WO2023116277A1 - 一种电流传感器 - Google Patents

一种电流传感器 Download PDF

Info

Publication number
WO2023116277A1
WO2023116277A1 PCT/CN2022/132433 CN2022132433W WO2023116277A1 WO 2023116277 A1 WO2023116277 A1 WO 2023116277A1 CN 2022132433 W CN2022132433 W CN 2022132433W WO 2023116277 A1 WO2023116277 A1 WO 2023116277A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic induction
copper bar
induction unit
magnetic
differential
Prior art date
Application number
PCT/CN2022/132433
Other languages
English (en)
French (fr)
Inventor
刘明峰
施然
薛松生
Original Assignee
江苏多维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏多维科技有限公司 filed Critical 江苏多维科技有限公司
Publication of WO2023116277A1 publication Critical patent/WO2023116277A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only

Definitions

  • Embodiments of the present invention relate to the technical field of electrical quantity measurement, and in particular to a current sensor.
  • a current sensor is a current detection device that can convert the detected current information according to a certain rule into an electrical signal or other form of signal output that meets the requirements of a certain standard to meet the transmission, processing, storage, display, and recording of information. and control requirements.
  • current sensors are widely used in household appliances, smart grids, electric vehicles, wind power generation and other fields.
  • Current sensors include magnetic current sensors, such as Hall current sensors, fluxgate current sensors, magnetoresistive current sensors, and the like.
  • Hall current sensor technology is the most mature, but its low sensitivity, poor temperature drift characteristics, small bandwidth and other defects limit its application in high-precision current measurement occasions.
  • the fluxgate current sensor has the advantages of good linearity, high detection accuracy, and good temperature drift performance, but its large size, small bandwidth, complex circuit, and high cost make it only applicable to occasions that do not require too much volume .
  • the magnetoresistive current sensor is a very promising new type of current sensor. It has the characteristics of small size, large signal amplitude, high sensitivity, low noise, and easy integration with semiconductor circuits. It can simplify the design of the back-end signal processing circuit and reduce the The volume of the entire current sensor and reduce the cost.
  • the high precision of the detection has limitations on the measurement current range, that is, the high-sensitivity magnetoresistive current sensors generally have a small saturation field. Magnetic saturation is prone to occur during measurement.
  • Allegro's ACS70331 integrated GMR current sensor includes a bridge structure composed of GMRs, which can sense the magnetic field in the opposite direction generated by the current to be measured passing through a single-layer U-shaped copper conduction path, that is, the magnetic field is directly used as the input of the bridge. signal, which severely limits the range of use of the current sensor, resulting in a range that can only reach 2.5A.
  • the range of the current sensor It is also tens of amperes at most; even if the U-shaped copper conduction path is replaced with a rectangular copper row copper conduction path such as Allegro's ACS756, the measuring range of the current sensor does not exceed 200A.
  • An embodiment of the present invention provides a current sensor to solve the problem of small measuring range of the existing high-precision and small-volume current sensor.
  • An embodiment of the present invention provides a current sensor, including:
  • the current input component to be tested includes a first shunt copper bar, a second shunt copper bar, and a differential copper bar arranged between the first shunt copper bar and the second shunt copper bar,
  • the first shunt copper bar, the second shunt copper bar and the differential copper bar are arranged along the same direction;
  • a signal output component the signal output component is electrically isolated from the current input component to be measured, the signal output component includes a magnetic induction module and a substrate, and the magnetic induction module is fixed on the substrate;
  • the current to be measured flows through a cross section perpendicular to the first shunt copper bar, the second shunt copper bar and the differential copper bar, and generates a magnetic field at the position of the magnetic induction module;
  • the magnetic sensing module includes at least a first magnetic sensing unit and a second magnetic sensing unit, the first magnetic sensing unit and the second magnetic sensing unit are located between the differential copper bar and the first shunt copper bar, the first The magnetic sensing unit and the second magnetic sensing unit differentially sense the differential-mode magnetic field generated by the current input component to be measured, and generate a differential voltage signal to form an output signal of the current sensor.
  • the embodiment of the present invention also provides a current sensor, including:
  • a current input component to be measured includes a first shunt copper bar and a second shunt copper bar connected in parallel;
  • a signal output assembly the current input assembly to be measured is electrically isolated from the signal output assembly, the signal output assembly includes a magnetic induction module and a substrate, and the magnetic induction module is fixed on the substrate;
  • the current to be measured flows through a cross section perpendicular to the first shunt copper bar and the second shunt copper bar, and generates a magnetic field at the position of the magnetic induction module;
  • the magnetic induction module includes at least a first magnetic induction unit and a second magnetic induction unit, the first magnetic induction unit is located between the first shunt copper bar and the second shunt copper bar, the first magnetic induction unit and the The second magnetic induction unit is located on the same horizontal plane, and the horizontal plane is parallel to the plane where the substrate is located, and along a direction perpendicular to the plane where the substrate is located, the first shunt copper bar and the second shunt copper bar are on the The overlapping area of the vertical projection of the plane where the substrate is located does not overlap with the second magnetic induction unit;
  • the first magnetic sensing unit and the second magnetic sensing unit differentially sense the magnetic field generated by the current input component to be measured and generate a differential voltage signal, which forms an output signal of the current sensor.
  • the current sensor provided by the embodiment of the present invention is a new type of current sensor, which can control the operating point of the common-mode magnetic field, and can solve the problem that the magnetoresistive sensitive element is easily saturated, so as to solve the limitation of the measurement current range by high precision in the existing current sensor , and the current sensor structure provided by the embodiment of the present invention can be applied to a small-volume current sensor chip, which realizes the high precision of the current sensor and the adjustable current measurement range, can be applied to various working ranges, and has the advantages of simple structure, external resistance It has the advantages of strong magnetic field interference ability, high DC and AC current measurement, electrical isolation of input and output, good linearity, high precision, good stability, small size and large measuring range.
  • FIG. 1 is a schematic diagram of a current sensor provided by an embodiment of the present invention
  • Fig. 2 is a simulation schematic diagram of the current sensor shown in Fig. 1;
  • Fig. 3 is a schematic diagram of the differential half-bridge structure of the current sensor shown in Fig. 1;
  • Fig. 4 is a schematic diagram of another bridge structure of the current sensor shown in Fig. 1;
  • Fig. 5 is a schematic diagram of another bridge structure of the current sensor shown in Fig. 1;
  • FIG. 6 is a schematic diagram of another current sensor provided by an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a differential full-bridge structure of the current sensor shown in FIG. 6;
  • Fig. 8 is a schematic diagram of another current sensor provided by an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of another current sensor provided by an embodiment of the present invention.
  • Fig. 10 is a schematic diagram of another current sensor provided by an embodiment of the present invention.
  • Fig. 11 is a schematic diagram of another current sensor provided by an embodiment of the present invention.
  • the current sensor provided by this embodiment includes: a current input assembly to be measured, and the current input assembly to be measured includes a first shunt copper bar 11, a second shunt copper bar 21, and the first shunt copper bar 11 and the second shunt copper bar 21
  • the differential copper bar 31 between the second shunt copper bar 21, the first shunt copper bar 11, the second shunt copper bar 21 and the differential copper bar 31 are arranged in the same direction; the signal output assembly, the signal output assembly and the current input assembly to be measured
  • the signal output assembly includes a magnetic induction module 41 and a base plate 51, and the magnetic induction module 41 is fixed on the base plate 51; the current to be measured flows from the first shunt copper bar 11 perpendicular to the second shunt copper bar 21 and the differential copper bar 31
  • the cross section flows through and generates a magnetic field at the position of the magnetic induction module 41; the magnetic induction module 41 includes
  • the first magnetic induction unit 411 and the second magnetic induction unit 421 differentially sense the differential-mode magnetic field generated by the current input component to be measured, and generate a differential voltage signal to form an output signal of the current sensor.
  • the first shunt copper bar 11 , the second shunt copper bar 21 and the differential copper bar 31 constitute a current input component to be tested.
  • the three copper bars jointly divide the current to be measured, wherein the current to be measured is in the current direction of the first shunt copper bar 11, the current to be measured is in the current direction of the second shunt copper bar 21, and the current to be measured is in the differential copper bar
  • the current directions in 31 are all the same.
  • the first shunt copper bar 11 , the second shunt copper bar 21 and the differential copper bar 31 are arranged in parallel along the Z direction.
  • the magnetic induction module 41 and the substrate 51 form a signal output assembly, the signal output assembly is electrically isolated from the current input assembly to be measured, and the magnetic induction module 41 is fixedly arranged on the substrate 51 .
  • the first shunt copper bar 11 is located on the side of the magnetic induction module 41 away from the substrate 51
  • the second shunt copper bar 21 is located on the side of the substrate 51 away from the magnetic induction module 41 .
