AU2003297615B2 - Expandable composite tubulars - Google Patents

Expandable composite tubulars Download PDF

Info

Publication number
AU2003297615B2
AU2003297615B2 AU2003297615A AU2003297615A AU2003297615B2 AU 2003297615 B2 AU2003297615 B2 AU 2003297615B2 AU 2003297615 A AU2003297615 A AU 2003297615A AU 2003297615 A AU2003297615 A AU 2003297615A AU 2003297615 B2 AU2003297615 B2 AU 2003297615B2
Authority
AU
Australia
Prior art keywords
tubular string
wall
expanding
making
wellbore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU2003297615A
Other versions
AU2003297615A1 (en
Inventor
Peter Aronstam
Bennett M. Richard
Larry A. Watkins
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes Holdings LLC
Original Assignee
Baker Hughes Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baker Hughes Inc filed Critical Baker Hughes Inc
Priority to AU2003297615A priority Critical patent/AU2003297615B2/en
Publication of AU2003297615A1 publication Critical patent/AU2003297615A1/en
Application granted granted Critical
Publication of AU2003297615B2 publication Critical patent/AU2003297615B2/en
Priority to AU2008237556A priority patent/AU2008237556B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/10Setting of casings, screens, liners or the like in wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/10Setting of casings, screens, liners or the like in wells
    • E21B43/103Setting of casings, screens, liners or the like in wells of expandable casings, screens, liners, or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Materials For Medical Uses (AREA)
  • Tents Or Canopies (AREA)
  • Catching Or Destruction (AREA)
  • Braiding, Manufacturing Of Bobbin-Net Or Lace, And Manufacturing Of Nets By Knotting (AREA)

