WO2023130838A1 - 数据传输方法、相关设备、计算机可读存储介质及计算机程序产品 - Google Patents

数据传输方法、相关设备、计算机可读存储介质及计算机程序产品 Download PDF

Info

Publication number
WO2023130838A1
WO2023130838A1 PCT/CN2022/132029 CN2022132029W WO2023130838A1 WO 2023130838 A1 WO2023130838 A1 WO 2023130838A1 CN 2022132029 W CN2022132029 W CN 2022132029W WO 2023130838 A1 WO2023130838 A1 WO 2023130838A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
network
wireless network
transmission rate
quality
Prior art date
Application number
PCT/CN2022/132029
Other languages
English (en)
French (fr)
Inventor
雷艺学
Original Assignee
腾讯科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 腾讯科技(深圳)有限公司 filed Critical 腾讯科技(深圳)有限公司
Priority to US18/209,601 priority Critical patent/US20230345295A1/en
Publication of WO2023130838A1 publication Critical patent/WO2023130838A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • H04L41/147Network analysis or design for predicting network behaviour
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0876Network utilisation, e.g. volume of load or congestion level
    • H04L43/0894Packet rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/12Flow control between communication endpoints using signalling between network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to the technical field of communications, and in particular, to a data transmission method, related equipment, a computer-readable storage medium, and a computer program product.
  • Digital Twin is a simulation process that makes full use of data such as physical models, sensor updates, and operating history, and integrates multi-disciplinary, multi-physical quantities, multi-scale, and multi-probability. etc.) to carry out digital simulation to construct an identical entity in the digital world, so as to realize the process of understanding, analyzing and optimizing the physical entity.
  • the use of digital twins can improve the accuracy of the design and verify the performance of the product in the real environment.
  • the digital twin system cannot be used for real-time traffic applications such as safety warnings because of the lack of real-time interaction.
  • Embodiments of the present disclosure provide a data transmission method, a digital twin application terminal, a terminal, a communication device, a computer-readable storage medium, and a computer program product, which enable the digital twin application terminal to adaptively adjust the direction of the terminal according to the network status of the wireless network.
  • the information transmission rate at which the wireless network transmits attribute information of physical entities.
  • An embodiment of the present disclosure provides a data transmission method, the method is executed by a digital twin application, and the method includes: receiving a network status notification message of the wireless network from a first core network element of the wireless network, the network The state notification message indicates that the wireless network is in the first network state; according to the first network state in the network state notification message, determine the first quality of service requirement of the wireless network; through the wireless network, use the first information
  • the transmission rate receives the attribute information of the physical entity obtained by the terminal, and the first information transmission rate matches the first quality of service requirement; constructing according to the attribute information of the physical entity received at the first information transmission rate Or update the digital twin corresponding to the physical entity.
  • An embodiment of the present disclosure provides a data transmission method, the method is executed by a terminal, and the method includes: according to a first quality of service requirement of a wireless network, determining a first information transmission rate that matches the first quality of service requirement, The first quality of service requirement is determined according to the first network state of the wireless network; the acquired attribute information of the physical entity is transmitted to the digital twin through the wireless network at the first information transmission rate.
  • the application side the attribute information of the physical entity transmitted at the first information transmission rate is used to construct or update the digital twin corresponding to the physical entity.
  • An embodiment of the present disclosure provides a digital twin application terminal, including: a receiving unit configured to receive a network status notification message of the wireless network from a first core network element of the wireless network, the network status notification message indicating that the wireless network The network is in the first network state; the processing unit is configured to determine the first quality of service requirement of the wireless network according to the first network state in the network state notification message; the receiving unit is also configured to pass the wireless network , receiving the attribute information of the physical entity acquired by the terminal at a first information transmission rate, the first information transmission rate matching the first quality of service requirement; the processing unit is further configured to transmit the information according to the first information transmission The received attribute information of the physical entity constructs or updates the digital twin corresponding to the physical entity.
  • An embodiment of the present disclosure provides a terminal, including: a processing unit configured to determine, according to a first quality of service requirement of a wireless network, a first information transmission rate that matches the first quality of service requirement, the first quality of service requirement It is determined according to the first network state of the wireless network; the sending unit is configured to transmit the acquired attribute information of the physical entity to the digital twin application terminal through the wireless network at the first information transmission rate ; The attribute information of the physical entity transmitted at the first information transmission rate is used to construct or update the digital twin corresponding to the physical entity.
  • An embodiment of the present disclosure provides a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, the data transmission method described in the above-mentioned embodiments is implemented.
  • An embodiment of the present disclosure provides a communication device, including: one or more processors; a memory configured to store one or more programs, when the one or more programs are executed by the one or more processors , so that the communication device implements the data transmission method described in the foregoing embodiments.
  • An embodiment of the present disclosure further provides a computer program product, including a computer program, and when the computer program is executed by a processor, the data transmission method described in the foregoing embodiments is implemented.
  • a digital twin is constructed or an already created digital twin is updated according to the attribute information of a physical entity that matches the network state of the wireless network, so that the digital twin adaptively adapts to the network state of the wireless network Adapt to ensure the real-time transmission of data, so as to support real-time traffic applications such as safety warning.
  • Fig. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present disclosure.
  • Fig. 2 schematically shows a flowchart of a data transmission method according to an embodiment of the present disclosure.
  • Fig. 3 schematically shows a schematic diagram of an application scenario of a data transmission method according to an embodiment of the present disclosure.
  • Fig. 4 schematically shows a schematic diagram of an architecture of an adaptive wireless network supporting a real-time digital twin according to an embodiment of the present disclosure.
  • Fig. 5 schematically shows a schematic diagram of the adjustment of the characterization method according to an embodiment of the present disclosure.
  • Fig. 6 schematically shows a schematic diagram of transmission by updating a Protocol Data Unit (Protocol Data Unit, PDU) session after changing the information collection and transmission mechanism according to an embodiment of the present disclosure.
  • PDU Protocol Data Unit
  • Fig. 7 schematically shows a flow chart of transmitting through different Quality of Service (QoS) flows in the original PDU session after changing the information collection and transmission mechanism according to an embodiment of the present disclosure.
  • QoS Quality of Service
  • Fig. 8 schematically shows a flowchart of a data transmission method according to another embodiment of the present disclosure.
  • Fig. 9 schematically shows a block diagram of a digital twin application terminal according to an embodiment of the present disclosure.
  • Fig. 10 schematically shows a block diagram of a terminal according to an embodiment of the present disclosure.
  • Fig. 11 schematically shows a schematic structural diagram of a communication device according to an embodiment of the present disclosure.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments may, however, be embodied in many forms and should not be construed as limited to the examples set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete and will fully convey the concept of example embodiments to those skilled in the art.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device for communicating with a terminal 120 (or called a communication terminal, terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminals located within the coverage area.
  • the communication system 100 also includes at least one terminal 120 located within the coverage of the network device 110 .
  • a "terminal" as used herein includes, but is not limited to, a connection via a wireline; and/or another data connection/network; and/or via a wireless interface; and/or another terminal configured to receive/send communication signals devices; and/or Internet of Things (IoT) devices.
  • a terminal may refer to an access terminal, a user equipment (UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or a user device.
  • UE user equipment
  • a 5G system or a 5G network may also be called a New Radio (New Radio, NR) system or an NR network.
  • New Radio New Radio
  • FIG. 1 exemplarily shows one network device and two terminals.
  • the communication system 100 may include multiple network devices and each network device may include other numbers of terminals within the coverage area.
  • the present disclosure The embodiment does not limit this.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present disclosure.
  • a device with a communication function in the network/system in the embodiments of the present disclosure may be referred to as a communication device.
  • the communication device may include a network device 110 and a terminal 120 with a communication function, and the network device 110 and the terminal 120 may be the specific devices described above, which will not be repeated here; communication
  • the device may also include other devices in the communication system 100, such as network controllers, mobility management entities and other network entities, which are not limited in this embodiment of the present disclosure.
  • the digital twin application end may include any electronic device installed with the digital twin application, such as a terminal and/or a server, where the server may be an application server, and the digital twin application end may pass through a network element such as an application function ( Application Function, AF) network element interacts with the wireless network, receives the attribute information of the physical entity in the physical world collected by the terminal through the wireless network, maps the attribute information into the corresponding digital twin of the digital world, and can pass the digital Twin Application Showcase.
  • Application Function Application Function
  • the method provided by the embodiment of the present disclosure may include:
  • a network status notification message of the wireless network is received from a network element of the first core network of the wireless network.
  • the network state notification message indicates that the wireless network is in the first network state.
  • the first core network element may be a network data analysis function (Network Data Analytics Function, NWDAF) network element, but the present disclosure is not limited thereto, the first core network element may be a core network device Any network element with a statistical analysis and/or predictive analysis function, in the following embodiments, an NWDAF network element is used as an example for illustration.
  • NWDAF Network Data Analytics Function
  • the NWDAF network element can predict and analyze the network status of the wireless network in real time, and the network status of the wireless network can reflect the resource status of the wireless network, such as whether the bandwidth is insufficient or not.
  • the NWDAF network element can feed back the network status of the wireless network for real-time predictive analysis to the digital twin application through the AF network element.
  • the types of network status can be diversified, for example, it can be divided into two types: sufficient bandwidth and insufficient bandwidth, wherein insufficient bandwidth can be further divided into slightly insufficient network bandwidth, comparatively insufficient network bandwidth and severe insufficient network bandwidth Three types.
  • Different types of network status can be identified by setting the value space of available network bandwidth (that is, the idle network bandwidth currently available for wireless networks), for example, the unit of network bandwidth is Megabits per second (Mbps, Megabits per second) as an example, you can set the value space corresponding to sufficient network bandwidth as [1000, 2000], and the value space corresponding to insufficient network bandwidth as [0, 999].
  • the value space corresponding to severely insufficient network bandwidth is [ 0,333]
  • the value space of insufficient network bandwidth is [334,666]
  • the value space of slightly insufficient network bandwidth is [667,999].
  • the above-mentioned type division of network bandwidth is divided from the dimension of available network bandwidth.
  • it can be divided from the dimension of average available network bandwidth accessing the wireless network, wherein the average available network bandwidth is the difference between the available network bandwidth of the wireless network and
  • the ratio of the number of currently connected digital twin application terminals can distinguish the network status of the wireless network from the perspective of the available network bandwidth of the digital twin application terminal, which can more accurately reflect the change of the wireless network's communication carrying capacity for the digital twin application terminal. .
  • the network state notification message may indicate that the wireless network changes from the second network state to the first network state.
  • the method may further include: determining the second quality of service of the wireless network according to the second network state Requirement: Receive the attribute information of the physical entity acquired by the terminal at a second information transmission rate through the wireless network in the second network state, and the second information transmission rate matches the second service quality requirement; according to the above The attribute information of the physical entity received at the second information transmission rate constructs or updates a digital twin corresponding to the physical entity.
  • the wireless network is initially in the second network state, such as a state of sufficient bandwidth
  • the AF network element may generate a second Quality of Service (QoS) requirement according to the second network state
  • the second QoS requirement is adapted to the second network state
  • the second QoS requirement may include bandwidth, time delay, jitter and other requirements corresponding to the second network state.
  • the terminal responsible for collecting the physical entities in the physical world can adaptively transmit the attribute information of the physical entities in the physical world collected by the AF network element at a second information transmission rate that matches the second QoS requirement according to the second QoS requirement , so as to realize the real-time transmission of the attribute information of the physical entities in the physical world collected by the terminal to the digital twin application, so as to realize the real-time mapping of the physical entities in the physical world to the corresponding digital twins in the digital world. Therefore, it is also possible to The digital twin application in the embodiment of the present disclosure is called a real-time digital twin application.
  • the NWDAF network element When the NWDAF network element detects that the wireless network changes from the above-mentioned second network state to the first network state through predictive analysis of the network state of the wireless network, such as changing from a state of sufficient bandwidth to a state of insufficient bandwidth, the NWDAF network element can Send the network state notification message to the AF network element to inform the AF network element that the network state of the wireless network has changed at this time, and the AF network element can generate a first QoS requirement according to the first network state, and the first QoS requirement is related to If the first network state is suitable, the first QoS requirement may include bandwidth, delay, jitter and other requirements corresponding to the first network state.
  • the terminal responsible for collecting the physical entities in the physical world can adaptively transmit the attribute information of the physical entities in the physical world collected by the terminal at the first information transmission rate that matches the first QoS requirement according to the first QoS requirement, so as to Realize the real-time transmission of the attribute information of the physical entities in the physical world collected by the terminal to the digital twin application, so as to realize the real-time mapping of the physical entities in the physical world to the corresponding digital twins in the digital world, that is, provided by the embodiments of the present disclosure
  • the real-time digital twin application changes the information transmission rate of the attribute information of the physical entity in the physical world collected by the terminal according to the change of the network state of the wireless network adaptively.
  • the digital twin application terminal before receiving the network status notification message of the wireless network from the network element of the first core network of the wireless network, may not receive the information acquired by the terminal at the second information transmission rate.
  • the attribute information of the physical entity, that is, the first information transmission rate is determined according to the first service quality requirement, not by adjusting the second information transmission rate.
  • the above-mentioned terminals may specifically include, but are not limited to: smart phones, tablet computers, e-book readers, Moving Picture Experts Group Audio Layer III (MP3) players, moving picture experts Expert compression standard audio layer 4 (Moving Picture Experts Group Audio Layer IV, MP4) player, laptop portable computer, car computer, desktop computer, set-top box, smart TV, wearable device, various sensors in the Internet of Things, etc. wait. It can be understood that the embodiment of the present disclosure does not limit a specific terminal.
  • MP3 Moving Picture Experts Group Audio Layer III
  • MP4 moving picture experts Expert compression standard audio layer 4
  • MP4 Moving Picture Experts Group Audio Layer IV
  • the method may further include: sending a request message for subscribing to the network state prediction service to the first core network element; receiving a response message for subscribing to the network state prediction service returned by the first core network element .
  • the digital twin application end can send a subscription network status prediction service request message to the NWDAF network element through the AF network element, so as to request the NWDAF network element to predict and analyze the network status of the wireless network, and predict and analyze the network status of the wireless network
  • a network status notification message is sent to the AF network element
  • the subscription network status prediction service request message may carry the information of the AF network element and/or the information of the digital twin application end, such as the AF identification (IDentity, ID) and /or the ID of the digital twin application end, after the NWDAF network element receives the subscription network state prediction service request message, it can use the information of the AF network element carried in the subscription network state prediction service request message and/or the information of the digital twin application end Perform authentication.
  • a response message of subscribing to the network status prediction service of successful subscription can be returned to the AF network element; if the authentication fails, a response message of subscription of the network status prediction service of subscription failure can be returned to the AF network element .
  • the AF network element receives the subscription network status prediction service response message that has been successfully subscribed, that is, the NWDAF network element predicts and analyzes the network status of the wireless network, and when the network status of the wireless network for prediction and analysis changes, sends a report to the AF network. The element sends a network status notification message.
  • the AF network element receives the response message of subscribing to the network state prediction service that the subscription failed, the operation ends.
  • the second information transmission rate may be determined according to a second representation manner adopted by the attribute information, a second representation information amount, a second representation information frequency, and the like.
  • determining the first quality of service requirement of the wireless network according to the first network state in the network state notification message may include: adjusting the bandwidth in the second quality of service requirement according to the first network state At least one of , time delay, jitter, etc., to obtain the first quality of service requirement.
  • the first quality of service requirement may be used to adjust at least one of the second characterization method, the second characterization information amount, and the second characterization information frequency, etc., to obtain the first characterization method, the first At least one of the amount of characterizing information and the frequency of the first characterizing information, wherein the first characterizing manner, the first amount of characterizing information, and the frequency of the first characterizing information can be used to determine the first information Transmission rate.
  • the terminal may be configured to adjust at least one of the second characterization method, the second characterization information amount, and the second characterization information frequency according to the first service quality requirement, and determine the first characterization method at least one of the first characterizing information amount and the first characterizing information frequency, and the determined The first information transmission rate.
  • the representation mode indicates which mode is used to represent the attribute information of the physical entity in the physical world collected by the terminal.
  • the second representation manner is used to represent attribute information of physical entities in the physical world collected by the terminal.
  • the amount of representation information refers to the amount of information used to express the attributes of the physical entities in the physical world represented by the representation method in the case of determining which representation method is used to represent the attribute information of the physical entities in the physical world collected by the terminal information.
