCN 3710000177) Pipelayer crane excavator apparatus and methods The following statement is a full description of this invention, including the best method of performing it known to me/us:- 5845c o Pipelayer Crane Excavator Apparatus And Methods
O
t Field Of The Invention 0 The present invention relates generally to a pipelayer crane excavator apparatus and associated methods. More particularly, the present invention relates to a pipelayer, crane and s excavator apparatus having excavator-like, fundamental components, and attachments and methods for converting the apparatus from or to an excavator, a pipelayer or a crane as well t as methods of preparing and transporting the apparatus.
Background Of The Invention Material handling equipment is very expensive. Each 'piece of equipment can 0o represent a significant investment to accomplish a very specific or limited utility with respect to the piece of equipment. It can be appreciated that any time saved in the movement of materials equates to greater profits from the saved time. Also, the need exists to have equipment that can be easily transported on public roads. Traditional construction vehicles and equipment are very large and must be partially disassembled to be transported from one location to another.
It is well known in the art that crawler or tractor-type vehicles having an integrated, rigid maneuverable boom disposed on a side of the tractor are for pipelaying operations, such as for example, raising, carrying, and lowering heavy pipe. Pipelayers are sometimes referred to in the art as "sidebooms". Pipelayers or sidebooms must be capable of safely handling heavy pipe.
Pipelayers or sidebooms which manipulate large diameter pipe for the construction of pipelines are a specialized type of equipment. For over 70 years, pipelayers have been equipped with specialized tools and frames for supporting and manipulating the large heavy pipe sections. Such tools and frames generally include a pipe supporting boom arm, a counterweight assembly, a draw works or winch assembly, and a pipelayer frame assembly for supporting the boom arm, the counterweight assembly, and the drawworks. Most prior.
art pipelayers utilize a cable connected between the drawworks and the boom arm, and by running the cable in or out, the boom arm and the pipe are raised and lowered.
More recently, fluid powered linear motors or cylinders have been used to replace the drawworks and cable for raising and lowering the boom arm and pipe. One such prior device [R:\LIBH]731478Mspeci.doc:MQT 2 is shown in U.S. Patent No. 4,966,290, issued to H. Ejchler, et al. on Oct. 30, 1990. The O Ejchler patent provides for storage of a fluid cylinder on the pipelayer during transportation, without the necessity to disconnect fluid lines. Another such device is shown in U.S. Patent O No. 4,042,116, issued to G. M. Bertolino on Aug. 16, 1977. In the Bertolino patent, maneuvering of the movable boom is controlled by a large hydraulic jack. The jack is connected between one end of the boom and a supplemental support or framework. Another type of structure for maneuvering a boom or jib is shown in U.S. Patent No. 3,842,983, issued to C. Dolza on Oct. 22, 1974. In the Dolza patent, the jib is raised and lowered, and Spivoted laterally, by a plurality of hydraulic jacks. In each of the cylinder-driven, boom 1o manipulating devices, removal of the boom would normally be necessary to transport the vehicle. With the boom removed, one end of the cylinder, or cylinders, becomes unsupported, which requires the cylinders to be removed or stored on the machine in some manner. Removal of the fluid cylinders necessitates disconnecting and plugging of several fluid lines. The possibility of fluid loss and contamination of the fluid system is always a concern when fluid lines are disconnected. When the fluid cylinders are removed, they must be stored and shipped separately, thereby requiring additional space and effort. Also, considerable time and effort are required to re-assemble the fluid cylinders to the pipelayer.
In addition, hydraulically-operated high-drive sidebooms are very expensive, and some models have counterweight obstruction problems, and are difficult to move from jobsite to job-site. While it is known that a hydraulic pipelayer may be adapted for mounting upon a conventional track-laying tractor, a bulldozer, it is also well known in the art that the main frame of a sideboom is constructed differently from that of a conventional tractor.
In particular, unlike a conventional tractor which is constructed with an oscillating frame, a sideboom is constructed with a rigid frame of wider track gauge than a conventional tractor.
Indeed, manufacturers of pipelayers identify such tractor and sideboom frames with different serial numbers series. Thus, to obtain the prerequisite performance demanded in the pipelaying art, typically a drawworks assembly must be mounted upon a frame capable of rigidity to accommodate the pivoting action of a sideboom which is typically positioned upon rough terrain, with the frame having a sufficiently wide track gauge for stability purposes.
Traditional pipelayer apparatuses do not rotate on their track shoes. The operator must pick up a piece of pipe and walk straight to the job location. Also, traditional pipelayer apparatuses must work in pairs to accomplish a job.
