WO2024040671A1 - 一种ito蚀刻液及其使用方法 - Google Patents

一种ito蚀刻液及其使用方法 Download PDF

Info

Publication number
WO2024040671A1
WO2024040671A1 PCT/CN2022/120804 CN2022120804W WO2024040671A1 WO 2024040671 A1 WO2024040671 A1 WO 2024040671A1 CN 2022120804 W CN2022120804 W CN 2022120804W WO 2024040671 A1 WO2024040671 A1 WO 2024040671A1
Authority
WO
WIPO (PCT)
Prior art keywords
ito
phase
etching
treated
acid
Prior art date
Application number
PCT/CN2022/120804
Other languages
English (en)
French (fr)
Inventor
罗霜
丘贵龙
林金华
张永彪
罗永春
Original Assignee
福建天甫电子材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福建天甫电子材料有限公司 filed Critical 福建天甫电子材料有限公司
Publication of WO2024040671A1 publication Critical patent/WO2024040671A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/04Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in markedly acid liquids

Definitions

  • the invention belongs to the field of fine chemicals, and in particular relates to an ITO etching liquid and a method of using the same.
  • ITO Indium tin oxide
  • ITO conductive film has the advantages of low resistivity, high transmittance and high reflectivity. At the same time, it has high bonding strength with the substrate, excellent wear resistance, good physical properties and chemical stability, and is often It is used to prepare and form different electrode patterns and is widely used in transparent electrodes for flat panel displays.
  • the ITO conductive film needs to be etched. Etching is usually carried out by wet etching. An ITO film is deposited on a non-conductive substrate, and then the copper metal is covered according to the required electrode pattern. The exposed ITO deposition layer is etched away by the etching liquid, leaving behind all traces on the substrate. The required electrode pattern ITO structure is then simply removed to remove the copper to complete the preparation of the ITO conductive film.
  • the existing etching solutions used in wet etching are roughly divided into aqua regia system, oxalic acid system, ferric chloride system and hydriodic acid system.
  • the ferric chloride system has the advantages of high etching efficiency and low cost.
  • due to its strong oxidation effect on metallic copper it will cause serious corrosion of the metallic copper on the ITO layer, and may even corrode the ITO below the metallic copper. layer, causing the final electrode pattern to be unqualified.
  • the present invention provides an ITO etching solution and a method of using it.
  • the purpose of the present invention is: 1. to ensure high etching efficiency and achieve efficient etching; 2. to reduce the introduction of impurities in the etching process to ensure product qualification; 3. to avoid excessive etching and ensure the integrity of the electrode pattern.
  • the present invention adopts the following technical solutions.
  • phase A is composed of the following mass percentage of raw materials: polyglucosamine 3 to 5 wt%, formic acid 1.5 to 2.5 wt%, the remainder The amount is water;
  • B phase is composed of the following mass percentage of raw materials: ferric chloride 20-28wt%, anionic surfactant 0.01-0.1wt%, non-ionic surfactant 0.05-0.5wt%, non-oxidizing surfactant
  • the acidity is 13 ⁇ 18wt%, and the balance is water.
  • the B phase also includes a soluble salt that can dissociate the same anion as the non-oxidizing acid; the mass percentage of the soluble salt in the B phase is 2 to 4 wt%.
  • the non-oxidizing acid is hydrochloric acid; the hydrochloric acid concentration is 29 to 31 wt% or 35 to 37 wt%; and the soluble salt is an alkali metal chloride.
  • the anionic surfactant is any one or more of dodecyl benzene sulfonic acid or its sodium salt, dodecyl sulfuric acid or its sodium salt, fatty alcohol sulfuric acid or its sodium salt;
  • the nonionic surfactant is a polyethanol type nonionic surfactant.
  • the polyethyl alcohol-type nonionic surfactant is long-chain fatty alcohol polyoxyethylene ether, alkylphenol polyoxyethylene ether, fatty acid polyoxyethylene ether, polyoxyethylene alkylamine, polyoxyethylene alkyl Any one or more of alcoholamides or polyethers.
  • a method of using ITO etching liquid includes: 1) immersing the ITO film to be treated and the surface to be treated in the A phase liquid, drying after sufficient infiltration to obtain a pretreated ITO film; 2) immersing the B phase Preheat to 38 ⁇ 45°C, spray the pre-treated ITO film for at least 90 seconds, etching for at least 15 minutes after spraying, and then perform post-processing to obtain the ITO circuit.
  • the surface to be treated of the ITO film to be treated is placed upside down and infiltrated in the phase A liquid; when drying after the infiltration, the surface to be treated is turned upside down and placed in an oven to dry.
  • the post-processing in step 2) includes cleaning and coating removal.
  • phase A and phase B are synergistic with each other.
  • a formic acid-polyglucosamine film layer can be deposited on the surface of the copper layer of the ITO film to be treated.
  • This film layer first forms a simple covering protection to avoid direct corrosion of the metallic copper.
  • Conventional covering protection cannot effectively protect metal copper, because conventional coatings easily lose their effect under the highly acidic and corrosive conditions of the etching solution.
  • the formic acid and polyglucosamine in phase A can form a special film layer, and in the above-mentioned specific infiltration and drying treatment methods, the two effective compounds of formic acid and polyglucosamine can be formed under the action of gravity. It is more effectively concentrated and covered on the surface of metallic copper, forming a simple organic coating layer. Then, after adding the B phase liquid, under the action of the B phase liquid, the organic coating layer will be dissolved under the action of the acid in the B phase. While the organic coating layer is dissolved, part of the ferric iron oxidizes a small amount of metallic copper to form dielectric. Valent copper ions.
  • Copper ions form a complex with dissolved formic acid and polyglucosamine to coat the surface of metallic copper and chelate and reduce the formed divalent iron ions to avoid the generation of cationic impurities.
  • the formed complex forms a film It can effectively protect the metal copper layer from further oxidation and corrosion to achieve high-precision etching and improve product qualification rate.
  • the spray rate of phase B needs to be controlled. In the early spray process, the spray volume per unit area (per square centimeter) should be controlled to ⁇ 5mL within the first 20 seconds.
