WO2023123856A1 - 一种可穿戴的多指标融合生理智能传感器***及生理指标监测方法 - Google Patents

一种可穿戴的多指标融合生理智能传感器***及生理指标监测方法 Download PDF

Info

Publication number
WO2023123856A1
WO2023123856A1 PCT/CN2022/095702 CN2022095702W WO2023123856A1 WO 2023123856 A1 WO2023123856 A1 WO 2023123856A1 CN 2022095702 W CN2022095702 W CN 2022095702W WO 2023123856 A1 WO2023123856 A1 WO 2023123856A1
Authority
WO
WIPO (PCT)
Prior art keywords
physiological
signal
physiological index
collection
light emitter
Prior art date
Application number
PCT/CN2022/095702
Other languages
English (en)
French (fr)
Inventor
赵起超
杨苒
李召
Original Assignee
北京津发科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京津发科技股份有限公司 filed Critical 北京津发科技股份有限公司
Priority to EP22822257.6A priority Critical patent/EP4226854A4/en
Priority to US18/086,768 priority patent/US20230210462A1/en
Publication of WO2023123856A1 publication Critical patent/WO2023123856A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • A61B5/02427Details of sensor
    • A61B5/02433Details of sensor for infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14542Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/6803Head-worn items, e.g. helmets, masks, headphones or goggles