  • the first shunt copper bar 11 is located above the magnetic induction module 41
  • the second shunt copper bar 21 is located below the differential copper bar 31
  • the magnetic induction module 41 is located above the differential copper bar 31 .
  • the current to be measured flows through the cross section perpendicular to the first shunt copper bar 11, the second shunt copper bar 21 and the differential copper bar 31, and generates a magnetic field at the position of the magnetic induction module 41.
  • the first shunt copper bar 11 The cross section of the second shunt copper bar 21 and the differential copper bar 31 is the X-Z plane, and the current direction of the current to be measured is perpendicular to the X-Z plane as shown in FIG. 1 .
  • the magnetic induction module 41 includes at least a first magnetic induction unit 411 and a second magnetic induction unit 421, the first magnetic induction unit 411 and the second magnetic induction unit 421 are located between the differential copper bar 31 and the first shunt copper bar 11, the first magnetic induction unit 411 and the second magnetic induction unit 411
  • the two magnetic induction units 421 are arranged along the X direction.
  • the first magnetic sensing unit 411 and the second magnetic sensing unit 421 differentially sense and measure the differential-mode magnetic field generated by the current to be measured flowing through the current input component to be measured, and generate a differential voltage signal to form an output signal of the current sensor.
  • the sensitivity direction of each magnetic induction unit in the optional magnetic induction module 41 is parallel to the plane where the substrate 51 is located.
  • the sensitivity direction of the magnetic induction unit is the rightward direction as shown in FIG. 1 , that is, the X direction.
  • the optional first magnetic induction unit 411 and the second magnetic induction unit 421 are located on the same horizontal plane, and the horizontal plane is parallel to the plane where the substrate 51 is located; along the direction Z perpendicular to the plane where the substrate 51 is located, the differential copper bar 31 is located on the plane where the substrate 51 is located.
  • the vertical projection covers the first magnetic induction unit 411 and does not overlap with the second magnetic induction unit 421; along the direction Z perpendicular to the plane where the substrate 51 is located, the vertical projection of the first shunt copper bar 11 on the plane where the substrate 51 is located covers the second A magnetic induction unit 411 and a second magnetic induction unit 421 , and the vertical projection of the second shunt copper bar 21 on the plane where the substrate 51 is located covers the first magnetic induction unit 411 and the second magnetic induction unit 421 .
  • the first magnetic induction unit 411 and the second magnetic induction unit 421 are located on the same horizontal plane, and the horizontal plane is parallel to the plane where the substrate 51 is located, and the plane where the substrate 51 is located is perpendicular to the X-Z plane.
  • the first shunt copper bar 11, the second shunt copper bar 21, the differential copper bar 31, the first magnetic induction unit 411 and the second magnetic induction unit 421 are vertically projected on the plane where the substrate 51 is located, then the plane where the substrate 51 is located.
  • the relationship between the projections of each structure is that the projection of the first magnetic induction unit 411 is located within the projection range of the differential copper bar 31, the projection of the second magnetic induction unit 421 is located outside the projection range of the differential copper bar 31, and the projection of the first shunt copper bar 11 covers The projection of the first magnetic induction unit 411 and the projection of the second magnetic induction unit 421 , the projection of the second shunt copper bar 21 covers the projection of the first magnetic induction unit 411 and the projection of the second magnetic induction unit 421 .
  • the magnetic field of each copper busbar only needs to cover the range of the magnetic induction unit, so that the chip-level volume of the current sensor can be realized.
  • the optional current sensor further includes: a casing 61 , in which the current input component to be measured and the signal output component are both fixedly arranged.
  • the optional differential copper bars 31 are disposed inside the substrate 51 .
  • the shell 61 is a mechanical support shell, which wraps, fixes and supports various parts of the current sensor and provides external interfaces.
  • the differential copper bar 31 is embedded in the substrate 51, and its position in the substrate 51 is relatively closer to the first magnetic induction unit 411.
  • the sensitivity direction of the optional first magnetic induction unit 411 and the second magnetic induction unit 421 are the same as or opposite to the direction of the magnetic field generated by the current to be measured passing through the differential copper bar 31 at the position of the first magnetic induction unit 411 .
  • the differential copper bar 31 When the current to be measured flows through the differential copper bar 31, the differential copper bar 31 generates a magnetic field at the position of the first magnetic induction unit 411.
  • the direction of the magnetic field is the same as the sensitivity direction of the first magnetic induction unit 411, and is also the same as that of the second magnetic induction unit 421.
  • the direction of sensitivity is the same. Specifically, referring to FIG.
  • the direction of the magnetic field generated by the differential copper bar 31 at the position of the first magnetic induction unit 411 is within the plane of the magnetic induction module 41 and perpendicular to the direction of the current to be measured.
  • the direction of the current to be measured is perpendicular to the X-Z plane, and the direction of the magnetic field generated by the differential copper bar 31 at the position of the first magnetic induction unit 411 is parallel to the X direction.
  • FIG. 2 it is a schematic diagram of simulation of the current sensor shown in FIG. 1 .
  • the current I in to be measured is set to be 50A, and the section width of the current input component to be tested is 10mm.
  • the cross-sectional width of the current input component to be tested is the dimension from the upper surface of the first shunt copper bar 11 to the lower surface of the second shunt copper bar 21 along the Z direction, and the magnetic induction module 41 is located above the differential copper bar 31 0.6 mm horizontal plane position, then when the current to be measured flows through the copper bar in a direction perpendicular to the XZ plane of the cross-section of the current input component to be tested, a magnetic field will be generated at the 0.6 mm horizontal plane position above the differential copper bar 31 .
  • the first magnetic induction unit 411 is located in the magnetic field homogeneous area within the vertical projection coverage above the differential copper bar 31, and the second magnetic induction unit 421 is located in the magnetic field uniform area outside the vertical projection coverage above the differential copper bar 31;
  • the two The magnetic induction units are all located in the uniform magnetic field area of the first shunt copper bar 11 at the same time, and the two magnetic induction units are also located in the magnetic field uniform area of the second shunt copper bar 21 at the same time;
  • the first shunt copper bar 11, the second shunt copper bar 21 and the differential The copper bars 31 are connected in parallel to shunt the current I in to be measured. If the material is considered to be uniform, the current density in the section in Figure 1 can be regarded as the same, that is, the magnitude of the current is proportional to the cross-sectional area.
  • the first magnetic induction unit 411 and the second magnetic induction unit 421 are located in the uniform magnetic field area of the first shunt copper bar 11 and the second shunt copper bar 21, the current flowing through the first shunt copper bar 11 is in the first magnetic induction unit 411 and the second magnetic induction unit 411.
  • the position of the second magnetic induction unit 421 generates a uniform magnetic field, and the current flowing through the second shunt copper bar 21 generates a uniform magnetic field at the positions of the first magnetic induction unit 411 and the second magnetic induction unit 421 .
  • the linear constant of the magnetic field generated by the first shunt copper bar 11 at the first magnetic induction unit 411 and the second magnetic induction unit 421 be k 1
  • the second shunt copper bar 21 be at the first magnetic induction unit 411 and the second magnetic induction unit 421.
  • the linear constant of the magnetic field generated at the position is k 2
  • the linear constant of the magnetic field generated by the differential copper row 31 at the position of the first magnetic induction unit 411 is k 31
  • the linearity of the magnetic field generated by the differential copper row 31 at the position of the second magnetic induction unit 421 The constant is k 32 .
  • H 41 -k 1 I 1 +k 2 I 2 +k 31 I 3 ;
  • H 42 -k 1 I 1 +k 2 I 2 +k 32 I 3 (2).
  • the magnetic field of the current input component to be measured at the positions of the first magnetic induction unit 411 and the second magnetic induction unit 421 can be converted into a superposition of a common-mode magnetic field HCM and a differential-mode magnetic field HDM , expressed as the following formula (4):
  • H 41 H CM +H DM ;
  • H 42 H CM -H DM (4).
  • the common mode magnetic field HCM of the current input component to be tested at the positions of the first magnetic induction unit 411 and the second magnetic induction unit 421 is related to the first shunt copper bar 11, the second shunt copper bar 21 and the differential copper bar 31, to be
  • the differential mode magnetic field H DM of the current measurement input assembly at the first magnetic induction unit 411 and the second magnetic induction unit 421 is only related to the differential copper bar 31; therefore, the first shunt copper bar 11 and the second shunt copper bar 21 are in the first Only the common-mode magnetic field H CM is generated at the positions of the magnetic induction unit 411 and the second magnetic induction unit 421 , and no differential-mode magnetic field H DM is generated. In this way, it can adjust and increase the current input range of the current sensor.
