AU2001291544A1 - Improved injection nozzle for a metallic material injection-molding machine - Google Patents

Improved injection nozzle for a metallic material injection-molding machine

Info

Publication number
AU2001291544A1
AU2001291544A1 AU2001291544A AU2001291544A AU2001291544A1 AU 2001291544 A1 AU2001291544 A1 AU 2001291544A1 AU 2001291544 A AU2001291544 A AU 2001291544A AU 2001291544 A AU2001291544 A AU 2001291544A AU 2001291544 A1 AU2001291544 A1 AU 2001291544A1
Authority
AU
Australia
Prior art keywords
nozzle
injection
sprue bushing
metallic material
molding machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2001291544A
Other versions
AU2001291544B2 (en
Inventor
Martin R. Kestle
Jan Marius Manda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Husky Injection Molding Systems Ltd
Original Assignee
Husky Injection Molding Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/697,101 external-priority patent/US6357511B1/en
Application filed by Husky Injection Molding Systems Ltd filed Critical Husky Injection Molding Systems Ltd
Publication of AU2001291544A1 publication Critical patent/AU2001291544A1/en
Application granted granted Critical
Publication of AU2001291544B2 publication Critical patent/AU2001291544B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Description

IMPROVED INJECTION NOZZLE FOR A METALLIC MATERIAL INJECTION MOLDING MACHINE
TECHNICAL - FIELD
The present invention is directed to an improved injection nozzle for a metallic material in ection-molding machine and particularly a metal alloy injection machine.
BACKGROUND OF THE INVENTION
In metallic material injection technology the facing surfaces between the nozzle and the sprue bushing on the mold have been machined so as to be compliant with one another and designed so as to have substantial surface contact . In this design it was assumed that the carriage cylinders could apply sufficient pressure to the nozzle to prevent it from parting contact with the sprue bushing. However, it has been discovered that even when the highest acceptable force is applied at the interface between the nozzle and the sprue bushing, it is insufficient to prevent some parting at the interface. This parting at the interface creates a build up of injection material on the surfaces of the interface with the ultimate result that the interface may fail to seal and permit the leakage of the injected material with sometimes catastrophic results.
In the prior art designs, the mating geometry between the faces of the nozzle and the sprue bushing were designed to withstand the positive forces applied by the carriage cylinders and remain in positive sealing contact throughout a complete machine cycle. The mating surfaces of the nozzle and the sprue bushing might be flat, spherical, conical or any other geometric shape that would provide an acceptable area of positive contac . The positive force applied by the carriage cylinders to the interface between the sprue bushing and the nozzle was intended to overcome the reactive forces developed as a result of the injection pressure generated during injection and any dynamic forces created as a result of any energy transfer between the components of the machine involved in the injection process.
Unfortunately, it has been discovered that it is virtually impossible to provide adequate clamping force to prevent separation between the nozzle and the sprue bushing when injecting metallic material, particularly material in a thixotropic state, because such very high pressures are involved and the reactionary and dynamic forces reach such high and relatively uncontrolled levels that separation eventually occurs .
Japanese Patent 11048286 to Japan Steel Works Ltd. is a further example of a nozzle that will continue to have leakage problems when subjected to the injection pressures normally associated with metallic material injection. In that design, the nozzle has a projected cylindrical part that is inserted into a cylindrical recess in the mold. The two annular surfaces formed on the nozzle and the mold are held in annular contact so as to maintain the nozzle to mold interface sealed. It is the problem of maintaining such a seal that has been overcome by the present invention, which does not require that the nozzle be in facing contact with the mold.
SUMMARY OF THE INVENTION
The primary objective of the invention is to provide a nozzle to sprue bushing interface in a metallic material injection- molding machine that will remain sealed during the injection cycle .
Another object of the invention is to provide, in a metallic material injection machine, an injection nozzle that may move relative to the sprue bushing without losing sealing at the interface between the nozzle and the bushing.
A further object of the invention is to provide, in a metallic material injection machine, a seal between the machine nozzle and the mold that requires a minimal force to be applied between the mold and the nozzle to maintain a seal between them. A further object of the invention is to provide, in a metallic material injection machine, a machine nozzle and sprue bushing design that does not require contact between the nozzle and bushing to maintain sealing between them.
The foregoing objects are achieved by extending the nozzle into the interior surface of the sprue bushing .