Definitions

  • the present application relates to physiological signal detection technology and key technical fields of artificial intelligence, in particular to a wearable multi-index fusion physiological intelligent sensor system and a physiological index monitoring method.
  • the inventor has developed a set of portable, stable, reliable multi-source sensors that can collect multi-source physiological signals of the human body, and developed an intelligent sensor system capable of fusing relevant data.
  • a multi-channel data acquisition method integrate the acquisition modules of various physiological signals into a small, portable intelligent wearable sensor device, complete the development and development of multi-source intelligent sensors, and realize the stable acquisition of human body state data in a specific task environment.
  • this application provides A wearable multi-index fusion physiological intelligent sensor system and a physiological index monitoring method.
  • the present application provides a wearable multi-indicator fusion physiological intelligence sensor system, which adopts the following technical solutions:
  • a wearable multi-indicator fusion physiological intelligent sensor system comprising a device main body and an intelligent terminal, the device main body is provided with a fixing part, and the fixing part is used to fix the device main body on the human ear;
  • a collection and processing component is provided, and the collection and processing component is wirelessly connected to the intelligent terminal;
  • the collection and processing component collects the corresponding physiological index signal in response to the physiological index collection instruction sent by the smart terminal, analyzes and processes the physiological index signal, obtains the corresponding physiological index data and sends it to the smart terminal;
  • the physiological index Indicator signals include electrodermal signals, heart rate signals and blood oxygen signals;
  • the smart terminal is used to receive and display physiological index data.
  • the main body of the device when performing physiological index monitoring, the main body of the device is fixed on the user's ear by using a fixture, the user sends a physiological index collection command through the smart terminal, and the collection and processing components on the main body of the device respond to the physiological index collection.
  • Instructions collect corresponding physiological index signals and analyze and process them, obtain physiological index data and send them to the smart terminal, and users can view their own physiological index data through the smart terminal; compared with common physiological index monitoring equipment, this application is smaller in size It is small, easy to carry, and integrates multiple physiological indicators.
  • wearing it on the human ear it can monitor the physiological indicators of the human body, which is convenient for users to obtain their own multiple physiological indicator information in real time, thus achieving real-time monitoring of physiological health status. , improving the user experience.
  • the collection and processing component is also used to judge whether a blood oxygen signal or a heart rate signal is obtained, and if so, output a normal wearing state signal; otherwise, stop collecting and output an abnormal wearing state signal.
  • the acquisition and processing component can normally obtain the blood oxygen signal or heart rate signal, it can be judged that the wearing is normal; if the blood oxygen signal or heart rate signal cannot be obtained, it may be that the main body of the device is not Once it is fixed or has been taken off, it can be judged that the wearing is abnormal and stop collecting, so that it is convenient to know the wearing status of the main body of the device in real time and end the monitoring after the ear is taken off.
  • the fixing member includes an earlobe clip, the earlobe clip is fixedly arranged on the device main body, and the earlobe clip is used to clamp the earlobe part of the human ear.
  • the main body of the device is clamped on the earlobe part of the human ear by using the earlobe clip, which reduces the occurrence of the main body of the device falling off when the user wears it, and improves the stability of physiological index monitoring.
  • the collection and processing assembly includes a skin electricity collection unit, an infrared light emitter, a red light emitter, a photoelectric sensor and a processing module;
  • the electrodermal collection unit is used to collect electrodermal signals on the shoulder and back of the human body
  • the red light emitter and the infrared light emitter are arranged on the inside of the clip body on one side of the earlobe clip
  • the photoelectric sensor is arranged on the earlobe
  • the photoelectric sensor is used to receive the light beams transmitted by the infrared light emitter and the red light emitter through the earlobe to collect heart rate signals and/or blood oxygen signals;
  • the processing module is used to analyze and process the physiological index signal and obtain corresponding physiological index data.
  • the electrodermal signal of the shoulder and back of the human body is collected by the electrodermal collection unit, the clips on both sides of the earlobe clip completely cover the earlobe part of the human ear, and the red light emitter is used to separately turn on and emit red light to monitor the heart rate.
  • the signal is collected, and the blood oxygen signal is collected by using the combination of the red light emitter and the infrared light emitter, so that multiple physiological index data of the human body can be obtained.
  • the collection and processing component also includes an acceleration sensor, which is used to collect acceleration information generated by the human body during exercise and send it to the processing module; the processing module is also used to judge whether the acceleration information is higher than the preset A threshold is set, and a time period in which the acceleration information is higher than the preset threshold is marked as a motion period.
  • an acceleration sensor which is used to collect acceleration information generated by the human body during exercise and send it to the processing module; the processing module is also used to judge whether the acceleration information is higher than the preset A threshold is set, and a time period in which the acceleration information is higher than the preset threshold is marked as a motion period.
  • the acceleration sensor is used to collect the acceleration information generated by the human body during exercise.
  • the processing module is used to mark the time period as the exercise period, so as to facilitate the understanding of the physiological state of the human body during the exercise period. Indicator data.
  • a green light emitter is also included, the green light emitter is arranged on the inner side of the clip body on one side of the earlobe clip, the green light emitter is connected with the processing module, and is used for when the acceleration information is higher than the preset turned on at the threshold.
  • the green The light emitter emits a green light source to suppress ambient light around the earlobe clip, thereby improving the accuracy of blood oxygen signal and/or heart rate signal collection.
  • the present application provides a method for monitoring physiological indicators, which adopts the following technical solution:
  • a physiological index monitoring method applied to a wearable multi-indicator fusion physiological intelligent sensor system in the first aspect, the physiological index monitoring method includes,
  • the physiological index signal includes electrodermal signal, heart rate signal and blood oxygen signal;
  • the physiological index signal is analyzed and processed to obtain corresponding physiological index data and sent to the smart terminal for display.
  • the user when performing physiological index monitoring, the user sends a physiological index collection instruction through the smart terminal, and the collection and processing component on the device body responds to the physiological index collection instruction to collect the corresponding physiological index signal and analyze and process it to obtain the physiological index signal.
  • the indicator data is sent to the smart terminal, and the user can view his own physiological indicator data through the smart terminal; compared with the common physiological indicator monitoring equipment, this application is smaller in size, easy to carry, and integrates multiple physiological indicators.
  • the physiological indicators of the human body can be monitored on the human ear, which is convenient for users to obtain information on multiple physiological indicators of themselves in real time, thereby achieving real-time monitoring of physiological health conditions and improving user experience.
  • the physiological index monitoring method also includes,
  • the blood oxygen signal or heart rate signal can be obtained normally, it can be judged that the wearing is normal; if the blood oxygen signal or heart rate signal cannot be obtained, it means that the blood oxygen signal cannot be collected or the Heart rate signal, it can be judged that the earlobe clip is not clamped or has been taken off, that is, the wearing is abnormal, so that it is convenient to know the wearing status of the main body of the device in real time.
  • the physiological index monitoring method also includes,
  • Collect the acceleration information generated by the human body during exercise and judge whether the acceleration information is higher than the preset threshold. If so, turn on the green light emitter, and mark the time period when the acceleration information is higher than the preset threshold as the exercise period; if not , then turn off the green light emitter.
  • the collection of blood oxygen signal and/or heart rate signal may be interfered by ambient light, therefore, when the collected acceleration information reaches the preset threshold value, the green light emission is turned on
  • the device emits a green light source to suppress the ambient light around the earlobe clip, thereby improving the accuracy of blood oxygen signal and/or heart rate signal collection; by marking the time period when the acceleration information is higher than the preset threshold, it is convenient for users Understand the physiological index data corresponding to the period when the human body is exercising.
  • the present invention provides a computer-readable storage medium, which adopts the following technical solution:
  • a computer-readable storage medium stores a computer program capable of being loaded by a processor to execute the method in the second aspect.
  • Fig. 1 is a structural block diagram of a wearable multi-indicator fusion physiological intelligence sensor system according to one embodiment of the present application.
  • Fig. 2 is a schematic structural view of the main body of the device according to one embodiment of the present application.
  • the embodiment of the present application discloses a wearable multi-indicator fusion physiological intelligence sensor system.
  • a wearable multi-indicator fusion physiological intelligent sensor system includes a device main body 1 and an intelligent terminal 2, the device main body 1 is provided with a fixing piece, and the fixing piece is used to fix the device main body 1 on the human ear ;
  • the device main body 1 is provided with a collection and processing component 101, and the collection and processing component 101 is connected to the intelligent terminal 2 through wireless communication;
  • the collection and processing component 101 collects the corresponding physiological index signal in response to the physiological index collection instruction sent by the smart terminal 2, analyzes and processes the physiological index signal, obtains the corresponding physiological index data and sends it to the smart terminal 2; wherein, the physiological index signal includes Electrodermal signal, heart rate signal and blood oxygen signal;
  • the smart terminal 2 is used to receive and display physiological index data; wherein the smart terminal 2 can be a mobile smart terminal 2, such as a mobile phone, a tablet computer, etc., or a computer terminal.
  • a mobile smart terminal 2 such as a mobile phone, a tablet computer, etc., or a computer terminal.
  • the device main body 1 when performing physiological index monitoring, the device main body 1 is fixed on the user's ear by using a fixture, and the user sends a physiological index collection command through the smart terminal 2, and the collection and processing component 101 on the device main body 1 responds to
  • the physiological index collection command collects the corresponding physiological index signal and analyzes and processes it, obtains the physiological index data and sends it to the smart terminal 2, and the user can view his own physiological index data through the smart terminal 2;
  • the application is small in size, easy to carry, and integrates multiple physiological indicators.
  • the physiological indicators of the human body can be monitored, which is convenient for users to obtain their own multiple physiological indicators in real time. Real-time monitoring of health status improves user experience.