  • the common mode magnetic field H CM generated by the current input component to be measured at the first magnetic induction unit 411 and the second magnetic induction unit 421 is completely canceled to zero, then the current input component to be measured is in the first magnetic induction unit 421.
  • the decomposition of the magnetic field generated at the positions of 411 and the second magnetic induction unit 421 may only consider the differential mode magnetic field H DM .
  • the first shunt copper bar 11, the second shunt copper bar 21 and the differential copper bar 31 jointly shunt the current I in to be measured, and the magnetic fields at the positions of the first magnetic induction unit 411 and the second magnetic induction unit 421 and The current to be measured is proportional to I in , and the detection of the current to be measured can be realized by measuring the differential mode magnetic field H DM .
  • the first shunt copper bar, the second shunt copper bar and the differential copper bar constitute the current input component to be tested, and generate a magnetic field at the position of the magnetic induction module;
  • the differential-mode magnetic field generated when the measured current flows through the current input component to be measured generates a differential voltage signal, and the differential voltage signal output by the magnetic induction module forms the output signal of the current sensor.
  • the current sensor provided by the embodiment of the present invention is a new type of current sensor, which can control the operating point of the common-mode magnetic field, and can solve the problem that the magnetoresistive sensitive element is easily saturated, so as to solve the limitation of the measurement current range by high precision in the existing current sensor , and the current sensor structure provided by the embodiment of the present invention can be applied to a small-volume current sensor chip, which realizes the high precision of the current sensor and the adjustable current measurement range, can be applied to various working ranges, and has the advantages of simple structure, external resistance It has the advantages of strong magnetic field interference ability, high DC and AC current measurement, electrical isolation of input and output, good linearity, high precision, good stability, small size and large measuring range.
  • the optional first magnetic induction unit includes at least one magnetoresistance bridge arm
  • the second magnetic induction unit includes at least one magnetoresistance bridge arm
  • the magnetoresistance bridge arm of the first magnetic induction unit and the magnetoresistance bridge arm of the second magnetic induction unit are electrically connected to form a differential half Bridge structure or differential full bridge structure; wherein, the sensitivity direction of each magnetoresistance bridge arm is the same, and the magnetoresistance bridge arm is composed of at least one magnetoresistance sensitive element connected in series and parallel.
  • the optional magnetic induction unit is composed of any magnetoresistance sensitive element among anisotropic magnetoresistance AMR, giant magnetoresistance GMR, tunnel magnetoresistance TMR and colossal magnetoresistance CMR.
  • FIG. 3 it is a schematic diagram of a differential half-bridge structure of the current sensor shown in FIG. 1 .
  • the first magnetic induction unit 411 is composed of a magnetoresistive bridge arm 411a
  • the second magnetic induction unit 421 is composed of a magnetoresistive bridge arm 421a.
  • Each magnetoresistive bridge arm is composed of one or more magnetoresistive sensitive elements connected in series and parallel.
  • the sensitivity directions of the two magnetoresistive bridge arms 411a and 421a are the same, for example, the sensitivity direction is horizontal to the right X direction as shown in FIG. 1 , and electrically form a differential half-bridge structure.
  • the magnetoresistive sensitive element constituting the magnetoresistive unit in FIG. 3 is a tunnel magnetoresistance TMR.
  • the differential-mode magnetic field H DM causes the rightward magnetic field at the position of the first magnetic induction unit 411 to be greater than the rightward magnetic field at the position of the second magnetic induction unit 421 , because the two magnetoresistive bridges
  • the sensitivity directions of arms 411a and 421a are both to the right, and the magnetic field to the right at the position of the magnetoresistive bridge arm 411a is greater than the magnetic field to the right at the position of the magnetoresistance bridge arm 421a, so the resistance of the magnetoresistance bridge arm 411a is set to be smaller than that of the magnetoresistance bridge arm
  • the resistance of 421a can realize the change of magnetic field to voltage. Therefore, Va in FIG. 3 will produce a corresponding change according to the situation of the current to be measured, forming a differential voltage signal.
  • the optional current sensor further includes: an open-loop signal conditioning circuit 431 , which performs conditioning amplification, temperature compensation, and linearity correction on the differential voltage signal.
  • the magnetic induction module 41 also includes an open-loop signal conditioning circuit 431, and the open-loop signal conditioning circuit 431 performs conditioning amplification, temperature compensation and linearity correction on the differential voltage signal generated by the first magnetic induction unit 411 and the second magnetic induction unit 421 , to form the output signal of the magnetic induction module 41 . Then the output of the magnetic induction module 41 is formed as the output signal of the current sensor.
  • the differential copper bar 31 forms a differential-mode magnetic field, and the common-mode magnetic field formed by the first shunt copper bar 11 and the second shunt copper bar 21 and the common-mode magnetic field formed by the differential copper bar 31 cancel and reduce each other, expanding the current The measuring current range of the sensor.
  • an open-loop signal conditioning circuit is used to manufacture a new type of differential current sensor with an adjustable current measurement range and can effectively increase the measurement range of the current to be measured, which effectively solves the problem that the magnetoresistive sensitive element is easily saturated. Problems, and provide a good ability to resist external magnetic field interference, with the characteristics of measurable DC and AC large current, simple structure, and electrical isolation of input and output.
  • the magnetic field of the copper bar only needs to cover the range of the magnetic induction unit, so the current sensor can achieve a chip-level size; combined with the characteristics of small size, large signal amplitude, high sensitivity, low noise, and easy integration with semiconductor circuits, the tunnel magnetoresistive device can
  • the design of the signal processing circuit at the back end of the current sensor is further simplified, the volume of the entire current sensor is reduced, and the cost of the current sensor is reduced.
  • the optional first magnetic induction unit includes a first half bridge or a first full bridge
  • the second magnetic induction unit includes a second half bridge or a second full bridge; the bridge of the first magnetic induction unit and the bridge of the second magnetic induction unit The output voltage difference between produces a differential voltage signal.
  • the first half-bridge contains two MR bridge arms with opposite sensitivities
  • the second half-bridge contains two MR bridge arms with opposite sensitivities
  • the first full bridge contains four MR bridge arms electrically connected to The directions of sensitivity of two adjacent magnetoresistance bridge arms are opposite
  • the second full bridge includes four magnetoresistance bridge arms and the sensitivity directions of the two adjacent magnetoresistance bridge arms electrically connected are opposite; wherein, the magnetoresistance bridge arms are composed of a
  • the magnetoresistance sensitive element is composed of or composed of more than one magnetoresistance sensitive elements connected in series and parallel.
  • FIG. 4 it is a schematic diagram of another bridge structure of the current sensor shown in FIG. 1 .
  • the first magnetic induction unit 411 includes a first half-bridge
  • the second magnetic induction unit 421 includes a second half-bridge.
  • the first half bridge includes two MR bridge arms 411b1 and 411b2
  • the second half bridge includes two MR bridge arms 421b1 and 421b2.
  • the direction of sensitivity of the magnetoresistive bridge arms in each bridge is different.
  • the sensitivity directions of the magnetoresistance bridge arms 411b1 and 411b2 in the first half bridge are opposite. Specifically, the sensitivity direction of the magnetoresistance bridge arm 411b1 is to the left as shown in the figure, and the sensitivity direction of the magnetoresistance bridge arm 411b2 is to the right as shown in the figure; the second The sensitivity directions of the magnetoresistive bridge arms 421b1 and 421b2 in the half bridge are opposite. Specifically, the sensitivity direction of the magnetoresistive bridge arm 421b1 is leftward as shown in the figure, and the sensitivity direction of the magnetoresistive bridge arm 421b2 is rightward as shown in the figure.
  • first shunt copper bar 11 and the second shunt copper bar 21 will only cancel and reduce the common-mode magnetic field H CM , but not generate the differential-mode magnetic field H DM , and the common-mode magnetic field after cancellation H CM may be in the same direction, zeroed or reversed.
  • the output voltage V1b of the electric bridge of the first magnetic induction unit 411 in FIG. form a differential voltage signal.
  • FIG. 5 it is a schematic diagram of another bridge structure of the current sensor shown in FIG. 1 .
  • the first magnetic induction unit 411 includes a first full bridge
  • the second magnetic induction unit 421 includes a second full bridge.
  • the first full bridge includes four MR bridge arms 411c1 , 411c2 , 411c3 and 411c4
  • the second full bridge includes four MR bridge arms 421c1 , 421c2 , 421c3 and 421c4 .
  • the direction of sensitivity of the magnetoresistive bridge arms in each bridge may not be exactly the same.