[R:\L1BH]731478Mspeci.doc:MQT Also, traditional pipelayer apparatuses only allow the operator to look in front of the Sapparatus and to the operator's left when in a seated position.
Object of the Invention It is an objection of the invention to substantially overcome or at least ameliorate at least one of the above disadvantages.
SSummary of the Invention n In one aspect the present invention provides a pipelayer, comprising San undercarriage; an axle operably connected to the undercarriage; a track roller operably connected to the axle; a track shoe operably connected to the track roller; a main frame: supported by the undercarriage by a bearing so that the main frame may rotate relative to the undercarriage while the pipelayer is handling pipe, and is having first and second sides distal from each other; an A-frame boom having a first end and pivotally attached to an adaptor or the main frame at the first end of the boom; and a counterweight attached to the main frame at the second side of the main frame.
(598574_2):PRW 2 Brief Description of the Drawings 0 Preferred embodiments of the present invention will now be described, by way of an example only, with reference to the accompanying drawings wherein: FIG. 1 is a perspective view of the pipelayer apparatus of the present invention with the main frame rotated 90 degrees from the undercarriage.
O,
¢In (598574_2):PRW o CFIG. 2 is a side view of the preferred embodiment of the pipelayer apparatus of the O present invention as illustrated in FIG. 1 illustrating the boom at varying heights.
FIG. 3 is a front view of the preferred embodiment of the pipelayer apparatus of the O present invention as illustrated in FIGS. 1 and 2.
FIG. 4 is a perspective view of the pipelayer apparatus of the present invention with the main frame rotated 90 degrees from the undercarriage as illustrated in FIG. 1.
FIG. 5 is a side view of the preferred embodiment of the pipelayer apparatus of the Spresent invention as illustrated in FIG. 1 illustrating the weldment or adaptor for connecting the boom to the main frame.
0 FIG. 6 is a side view of the weldment or adaptor, the boom and the cylinder associated with the preferred embodiment of the pipelayer apparatus of the present invention as illustrated in FIG. 1.
FIG. 6A is a perspective view of the weldment or adaptor of the preferred embodiment of the pipelayer apparatus of the present invention illustrated in FIG. 1.
FIG. 6B is a side view of the weldment or adaptor of the preferred embodiment of the pipelayer apparatus of the present invention illustrated in FIG. 1.
FIG. 7 is a side view of the preferred embodiment of the pipelayer crane apparatus of the present invention illustrating the displacement of the boom in a counterclockwise direction.
FIG. 8 is a side view of another preferred embodiment of the pipelayer apparatus of the present invention illustrating another boom, two winch and weldment configuration.
FIG. 9 is a perspective view of another preferred embodiment of the pipelayer apparatus of the present invention illustrating different boom, cylinder, winch and weldment configuration.
FIG. 10 is a perspective view of the preferred embodiment of the pipelayer apparatus of the present invention illustrated in FIG. 9 with the main frame positioned 90 degrees from the undercarriage.
FIG. 11 is a perspective view of the preferred embodiment of the pipelayer apparatus of the present invention illustrated in FIG. 9 with the main frame positioned 45 degrees from the undercarriage.
FIG. 12 is a perspective view of the preferred embodiment of the pipelayer apparatus of the present invention similar to the embodiment illustrated in FIG. 9 with the main frame positioned 45 degrees from the undercarriage and having duel tracks.
[R:\LIBH]731478Mspeci.doc:MQT 6 c FIG. 13 is a side view of another preferred embodiment of the pipelayer apparatus of 0 the present invention illustrating a different boom, winch and weldment configuration.
FIG. 13A is a side view of yet another preferred embodiment of the pipelayer O apparatus of the present invention illustrating a different boom, winch and weldment configuration.
FIG. 14 is a side view of another preferred embodiment of the pipelayer apparatus of the present invention illustrating a different boom, winch and weldment configuration.
FIG. 14A in a side view of the weldment used in the preferred embodiment of the t pipelayer apparatus of the present invention illustrated in FIG. 14.
FIG. 15 is a side view of still another preferred embodiment of the pipelayer apparatus of the present invention illustrating a boom, winch and weldment configuration.
FIG. 16 is a side view of still another preferred embodiment of the pipelayer apparatus of the present invention illustrating a different boom, cylinder, winch and weldment configuration.
FIG. 17 is a side view of another preferred embodiment of the pipelayer apparatus of the present invention illustrating a different boom, cylinder, winch and weldment configuration.
FIG. 18 is a side view of still another preferred embodiment of the pipelayer apparatus of the present invention illustrating a boom, winch and weldment configuration.
FIG. 19 is a side view of still another preferred embodiment of the pipelayer apparatus of the present invention illustrating a boom attached with or without a weldment.