  • the second representation information amount is used to express the attribute information of the physical entities in the physical world represented by the second representation manner.
  • Characteristic information frequency refers to the frequency (such as frequency or times) at which the terminal transmits the attribute information of the physical entity in the physical world to the wireless network. It is assumed that the second characteristic information frequency is used to transmit the attribute information of the physical entity in the physical world initially frequency.
  • the second information transmission rate can be determined according to the second characterization method, the second characterization information amount, and the second characterization information frequency. Therefore, when the wireless network changes from the second network state to the first network state, it can be adjusted by adjusting the second The second information transmission rate is adjusted to the first information transmission rate by any one or more of the characterization method, the second characterization information amount, and the second characterization information frequency, so as to match the changed first QoS requirement.
  • the second characterization method can be the same as the first characterization method, it can also be different; the second characterization information amount can be the same as the first characterization information amount, or it can be different; the second characterization information frequency can be the same as the first characterization information
  • the frequencies of the first representation information are the same or different, depending on whether one or more of the second representation manner, the second representation information amount, and the second representation information frequency is adjusted.
  • the first information transmission rate is adaptively reduced, so that the first information transmission rate is adapted to the bandwidth in the first QoS requirement.
  • the first information transmission rate may remain a fixed proportion of the bandwidth in the first QoS requirement.
  • the physical entity can be any object to be monitored in the physical world.
  • the application fields corresponding to the physical entity can include: satellite/space communication network, ship, vehicle, power plant, aircraft, electromechanical equipment, warehouse, medical treatment, manufacturing workshop, smart Cities, intelligent transportation, etc.
  • physical entities corresponding to the field of intelligent transportation may include: traffic lights, roads, vehicles, pedestrians, etc.
  • S240 construct or update a digital twin corresponding to the physical entity according to the attribute information of the physical entity received at the first information transmission rate.
  • the attribute information of a physical entity can be any information used to describe the physical entity.
  • the attribute information varies with different application fields and physical entities. The embodiment of the present disclosure does not limit this.
  • the digital twin application can be based on the above attribute information , to determine the digital twin corresponding to the physical entity.
  • the digital twin corresponding to the physical entity can be pre-built in the digital world, and the digital twin application can dynamically update or correct the pre-built digital twin according to the attribute information of the physical entity received in real time. In other embodiments, the digital twin application can also construct a corresponding digital twin according to the attribute information of the physical entity received in real time.
  • the digital twin application terminal can adaptively change the specific method of the digital twin application according to the network status of the wireless network, such as the resource status of the wireless network, for example, the physical entities in the physical world collected by the terminal.
  • the information transmission rate of the attribute information of the wireless network can be automatically adjusted to adapt to the current first network state of the wireless network, which enables the digital twin application to obtain the attribute information of the physical entity in real time, which realizes the real-time digital twin application. It can be applied to some real-time traffic application scenarios that need to support security warnings, etc.
  • Intelligent Transportation System Intelligent Traffic System
  • Intelligent Transportation System also known as Intelligent Transportation System (Intelligent Transportation System)
  • advanced science and technology information technology, computer technology, data communication technology, sensor technology, electronic control technology, automatic control theory, operational research science, artificial intelligence, etc.
  • advanced science and technology information technology, computer technology, data communication technology, sensor technology, electronic control technology, automatic control theory, operational research science, artificial intelligence, etc.
  • Intelligent Vehicle Infrastructure Cooperative Systems referred to as Vehicle Infrastructure Cooperative System
  • Vehicle Infrastructure Cooperative System is a development direction of Intelligent Transportation System (ITS).
  • the vehicle-road coordination system adopts advanced wireless communication and new-generation Internet technologies to comprehensively implement vehicle-vehicle and vehicle-road dynamic real-time information interaction, and to carry out vehicle active safety control and road safety control on the basis of full-time and spatial dynamic traffic information collection and integration. Collaborative management fully realizes the effective coordination of people, vehicles and roads, ensures traffic safety, improves traffic efficiency, and thus forms a safe, efficient and environmentally friendly road traffic system.
  • Objects such as objects can be digitized and passed through wireless network 320 (for movable objects, such as pedestrians, wireless network 320 can be used, but not limited to this) or wired network (for fixed objects, such as Traffic lights, cameras, etc., can use a wired network, but not limited thereto) to form digital twins corresponding to objects in the twin digital world (twin world 330), such as digital twins corresponding to pedestrians (311, 312) (331,332), the digital twin (333,337) corresponding to the car (313,317), the digital twin 338 corresponding to the road 318, the digital twin 334 corresponding to the tree 314, and the digital twin corresponding to the cyclist 315 body 335, the digital twin body 336 corresponding to the motorcycle rider
  • the Internet of Things terminal can be used as a terminal for collecting attribute information of physical entities in the physical world 310 , and the Internet of Things terminal can perform data interaction with the digital twin application terminal through a wired network or a wireless network 320 .
  • the Internet of Things terminal can be used to collect attribute information corresponding to physical entities (also referred to as entities for short), and report the above attribute information to the digital twin application terminal.
  • physical entities also referred to as entities for short
  • its corresponding attribute information may include: position, speed, and so on. It can be understood that the embodiment of the present disclosure does not limit specific attribute information.
  • the IoT terminal may include: an IoT module.
  • the IoT module may include: a data transfer unit (Data Transfer unit, DTU), an edge gateway, or a communication module, etc.
  • the communication module may include: a Bluetooth module, a wireless fidelity (WiFi) module, or a long-distance radio ( Long Range Radio, LoRa) modules, etc.
  • DTU is a wireless terminal device specially used to convert serial port data into Internet Protocol (Internet Protocol, IP) data or convert IP data into serial port data, and transmit it through a wireless communication network.
  • Internet Protocol Internet Protocol, IP
  • the digital twin maintains real-time or frequent data synchronization with the vehicle, that is, the vehicle regularly notifies the digital twin of attribute information/status information such as position, speed, and driving behavior information, and the digital twin keeps abreast of the attributes of the vehicle's moving position, speed, and driving behavior information information.
  • the IoT end may be an on-vehicle end located on a vehicle.
  • the vehicle-mounted terminal can perceive the surrounding environment and road conditions of the vehicle through various sensors, and transmit the perceived attribute information to the digital twin application in real time through the vehicle-mounted communication device or the vehicle-mounted mobile phone device through a wireless network, such as a cellular network, roadside WiFi, etc. end; the digital twin application end creates a corresponding digital twin for the vehicle based on the received attribute information.
  • the sensors can include: millimeter-wave radar, lidar, ultrasonic radar, camera, Global Navigation Satellite System (Global Navigation Satellite System, GNSS) and inertial sensors.
  • the amount of information required to describe and describe each target in the physical world, as well as the frequency of synchronizing this information to the digital twin in the digital world, will affect the amount of information transmitted by the wireless network.
  • What is needed is bandwidth resources.
  • the i-th target is represented as O i (i is greater than or equal to 1 and less than or an integer equal to N)
  • the parameter of the i-th target is assumed to have M i
  • M i is an integer greater than or equal to 1
  • the number of bytes required for characterization of the j-th parameter of the i-th target is assumed to be j is an integer greater than or equal to 1 and less than or equal to Mi
  • the information update frequency of the jth parameter of the i-th target is assumed to be Then the rate V (t) generated per second can be expressed as:
  • the above-mentioned rate generated per second may also be referred to as an information transmission rate, and may include the above-mentioned first information transmission rate and second information transmission rate. It can be understood that the actual information transmission rate may be calculated by using other calculation formulas, such as integration, etc., which is not limited in this embodiment of the present disclosure.
  • the capacity of the core network can fully meet the highest rate of the air interface, the capacity of the air interface cannot meet the peak demand of the V (t) function, and the network cannot support all the parameter states (attribute information) of the physical world objects in the digital twin network. real-time reproduction.
  • representation methods or representation methods can be used to synchronously present the attribute information of the target in the physical world in the twin world, such as obtaining the point cloud data of the physical entity through radar scanning, or through The video image data of the target captured by the camera or visual sensor (that is, video data or image data, which can also be expressed as image/video), and then the structured data of the physical entity is obtained for transmission after target recognition through image and picture processing. Either directly transmit the video image data of the captured physical entity, or describe the physical entity with semantics. Point cloud data, video image data, structured data, and semantic data, etc., all of these methods can transmit the attribute information of physical entities required by the real-time digital twin application side. The amount of network transmission data required by these different representation methods can be different. .
  • embodiments of the present disclosure propose an adaptive wireless network architecture supporting real-time digital twins as shown in FIG. 4 .
  • an embodiment of the present disclosure provides a wireless network adaptive architecture supporting real-time digital twins.
  • the real-time digital twin application can change the specific method of the real-time digital twin application according to the resource status of the wireless network. For example, the granularity of the property information/state information description of the physical entity of the real-time digital twin (for example, adjust the second characteristic information amount to the first characteristic information amount) and time frequency (for example, adjust the second characteristic information frequency to the first The characteristic information frequency) can be adjusted, so as to adapt to the current first network state of the wireless network.
  • the real-time digital twin application 600 can be used for digital twin body reconstruction and state maintenance in the digital world, and the real-time digital twin application 600 can communicate with the 5G core network (5G Core, 5GC) network 500 (i.e. The 5G wireless network in Figure 4) interacts, and the AF network element 610 can provide the policy control function (Policy Control Function, PCF)/network exposure function (Network Exposure Function, NEF) network element 510 with the QoS features required by the real-time digital twin (for example, the second QoS requirement), the 5G wireless network 500 performs transmission by establishing a first PDU session.
  • 5G Core 5G Core
  • 5GC 5G wireless network 500
  • PCF Policy Control Function
  • NEF Network Exposure Function
  • the 5G wireless network 500 can obtain the real-time operating status of the network.
  • the NWDAF network element 520 sends the obtained real-time operating status of the network to the user plane function (User Plane Function, UPF) network element 530, if the network bandwidth is insufficient, and the real-time operation state of the network can change from the second network state to the first network state, then the interface between the AF network element 610 and 5GC can be sent to the AF network element 610 Provide feedback information, such as providing feedback information through network status notification messages.
  • UPF User Plane Function
  • the collection function 400 of attribute information of objects in the physical world serves as the terminal side
  • the reproduction application in the digital world serves as the application side AF.
  • the AF network element 610 After the AF network element 610 receives the feedback information of insufficient 5G network bandwidth from the NWDAF network element 520, it provides it to the real-time digital twin application module. According to the current bandwidth amount (a parameter in the first QoS requirement), the following three aspects can be performed Any one or more application layer adjustments in:
  • the first aspect is the adjustment of characterization methods, including but not limited to the following:
  • Point cloud data describe the three-dimensional (3-dimension, 3D) outline of the object/entity, and send the point cloud data to the digital twin through the network;
  • Video image data directly capture images and/or video data of objects in the physical world, and send them to the digital twin application for twin processing;
  • Structured data Objects are identified through AI (Artificial Intelligence) and described as structured data, for example, describing the type, size, parameters, etc. of the object;
  • AI Artificial Intelligence
  • Semantics Communicate directly in a semantic manner.
  • the adjustment of the amount of representational information realizes the control of the amount of information:
  • characterizing information frequency and reliability/synchronization requires the control of information volume:
  • the frequency of information transmission can be adjusted, and the frequency refers to the number of times information transmission is required per unit time;
  • Synchronization and reliability requirements refer to the synchronization accuracy and reliability requirements for the transceiver end when transmitting information. The higher the requirements, the ultra-reliable and low-latency communication provided by the underlying network is required. (Ultra Reliable Low Latency Communications, URLLC) to transmit data with less delay.
  • URLLC Ultra Reliable Low Latency Communications
  • point cloud data can be used to describe the three-dimensional outline of the car
  • the video image data of the car can be captured by a camera or visual sensor
  • the structured data of the car can be obtained by processing the video image data of the car through AI , or directly use the text "vehicle" to describe the semantics of the car, and assume that the amount of information required for point cloud data, video image data, structured data, and semantic descriptions decreases in order, then assume that the bandwidth of the wireless network is sufficient initially, and adopt point
  • the cloud data describes the attribute information of the vehicle (that is, assuming that the second characterization method is used), and then the NWDAF network element detects that the network bandwidth of the wireless network is insufficient, and the AF network element can select the corresponding first QoS requirement according to the changed network bandwidth,
  • the NWDAF network element detects that the network bandwidth of the wireless network is insufficient
  • the AF network element can select the corresponding first QoS requirement according to the changed network bandwidth
  • the AF network element can The network bandwidth is used to select the corresponding first QoS requirement, so that the terminal determines which amount of characteristic information is used as the first amount of characteristic information. For example, if the network bandwidth is insufficient, the granularity of point cloud data can be reduced to adapt to the current network bandwidth. .
  • the AF network element can The network bandwidth is used to select the corresponding first QoS requirement, so that the terminal determines which amount of characteristic information is used as the first amount of characteristic information.
  • the resolution of the video image data can be reduced to adapt to the current network bandwidth.
  • the resolution of the video image data can be lowered from 2K resolution (2560*1440 pixels) to 1080P (1080P The resolution is 1920*1080 pixels), so that the data amount of the video image data generated per unit time can be reduced, so as to reduce the occupied network bandwidth.
  • the AF network element can The network bandwidth is used to select the corresponding first QoS requirement, so that the terminal determines which amount of characteristic information is used as the first amount of characteristic information. For example, if the network bandwidth is insufficient, the previously used second encoding format can be adjusted to the first encoding format. To adapt to the network bandwidth at this time.
  • the coding parameters (for example, bit rate, frame rate, resolution) of the first coding format are lower than the coding parameters of the second coding format, so that the data amount of video image data generated per unit time can be reduced to reduce the occupied space. network bandwidth.
  • the AF network element can The network bandwidth is used to select the corresponding first QoS requirement, so that the terminal determines which characteristic information frequency is used as the first characteristic information frequency.
  • the frequency of the previous second characterization information can be reduced to the first frequency of characterization information to adapt to the current network bandwidth.
  • the frequency of the second characterization information is reported 10 times per minute
  • the frequency of reporting the first characteristic information is 5 times per minute, so that the number of reporting times of characteristic information per unit time can be reduced, so as to reduce the occupied network bandwidth.
  • the collected attribute information of the physical entity can be transmitted by updating the PDU session.
  • 5GC network elements may include UPF, NWDAF, PCF and NEF.
  • the UE/physical world collection end transmits the data collected from the physical world to the digital twin application side (the digital twin application of the AF and the digital twin application end) through the PDU session (may be referred to as the first PDU session).
  • the UE/physical world collection end can transmit data collected from the physical world to the digital twin application side through base stations and UPF network elements.
  • the AF network element provides the QoS requirement for the network (called the second QoS requirement, initial configuration) through the PCF/NEF network element.
  • the AF network element subscribes to the network state prediction service from the NWDAF.
  • S63 may include that the AF network element sends a request message for subscribing to the network state prediction service to the NWDAF; the NWDAF receives the request message for subscribing to the network state prediction service, and generates a response message for subscribing to the network state prediction service.
  • the NWDAF sends the subscribed network state prediction service response message to the AF network element, and the AF network element receives the subscribed network state prediction service response message.
  • the NWDAF network element finds that the network status changes.
  • the NWDAF network element notifies the AF network element of the network state change through a network state notification message.
  • the application layer changes the collection of physical objects and information representation methods, granularity, frequency and other information, that is, the AF network element can change the second QoS requirement to the first QoS requirement according to the first network status, so that UE/physical The world collection end changes the second information transmission rate from S61 to the first information transmission rate to adapt to the first QoS requirement.
  • the UE/physical world acquisition end triggers a PDU session modification process.
  • the UE/physical world acquisition end can trigger the PDU session modification process of the first PDU session according to the modified first QoS requirement, and establish a new PDU session, which is called the second PDU session.
  • the UE/physical world collection end can transmit the data collected from the physical world to the digital twin application side through a new PDU session.
  • S61 and S62 can be defaulted, that is, it does not necessarily require the AF network element to initially configure the second QoS requirement, nor does it require the UE/physical world acquisition end to adjust based on the second information transmission rate to obtain the first QoS requirement. information transfer rate.
  • the collected attribute information of the physical entity can be transmitted through different QoS flows in the original PDU session (the first PDU session).
  • the UE/physical world acquisition end transmits the data collected from the physical world to the digital twin application side (the digital twin application of AF and the digital twin application end) through the PDU session (which can be called the first PDU session).
  • the UE/physical world collection end can transmit data collected from the physical world to the digital twin application side through base stations and UPF network elements.
  • the AF network element provides the QoS requirement for the network through the PCF/NEF network element (called the second QoS requirement, initial configuration).
  • the AF network element subscribes to the network state prediction service from the NWDAF.
  • S73 may include that the AF network element sends a request message for subscribing to the network status prediction service to the NWDAF; the NWDAF receives the request message for subscribing to the network status prediction service, and generates a response message for subscribing to the network status prediction service.
  • the NWDAF sends the subscribed network state prediction service response message to the AF network element, and the AF network element receives the subscribed network state prediction service response message.
  • the NWDAF network element finds that the network status changes.
  • the NWDAF network element notifies the AF network element of the network state change through a network state notification message.