  • the collection processing component 101 is also used to judge whether the blood oxygen signal or the heart rate signal is obtained. , then output a normal wearing state signal; if not, stop collecting and output an abnormal wearing state signal.
  • the collection and processing component 101 can normally obtain the blood oxygen signal or the heart rate signal, it can be judged that the wearing is normal; if the blood oxygen signal or the heart rate signal cannot be obtained, it may be the If it is not fixed or has been taken off, it can be judged that the wearing is abnormal and stop collecting, so that it is convenient to know the wearing status of the device main body 1 in real time and end the monitoring after the ear is taken off.
  • the device main body 1 is also provided with a wireless communication module, and the collection and processing component 101 performs wireless communication with the smart terminal 2 through the wireless communication module.
  • the wireless communication module adopts a Bluetooth module; in addition, a mobile data transmission module, a WiFi module, a ZigBee module, a Bluetooth module, etc. can also be used, that is, the effect of being convenient for wireless communication connection can be achieved.
  • the fixing member includes an earlobe clip 11 fixedly arranged on the device main body 1 , and the earlobe clip 11 is used to clamp the earlobe part of the human ear.
  • the device main body 1 is clamped on the earlobe part of the human ear by using the earlobe clip 11, which reduces the occurrence of the device main body 1 falling off when the user wears it, and improves the stability of physiological index monitoring.
  • the collection processing assembly 101 includes a skin electricity collection unit, an infrared light emitter 1012, a red light emitter 1011, a photoelectric sensor 1013 and a processing module;
  • the skin electricity collection unit is used to collect skin electricity signals on the shoulder and back of the human body.
  • the red light emitter 1011 and the infrared light emitter 1012 are arranged on the inside of the clip body on one side of the earlobe clip 11, and the photoelectric sensor 1013 is arranged on the other side of the earlobe clip 11.
  • the photoelectric sensor 1013 is used to receive the light beam transmitted through the earlobe by the infrared light emitter 1012 and the red light emitter 1011 to collect heart rate signals and/or blood oxygen signals; wherein, the electrodermal collection unit includes two collection The skin electricity collection button 1014 of the shoulder and back skin electricity signal, and the two skin electricity collection buttons 1014 can be connected with the device main body 1 through the skin electricity detection line;
  • the processing module is used to analyze and process the physiological index signal and obtain the corresponding physiological index data; wherein, the processing module can adopt a CPU processor, a single chip microcomputer, and the like.
  • the electrodermal signal on the shoulder and back of the human body is collected by the electrodermal collection unit, the clip body on both sides of the earlobe clip 11 completely covers the earlobe part of the earlobe of the human body, and the red light emitter 1011 is used to separately turn on the red light emitting pair.
  • the heart rate signal is collected, and the blood oxygen signal is collected by using the combination of the red light emitter 1011 and the infrared light emitter 1012 to obtain multiple physiological index data of the human body.
  • the red light when collecting heart rate data, turn on the red light emitter 1011, the red light transmits through the skin and transmits the degree of light loss to the photoelectric sensor 1013. Since there are abundant capillaries in the earlobe, along with the flow of blood in the artery, the The absorption capacity of red light also changes. At this time, the photoelectric sensor 1013 converts the change of the received light intensity into a current signal, and the obtained current signal can be divided into a direct current DC signal and an alternating current AC signal, and the alternating current AC signal is extracted. The signal can reflect the characteristics of blood flow, so that the heart rate signal data can be obtained;
  • infrared light and red light can be emitted at the same time. Since there is a certain ratio between oxyhemoglobin HbO2 and hemoglobin Hb contained in the blood, it is necessary to turn on the red light and infrared light alternately at a certain frequency. Synthetic hemoglobin HbO2 has a strong ability to absorb red light, and hemoglobin Hb has a strong ability to absorb infrared light. By calculating the ratio of the absorption of oxyhemoglobin HbO2 to red light and the absorption of hemoglobin Hb to infrared light, we can get Blood oxygen signal data.
  • the collection processing component 101 also includes an acceleration sensor, the acceleration sensor is used to collect the acceleration information generated by the human body during exercise and send it to the processing module; the processing module is also used to judge whether the acceleration information is higher than A threshold is preset, and a time period in which the acceleration information is higher than the preset threshold is marked as a motion period.
  • the acceleration sensor is used to collect the acceleration information generated by the human body during exercise and send it to the processing module; the processing module is also used to judge whether the acceleration information is higher than A threshold is preset, and a time period in which the acceleration information is higher than the preset threshold is marked as a motion period.
  • the acceleration sensor may adopt a triaxial acceleration sensor or other types of acceleration sensors, and by being arranged on the main body 1 of the device, the user's acceleration information can be effectively collected.
  • the acceleration sensor is used to collect the acceleration information generated by the human body during exercise.
  • the processing module is used to mark the time period as the exercise period, so as to facilitate the understanding of the physiological indicators corresponding to the human body during the exercise period. data.
  • a green light emitter is also arranged on the device main body 1, and the green light emitter is arranged on the inner side of the clip body on one side of the earlobe clip 11, and the green light emitter and the processing module connected, configured to be turned on when the acceleration information is higher than a preset threshold; wherein, the preset threshold can be preset according to historical experience.
  • the green light emitter can be arranged on the clip body side of the earlobe clip 11 close to the red light emitter 1011, or on the clip body side of the earlobe clip 11 close to the photoelectric sensor 1013; in this embodiment Among them, the green light emitter is arranged on the same side as the red light emitter 1011.
  • the green light since the collection of the blood oxygen signal and/or heart rate signal may be interfered by ambient light when the human body is in motion, when the acceleration information collected by the acceleration sensor reaches the preset threshold, the green light is turned on
  • the emitter emits a green light source to suppress the ambient light around the earlobe clip 11, thereby improving the accuracy of blood oxygen signal and/or heart rate signal collection; when it is not higher than the preset threshold, it will not be turned on.
  • the device body 1 is also provided with,
  • the status indicator light 12 is used to prompt the on/off status of the device main body 1 and the wearing status of the user; wherein, when it is detected that the wearing status is normal, the status indicator lamp 12 flashes green light to prompt; when it is detected that the wearing status is abnormal, the status The indicator light 12 flashes red light for prompting;
  • the switch key 13 is used to control the main body 1 of the device to switch on and off;
  • the charging and detection interface 14 is used to connect with the charging line to charge the main body 1 of the device, and is also used to connect with the external skin electricity detection line to collect the skin electricity signal on the shoulder and back of the human body; wherein, the charging and detection interface 14 is a USB Type-C interface; when the interface is connected to the charging line, the main body of the device 1 enters the charging state, and when the interface is connected to the electrical skin detection line, the main body of the device 1 can collect human skin electrical signals.
  • the status indicator light 12 flashes, and the Bluetooth module enters the waiting state for connection.
  • the collection and processing component 101 on the device main body 1 can collect the corresponding physiological index signal according to the physiological index collection instruction, and after the collection and processing is completed, the bluetooth module will send The detected physiological index data are transmitted to the smart terminal 2 for easy viewing by the user.
  • the embodiment of the present application also discloses a physiological index monitoring method based on the collection and processing component 101 side.
  • a physiological index monitoring method applied to the above-mentioned wearable multi-indicator fusion physiological intelligent sensor system, the physiological index monitoring method includes,
  • the physiological index signal includes electrodermal signal, heart rate signal and blood oxygen signal;
  • the physiological index signal is analyzed and processed to obtain corresponding physiological index data and sent to the smart terminal 2 for display.
  • the user when performing physiological index monitoring, the user sends a physiological index collection instruction through the smart terminal 2, and the collection and processing component 101 on the device body 1 collects the corresponding physiological index signal in response to the physiological index collection instruction and performs analysis and processing.
  • the physiological index data is obtained and sent to the smart terminal 2, and the user can view his own physiological index data through the smart terminal 2; compared with common physiological index monitoring equipment, this application is smaller in size, easy to carry, and integrates multiple physiological Indicators can monitor human physiological indicators by wearing them on human ears, which is convenient for users to obtain their own multiple physiological indicator information in real time, thereby achieving real-time monitoring of physiological health status and improving user experience.
  • the physiological index monitoring method also includes,
  • the blood oxygen signal or heart rate signal can be obtained normally, it can be judged that the wearing is normal; if the blood oxygen signal or heart rate signal cannot be obtained, it means that the blood oxygen signal or heart rate signal cannot be collected signal, it can be judged that the earlobe clip 11 is not clamped or has been taken off, that is, the wearing is abnormal, so that it is convenient to know the wearing state of the device main body 1 in real time.
  • the physiological index monitoring method also includes,
  • Collect the acceleration information generated by the human body during exercise and judge whether the acceleration information is higher than the preset threshold. If so, turn on the green light emitter, and mark the time period when the acceleration information is higher than the preset threshold as the exercise period; if not , turn off the green light emitter.
  • the green light emitter since the collection of the blood oxygen signal and/or heart rate signal may be interfered by ambient light when the human body is in motion, when the collected acceleration information reaches the preset threshold, the green light emitter is turned on The green light source is emitted to suppress the ambient light around the earlobe clip 11, thereby improving the accuracy of blood oxygen signal and/or heart rate signal collection; by marking the time period when the acceleration information is higher than the preset threshold, it is convenient for the user Understand the physiological index data corresponding to the period when the human body is exercising.
  • the embodiment of the invention also discloses a computer-readable storage medium.
  • a computer-readable storage medium stores a computer program that can be loaded by a processor and execute any one of the methods for monitoring physiological indicators as described above.
  • the computer-readable storage medium may be any tangible medium containing or storing a program, and the program may be used by or in combination with an instruction execution system, device, or device; the program code contained on the computer-readable medium may use any appropriate medium Transmission, including but not limited to wireless, wire, optical cable, RF, etc., or any suitable combination of the above.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种可穿戴的多指标融合生理智能传感器***及生理指标监测方法,属于生理信号检测技术和人工智能关键技术领域。***包括装置主体(1)和智能终端(2),装置主体(1)上设置有固定件,固定件用于将装置主体(1)固定在人体耳朵上;装置主体(1)上设置有采集处理组件(101),采集处理组件(101)与智能终端(2)无线通信连接;采集处理组件(101)响应于智能终端(2)发送的生理指标采集指令采集对应的生理指标信号,对生理指标信号进行分析处理,得到对应的生理指标数据并发送至智能终端(2);生理指标信号包括皮电信号、心率信号和血氧信号;智能终端(2)用于接收生理指标数据并进行显示。具有提高用户体验感的效果。