FIG. 20 is a side view of still another preferred embodiment of a modified pipelayer apparatus of the present invention having the boom attached to the main frame and a jib boom attached to the boom and a tool attached to the jib boom.
FIG. 21 is a plan view illustrating a preferred method of self-loading for the pipelayer apparatus of the present invention showing the pipelayer apparatus straddling a trailer, and an associated truck.
FIG. 22 is a plan view illustrating the preferred method of self-loading for the pipelayer apparatus of the present invention illustrated in FIG. 21 showing the pipelayer apparatus self-loaded on the trailer.
The above general description and the following detailed description are merely illustrative of the generic invention, and additional modes, advantages, and particulars of this [R:\LIBH]731478Mspeci.doc:MQT
NO
7 invention will be readily suggested to those skilled in the art without departing from the spirit Sand scope of the invention.
Detailed Description of Preferred Embodiments Reference will now be made in detail to the present preferred embodiments of the invention as described in the accompanying drawings.
FIG. 1 is a perspective view of the pipelayer apparatus 10 of the present invention with the upper or main frame 200 rotated 90 degrees from the lower or undercarriage 100.
This preferred embodiment illustrates a pipelayer crane apparatus 10 comprised of a lower or undercarriage 100, an upper or main frame 200, a lifting assembly 300, and an adaptor or Jo weldment 400. It is appreciated by those skilled in the art that the lower or undercarriage 100 and the upper or main frame 200 are of the type used in excavators, and not cranes. The upper or main frame 200 is illustrated with a counterweight 240 at one end and the lifting assembly 300 at the other end. Further, the upper or main frame 200 has an engine compartment 230 and an enclosed cab 210. The upper or main frame 200 removably accepts the adaptor or weldment 400. The adaptor 400 is configured so as to be removably joined with the upper 200 at the same locations that would be used if the upper 200 was used as an excavator and an excavator boom was attached. The lifting assembly 300 comprises the boom 310, a winch 360 and the cylinders 380. The lifting assembly 300 has a boom or Aframe 310 engaged with the adaptor 400 for removably securing the boom 310 to rotate about a pivot point on the lower extremity of the adaptor 400. Also attached to the adaptor 400 in a rotating relationship is one end of the cylinder 380. In the present illustrated embodiment, two cylinders 380 are used, but it is appreciated by those skilled in the art that one or more cylinders may be adapted for use with the present invention. The other end of the cylinders 380 are rotatingly affixed to the boom 310. As the cylinders 380 are extended, the boom 310 is rotated about the pivot in the adaptor 400 and lowered. As the cylinders 380 are retracted, the boom 310 is rotated about the pivot in the adaptor 400 and raised.
FIG. 2 is a side view of the preferred embodiment of the pipelayer apparatus 10 of the present invention as illustrated in FIG. 1 illustrating the boom 310 at varying heights.
Generally, as illustrated in FIGS. 1 and 2, the lower or undercarriage 100 is comprised of a lower frame, a telescoping axle 150, a track roller, a track shoe 110, a pedestal, and a lower bearing portion 170. The lower frame is attached on its top side to the pedestal which is engaged with the lower bearing portion 170 and on each side to the telescoping axle 150.
598574.1 :hxa
\O
8 The telescoping axle 150 shortens to allow loading of the pipelayer crane apparatus 10 when Sa small footprint is needed. The telescoping axle 150 widens to give the pipelayer crane apparatus a wider footprint and lower ground pressure to allow for greater lifting capacities.
The telescoping axle 150 is attached to a track roller. The track roller is then in communication with the track shoe 110. The track roller provides force from the power train to turn the track shoe 110 on each side to move the pipelayer crane apparatus 10. The lower frame is attached on its top side to the pedestal. The pedestal is attached to the lower bearing S170. The boom 310 has a lower boom section 312, an upper boom section 314 and a boom point remote from the end of the boom 310 attached to the adaptor 400. The lower boom 0o section 312 and the upper boom section 314 are joined by a boom pivot 320. The boom pivot 320 provides for the upper boom section 314 to be rotated about the boom pivot 320 so as to fold the boom 310.
The lower 100 has the pedestal attached to the upper bearing portion 270. The lower bearing portion 170 of the lower 100 and the upper bearing portion 270 of the upper 200 comprise the bearing 170/270. The frame on the upper side is attached to the body and the cab 210. The counter weight 240 is attached on the rear portion of the frame to the rear of the cab 210. The frame may have a securing member. The securing member is attached to the front portion of the frame. The securing member is comprised of a first securing member and a second securing member. The securing member is attached the weldment 400.