  • the application layer changes the collection of physical objects and information representation methods, granularity, frequency and other information, that is, the AF network element can change the second QoS requirement to the first QoS requirement according to the first network status, so that the UE/physical The world collection end changes the second information transmission rate from S71 to the first information transmission rate to adapt to the first QoS requirement.
  • the UE/physical world acquisition end triggers a QoS flow parameter modification process.
  • the UE/physical world collection end can trigger the QoS flow parameter modification procedure within the session of the first PDU session according to the modified first QoS requirement.
  • the UE/physical world collection end can transmit the data collected from the physical world to the digital twin application side through the updated QoS flow in the PDU session (ie, the first PDU session).
  • S71 and S72 can be defaulted, that is, it does not necessarily require the AF network element to initially configure the second QoS requirement, nor does it require the UE/physical world acquisition end to adjust based on the second information transmission rate to obtain the first QoS requirement. information transfer rate.
  • the data transmission method provided in the embodiment of FIG. 8 may be executed by a terminal.
  • the method provided by the embodiment of the present disclosure may include:
  • the digital twin application end may be used to determine the first quality of service requirement according to the first network status of the wireless network.
  • the method before determining the first information transmission rate matching the first quality of service requirement according to the first quality of service requirement of the wireless network, the method may further include: according to the second quality of service requirement of the wireless network A quality of service requirement, determining a second information transmission rate that matches the second quality of service requirement, the second quality of service requirement may be determined according to the second network status of the wireless network; the physical entity to be acquired The attribute information is transmitted to the digital twin application terminal through the wireless network at the second information transmission rate. The attribute information of the physical entity transmitted at the second information transmission rate may be used to construct or update a digital twin corresponding to the physical entity.
  • determining the second information transmission rate matching the second quality of service requirement may include: determining the second information transmission rate according to the second quality of service requirement Two characterization methods, a second characterization information amount, and a second characterization information frequency; determining the second information transmission rate according to the second characterization method, the second characterization information amount, and the second characterization information frequency.
  • determining the first information transmission rate that matches the first quality of service requirement may include: adjusting the second characterization mode, the At least one of the second amount of characterizing information and the frequency of the second characterizing information to determine at least one of the first characterizing manner, the first amount of characterizing information, and the frequency of the first characterizing information; according to the first At least one of a characterization mode, the first amount of characterization information, and the frequency of the first characterization information determines the first information transmission rate.
  • the first characterization manner and the second characterization manner may include but not limited to at least one of the following: point cloud data of the physical entity; video image data of the physical entity; Structured data of the physical entity; semantic data of the physical entity.
  • the first amount of characteristic information and the second amount of characteristic information may include but not limited to at least one of the following: the granularity of the point cloud data of the physical entity; The resolution of the video image data; the encoding format of the attribute information of the physical entity.
  • determining the second information transmission rate matching the second quality of service requirement may include: determining the second information transmission rate according to the second quality of service requirement Two characterization methods, the second characterization information amount, the second characterization information frequency, the second reliability requirement, and the second synchronization requirement; according to the second characterization method, the second characterization information amount, the second characterization Information frequency, the second reliability requirement, and the second synchronicity requirement determine the second information transmission rate.
  • determining the first information transmission rate that matches the first quality of service requirement may include: adjusting the second characterization mode, the at least one of the second characterizing information amount, the second characterizing information frequency, the second reliability requirement, and the second synchronization requirement, so as to determine the first characterizing manner, the first characterizing information amount, The first characterizing information frequency, the first reliability requirement and the first synchronization requirement; according to the first characterizing method, the first characterizing information amount, the first characterizing information frequency, the first reliability requirements and the first synchronization requirement determine the first information transfer rate.
  • the acquired attribute information of the physical entity is transmitted to the digital twin application terminal through the wireless network at the first information transmission rate.
  • the attribute information of the physical entity transmitted at the first information transmission rate may be used to construct or update a digital twin corresponding to the physical entity.
  • the digital twin application end may also be configured to construct or update a digital twin corresponding to the physical entity according to the attribute information of the physical entity received at the first information transmission rate.
  • transmitting the acquired attribute information of the physical entity to the digital twin application end through the wireless network at the second information transmission rate may include: through the first protocol data unit PDU session , using the second information transmission rate to transmit the attribute information to the digital twin application terminal through the wireless network.
  • transmitting the acquired attribute information of the physical entity to the digital twin application terminal through the wireless network at the first information transmission rate may include: triggering The PDU session modification process of the first PDU session is to establish a second PDU session; through the second PDU session, the attribute information is transmitted to the digital twin through the wireless network by using the first information transmission rate application side.
  • transmitting the acquired attribute information of the physical entity to the digital twin application end through the wireless network at the second information transmission rate may include: through the first protocol data unit PDU session , using the second information transmission rate to transmit the attribute information to the digital twin application terminal through the wireless network.
  • transmitting the acquired attribute information of the physical entity to the digital twin application terminal through the wireless network at the first information transmission rate may include: triggering The quality of service flow parameter modification process of the first PDU session, updating the quality of service flow in the first PDU session; using the first information through the updated quality of service flow in the first PDU session
  • the transmission rate transmits the attribute information to the digital twin application end through the wireless network.
  • the digital twin application terminal 900 may include: a receiving unit 910 and a processing unit 920 .
  • the receiving unit 910 may be configured to receive a network state notification message of the wireless network from a network element of the first core network of the wireless network, the network state notification message indicating that the wireless network is in the first network state.
  • the processing unit 920 may be configured to determine the first quality of service requirement of the wireless network according to the first network status in the network status notification message.
  • the receiving unit 910 may also be configured to receive the attribute information of the physical entity acquired by the terminal at a first information transmission rate through the wireless network, the first information transmission rate matching the first service quality requirement.
  • the processing unit 920 may also be configured to construct or update a digital twin corresponding to the physical entity according to the attribute information of the physical entity received at the first information transmission rate.
  • the network state notification message may indicate that the wireless network changes from the second network state to the first network state.
  • the processing unit 920 may also be configured to: before receiving the network state notification message of the wireless network from the first core network element of the wireless network, determine the second service of the wireless network according to the second network state Quality requirements.
  • the receiving unit 910 may also be configured to: receive the attribute information of the physical entity obtained by the terminal at a second information transmission rate through the wireless network in the second network state, and the second information transmission rate is related to the second quality of service requirements to match.
  • the processing unit 920 may also be configured to: construct or update a digital twin corresponding to the physical entity according to the attribute information of the physical entity received at the second information transmission rate.
  • the second information transmission rate may be determined according to a second characterization manner adopted by the attribute information, a second amount of characterization information, and a second frequency of characterization information.
  • the processing unit 920 may also be configured to: adjust at least one of bandwidth, delay, and jitter in the second QoS requirement according to the first network status to obtain the first QoS requirement.
  • the first quality of service requirement may be used to adjust at least one of the second characterization method, the second characterization information amount, and the second characterization information frequency, etc., to determine the first characterization method, the first characterization
  • the information amount and the first characteristic information frequency, the first representation manner, the first characteristic information amount and the first characteristic information frequency may be used to determine the first information transmission rate.
  • the digital twin application end 900 may further include a sending unit configured to send a subscription network state prediction service request message to the first core network element.
  • the receiving unit 910 may also be configured to receive a response message for subscribing to the network state prediction service returned by the network element of the first core network.
  • the terminal 1000 provided in the embodiment of FIG. 10 may include: a processing unit 1010 and a sending unit 1020 .
  • the processing unit 1010 may be configured to determine, according to the first quality of service requirement of the wireless network, a first information transmission rate that matches the first quality of service requirement, and the first quality of service requirement is based on the first quality of service requirement of the wireless network. A network status is determined.
  • the sending unit 1020 may be configured to transmit the acquired attribute information of the physical entity to the digital twin application terminal through the wireless network at the first information transmission rate.
  • the attribute information of the physical entity transmitted at the first information transmission rate may be used to construct or update a digital twin corresponding to the physical entity.
  • the processing unit 1010 may be further configured to: according to the first quality of service requirement of the wireless network, before determining the first information transmission rate matching the first quality of service requirement, according to the first information transmission rate of the wireless network Two quality of service requirements, determining a second information transmission rate that matches the second quality of service requirements.
  • the second quality of service requirement is determined according to the second network status of the wireless network.
  • the sending unit 1020 may also be configured to transmit the acquired attribute information of the physical entity to the digital twin application terminal through the wireless network at the second information transmission rate.
  • the attribute information of the physical entity transmitted at the second information transmission rate may be used to construct or update a digital twin corresponding to the physical entity.
  • the processing unit 1010 may be further configured to: determine a second representation mode, a second representation information amount, and a second representation information frequency according to the second quality of service requirement; , the second amount of characteristic information, and the second frequency of characteristic information determine the second information transmission rate.
  • the processing unit 1010 may also be configured to: adjust at least one of the second characterization manner, the second characterization information amount, and the second characterization information frequency according to the first service quality requirement, so as to Determine a first representation method, a first representation information amount, and a first representation information frequency; determine the first information transmission according to the first representation method, the first representation information amount, and the first representation information frequency rate.
  • the first characterization method and the second characterization method may include at least one of the following: point cloud data of the physical entity; video image data of the physical entity; Structured data for an entity; semantic data for said physical entity.
  • the first amount of characteristic information and the second amount of characteristic information may include at least one of the following: the granularity of the point cloud data of the physical entity; the video image data of the physical entity resolution; the encoding format of the attribute information of the physical entity.
  • the processing unit 1010 may also be configured to: according to the second quality of service requirement, determine a second characterization mode, a second amount of characterization information, a second frequency of characterization information, a second reliability requirement, and a second Two synchronization requirements; determine the second according to the second representation mode, the second representation information amount, the second representation information frequency, the second reliability requirement, and the second synchronization requirement information transfer rate.
  • the processing unit 1010 can also be configured to: according to the first service quality requirement, adjust the second representation mode, the second representation information amount, the second representation information frequency, the second reliability Requirements and at least one of the second synchronization requirements to determine the first representation mode, the first representation information amount, the first representation information frequency, the first reliability requirements, and the first synchronization requirements; according to the The first representation mode, the first representation information amount, the first representation information frequency, the first reliability requirement, and the first synchronization requirement determine the first information transmission rate.
  • the sending unit 1020 may also be configured to: use the second information transmission rate to transmit the attribute information to the digital twin application terminal through the wireless network through the first protocol data unit PDU session .
  • the sending unit 1020 may also be configured to: trigger the PDU session modification process of the first PDU session according to the first quality of service requirement of the wireless network, and establish a second PDU session; through the second PDU session, use The first information transmission rate transmits the attribute information to the digital twin application terminal through the wireless network.
  • the sending unit 1020 may also be configured to: use the second information transmission rate to transmit the attribute information to the digital twin application terminal through the wireless network through the first protocol data unit PDU session .
  • the sending unit 1020 can also be configured to: according to the first quality of service requirement of the wireless network, trigger the QoS flow parameter modification process of the first PDU session, and update the QoS flow in the first PDU session; Using the updated QoS flow in the first PDU session, the attribute information is transmitted to the digital twin application end through the wireless network at the first information transmission rate.
  • Fig. 11 schematically shows a schematic structural diagram of a communication device 1100 according to an embodiment of the present disclosure.
  • the communication device can be a terminal or a core network device, such as NWDAF network element, PCF network element, NEF network element, UPF network element, or a digital twin application terminal or AF network element.
  • the communication device shown in Figure 11 1100 includes a processor 1110, and the processor 1110 can invoke and run a computer program from a memory, so as to implement the methods in the embodiments of the present disclosure.
  • the communication device 1100 may further include a memory 1120 .
  • the processor 1110 can call and run a computer program from the memory 1120, so as to implement the methods in the embodiments of the present disclosure.
  • the memory 1120 may be an independent device independent of the processor 1110 , or may be integrated in the processor 1110 .
  • the communication device 1100 may further include a transceiver 1130, and the processor 1110 may control the transceiver 1130 to communicate with other devices, specifically, to send information or data to other devices, or Receive messages or data from other devices.
  • the transceiver 1130 may include a transmitter and a receiver.
  • the transceiver 1130 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 1100 may specifically be the core network device in the embodiments of the present disclosure, and the communication device 1100 may implement the corresponding processes implemented by the core network device in each method of the embodiments of the present disclosure. For brevity, in This will not be repeated here.
  • the communication device 1100 may specifically be the mobile terminal/terminal of the embodiments of the present disclosure, and the communication device 1100 may implement the corresponding processes implemented by the mobile terminal/terminal in each method of the embodiments of the present disclosure, for the sake of brevity , which will not be repeated here.
  • the communication device 1100 can specifically be the digital twin application end of the embodiments of the present disclosure, and the communication device 1100 can implement the corresponding processes implemented by the digital twin application end in the various methods of the embodiments of the present disclosure, for the sake of brevity , which will not be repeated here.
  • processor in the embodiment of the present disclosure may be an integrated circuit chip and has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • Program logic devices discrete gate or transistor logic devices, discrete hardware components.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the methods disclosed in the embodiments of the present disclosure may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present disclosure may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchrobus RAM Direct Rambus RAM, DR RAM
  • An embodiment of the present disclosure also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the core network device in the embodiments of the present disclosure, and the computer program enables the computer to execute the corresponding processes implemented by the core network device in the methods of the embodiments of the present disclosure, for It is concise and will not be repeated here.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal in the embodiments of the present disclosure, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal in the various methods of the embodiments of the present disclosure , for the sake of brevity, it is not repeated here.
  • the computer-readable storage medium can be applied to the digital twin application in the embodiments of the present disclosure, and the computer program enables the computer to execute the corresponding processes implemented by the digital twin application in the various methods of the embodiments of the present disclosure , for the sake of brevity, it is not repeated here.
  • An embodiment of the present disclosure also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the core network device in the embodiments of the present disclosure, and the computer program instructions cause the computer to execute the corresponding processes implemented by the core network device in the various methods of the embodiments of the present disclosure, for the sake of brevity , which will not be repeated here.
  • the computer program product can be applied to the mobile terminal/terminal in the embodiments of the present disclosure, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal in the various methods of the embodiments of the present disclosure, For the sake of brevity, details are not repeated here.
  • the computer program product can be applied to the digital twin application in the embodiments of the present disclosure, and the computer program instructions cause the computer to execute the corresponding processes implemented by the digital twin application in the various methods of the embodiments of the present disclosure, For the sake of brevity, details are not repeated here.
  • the embodiment of the present disclosure also provides a computer program.
  • the computer program can be applied to the core network device in the embodiments of the present disclosure.
  • the computer program executes the corresponding functions implemented by the core network device in the various methods of the embodiments of the present disclosure. For the sake of brevity, the process will not be repeated here.
  • the computer program can be applied to the mobile terminal/terminal in the embodiments of the present disclosure.
  • the computer program executes the various methods of the embodiments of the present disclosure to be implemented by the mobile terminal/terminal For the sake of brevity, the corresponding process will not be repeated here.
  • the computer program can be applied to the digital twin application in the embodiments of the present disclosure.
  • the computer program can execute the various methods of the embodiments of the present disclosure to be realized by the digital twin application. For the sake of brevity, the corresponding process will not be repeated here.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present disclosure is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供了一种数据传输方法、相关设备、计算机可读存储介质及计算机程序产品。属于通信技术领域,所述方法由数字孪生应用端执行,方法包括:从无线网络的第一核心网网元接收无线网络的网络状态通知消息,网络状态通知消息指示无线网络处于第一网络状态;根据网络状态通知消息中的第一网络状态,确定无线网络的第一服务质量要求;通过无线网络,以第一信息传输速率接收终端获取的物理实体的属性信息,第一信息传输速率与第一服务质量要求相匹配;根据以第一信息传输速率接收到的物理实体的属性信息构建或更新物理实体对应的数字孪生体。