  • the optimal control should be At 3 ⁇ 5mL/cm 2 , to ensure that it has a relatively good environment to form complexes to protect the metal copper layer, and then spray a sufficient or excessive amount of etching liquid in a conventional spraying method, so that the entire pretreatment
  • the surface of the final ITO film is fully moistened and can be rinsed after etching. After rinsing, due to the characteristics of the complex film of the present invention, it can be separated by ultrasonic treatment in a hot water environment.
  • the ITO component itself has good chemical stability and is stably bonded to the non-conductive substrate, so it will not cause any damage to it. negative effect.
  • the metallic copper can be removed through conventional chemical processes.
  • formic acid and polyglucosamine do not have the basis to form complexes with the active ingredients of ITO, they will not affect its etching removal.
  • the beneficial effects of the present invention are: by improving and adding A-phase treatment, the present invention forms a complex protective film in situ on the surface of metallic copper.
  • the complex protective film can effectively protect metallic copper and avoid excessive etching of metallic copper during the ITO etching process.
  • the problem of ITO electrode pattern loss or even damage occurs.
  • the A-phase treatment liquid has high utilization rate and low cost.
  • the electrode pattern formed after etching ITO has extremely high pattern accuracy, which greatly improves the product qualification rate. At the same time, it can be used for the preparation of complex electrode patterns, breaking through the limitations of traditional ITO conductive film patterns that are limited in complexity.
  • Figure 1 is the characterization result of the sample after the etching treatment test with the etching solution of Example 1;
  • Figure 2 shows the characterization results of the sample after the etching treatment test was carried out with the etching solution of Example 1 after the ultrasonic temperature reached 95°C;
  • Figure 3 shows the characterization results of the sample after the etching treatment test with the etching solution of Comparative Example 1;
  • Figure 4 shows the characterization results of the sample after the etching treatment test with the etching solution of Comparative Example 3-blank control group
  • Figure 5 shows the characterization results of the sample after the etching treatment test with the etching solution of Comparative Example 3;
  • Figure 6 shows the characterization results of the sample after the etching treatment test with the etching solution of Comparative Example 2.
  • the raw materials used in the examples of the present invention are all commercially available or those available to those skilled in the art.
  • the methods used in the examples of the present invention are all methods mastered by those skilled in the art.
  • ITO etching liquid its composition is as follows:
  • ITO etching liquid its composition is as follows:
  • ITO etching liquid its composition is as follows:
  • ITO etching liquid its composition is as follows:
  • ITO etching liquid its composition is as follows:
  • ITO etching liquid its composition is as follows:
  • Element Content/wt% ferric chloride 25 Sodium dodecyl sulfate 0.05 Fatty acid polyoxyethylene ether 0.2 36wt% industrial hydrochloric acid 14 potassium chloride 3.5 Deionized water to100
  • the etching test uses the ITO conductive film to be processed with non-production purpose and prefabricated common electrode patterns as the sample to be processed for the etching test.
  • etching first turn the surface of the sample to be treated upside down and immerse it in phase A.
  • the test group numbers correspond to the numbers of the examples and comparative examples. Since the test group of Comparative Example 3 does not have phase A, part of it is replaced with deionized water. , marked as Comparative Example 3-blank control, part without any infiltration treatment, marked as Comparative Example 3.
  • Preheat phase B to 38 ⁇ 45°C spray the pre-treated ITO film for at least 90 seconds, etching for at least 15 minutes after spraying, and then place it in 85°C deionized water for constant temperature ultrasonic for 20 minutes, conventional ITO film
  • the metal copper is chemically dealloyed to obtain ITO circuits.
  • the ultrasonic temperature should be controlled between 75 and 90°C. When it is lower than 75°C, for example, during the ultrasonic cleaning process at 70°C, less solid matter falls off, and a small amount of metallic copper remains in the subsequent dealloying process, indicating that the solid matter It actually affects the dealloying process and requires appropriate handling. When the temperature is too high, the ITO circuit pattern will be affected.
  • the complex protective film can achieve micro-scale protection, which greatly reduces the highest accuracy that can be achieved by wet etching of the ferric chloride system.
  • the highest controllable precision of the present invention can reach the micron level. That is, the electrode pattern is kept intact and effective within a few microns.
  • Comparative Example 2 produced a certain degree of excessive extension of the complex protective film when the concentration of formic acid and polyglucosamine was increased, or During the process of infiltration and inversion drying, as the concentration of formic acid and polyglucosamine increases, the viscosity coefficient of phase A increases. In fact, it cannot be effectively concentrated on the surface of metallic copper under the action of gravity, and some of it will be concentrated on metallic copper - At the interface of the ITO layer, the etching edge may be changed during inversion and subsequent etching, resulting in a decrease in etching accuracy. But even so, after testing, it can basically meet the etching process with a precision of about 50 ⁇ m and ensure the product qualification rate.
  • the present invention can increase the qualification rate of products etched with ferric chloride system etching solution (200 ⁇ m precision level) from about 95% to almost 100%, and can achieve ultra-high precision ( ⁇ 10 ⁇ m) level etching treatment has greatly improved the defects of the existing antimony trichloride system ITO etching solution, greatly extending its use effect and application field.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Weting (AREA)