The invention provides an improved nozzle and sprue bushing for a metallic material injection molding machine. The sprue bushing has a cylindrical surface and the nozzle an annular portion. The annular portion snugly fits within the cylindrical surface to provide a sealing engagement between the surface and the portion when the nozzle engages the bushing. The surface and the portion are of sufficient length to permit limited axial movement therebetween without a loss of sealing between them. The actual seal may be provided by the close fit between the bushing and the nozzle or by slight seepage of the metallic material between the surfaces where it freezes and provides the necessary seal .
The invention provides, in a metallic material injection molding machine, an injection nozzle joined to an injection barrel of the injection molding machine, a stationary platen holding a portion of a mold and a sprue bushing mounted in the mold. The nozzle engages the sprue bushing when the metallic material is injected through the sprue bushing into the mold. The nozzle has a spigot portion which extends into a channel in the sprue bushing. An outer periphery of the spigot fits into the inside surface of the channel so as to create a seal between the surface and the periphery of the spigot or enable the metallic material to create the seal and thereby prevent loss of metallic material through the interface between the nozzle and the sprue bushing during an injection cycle.
The invention is useful in any metallic material injection or casting process that requires a sealed interface between a nozzle and a sprue bushing. The invention has been found particularly useful when injecting metallic alloys such as magnesium based alloys when in the thixotropic state.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a perspective view of the injector assembly for a metal injection-molding machine with which the present invention is useful.
FIG. 2 is a cross-section of the barrel section of the injector assembly shown in FIG. 1.
FIG. 3 is a schematic representation of a prior art nozzle and sprue bushing interface as used in a metal injection-molding machine .
FIG. 4A is a plan view of the nozzle and sprue bushing interface in accordance with the present invention.
FIG. 4B is a view of the section 4B-4B of the nozzle and sprue bushing interface illustrated in FIG. 4A.
FIG. 5 is a cross-section of the sprue bushing and nozzle interface when the nozzle is in engagement with a sprue bushing in a mold on a stationary platen.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT (S)
Referring to FIGs. 1 and 2, the injector assembly 10 includes an injection barrel 11 having an extruder screw 12 for feeding thixotropic metallic material toward a nozzle 13. Carriage cylinders 14 move the assembly 10 toward and away from the stationary platen 15 and clamp the assembly 10 into place with the nozzle 13 in operative association with a sprue bushing connected to a mold which is mounted between stationary platen 15 and a movable platen (not shown) in a manner well-known in the art. Tie-bars are connected to the stationary platen 15 at the four corners of the platen 15 as indicated at 17 and to the frame of the injection machine when the nozzle is in the injection position in a manner that is well-known in the art. The tie-bars ensure that the pressure is applied uniformly to the platen 15 and the mold mounted thereon m a manner that is also well-known in the art.
To enable injection of metallic material into a mold, the carriage cylinders 14 move the barrel 11 towards the stationary platen 15 until the nozzle 13 is in operative engagement with a sprue bushing in the mold. When the nozzle 13 engages the bushing, the carriage cylinders 14 clamp the assembly 10 in position for injection of metallic material into the mold.
A rotational source 18 rotates the screw 12 to move metallic material from a feed throat 19 to the nozzle 13. Heater bands
20, along the length of the barrel 11, heat the metallic material to the desired injection temperature. As the metallic material passes through the head portion of the screw 12, a non-return valve 21 enables the metallic material to drive the screw 12 back towards the injector housing 22. This creates an injection charge of metallic material at the head of the screw 12.
In operation, metallic material chips are fed in at the feed throat 19 on the barrel 11 of the machine. The chips are transported through the barrel 11 by the extruder screw 12 and simultaneously heated to a thixotropic state by the heater bands 20 located around the barrel. When sufficient metallic material for injection has been moved past the non-return valve
21, the screw 12 is then driven forward by an injection unit within the injection housing 22 to inject the metallic material into the mold. As the metallic material cools very quickly when it enters the mold it is essential that the metallic material be injected into the mold as quickly as possible so as to ensure that all parts of the mold are filled. To do this requires that the injection piston be moved quickly forward during the injection cycle and with great force. The high speed and force makes it very difficult to hold the nozzle 13 in contact with the sprue bushing throughout the injection cycle even though the nozzle 13 is positively clamped to the sprue bushing by the carriage cylinder 14 which, with the tie rods and tie bars, are set to fully resist any separation between the sprue bushing and the nozzle 13. In practice, it has been found that the nozzle 13 and sprue bushing do separate during the injection cycle.