Description

数据传输方法、相关设备、计算机可读存储介质及计算机程序产品
相关申请的交叉引用
本申请基于申请号为202210023805.2、申请日为2022年1月10日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及通信技术领域,具体而言,涉及一种数据传输方法、相关设备、计算机可读存储介质及计算机程序产品。
背景技术
数字孪生(Digital Twin),是充分利用物理模型、传感器更新、运行历史等数据,集成多学科、多物理量、多尺度、多概率的仿真过程,主要是通过对物理世界中的事件(物体,目标等)进行数字化模拟,来构建一个数字世界中一模一样的实体,藉此来实现对物理实体的了解、分析和优化的过程。在产品的设计阶段,利用数字孪生可以提高设计的准确性,并验证产品在真实环境中的性能。
在相关技术提供的方案中,数字孪生***都因为缺乏实时交互,因此无法用于安全预警等实时交通应用。
发明内容
本公开实施例提供一种数据传输方法、数字孪生应用端、终端、通信设备、计算机可读存储介质及计算机程序产品,能够使得数字孪生应用端自适应地根据无线网络的网络状态,调节终端向无线网络传输物理实体的属性信息的信息传输速率。
本公开实施例提供一种数据传输方法,所述方法由数字孪生应用端执行,所述方法包括:从无线网络的第一核心网网元接收所述无线网络的网络状态通知消息,所述网络状态通知消息指示所述无线网络处于第一网络状态;根据所述网络状态通知消息中的第一网络状态,确定所述无线网络的第一服务质量要求;通过所述无线网络,以第一信息传输速率接收终端获取的物理实体的属性信息,所述第一信息传输速率与所述第一服务质量要求相匹配;根据以所述第一信息传输速率接收到的所述物理实体的属性信息构建或更新所述物理实体对应的数字孪生体。
本公开实施例提供一种数据传输方法,所述方法由终端执行,所述方法包括:根据无线网络的第一服务质量要求,确定与所述第一服务质量要求匹配的第一信息传输速率,所述第一服务质量要求是根据所述无线网络所处的第一网络状态确定的;将获取的物理实体的属性信息,采用所述第一信息传输速率并通过所述无线网络传输至数字孪生应用端;以所述第一信息传输速率传输的所述物理实体的属性信息用于构建或更新所述物理实体对应的数字孪生体。
本公开实施例提供一种数字孪生应用端,包括:接收单元,配置为从无线网络的第一核心网网元接收所述无线网络的网络状态通知消息,所述网络状态通知消息指示所述无线网络处于第一网络状态;处理单元,配置为根据所述网络状态通知消息中的第一网络状态,确定所述无线网络的第一服务质量要求;所述接收单元还配置为通过所述无线网络,以第一信息传输速率接收终端获取的物理实体的属性信息,所述第一信息传输速率与所述第一服务质量要求相匹配;所述处理单元还配置为根据以所述第一信息传输速率接收到的所述物理实体的属性信息构建或更新所述物理实体对应的数字孪生体。
本公开实施例提供一种终端,包括:处理单元,配置为根据无线网络的第一服务质量要求,确定与所述第一服务质量要求匹配的第一信息传输速率,所述第一服务质量要求是根据所述无线网络所处的第一网络状态确定的;发送单元,配置为将获取的物理实体的属性信息,采用所述第一信息传输速率并通过所述无线网络传输至数字孪生应用端;以所述第一信息传输速率传输的所述物理实体的属性信息用于构建或更新所述物理实体对应的数字孪生体。
本公开实施例提供了一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现如上述实施例中所述的数据传输方法。
本公开实施例提供了一种通信设备,包括:一个或多个处理器;存储器,配置为存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行时,使得所述通信设备实现如上述实施例中所述的数据传输方法。
本公开实施例还提供了一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现如上述实施例中所述的数据传输方法。
通过本公开实施例提供的方案,根据与无线网络的网络状态匹配的物理实体的属性信息来构建数字孪生体或者更新已经创建的数字孪生体,使得数字孪生体自适应地根据无线网络的网络状态进行适配,保证数据的实时性传输,从而能够支持安全预警等实时交通应用。
附图说明
图1是本公开实施例提供的一种通信***架构的示意图。
图2示意性示出了根据本公开的一实施例的数据传输方法的流程图。
图3示意性示出了根据本公开的一实施例的数据传输方法的应用场景示意图。
图4示意性示出了根据本公开的一实施例的支持实时数字孪生的自适应无线网络的架构示意图。
图5示意性示出了根据本公开的一实施例的表征方法的调节的示意图。
图6示意性示出了根据本公开的一实施例的改变信息采集和传输机制后通过更新协议数据单元(Protocol Data Unit,PDU)会话来传输的示意图。
图7示意性示出了根据本公开的一实施例的改变信息采集和传输机制后通过原有PDU会话中不同的服务质量(Quality of Service,QoS)流来传输的流程图。
图8示意性示出了根据本公开的另一实施例的数据传输方法的流程图。
图9示意性示出了根据本公开的一实施例的数字孪生应用端的框图。
图10示意性示出了根据本公开的一实施例的终端的框图。
图11示意性示出了根据本公开的一实施例的通信设备的示意性结构图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本公开将更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。
本公开实施例的技术方案可以应用于各种通信***,例如:4G、5G以及5G演进***等。
示例性的,本公开实施例应用的通信***100如图1所示。该通信***100可以包括网络设备110,网络设备110可以是与终端120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端进行通信。
该通信***100还包括位于网络设备110覆盖范围内的至少一个终端120。作为在此使用的“终端”包括但不限于经由有线线路连接;和/或另一数据连接/网络;和/或经由无线接口;和/或另一终端的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。终端可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。
在一些实施例中,5G***或5G网络还可以称为新无线(New Radio, NR)***或NR网络。
图1示例性地示出了一个网络设备和两个终端,在一些实施例中,该通信***100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端,本公开实施例对此不做限定。
在一些实施例中,该通信***100还可以包括网络控制器、移动管理实体等其他网络实体,本公开实施例对此不作限定。
应理解,本公开实施例中网络/***中具有通信功能的设备可称为通信设备。以图1示出的通信***100为例,通信设备可包括具有通信功能的网络设备110和终端120,网络设备110和终端120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信***100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本公开实施例中对此不做限定。
应理解,本文中术语“***”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
图2实施例提供的方法可以由数字孪生应用端执行。本公开实施例中,数字孪生应用端可以包括安装有数字孪生应用的任意电子设备,例如终端和/或服务器,这里的服务器可以是应用服务器,该数字孪生应用端可以通过网元例如应用功能(Application Function,AF)网元与无线网络进行交互,通过无线网络接收终端采集的物理世界的物理实体的属性信息,将属性信息映射成与之对应的数字世界的数字孪生体,并可以通过该数字孪生应用展示。
如图2所示,本公开实施例提供的方法可以包括:
在S210中,从无线网络的第一核心网网元接收所述无线网络的网络状态通知消息。
其中,所述网络状态通知消息指示所述无线网络处于第一网络状态。
本公开实施例中,第一核心网网元可以是网络数据分析功能(Network Data Analytics Function,NWDAF)网元,但本公开并不限定于此,第一核心网网元可以是核心网设备中任意具有统计分析和/或预测分析功能的网元,下面的实施例中,均以NWDAF网元进行举例说明。
本公开实施例中,NWDAF网元可以实时预测分析无线网络所处的网络状态,无线网络所处的网络状态可以反映无线网络的资源状况,例如带宽是否不足等。NWDAF网元可以将实时预测分析的无线网络的网络状态通过AF网元反馈至数字孪生应用端。
作为示例,网络状态的类型可以是多样化的,例如可以区分为带宽充足和带宽不足两种类型,其中,带宽不足也可以进一步区分为网络带宽稍有不足、网络带宽比较不足和网络带宽严重不足三种类型。
网络状态的不同类型,可以通过设置可用网络带宽(即无线网络当前可供使用的空闲的网络带宽)的取值空间来识别,例如,以网络带宽的单位为兆比特每秒(Mbps,Megabits per second)为例,可以设定网络带宽充足对应的取值空间为【1000,2000】,网络带宽不足对应的取值空间为【0,999】,其中,网络带宽严重不足的取值空间为【0,333】,网络比较带宽不足的取值空间为【334,666】,网络带宽稍有不足的取值空间为【667,999】。
上述网络带宽的类型划分是从可用网络的带宽的维度划分的,作为替代方案,可以从接入无线网络的平均可用网络带宽的维度划分,其中,平均可用网络带宽是无线网络的可用网络带宽与当前接入的数字孪生应用端的数量的比值,通过数字孪生应用端的能够使用的网络带宽的角度区分无线网络的网络状态,能够更加准确的反映出无线网络针对数字孪生应用端的通信的承载能力的变化。
在示例性实施例中,所述网络状态通知消息可以指示所述无线网络从第二网络状态改变至所述第一网络状态。其中,在从无线网络的第一核心网网元接收所述无线网络的网络状态通知消息之前,所述方法还可以包括:根据所述第二网络状态,确定所述无线网络的第二服务质量要求;通过处于所述第二网络状态的无线网络,以第二信息传输速率接收终端获取的物理实体的属性信息,所述第二信息传输速率与所述第二服务质量要求相匹配;根据以所述第二信息传输速率接收到的所述物理实体的属性信息构建或更新所述物理实体对应的数字孪生体。
本公开实施例中,假设初始时无线网络处于第二网络状态,例如带宽充足的状态,此时,AF网元可以根据第二网络状态生成第二服务质量(Quality of Service,QoS)要求,该第二QoS要求是与第二网络状态相适应的,第二QoS要求中可以包括与第二网络状态相对应的带宽、时延、抖动等要求。负责采集物理世界的物理实体的终端可以根据该第二QoS要求,自适应地以与第二QoS要求相匹配的第二信息传输速率,来传输AF网元采集的物理世界的物理实体的属性信息,以实现将终端采集的物理世界的物理实体的属性信息实时地传输至数字孪生应用端,以此实现将物理世界的物理实体实时的映射至数字世界对应的数字孪生体,因此,也可以将本公开实施例中的数字孪生应用称之为实时数字孪生应用。
当NWDAF网元通过对无线网络的网络状态的预测分析,监测到无线网络从上述第二网络状态改变至第一网络状态,例如从带宽充足的状态改变至带宽不足的状况,则NWDAF网元可以向AF网元发送该网络状态通知消息,以告知AF网元此时无线网络的网络状态发生了改变,AF网元可以根据该第一网络状态生成第一QoS要求,该第一QoS要求是与第一网络状态相适应的,第一QoS要求中可以包括与第一网络状态相对应的带宽、时延、抖动等要求。负责采集物理世界的物理实体的终端可以根据该第一QoS要求,自适应地以与第一QoS要求相匹配的第一信息传输速率,来传 输终端采集的物理世界的物理实体的属性信息,以实现将终端采集的物理世界的物理实体的属性信息实时地传输至数字孪生应用端,以此实现将物理世界的物理实体实时的映射至数字世界对应的数字孪生体,即本公开实施例提供的实时数字孪生应用根据自适应地根据无线网络的网络状态的变化,改变终端传输所采集的物理世界的物理实体的属性信息的信息传输速率。
可以理解的是,在一些实施例中,在从无线网络的第一核心网网元接收所述无线网络的网络状态通知消息之前,数字孪生应用端可以未以第二信息传输速率接收该终端获取的物理实体的属性信息,即第一信息传输速率是根据第一服务质量要求来确定的,不是通过调节第二信息传输速率来确定的。
在一些实施例中,上述终端具体可以包括但不限于:智能手机、平板电脑、电子书阅读器、动态影像专家压缩标准音频层面3(Moving Picture Experts Group Audio Layer III,MP3)播放器、动态影像专家压缩标准音频层面4(Moving Picture Experts Group Audio Layer IV,MP4)播放器、膝上型便携计算机、车载电脑、台式计算机、机顶盒、智能电视机、可穿戴设备、物联网中的各类传感器等等。可以理解,本公开实施例对于具体的终端不加以限制。
在示例性实施例中,所述方法还可以包括:向所述第一核心网网元发送订阅网络状态预测服务请求消息;接收所述第一核心网网元返回的订阅网络状态预测服务响应消息。
本公开实施例中,数字孪生应用端可以通过AF网元向NWDAF网元发送订阅网络状态预测服务请求消息,以请求该NWDAF网元预测分析无线网络的网络状态,并在预测分析无线网络的网络状态发生改变时,向该AF网元发送网络状态通知消息,该订阅网络状态预测服务请求消息可以携带AF网元的信息和/或该数字孪生应用端的信息,例如AF标识(IDentity,ID)和/或该数字孪生应用端的ID,NWDAF网元接收到该订阅网络状态预测服务请求消息之后,可以根据该订阅网络状态预测服务请求消息携带的AF网元的信息和/或该数字孪生应用端的信息进行鉴权,若鉴权通过,则可以向AF网元返回订阅成功的订阅网络状态预测服务响应消息;若鉴权未通过,则可以向AF网元返回订阅失败的订阅网络状态预测服务响应消息。这里假设AF网元接收到的是订阅成功的订阅网络状态预测服务响应消息,即该NWDAF网元预测分析无线网络的网络状态,并在预测分析无线网络的网络状态发生改变时,向该AF网元发送网络状态通知消息。反之,若AF网元接收到的是订阅失败的订阅网络状态预测服务响应消息,则结束本次操作。
在S220中,根据所述网络状态通知消息中的第一网络状态,确定所述无线网络的第一服务质量要求。
在示例性实施例中,所述第二信息传输速率可以根据所述属性信息采用的第二表征方式、第二表征信息量以及第二表征信息频度等确定。其中,根据所述网络状态通知消息中的第一网络状态,确定所述无线网络的第一服务质量要求,可以包括:根据所述第一网络状态,调节所述第二服务质量要求中的带宽、时延、抖动等中的至少一项,得到所述第一服务质量要求。所述第一服务质量要求可以用于调节所述第二表征方式、所述第二表征信息量以及所述第二表征信息频度等中的至少一项,以得到第一表征方式、第一表征信息量以及第一表征信息频度中的至少一项,其中,所述第一表征方式、所述第一表征信息量以及所述第一表征信息频度可以用于确定所述第一信息传输速率。
例如,终端可以用于根据所述第一服务质量要求调节所述第二表征方式、所述第二表征信息量以及所述第二表征信息频度等中的至少一项,确定第一表征方式、第一表征信息量以及第一表征信息频度中的至少一项,根据所述第一表征方式、所述第一表征信息量以及所述第一表征信息频度中的至少一项确定所述第一信息传输速率。
本公开实施例中,表征方式表示采用何种方式来表示终端所采集的物理世界的物理实体的属性信息。假设初始时采用第二表征方式来表示终端所采集的物理世界的物理实体的属性信息。表征信息量是指在确定采用何种表征方式来表示终端所采集的物理世界的物理实体的属性信息的情况下,采用何种信息量来表达该种表征方式表示的物理世界的物理实体的属性信息。假设初始时采用第二表征信息量来表达第二表征方式表示的物理世界的物理实体的属性信息。表征信息频度是指终端向无线网络传输该物理世界的物理实体的属性信息的频度(例如频率或次数),假设初始时采用第二表征信息频度传输该物理世界的物理实体的属性信息的频度。第二信息传输速率可以根据第二表征方式、第二表征信息量以及第二表征信息频度来确定,因此,在无线网络从第二网络状态改变至第一网络状态时,可以通过调节第二表征方式、第二表征信息量以及第二表征信息频度中的任意一者或者多者来将第二信息传输速率调节至第一信息传输速率,以与改变之后的第一QoS要求相匹配。
本公开实施例中,若第二表征方式可以与第一表征方式相同,也可以不同;第二表征信息量可以与第一表征信息量相同,也可以不同;第二表征信息频度可以与第一表征信息频度相同,也可以不同,取决于调节的是第二表征方式、第二表征信息量以及第二表征信息频度中的一个还是多个。
在S230中,通过所述无线网络,以第一信息传输速率接收终端获取的物理实体的属性信息,所述第一信息传输速率与所述第一服务质量要求相匹配。
例如,当第一QoS要求中的带宽降低时,自适应地降低第一信息传输速率,使第一信息传输速率与第一QoS要求中的带宽相适配。
作为适配的示例,第一信息传输速率可以第一QoS要求中的带宽保持固定的比例。
物理实体可以为物理世界中待监测的任意物体,例如,物理实体对应的应用领域可以包括:卫星/空间通信网络、船舶、车辆、发电厂、飞机、机电装备、仓库、医疗、制造车间、智慧城市、智能交通等。例如,智能交通领域对应的物理实体可以包括:交通信号灯、道路、车辆、行人等。
在S240中,根据以所述第一信息传输速率接收到的所述物理实体的属性信息构建或更新所述物理实体对应的数字孪生体。
物理实体的属性信息可以是用于描述该物理实体的任意信息,该属性信息随着应用领域、物理实体的不同而不同,本公开实施例对此不做限定,数字孪生应用可以依据上述属性信息,确定物理实体对应的数字孪生体。
本公开实施例中,可以预先在数字世界构建物理实体对应的数字孪生体,数字孪生应用端可以根据实时接收到物理实体的属性信息动态更新或校正该预先构建的数字孪生体。在其他实施例中,数字孪生应用端也可以根据实时接收到物理实体的属性信息构建对应的数字孪生体。
本公开实施方式提供的数据传输方法,数字孪生应用端可以根据无线网络的网络状态,例如无线网络的资源状况,自适应地改变数字孪生应用的具体方法,例如,终端采集的物理世界的物理实体的属性信息的信息传输速率可以自动进行调节,从而来适配无线网络当前的第一网络状态,这就使得数字孪生应用可以实时地获取物理实体的属性信息,即实现了实时的数字孪生应用,能够应用于一些需要支持安全预警等的实时交通应用场景中。
下面以将本公开实施例提供的方案应用于实时交通应用场景进行举例说明,但本公开提供的方案可以应用于任意利用数字孪生对物理实体进行实时监测的场景,本公开实施例对此不做限定。
智能交通***(Intelligent Traffic System,ITS)又称智能运输***(Intelligent Transportation System),是将先进的科学技术(信息技术、计算机技术、数据通信技术、传感器技术、电子控制技术、自动控制理论、运筹学、人工智能等)有效地综合运用于交通运输、服务控制和车辆制造,加强车辆、道路、使用者三者之间的联系,从而形成一种保障安全、提高效率、改善环境、节约能源的综合运输***。
智能车路协同***(Intelligent Vehicle Infrastructure Cooperative Systems,IVICS),简称车路协同***,是智能交通***(ITS)的一个发展方向。车路协同***是采用先进的无线通信和新一代互联网等技术,全方位实施车车、车路动态实时信息交互,并在全时空动态交通信息采集与融合的基础上开展车辆主动安全控制和道路协同管理,充分实现人车路的有效协同,保证交通安全,提高通行效率,从而形成的安全、高效和环保的道路交通***。
实时数字孪生在交通场景下的示意如图3所示。
如图3所示,物理世界310中的行人(311,312)、车(313,317)、路318、树314、骑自行车的人315、骑摩托车的人316、交通信号灯319、摄像头3110等目标(即物理实体),可以进行数字化后,通过无线网络320(针对可移动的目标,例如行人,可以采用无线网络320,但并不限定于此)或者有线网络(针对固定的目标,例如交通信号灯、摄像头等,可以采用有线网络,但并不限定于此)与孪生的数字世界(孪生世界330)中的对象形成对应的数字孪生体,例如行人(311,312)对应的数字孪生体(331,332),车(313,317)对应的数字孪生体(333,337),路318对应的数字孪生体338,树314对应的数字孪生体334,骑自行车的人315对应的数字孪生体335,骑摩托车的人316对应的数字孪生体336,交通信号灯319对应的数字孪生体339,摄像头3110对应的数字孪生体3310。
图3实施例中,可以采用物联端作为采集物理世界310中的物理实体的属性信息的终端,物联端可以通过有线网络或无线网络320与数字孪生应用端进行数据交互。
物联端可用于采集物理实体(也可简称为实体)对应的属性信息,并向数字孪生应用端上报上述属性信息。以物理实体为车辆为例,其对应的属性信息可以包括:位置、速度等。可以理解,本公开实施例对具体的属性信息不加以限制。
在本公开的一种可选实施例中,物联端可以包括:物联模块。物联模块可以包括:数据传输单元(Data Transfer unit,DTU)、边缘网关、或者通讯模组等,通讯模组可以包括:蓝牙模组、无线保真(WiFi)模组、或远距离无线电(Long Range Radio,LoRa)模组等。
DTU是专门用于将串口数据转换为网际互联协议(Internet Protocol,IP)数据或将IP数据转换为串口数据,通过无线通信网络进行传送的无线终端设备。
数字孪生体与车辆保持实时或频繁数据同步,即车辆定时通知数字孪生体的位置、速度和驾驶行为信息等属性信息/状态信息,数字孪生体及时了解车辆移动位置、速度和驾驶行为信息等属性信息。
例如,该物联端可以是位于车辆上的车载端。车载端可以通过各种传感器感知本车的周围环境和道路状况,并将感知的属性信息通过车载通信设备或车载手机设备通过无线网络,如蜂窝网、路边WiFi等,实时传递给数字孪生应用端;数字孪生应用端根据接收到的属性信息为本车创建一个对应的数字孪生体。其中,传感器可以包括:毫米波雷达、激光雷达、超声波雷达、摄像头、全球导航卫星***(Global Navigation Satellite System,GNSS)以及惯性传感器等。
物理世界中的每个目标的刻画和描述所需要的信息量,以及这些信息量同步给数字世界中的数字孪生体的频度,都会影响到无线网络传输的信 息量,对无线网络来说,则需要的是带宽资源。
以5G网络为例,假定在一个5G小区内有N(N为大于或等于1的正整数)个目标需要进行实时数字孪生,第i个目标表示为O i(i为大于或等于1且小于或等于N的整数),第i个目标的参数假设有M i个,M i为大于或等于1的整数,第i个目标的第j个参数进行表征需要的字节量假设为
Figure PCTCN2022132029-appb-000001
j为大于或等于1且小于或等于M i的整数,第i个目标的第j个参数的信息更新频度假设为
Figure PCTCN2022132029-appb-000002
则每秒钟产生的速率V (t)可以表述为:
Figure PCTCN2022132029-appb-000003
上述每秒钟产生的速率也可以称之为信息传输速率,可以包括上述第一信息传输速率和第二信息传输速率。可以理解的是,实际的信息传输速率可以采用其它计算公式计算,例如进行积分等,本公开实施例对此不做限定。
由于核心网的容量完全能满足空口最高速率,则空口的容量无法满足V (t)函数的峰值需要,则网络无法支持把物理世界的目标的参数状态(属性信息)全部在数字孪生网络中进行实时的复现。
如图5所示,将物理世界的目标的属性信息在孪生世界中同步呈现可以采用不同的方法(称之为表征方式或者表征方法),例如通过雷达扫描得到物理实体的点云数据,或者通过摄像头或视觉传感器拍摄的目标的视频图像数据(即视频数据或者图像数据,也可表示为图像/视频),再通过图像和图片处理方式进行目标识别后,得到物理实体的结构化数据进行传输,或者直接传输所拍摄的物理实体的视频图像数据,或者用语义描述物理实体。点云数据、视频图像数据、结构化数据以及语义数据等,这些方式都可以传输实时数字孪生应用端所需的物理实体的属性信息,这些不同表征方法所需要的网络传输数据量可以是不同的。
基于以上考虑,本公开实施例提出如图4所示的支持实时数字孪生的自适应无线网络架构。
如图4所示,本公开实施例提供了一种支持实时数字孪生的无线网络自适应架构,在该架构中,实时数字孪生应用可以根据无线网络的资源状况改变实时数字孪生应用的具体方法,例如,实时数字孪生的物理实体的属性信息/状态信息描述的粒度(例如将第二表征信息量调节为第一表征信息量)和时间频度(例如将第二表征信息频度调节为第一表征信息频度)可以进行调整,从而来适配无线网络当前的第一网络状态。
如图4所示,实时数字孪生应用600可以用于数字世界的数字孪生体重建及状态维护,实时数字孪生应用600可以通过AF网元610与5G核心网(5G Core,5GC)网络500(即图4中的5G无线网络)进行交互,AF网元610可以向策略控制功能(Policy Control Function,PCF)/网络开放功 能(Network Exposure Function,NEF)网元510提供实时数字孪生所需要的QoS特性(例如第二QoS要求),5G无线网络500通过建立第一PDU会话来进行传输。
与此同时,通过NWDAF网元520提供的网络状态预测分析功能,5G无线网络500能够获取网络的实时运行状态,例如NWDAF网元520将获取的网络的实时运行状态发送给用户面功能(User Plane Function,UPF)网元530,如果网络带宽不足,网络的实时运行状态可以从第二网络状态变化至第一网络状态,则可以通过AF网元610与5GC之间的接口,向AF网元610提供反馈信息,例如通过网络状态通知消息提供反馈信息。在图4实施例中,物理世界的目标的属性信息的采集功能400作为端侧,数字世界的重现应用作为应用侧AF。
AF网元610收到NWDAF网元520反馈的5G网络带宽不足的反馈信息后,提供给实时数字孪生应用模块,根据当前的带宽数量(第一QoS要求中的一个参数),可以进行以下三方面中的任意一种或者多种的应用层调节:
第一方面,表征方法的调节,包括但不限于以下几种:
1.点云数据:对对象/实体的三维(3-dimension,3D)轮廓进行描述,并把点云数据通过网络发送数字孪生;
2.视频图像数据:直接拍摄物理世界的目标的图像和/或视频数据,传送到数字孪生应用端进行孪生处理;
3.结构化数据:通过AI(Artificial Intelligence,人工智能)识别出对象,作为结构化数据进行描述,比如,描述对象的类型、尺寸、参数等;
4.语义:直接进行语义方式通信。
第二方面,表征信息量的调节实现信息量的控制:
1.参数分类;
2.描述粒度的调节,例如点云数据的粒度可以调节;
3.属性信息的编码格式可以调节;
4.其他,例如视频和图像的分辨率可以调节。
第三方面,表征信息频度及可靠性/同步性(也可称之为实时性)要求实现信息量的控制:
1.信息发送的频度可以调节,频度即单位时间内信息传输的次数要求;
2.实时性/同步性要求可以调节,同步性和可靠性要求是指传输信息时,对收发端的同步精度及可靠性要求,这样的要求越高,需要底层网络提供的超可靠低延时通信(Ultra Reliable Low Latency Communications,URLLC)来传输资料的延迟越小。
需要说明的是,以上几个方面的调节内容,可以单个调节,也可以多个方面同时调节。
例如,以物理实体为车为例,则可以采用点云数据描述车的三维轮廓、 用摄像头或视觉传感器拍摄车的视频图像数据、通过AI处理该车的视频图像数据获得该车的结构化数据,或者直接用文本“车”来描述车的语义,并假设点云数据、视频图像数据、结构化数据以及语义描述所需的信息量依次递减,则假设初始是无线网络的带宽充足,采用点云数据描述车的属性信息(即假设采用第二表征方式),之后NWDAF网元监测到无线网络的网络带宽不足,则AF网元可以根据改变之后的网络带宽来选择相应的第一QoS要求,以使得终端确定采用何种表征方式作为第一表征方式,例如若网络带宽严重不足,则可以选择语义来表示;若网络带宽稍有不足,则可以选择视频图像数据来表示;若网络带宽比较不足,则可以选择结构化数据来表示。
需要说明的是,点云数据、视频图像数据、结构化数据以及语义描述同一物理实体所需的信息量不一定是上述举例的依次递减的情况,可以根据实际情况来确定每种不同表征方式所需的信息量。
再例如,还是以物理实体为车为例,假设第一表征方式和第二表征方式均为点云数据,且当NWDAF网元监测到无线网络带宽不足时,则AF网元可以根据改变之后的网络带宽来选择相应的第一QoS要求,以使得终端确定采用何种表征信息量作为第一表征信息量,例如若网络带宽不足,则可以降低点云数据的粒度以适配此时的网络带宽。
再例如,还是以物理实体为车为例,假设第一表征方式和第二表征方式均为视频图像数据,且当NWDAF网元监测到无线网络带宽不足时,则AF网元可以根据改变之后的网络带宽来选择相应的第一QoS要求,以使得终端确定采用何种表征信息量作为第一表征信息量。
例如若网络带宽不足,则可以降低视频图像数据的分辨率以适配此时的网络带宽,作为示例,可以将视频图像数据的分辨率从2K分辨率(2560*1440像素)下调为1080P(1080P的分辨率为1920*1080像素),从而可以减少单位时间内生成的视频图像数据的数据量,以减少占用的网络带宽。
再例如,还是以物理实体为车为例,假设第一表征方式和第二表征方式均为视频图像数据,且当NWDAF网元监测到无线网络带宽不足时,则AF网元可以根据改变之后的网络带宽来选择相应的第一QoS要求,以使得终端确定采用何种表征信息量作为第一表征信息量,例如若网络带宽不足,则可以将之前采用的第二编码格式调节为第一编码格式以适配此时的网络带宽。
其中,第一编码格式的编码参数(例如,比特率、帧率、分辨率)低于第二编码格式的编码参数,从而可以减少单位时间内生成的视频图像数据的数据量,以减少占用的网络带宽。
再例如,还是以物理实体为车为例,假设第一表征方式和第二表征方式均为视频图像数据,且当NWDAF网元监测到无线网络带宽不足时,则 AF网元可以根据改变之后的网络带宽来选择相应的第一QoS要求,以使得终端确定采用何种表征信息频度作为第一表征信息频度。
例如,若网络带宽不足,则可以将之前的第二表征信息频度降低为第一表征信息频度以适配此时的网络带宽,作为示例,第二表征信息频度为每分钟上报10次,第一表征信息频度为每分钟上报5次,从而可以减少单位时间内表征信息的上报次数,以减少占用的网络带宽。
在图6所示的实施例中,可以在改变信息采集和传输机制后,通过更新PDU会话来传输所采集的物理实体的属性信息。
如图6所示,5GC网元可以包括UPF、NWDAF、PCF和NEF。
如图6所示,可以包括:
在S61中,UE/物理世界采集端通过PDU会话(可以称之为第一PDU会话)把从物理世界采集的数据传输到数字孪生应用侧(AF及数字孪生应用端的数字孪生应用)。
UE/物理世界采集端可以通过基站和UPF网元将从物理世界采集的数据传输到数字孪生应用侧。
在S62中,AF网元通过PCF/NEF网元提供对网络的QoS要求(称之为第二QoS要求,初始配置)。
在S63中,AF网元向NWDAF订阅网络状态预测服务。
S63可以包括AF网元向NWDAF发送订阅网络状态预测服务请求消息;NWDAF接收该订阅网络状态预测服务请求消息,并生成订阅网络状态预测服务响应消息。NWDAF将该订阅网络状态预测服务响应消息发送至AF网元,AF网元接收该订阅网络状态预测服务响应消息。
在S64中,NWDAF网元发现网络状态改变。
例如从第二网络状态改变至第一网络状态。
在S65中,NWDAF网元将网络状态改变通过网络状态通知消息通知到AF网元。
在S66中,应用层改变物理目标的采集和信息表征方式、粒度、频度等信息,即AF网元可以根据第一网络状态将第二QoS要求改变为第一QoS要求,以使得UE/物理世界采集端从S61的第二信息传输速率改变至第一信息传输速率,以适配第一QoS要求。
在S67中,UE/物理世界采集端触发PDU会话修改流程。
UE/物理世界采集端可以根据修改后的第一QoS要求触发第一PDU会话的PDU会话修改流程,建立新的PDU会话,称之为第二PDU会话。
在S68中,UE/物理世界采集端可以通过新的PDU会话把从物理世界采集的数据传输到数字孪生应用侧。
可以理解的是,上述S61和S62是可以缺省的,即并不一定要求AF网元初始配置第二QoS要求,也不要求UE/物理世界采集端基于第二信息传输速率进行调节获得第一信息传输速率。
在图7所示的实施例中,可以在改变信息采集和传输机制后,通过原有PDU会话(第一PDU会话)中不同的QoS流来传输所采集的物理实体的属性信息。
如图7所示,可以包括:
在S71中,UE/物理世界采集端通过PDU会话(可以称之为第一PDU会话)把从物理世界采集的数据传输到数字孪生应用侧(AF及数字孪生应用端的数字孪生应用)。
UE/物理世界采集端可以通过基站和UPF网元将从物理世界采集的数据传输到数字孪生应用侧。
在S72中,AF网元通过PCF/NEF网元提供对网络的QoS要求(称之为第二QoS要求,初始配置)。
在S73中,AF网元向NWDAF订阅网络状态预测服务。
S73可以包括AF网元向NWDAF发送订阅网络状态预测服务请求消息;NWDAF接收该订阅网络状态预测服务请求消息,并生成订阅网络状态预测服务响应消息。NWDAF将该订阅网络状态预测服务响应消息发送至AF网元,AF网元接收该订阅网络状态预测服务响应消息。
在S74中,NWDAF网元发现网络状态改变。
例如从第二网络状态改变至第一网络状态。
在S75中,NWDAF网元将网络状态改变通过网络状态通知消息通知到AF网元。
在S76中,应用层改变物理目标的采集和信息表征方式、粒度、频度等信息,即AF网元可以根据第一网络状态将第二QoS要求改变为第一QoS要求,以使得UE/物理世界采集端从S71的第二信息传输速率改变至第一信息传输速率,以适配第一QoS要求。
在S77中,UE/物理世界采集端触发QoS流参数修改流程。
UE/物理世界采集端可以根据修改后的第一QoS要求触发第一PDU会话的会话内QoS流参数修改流程。
在S78中,UE/物理世界采集端可以通过PDU会话(即第一PDU会话)内的更新的QoS流把从物理世界采集的数据传输到数字孪生应用侧。
可以理解的是,上述S71和S72是可以缺省的,即并不一定要求AF网元初始配置第二QoS要求,也不要求UE/物理世界采集端基于第二信息传输速率进行调节获得第一信息传输速率。
可以理解的是,虽然上述实施例以5G无线网络进行举例说明,但本公开实施例并不限定于此,例如本公开实施例提供的方案还可以通过6G无线网络等通信***来实现,且上述举例说明中所采用的UPF、NWDAF、PCF、NEF、AF等网元随着网络技术的发展,可以具有不同的命名,不应因此限定本公开的保护范围。
图8实施例提供的数据传输方法可以由终端执行。
如图8所示,本公开实施例提供的方法可以包括:
在S810中,根据无线网络的第一服务质量要求,确定与所述第一服务质量要求匹配的第一信息传输速率,所述第一服务质量要求可以是根据所述无线网络所处的第一网络状态确定的。
例如,数字孪生应用端可以用于根据所述无线网络所处的第一网络状态确定所述第一服务质量要求。
在示例性实施例中,根据无线网络的第一服务质量要求,确定与所述第一服务质量要求匹配的第一信息传输速率之前,所述方法还可以包括:根据所述无线网络的第二服务质量要求,确定与所述第二服务质量要求匹配的第二信息传输速率,所述第二服务质量要求可以是根据所述无线网络所处的第二网络状态确定的;将获取的物理实体的属性信息,采用所述第二信息传输速率并通过所述无线网络传输至所述数字孪生应用端。以所述第二信息传输速率传输的所述物理实体的属性信息可以用于构建或更新所述物理实体对应的数字孪生体。
在示例性实施例中,根据所述无线网络的第二服务质量要求,确定与所述第二服务质量要求匹配的第二信息传输速率,可以包括:根据所述第二服务质量要求,确定第二表征方式、第二表征信息量以及第二表征信息频度;根据所述第二表征方式、所述第二表征信息量以及所述第二表征信息频度确定所述第二信息传输速率。
其中,根据无线网络的第一服务质量要求,确定与所述第一服务质量要求匹配的第一信息传输速率,可以包括:根据所述第一服务质量要求,调节所述第二表征方式、所述第二表征信息量以及所述第二表征信息频度中的至少一项,以确定第一表征方式、第一表征信息量以及第一表征信息频度中的至少一项;根据所述第一表征方式、所述第一表征信息量以及所述第一表征信息频度中的至少一项,确定所述第一信息传输速率。
在示例性实施例中,所述第一表征方式和所述第二表征方式可以包括但不限于以下中的至少一项:所述物理实体的点云数据;所述物理实体的视频图像数据;所述物理实体的结构化数据;所述物理实体的语义数据。
在示例性实施例中,所述第一表征信息量和所述第二表征信息量可以包括但不限于以下中的至少一项:所述物理实体的点云数据的粒度;所述物理实体的视频图像数据的分辨率;所述物理实体的属性信息的编码格式。
在示例性实施例中,根据所述无线网络的第二服务质量要求,确定与所述第二服务质量要求匹配的第二信息传输速率,可以包括:根据所述第二服务质量要求,确定第二表征方式、第二表征信息量、第二表征信息频度、第二可靠性要求以及第二同步性要求;根据所述第二表征方式、所述第二表征信息量、所述第二表征信息频度、所述第二可靠性要求以及所述第二同步性要求确定所述第二信息传输速率。
其中,根据无线网络的第一服务质量要求,确定与所述第一服务质量 要求匹配的第一信息传输速率,可以包括:根据所述第一服务质量要求,调节所述第二表征方式、所述第二表征信息量、所述第二表征信息频度、所述第二可靠性要求以及所述第二同步性要求中的至少一项,以确定第一表征方式、第一表征信息量、第一表征信息频度、第一可靠性要求以及第一同步性要求;根据所述第一表征方式、所述第一表征信息量、所述第一表征信息频度、所述第一可靠性要求以及所述第一同步性要求确定所述第一信息传输速率。
在S820中,将获取的物理实体的属性信息,采用所述第一信息传输速率并通过所述无线网络传输至数字孪生应用端。以所述第一信息传输速率传输的所述物理实体的属性信息可以用于构建或更新所述物理实体对应的数字孪生体。
例如,数字孪生应用端还可以用于根据以所述第一信息传输速率接收到的所述物理实体的属性信息构建或更新所述物理实体对应的数字孪生体。