Abstract

属于精细化工领域,涉及一种ITO蚀刻液及其使用方法。所述蚀刻液由A相、中和液和B相构成;所述A相由以下质量百分比的原料构成:聚氨基葡萄糖3~5wt%,甲酸1.5~2.5wt%,余量为水;所述B相由以下质量百分比的原料构成:三氯化铁20~28wt%、阴离子型表面活性剂0.01~0.1wt%、非离子型表面活性剂0.05~0.5wt%、非氧化性酸13~18wt%,余量为水。通过增加A相处理,能够有效避免ITO蚀刻过程中的过度蚀刻导致ITO电极图形损失甚至被破坏的问题发生,使得产品合格率大大提升,同时突破了传统ITO导电膜图案复杂程度受限的局限性。

Description

一种ITO蚀刻液及其使用方法 技术领域
本发明属于精细化工领域,尤其涉及一种ITO蚀刻液及其使用方法。
背景技术
氧化铟锡(ITO)导电膜具有低电阻率、高透光率和高反射率等优点,同时其与衬底的结合强度高、耐磨性能优异,具有良好的物理性能和化学稳定性,经常用于制备形成不同的电极图形且被广泛应用于平板显示器的透明电极中。而为制备得到所需特定的电极图形,需要对ITO导电膜进行蚀刻。通常蚀刻是以湿法蚀刻的方式进行,在非导电基板上沉积ITO膜,随后依照所需的电极图形覆盖铜金属,通过蚀刻液将裸露在外的ITO沉积层腐蚀掉则在基板上留下所需的电极图形ITO结构,随后简单除覆去除铜即完成ITO导电膜的制备。
而现有湿法蚀刻所用的蚀刻液大致分为王水体系、草酸体系、三氯化铁体系和氢碘酸体系等。其中三氯化铁体系具有蚀刻效率高、成本低等优势,但是其由于对金属铜具有较强的氧化作用,会导致ITO层上的金属铜腐蚀严重,严重甚至会腐蚀至金属铜下方的ITO层,导致最终所得的电极图形不合格。
因而,对现有的三氯化铁体系蚀刻液进行改进,避免过度蚀刻的问题发生是十分有必要的。
发明内容
为解决现有的三氯化铁体系蚀刻液在使用过程中容易对ITO层造成过度腐蚀,导致实际产品合格率较低的问题,本发明提供了一种ITO蚀刻液及其使用方法。
本发明的目的在于:一、确保蚀刻效率较高,能够实现高效蚀刻;二、减少蚀刻过程的杂质引入,确保产品合格;三、避免过度蚀刻,确保电极图形的完整性。
为实现上述目的,本发明采用以下技术方案。
一种ITO蚀刻液,所述蚀刻液由A相、中和液和B相构成;所述A相由以下质量百分比的原料构成:聚氨基葡萄糖3~5wt%,甲酸1.5~2.5wt%,余量为水;所述B相由以下质量百分比的原料构成:三氯化铁20~28wt%、阴离子型表面活性剂0.01~0.1wt%、非离子型表面活性剂0.05~0.5wt%、非氧化性酸13~18wt%,余量为水。
作为优选,所述B相还包括可解离出与所述非氧化性酸同一种阴离子的可溶性盐;所述可溶性盐在B相中的质量百分比为2~4wt%。
作为优选,所述非氧化性酸为盐酸;所述盐酸浓度为29~31wt%或35~37wt%;所述可溶性盐为碱金属氯化物。
作为优选,所述阴离子型表面活性剂为十二烷基苯磺酸或其钠盐、十二烷基硫酸或其钠盐、脂肪醇硫酸或其钠盐中的任意一种或多种;所述非离子型表面活性剂为聚乙醇型非离子型表面活性剂。
作为优选,所述聚乙醇型非离子型表面活性剂为长链脂肪醇聚氧乙烯醚、烷基酚聚氧乙烯醚、脂肪酸聚氧乙烯醚、聚氧乙烯烷基胺、聚氧乙烯烷基醇酰胺或聚醚类中的任意一种或多种。一种ITO蚀刻液的使用方法,所述方法包括:1)将待处理的ITO膜,待处理面置于A相液中浸润,充分浸润后干燥,得到预处理ITO膜;2)将B相预热至38~45℃,对预处理ITO膜喷淋至少90s,喷淋后蚀刻至少15min,再进行后处理得到ITO线路。
作为优选,步骤1)所述浸润时,将待处理的ITO膜的待处理面倒置于A相液中浸润;所述浸润后干燥时将待处理面倒置并置于烘箱中干燥。
作为优选,步骤2)所述后处理包括清洗和除覆层。