Dynamic and inertial loads are initiated at various parts of the injection cycle. Metallic material solidifies in the nozzle in between each injection cycle to form a cylindrical "plug". At the start of each injection cycle, the injection cylinder is pressurized by hydraulic fluid which forces the screw to move forward and increases the pressure on the thixotropic metallic material in front of the screw, but behind the plug. Eventually, the force from the injection piston is sufficient to cause the plug to separate from the nozzle and blow into the mold along with the thixotropic metallic material . The injection piston continues to move forward and the screw forces the metallic material into the mold until the mold is filled. When the plug leaves the nozzle, it creates recoil forces, which act on the nozzle to reduce the sealing load at the interface with the sprue bushing. This reduction of sealing load can cause separation at the sealing interface and the consequent leakage of metallic material.
Another significant load occurs when the mold is full and the screw comes to an abrupt stop. The deceleration of the screw, piston, and metallic material in front of the screw creates additional forces on the nozzle and sprue bushing connection. The nozzle springs back and the sealing force is reduced, at the same time that the melt pressure is highest. This causes the metallic material to leak from between the seal faces of the nozzle and sprue bushing.
As shown in FIG. 3, the prior art nozzle 13' has a machined spherical surface 23 that substantially matches the spherical surface 24 of the sprue bushing insert 25 over a predetermined angle. The sprue bushing insert 25 provides thermal isolation between the nozzle 13' and the sprue bushing 16' so that the nozzle 13' is not excessively cooled by the bushing 16' . When the nozzle 13' is brought into pressure contact with the sprue bushing insert 25, the bushing insert 25 and nozzle 13' provide a complete seal so that the metallic material injected through the injection channel cannot escape from the injection channel. Unfortunately, as indicated above, the nozzle 13' and sprue bushing insert 25 do separate during the injection cycle and metallic material starts to build up on the sprue bushing insert 25 and nozzle 13' surfaces which have been machined to exactly match. This means that, over time, the connection between the nozzle 13' and sprue bushing insert 25 will fail and have to be replaced by a new nozzle and sprue bushing insert . This is expensive and time consuming and it would be desirable to find a connection that either would not fail or at least would function properly for many more injection cycles. The nozzle and sprue bushing interface shown in Figs. 4A and 4B provides such a connection.
With the design shown in Figs. 4A and 4B the nozzle 13'' includes a spigot portion 26, which is machined to snugly fit inside the sprue bushing channel 27. The shoulder 28 on the nozzle 13' ' may or may not abut against the face 29 of the sprue bushing 16' ' and be held there by the pressure applied through the carriage cylinders 14. With this design it has been found that the nozzle 13'' and sprue bushing 16'' can, in fact, move axially with respect to one another without any dilatory effect on the process . While the metallic material may get between the wall of the sprue bushing 16' ' and the surface of the spigot portion 26 of the nozzle 13'', it gets no further. The alloy solidifies in this area and prevents any further ingress toward the outside of the nozzle 13'' . The metallic material on the surface between the sprue bushing 16' ' and nozzle 13' ' is removed with the sprue when the molded part is ejected from the mold.
Accordingly, by this simple change in the shape of the nozzle, the problem of nozzle sealing failure has been overcome.
Furthermore, there are a number of further advantages to this design modification. For example, the nozzle shoulder 28 does not need to be in contact with the face 29 of the sprue bushing 16' ' so that wear on these surfaces can be avoided. Of course, a screw bushing insert like the one shown at 24 in FIG. 3 can be located on the end of sprue bushing 16' ' to further thermally isolate the nozzle 13' ' from the bushing 16' ' if the separation between face 29 and shoulder 28 provides insufficient thermal isolation.
A variety of metallic materials may be injected using the new nozzle, however, the nozzle works particularly well with metal alloys such as magnesium based alloys. The nozzle will also work with other metal alloys such as aluminum or zinc based alloys .
FIG. 5 is a cross-sectional view of an actual nozzle 13'' in engagement with a sprue bushing 16'' on a fixed platen 15. (Figure should show a mold at least in outline)
It is to be understood that the invention is not limited to the illustrations described and shown herein, which are deemed to be merely illustrative of the best modes of carrying out the invention, and which are susceptible of modification of form, size, arrangement of parts and details of operation. The invention rather is intended to encompass all such modifications, which are within its spirit and scope as defined by the claims .