在示例性实施例中,将获取的物理实体的属性信息,采用所述第二信息传输速率并通过所述无线网络传输至所述数字孪生应用端,可以包括:通过第一协议数据单元PDU会话,采用所述第二信息传输速率将所述属性信息通过所述无线网络传输至所述数字孪生应用端。
其中,将获取的物理实体的属性信息,采用所述第一信息传输速率并通过所述无线网络传输至所述数字孪生应用端,可以包括:根据所述无线网络的第一服务质量要求,触发所述第一PDU会话的PDU会话修改流程,建立第二PDU会话;通过所述第二PDU会话,采用所述第一信息传输速率将所述属性信息通过所述无线网络传输至所述数字孪生应用端。
在示例性实施例中,将获取的物理实体的属性信息,采用所述第二信息传输速率并通过所述无线网络传输至所述数字孪生应用端,可以包括:通过第一协议数据单元PDU会话,采用所述第二信息传输速率将所述属性信息通过所述无线网络传输至所述数字孪生应用端。
其中,将获取的物理实体的属性信息,采用所述第一信息传输速率并通过所述无线网络传输至所述数字孪生应用端,可以包括:根据所述无线网络的第一服务质量要求,触发所述第一PDU会话的服务质量流参数修改流程,更新所述第一PDU会话内的服务质量流;通过所述第一PDU会话内更新后的所述服务质量流,采用所述第一信息传输速率将所述属性信息通过所述无线网络传输至所述数字孪生应用端。
图8实施例的其它内容可以参照上述其他实施例的内容。
如图9所示,图9实施例提供的数字孪生应用端900可以包括:接收单元910以及处理单元920。
接收单元910可以配置为从无线网络的第一核心网网元接收所述无线网络的网络状态通知消息,所述网络状态通知消息指示所述无线网络处于第一网络状态。
处理单元920可以配置为根据所述网络状态通知消息中的第一网络状态,确定所述无线网络的第一服务质量要求。
接收单元910还可以配置为通过所述无线网络,以第一信息传输速率接收终端获取的物理实体的属性信息,所述第一信息传输速率与所述第一服务质量要求相匹配。
处理单元920还可以配置为根据以所述第一信息传输速率接收到的所述物理实体的属性信息构建或更新所述物理实体对应的数字孪生体。
在示例性实施例中,所述网络状态通知消息可以指示所述无线网络从第二网络状态改变至所述第一网络状态。
其中,处理单元920还可以配置为:在从无线网络的第一核心网网元接收所述无线网络的网络状态通知消息之前,根据所述第二网络状态,确定所述无线网络的第二服务质量要求。接收单元910还可以配置为:通过处于所述第二网络状态的无线网络,以第二信息传输速率接收终端获取的物理实体的属性信息,所述第二信息传输速率与所述第二服务质量要求相匹配。处理单元920还可以配置为:根据以所述第二信息传输速率接收到的所述物理实体的属性信息构建或更新所述物理实体对应的数字孪生体。
在示例性实施例中,所述第二信息传输速率可以根据所述属性信息采用的第二表征方式、第二表征信息量以及第二表征信息频度确定。
其中,处理单元920还可以配置为:根据所述第一网络状态,调节所述第二服务质量要求中的带宽、时延、抖动中的至少一项,获得所述第一服务质量要求。
所述第一服务质量要求可以用于调节所述第二表征方式、所述第二表征信息量以及所述第二表征信息频度等中的至少一项,确定第一表征方式、第一表征信息量以及第一表征信息频度,所述第一表征方式、所述第一表征信息量以及所述第一表征信息频度可以用于确定所述第一信息传输速率。
在示例性实施例中,数字孪生应用端900还可以包括发送单元,可以配置为向所述第一核心网网元发送订阅网络状态预测服务请求消息。接收单元910还可以配置为接收所述第一核心网网元返回的订阅网络状态预测服务响应消息。
图9实施例的其它内容可以参照上述其它实施例。
如图10所示,图10实施例提供的终端1000可以包括:处理单元1010以及发送单元1020。
处理单元1010可以配置为根据无线网络的第一服务质量要求,确定与所述第一服务质量要求匹配的第一信息传输速率,所述第一服务质量要求是根据所述无线网络所处的第一网络状态确定的。
发送单元1020可以配置为将获取的物理实体的属性信息,采用所述第一信息传输速率并通过所述无线网络传输至数字孪生应用端。
以所述第一信息传输速率传输的所述物理实体的属性信息可以用于构 建或更新所述物理实体对应的数字孪生体。
在示例性实施例中,处理单元1010还可以配置为:根据无线网络的第一服务质量要求,确定与所述第一服务质量要求匹配的第一信息传输速率之前,根据所述无线网络的第二服务质量要求,确定与所述第二服务质量要求匹配的第二信息传输速率。所述第二服务质量要求是根据所述无线网络所处的第二网络状态确定的。发送单元1020还可以配置为将获取的物理实体的属性信息,采用所述第二信息传输速率并通过所述无线网络传输至所述数字孪生应用端。
以所述第二信息传输速率传输的所述物理实体的属性信息可以用于构建或更新所述物理实体对应的数字孪生体。
在示例性实施例中,处理单元1010还可以配置为:根据所述第二服务质量要求,确定第二表征方式、第二表征信息量以及第二表征信息频度;根据所述第二表征方式、所述第二表征信息量以及所述第二表征信息频度确定所述第二信息传输速率。
其中,处理单元1010还可以配置为:根据所述第一服务质量要求,调节所述第二表征方式、所述第二表征信息量以及所述第二表征信息频度中的至少一项,以确定第一表征方式、第一表征信息量以及第一表征信息频度;根据所述第一表征方式、所述第一表征信息量以及所述第一表征信息频度确定所述第一信息传输速率。
在示例性实施例中,所述第一表征方式和所述第二表征方式可以包括以下中的至少一项:所述物理实体的点云数据;所述物理实体的视频图像数据;所述物理实体的结构化数据;所述物理实体的语义数据。
在示例性实施例中,所述第一表征信息量和所述第二表征信息量可以包括以下中的至少一项:所述物理实体的点云数据的粒度;所述物理实体的视频图像数据的分辨率;所述物理实体的属性信息的编码格式。
在示例性实施例中,处理单元1010还可以配置为:根据所述第二服务质量要求,确定第二表征方式、第二表征信息量、第二表征信息频度、第二可靠性要求以及第二同步性要求;根据所述第二表征方式、所述第二表征信息量、所述第二表征信息频度、所述第二可靠性要求以及所述第二同步性要求确定所述第二信息传输速率。
其中,处理单元1010还可以配置为:根据所述第一服务质量要求,调节所述第二表征方式、所述第二表征信息量、所述第二表征信息频度、所述第二可靠性要求以及所述第二同步性要求中的至少一项,以确定第一表征方式、第一表征信息量、第一表征信息频度、第一可靠性要求以及第一同步性要求;根据所述第一表征方式、所述第一表征信息量、所述第一表征信息频度、所述第一可靠性要求以及所述第一同步性要求确定所述第一信息传输速率。
在示例性实施例中,发送单元1020还可以配置为:通过第一协议数据 单元PDU会话,采用所述第二信息传输速率将所述属性信息通过所述无线网络传输至所述数字孪生应用端。
其中,发送单元1020还可以配置为:根据所述无线网络的第一服务质量要求,触发所述第一PDU会话的PDU会话修改流程,建立第二PDU会话;通过所述第二PDU会话,采用所述第一信息传输速率将所述属性信息通过所述无线网络传输至所述数字孪生应用端。
在示例性实施例中,发送单元1020还可以配置为:通过第一协议数据单元PDU会话,采用所述第二信息传输速率将所述属性信息通过所述无线网络传输至所述数字孪生应用端。
其中,发送单元1020还可以配置为:根据所述无线网络的第一服务质量要求,触发所述第一PDU会话的服务质量流参数修改流程,更新所述第一PDU会话内的服务质量流;通过所述第一PDU会话内更新后的所述服务质量流,采用所述第一信息传输速率将所述属性信息通过所述无线网络传输至所述数字孪生应用端。
图10实施例的其它内容可以参照上述其它实施例。
图11示意性示出了根据本公开的一实施例的通信设备1100的示意性结构图。该通信设备可以是终端,也可以是核心网设备,例如NWDAF网元、PCF网元、NEF网元、UPF网元,也可以是数字孪生应用端或者AF网元,图11所示的通信设备1100包括处理器1110,处理器1110可以从存储器中调用并运行计算机程序,以实现本公开实施例中的方法。
在一些实施例中,如图11所示,通信设备1100还可以包括存储器1120。其中,处理器1110可以从存储器1120中调用并运行计算机程序,以实现本公开实施例中的方法。
其中,存储器1120可以是独立于处理器1110的一个单独的器件,也可以集成在处理器1110中。
在一些实施例中,如图11所示,通信设备1100还可以包括收发器1130,处理器1110可以控制该收发器1130与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1130可以包括发射机和接收机。收发器1130还可以进一步包括天线,天线的数量可以为一个或多个。
在一些实施例中,该通信设备1100具体可为本公开实施例的核心网设备,并且该通信设备1100可以实现本公开实施例的各个方法中由核心网设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该通信设备1100具体可为本公开实施例的移动终端/终端,并且该通信设备1100可以实现本公开实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该通信设备1100具体可为本公开实施例的数字孪生应用端,并且该通信设备1100可以实现本公开实施例的各个方法中由数 字孪生应用端实现的相应流程,为了简洁,在此不再赘述。
应理解,本公开实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。
上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本公开实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(SynchlinkDRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。应理解,上述存储器为示例性但不是限制性说明。
本公开实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
在一些实施例中,该计算机可读存储介质可应用于本公开实施例中的核心网设备,并且该计算机程序使得计算机执行本公开实施例的各个方法中由核心网设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机可读存储介质可应用于本公开实施例中的移动终端/终端,并且该计算机程序使得计算机执行本公开实施例的各个方 法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机可读存储介质可应用于本公开实施例中的数字孪生应用端,并且该计算机程序使得计算机执行本公开实施例的各个方法中由数字孪生应用端实现的相应流程,为了简洁,在此不再赘述。
本公开实施例还提供了一种计算机程序产品,包括计算机程序指令。
在一些实施例中,该计算机程序产品可应用于本公开实施例中的核心网设备,并且该计算机程序指令使得计算机执行本公开实施例的各个方法中由核心网设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序产品可应用于本公开实施例中的移动终端/终端,并且该计算机程序指令使得计算机执行本公开实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序产品可应用于本公开实施例中的数字孪生应用端,并且该计算机程序指令使得计算机执行本公开实施例的各个方法中由数字孪生应用端实现的相应流程,为了简洁,在此不再赘述。
本公开实施例还提供了一种计算机程序。
在一些实施例中,该计算机程序可应用于本公开实施例中的核心网设备,当该计算机程序在计算机上运行时,使得计算机执行本公开实施例的各个方法中由核心网设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序可应用于本公开实施例中的移动终端/终端,当该计算机程序在计算机上运行时,使得计算机执行本公开实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序可应用于本公开实施例中的数字孪生应用端,当该计算机程序在计算机上运行时,使得计算机执行本公开实施例的各个方法中由数字孪生应用端实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本公开所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成 到另一个***,或一些特征可以忽略,或不执行。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应所述以权利要求的保护范围为准。