Description

WO 2004/051129 PCT/US2003/038267 Expandable Composite Tubulars FIELD OF THE INVENTION [0001] The field of this invention relates to tubulars that are expanded downhole and more particularly to composite tubulars that can be expanded wherein the expansion triggers a polymerization reaction to lend rigidity to the expanded tubular or the reaction is otherwise triggered independent of the expansion.
BACKGROUND OF THE INVENTION [0002] Expanding metallic tubulars downhole has become more common.
Casing, slotted liners and screens have been expanded using a variety of techniques involving fluid pressure or a swage. The expansion of tubulars has to date excluded the use of composites. Composites offer advantages of light weight, good chemical and thermal resistance properties, and low cost. The problem with composites and other non-metallics is that they are too brittle to withstand significant expansions that would make them useful in a downhole application where expansion was contemplated when used in the finished form in which such tubular goods are currently available.
[0003] Attempts to use composites in the past were in applications that were not readily adapted for downhole use for a variety of reasons. A good example is U.S.
Patent 4,752,431. In this reference, the tubular is provided in a limp condition and unrolled. It comprises a sandwich of a cement layer between two layers that could be flexible plastic, rubber or canvas. When water or steam is circulated, the limp tubular assumes a cylindrical shape and the cement sets to provide rigidity. The application of this technology is for lining existing pipes such as those that cross under roads.
Another stated advantage is that the limp pipe can follow the contour of the land and then be hardened when pressurized with water.
[0004] U.S. Patent 5,634,743 uses a flexible lining that contains a curable synthetic resin in conjunction with a device advanced with the lining to apply ultrasonic energy to the leading end of the lining, as the lining is unfurled along the center of the pipe to be lined. Expansion is not contemplated in this process.
WO 2004/051129 PCT/US2003/038267 [0005] U.S. Patent 5,925,409 shows a multi step procedure where a resin containing hydrogen is reacted with a polycarbodiimide to make a tube that can be inserted into another tube for the purpose of lining it. The inner tube is inflated to contact the outer tube and then cured in place with hot air or water, electricity or radiation. The liner tube is inflated as opposed to expanded. A similar concept is employed in German Application DE 3732694 Al.
[0006] U.S. Application U.S. 2001/0010781 Al involves putting cables in a strip and then inflating a liner over the strip. The final step is to set the body with hot water in the liner or heat from cables that run through the body.
[0007] In WO 93/15131 a technique for lining sewer pipes and the like is illustrated where the liner is applied followed by the application of ultrasonic energy to liberate microencapsulated catalyst. Alternatively, iron oxide particles are incorporated in the resin and are caused to heat by applying electromagnetic energy.
No expansion is contemplated. Related to this technique are U.S. Patents 4,064,211; 4,680,066; 4,770,562.
[00081 Elastic Memory Composites and their ability to be deformed on heating and to hold the deformed shape on subsequent cooling, have been described in a paper published by IEEE in 2001 entitled Developments in Elastic Memory Composite Materials for Spacecraft Deployable Structures. These materials resume their original shape when reheated. More recently, R&D Magazine published in the July 2002 issue on page 13, an article describing the ability of a composite tube to fix stress cracks that form by liberation of an encapsulated compound as a result of the crack formation. Shape memory materials and some of their uses are described in an article by Liang, Rogers and Malafeew entitled Investigation of Shape Memory Polymers and their Hybrid Composites which appeared in the April 1997 edition of the Journal of Intelligent Materials Systems and Structures. Also of interest is American Institute of Aeronautics and Astronautics paper 2001-1418 entitled Some Micromechanics Considerations of the Folding of Rigidizable Composite Materials.
[0009] The object of this invention is to employ non-traditional materials for well tubulars by taking advantage of their properties to allow the tubular to be rapidly deployed into a wellbore and then expanded in place. The expansion can trigger a
I
005162371 00 reaction that will harden the tubular in place to allow it to function downhole. Alternatively, the reaction can be otherwise triggered and the tubular expanded. Additionally, healing agents can also be encapsulated in the tubular to heal subsequently forming cracks that may develop during the service life of the expanded tubular. while composites that are flexible until a reaction occurs are envisioned as the preferred material, other materials are envisioned that preferably can be coiled with the catalyst encapsulated and that become rigid on expansion with the liberation of the catalyst. These and other advantages of the present invention will become more apparent to those skilled in the art from a review of the description of the preferred embodiment and claims below.
"1 [0 It is not admitted that any of the information in this specification is common general knowledge, or that the person skilled in the art could be reasonably expected to have (Ni ascertained, understood, regarded it as relevant or combined it in anyway at the priority date.
SUMMARY OF THE INVENTION In one aspect of the invention, there is provided a method of installing a tubular string defined by a wall in a wellbore wherein the string is capable of being put into an initial cylindrical dimension. The method includes installing the tubular string into position in the wellbore while the tubular string is in a flexible to the touch condition; expanding the tubular string beyond the initial cylindrical dimension; and making the wall more rigid as a direct result of the expanding.
0 In another aspect of the invention there is provided a method of installing a tubular string in a wellbore. The method includes installing the tubular string into position in the wellbore while the tubular string is in a flexible condition; expanding the tubular string; making the tubular string more rigid; providing a liner within the tubular string; making the liner from a metallic material; and making the liner sacrificial upon the expanding.
According to preferred forms of the invention, composite tubulars that have not been polymerized and are thus flexible enough to be coiled are delivered into a wellbore and expanded. The expansion occurs from an external catalyst such as heat or releases the internal catalyst and allows the expanded tubular to become rigid. Alternatively, the reaction can be triggered independently of the expansion. Optionally, healing agents can be imbedded in the tubular wall to be released to seal subsequently forming cracks.