Claims (12)

WHAT IS CLAIMED IS:
1. In a metallic material injection molding machine, an injection nozzle joined to an injection barrel of said injection molding machine, a stationary platen holding a portion of a mold, a sprue bushing mounted in said mold, said nozzle engaging said sprue bushing when said metallic material is injected through said sprue bushing into said moid, said nozzle having a spigot portion which extends into a channel in said sprue bushing, an outer periphery of said spigot snugly fitting within a surface of said channel so as to create a seal between said surface and said periphery of said spigot and thereby prevent loss of metallic material through the interface between said nozzle and said sprue bushing during an injection cycle.
2. In a metallic injection molding machine as in claim 1 wherein said metallic material is a metal alloy.
3. In a metallic material injection molding machine as in claim 2 wherein said alloy is selected from alloys of magnesium, zinc or aluminum.
4. In an injection machine as defined in claim 1, claim 2 or claim 3 wherein said spigot portion and said channel are dimensioned such that, during an injection cycle, said spigot portion and channel are free to move axially relative to one another a distance which is less than the length of said spigot portion.
5. In an injection molding machine as defined in any one of claims 1, 2, 3 or 4 wherein said spigot portion is of a length sufficient to maintain sealing between said channel and said spigot portion during an injection cycle and short enough to permit release of any metallic material retained between said channel and said spigot portion when a sprue is released from said channel .
6. An improved nozzle for a metallic material injection machine, said nozzle having a first major section and a second lesser section, an injection channel extending the length of said nozzle, said first section having a tubular thickness substantially greater than that of said lesser section whereby said major section can withstand injection pressures and said lesser section can withstand injection pressures when held within the confines of a mating sprue bushing.
7. An improved nozzle and sprue bushing connection for a metallic material injection molding machine, said sprue bushing having a first cylindrical surface and said nozzle having a second cylindrical surface of smaller diameter than said first surface, said second surface snugly fitting within said first cylindrical surface to provide a sealing engagement between said first surface and said second surface when said nozzle is engaged in said bushing, said first and second surfaces being of sufficient length to permit limited axial movement therebetween without a loss of sealing between said surfaces .
8. An improved connection as defined in claim 7 wherein said nozzle has a third cylindrical surface of similar diameter to said first cylindrical surface and wherein said first and third cylindrical surfaces are in close non-contacting relationship when said nozzle is engaged in said sprue bushing .
9. An improved nozzle and sprue bushing connection as defined in claim 7 or claim 8 wherein a small gap between said surfaces permits a limited amount of metallic material to enter the gap and solidify in the gap to form said seal, said limited amount of material being attached to a sprue and removed therewith .
10. An improved nozzle and sprue bushing connection for a metal injection molding machine wherein said nozzle has a first portion which fits snugly inside a surface portion of said sprue bushing so that said nozzle can move axially within said sprue bushing without losing sealing contact between said nozzle and said bushing.
11. An improved nozzle and sprue bushing connection as defined in claim 10 wherein said first portion and said surface portion are separated by a small gap that permits a limited amount of metallic material to flow into said gap and solidify in said gap to form said seal.
12. An improved connection as defined in claim 10 or claim 11 wherein said portions are cylindrical .
AU2001291544A 2000-10-26 2001-09-07 Improved injection nozzle for a metallic material injection-molding machine Ceased AU2001291544B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/697,101 2000-10-26
US09/697,101 US6357511B1 (en) 2000-10-26 2000-10-26 Injection nozzle for a metallic material injection-molding machine
PCT/CA2001/001279 WO2002034433A2 (en) 2000-10-26 2001-09-07 Improved injection nozzle for a metallic material injection-molding machine