FIG. 3 is a front view of the preferred embodiment of the pipelayer apparatus of the present invention as illustrated in FIGS. 1 and 2. FIG. 3 illustrates the pipelayer apparatus of the present invention with the relationship of the boom 310 and the winch 360. The lower 100 is shown with the track 110, the telescoping axle 150 and the lower bearing 170. The lifting assembly 300 is illustrated with the boom 310 and the winch 360.
FIG. 4 is a perspective view of the pipelayer apparatus 10 of the present invention with the main frame or upper 200 rotated 90 degrees from the undercarriage or lower 100 as illustrated in FIG. 1. The lower 100 has the tracks 110. The adaptor 400 is illustrated with a lower boom pivot 410 and a cylinder pivot 420. The lifting assembly 300 has the boom 310, the winch 360 and the cylinders 380. The boom 310 comprises the lower boom section 312, the upper boom section 314, the upper boom pivot 320, the boom point flange 332, the boom point 330 and the block 364.
FIG. 5 is a side view of the preferred embodiment of the pipelayer apparatus 10 of the present invention as illustrated in FIG. 1 illustrating the weldment or adaptor 400 for 598574.I:hx
\O
9 connecting the boom 310 to the main frame or upper 200. The adaptor 400 is illustrated with da lower boom pivot 410, a cylinder pivot 420 and the connections 430 to the upper 200. The lifting assembly 300 has the boom 310, the winch 360 and the cylinders 380. The boom 310 has the lower boom section 312, the upper boom section 314 and the upper boom pivot 320.
FIG. 6 is a side view of the adaptor 400 and the lifting assembly 300 associated with the preferred embodiment of the pipelayer apparatus 10 of the present invention as illustrated in FIG. 1. The adaptor 400 is illustrated with a lower boom pivot 410, a cylinder pivot 420 Sand the connections 430 to the upper 200. The lifting assembly 300 is illustrated with the boom 310 and the cylinder 380. The boom 310 has the lower boom section 312, the upper 0o boom section 314 and the upper boom pivot 320. It can be appreciated that the boom 310 can be folded in either a clockwise direction or a counterclockwise direction as illustrated.
The connections 302 and 420 removably secure the cylinder 380 to the boom 310 and the adaptor 400, respectively.
FIG. 6A is a perspective view of the weldment or adaptor 400 of the preferred Is embodiment of the pipelayer apparatus 10 of the present invention illustrated in FIG. 1.
The adaptor 400 has a first side 450, a second side 460 and a connecting member 470. The first side 450, second side 460 and connecting member 470 have associated therewith doubler plates for providing extra reinforcement for the adaptor 400. At one end of the adaptor 400 is the boom pivot 410. The boom pivot 410 comprises the channels 412A, 412B for accepting the lower portion of the boom 310. At the other end of the adaptor 400 is the cylinder pivot 420. The cylinder pivot 420 comprises the channels 422A, 422B for accepting the cylinders 380. It is important to practice the present invention that the adaptor 400 be adapted to be accepted by the standard excavator upper, regardless of the specific configuration.
FIG. 6B is a side view of the weldment or adaptor 400 of the preferred embodiment of the pipelayer apparatus 10 of the present invention illustrated in FIG. 1. The adaptor 400 illustrates the first side 450, the cylinder pivot 420, the boom pivot 410 and the connections 430 for engaging the upper 200.
FIG. 7 is a side view of the preferred embodiment of the pipelayer crane apparatus of the present invention illustrating the displacement of the boom 3 10 in a counterclockwise direction. The boom 310 is illustrated in position A, position B and position C. Further, the boom 310 when in position A can also be folded as illustrated in position Al. Still further, the boom 310 when in position C can also be folded as illustrated in position C1. It can be 598574.1:hxa c appreciated that the Boom 310 can be folded in either a clockwise direction or a o counterclockwise direction as illustrated in FIG. 7.
FIG. 8 is a side view of another preferred embodiment of the pipelayer apparatus 11 of the present invention illustrating a boom 310, and a two winch 360, 370 and adaptor 400 configuration. The load winch 360 is located in the lower portion of the boom or A-frame 310. A boom hoist winch 370 is provided in place of the cylinder in prior discussed embodiments. The boom hoist winch 370 is affixed to the portion of the adaptor 400 that Spreviously held the cylinders.
FIG. 9 is a perspective view of another preferred embodiment of the pipelayer apparatus 12 of the present invention illustrating a different lifting assembly 300, cylinder 382, winch 370 and adaptor 400 configuration.
FIG. 10 is a perspective view of the preferred embodiment of the pipelayer apparatus 12 of the present invention illustrated in FIG. 9 with the main frame 200 positioned degrees from the undercarriage 100.
FIG. 11 is a perspective view of the preferred embodiment of the pipelayer apparatus 12 of the present invention illustrated in FIG. 9 with the main frame 200 positioned degrees from the undercarriage 100.
FIG. 12 is a perspective view of the preferred embodiment of the pipelayer apparatus 13 of the present invention similar to the embodiment illustrated in FIG. 9 with the main frame 200 positioned 45 degrees from the undercarriage 100 and having duel tracks 101.