As used herein, except where the context requires otherwise the term "comprise" and variations of the term, such as "comprising", "comprises" and "comprised", are not intended to exclude other additives, components, integers or steps.
BRIEF DESCRIPTION OF THE DRAWINGS The figures illustrate preferred forms of the invention.
005162371 O0 Figure 1 is a schematic representation of the wall of the tubular showing the catalyst that can be released on expansion and healing agent that can subsequently be released to fill stress cracks; ;Z Figure 2 is a schematic view of the tubing fed into a wellbore off of a reel prior to ,I 5 expansion; Figure 3 is the view of Figure 2 shown after the tubing is expanded and made rigid from the expansion; and IN Figure 4 shows release of the catalyst occurring independently of expansion with a -swage as the swage is advanced.
0\ swage as the swage is advanced.
WO 2004/051129 PCT/US2003/038267 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT [0015] Figure 1 shows a schematic representation of a wall of a tubular that is preferably a composite epoxy resin system composed of a fiber material 10 and further featuring encapsulated catalysts and hardeners 12 that are liberated when the tubular 14 is placed downhole as shown in Figure 2 and then expanded by any one of a variety of known techniques such as by a swage 16.lt should be noted that the tubular that is initially in a flexible state can be reshaped to its original dimension without being expanded in the context used herein. Expansion is an increase in size above the original dimension when in the flexible state, regardless of the manner such increase in dimension is accomplished. After expansion, the encapsulated catalyst is liberated and a hardening reaction takes place. Alternatively, the reaction can be instigated by a mechanism independent of the expansion or the two events can occur contemporaneously. For example, an energy source such as electro-magnetic, acoustic, or nuclear can be secured to an advancing swage where the source triggers the reaction in the tubular by permitting the catalyst to operate to trigger the reaction and the swage 16 expands the tubular. In that instance, the two events would occur contemporaneously rather than one triggering the other. This mode of operation is shown in Figure 4. The formerly limp tubular, that can optionally be lined with a metallic sacrificial inner sleeve 18 comes off a reel 20 and can be rapidly deployed downhole. It can advance due to its weight or it can have assistance in the form of known tools that employ anchors and a telescoping assembly to crawl downhole taking with it the leading end 22 of the tubular 14. The tubular 14 can also be partially or fully inflated to its original maximum dimension for insertion but not expanded.
When it is in position, it can be expanded to trigger the release of the catalyst to begin the hardening of the tubular 14. The catalyst and/or hardening agents can be selected for the expected temperatures and the desired final mechanical properties with materials currently available from General Pacific Chemical. Optionally, a healing agent 24 can be encapsulated 26 in a manner that will retain the healing agent even despite prior expansion. Only a subsequently formed stress crack 28 will allow the healing agent 24 to flow into it to seal it up. The encapsulation 26 for the healing agent 24 will thus need to be severed or otherwise defeated. Simple expansion of the tubular 14 will release the catalyst 12 so that a reaction will commence with the fiber WO 2004/051129 PCT/US2003/038267 reinforced epoxy material that forms the tubular 14. The liner 18 can remain intact or actually rip during the expansion. Optionally, liner 18 may be fully omitted.
[0016] The catalyst 12 can be tied up in the wall of the tubular in a physical or chemical way and can be liberated at the required time in a variety of techniques. The encapsulation of the catalyst can be defeated to trigger the desired hardening reaction by applying nuclear, magnetic, electric or electromagnetic energy or light radiation or the addition of or exposure to a chemical. Yet other ways include applied force or pressure or the introduction of a chemical to break the encapsulation for the catalyst.
The catalyst can be selectively deposited to straddle the expected pay zones so that in the region of expected production the tubular will remain unhardened and could permit production while above or below that zone the expanded tubular is hardened to preclude production or channeling between zones. The healing agent 24 can be similarly distributed.
[0017] The fracture-healing feature is an adaptation of the process developed at the University of Illinois, Champaign-Urbana and adapted to a tubular structure for downhole use.
[0018] Those skilled in the art will appreciate that the light weight and corrosion resistance of composites are advantages in wellbore applications.
Previously, the brittle nature of fully formed composite tubes has precluded their use downhole, where expansion was contemplated. However, by delaying the polymerization reaction the tubular 14 can be delivered to the desired location and expanded without the fear of cracking. The act of expansion triggers the reactions to allow the tubular to develop full strength. The expansion also allows the tubular 14 to conform to the shape of a surrounding tubular or the borehole, within limits, before the reaction bringing it to full strength commences.
10019] Alternatively, the tubular 14 can be made of a shape memory material that originally has a desired final diameter. The preformed material is heated under an applied force to alter its shape and then cooled to be able to advance it into the wellbore. After being advanced into the wellbore, the downhole temperature or additional supplied heat causes the material to resume its original shape at the desired diameter downhole. This approach adapts a spacecraft application of such materials to WO 2004/051129 PCT/US2003/038267 a tubular structure for downhole use. It should be noted that expansion is not required as the original tubular shape is already of the desired dimension, without expansion.
However, to the extent that the elastic memory composite can withstand expansion forces, then some expansion can also be undertaken.
[0020] The foregoing disclosure and description of the invention are illustrative and explanatory thereof, and various changes in the size, shape and materials, as well as in the details of the illustrated construction, may be made without departing from the spirit of the invention.