Publications (2)

Publication Number Publication Date
AU2001291544A1 true AU2001291544A1 (en) 2002-07-11
AU2001291544B2 AU2001291544B2 (en) 2006-01-19

Family

ID=24799797

Family Applications (2)

Application Number Title Priority Date Filing Date
AU9154401A Pending AU9154401A (en) 2000-10-26 2001-09-07 Improved injection nozzle for a metallic material injection-molding machine
AU2001291544A Ceased AU2001291544B2 (en) 2000-10-26 2001-09-07 Improved injection nozzle for a metallic material injection-molding machine

Family Applications Before (1)

Application Number Title Priority Date Filing Date
AU9154401A Pending AU9154401A (en) 2000-10-26 2001-09-07 Improved injection nozzle for a metallic material injection-molding machine

Country Status (15)

Country Link
US (2) US6357511B1 (en)
EP (1) EP1337367B1 (en)
JP (1) JP3720328B2 (en)
KR (1) KR100836463B1 (en)
CN (1) CN100540183C (en)
AT (1) ATE383216T1 (en)
AU (2) AU9154401A (en)
BR (1) BR0114775B1 (en)
CA (1) CA2425552C (en)
DE (1) DE60132349T2 (en)
IL (1) IL155339A0 (en)
MX (1) MXPA03003621A (en)
RU (1) RU2277454C2 (en)
TW (1) TW522061B (en)
WO (1) WO2002034433A2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4308149B2 (en) * 2003-03-06 2009-08-05 ハスキー インジェクション モールディング システムズ リミテッド Sprue device
US20080199554A1 (en) * 2004-05-17 2008-08-21 Husky Injection Molding Systems Ltd. Method and apparatus for coupling melt conduits in a molding system and/or a runner system
US20050255189A1 (en) * 2004-05-17 2005-11-17 Manda Jan M Method and apparatus for coupling melt conduits in a molding system and/or a runner system
US20060121154A1 (en) * 2004-09-30 2006-06-08 Duane Manning Laser device for alignment of a nozzle tip within injection molding and extrusion equipment
US7341094B2 (en) * 2005-05-02 2008-03-11 Husky Injection Molding Systems Ltd. Metallic alloy slurry dispenser
US7232305B2 (en) * 2005-05-20 2007-06-19 Husky Injection Molding Systems, Ltd. Load management device for a feed body of a molding machine
KR100731715B1 (en) 2005-09-05 2007-06-25 허스키 인젝션 몰딩 시스템즈 리미티드 Sprue apparatus and method of controlling temperature along the same
US20080035297A1 (en) * 2006-08-11 2008-02-14 Husky Injection Molding Systems Ltd. Seal of a metal molding system
US20080095876A1 (en) * 2006-08-11 2008-04-24 Husky Injection Molding Systems Ltd. Seal of a barrel assembly
US7540316B2 (en) 2006-08-16 2009-06-02 Itherm Technologies, L.P. Method for inductive heating and agitation of a material in a channel
US7718935B2 (en) 2006-08-16 2010-05-18 Itherm Technologies, Lp Apparatus and method for inductive heating of a material in a channel
US7449663B2 (en) 2006-08-16 2008-11-11 Itherm Technologies, L.P. Inductive heating apparatus and method
US7723653B2 (en) 2006-08-16 2010-05-25 Itherm Technologies, Lp Method for temperature cycling with inductive heating
US20100025391A1 (en) * 2008-07-31 2010-02-04 Itherm Technologies, L.P. Composite inductive heating assembly and method of heating and manufacture
KR101471789B1 (en) * 2013-09-30 2014-12-10 와이케이케이 가부시끼가이샤 Nozzle for die casting machine
DE102015100861B4 (en) 2015-01-21 2018-07-19 TransMIT Gesellschaft für Technologietransfer mbH Hot runner for a die casting apparatus and method of operation therefor
ES2929466T3 (en) * 2016-03-01 2022-11-29 Ferrofacta Gmbh Die-cast nozzle system
CN106216631B (en) * 2016-08-31 2018-08-31 佛山市南海新达高梵实业有限公司 A kind of the die feeding mouth structure and molding technique of horizontal plunger die casting machine
CN110884063B (en) * 2018-09-07 2021-11-16 钜钢机械股份有限公司 Material injection structure of polymer article forming die