  • each magnetoresistance bridge arm 411c1, 411c2, 411c3 and 411c4 has a sensitivity direction opposite to that of its electrically adjacent magnetoresistance bridge arm in the full bridge connection structure. That is, the sensitivity directions of the magnetoresistive bridge arm 411c1 and its adjacent magnetoresistive bridge arms 411c2 and 411c3 are opposite, and the magnetoresistive bridge arm 411c4 and its adjacent magnetoresistive bridge arms 411c2 and 411c3 have opposite sensitivity directions.
  • the directions of sensitivity of the magnetoresistive bridge arms 411c1 and 411c4 are the same and are to the right as shown in the figure
  • the directions of sensitivity of the magnetoresistive bridge arms 411c2 and 411c3 are the same and are shown to the left as shown in the figure
  • the sensitivity of the magnetoresistive bridge arms 411c1 and 411c2 is in the opposite direction.
  • each magnetoresistance bridge arm 421c1 , 421c2 , 421c3 and 421c4 has a sensitivity direction opposite to that of its electrically adjacent magnetoresistance bridge arm in the full bridge connection structure. That is, the sensitivity directions of the magnetoresistance bridge arm 421c1 and its adjacent magnetoresistance bridge arms 421c2 and 421c3 are opposite, and the sensitivity directions of the magnetoresistance bridge arm 421c4 and its adjacent magnetoresistance bridge arms 421c2 and 421c3 are opposite.
  • the directions of sensitivity of the magnetoresistive bridge arms 421c1 and 421c4 are the same and point to the right as shown in the figure
  • the directions of sensitivity of the magnetoresistive bridge arms 421c2 and 421c3 are the same and point to the left as shown in the figure
  • the sensitivity of the magnetoresistive bridge arms 421c1 and 421c2 is in the opposite direction.
  • first shunt copper bar 11 and the second shunt copper bar 21 will only cancel and reduce the common-mode magnetic field H CM , but not generate the differential-mode magnetic field H DM , and the common-mode magnetic field after cancellation H CM may be in the same direction, zeroed or reversed.
  • the magnetoresistive bridge arms 411c2 and 411c3 The resistance of the magnetoresistance bridge arms 411c1 and 411c4 is greater than that of the magnetoresistance bridge arms 411c1 and 411c4, and the resistance of the magnetoresistance bridge arms 421c2 and 421c3 is greater than the resistance of the magnetoresistance bridge arms 421c1 and 421c4.
  • the difference between the resistance of the magnetoresistance bridge arms 411c2 and 411c3 and the resistance of the magnetoresistance bridge arms 411c1 and 411c4 is difference 1
  • the resistance of the magnetoresistance bridge arms 421c2 and 421c3 and the resistance of the magnetoresistance bridge arms 421c1 and 421c4 is difference 2
  • difference 1 is greater than difference 2.
  • the above-mentioned magnetoresistance bridge arm is composed of one magnetoresistance sensitive element, or, the above-mentioned magnetoresistance bridge arm is composed of a plurality of magnetoresistance sensitive elements connected in series and parallel.
  • the closed-loop magnetic field feedback coil is integrated into the current sensor to realize current control. High precision measurement.
  • the characteristics of the closed-loop magnetic field current sensor such as high linearity, good temperature characteristics, stability and reliability, and high-precision current measurement
  • the closed-loop magnetic field feedback coil is integrated into the current sensor to realize current control. High precision measurement.
  • the optional first magnetic induction unit includes at least one magnetoresistance bridge arm
  • the second magnetic induction unit includes at least one magnetoresistance bridge arm
  • the magnetoresistance bridge arm of the first magnetic induction unit and the magnetoresistance bridge arm of the second magnetic induction unit are electrically connected to form a differential half Bridge structure or differential full bridge structure; wherein, the sensitivity direction of each magnetoresistance bridge arm is the same, and the magnetoresistance bridge arm is composed of at least one magnetoresistance sensitive element connected in series and parallel.
  • the optional magnetic induction unit is composed of any magnetoresistance sensitive element among anisotropic magnetoresistance AMR, giant magnetoresistance GMR, tunnel magnetoresistance TMR and colossal magnetoresistance CMR.
  • the optional current sensor also includes: a closed-loop signal conditioning circuit and a magnetic field feedback coil, the closed-loop signal conditioning circuit, the magnetic field feedback coil, the first magnetic induction unit and the second magnetic induction unit form a closed-loop magnetic field feedback structure; the differential voltage signal is amplified by the closed-loop signal conditioning circuit , the feedback magnetic field is generated by the magnetic field feedback coil to counteract the differential-mode magnetic field in reverse.
  • the first magnetic induction unit and the second magnetic induction unit work at the same common-mode magnetic field operating point, and then the feedback current of the magnetic field feedback coil is sampled. Finally, the output signal of the magnetic induction module is formed.
  • FIG. 6 it is a schematic diagram of another current sensor provided by an embodiment of the present invention.
  • FIG. 7 it is a schematic diagram of the differential full-bridge structure of the current sensor shown in FIG. 6 .
  • the current sensor further includes: a closed-loop signal conditioning circuit 441 and a magnetic field feedback coil 451 .
  • the first magnetic induction unit 411 is composed of two magnetoresistance bridge arms 411d1 and 411d2, and the second magnetic induction unit 421 is composed of two magnetoresistance bridge arms 421d1 and 421d2; each magnetoresistance bridge arm is composed of one or one
  • the above magnetoresistance sensitive elements are connected in series and parallel, and the sensitivity directions of the four magnetoresistance bridge arms 411d1, 411d2, 421d1 and 421d2 are the same, for example, the sensitivity direction is horizontally to the right as shown in Figure 6, and forms a difference electrically Full bridge structure.
  • the magnetoresistance sensitive element constituting the magneto-sensing unit in FIG. 7 is tunnel magnetoresistance TMR.
  • the first shunt copper bar 11, the second shunt copper bar 21 and the differential copper bar 31 are connected in parallel to shunt the current to be measured, the differential copper bar 31 forms a differential mode magnetic field, the first shunt copper bar 11 and the second shunt
  • the common-mode magnetic field formed by the copper bar 21 and the common-mode magnetic field formed by the differential copper bar 31 cancel and reduce each other.
  • the difference from the differential current sensor shown in Fig. 1 is that the current sensor shown in Fig. 6 adopts the differential full-bridge circuit shown in Fig. 7, the closed-loop signal conditioning circuit 441 and the magnetic field feedback coil 451 to form a closed-loop magnetic field negative feedback
  • the structure constitutes a closed-loop magnetic field current sensor.
  • the closed-loop magnetic field current sensor has the characteristics of high linearity, good temperature characteristics, stability and reliability, and high-precision current measurement.
  • the common-mode magnetic field H CM after the cancellation of the current input component to be measured at the positions of the first magnetic induction unit 411 and the second magnetic induction unit 421 is in the same direction, and the differential-mode magnetic field H DM causes the first magnetic induction
  • the rightward magnetic field at the position of the unit 411 is greater than the rightward magnetic field at the position of the second magnetic induction unit 421 .
  • the resistance of the magnetoresistive bridge arms 411d1 and 411d2 is smaller than the resistance of the magnetoresistive bridge arms 421d1 and 421d2, thus, the voltage Vd2 in FIG. 7 is greater than the voltage Vd1, forming a differential voltage signal.
  • the closed-loop signal conditioning circuit 441 , the magnetic field feedback coil 451 , the first magnetic induction unit 411 and the second magnetic induction unit 421 form a closed-loop magnetic field feedback.
  • the closed-loop signal conditioning circuit 441 performs conditioning amplification, temperature compensation and linearity correction on the differential voltage signal of the first magnetic induction unit 411 and the second magnetic induction unit 421; the amplified differential voltage signal generates a feedback magnetic field reverse offset difference through the magnetic field feedback coil 451 Modal magnetic field; when reaching the dynamic balance of the magnetic field, the first magnetic induction unit 411 and the second magnetic induction unit 421 work at the equal common mode magnetic field operating point, and then form the output of the magnetic induction module 41 after sampling the feedback current of the magnetic field feedback coil 451 through the sampling resistor Signal.
  • the optional magnetic field feedback coil 451 is integrated inside the magnetic induction module 41 ; or, the magnetic field feedback coil 451 is integrated inside the substrate 51 .
  • the magnetic field feedback coil 451 , the first magnetic induction unit 411 and the second magnetic induction unit 421 are all disposed inside the magnetic induction module 41 .
  • the magnetic field feedback coil 451 and the magnetic induction unit are not integrated together, and they are set relatively separately.
  • FIG. 8 it is a schematic diagram of another current sensor provided by an embodiment of the present invention.
  • the magnetic field feedback coil 451 is integrated in the magnetic induction module 41. Specifically, the magnetic field feedback coil 451 is integrated in the first magnetic induction unit 411, and the magnetic field feedback coil 451 is also integrated in the second magnetic induction unit. 421's interior.