Claims (15)

  1. 2. The method of claim 1, comprising: Cc making said tubular string from a non-metallic material. S0 3. The method of claim 2, comprising: storing a catalyst for a hardening reaction in the wall of said tubular string.
  2. 4. The method of claim 3, comprising: promoting a reaction with said catalyst from said expanding. The method of claim 3, comprising: making the tubular string from a composite epoxy resin and a fibre material.
  3. 6. The method of claim 3, comprising: releasing said catalyst independently of said expanding.
  4. 7. The method of claim 6, comprising: accomplishing said independent releasing while expanding.
  5. 8. The method of claim 1, comprising: providing a liner within said tubular string.
  6. 9. The method of claim 8, comprising: making said liner from a metallic material. A method of installing a tubular string defined by a wall in a wellbore, said string capable of being put into an initial cylindrical dimension, comprising: installing the tubular string into position in the wellbore while the tubular string is in a flexible to the touch condition; expanding the tubular string beyond said initial cylindrical dimension; making said wall more rigid as a direct result of said expanding; 005162371 00 t'q ;Z IND inflating the tubular after positioning it in the wellbore to point short of expansion.
  7. 11. A method of installing a tubular string defined by a wall in a wellbore, said string 3 capable of being put into an initial cylindrical dimension, comprising: installing the tubular string into position in the wellbore while the tubular string is in a flexible to the touch condition; expanding the tubular string beyond said initial cylindrical dimension; making said wall more rigid as a direct result of said expanding; unrolling the tubular string from a coil prior to insertion into the wellbore.
  8. 12. A method of installing a tubular string in a wellbore, comprising: 0 installing the tubular string into position in the wellbore while the tubular string is in a flexible condition; expanding the tubular string; making the tubular string more rigid; providing a liner within said tubular string; making said liner from a metallic material; making said liner sacrificial upon said expanding.
  9. 13. A method of installing a tubular string defined by a wall in a wellbore, said string capable of being put into an initial cylindrical dimension, comprising: installing the tubular string into position in the wellbore while the tubular string is in a O flexible to the touch condition; expanding the tubular string beyond said initial cylindrical dimension; making said wall more rigid as a direct result of said expanding; providing a healing agent for sealing cracks in the wall of said tubular string.
  10. 14. The method of claim 13, comprising: encapsulating said healing agent during said expanding. The method of claim 13, comprising: liberating said healing agent as a result of crack formation in the wall of said tubular string in the vicinity of where said healing agent is stored.
  11. 16. A method of installing a tubular string defined by a wall in a wellbore, said string capable of being put into an initial cylindrical dimension, comprising: 005162371 00 installing the tubular string into position in the wellbore while the tubular string is in a flexible to the touch condition; Sexpanding the tubular string beyond said initial cylindrical dimension; making said wall more rigid as a direct result of said expanding; 5 making said tubular string from a non-metallic material; storing a catalyst for a hardening reaction in the wall of said tubular string; making the tubular string from a composite epoxy resin and a fibre material; r'- providing a healing agent for sealing cracks in the wall of said tubular string; Mc, liberating said healing agent as a result of crack formation in the wall of said tubular S0 string in the vicinity of where said healing agent is stored.
  12. 17. A method of installing a tubular string defined by a wall in a wellbore, said string capable of being put into an initial cylindrical dimension, comprising; installing the tubular string into position in the wellbore while the tubular string is in a flexible to the touch condition; expanding the tubular string beyond said initial cylindrical dimension; making said wall more rigid as a direct result of said expanding; making said tubular string from a non-metallic material; storing a catalyst for a hardening reaction in the wall of said tubular string; making the tubular string from a composite epoxy resin and a fibre material; performing said expanding without cracking the wall of said tubular string.
  13. 18. A method of installing a tubular string in a wellbore, comprising: installing the tubular string into position in the wellbore while the tubular string is in a flexible condition; expanding the tubular string; making the tubular string more rigid; making said tubular string from a non-metallic material; storing a catalyst for a hardening reaction in the wall of said tubular string; releasing said catalyst independently of said expanding; accomplishing said independent releasing while expanding; expanding with a swage; 005162371 00 attaching the source for said releasing to said swage. 0
  14. 19. A method of installing a tubular string defined by a wall in a wellbore, said string capable of being put into an initial cylindrical dimension, comprising: installing the tubular string into position in the wellbore while the tubular string is in a C 5 flexible to the touch condition; expanding the tubular string beyond said initial cylindrical dimension; making said wall more rigid as a direct result of said expanding; making said tubular siring from a non-metallic material; Sstoring a catalyst for a hardening reaction in the wall of said tubular string; 0 releasing said catalyst with at least one of nuclear, magnetic, electric or electromagnetic energy or light radiation or the addition of or exposure to a chemical. A method of installing a tubular string in a wellbore, comprising: installing the tubular string into position in the wellbore while the tubular string is in a flexible condition; expanding the tubular string; making the tubular string more rigid; making said tubular string from a non-metallic material; storing a catalyst for a hardening reaction in the wall of said tubular string; selectively depositing said catalyst outside of expected pay zones in the tubular.
  15. 21. A method of installing a tubular string in a wellbore, comprising: installing the tubular string into position in the wellbore while the tubular string is in a flexible condition; expanding the tubular string; making the tubular string more rigid; making said tubular string from a non-metallic material; storing a catalyst for a hardening reaction in the wall of said tubular string; making the tubular string from a composite epoxy resin and a fibre material; providing a healing agent for sealing cracks in the wall of said tubular string; liberating said healing agent as a result of crack formation in the wall of said tubular string in the vicinity of where said healing agent is stored; 005162371 00 selectively depositing said healing agent outside of expected pay zones in the tubular. ;Z1
AU2003297615A 2002-12-04 2003-12-03 Expandable composite tubulars Ceased AU2003297615B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003297615A AU2003297615B2 (en) 2002-12-04 2003-12-03 Expandable composite tubulars
AU2008237556A AU2008237556B2 (en) 2002-12-04 2008-10-28 Expandable composite tubulars