在本发明技术方案中,A相和B相是相互协同的。在A相处理后,能够在待处理的ITO膜的铜层表面通过沉积形成甲酸-聚氨基葡萄糖膜层,该膜层首先形成简单的覆盖保护,以避免金属铜直接被腐蚀,而另一方面,常规的覆盖保护并不能有效实现有效地对金属铜的保护,因为常规的覆膜容易在蚀刻液强酸性和腐蚀性条件下失去作用。
而本发明技术方案中,A相的甲酸和聚氨基葡萄糖能够形成特殊的膜层,并且在上述特定的浸润和干燥处理方式中,能够使得甲酸和聚氨基葡萄糖这两种有效化合物在重力作用下更有效地集中覆盖在金属铜表面,此时形成简单的有机物包覆膜层。而后,在加入B相液后,在B相液的作用下,B相中酸作用下会溶解有机包覆膜层,有机包覆膜层溶解的同时部分三价铁氧化少量的金属铜形成二价铜离子,铜离子与溶解后的甲酸、聚氨基葡萄糖形成络合物包覆在金属铜表面并螯合还原形成的二价铁离子,避免产生阳离子杂质,所形成的络合物成膜后能够有效保护金属铜层避免其进一步被氧化腐蚀,以实现高精度的蚀刻并提高产品合格 率。但需要注意的是,在具体的操作过程中,需要控制B相的喷淋速率,在早期喷淋过程中,前20s内控制单位面积(每平方厘米)喷淋量≤5mL,最优应当控制在3~5mL/cm 2,以确保其具有较为良好的环境形成络合物,对金属铜层进行保护,而后再以常规的喷淋方式喷淋足量或过量的蚀刻液,使得整个预处理后的ITO膜表面充分湿润,静置蚀刻即可冲洗。冲洗后由于本发明络合物薄膜的特性,其能够在热水环境中通过超声处理的方式分离,而本身ITO成分具有良好的化学稳定性并于非导电基底结合稳定,因此不会对其造成不利的影响。去除络合物薄膜后通过常规的化学法工艺去除金属铜即可。而此外,在ITO层表面,由于甲酸和聚氨基葡萄糖并不具备与ITO有效成分形成络合物的基础,因此并不会影响其蚀刻去除。
本发明的有益效果是:本发明通过改进增加A相处理,在金属铜表面原位形成了络合物保护膜,络合物保护膜能够有效保护金属铜避免ITO蚀刻过程中金属铜的过度蚀刻导致ITO电极图形损失甚至被破坏的问题发生,能够同时A相处理液利用率高、成本低廉,对ITO进行蚀刻处理后所形成的电极图形具有极高的图案精度,使得产品合格率大大提升,同时能够用于复杂电极图形的制备,突破了传统ITO导电膜图案复杂程度受限的局限性。
附图说明
图1为实施例1蚀刻液进行蚀刻处理试验后试样的表征结果;
图2为超声温度达到95℃后实施例1蚀刻液进行蚀刻处理试验后试样的表征结果;
图3为对比例1蚀刻液进行蚀刻处理试验后试样的表征结果;
图4为对比例3-空白对照组蚀刻液进行蚀刻处理试验后试样的表征结果;
图5为对比例3蚀刻液进行蚀刻处理试验后试样的表征结果;
图6为对比例2蚀刻液进行蚀刻处理试验后试样的表征结果。
具体实施方式
以下结合具体实施例和说明书附图对本发明作出进一步清楚详细的描述说明。本领域普通技术人员在基于这些说明的情况下将能够实现本发明。此外,下述说明中涉及到的本发明的实施例通常仅是本发明一部分的实施例,而不是全部的实施例。因此,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
如无特殊说明,本发明实施例所用原料均为市售或本领域技术人员可获得的原料;如无特殊说明,本发明实施例所用方法均为本领域技术人员所掌握的方法。
实施例1
一种ITO蚀刻液,其组方配比如下:
Figure PCTCN2022120804-appb-000001
实施例2
一种ITO蚀刻液,其组方配比如下:
Figure PCTCN2022120804-appb-000002
实施例3
一种ITO蚀刻液,其组方配比如下:
Figure PCTCN2022120804-appb-000003
对比例1
一种ITO蚀刻液,其组方配比如下:
Figure PCTCN2022120804-appb-000004
对比例2
一种ITO蚀刻液,其组方配比如下:
Figure PCTCN2022120804-appb-000005