FIG. 13 is a side view of another preferred embodiment of the pipelayer apparatus 14 of the present invention illustrating a different lifting assembly 300, winch 360, 381 and adaptor 400 configuration. It can be appreciated that the boom 310 can be folded in either a clockwise direction or a counterclockwise direction about the pivot 320 as illustrated. The location of the winches 360, 381 are moved to the adaptor, and winch 381 replaces the cylinders.
FIG. 13A is a side view of yet another preferred embodiment of the pipelayer apparatus of the present invention illustrating a different lifting assembly 300, winch 360, 381 and adaptor 400 configuration. It can be appreciated that the boom 310 can be folded in either a clockwise direction or a counterclockwise direction about the pivot 320 as illustrated.
The location of the winches 360, 381 are moved to the adaptor, and winch 381 replaces the cylinders.
[R:\LIBH]731478Mspeci.doc:MQT FIG. 14 is a side view of another preferred embodiment of the pipelayer apparatus of the present invention illustrating a different boom 310, winch 370 and adaptor 402 configuration. FIG. 14A is a side view of the adaptor 402 used in the preferred embodiment O of the pipelayer apparatus 15 of the present invention illustrated in FIG. 14.
FIG. 15 is a side view of still another preferred embodiment of the pipelayer apparatus 16 of the present invention illustrating a boom 310, winch 360, 381 and adaptor 400 configuration. The adaptor 400 includes a first member 461 connected to a second member 462 by a central connector 464. The first member 461 connects to the upper 200 at the connector 463 with the boom 310 and the second member 462 connects to the upper 200 at 0 to the connector 465 via the counterweight 240. A connector (not shown) secures the boom winch 381 to the first member 461.
FIG. 16 is a side view of still another preferred embodiment of the pipelayer apparatus 17 of the present invention illustrating a different boom 310, cylinder 380, winch 360 and adaptor 400 configuration. The adaptor 400 includes a first member 470 connected to a Is second member 472 by a central connector 474. The first member 470 connects to the upper 200 at the connector 473 with the boom 310 and the second member 462 connects to the upper 200 at the connector 475 via the counterweight 240. A connector (not shown) secures the load winch 360 to the first member 470. The cylinder 380 connects to the first member 470 at the connector 476.
FIG. 17 is a side view of another preferred embodiment of the pipelayer apparatus 18 of the present invention illustrating a different boom 310, cylinder 380, winch 360 and weldment or adaptor 400 configuration. The adaptor 400 includes a first member 481 connected to a second member 482 by a central connector 484. The first member 481 connects to the upper 200 at the connector 483 with the cylinder 380 and the second member 482 connects to the upper 200 at the connector 485 via the counterweight 240. A connector (not shown) secures the load winch 360 to the first member 481. The boom 310 connects to the first member 481 at the connector 486.
FIG. 18 is a side view of still another preferred embodiment of the pipelayer apparatus 19 of the present invention illustrating a boom 310, winch 369, 389 and weldment or adaptor 400 configuration. The adaptor 400 includes a first member 491 connected to a second member 492 by a central connector 394. The first member 491 connects to the upper 200 at the connector 493 with the boom 310 and the second member 492 connects to the upper 200 at the connector 495 via the counterweight 240. A connector (not shown) secures the winch (598574 2):PRW 12 389 to the first member 491, and connector 496 secures the winch 369 to the first member t491.
FIG. 19 is a side view of still another preferred embodiment of the pipelayer apparatus of the present invention illustrating a boom 310 attached with or without a weldment or adaptor 400.
FIG. 20 is a side view of still another preferred embodiment of a modified pipelayer apparatus 21 of the present invention having the boom 310 attached to the main frame 200 and a jib boom 384 attached to the boom 310 and a tool 386 attached to the jib boom 384.
t FIG. 21 is a plan view illustrating a preferred method of self-loading for the pipelayer i0 apparatus of the present invention showing the pipelayer apparatus 22 straddling a trailer 2, and an associated truck 1.
FIG. 22 is a plan view illustrating the preferred method of self-loading for the pipelayer apparatus of the present invention illustrated in FIG. 21 showing the pipelayer apparatus 22 self-loaded on the trailer 2. Generally, the arms 502 are extended so the pads is 504 can support the apparatus 22. The trailer is backed under the apparatus 22. The upper 200 is lowered on the truck. The tracks are removed. The crane lifts the tracks on the trailer 2. The crane boom is folded. And the apparatus is ready for transport.
Additional advantages and modification will readily occur to those skilled in the art.
The invention in its broader aspects is therefore not limited to the specific details, representative apparatus, and the illustrative examples shown and described herein.
Accordingly, departures may be made from the details without departing from the spirit or scope of the disclosed general inventive concept.
(598574_2):PRW