Description

一种可穿戴的多指标融合生理智能传感器***及生理指标监测方法 技术领域
本申请涉及生理信号检测技术、人工智能关键技术领域,尤其是涉及一种可穿戴的多指标融合生理智能传感器***及生理指标监测方法。
背景技术
随着人工智能及信息技术的不断发展,大量的监测和传感设备应用于对个体状态感知及分析,便于人们在***中高效、便捷、安全的工作,从而提升工作效率。例如,智能驾驶领域使用多种传感器对驾驶员的疲劳状态进行识别,减少由疲劳导致的交通事故;军工国防领域对作战人员态势感知及认知负荷状态识别,提升战场指挥和作战效能;尤其在军工国防建设中,面对海量、多源、复杂、异构且快速增长的战场态势数据,人类的认知速度和信息处理能力已很难跟上战场数据增长和变化的节奏。如何应对瞬息万变的战场态势,采用便携的方式实现相对智能化的战场态势认知,以辅助指挥员实时、高效、科学的进行决策,已成为认知研究的关键问题。实时获取人体的生理状态信息,并有针对性的给人们提供支持是成为解决该问题的关键环节之一。
目前,多数生理传感器技术的开发和研制的测量仪器不够便携,且测量仪器的采集信号较为单一,无法在日常生活以及特殊作业环境中佩戴进行多源生理数据的采集和监测,进而无法利用这些数据对人体的生理状态以及其他因生理状态映射的更多任务状态进行更加细致和精确的刻画。其次,虽然也有传感器技术尝试采用多指标的方法进行,如市面上腕式的传感器,但其精确度以及实时的多指标智能融合与可穿戴效果都明显存在不 足。
针对上述中的相关技术,发明人开发了一套轻便、稳定、可靠且可采集人体多源生理信号的多源传感器,并研发了能够融合相关数据的智能传感器***,通过采用多通道数据采集方法,将多种生理信号的采集模块融合到一个小型、便携的智能可穿戴传感器设备中,完成多源智能传感器开发研制,实现特定任务环境中对人体状态的数据稳定采集。
发明内容
为了开发适用于可穿戴的轻便的多源数据生理智能传感器,实现针对硬件采集到的多源生理信号进行处理与分析,提升智能传感器多源数据采集的准确度与智能处理程度,本申请提供了一种可穿戴的多指标融合生理智能传感器***及生理指标监测方法。
第一方面,本申请提供一种可穿戴的多指标融合生理智能传感器***,采用如下的技术方案:
一种可穿戴的多指标融合生理智能传感器***,包括装置主体和智能终端,所述装置主体上设置有固定件,所述固定件用于将装置主体固定在人体耳朵上;所述装置主体上设置有采集处理组件,所述采集处理组件与智能终端无线通信连接;
所述采集处理组件,响应于智能终端发送的生理指标采集指令采集对应的生理指标信号,对所述生理指标信号进行分析处理,得到对应的生理指标数据并发送至智能终端;其中,所述生理指标信号包括皮电信号、心率信号和血氧信号;
所述智能终端,用于接收生理指标数据并进行显示。
通过采用上述技术方案,在进行生理指标监测时,利用固定件将装置主体固定在使用者的耳朵上,使用者通过智能终端发送生理指标采集指令,装置主体上的采集处理组件响应于生理指标采集指令采集对应的生理指标信号并进行分析处理,得到生理指标数据并发送至智能终端,使用者通过智能终端即可查看自己的生理指标数据;相比于常见的生理指标监测设备,本申请体积较小,便于携带,且综合多项生理指标,通过佩戴在人体耳朵上即可对人体生理指标进行监测,便于使用者实时获取自己的多项生理指标信息,从而达到了对生理健康状况的实时监控,提高了用户体验感。
可选的,所述采集处理组件还用于判断是否获取到血氧信号或心率信号,若是,则输出佩戴状态正常信号;若否,则停止进行采集,并输出佩戴状态异常信号。
通过采用上述技术方案,在进行监测过程中,若采集处理组件能够正常获取到血氧信号或心率信号,即可判断佩戴正常;若无法获取到血氧信号或心率信号,则可能是装置主体未固定好或已被摘下,即可判断佩戴异常并停止进行采集,从而便于实时了解装置主体的佩戴状态并在脱耳后结束监测。
可选的,所述固定件包括耳垂夹,所述耳垂夹固定设置在装置主体上,所述耳垂夹用于与人体耳朵的耳垂部分相夹持。
通过采用上述技术方案,利用耳垂夹将装置主体夹持在人体耳朵的耳垂部分,减少了使用者在佩戴时发生装置主体脱落的情况,提高了生理指标监测时的稳定性。
可选的,所述采集处理组件包括皮电采集单元、红外光发射器、红光 发射器、光电传感器和处理模块;
所述皮电采集单元用于采集人体肩背部的皮电信号,所述红光发射器和红外光发射器设置在所述耳垂夹其中一侧的夹体内侧上,所述光电传感器设置在耳垂夹另一侧的夹体内侧上,所述光电传感器用于接收所述红外光发射器和红光发射器透射过耳垂的光束以采集心率信号和/或血氧信号;
所述处理模块用于对所述生理指标信号进行分析处理并得到对应的生理指标数据。
通过采用上述技术方案,利用皮电采集单元对人体肩背部的皮电信号进行采集,将耳垂夹两侧的夹体完全覆盖人体耳朵的耳垂部分,利用红光发射器单独开启发射红光对心率信号进行采集,利用红光发射器和红外光发射器组合开启的方式对血氧信号进行采集,从而即可获取人体的多项生理指标数据。
可选的,所述采集处理组件还包括加速度传感器,所述加速度传感器用于采集人体在运动过程中产生的加速度信息并发送至处理模块;所述处理模块还用于判断加速度信息是否高于预设阈值,并将加速度信息高于预设阈值的时间段标记为运动时段。
通过采用上述技术方案,利用加速度传感器采集人体在运动时产生的加速度信息,当加速度信息高于预设阈值时,利用处理模块标记该时间段为运动时段,从而便于了解人体处于运动时段对应的生理指标数据。
可选的,还包括绿光发射器,所述绿光发射器设置在耳垂夹其中一侧的夹体内侧上,所述绿光发射器与处理模块连接,用于在加速度信息高于预设阈值时开启。
通过采用上述技术方案,由于人体在运动状态时,对血氧信号和/或心率信号进行采集可能会受到环境光的干扰,因此,当加速度传感器采集到的加速度信息达到预设阈值时,开启绿光发射器发射绿光光源对耳垂夹周围的环境光进行抑制,从而提高了对血氧信号和/或心率信号采集时的准确性。
第二方面,本申请提供一种生理指标监测方法,采用如下的技术方案:
一种生理指标监测方法,应用于第一方面中的一种可穿戴的多指标融合生理智能传感器***,所述生理指标监测方法包括,
接收智能终端发送的生理指标采集指令,响应于所述生理指标采集指令采集对应的生理指标信号;其中,所述生理指标信号包括皮电信号、心率信号和血氧信号;
将所述生理指标信号进行分析处理,得到对应的生理指标数据并发送至智能终端进行显示。