Claims (17)

  1. 一种数据传输方法,所述方法由数字孪生应用端执行,所述方法包括:
    从无线网络的第一核心网网元接收所述无线网络的网络状态通知消息,所述网络状态通知消息指示所述无线网络处于第一网络状态;
    根据所述网络状态通知消息中的第一网络状态,确定所述无线网络的第一服务质量要求;
    通过所述无线网络,以第一信息传输速率接收终端获取的物理实体的属性信息,所述第一信息传输速率与所述第一服务质量要求相匹配;
    根据以所述第一信息传输速率接收到的所述物理实体的属性信息构建或更新所述物理实体对应的数字孪生体。
  2. 根据权利要求1所述的方法,其中,所述网络状态通知消息指示所述无线网络从第二网络状态改变至所述第一网络状态;
    在所述从无线网络的第一核心网网元接收所述无线网络的网络状态通知消息之前,所述方法还包括:
    根据所述第二网络状态,确定所述无线网络的第二服务质量要求;
    通过处于所述第二网络状态的无线网络,以第二信息传输速率接收终端获取的物理实体的属性信息,所述第二信息传输速率与所述第二服务质量要求相匹配;
    根据以所述第二信息传输速率接收到的所述物理实体的属性信息,构建或更新所述物理实体对应的数字孪生体。
  3. 根据权利要求2所述的方法,其中,所述第二信息传输速率是根据所述属性信息采用的第二表征方式、第二表征信息量以及第二表征信息频度确定的;
    所述根据所述网络状态通知消息中的第一网络状态,确定所述无线网络的第一服务质量要求,包括:
    根据所述第一网络状态,调节所述第二服务质量要求中的带宽、时延、抖动中的至少一项,得到所述第一服务质量要求;
    其中,所述第一服务质量要求用于调节所述第二表征方式、所述第二表征信息量以及所述第二表征信息频度中的至少一项,以得到第一表征方式、第一表征信息量以及第一表征信息频度中的至少一项,所述第一表征方式、所述第一表征信息量以及所述第一表征信息频度用于确定所述第一信息传输速率。
  4. 根据权利要求1所述的方法,其中,所述方法还包括:
    向所述第一核心网网元发送订阅网络状态预测服务请求消息;
    接收所述第一核心网网元返回的订阅网络状态预测服务响应消息。
  5. 一种数据传输方法,所述方法由终端执行,所述方法包括:
    根据无线网络的第一服务质量要求,确定与所述第一服务质量要求匹配的第一信息传输速率,所述第一服务质量要求是根据所述无线网络所处的第一网络状态确定的;
    将获取的物理实体的属性信息,采用所述第一信息传输速率并通过所述无线网络传输至数字孪生应用端;
    其中,以所述第一信息传输速率传输的所述物理实体的属性信息,用于构建或更新所述物理实体对应的数字孪生体。
  6. 根据权利要求5所述的方法,其中,在所述根据无线网络的第一服务质量要求,确定与所述第一服务质量要求匹配的第一信息传输速率之前,所述方法还包括:
    根据所述无线网络的第二服务质量要求,确定与所述第二服务质量要求匹配的第二信息传输速率,所述第二服务质量要求是根据所述无线网络所处的第二网络状态确定的;
    将获取的物理实体的属性信息,采用所述第二信息传输速率并通过所述无线网络传输至所述数字孪生应用端;
    其中,以所述第二信息传输速率传输的所述物理实体的属性信息,用于构建或更新所述物理实体对应的数字孪生体。
  7. 根据权利要求6所述的方法,其中,
    所述根据所述无线网络的第二服务质量要求,确定与所述第二服务质量要求匹配的第二信息传输速率,包括:
    根据所述第二服务质量要求,确定第二表征方式、第二表征信息量以及第二表征信息频度;
    根据所述第二表征方式、所述第二表征信息量以及所述第二表征信息频度确定所述第二信息传输速率;
    所述根据无线网络的第一服务质量要求,确定与所述第一服务质量要求匹配的第一信息传输速率,包括:
    根据所述第一服务质量要求,调节所述第二表征方式、所述第二表征信息量以及所述第二表征信息频度中的至少一项,以确定第一表征方式、第一表征信息量以及第一表征信息频度中的至少一项;
    根据所述第一表征方式、所述第一表征信息量以及所述第一表征信息频度中的至少一项确定所述第一信息传输速率。
  8. 根据权利要求7所述的方法,其中,所述第一表征方式和所述第二表征方式包括以下中的至少一项:
    所述物理实体的点云数据;
    所述物理实体的视频图像数据;
    所述物理实体的结构化数据;
    所述物理实体的语义数据。
  9. 根据权利要求7所述的方法,其中,所述第一表征信息量和所述第二表征信息量包括以下中的至少一项:
    所述物理实体的点云数据的粒度;
    所述物理实体的视频图像数据的分辨率;
    所述物理实体的属性信息的编码格式。
  10. 根据权利要求6所述的方法,其中,
    所述根据所述无线网络的第二服务质量要求,确定与所述第二服务质量要求匹配的第二信息传输速率,包括:
    根据所述第二服务质量要求,确定第二表征方式、第二表征信息量、第二表征信息频度、第二可靠性要求以及第二同步性要求;
    根据所述第二表征方式、所述第二表征信息量、所述第二表征信息频度、所述第二可靠性要求以及所述第二同步性要求确定所述第二信息传输速率;
    所述根据无线网络的第一服务质量要求,确定与所述第一服务质量要求匹配的第一信息传输速率,包括:
    根据所述第一服务质量要求,调节所述第二表征方式、所述第二表征信息量、所述第二表征信息频度、所述第二可靠性要求以及所述第二同步性要求中的至少一项,以确定第一表征方式、第一表征信息量、第一表征信息频度、第一可靠性要求以及第一同步性要求中的至少一项;
    根据所述第一表征方式、所述第一表征信息量、所述第一表征信息频度、所述第一可靠性要求以及所述第一同步性要求中的至少一项确定所述第一信息传输速率。
  11. 根据权利要求6所述的方法,其中,
    所述将获取的物理实体的属性信息,采用所述第二信息传输速率并通过所述无线网络传输至所述数字孪生应用端,包括:
    通过第一协议数据单元PDU会话,采用所述第二信息传输速率将所述属性信息通过所述无线网络传输至所述数字孪生应用端;
    所述将获取的物理实体的属性信息,采用所述第一信息传输速率并通过所述无线网络传输至数字孪生应用端,包括:
    根据所述无线网络的第一服务质量要求,触发所述第一PDU会话的PDU会话修改流程,建立第二PDU会话;
    通过所述第二PDU会话,采用所述第一信息传输速率将所述属性信息通过所述无线网络传输至所述数字孪生应用端。
  12. 根据权利要求6所述的方法,其中,
    所述将获取的物理实体的属性信息,采用所述第二信息传输速率并通过所述无线网络传输至所述数字孪生应用端,包括:
    通过第一协议数据单元PDU会话,采用所述第二信息传输速率将所述属性信息通过所述无线网络传输至所述数字孪生应用端;
    所述将获取的物理实体的属性信息,采用所述第一信息传输速率并通过所述无线网络传输至数字孪生应用端,包括:
    根据所述无线网络的第一服务质量要求,触发所述第一PDU会话的服务质量流参数修改流程,更新所述第一PDU会话内的服务质量流;
    通过所述第一PDU会话内更新后的所述服务质量流,采用所述第一信息传输速率将所述属性信息通过所述无线网络传输至所述数字孪生应用端。
  13. 一种数字孪生应用端,包括:
    接收单元,配置为从无线网络的第一核心网网元接收所述无线网络的网络状态通知消息,所述网络状态通知消息指示所述无线网络处于第一网络状态;
    处理单元,配置为根据所述网络状态通知消息中的第一网络状态,确定所述无线网络的第一服务质量要求;
    所述接收单元还配置为通过所述无线网络,以第一信息传输速率接收终端获取的物理实体的属性信息,所述第一信息传输速率与所述第一服务质量要求相匹配;
    所述处理单元还配置为根据以所述第一信息传输速率接收到的所述物理实体的属性信息构建或更新所述物理实体对应的数字孪生体。
  14. 一种终端,包括:
    处理单元,配置为根据无线网络的第一服务质量要求,确定与所述第一服务质量要求匹配的第一信息传输速率,所述第一服务质量要求是根据所述无线网络所处的第一网络状态确定的;
    发送单元,配置为将获取的物理实体的属性信息,采用所述第一信息传输速率并通过所述无线网络传输至数字孪生应用端;
    以所述第一信息传输速率传输的所述物理实体的属性信息用于构建或更新所述物理实体对应的数字孪生体。
  15. 一种通信设备,包括:
    一个或多个处理器;
    存储器,配置为存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行时,使得所述通信设备实现如权利要求1至4中任一项所述的方法;或者,如权利要求5至12中任一项所述的方法。
  16. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序使得通信设备执行如权利要求1至4中任一项所述的方法;或者,如权利要求5至12中任一项所述的方法。
  17. 一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现权利要求1至4中任一项所述的方法;或者,如权利要求5至12中任一项所述的方法。
PCT/CN2022/132029 2022-01-10 2022-11-15 数据传输方法、相关设备、计算机可读存储介质及计算机程序产品 WO2023130838A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/209,601 US20230345295A1 (en) 2022-01-10 2023-06-14 Data transmission method, related device, computer readable storage medium, and computer program product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210023805.2 2022-01-10
CN202210023805.2A CN116455515A (zh) 2022-01-10 2022-01-10 数据传输方法及相关设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/209,601 Continuation US20230345295A1 (en) 2022-01-10 2023-06-14 Data transmission method, related device, computer readable storage medium, and computer program product

Publications (1)

Publication Number Publication Date
WO2023130838A1 true WO2023130838A1 (zh) 2023-07-13

Family

ID=87073030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132029 WO2023130838A1 (zh) 2022-01-10 2022-11-15 数据传输方法、相关设备、计算机可读存储介质及计算机程序产品

Country Status (3)

Country Link
US (1) US20230345295A1 (zh)
CN (1) CN116455515A (zh)
WO (1) WO2023130838A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117998668A (zh) * 2022-11-02 2024-05-07 大唐移动通信设备有限公司 一种信息交互方法及装置
CN117676305B (zh) * 2024-01-31 2024-04-12 中亿(深圳)信息科技有限公司 基于物联网的智能摄像头控制方法及***

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110149657A (zh) * 2018-02-14 2019-08-20 华为技术有限公司 一种确定QoS描述信息的方法和装置
US20210410002A1 (en) * 2020-05-19 2021-12-30 Samsung Electronics Co., Ltd. Method and apparatus for quality of service handling in wireless communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110149657A (zh) * 2018-02-14 2019-08-20 华为技术有限公司 一种确定QoS描述信息的方法和装置
US20210410002A1 (en) * 2020-05-19 2021-12-30 Samsung Electronics Co., Ltd. Method and apparatus for quality of service handling in wireless communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON, SAMSUNG: "TS23.501 Reflective QoS deactivation", SA WG2 MEETING #120, S2-172371, 30 March 2017 (2017-03-30), XP051247268 *

Also Published As

Publication number Publication date
CN116455515A (zh) 2023-07-18
US20230345295A1 (en) 2023-10-26

Similar Documents

Publication Publication Date Title
WO2023130838A1 (zh) 数据传输方法、相关设备、计算机可读存储介质及计算机程序产品
CN109672996B (zh) 一种基于v2x路侧设备***及其信息分发方法
Abou-Zeid et al. Cellular V2X transmission for connected and autonomous vehicles standardization, applications, and enabling technologies
CN102196030B (zh) 车辆-实体通信***和在该***中进行场景信息共享的方法
EP3226647B1 (en) Wireless communication apparatus and wireless communication method
EP2994831B1 (en) Method and apparatus for the virtualization of resources using a virtualization broker and context information
CN103813213A (zh) 基于移动云计算的实时视频分享平台和方法
CN103248964A (zh) 基于rtp/rtcp的车载视频传输***
CN104010047A (zh) 一种基于Android的容断交通信息传播原型***
CN115516907A (zh) 与拥塞控制相关的通信
WO2022257795A1 (zh) 一种数据传输的方法和装置
Saleem et al. A vehicle-to-infrastructure data offloading scheme for vehicular networks with QoS provisioning
Ma et al. Research on vehicle-to-road collaboration and end-to-end collaboration for multimedia services in the Internet of Vehicles
CN204929081U (zh) 一种视频传输装置
WO2024001266A1 (zh) 视频流传输的控制方法及装置、设备、介质
CN117278628A (zh) 数据传输方法、装置、***、计算机设备和存储介质
CN111431950B (zh) 任务卸载方法、装置、移动终端、雾节点和存储介质
US11997567B2 (en) V2X network communication
US20240015583A1 (en) Operating method of ue, related to sensor raw data sharing and feedback in wireless communication system
KR102502769B1 (ko) 지능형 교통 시스템에서 데이터 송수신 방법 및 장치
Jiang et al. Enabling QoE-aware mobile cloud video recording over roadside vehicular networks
EP4300852A1 (en) Method and device for changing the transmission of an its message
CN115086302B (zh) 物联网设备数据传输优化方法、***、物联网设备、介质
WO2022077184A1 (zh) 请求prs配置的方法、装置、通信设备及存储介质
Matsuki et al. Design and Implementation of Data Communication and Compression Methods in SIGMA Framework

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918290

Country of ref document: EP

Kind code of ref document: A1