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US43086402P 2002-12-04 2002-12-04
US60/430,864 2002-12-04
PCT/US2003/038267 WO2004051129A2 (en) 2002-12-04 2003-12-03 Expandable composite tubulars
AU2003297615A AU2003297615B2 (en) 2002-12-04 2003-12-03 Expandable composite tubulars

Related Child Applications (1)

Application Number Title Priority Date Filing Date
AU2008237556A Division AU2008237556B2 (en) 2002-12-04 2008-10-28 Expandable composite tubulars

Publications (2)

Publication Number Publication Date
AU2003297615A1 AU2003297615A1 (en) 2004-06-23
AU2003297615B2 true AU2003297615B2 (en) 2008-09-25

Family

ID=32469545

Family Applications (2)

Application Number Title Priority Date Filing Date
AU2003297615A Ceased AU2003297615B2 (en) 2002-12-04 2003-12-03 Expandable composite tubulars
AU2008237556A Ceased AU2008237556B2 (en) 2002-12-04 2008-10-28 Expandable composite tubulars

Family Applications After (1)

Application Number Title Priority Date Filing Date
AU2008237556A Ceased AU2008237556B2 (en) 2002-12-04 2008-10-28 Expandable composite tubulars

Country Status (5)

Country Link
AU (2) AU2003297615B2 (en)
CA (1) CA2508453C (en)
GB (1) GB2411922B (en)
NO (1) NO340299B1 (en)
WO (1) WO2004051129A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602005008458D1 (en) * 2005-12-14 2008-09-04 Schlumberger Technology Bv Method and device for setting up a borehole

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3203483A (en) * 1962-08-09 1965-08-31 Pan American Petroleum Corp Apparatus for forming metallic casing liner
SU1730429A1 (en) * 1989-05-12 1992-04-30 Туркменский Государственный Научно-Исследовательский И Проектный Институт Нефтяной Промышленности "Туркменнипинефть" Bottomhole design
EP0360319B1 (en) * 1988-08-31 1992-11-25 Shell Internationale Researchmaatschappij B.V. Method for placing a body of shape memory material within a cavity
US5494106A (en) * 1994-03-23 1996-02-27 Drillflex Method for sealing between a lining and borehole, casing or pipeline
US5695008A (en) * 1993-05-03 1997-12-09 Drillflex Preform or matrix tubular structure for casing a well