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1198636A (en) * 1957-01-30 1959-12-08 Projectile And Engineering Com Improvements to injection molding machines
AT310971B (en) * 1971-01-26 1973-10-25 Ver Wiener Metallwerke Ag Pressure clamp for horizontal cold chamber die casting machines
DE2128373A1 (en) * 1971-06-08 1973-01-04 Fahr Bucher Gmbh Injection machine - for reinforced plastic materials
CA1196466A (en) * 1984-02-29 1985-11-12 Guido Perrella Nozzle assembly for die casting machine
US4623015A (en) * 1984-12-05 1986-11-18 Zecman Kenneth P Shot sleeve
JPS6250062A (en) * 1985-08-29 1987-03-04 Uea Tec:Kk Die casting machine including plunger sleeve and/or sprue consisting of double construction
JPS6250050A (en) 1985-08-29 1987-03-04 Ishikawajima Harima Heavy Ind Co Ltd Continuous casting machine with moving mold
US5252130A (en) 1989-09-20 1993-10-12 Hitachi, Ltd. Apparatus which comes in contact with molten metal and composite member and sliding structure for use in the same
US6106275A (en) * 1994-09-01 2000-08-22 Gencorp Inc. Molding press apparatus
JP3347982B2 (en) * 1997-08-04 2002-11-20 株式会社日本製鋼所 Nozzle structure of injection molding equipment
US5858420A (en) * 1997-08-13 1999-01-12 Husky Injection Molding Systems Ltd. Flow regulating and distributing assembly
WO2000047352A1 (en) 1999-02-10 2000-08-17 Ju-Oh Inc. Metal mold of hot runner type injection molding machine and method of manufacturing the metal mold

Similar Documents

Publication Publication Date Title
US6357511B1 (en) Injection nozzle for a metallic material injection-molding machine
AU2001291544A1 (en) Improved injection nozzle for a metallic material injection-molding machine
US7364131B2 (en) Non-return valve for use in a molding system
US5080570A (en) Miniaturized for gas-assisted injection molding
US20080210720A1 (en) Check Valve with a Spiral Coil Seal
CA2567463A1 (en) Check valve lip seal for an injection molding machine
JP2004511353A5 (en)
US7329118B2 (en) Nozzle and apparatus for injection molding
WO2009073954A1 (en) Method and apparatus for coupling melt conduits in molding system and/or runner system
JP4695624B2 (en) Forming system conduit connections
US7517208B2 (en) Injection molding system having a cooperating tapered machine nozzle and barrel head
US3526931A (en) Injection molding machine
US20030222121A1 (en) Die casting sprue system
US7575428B2 (en) Molding system including body overlapping and sealing conduits, amongst other things
JP3730129B2 (en) Nozzle device for light alloy injection molding equipment
KR100885611B1 (en) Non-return valve for use in a molding system
US20220274304A1 (en) Apparatus, mold, injection molding machine, manufacturing unit, method for manufacturing resin molded product, and valve unit
KR20070032028A (en) A check valve with a spiral coil seal
JP3245379B2 (en) Direct pressure type mold clamping device
KR20070032024A (en) Check valve lip seal for an injection molding machine
JP2003117956A (en) Mold assembly and injection molding machine