对比例3
一种ITO蚀刻液,其组方配比如下:
成分 含量/wt%
三氯化铁 25
十二烷基硫酸钠 0.05
脂肪酸聚氧乙烯醚 0.2
36wt%工业盐酸 14
氯化钾 3.5
去离子水 to100
具体应用实施例1
以上述实施例1~3和对比例1~3进行蚀刻试验。
蚀刻试验以具备非生产目、预制常见电极图形的待处理ITO导电膜作为待处理试样进行蚀刻试验。蚀刻时,首先将待处理试样的待处理面倒置浸润在A相中,试验组编号分别对应实 施例和对比例编号,由于对比例3试验组并无A相,因此部分以去离子水替代,标记为对比例3-空白对照,部分不进行任何浸润处理,标记为对比例3。
蚀刻处理的具体过程为:
1)将待处理的ITO膜,将待处理的ITO膜的待处理面倒置于A相液中浸润,充分浸润后将待处理面倒置并置于烘箱中干燥,得到预处理ITO膜;
2)将B相预热至38~45℃,对预处理ITO膜喷淋至少90s,喷淋后蚀刻至少15min,再进行后依次置于85℃去离子水中进行恒温超声20min、常规ITO膜的金属铜化学法去合金化处理得到ITO线路。
在上述恒温超声过程中可以发现膜状物等固体物脱落。经试验,超声温度应当控制在75~90℃,在低于75℃,如在70℃的超声清洗过程中,固体物脱落少,后续的去合金化过程残留有少量的金属铜,表明固体物实际会影响去合金化过程,因而需要进行适当处理。而在温度过高的情况下,则会导致ITO线路图形受影响。
如图1所示,为实施例1蚀刻液进行上述蚀刻处理后的试样表征结果,其电极图形完整、清晰,而在超声温度达到95℃后,则如图2所示,ITO电极图形产生了一定的缺失和变形,并且随着温度上升(试验至100℃)会愈发严重。因而实际表明恒温超声处理需要较为严格地控制温度。实施例2与实施例3的表征结果与实施例1基本相同,其电极图形完整、清晰,表明本发明所提供的蚀刻液能够十分有效地进行蚀刻处理。并且由于络合物保护膜的生长特性,其能够实现微观尺度级别的保护,大大降低了三氯化铁体系湿法蚀刻能够达到的最高精度。如图1所示,本发明可控最高精度可达到个微米级。即在数个微米内保持电极图形的完整、有效。
而对比例1试验组结果如图3所示,电极图形出现了相对较为明显的缺失,且缺失部分集中在更细的连接路径上,表明其实际由于A相液有效成分甲酸和聚氨基葡萄糖的含量降低后,实际络合物保护膜成膜保护的效果差。而对比例3-空白对照组试验结果和对比例3试验结果表征依次分别如图4和图5所示,从对比例3-空白对照组试验表征结果中可以看出,其经过A相浸渍后在后续常规三氯化铁体系蚀刻液处理后,出现了ITO电极图形较为明显的点蚀,而图5则出现了较为明显的边缘腐蚀。表明在三氯化铁体系溶液进行蚀刻前进行适当的浸渍前处理,对于蚀刻过程会产生较为显著的影响,但并未所有的影响均是有利的。出本发明所用的甲酸-聚氨基葡萄糖配合以外,本发明在研发过程中还尝试过乙酸-聚氨基葡萄糖配合、硫酸铵溶液配合等,均无法产生良好的对金属铜的保护效果,进而也无法有效地避免后续的过度蚀刻问题发生。
此外,对比例2试验组表征结果如图6所示,可以看出,对比例2在增大甲酸和聚氨基葡萄糖浓度的情况下,产生了一定程度的络合物保护膜的过度延伸,或存在在浸润以及倒置干燥的过程中,由于甲酸和聚氨基葡萄糖的浓度增大,A相粘度系数增大,实际无法在重力作用下有效集中在金属铜表面,而会有部分集中在金属铜-ITO层的界面处,倒置后续蚀刻过程中出现蚀刻边缘被改变等情况发生,使得蚀刻精度下降。但即便如此,经试验,也能够基本满足约50μm精度的蚀刻处理以及确保产品合格率。
在上述实施例1配方工艺下,本发明能够将三氯化铁体系蚀刻液蚀刻后(200μm精度级)产品的合格率由原约95%上升至几乎100%,并且能够实现超高精度(<10μm)级别的蚀刻处理,大大改善了现有三氯化锑体系ITO蚀刻液的缺陷,使其使用效果和使用领域得到大大的延展。