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1078102A (en) 1911-03-13 1913-11-11 Charles M Manly Tractor.
US3203451A (en) * 1962-08-09 1965-08-31 Pan American Petroleum Corp Corrugated tube for lining wells
US4064211A (en) 1972-12-08 1977-12-20 Insituform (Pipes & Structures) Ltd. Lining of passageways
GB8412413D0 (en) 1984-05-16 1984-06-20 Knowles A H Permanent conforming flat pipe
GB8418038D0 (en) 1984-07-16 1984-08-22 Edgealpha Ltd Lining of pipelines/passageways
JPH0641173B2 (en) 1986-10-16 1994-06-01 ハンス・ミユラ− How to repair a conduit laid underground
DE3732694C2 (en) 1987-09-29 1994-02-24 Roland Herr Process for lining channels
AU3359893A (en) 1992-01-17 1993-09-01 Brian Burnett Chandler Curable resin systems and applications thereof
US5454419A (en) * 1994-09-19 1995-10-03 Polybore, Inc. Method for lining a casing
GB9511834D0 (en) 1995-06-10 1995-08-09 Sound Pipe Ltd Improvements relating to the lining of pipelines and passageways
US5925409A (en) 1997-08-27 1999-07-20 Reichhold, Inc. Resins for lining surfaces
CA2218278C (en) * 1997-10-10 2001-10-09 Baroid Technology,Inc Apparatus and method for lateral wellbore completion
TR200102848T2 (en) * 1999-04-09 2002-01-21 Shell Internationale Research Maatschappij B.V. Method for annular sealing.
US6518330B2 (en) * 2001-02-13 2003-02-11 Board Of Trustees Of University Of Illinois Multifunctional autonomically healing composite material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3203483A (en) * 1962-08-09 1965-08-31 Pan American Petroleum Corp Apparatus for forming metallic casing liner
EP0360319B1 (en) * 1988-08-31 1992-11-25 Shell Internationale Researchmaatschappij B.V. Method for placing a body of shape memory material within a cavity
SU1730429A1 (en) * 1989-05-12 1992-04-30 Туркменский Государственный Научно-Исследовательский И Проектный Институт Нефтяной Промышленности "Туркменнипинефть" Bottomhole design
US5695008A (en) * 1993-05-03 1997-12-09 Drillflex Preform or matrix tubular structure for casing a well
US5494106A (en) * 1994-03-23 1996-02-27 Drillflex Method for sealing between a lining and borehole, casing or pipeline

Also Published As

Publication number Publication date
AU2008237556A8 (en) 2010-06-10
WO2004051129A2 (en) 2004-06-17
CA2508453A1 (en) 2004-06-17
NO20052713L (en) 2005-07-08
AU2008237556B2 (en) 2011-06-02
CA2508453C (en) 2010-11-02
NO20052713D0 (en) 2005-06-06
AU2003297615A1 (en) 2004-06-23
GB0511674D0 (en) 2005-07-13
AU2008237556A1 (en) 2008-11-20
NO340299B1 (en) 2017-03-27
GB2411922A (en) 2005-09-14
WO2004051129A3 (en) 2004-08-19
GB2411922B (en) 2006-10-04

Similar Documents

Publication Publication Date Title
US7188678B2 (en) Expandable composite tubulars
US20230203916A1 (en) In situ expandable tubulars
EP3420183B1 (en) Apparatus and method for lining an internal wall of a conduit
CN101548063B (en) Swellable packer construction
US11585188B2 (en) In situ expandable tubulars
EP1169548B1 (en) Method for annular sealing
US6863130B2 (en) Multi-layer deformable composite construction for use in a subterranean well
EP2140101B1 (en) Cladding method and expansion tool
US6167913B1 (en) Pipe liner, a liner product and methods for forming and installing the liner
EP2362062A1 (en) An annular barrier
CN1040859A (en) Be used for a shape-memory material workpiece is inserted method in the cavity
US20040144535A1 (en) Post installation cured braided continuous composite tubular
WO2018102196A1 (en) In situ expandable tubulars
WO2014150978A2 (en) Metal patch system
AU2003297615B2 (en) Expandable composite tubulars
CA2615660C (en) Method of installing tubular string
WO2000031458A1 (en) Pipe liner and pipe lining method
US20230103962A1 (en) Running tool for a downhole aparatus for patching a wall of conduit and a method of patching a conduit
WO2000040888A1 (en) A pipe liner, a liner product and methods for forming and installing the liner
JP2000033649A (en) Resin pipe liner
JP3568463B2 (en) Thermosetting inflatable structure
JPS60131211A (en) Lining method of inner surface of pipe
JPH11311393A (en) Reclamation method of existing conduit line
JP2002037198A (en) Moisture-curing inflatable structure

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired