AT517341A4 - Transformer-free boost converter with high voltage ratio - Google Patents

Transformer-free boost converter with high voltage ratio Download PDF

Info

Publication number
AT517341A4
AT517341A4 ATA379/2015A AT3792015A AT517341A4 AT 517341 A4 AT517341 A4 AT 517341A4 AT 3792015 A AT3792015 A AT 3792015A AT 517341 A4 AT517341 A4 AT 517341A4
Authority
AT
Austria
Prior art keywords
terminal
bridge
negative
positive
capacitor
Prior art date
Application number
ATA379/2015A
Other languages
German (de)
Other versions
AT517341B1 (en
Inventor
Dipl Ing Dr Himmelstoss Felix
Original Assignee
Dipl Ing Dr Himmelstoss Felix
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dipl Ing Dr Himmelstoss Felix filed Critical Dipl Ing Dr Himmelstoss Felix
Priority to ATA379/2015A priority Critical patent/AT517341B1/en
Application granted granted Critical
Publication of AT517341B1 publication Critical patent/AT517341B1/en
Publication of AT517341A4 publication Critical patent/AT517341A4/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/618Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series and in parallel with the load as final control devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/505Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/515Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/521Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Dc-Dc Converters (AREA)

Abstract

HochsetzsteHer zur Erzielung eines großen Gleichspannungsübersetzungsverhältnisses, bestehend aus einer asymmetrischen Halbbrücke AHB, gebildet aus dem ersten aktiven Schalter S1 und der Diode D1, einer Halbbrücke HB bestehend aus zwei in Serie geschalteten aktiven Schaltern S2 und S3, einem Kondensator C1, zwei Spulen L1 und L2, einer positiven El und einer negativen E2 Eingangsklemme, an der die Eingangsspannung U1 geschaltet ist, einer positiven Al und einer negativen A2 Ausgangsklemme, an der die Last LAST oder die Parallelschaltung der Last LAST und eines zweiten Kondensators C2 geschaltet ist. Die asymmetrische Halbbrücke AHB und die Halbbrücke HB können durch integrierte Module gebildet werden, wobei die Halbbrücke (HB) durch einen Halbbrückentreiber angesteuert wird.A step-up converter for achieving a large DC-to-voltage ratio consisting of an asymmetric half-bridge AHB formed by the first active switch S1 and the diode D1, a half-bridge HB consisting of two series-connected active switches S2 and S3, a capacitor C1, two coils L1 and L2 , a positive El and a negative E2 input terminal to which the input voltage U1 is connected, a positive Al and a negative A2 output terminal to which the load LAST or the parallel circuit of the load LAST and a second capacitor C2 is connected. The asymmetric half-bridge AHB and the half-bridge HB can be formed by integrated modules, the half-bridge (HB) being driven by a half-bridge driver.

Description

Transformatorloser Hochsetzsteiler mit hohem SpannungsübersetzungsverhältnisTransformerless boost converter with high voltage ratio

Die Erfindung betrifft einen Hochsetzsteiler, bestehend aus einer asymmetrischen Halbbriicke (AHB), gebildet aus dem ersten aktiven Schalter (Si) und der Diode (Di), einer Halbbriicke (HB) bestehend aus zwei in Serie geschalteten aktiven Schaltem (S2, S3), einem Kondensator (Ci), zwei Spulen (Li, L2), einer positiven (El) und einer negativen (E2) Eingangsklemme, an der die Eingangsspannung (Ui) geschaltet ist, einer positiven (Al) und einer negativen (A2) Ausgangsklemme, an der die Last (LAST) oder die Parallelschaltung der Last (LAST) und eines zweiten Kondensators (C2) geschaltet istThe invention relates to a step-up converter consisting of an asymmetrical half-bridge (AHB), formed from the first active switch (Si) and the diode (Di), a half-bridge (HB) consisting of two active switching devices (S2, S3) connected in series, a capacitor (Ci), two coils (Li, L2), a positive (El) and a negative (E2) input terminal at which the input voltage (Ui) is connected, a positive (A1) and a negative (A2) output terminal, at which the load (LAST) or the parallel circuit of the load (LAST) and a second capacitor (C2) is connected

Hochsetzsteiler dienen zur Erzeugung einer höheren Gleichspannung aus einer niedrigeren. Dazu wurden viele Schaltungen publiziert und patentiert. Die hier dargestellte Schaltung besteht aus drei aktiven Schaltem und einem passiven, zwei Spulen und einem oder mehreren Kondensatoren.Step-up dividers serve to generate a higher DC voltage from a lower one. Many circuits have been published and patented. The circuit shown here consists of three active switching devices and one passive, two coils and one or more capacitors.

Die Schaltung eignet sich besonders, wenn hohe Spannungsübersetzungsverhältnisse erforderlich sind.The circuit is particularly suitable when high voltage ratios are required.

Die Figuren stellen die Schaltung des Hochsetzstellers (Fig. 1) und die Last des Hochsetzstellers (Fig. 2) dar.The figures represent the circuit of the boost converter (FIG. 1) and the load of the boost converter (FIG. 2).

Die Schaltung wird an Hand von Fig. 1 erklärt.The circuit will be explained with reference to FIG.

Im kontinuierlichen Betrieb der Schaltung gibt es zwei Moden. Im ersten Mode sind der erste Schalter Si und der zweite aktive Schalter S2 eingeschaltet. Dadurch liegt die Eingangsspannung Ui an der ersten Spule Li und die Kondensatorspannung an der zweiten Spule L2, jeweils positiv an den entsprechenden Spulen und der Strom steigt in diesen. Dabei wird Energie aus der Eingangsspannungsquelle Ui und dem Kondensator Ci entnommen. Im zweiten Mode werden die beiden Schalter Si und S2 abgeschaltet und der aktive Schalter S3 eingeschaltet. Dadurch kommutiert der Strom der ersten Spule Li in die Diode Di und schließt sich über den Kondensator Q und S3 und die Eingangsspannung Ui. Der Strom von L2 fließt nun in die Last und schließt sich über S3 und dem Kondensator Ci. An den beiden Spulen liegen nun negative Spannungen (an der Spule Li die Differenz aus Eingangsspannung Ui und Kondensatorspannung, an der Spule L2 die Differenz aus Kondensatorspannung und Ausgangsspannung U2. Dadurch sinkt der Strom in den beiden Spulen ebenso wie deren Energieinhalt. Der Quelle Ui wird weiterhin Energie entnommen und der Kondensator Ci wird wieder nachgeladen. Für den eingeschwungenen Zustand und bei idealen Bauelementen lässt sich das Spannungsübersetzungsverhältnis gemäßIn continuous operation of the circuit there are two modes. In the first mode, the first switch Si and the second active switch S2 are turned on. As a result, the input voltage Ui at the first coil Li and the capacitor voltage at the second coil L2, respectively positive to the corresponding coil and the current rises in this. In this case, energy is taken from the input voltage source Ui and the capacitor Ci. In the second mode, the two switches Si and S2 are turned off and the active switch S3 is turned on. As a result, the current of the first coil Li commutates in the diode Di and closes via the capacitor Q and S3 and the input voltage Ui. The current of L2 now flows into the load and closes via S3 and the capacitor Ci. Negative voltages are present at the two coils (the difference between the input voltage Ui and the capacitor voltage at coil Li, and the difference between capacitor voltage and output voltage U2 at coil L2.) As a result, the current in the two coils drops as well as their energy content Furthermore, energy is removed and the capacitor Ci is recharged.For the steady state and with ideal components, the voltage transmission ratio can be determined according to

bestimmen. Die Schaltung hat also das gleiche Spannungsübersetzungsverhältnis wie zwei kaskadierte normale Hochsetzsteller, die Bauteilbelastung ist aber etwas unterschiedlich.determine. Thus, the circuit has the same voltage ratio as two cascaded normal boost converter, but the component load is slightly different.

Die Last kann direkt angeschlossen werden (Fig. 2.b) oder es wird zur Glättung noch ein Kondensator C2 parallel geschaltet werden (Fig. 2.a).The load can be connected directly (Fig. 2.b) or a capacitor C2 can be connected in parallel for smoothing (Fig. 2.a).

Die Ansteuerung der aktiven Schalter erfolgt gemäß dem Stand der Technik und wird hier nicht weiter behandelt. Die Regelung erfolgt entweder als Spannungsregelung der Ausgangsspanmmg oder als Stromregelung. Hier empfiehlt sich besonders die Regelung des Stroms in der ersten Spule. Dabei empfiehlt sich besonders ein Zweipunktregler mit Hysterese, Sliding Mode Control, oder Zustandsregler.The activation of the active switch takes place according to the prior art and will not be discussed further here. The regulation takes place either as voltage regulation of the output voltage or as current regulation. Here, the regulation of the current in the first coil is particularly recommended. Especially recommended is a two-position controller with hysteresis, sliding mode control or state controller.

Die Aufgabe, eine Gleichspannung hochzusetzen wird erfindungsgemäß dadurch erzielt, dass an die positive Eingangsklemme (El) die erste Spule (Li) geschaltet ist, der zweite Anschluss der ersten Spule (Li) an den Verbindungspunkt zwischen positivem Anschluss des ersten aktiven Schalters (Si) und der Anode der Diode (Di) der asymmetrischen Halbbrücke (AHB) geschaltet ist, wobei der negative Anschluss des ersten aktiven Schalters (Si) mit der negativen Eingangsklemme (E2) verbunden ist, die Kathode der Diode (Di) an einen Anschluss der zweiten Induktivität (L2) und an den positiven Anschluss des Kondensators (Ci) geschaltet ist, an den negativen Anschluss des Kondensators (Q) der Verbindungspunkt zwischen positivem Anschluss des dritten aktiven Schalters (S3) und negativem Anschluss des zweiten aktiven Schalters (S2) der Halbbrücke (HB) geschaltet ist, der zweite Anschluss der zweiten Spule (L2) mit dem positiven Anschluss des zweiten aktiven Schalters (S2) und der positiven Ausgangsklemme (Al) geschaltet ist und der negative Anschluss des dritten aktiven Schalters (S3) mit der negativen Ausgangsklemme (A2) und der negativen Eingangsklemme (E2) verbunden ist.The task of raising a DC voltage is inventively achieved in that the first coil (Li) is connected to the positive input terminal (El), the second terminal of the first coil (Li) to the connection point between the positive terminal of the first active switch (Si) and the anode of the diode (Di) of the asymmetrical half bridge (AHB) is connected, the negative terminal of the first active switch (Si) being connected to the negative input terminal (E2), the cathode of the diode (Di) being connected to one terminal of the second Inductance (L2) and connected to the positive terminal of the capacitor (Ci), to the negative terminal of the capacitor (Q) the connection point between positive terminal of the third active switch (S3) and negative terminal of the second active switch (S2) of the half-bridge (HB), the second terminal of the second coil (L2) to the positive terminal of the second active switch (S2) and the positive output terminal (Al) is connected and the negative terminal of the third active switch (S3) is connected to the negative output terminal (A2) and the negative input terminal (E2).

Weiters kann zwischen der ersten (El) und der zweiten (E2) Eingangsklemme ein weiterer Kondensator geschaltet werden. Die asymmetrische Halbbriicke (AHB) und die Halbbmcke (HB) können durch integrierte Module gebildet werden und die Halbbmcke (HB) durch einen Halbbriickentreiber angesteuert werden.Furthermore, between the first (El) and the second (E2) input terminal another capacitor can be switched. The asymmetrical half bridges (AHB) and the half bridge (HB) can be formed by integrated modules and the half bridge (HB) can be controlled by a half bridge driver.

Claims (4)

PatentanspriichePatentanspriiche 1. Hochsetzsteller bestehend aus einer asymmetrischen Halbbrücke (AHB), gebildet aus dem ersten aktiven Schalter (Si) und der Diode (Dj), einer Halbbrücke (HB) bestehend aus zwei in Serie geschalteten aktiven Schaltem (S2, S3), einem Kondensator (Ci), zwei Spulen (Li, L2), einer positiven (El) und einer negativen (E2) Eingangsklemme, an der die Eingangsspannung (Ui) geschaltet ist, einer positiven (Al) und einer negativen (A2) Ausgangsklemme, an der die Last (LAST) oder die Parallelschaltung der Last (LAST) und eines zweiten Kondensators (C2) geschaltet ist dadurch gekennzeichnet, dass an die positive Eingangsklemme (El) die erste Spule (Li) geschaltet ist, der zweite Anschluss der ersten Spule (Lj) an den Verbindungspunkt zwischen positivem Anschluss des ersten aktiven Schalters (Si) und der Anode der Diode (Di) der asymmetrischen Halbbriicke (AHB) geschaltet ist, wobei der negative Anschluss des ersten aktiven Schalters (Si) mit der negativen Eingangsklemme (E2) verbunden ist, die Kathode der Diode (Di) an einen Anschluss der zweiten Induktivität (L2) und an den positiven Anschluss des Kondensators (Ci) geschaltet ist, an den negativen Anschluss des Kondensators (Ci) der Verbindungspunkt zwischen positivem Anschluss des dritten aktiven Schalters (S3) und negativem Anschluss des zweiten aktiven Schalters (S2) der Halbbriicke (HB) geschaltet ist, der zweite Anschluss der zweiten Spule (L2) mit dem positiven Anschluss des zweiten aktiven Schalters (S2) und der positiven Ausgangsklemme (Al) geschaltet ist und der negative Anschluss des dritten aktiven Schalters (S3) mit der negativen Ausgangsklemme (A2) und der negativen Eingangsklemme (E2) verbunden ist.1. step-up converter consisting of an asymmetric half-bridge (AHB), formed from the first active switch (Si) and the diode (Dj), a half-bridge (HB) consisting of two series-connected active switching devices (S2, S3), a capacitor ( Ci), two coils (Li, L2), one positive (El) and one negative (E2) input terminal to which the input voltage (Ui) is connected, a positive (A1) and a negative (A2) output terminal at which Load (LAST) or the parallel connection of the load (LAST) and a second capacitor (C2) is characterized in that the first coil (Li) is connected to the positive input terminal (El), the second terminal of the first coil (Lj) is connected to the connection point between the positive terminal of the first active switch (Si) and the anode of the diode (Di) of the asymmetrical half-bridge (AHB), the negative terminal of the first active switch (Si) being connected to the negative input terminal (E2) , the Cathode of the diode (Di) is connected to a terminal of the second inductance (L2) and to the positive terminal of the capacitor (Ci), to the negative terminal of the capacitor (Ci) the connection point between the positive terminal of the third active switch (S3) and the second terminal of the second coil (L2) is connected to the positive terminal of the second active switch (S2) and the positive output terminal (Al), and the negative terminal of the third active switch (S3) is connected to the negative output terminal (A2) and the negative input terminal (E2). 2. Hochsetzsteller gemäß Anspruch 1 dadurch gekennzeichnet, dass zwischen der ersten (El) und der zweiten (E2) Eingangsklemme ein weiterer Kondensator geschaltet ist.2. boost converter according to claim 1, characterized in that between the first (El) and the second (E2) input terminal another capacitor is connected. 3. Hochsetzsteller gemäß Anspruch 1 oder 2 dadurch gekennzeichnet, dass die asymmetrische Halbbriicke (AHB) und die Halbbriicke (HB) durch integrierte Module gebildet werden.3. boost converter according to claim 1 or 2, characterized in that the asymmetrical half bridge (AHB) and the half bridges (HB) are formed by integrated modules. 4. Hochsetzsteller gemäß Anspruch 1,2 oder 3 dadurch gekennzeichnet, dass die Halbbriicke (HB) durch einen Halbbriickentreiber angesteuert wird.4. boost converter according to claim 1,2 or 3, characterized in that the half-bridge (HB) is driven by a half-bridge driver.
ATA379/2015A 2015-06-15 2015-06-15 Transformer-free boost converter with high voltage ratio AT517341B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ATA379/2015A AT517341B1 (en) 2015-06-15 2015-06-15 Transformer-free boost converter with high voltage ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ATA379/2015A AT517341B1 (en) 2015-06-15 2015-06-15 Transformer-free boost converter with high voltage ratio

Publications (2)

Publication Number Publication Date
AT517341B1 AT517341B1 (en) 2017-01-15
AT517341A4 true AT517341A4 (en) 2017-01-15

Family

ID=57641915

Family Applications (1)

Application Number Title Priority Date Filing Date
ATA379/2015A AT517341B1 (en) 2015-06-15 2015-06-15 Transformer-free boost converter with high voltage ratio

Country Status (1)

Country Link
AT (1) AT517341B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT522311B1 (en) * 2019-07-02 2020-10-15 Fachhochschule Technikum Wien Step-up converter with a large voltage ratio

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3500170A (en) * 1967-11-20 1970-03-10 Telemecanique Electrique D.c.-a.c. converters
EP0585077A1 (en) * 1992-08-25 1994-03-02 General Electric Company Power supply circuit with power factor correction
US20070230228A1 (en) * 2006-03-31 2007-10-04 Hong Mao Zero-voltage-switching DC-DC converters with synchronous rectifiers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3500170A (en) * 1967-11-20 1970-03-10 Telemecanique Electrique D.c.-a.c. converters
EP0585077A1 (en) * 1992-08-25 1994-03-02 General Electric Company Power supply circuit with power factor correction
US20070230228A1 (en) * 2006-03-31 2007-10-04 Hong Mao Zero-voltage-switching DC-DC converters with synchronous rectifiers

Also Published As

Publication number Publication date
AT517341B1 (en) 2017-01-15

Similar Documents

Publication Publication Date Title
EP3496259B1 (en) Electrical converter system
EP2661806B1 (en) Electrical circuit and method for operation thereof
WO2006097328A2 (en) Arrangement provided with a voltage converter for supplying voltage to an electrical load and associated method
DE112016002442T5 (en) A power conversion apparatus and control method for a power conversion apparatus
WO2016150633A1 (en) Converter module for a multi-level energy converter
DE202010005520U1 (en) Single-phase inverter
EP1766767B1 (en) Method for operating an inverter, and arrangement for carrying out said method
DE102012216691A1 (en) Converter circuit and method for controlling the converter circuit
DE102015222280A1 (en) Modular multi-stage converter and method for operating a modular multi-stage converter
AT517341B1 (en) Transformer-free boost converter with high voltage ratio
EP1754305B1 (en) Method for operating an electronically controlled inverter and arrangement for carrying out said method
AT513991B1 (en) Method for controlling an inverter and inverter
EP2826126B1 (en) Electronic power assembly having balancing of a voltage node in the intermediate circuit
DE102020112723A1 (en) Inverter with three bridge branches and method for operating such an inverter
AT524065B1 (en) Boost converter with reduced duty cycle
DE102018008604A1 (en) Step-up converter and method for operating a boost converter
EP1792388A1 (en) Method for operating an inverted rectifier and arrangement for carrying out the method
DE102014210647A1 (en) Inverter circuit and method of operating an inverter circuit
AT522723B1 (en) Bidirectional buck converter
CH715005B1 (en) Device for converting a DC voltage that varies within wide limits into a multi-phase AC voltage with variable frequency and amplitude.
EP2928055B1 (en) Modular power converter and method for generating a sinusoidal output voltage with reduced harmonics
AT523404B1 (en) Square bidirectional step-up converter
DE102007022315A1 (en) Switching arrangement for solar cell system, has switches i.e. semiconductor switch, arranged between coils and diodes and conductor branch, where coils of two assigned boost converters includes common core
DE102016006454A1 (en) Method for reducing the losses of a modular converter in delta configuration
AT514385A1 (en) Square buck converter for controlling motor windings, batteries, capacities or lamps

Legal Events

Date Code Title Description
MM01 Lapse because of not paying annual fees

Effective date: 20200615