Claims (8)

  1. 一种ITO蚀刻液,其特征在于,所述蚀刻液由A相、中和液和B相构成;所述A相由以下质量百分比的原料构成:聚氨基葡萄糖3~5wt%,甲酸1.5~2.5wt%,余量为水;所述B相由以下质量百分比的原料构成:三氯化铁20~28wt%、阴离子型表面活性剂0.01~0.1wt%、离子型表面活性剂0.05~0.5wt%、非氧化性酸13~18wt%,余量为水。
  2. 根据权利要求1所述的一种ITO蚀刻液,其特征在于,所述B相还包括可解离出与所述非氧化性酸同一种阴离子的可溶性盐;所述可溶性盐在B相中的质量百分比为2~4wt%。
  3. 根据权利要求2所述的一种ITO蚀刻液,其特征在于,所述非氧化性酸为盐酸;所述盐酸浓度为29~31wt%或35~37wt%;所述可溶性盐为碱金属氯化物。
  4. 根据权利要求1所述的一种ITO蚀刻液,其特征在于,所述阴离子型表面活性剂为十二烷基苯磺酸或其钠盐、十二烷基硫酸或其钠盐、脂肪醇硫酸或其钠盐中的任意一种或多种;所述非离子型表面活性剂为聚乙醇型非离子型表面活性剂。
  5. 根据权利要求4所述的一种ITO蚀刻液,其特征在于,所述聚乙醇型非离子型表面活性剂为长链脂肪醇聚氧乙烯醚、烷基酚聚氧乙烯醚、脂肪酸聚氧乙烯醚、聚氧乙烯烷基胺、聚氧乙烯烷基醇酰胺或聚醚类中的任意一种或多种。
  6. 一种如权利要求1至5任一所述ITO蚀刻液的使用方法,其特征在于,所述方法包括:1)将待处理的ITO膜,待处理面置于A相液中浸润,充分浸润后干燥,得到预处理ITO膜;2)将B相预热至38~45℃,对预处理ITO膜喷淋至少90s,喷淋后蚀刻至少15min,再进行后处理得到ITO线路。
  7. 根据权利要求6所述的一种ITO蚀刻液的使用方法,其特征在于,步骤1)所述浸润时,将待处理的ITO膜的待处理面倒置于A相液中浸润;所述浸润后干燥时将待处理面倒置并置于烘箱中干燥。
  8. 根据权利要求6所述的一种ITO蚀刻液的使用方法,其特征在于,步骤2)所述后处理包括清洗和除覆层。
PCT/CN2022/120804 2022-08-22 2022-09-23 一种ito蚀刻液及其使用方法 WO2024040671A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211003765.1A CN115505389B (zh) 2022-08-22 2022-08-22 一种ito蚀刻液及其使用方法
CN202211003765.1 2022-08-22

Publications (1)

Publication Number Publication Date
WO2024040671A1 true WO2024040671A1 (zh) 2024-02-29

Family

ID=84501844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120804 WO2024040671A1 (zh) 2022-08-22 2022-09-23 一种ito蚀刻液及其使用方法

Country Status (2)

Country Link
CN (1) CN115505389B (zh)
WO (1) WO2024040671A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116540792B (zh) * 2023-06-25 2023-09-12 福建天甫电子材料有限公司 一种草酸系ito蚀刻液制备的流量自动化控制方法及***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010067031A (ko) * 2000-12-22 2001-07-12 한의섭 인듐 틴 산화막의 식각용액 및 이를 이용한 식각방법
JP2009231427A (ja) * 2008-03-21 2009-10-08 Toagosei Co Ltd エッチング液、該エッチング液を用いた透明導電膜のエッチング方法及び被エッチング基板
CN102732253A (zh) * 2012-06-30 2012-10-17 江阴润玛电子材料股份有限公司 一种三氯化铁系ito蚀刻液及其制备方法
CN110862825A (zh) * 2019-11-25 2020-03-06 苏州博洋化学股份有限公司 一种用于铟锡氧化物半导体透明导电膜蚀刻的蚀刻液
CN112176345A (zh) * 2019-07-03 2021-01-05 奥特斯奥地利科技与***技术有限公司 蚀刻组合物、蚀刻方法、导体迹线和部件承载件

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4933063B2 (ja) * 2005-06-24 2012-05-16 東京応化工業株式会社 パターン形成方法
JP4530980B2 (ja) * 2005-08-26 2010-08-25 東京応化工業株式会社 膜形成用材料およびパターン形成方法
JP5833920B2 (ja) * 2008-06-04 2015-12-16 パテル,ジー 金属のエッチングに基づくモニタリングシステム
US8728341B2 (en) * 2009-10-22 2014-05-20 Hitachi Chemical Company, Ltd. Polishing agent, concentrated one-pack type polishing agent, two-pack type polishing agent and method for polishing substrate
CN102648258B (zh) * 2009-11-30 2015-04-08 巴斯夫欧洲公司 从衬底去除本体材料层的方法以及适于该方法的化学机械抛光剂
TWI573864B (zh) * 2012-03-14 2017-03-11 卡博特微電子公司 具有高移除率及低缺陷率之對氧化物及氮化物有選擇性之cmp組成物
CN105513955B (zh) * 2015-12-03 2018-01-12 苏州鑫德杰电子有限公司 一种半导体元件蚀刻液及其制备方法
CN106645334A (zh) * 2016-08-31 2017-05-10 中国药科大学 一种基于双极电极阵列的可视化电化学发光传感器检测葡萄糖的方法
CN106701085A (zh) * 2016-12-28 2017-05-24 杭州格林达化学有限公司 一种ito返工蚀刻液及其制备方法
CN106830121A (zh) * 2017-02-27 2017-06-13 合肥智慧龙图腾知识产权股份有限公司 一种生活污水处理剂及其制备方法
JP7252712B2 (ja) * 2017-03-31 2023-04-05 ナガセケムテックス株式会社 エッチング液
JP6966570B2 (ja) * 2017-04-11 2021-11-17 インテグリス・インコーポレーテッド 化学機械研磨後配合物及び使用方法
CN107931073B (zh) * 2017-11-07 2021-07-20 上海电力学院 一种铝合金表面耐蚀改性的处理方法
CN109023370A (zh) * 2018-08-30 2018-12-18 深圳市华星光电技术有限公司 用于铜钼金属膜层的蚀刻液及蚀刻方法
CN109023372A (zh) * 2018-08-31 2018-12-18 深圳市华星光电技术有限公司 铜/钼膜层用蚀刻液组合物
CN111472000B (zh) * 2020-04-15 2021-07-27 苏州华星光电技术有限公司 一种铜钼膜层的蚀刻方法、阵列基板
CN113249726B (zh) * 2021-05-10 2022-04-29 中国石油大学(华东) 一种在镁合金表面制备微米级球状超疏水复合涂层的方法
CN113295741A (zh) * 2021-06-16 2021-08-24 江苏大学 用于同时检测多种有机类污染物的光电致变色可视化传感器的构建方法
CN114591684B (zh) * 2022-02-18 2024-01-30 浙江开化元通硅业有限公司 一种基于高纯球形硅溶胶的环保型化学机械抛光液及其制备方法和抛光方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010067031A (ko) * 2000-12-22 2001-07-12 한의섭 인듐 틴 산화막의 식각용액 및 이를 이용한 식각방법
JP2009231427A (ja) * 2008-03-21 2009-10-08 Toagosei Co Ltd エッチング液、該エッチング液を用いた透明導電膜のエッチング方法及び被エッチング基板
CN102732253A (zh) * 2012-06-30 2012-10-17 江阴润玛电子材料股份有限公司 一种三氯化铁系ito蚀刻液及其制备方法
CN112176345A (zh) * 2019-07-03 2021-01-05 奥特斯奥地利科技与***技术有限公司 蚀刻组合物、蚀刻方法、导体迹线和部件承载件
CN110862825A (zh) * 2019-11-25 2020-03-06 苏州博洋化学股份有限公司 一种用于铟锡氧化物半导体透明导电膜蚀刻的蚀刻液

Also Published As

Publication number Publication date
CN115505389A (zh) 2022-12-23
CN115505389B (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
JP4538490B2 (ja) アルミニウム又はアルミニウム合金上の金属置換処理液及びこれを用いた表面処理方法
WO2024040671A1 (zh) 一种ito蚀刻液及其使用方法
CN101457360A (zh) 一种有机酸型粗化液
CN101399196B (zh) 晶圆背面粗糙化处理方法
CN105025662A (zh) 一种线路板沉镍金的制备工艺
CN104073849B (zh) 一种烧结钕铁硼磁体表面电镀镍钨磷的工艺
CN104861980A (zh) 一种用于ITO/Ag/ITO多层薄膜的蚀刻液
JP2013534562A (ja) アルミニウムのための前処理プロセス及びそれに用いられる高エッチング洗浄剤
CN112176371B (zh) 一种铍铜表面镀金的电镀工艺
CN104313565B (zh) 一种超疏水铜箔的制备方法
CN101945544A (zh) 一种挠性电路板的制造方法
CN113355675A (zh) 一种钛合金表面化学粗化方法
CN105336499A (zh) 一种电解电容器阳极铝箔腐蚀的前处理方法
CN102220574A (zh) 一种在锆铝合金表面化学镀镍磷的方法
CN106701085A (zh) 一种ito返工蚀刻液及其制备方法
CN106190649B (zh) 一种清洗液及其清洗pcb退锡槽的方法
CN109881204A (zh) 一种镁银合金清洗剂及清洗方法
CN109554700B (zh) 一种光亮铜膜或铜合金膜减反射工艺
CN105431494B (zh) 用于金属表面的水性剥离组合物
CN107931073B (zh) 一种铝合金表面耐蚀改性的处理方法
WO2021134293A1 (zh) 一种遮光片及其发黑处理方法
CN108950471A (zh) 一种金属产品表面耐腐蚀处理工艺
CN111489953A (zh) 一种半导体表面金属化的方法
CN113684472B (zh) 一种碱熔用铁坩埚表面处理方法
AU2021101783A4 (en) Method of preparing superhydrophobic surface on magnesium alloy substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956215

Country of ref document: EP

Kind code of ref document: A1