  • FIG. 9 it is a schematic diagram of another current sensor provided by an embodiment of the present invention. As shown in FIG. 9 , the magnetic field feedback coil 451 is integrated inside the substrate 51 .
  • the plane where the magnetic field feedback coil 451 is located is parallel to the plane where the substrate 51 is located, that is, the plane where the magnetic field feedback coil 451 is located is parallel to the plane where the first magnetic induction unit 411 and the second magnetic induction unit 421 are located.
  • the magnetic field feedback coil 451 is sectioned along the X-Z plane, and the midline of the section is parallel to the Z direction, and the two sides of the midline of the section are symmetrically distributed, and the direction of the current on one side of the midline of the section is perpendicular to the X-Z plane and is opposite to the direction of the current to be measured in the copper bar , the direction of the current on the other side of the midline of the section is perpendicular to the X-Z plane and is the same as the direction of the current to be measured in the copper bar.
  • the current direction on the left side of the center line of the optional section is perpendicular to the outward surface of the paper
  • the current direction on the right side of the center line of the cross section is perpendicular to the paper surface inward
  • the direction of the current to be measured in the copper bar is perpendicular to the paper surface inward.
  • the direction of the feedback magnetic field generated by the magnetic field feedback coil 451 take the above-mentioned case where the rightward magnetic field at the position of the first magnetic induction unit 411 is greater than the rightward magnetic field at the position of the second magnetic induction unit 421 as an example.
  • the magnetic field feedback coil 451 is arranged horizontally below the first magnetic induction unit 411, and the current direction of the cross section of the wire is vertical to the outside of the paper surface, and the magnetic field feedback coil 451 is horizontally arranged below the second magnetic induction unit 421.
  • the current direction of the cross-section of the wire is vertical to the inside of the paper.
  • the magnetic field feedback coil 451 generates a leftward feedback magnetic field at the position of the first magnetic induction unit 411, and the magnetic field feedback coil 451 generates a rightward feedback magnetic field at the position of the second magnetic induction unit 421, thereby counteracting the differential mode magnetic field in reverse to achieve The magnetic field is dynamically balanced.
  • the current sensor provided by the embodiment of the present invention shunts the current of the differential copper bar through the first shunt copper bar and the second shunt copper bar, and the direction of the magnetic field generated by the first shunt copper bar and the second shunt copper bar at the position of the magnetic induction module On the contrary, it can partially or completely offset, so that the current measurement range can be adjusted and the current range to be measured can be effectively increased. It solves the problem that the magnetoresistive sensitive element is easy to saturate, and also solves the limitation of the measurement current range due to high precision in the existing current sensor. It has the advantages of good anti-interference ability of external magnetic field, low noise, good linearity, high precision and good stability, etc. .
  • An embodiment of the present invention also provides a current sensor, which is different from the current sensor described in any of the above embodiments. Specifically, the current sensor provided in this embodiment and the following embodiments does not include a differential copper bar.
  • the current sensor provided by this embodiment includes: a current input assembly to be measured, which includes a first shunt copper bar 12 and a second shunt copper bar 22 connected in parallel; a signal output assembly, to be tested Electrical isolation between the current input assembly and the signal output assembly, the signal output assembly includes a magnetic induction module 42 and a substrate 52, the magnetic induction module 42 is fixed on the substrate 52; 22 flows through, and generates a magnetic field at the position of the magnetic induction module 42; the magnetic induction module 42 includes at least a first magnetic induction unit 412 and a second magnetic induction unit 422, and the first magnetic induction unit 412 is located at the first shunt copper bar 12 and the second shunt copper bar 12.
  • the first magnetic induction unit 412 and the second magnetic induction unit 422 are located on the same horizontal plane, and the horizontal plane is parallel to the plane where the substrate 52 is located, and along the direction Z perpendicular to the plane where the substrate 52 is located, the first shunt copper bar 12
  • the overlapping area of the vertical projection of the second shunt copper bar 22 on the plane of the substrate 52 does not overlap with the second magnetic induction unit 422; magnetic field and produces a differential voltage signal that forms the output signal of the current sensor.
  • the cross-sections of the first shunt copper bar 12 and the second shunt copper bar 22 are X-Z planes, and the current to be measured flows through the copper bars along a direction perpendicular to the X-Z plane and generates a magnetic field. That is, the current direction of the current to be measured is perpendicular to the X-Z plane, and the specific current direction is vertical to the inside of the paper.
  • the magnetic sensing module 42 includes at least a first magnetic sensing unit 412 and a second magnetic sensing unit 422 .
  • the first magnetic induction unit 412 and the second magnetic induction unit 422 are located on the same horizontal plane, and the horizontal plane is parallel to the plane where the substrate 52 is located. Specifically, the first magnetic induction unit 412 and the second magnetic induction unit 422 are located above the substrate 52 .
  • the first magnetic induction unit 412 is located between the first shunt copper bar 12 and the second shunt copper bar 22, that is, along the Z direction, the vertical projection overlapping range of the first shunt copper bar 12 and the second shunt copper bar 22 covers the first Magnetic induction unit 412 . And along the Z direction, the vertical projection overlapping range of the first shunt copper bar 12 and the second shunt copper bar 22 does not overlap with the second magnetic induction unit 422, that is, the second magnetic induction unit 422 is located between the first shunt copper bar 12 and the second shunt copper bar 22. The vertical projections of the two shunt copper bars 22 are outside the overlapping range.
  • the first magnetic sensing unit 412 and the second magnetic sensing unit 422 differentially sense the magnetic field generated when the current to be measured flows through the current input component to be measured and generate a differential voltage signal. At this time, the differential voltage signal output by the magnetic sensing module 42 is formed as the current sensor. output signal.
  • the optional current sensor further includes: a casing 62 , in which the current input component to be measured and the signal output component are both fixedly arranged.
  • the casing 62 is a mechanical support casing. It should be noted that the housing 62 also supports the second magnetic induction unit 422 , and the magnetic induction module 42 uses an open-loop signal conditioning circuit 432 .
  • the sensitivity direction of the optional first magnetic induction unit 412 is the same as the sensitivity direction of the second magnetic induction unit 422 . As shown in FIG. 10 , the sensitivity direction of the magnetic induction unit is to the right X direction.
  • the first shunt copper bar 12 generates a leftward magnetic field at the position of the first magnetic induction unit 412
  • the second shunt copper bar 22 generates a rightward magnetic field at the position of the first magnetic induction unit 412 , and the two can cancel and reduce each other.
  • the magnetic field generated by the current input assembly to be measured at the second magnetic induction unit 422 is determined by the relative positions of the second magnetic induction unit 422 and the current input assembly to be measured. Under the structure of the current sensor shown in FIG. 10 , the current input assembly to be measured is at The magnetic field generated at the position of the second magnetic induction unit 422 may be approximately zero magnetic field.
  • the first shunt copper bar 12 and the second shunt copper bar 22 shunt the current to be measured, and generate opposite magnetic fields at the first magnetic induction unit 412, and the two can cancel and reduce each other; by adjusting the current to be measured
  • the position and structure of the current input component can make the first shunt copper bar 12 and the second shunt copper bar 22 generate a zero magnetic field at the second magnetic induction unit 422 . Therefore, the effect of adjusting the current measurement range is achieved, which effectively solves the problem that the magnetoresistance sensitive element is easy to saturate in the large current measurement. Adjustable, low cost features.
  • the embodiment of the present invention also provides a current sensor, which is different from the current sensor in any of the above embodiments. Specifically, the current sensor provided in this embodiment only uses one shunt copper bar.
  • the current sensor provided in this embodiment includes: a current input assembly to be measured, the current input assembly to be measured includes a shunt copper bar 13 and a differential copper bar 33, and the shunt copper bar 13 and the differential copper bar 33 are arranged along the same direction
  • the signal output assembly is electrically isolated between the current input assembly to be measured and the signal output assembly.
  • the signal output assembly includes a magnetic induction module 43 and a substrate 53, and the magnetic induction module 43 is fixed on the substrate 53;
  • the cross-section of the differential copper bar 33 flows through and generates a magnetic field at the position of the magnetic induction module 43;
  • the magnetic induction module 43 includes at least a first magnetic induction unit 413 and a second magnetic induction unit 423, and the first magnetic induction unit 413 and the second magnetic induction unit 423 are located at the same on a horizontal plane, and the horizontal plane is parallel to the plane where the substrate 53 is located;
  • the shunt copper bar 13 is located below the differential copper bar 33 or above the magnetic induction module 43;
  • the vertical projection covers the first magnetic induction unit 413 and does not overlap with the second magnetic induction unit 423;
  • the vertical projection of the shunt copper bar 13 on the plane where the substrate 53 is located covers the first magnetic induction unit 413 and the second magnetic induction unit 423, the first magnetic induction unit
  • the cross-sections of the shunt copper bar 13 and the differential copper bar 33 are X-Z planes, and the current to be measured flows through the copper bars along a direction perpendicular to the X-Z plane and generates a magnetic field. That is, the current direction of the current to be measured is perpendicular to the X-Z plane, and the specific current direction is vertical to the inside of the paper.
  • the magnetic sensing module 43 includes at least a first magnetic sensing unit 413 and a second magnetic sensing unit 423 .
  • the first magnetic induction unit 413 and the second magnetic induction unit 423 are located on the same horizontal plane, and the horizontal plane is parallel to the plane where the substrate 53 is located. Specifically, the first magnetic induction unit 413 and the second magnetic induction unit 423 are located above the substrate 53 .
  • the shunt copper bar 13 is selected to be located below the differential copper bar 33, and the shunt copper bar 13 covers the first magnetic induction unit 413 and the second magnetic induction unit 423 in the vertical projection Z direction of the plane where the substrate 53 is located; the differential copper bar 33 It is placed inside the substrate 53 close to the first magnetic induction unit 413 , and its vertical projection covers the first magnetic induction unit 413 and does not overlap with the second magnetic induction unit 423 .
  • the first magnetic induction unit 413 and the second magnetic induction unit 423 differentially induce the magnetic field generated when the current to be measured flows through the current input component to be measured and generate a differential voltage signal.
  • the differential voltage signal output by the magnetic induction module 43 is formed as the current sensor. output signal.
  • the optional current sensor further includes: a casing 63 , in which the current input component to be measured and the signal output component are both fixedly arranged.
  • the casing 63 is a mechanical support casing.
  • the magnetic induction module 43 uses an open-loop signal conditioning circuit 433 .
  • the sensitivity direction of the optional first magnetic induction unit 413 is the same as the sensitivity direction of the second magnetic induction unit 423, as shown in FIG. 11, it is the rightward X direction.
  • the shunt copper bar 13 can also be selected to be located above the magnetic induction module 43 .
  • the shunt copper bar 13 and the differential copper bar 33 can also generate opposite magnetic fields at the magnetic induction module 43 .
  • This embodiment is a simplified version of the foregoing embodiments, which has a simpler structure and smaller volume, further reducing costs.
  • the measurement range of the current sensor can be adjusted and expanded.
  • the input and output are electrically isolated, can measure DC and AC large currents, the measurement range is adjustable, and the cost is low.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

一种电流传感器,包括:由沿同一方向设置的第一分流铜排(11)、第二分流铜排(21)和差分铜排(31)构成的待测电流输入组件;由基板(51)及固定于基板(51)上的磁感应模块(41)构成的信号输出组件,信号输出组件与待测电流输入组件电气隔离;待测电流从垂直于第一分流铜排(11)、第二分流铜排(21)和差分铜排(31)的横截面流过,并在磁感应模块(41)位置处产生磁场;磁感应模块(41)至少包括第一磁感应单元(411)和第二磁感应单元(421),两个磁感应单元(411,421)位于差分铜排(31)与第一分流铜排(11)之间,两者以差分方式感应待测电流输入组件产生的差模磁场,并产生差分电压信号以形成电流传感器的输出信号。由此实现了电流传感器的高精度、电流测量范围可调和量程大的优势。

Description

一种电流传感器 技术领域
本发明实施例涉及电学量测量技术领域,尤其涉及一种电流传感器。
背景技术
电流传感器是一种电流检测装置,能将检测到的被测电流信息按一定规律变换成为符合一定标准需要的电信号或其他形式信号输出,用以满足信息的传输、处理、存储、显示、记录和控制等要求。目前,电流传感器广泛应用于家用电器、智能电网、电动车、风力发电等领域。
电流传感器包括磁性电流传感器,例如霍尔电流传感器、磁通门电流传感器、磁阻电流传感器等。霍尔电流传感器的技术最为成熟,但其灵敏度低、温度漂移特性差、带宽小等缺陷,使其在高精度电流测量场合的应用受限。磁通门电流传感器具有线性度好、检测精度高、温漂性能好等优势,但其体积较大、带宽小、电路复杂、成本高昂,导致其只能应用在对体积没有太多要求的场合。磁阻电流传感器是一类非常有前景的新型电流传感器,具有体积小、信号幅值大、灵敏度高、噪声低、易于与半导体电路集成的特点,可以简化后端信号处理电路的设计,减小整个电流传感器的体积并降低成本。
然而,对于现有的磁阻电流传感器,尤其是小体积芯片级磁阻电流传感器,其检测高精度对测量电流范围存在限制,即高灵敏度的磁阻电流传感器普遍饱和场较小,在大电流测量中容易出现磁饱和。例如Allegro公司的ACS70331集成式GMR电流传感器,其包括由GMR组成的电桥结构,可感应待测电流通过单层U型铜传导路径产生的相反方向的磁场,即该磁场直接作为电桥的输入信号,如此严重限制了电流传感器的使用范围,导致其量程只能够达到2.5A。对于灵敏度较低但饱和场 较高的霍尔芯片级电流传感器,如Allegro公司的ACS710、芯进电子的CC6920和Melexis的MLX91221,在采用单层U型铜传导路径的情况下,电流传感器的量程也最多在几十安培;即便将U型铜传导路径替换为如Allegro公司ACS756的矩形铜排铜传导路径,电流传感器的量程也不超过200A。
发明内容
本发明实施例提供一种电流传感器,以解决现有高精度小体积电流传感器量程小的问题。
本发明实施例提供了一种电流传感器,包括:
待测电流输入组件,所述待测电流输入组件包括第一分流铜排、第二分流铜排以及设置在所述第一分流铜排和所述第二分流铜排之间的差分铜排,所述第一分流铜排、所述第二分流铜排和所述差分铜排沿同一方向设置;
信号输出组件,所述信号输出组件与所述待测电流输入组件之间电气隔离,所述信号输出组件包括磁感应模块与基板,所述磁感应模块固定于所述基板上;
待测电流从垂直于所述第一分流铜排、所述第二分流铜排和所述差分铜排的横截面流过,并在所述磁感应模块位置处产生磁场;
所述磁感应模块至少包括第一磁感应单元和第二磁感应单元,所述第一磁感应单元和所述第二磁感应单元位于所述差分铜排与所述第一分流铜排之间,所述第一磁感应单元和所述第二磁感应单元以差分方式感应所述待测电流输入组件产生的差模磁场,并产生差分电压信号以形成所述电流传感器的输出信号。
本发明实施例还提供了一种电流传感器,包括:
待测电流输入组件,所述待测电流输入组件包括并联连接的第一分流铜排和第二分流铜排;
信号输出组件,所述待测电流输入组件与所述信号输出组件之间电气隔离,所 述信号输出组件包括磁感应模块与基板,所述磁感应模块固定于所述基板上;
待测电流从垂直于所述第一分流铜排和所述第二分流铜排的横截面流过,并在所述磁感应模块位置处产生磁场;
所述磁感应模块至少包括第一磁感应单元和第二磁感应单元,所述第一磁感应单元位于所述第一分流铜排和所述第二分流铜排之间,所述第一磁感应单元和所述第二磁感应单元位于同一水平面上,且该水平面与所述基板所在平面平行,沿垂直于所述基板所在平面的方向上,所述第一分流铜排和所述第二分流铜排在所述基板所在平面的竖直投影重合区域与所述第二磁感应单元不交叠;
所述第一磁感应单元和所述第二磁感应单元以差分方式感应所述待测电流输入组件产生的磁场并产生差分电压信号,该差分电压信号形成所述电流传感器的输出信号。
本发明实施例提供的电流传感器,是一种新型电流传感器,能够控制共模磁场工作点,可以解决磁电阻敏感元件容易饱和的问题,以此解决现有电流传感器中高精度对测量电流范围的限制,且本发明实施例提供的电流传感器结构可应用于小体积电流传感器芯片,实现了电流传感器的高精度和电流测量范围可调,能够应用于各类不同的工作范围,具有结构简单、抗外磁场干扰能力强、可测直流交流大电流、输入输出电气隔离、线性度好、精度高、稳定性好、体积小、量程大的优势。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做一简单地介绍,显而易见地,下面描述中的附图虽然是本发明的一些具体的实施例,对于本领域的技术人员来说,可以根据本发明的各种实施例所揭示和提示的器件结构,驱动方法和制造方法的基本概念,拓展和延伸到其它的结构和附图,毋庸置疑这些都应该是在本发明的权利要求范围之内。
图1是本发明实施例提供的一种电流传感器的示意图;
图2是图1所示电流传感器的仿真示意图;
图3是图1所示电流传感器的差分半桥结构的示意图;
图4是图1所示电流传感器的另一种电桥结构的示意图;
图5是图1所示电流传感器的又一种电桥结构的示意图;
图6是本发明实施例提供的另一种电流传感器的示意图;
图7是图6所示电流传感器的差分全桥结构的示意图;
图8是本发明实施例提供的又一种电流传感器的示意图;
图9是本发明实施例提供的又一种电流传感器的示意图;
图10是本发明实施例提供的又一种电流传感器的示意图;
图11是本发明实施例提供的又一种电流传感器的示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,以下将参照本发明实施例中的附图,通过实施方式清楚、完整地描述本发明的技术方案,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例所揭示和提示的基本概念,本领域的技术人员所获得的所有其他实施例,都属于本发明保护的范围。
参考图1所示,为本发明实施例提供的一种电流传感器的示意图。如图1所示,本实施例提供的电流传感器包括:待测电流输入组件,待测电流输入组件包括第一分流铜排11、第二分流铜排21以及设置在第一分流铜排11和第二分流铜排21之间的差分铜排31,第一分流铜排11、第二分流铜排21和差分铜排31沿同一方向设置;信号输出组件,信号输出组件与待测电流输入组件之间电气隔离,信号输出组 件包括磁感应模块41与基板51,磁感应模块41固定于基板51上;待测电流从垂直于第一分流铜排11、第二分流铜排21和差分铜排31的横截面流过,并在磁感应模块41位置处产生磁场;磁感应模块41至少包括第一磁感应单元411和第二磁感应单元421,第一磁感应单元411和第二磁感应单元421位于差分铜排31与第一分流铜排11之间,第一磁感应单元411和第二磁感应单元421以差分方式感应待测电流输入组件产生的差模磁场,并产生差分电压信号以形成电流传感器的输出信号。
本实施例中,第一分流铜排11、第二分流铜排21和差分铜排31构成待测电流输入组件。三个铜排共同对待测电流进行分流,其中,待测电流在第一分流铜排11内的电流方向,待测电流在第二分流铜排21内的电流方向以及待测电流在差分铜排31内的电流方向均相同。如图1所示,第一分流铜排11、第二分流铜排21和差分铜排31沿Z方向平行排布设置。
磁感应模块41与基板51构成信号输出组件,信号输出组件与待测电流输入组件之间电气隔离,磁感应模块41固定设置于基板51上。如图1所示,第一分流铜排11位于磁感应模块41背离基板51的一侧上,第二分流铜排21位于基板51背离磁感应模块41的一侧上。沿图示方向,第一分流铜排11位于磁感应模块41的上方,第二分流铜排21位于差分铜排31的下方,磁感应模块41位于差分铜排31的上方。待测电流从垂直于第一分流铜排11、第二分流铜排21和差分铜排31的横截面流过,并在磁感应模块41位置处产生磁场,可以理解,第一分流铜排11、第二分流铜排21和差分铜排31的横截面为X-Z平面,则如图1所示待测电流的电流方向垂直于X-Z平面。
磁感应模块41至少包括第一磁感应单元411和第二磁感应单元421,第一磁感应单元411和第二磁感应单元421位于差分铜排31与第一分流铜排11之间,第一磁感应单元411和第二磁感应单元421沿X方向排布设置。第一磁感应单元411和 第二磁感应单元421以差分方式感应并测量待测电流流过待测电流输入组件产生的差模磁场,并产生差分电压信号以形成电流传感器的输出信号。可选磁感应模块41内各磁感应单元的灵敏度方向与基板51所在平面平行,如磁感应单元的灵敏度方向为图1示向右方向即X方向。
可选第一磁感应单元411和第二磁感应单元421位于同一水平面上,且该水平面与基板51所在平面平行;沿垂直于基板51所在平面的方向Z上,差分铜排31在基板51所在平面的竖直投影覆盖第一磁感应单元411,且与第二磁感应单元421不交叠;沿垂直于基板51所在平面的方向Z上,第一分流铜排11在基板51所在平面的竖直投影覆盖第一磁感应单元411和第二磁感应单元421,且第二分流铜排21在基板51所在平面的竖直投影覆盖第一磁感应单元411和第二磁感应单元421。
如上所述,第一磁感应单元411和第二磁感应单元421位于同一水平面上,且该水平面与基板51所在平面平行,基板51所在平面垂直于X-Z平面。沿Z方向上,第一分流铜排11、第二分流铜排21、差分铜排31、第一磁感应单元411和第二磁感应单元421在基板51所在平面进行垂直投影,则基板51所在平面上各结构投影的关系是第一磁感应单元411的投影位于差分铜排31的投影范围内,第二磁感应单元421的投影位于差分铜排31的投影范围之外,第一分流铜排11的投影覆盖第一磁感应单元411的投影和第二磁感应单元421的投影,第二分流铜排21的投影覆盖第一磁感应单元411的投影和第二磁感应单元421的投影。各铜排磁场仅需覆盖磁感应单元范围,由此可以实现电流传感器的芯片级体积大小。
可选电流传感器还包括:外壳61,待测电流输入组件和信号输出组件均固定设置在外壳61内。可选差分铜排31设置在基板51的内部。本实施例中,外壳61为机械支架外壳,机械支架外壳对电流传感器内各部分起到包裹、固定支撑以及提供外部接口的作用。差分铜排31嵌于基板51内部,且其在基板51内的位置相对更临 近第一磁感应单元411。
可选第一磁感应单元411的灵敏度方向、第二磁感应单元421的灵敏度方向与待测电流通过差分铜排31在第一磁感应单元411位置处产生的磁场方向相同或相反。待测电流流过差分铜排31时,差分铜排31在第一磁感应单元411位置处产生磁场,此时取该磁场方向与第一磁感应单元411的灵敏度方向相同,还与第二磁感应单元421的灵敏度方向相同。具体的,参考图1所示,差分铜排31在第一磁感应单元411位置处产生的磁场方向在磁感应模块41所在平面内,且垂直于待测电流方向。其中,待测电流方向垂直于X-Z平面,则差分铜排31在第一磁感应单元411位置处产生的磁场方向平行于X方向。
基于上述结构,以下将通过具体示例对电流传感器的工作原理进行详细说明。
参考图2所示,为图1所示电流传感器的仿真示意图。设定待测电流I in为50A,待测电流输入组件的截面宽度为10mm。结合图1所示,待测电流输入组件的截面宽度为沿Z方向上第一分流铜排11的上表面至第二分流铜排21的下表面的尺寸,磁感应模块41位于差分铜排31上方0.6mm水平面位置处,那么待测电流以垂直于待测电流输入组件的横截面X-Z平面的方向流过铜排时,会在差分铜排31上方0.6mm水平面位置处产生磁场。
可以看出,在差分铜排31上方竖直投影的边缘附近,即第一磁感应单元411和第二磁感应单元421位置处的磁场具有明显的差值,并且图2所示X轴内±3mm位置附近产生的磁场较为均匀,能有效产生差模磁场。