通过采用上述技术方案,在进行生理指标监测时,使用者通过智能终端发送生理指标采集指令,装置主体上的采集处理组件响应于生理指标采集指令采集对应的生理指标信号并进行分析处理,得到生理指标数据并发送至智能终端,使用者通过智能终端即可查看自己的生理指标数据;相比于常见的生理指标监测设备,本申请体积较小,便于携带,且综合多项生理指标,通过佩戴在人体耳朵上即可对人体生理指标进行监测,便于使用者实时获取自己的多项生理指标信息,从而达到了对生理健康状况的实时监控,提高了用户体验感。
可选的,所述生理指标监测方法还包括,
判断是否获取到血氧信号或心率信号,若是,则输出佩戴状态正常信号;若否,则停止对生理指标信号的采集,并输出佩戴状态异常信号。
通过采用上述技术方案,在进行监测过程中,若能够正常获取到血氧信号或心率信号,即可判断佩戴正常;若无法获取到血氧信号或心率信号,则表明无法采集到血氧信号或心率信号,即可判断耳垂夹未夹好或已被摘下,即佩戴异常,从而便于实时了解装置主体的佩戴状态。
可选的,所述生理指标监测方法还包括,
采集人体在运动过程中产生的加速度信息,判断加速度信息是否高于预设阈值,若是,则将绿光发射器开启,并将加速度信息高于预设阈值的时间段标记为运动时段;若否,则将绿光发射器关闭。
通过采用上述技术方案,由于人体在运动状态时,对血氧信号和/或心率信号进行采集可能会受到环境光的干扰,因此,当采集到的加速度信息达到预设阈值时,开启绿光发射器发射绿光光源对耳垂夹周围的环境光进行抑制,从而提高了对血氧信号和/或心率信号采集时的准确性;通过对加速度信息高于预设阈值的时间段进行标记,便于用户了解人体处于运动时段对应的生理指标数据。
第三方面,本发明提供一种计算机可读存储介质,采用如下的技术方案:
一种计算机可读存储介质,存储有能够被处理器加载并执行如第二方面中的方法的计算机程序。
附图说明
图1是本申请其中一个实施例的可穿戴的多指标融合生理智能传感器 ***的结构框图。
图2是本申请其中一个实施例的装置主体的结构示意图。
附图标记说明:1、装置主体;101、采集处理组件;1011、红光发射器;1012、红外光发射器;1013、光电传感器;1014、皮电采集扣;11、耳垂夹;12、状态指示灯;13、开关键;14、充电及检测接口;2、智能终端。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图1-2及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
本申请实施例公开一种可穿戴的多指标融合生理智能传感器***。
参照图1、图2,一种可穿戴的多指标融合生理智能传感器***包括装置主体1和智能终端2,装置主体1上设置有固定件,固定件用于将装置主体1固定在人体耳朵上;装置主体1上设置有采集处理组件101,采集处理组件101与智能终端2无线通信连接;
采集处理组件101,响应于智能终端2发送的生理指标采集指令采集对应的生理指标信号,对生理指标信号进行分析处理,得到对应的生理指标数据并发送至智能终端2;其中,生理指标信号包括皮电信号、心率信号和血氧信号;
智能终端2,用于接收生理指标数据并进行显示;其中,智能终端2可以为移动智能终端2,如手机、平板电脑等,也可以为计算机终端。
上述实施方式中,在进行生理指标监测时,利用固定件将装置主体1 固定在使用者的耳朵上,使用者通过智能终端2发送生理指标采集指令,装置主体1上的采集处理组件101响应于生理指标采集指令采集对应的生理指标信号并进行分析处理,得到生理指标数据并发送至智能终端2,使用者通过智能终端2即可查看自己的生理指标数据;相比于常见的生理指标监测设备,本申请体积较小,便于携带,且综合多项生理指标,通过佩戴在人体耳朵上即可对人体生理指标进行监测,便于使用者实时获取自己的多项生理指标信息,从而达到了对生理健康状况的实时监控,提高了用户体验感。
为了减少由于耳垂夹11滑脱导致无法采集或采集的生理指标信号不准确的情况,作为采集处理组件101进一步的实施方式,采集处理组件101还用于判断是否获取到血氧信号或心率信号,若是,则输出佩戴状态正常信号;若否,则停止进行采集,并输出佩戴状态异常信号。
上述实施方式中,在进行监测过程中,若采集处理组件101能够正常获取到血氧信号或心率信号,即可判断佩戴正常;若无法获取到血氧信号或心率信号,则可能是装置主体1未固定好或已被摘下,即可判断佩戴异常并停止进行采集,从而便于实时了解装置主体1的佩戴状态并在脱耳后结束监测。
参照图1,作为采集处理组件101与智能终端2无线通信连接的一种实施方式,装置主体1上还设置有无线通信模块,采集处理组件101通过无线通信模块与智能终端2进行无线通信,在本实施例中,该无线通信模块采用蓝牙模块;另外,也可采用移动数据传输模块、WiFi模块、ZigBee模块以及蓝牙模块等等,即能够达到便于进行无线通信连接的效果即可。
参照图2,作为固定件的一种实施方式,固定件包括耳垂夹11,耳垂夹11固定设置在装置主体1上,耳垂夹11用于与人体耳朵的耳垂部分相夹持。
上述实施方式中,利用耳垂夹11将装置主体1夹持在人体耳朵的耳垂部分,减少了使用者在佩戴时发生装置主体1脱落的情况,提高了生理指标监测时的稳定性。
参照图2,作为采集处理组件101的一种实施方式,采集处理组件101包括皮电采集单元、红外光发射器1012、红光发射器1011、光电传感器1013和处理模块;
皮电采集单元用于采集人体肩背部的皮电信号,红光发射器1011和红外光发射器1012设置在耳垂夹11其中一侧的夹体内侧上,光电传感器1013设置在耳垂夹11另一侧的夹体内侧上,光电传感器1013用于接收红外光发射器1012和红光发射器1011透射过耳垂的光束以采集心率信号和/或血氧信号;其中,皮电采集单元包括两个采集肩背部皮电信号的皮电采集扣1014,两个皮电采集扣1014可通过皮电检测线与装置主体1进行连接;
处理模块用于对生理指标信号进行分析处理并得到对应的生理指标数据;其中,处理模块可以采用CPU处理器、单片机等。
上述实施方式中,利用皮电采集单元对人体肩背部的皮电信号进行采集,将耳垂夹11两侧的夹体完全覆盖人体耳朵的耳垂部分,利用红光发射器1011单独开启发射红光对心率信号进行采集,利用红光发射器1011和红外光发射器1012组合开启的方式对血氧信号进行采集,从而即可获取人体的多项生理指标数据。
具体地,在采集心率数据时,开启红光发射器1011,红光透射过皮肤将损耗光的程度传入光电传感器1013,由于耳垂部位有丰富的毛细血管,随着动脉里血液的流动,对红光的吸收能力也有所变化,此时光电传感器1013将接收到的不同的光强度的变化转化成电流信号,得到的电流信号就可以分为直流DC信号和交流AC信号,提取其中的交流AC信号,即可反应出血液流动的特点,从而即可得到心率信号数据;