Claims (25)

1. A pipelayer, comprising an undercarriage; O an axle operably connected to the undercarriage; s a track roller operably connected to the axle; a track shoe operably connected to the track roller; a main frame: supported by the undercarriage by a bearing so that the main frame may rotate relative to the undercarriage while the pipelayer is handling pipe, and 0 having first and second sides distal from each other; an A-frame boom having a first end and pivotally attached to an adaptor or the main frame at the first end of the boom; and a counterweight attached to the main frame at the second side of the main frame.
2. The pipelayer of claim 1, further comprising the adaptor: removably joined with the main frame at the first side of the main frame; and having first and second ends distal from each other.
3. The pipelayer of claim 2, further comprising: a first winch having a first cable wrapped therearound; and a block coupled to a second end of the boom distal from the first end of the boom, wherein: the block has a pulley rotatably coupled thereto; the first cable extends from the winch around the pulley; and the first winch is attached to the boom, the adaptor, or the main frame.
4. The pipelayer of claim 3, wherein the first end of the boom is pivotally attached to the adaptor at the first end of the adaptor.
5. The pipelayer of claim 4, further comprising a second winch having a second cable wrapped therearound, wherein: an end of the second cable is attached to the boom; and (598574_2):PRW 14 the second winch is attached to the adaptor or the main frame.
6. The pipelayer of claim 5, wherein the first winch is attached to the boom O proximate to the first end of the boom and the second winch is attached to the second end of the adaptor.
7. The pipelayer of claim 5, wherein the first winch is attached to the first end of the adaptor and the second winch is attached to the adaptor at a side of the adaptor between the first and second ends of the adaptor.
8. The pipelayer of claim 5, wherein the first and second winches are attached to the second end of the adaptor.
9. The pipelayer of claim 4, further comprising a piston and cylinder assembly is (PCA) pivotally attached to the adaptor at a first end of the PCA and pivotally attached to the boom at a second end of the PCA. The pipelayer of claim 9, wherein the first end of the PCA is pivotally attached to the second end of the adaptor and the first winch is attached to the boom proximate to the first end of the boom.
11. The pipelayer of claim 9, wherein the first winch is attached to the second end of the adaptor and the first end of the PCA is pivotally attached to the adaptor at a side of the adaptor between the first and second ends of the adaptor.
12. The pipelayer of claim 9, wherein the first end of the PCA is pivotally attached to the second end of the adaptor and the first winch is attached to a post extending upwardly from and attached to the main frame.
13. The pipelayer of claim 3, wherein the adaptor comprises: a first adaptor member having first and second ends, and a second adaptor member having first and second ends; wherein: (598574_2):PRW the first end of the first adaptor member is attached to the first side of the main frame; Sthe second end of the first adaptor member is attached to the second end of the second adaptor member; and O the first end of the second adaptor member is attached to the counterweight.
14. The pipelayer of claim 13, wherein the first end of the boom is pivotally attached to the first end of the first adaptor member. The pipelayer of claim 14, further comprising a second winch having a second io cable wrapped therearound, wherein: an end of the second cable is attached to the boom; and the second winch is attached to the adaptor or the main frame. Is 16. The pipelayer of claim 15, wherein the first winch is attached to the boom proximate to the first end of the boom and the second winch is attached to the first adaptor member proximate to the second end of the first adaptor member.
17. The pipelayer of claim 16, wherein the first winch is attached to the first adaptor member proximate to the second end of the first adaptor member and the second winch is attached to the first adaptor member between the first and second ends of the first adaptor member.
18. The pipelayer of claim 13, further comprising a piston and cylinder assembly (PCA) pivotally attached to the first adaptor member at a first end of the PCA and pivotally attached to the boom at a second end of the PCA.