在采集血氧信号时,可同时发射红外光和红光,由于血液当中含有的氧合血红蛋白HbO2和血红蛋白Hb存在一定的比例,因此,需要以一定的频率交替去开启红光和红外光,氧合血红蛋白HbO2对红光吸收能力较强,血红蛋白Hb对红外光的吸收能力较强,通过计算氧合血红蛋白HbO2对红光的吸收量与血红蛋白Hb对红外光的吸收量的比,即可得出血氧信号数据。
作为采集处理组件101进一步的实施方式,采集处理组件101还包括加速度传感器,加速度传感器用于采集人体在运动过程中产生的加速度信息并发送至处理模块;处理模块还用于判断加速度信息是否高于预设阈值,并将加速度信息高于预设阈值的时间段标记为运动时段。
其中,加速度传感器可以采用三轴加速度传感器或其他类型的加速度传感器,通过设置在装置主体1上,能够有效采集到用户的加速度信息。
上述实施方式中,利用加速度传感器采集人体在运动时产生的加速度信息,当加速度信息高于预设阈值时,利用处理模块标记该时间段为运动时段,从而便于了解人体处于运动时段对应的生理指标数据。
参照图2,作为装置主体1进一步的实施方式,装置主体1上还设置 有绿光发射器,绿光发射器设置在耳垂夹11其中一侧的夹体内侧上,绿光发射器与处理模块连接,用于在加速度信息高于预设阈值时开启;其中,该预设阈值可根据历史经验进行预先设置。
需要说明的是,绿光发射器可设置在耳垂夹11上靠近红光发射器1011的夹体一侧,也可设置在耳垂夹11上靠近光电传感器1013的夹体一侧;在本实施例中,绿光发射器设置为与红光发射器1011同侧。
上述实施方式中,由于人体在运动状态时,对血氧信号和/或心率信号进行采集可能会受到环境光的干扰,因此,当加速度传感器采集到的加速度信息达到预设阈值时,开启绿光发射器发射绿光光源对耳垂夹11周围的环境光进行抑制,从而提高了对血氧信号和/或心率信号采集时的准确性;当未高于预设阈值时,即不会开启。
参照图2,作为装置主体1进一步的实施方式,装置主体1上还设置有,
状态指示灯12,用于提示装置主体1的开关机状态以及使用者的佩戴状态;其中,当检测到佩戴状态正常时,状态指示灯12闪烁绿光提示;当检测到佩戴状态异常时,状态指示灯12闪烁红光提示;
开关键13,用于控制装置主体1进行开关机;
充电及检测接口14,用于与充电线连接对装置主体1进行充电,还用于与外接的皮电检测线连接,以采集人体肩背部的皮电信号;其中,充电及检测接口14为USB Type-C接口;当该接口接入充电线时,装置主体1进入充电状态,当该接口接入皮电检测线时,装置主体1即可对人体皮电信号进行采集。
上述实施方式中,在按下开关键13后,状态指示灯12进行闪烁,蓝牙模块进入等待连接状态,使用者将装置主体1上的耳垂夹11固定在耳垂部位,利用智能终端2与蓝牙模块建立连接,通过智能终端2进行配置并发出生理指标采集指令,装置主体1上的采集处理组件101即可根据生理指标采集指令采集对应的生理指标信号,并在采集处理完成后,通过蓝牙模块将检测到的生理指标数据传输至智能终端2,以方便用户查看。
本申请实施例还基于采集处理组件101侧公开一种生理指标监测方法。
一种生理指标监测方法,应用于上述的一种可穿戴的多指标融合生理智能传感器***,生理指标监测方法包括,
接收智能终端2发送的生理指标采集指令,响应于生理指标采集指令采集对应的生理指标信号;其中,生理指标信号包括皮电信号、心率信号和血氧信号;
将生理指标信号进行分析处理,得到对应的生理指标数据并发送至智能终端2进行显示。
上述实施方式中,在进行生理指标监测时,使用者通过智能终端2发送生理指标采集指令,装置主体1上的采集处理组件101响应于生理指标采集指令采集对应的生理指标信号并进行分析处理,得到生理指标数据并发送至智能终端2,使用者通过智能终端2即可查看自己的生理指标数据;相比于常见的生理指标监测设备,本申请体积较小,便于携带,且综合多项生理指标,通过佩戴在人体耳朵上即可对人体生理指标进行监测,便于使用者实时获取自己的多项生理指标信息,从而达到了对生理健康状况的 实时监控,提高了用户体验感。
作为生理指标监测方法进一步的实施方式,生理指标监测方法还包括,
判断是否获取到血氧信号或心率信号,若是,则输出佩戴状态正常信号;若否,则停止对生理指标信号的采集,并输出佩戴状态异常信号。
上述实施方式中,在进行监测过程中,若能够正常获取到血氧信号或心率信号,即可判断佩戴正常;若无法获取到血氧信号或心率信号,则表明无法采集到血氧信号或心率信号,即可判断耳垂夹11未夹好或已被摘下,即佩戴异常,从而便于实时了解装置主体1的佩戴状态。
作为生理指标监测方法进一步的实施方式,生理指标监测方法还包括,
采集人体在运动过程中产生的加速度信息,判断加速度信息是否高于预设阈值,若是,则将绿光发射器开启,并将加速度信息高于预设阈值的时间段标记为运动时段;若否,则将绿光发射器关闭。
上述实施方式中,由于人体在运动状态时,对血氧信号和/或心率信号进行采集可能会受到环境光的干扰,因此,当采集到的加速度信息达到预设阈值时,开启绿光发射器发射绿光光源对耳垂夹11周围的环境光进行抑制,从而提高了对血氧信号和/或心率信号采集时的准确性;通过对加速度信息高于预设阈值的时间段进行标记,便于用户了解人体处于运动时段对应的生理指标数据。
在本申请所提供的几个实施例中,应该理解到,所提供的方法和***可以通过其它的方式实现;例如,以上所描述的***实施例仅仅是示意性的;例如,某个模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个 ***,或一些特征可以忽略,或不执行;另一点,所显示或讨论的相互之间的连接或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电性、机械或其它的形式的连接。
本发明实施例还公开一种计算机可读存储介质。
计算机可读存储介质,存储有能够被处理器加载并执行如上述的一种生理指标监测方法中任一种方法的计算机程序。
其中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行***、装置或者器件使用或者与其结合使用;计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、电线、光缆、RF等等,或者上述的任意合适的组合。
需要说明的是,在上述实施例中,对各个实施例的描述各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上均为本申请的较佳实施例,并非依此限制本申请的保护范围,本说明书(包括摘要和附图)中公开的任一特征,除非特别叙述,均可被其他等效或者具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。

Claims (10)

  1. 一种可穿戴的多指标融合生理智能传感器***,其特征在于:包括装置主体(1)和智能终端(2),所述装置主体(1)上设置有固定件,所述固定件用于将装置主体(1)固定在人体耳朵上;所述装置主体(1)上设置有采集处理组件(101),所述采集处理组件(101)与智能终端(2)无线通信连接;
    所述采集处理组件(101),响应于智能终端(2)发送的生理指标采集指令采集对应的生理指标信号,对所述生理指标信号进行分析处理,得到对应的生理指标数据并发送至智能终端(2);其中,所述生理指标信号包括皮电信号、心率信号和血氧信号;
    所述智能终端(2),用于接收生理指标数据并进行显示。
  2. 根据权利要求1所述的一种可穿戴的多指标融合生理智能传感器***,其特征在于:所述采集处理组件(101)还用于判断是否获取到血氧信号或心率信号,若是,则输出佩戴状态正常信号;若否,则停止进行采集,并输出佩戴状态异常信号。
  3. 根据权利要求1所述的一种可穿戴的多指标融合生理智能传感器***,其特征在于:所述固定件包括耳垂夹(11),所述耳垂夹(11)固定设置在装置主体(1)上,所述耳垂夹(11)用于与人体耳朵的耳垂部分相夹持。
  4. 根据权利要求3所述的一种可穿戴的多指标融合生理智能传感器***,其特征在于:所述采集处理组件(101)包括皮电采集单元、红外光发射器(1012)、红光发射器(1011)、光电传感器(1013)和处理模块;
    所述皮电采集单元用于采集人体肩背部的皮电信号,所述红光发射器 (1011)和红外光发射器(1012)设置在所述耳垂夹(11)其中一侧的夹体内侧上,所述光电传感器(1013)设置在耳垂夹(11)另一侧的夹体内侧上,所述光电传感器(1013)用于接收所述红外光发射器(1012)和红光发射器(1011)透射过耳垂的光束以采集心率信号和/或血氧信号;
    所述处理模块用于对所述生理指标信号进行分析处理并得到对应的生理指标数据。
  5. 根据权利要求1到4任一所述的一种可穿戴的多指标融合生理智能传感器***,其特征在于:所述采集处理组件(101)还包括加速度传感器,所述加速度传感器用于采集人体在运动过程中产生的加速度信息并发送至处理模块;所述处理模块还用于判断加速度信息是否高于预设阈值,并将加速度信息高于预设阈值的时间段标记为运动时段。
  6. 根据权利要求5所述的一种可穿戴的多指标融合生理智能传感器***,其特征在于:还包括绿光发射器,所述绿光发射器设置在耳垂夹(11)其中一侧的夹体内侧上,所述绿光发射器与处理模块连接,用于在加速度信息高于预设阈值时开启。
  7. 一种生理指标监测方法,应用于权利要求1至6的一种可穿戴的多指标融合生理智能传感器***,其特征在于:所述生理指标监测方法包括,
    接收智能终端(2)发送的生理指标采集指令,响应于所述生理指标采集指令采集对应的生理指标信号;其中,所述生理指标信号包括皮电信号、心率信号和血氧信号;
    将所述生理指标信号进行分析处理,得到对应的生理指标数据并发送至智能终端(2)进行显示。
  8. 根据权利要求7所述的一种生理指标监测方法,其特征在于:所述生理指标监测方法还包括,
    判断是否获取到血氧信号或心率信号,若是,则输出佩戴状态正常信号;若否,则停止对生理指标信号的采集,并输出佩戴状态异常信号。
  9. 根据权利要求7所述的一种生理指标监测方法,其特征在于:所述生理指标监测方法还包括,
    采集人体在运动过程中产生的加速度信息,判断加速度信息是否高于预设阈值,若是,则将绿光发射器开启,并将加速度信息高于预设阈值的时间段标记为运动时段;若否,则将绿光发射器关闭。
  10. 一种计算机可读存储介质,其特征在于:存储有能够被处理器加载并执行如权利要求7到9中任一种方法的计算机程序。
PCT/CN2022/095702 2021-12-31 2022-05-27 一种可穿戴的多指标融合生理智能传感器***及生理指标监测方法 WO2023123856A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22822257.6A EP4226854A4 (en) 2021-12-31 2022-05-27 PORTABLE INTEGRATED PHYSIOLOGICAL INTELLIGENT SENSOR SYSTEM WITH MULTI-INDICES AND PHYSIOLOGICAL INDEX MONITORING METHODS
US18/086,768 US20230210462A1 (en) 2021-12-31 2022-12-22 Wearable multi-index integrated physiological intelligent sensor system and physiological index monitoring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111673253.1A CN114403835B (zh) 2021-12-31 2021-12-31 一种可穿戴的多指标融合生理智能传感器***及生理指标监测方法
CN202111673253.1 2021-12-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/086,768 Continuation US20230210462A1 (en) 2021-12-31 2022-12-22 Wearable multi-index integrated physiological intelligent sensor system and physiological index monitoring method

Publications (1)

Publication Number Publication Date
WO2023123856A1 true WO2023123856A1 (zh) 2023-07-06

Family

ID=81271033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095702 WO2023123856A1 (zh) 2021-12-31 2022-05-27 一种可穿戴的多指标融合生理智能传感器***及生理指标监测方法

Country Status (2)