19. The pipelayer of claim 18, wherein the first end of the boom is pivotally attached to the first end of the first adaptor member. The pipelayer of claim 19, wherein the first winch is attached to the first adaptor member proximate to the second end of the first adaptor member and the first end of the PCA (598574_2):PRW is pivotally attached to the first adaptor member between the first and second ends of the first Sadaptor member. O 21. The pipelayer of claim 18, wherein the first winch is attached to the first adaptor s member proximate to the second end of the first adaptor member, the first end of the boom is pivotally attached to the first adaptor member between the first and second ends of the first Sadaptor member, and the first end of the PCA is pivotally attached to the first adaptor ,I member at the first end of the first adaptor member. S 10 22. The pipelayer of claim 2, wherein the main frame is configured so that removal of the adaptor will allow attachment of an excavator attachment or a crane boom.
23. A method of using the pipelayer of claim 1, comprising: providing the pipelayer of claim 1; lifting a pipe using the pipelayer; rotating the pipe about a radius using the pipelayer; and lowering the pipe into a trench using the pipelayer.
24. A method of using the pipelayer of claim 2, comprising: providing the pipelayer of claim 2; removing the adaptor and the boom; attaching an excavator attachment or crane boom to the main frame. The pipelayer of claim 1, further comprising a cab attached to the main frame, wherein an operator's field of vision to a front, a left, and a right side is unobstructed when an operator is seated in the cab.
26. The pipelayer of claim 2, wherein the adaptor is a weldment.
27. The pipelayer of claim 1, wherein the axle is a telescoping axle displaceable to vary a length of the telescoping axle. (598574_2):PRW
28. The pipelayer of claim 27, further comprising an arm operatively connected to Sthe main frame at a first end of the arm and a pad attached to a second end of the arm, wherein the arm is displaceable to extend the pad into contact with ground to support the pipelayer.
29. A method of loading the pipelayer of claim 28 for transportation, comprising: providing the pipelayer of claim 28; Sextending the pad into contact with the ground and supporting the pipelayer with the pad; N 10 backing a trailer underneath the undercarriage using a truck, wherein the truck and the trailer are suitable for public road transportation; lowering the pipelayer on to the trailer; retracting the telescoping axle so that an end of the axle distal from the bearing is substantially flush with a side of the trailer; Is removing the track shoe from the pipelayer; and loading the track shoe onto the trailer. The pipelayer of claim 28, wherein the boom comprises: a first boom section pivotally attached to the adaptor; and a second boom section selectively pivotally attached to the first boom section.
31. A method of loading the pipelayer of claim 30 for transportation, comprising: providing the pipelayer of claim extending the pad into contact with the ground and supporting the pipelayer with the pad; backing a trailer underneath the undercarriage using a truck, wherein the truck and the trailer are suitable for public road transportation; lowering the pipelayer on to the trailer; retracting the telescoping axle so that an end of the axle distal from the bearing is substantially flush with a side of the trailer; removing the track shoe from the pipelayer; loading the track shoe onto the trailer; and folding the second boom section. (598574_2):PRW o 18 (N S32. The pipelayer of claim 1, wherein the track shoe is a dual track shoe. O 33. A pipelayer crane apparatus, substantially as hereinbefore described with reference to Figures 1 to 4.
34. A pipelayer crane apparatus, substantially as hereinbefore described with reference to Figures 9 to 11 or Figure 12.
35. A pipelayer crane apparatus, substantially as hereinbefore described with reference to any one of Figures 7, 8, 13, 13A, 14, 14A, 15, 16, 17, 18, 19, 20, 21 or 22. Dated 6 March, 2007 Daniel E. Davis Patent Attorneys for the Applicant/Nominated Person SPRUSON FERGUSON (598574_2):PRW
AU2005220244A 2002-03-08 2005-10-07 Pipelayer crane excavator apparatus and methods Ceased AU2005220244B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2005220244A AU2005220244B2 (en) 2002-03-08 2005-10-07 Pipelayer crane excavator apparatus and methods
AU2007201045A AU2007201045B2 (en) 2002-03-08 2007-03-09 Pipelayer crane excavator apparatus and methods
AU2007201043A AU2007201043B2 (en) 2002-03-08 2007-03-09 Pipelayer crane excavator apparatus and methods
AU2007202084A AU2007202084B2 (en) 2002-03-08 2007-05-10 Pipelayer and method of loading pipelayer or excavator for transportation