Country Link
CN (1) CN114403835B (zh)
WO (1) WO2023123856A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114403835B (zh) * 2021-12-31 2023-11-07 北京津发科技股份有限公司 一种可穿戴的多指标融合生理智能传感器***及生理指标监测方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004237066A (ja) * 2002-12-11 2004-08-26 Masatoshi Shibuya 耳掛け式脈拍計
US20080165017A1 (en) * 2005-07-28 2008-07-10 Hippoc Ltd. Ear-mounted biosensor
US20190053766A1 (en) * 2015-10-22 2019-02-21 MBRAINTRAIN LLC Belgrade Wireless eeg headphones for cognitive tracking and neurofeedback
CN111166305A (zh) * 2020-01-23 2020-05-19 北京津发科技股份有限公司 耳部生理信号采集装置
CN111166307A (zh) * 2020-01-23 2020-05-19 北京津发科技股份有限公司 一种手指部位多参数生理信号采集装置
CN112137609A (zh) * 2020-08-31 2020-12-29 北京津发科技股份有限公司 多生理指标采集装置
CN214104390U (zh) * 2019-05-14 2021-09-03 周常安 微型耳戴生理装置
CN216257099U (zh) * 2021-09-09 2022-04-12 北京津发科技股份有限公司 智能穿戴耳夹式数据采集装置
CN114403835A (zh) * 2021-12-31 2022-04-29 北京津发科技股份有限公司 一种可穿戴的多指标融合生理智能传感器***及生理指标监测方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140128753A1 (en) * 2012-11-08 2014-05-08 Aliphcom Piezoelectric heart rate sensing for wearable devices or mobile devices
CN103462598B (zh) * 2013-09-03 2015-04-15 中国农业大学 一种基于智能手机的人体信息监测终端及监测方法
US9782104B2 (en) * 2014-03-26 2017-10-10 GestureLogic Inc. Systems, methods and devices for acquiring and processing physiological signals
CN103876711B (zh) * 2014-03-27 2016-06-01 北京圣博亚科技有限公司 可穿戴电子设备以及人体健康监测管理***
WO2015184391A1 (en) * 2014-05-29 2015-12-03 Gil Da Costa Ricardo Physiological signal detection and analysis systems and devices
CN104720787A (zh) * 2015-04-01 2015-06-24 深圳柔微传感科技有限公司 一种实现疲劳实时监测的方法和智能服装
CN106419868A (zh) * 2016-08-18 2017-02-22 智云康铠(北京)科技股份有限公司 一种生命体征监测***
US20180116607A1 (en) * 2016-10-28 2018-05-03 Garmin Switzerland Gmbh Wearable monitoring device
US11622716B2 (en) * 2017-02-13 2023-04-11 Health Care Originals, Inc. Wearable physiological monitoring systems and methods
CN108337592A (zh) * 2018-02-09 2018-07-27 天津大学 具有检测耳温和心率功能的智能耳机
CN109091125B (zh) * 2018-08-27 2020-06-30 江苏盖睿健康科技有限公司 一种提高睡眠监测准确性的可穿戴设备
CN109044296A (zh) * 2018-09-03 2018-12-21 深圳市尼欧科技有限公司 一种智能生理疲劳度检测的驾驶疲劳提醒手环
CN109222951A (zh) * 2018-10-30 2019-01-18 广东小天才科技有限公司 一种心率数据采集方法、装置、终端设备及存储介质
CN110335955B (zh) * 2019-04-24 2022-02-01 昆山工研院新型平板显示技术中心有限公司 显示面板和显示装置
CN110522426A (zh) * 2019-09-05 2019-12-03 大连海事大学 一种基于多传感器的舰船人员行为智能监测***
CN112190248B (zh) * 2020-11-03 2024-05-24 深圳市汇顶科技股份有限公司 佩戴状态检测方法、装置以及可穿戴设备
CN113229789A (zh) * 2021-04-23 2021-08-10 深圳市奋达科技股份有限公司 一种基于无线耳机的生理指标监测方法和***

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004237066A (ja) * 2002-12-11 2004-08-26 Masatoshi Shibuya 耳掛け式脈拍計
US20080165017A1 (en) * 2005-07-28 2008-07-10 Hippoc Ltd. Ear-mounted biosensor
US20190053766A1 (en) * 2015-10-22 2019-02-21 MBRAINTRAIN LLC Belgrade Wireless eeg headphones for cognitive tracking and neurofeedback
CN214104390U (zh) * 2019-05-14 2021-09-03 周常安 微型耳戴生理装置
CN111166305A (zh) * 2020-01-23 2020-05-19 北京津发科技股份有限公司 耳部生理信号采集装置
CN111166307A (zh) * 2020-01-23 2020-05-19 北京津发科技股份有限公司 一种手指部位多参数生理信号采集装置
CN112137609A (zh) * 2020-08-31 2020-12-29 北京津发科技股份有限公司 多生理指标采集装置
CN216257099U (zh) * 2021-09-09 2022-04-12 北京津发科技股份有限公司 智能穿戴耳夹式数据采集装置
CN114403835A (zh) * 2021-12-31 2022-04-29 北京津发科技股份有限公司 一种可穿戴的多指标融合生理智能传感器***及生理指标监测方法

Also Published As

Publication number Publication date
CN114403835A (zh) 2022-04-29
CN114403835B (zh) 2023-11-07

Similar Documents

Publication Publication Date Title
CN103989528B (zh) 一体化多参数生理状态监测***
CN104071110A (zh) 用于载人移动载具的安全监控装置及安全监控方法
CN104382602A (zh) 多参数智能生理检测手套
CN103462598A (zh) 一种基于智能手机的人体信息监测终端及监测方法
CN109475315B (zh) 可穿戴式心脏监测装置、心脏监测***及方法
US20120165688A1 (en) Wireless optical pulsimetry system for a healthcare environment
WO2023123856A1 (zh) 一种可穿戴的多指标融合生理智能传感器***及生理指标监测方法
CN203898287U (zh) 一种能采集多参数健康指标的手环
CN109394189A (zh) 一种无创式连续多参数监测的智能穿戴式生物监测装置
CN210673328U (zh) 人体特征采集装置、设备、设备保护壳、***
EP4226854A1 (en) Wearable multi-index integrated physiological intelligent sensor system and physiological index monitoring method
CN209826740U (zh) 一种血氧和血液容积数据采集组件和采集镜架
CN109346166B (zh) 一种医院住院部用智能医护手环的深度学习建模方法
CN203763063U (zh) 一种便携式脉搏监测器
CN211206990U (zh) 一种可检测心率的眼镜
CN211325064U (zh) 多场景物联网智能可穿戴血氧检测器
CN211270775U (zh) 耳夹式血氧检测器
CN210277135U (zh) 一种便携的健康检测及智能报警的仪器
CN105640532A (zh) 耳戴式心率监测装置及方法
CN211484542U (zh) 一种基于ar眼镜的检伤分类装置
Shabnam et al. IoT based health monitoring using smart devices for medical emergency services
KR102471204B1 (ko) 인체 신호 검출 헤드셋 장치
CN209301155U (zh) 一种血氧检测装置
EP4054507A1 (en) Apparatus, system and method for reducing stress
CN219039709U (zh) 用于手势捕捉的肌电臂环

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022822257

Country of ref document: EP

Effective date: 20221221