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US60/362,675 2002-03-08
AU2003213849 2003-03-11
AU2003213849A AU2003213849A1 (en) 2003-03-11 2003-03-11 Pipe layer apparatus
AU2005220244A AU2005220244B2 (en) 2002-03-08 2005-10-07 Pipelayer crane excavator apparatus and methods

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2003213849A Division AU2003213849A1 (en) 2002-03-08 2003-03-11 Pipe layer apparatus

Related Child Applications (3)

Application Number Title Priority Date Filing Date
AU2007201045A Division AU2007201045B2 (en) 2002-03-08 2007-03-09 Pipelayer crane excavator apparatus and methods
AU2007201043A Division AU2007201043B2 (en) 2002-03-08 2007-03-09 Pipelayer crane excavator apparatus and methods
AU2007202084A Division AU2007202084B2 (en) 2002-03-08 2007-05-10 Pipelayer and method of loading pipelayer or excavator for transportation

Publications (2)

Publication Number Publication Date
AU2005220244A1 AU2005220244A1 (en) 2005-10-27
AU2005220244B2 true AU2005220244B2 (en) 2007-03-22

Family

ID=35385134

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2005220244A Ceased AU2005220244B2 (en) 2002-03-08 2005-10-07 Pipelayer crane excavator apparatus and methods

Country Status (1)

Country Link
AU (1) AU2005220244B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4042116A (en) * 1975-01-24 1977-08-16 Fiat-Allis Construction Machinery, Inc. Track laying tractor with movable boom which can be tilted laterally

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4042116A (en) * 1975-01-24 1977-08-16 Fiat-Allis Construction Machinery, Inc. Track laying tractor with movable boom which can be tilted laterally

Also Published As

Publication number Publication date
AU2005220244A1 (en) 2005-10-27

Similar Documents

Publication Publication Date Title
US20100108632A1 (en) Pipelayer Crane Excavator Apparatus and Methods
US4660731A (en) Telescopic crane for heavy loads
US4273244A (en) Crane upperstructure self-transferring system
US7896178B2 (en) Industrial vehicle counterweight system
US5120186A (en) Crane attachment for loading machines
US6129226A (en) Vehicle mounted mini hoist
US3756443A (en) Folding gooseneck trailer
US5829605A (en) Mobile crane towable by a pickup truck
US10822209B1 (en) Lift attachment apparatus
US3929241A (en) Transport rig
JP2007230747A (en) Working method and working machine
US20070272644A1 (en) Heavy lift trailer crane
JP4073537B2 (en) Crawler vehicle with mechanical caterpillar drive
US4078617A (en) Portable drill rig for boring underground inverted arcuate paths
US7080469B2 (en) Multiple-tool attachment for vehicles
US10384586B1 (en) System for transporting a crane
AU2007201043B2 (en) Pipelayer crane excavator apparatus and methods
GB2061193A (en) Recovery vehicle
JP6525717B2 (en) Boom attaching / detaching device and attaching / detaching method
AU2005220244B2 (en) Pipelayer crane excavator apparatus and methods
US2595897A (en) Tractor mounted crane
WO2006121441A2 (en) Pipelayer crane excavator apparatus and methods
CA2518991C (en) Pipe layer apparatus
JPH11222071A (en) Multifunctional work machine
US3102734A (en) Vertically adjustable trailer unit

Legal Events

Date Code Title Description
NA Applications received for extensions of time, section 223

Free format text: AN APPLICATION TO EXTEND THE TIME FROM 08 MAR 2003 TO 08 OCT 2005 IN WHICH TO CLAIM THE CONVENTION PRIORITY DATE HAS BEEN FILED .

DA3 Amendments made section 104

Free format text: THE NATURE OF THE AMENDMENT IS: ADD PRIORITY DETAILS 60/362,675 08.03.2002; 2003213851

NB Applications allowed - extensions of time section 223(2)

Free format text: THE TIME IN WHICH TO CLAIM THE CONVENTION & DIVISIONAL PRIORITY DATE HAS BEEN EXTENDED TO 08 OCT 2005.

NBA Allowances - extensions of time- section 223(1)

Free format text: THE TIME IN WHICH TO LODGE A CERTIFIED COPY HAS BEEN EXTENDED TO 09 MAY 2007

FGA Letters patent sealed or granted (standard patent)
PC Assignment registered

Owner name: VOLVO CONSTRUCTION EQUIPMENT AB

Free format text: FORMER OWNER WAS: DAVIS, DANIEL

MK14 Patent ceased section 143(a) (annual fees not paid) or expired