设定第一磁感应单元411位于差分铜排31上方竖直投影覆盖范围内的磁场均匀区,第二磁感应单元421位于差分铜排31上方竖直投影覆盖范围之外的磁场均匀区;该两个磁感应单元同时都位于第一分流铜排11的磁场均匀区,两个磁感应单元还同时都位于第二分流铜排21的磁场均匀区;第一分流铜排11、第二分流铜排21和差 分铜排31并联连接以对待测电流I in进行分流。则在认为材质均匀的情况下,图1截面中电流密度可视作相同,即电流大小与截面积成正比。
令第一分流铜排11中通过的电流为I 1,第二分流铜排21中通过的电流为I 2,差分铜排31中通过的电流为I 3,则有以下式(1):
I in=I 1+I 2+I 3         (1)。
由于第一磁感应单元411和第二磁感应单元421均位于第一分流铜排11和第二分流铜排21的磁场均匀区,则流过第一分流铜排11的电流在第一磁感应单元411和第二磁感应单元421位置处产生均匀磁场,流过第二分流铜排21的电流在第一磁感应单元411和第二磁感应单元421位置处产生均匀磁场。
令第一分流铜排11在第一磁感应单元411和第二磁感应单元421位置处产生的磁场的线性常数为k 1,第二分流铜排21在第一磁感应单元411和第二磁感应单元421位置处产生的磁场的线性常数为k 2,差分铜排31在第一磁感应单元411位置处产生的磁场的线性常数为k 31,差分铜排31在第二磁感应单元421位置处产生的磁场的线性常数为k 32。以图示右方向为磁场正方向,则根据载流导线产生磁场的毕萨定律,待测电流输入组件在第一磁感应单元411位置处产生的磁场H 41和在第二磁感应单元421位置处产生的磁场H 42分别随电流线性变化。得到以下式(2):
H 41=-k 1I 1+k 2I 2+k 31I 3
H 42=-k 1I 1+k 2I 2+k 32I 3         (2)。
对式(2)进行等效变换,那么待测电流输入组件在第一磁感应单元411和第二磁感应单元421位置处的磁场可分解为共模磁场H CM和差模磁场H DM,如下式(3):
Figure PCTCN2022132433-appb-000001
相应的,待测电流输入组件在第一磁感应单元411和第二磁感应单元421位置处的磁场可转化为共模磁场H CM和差模磁场H DM的叠加,表示如下式(4):
H 41=H CM+H DM
H 42=H CM-H DM      (4)。
差分铜排31在第二磁感应单元421位置处产生的磁场很小,所以可以近似认为k 32=0,则式(3)可以简化为下式(5):
Figure PCTCN2022132433-appb-000002
从式(5)以及图1可以看出,第一分流铜排11在第一磁感应单元411和第二磁感应单元421位置处产生的磁场方向与第二分流铜排21在第一磁感应单元411和第二磁感应单元421位置处产生的磁场方向相反,那么两者可以相互抵消和减小。另外,待测电流输入组件在第一磁感应单元411和第二磁感应单元421位置处的共模磁场H CM与第一分流铜排11、第二分流铜排21和差分铜排31均相关,待测电流输入组件在第一磁感应单元411和第二磁感应单元421位置处的差模磁场H DM仅与差分铜排31相关;因此,第一分流铜排11和第二分流铜排21在第一磁感应单元411和第二磁感应单元421位置处只产生共模磁场H CM,不产生差模磁场H DM。如此,可以起到调节并增大电流传感器的电流输入范围的作用。
进一步的,理想情况下,待测电流输入组件在第一磁感应单元411和第二磁感应单元421位置处产生的共模磁场H CM被完全抵消到零,那么待测电流输入组件在第一磁感应单元411和第二磁感应单元421位置处产生的磁场分解可以只考虑差模磁场H DM。结合图1所示,差分铜排31在第二磁感应单元421位置处产生的磁场很小,可以近似认为k 32=0,则(3)式可以简化为下式(6):
H CM=0;H DM=k 31I 3/2        (6)。
则(4)式可以简化为下式(7):
H 41=H DM=k 31I 3/2;H 42=-H DM=-k 31I 3/2        (7)。
综上所述,第一分流铜排11、第二分流铜排21和差分铜排31共同对待测电流I in进行分流,其在第一磁感应单元411和第二磁感应单元421位置处的磁场与待测电流I in成正比,能够通过测量差模磁场H DM实现待测电流的检测。
结合式(6)和(7)可以看出,理想状况下,待测电流输入组件在第一磁感应单元411和第二磁感应单元421位置处产生的共模磁场H CM能够被完全抵消,因此磁电阻敏感元件的工作区间可以由差模磁场H DM完全覆盖,给电流传感器提供了最大限度的测量电流范围。
本发明实施例中,第一分流铜排、第二分流铜排与差分铜排构成待测电流输入组件,并在磁感应模块位置处产生磁场;磁感应模块中的两个磁感应单元以差分方式感应待测电流流过待测电流输入组件时产生的差模磁场,并以此生成差分电压信号,磁感应模块输出的差分电压信号形成电流传感器的输出信号。本发明实施例提供的电流传感器,是一种新型电流传感器,能够控制共模磁场工作点,可以解决磁电阻敏感元件容易饱和的问题,以此解决现有电流传感器中高精度对测量电流范围的限制,且本发明实施例提供的电流传感器结构可应用于小体积电流传感器芯片,实现了电流传感器的高精度和电流测量范围可调,能够应用于各类不同的工作范围,具有结构简单、抗外磁场干扰能力强、可测直流交流大电流、输入输出电气隔离、线性度好、精度高、稳定性好、体积小、量程大的优势。
可选第一磁感应单元至少包括一个磁电阻桥臂,第二磁感应单元至少包括一个磁电阻桥臂;第一磁感应单元的磁电阻桥臂和第二磁感应单元的磁电阻桥臂电气连 接成差分半桥结构或者差分全桥结构;其中,各磁电阻桥臂的灵敏度方向相同,且磁电阻桥臂由至少一个磁电阻敏感元件串并联构成。可选磁感应单元由各向异性磁电阻AMR、巨磁电阻GMR、隧道磁电阻TMR和庞磁电阻CMR中的任意一种磁电阻敏感元件构成。
参考图3所示,为图1所示电流传感器的差分半桥结构的示意图。如图3所示,第一磁感应单元411由一个磁电阻桥臂411a构成,且第二磁感应单元421由一个磁电阻桥臂421a构成。每个磁电阻桥臂由一个或一个以上的磁电阻敏感元件通过串并联连接方式构成,两个磁电阻桥臂411a和421a的灵敏度方向相同,例如灵敏度方向如图1所示水平向右X方向,并在电气上形成差分半桥结构。可选图3中构成磁感应单元的磁电阻敏感元件为隧道磁电阻TMR。
结合前述分析和图1&图3可知,第一分流铜排11和第二分流铜排21只会抵消和减小共模磁场H CM,而不产生差模磁场H DM,抵消后的共模磁场H CM可能同向、归零或反向。
假设抵消过后的共模磁场H CM为同向,则差模磁场H DM导致第一磁感应单元411位置处向右的磁场大于第二磁感应单元421位置处向右的磁场,由于两个磁电阻桥臂411a和421a灵敏度方向都向右,则磁电阻桥臂411a位置处向右的磁场大于磁电阻桥臂421a位置处向右的磁场,因此设定磁电阻桥臂411a的电阻小于磁电阻桥臂421a的电阻,可以实现磁场到电压的变化。由此,图3中Va会根据待测电流的情况产生相应的变化,形成差分电压信号。
参考图1所示,可选电流传感器还包括:开环信号调理电路431,开环信号调理电路431对差分电压信号进行调理放大、温度补偿和线性度修正。本实施例中,磁感应模块41还包含开环信号调理电路431,开环信号调理电路431对第一磁感应单元411和第二磁感应单元421生成的差分电压信号进行调理放大、温度补偿和线 性度修正,以形成磁感应模块41的输出信号。则磁感应模块41的输出形成为电流传感器的输出信号。
如上所述,差分铜排31形成差模磁场,第一分流铜排11和第二分流铜排21形成的共模磁场与差分铜排31形成的共模磁场相互抵消和减小,扩大了电流传感器的测量电流范围。
本实施例中,采用开环信号调理电路,制成了一种新型的电流测量范围可调并能有效增大待测电流测量范围的差分式电流传感器,有效解决了磁电阻敏感元件容易饱和的问题,并提供良好的抗外磁场干扰能力,具有可测直流交流大电流、构造简单、输入输出电气隔离的特点。其中,铜排磁场仅需覆盖磁感应单元范围,因此电流传感器可以实现芯片级体积大小;结合隧道磁电阻器件体积小、信号幅值大、灵敏度高、噪声低、易于与半导体电路集成的特点,能够进一步简化电流传感器后端信号处理电路的设计,减小整个电流传感器的体积,并降低电流传感器的成本。
可选第一磁感应单元包含一个第一半桥或第一全桥,第二磁感应单元包含一个第二半桥或第二全桥;第一磁感应单元的电桥和第二磁感应单元的电桥之间的输出电压差产生差分电压信号。
可选第一半桥包含灵敏度方向相反的两个磁电阻桥臂,第二半桥包含灵敏度方向相反的两个磁电阻桥臂;或者,第一全桥包含四个磁电阻桥臂且电气连接的相邻两个磁电阻桥臂的灵敏度方向相反,第二全桥包含四个磁电阻桥臂且电气连接的相邻两个磁电阻桥臂的灵敏度方向相反;其中,磁电阻桥臂由一个磁电阻敏感元件构成或者由一个以上磁电阻敏感元件通过串并联连接构成。
参考图4所示,为图1所示电流传感器的另一种电桥结构的示意图。如图4所示,第一磁感应单元411包含一个第一半桥,第二磁感应单元421包含一个第二半 桥。第一半桥包含两个磁电阻桥臂411b1和411b2,第二半桥包含两个磁电阻桥臂421b1和421b2。
每个电桥中磁电阻桥臂的灵敏度方向不相同。第一半桥中磁电阻桥臂411b1和411b2的灵敏度方向相反,具体的,磁电阻桥臂411b1的灵敏度方向为图示向左,磁电阻桥臂411b2的灵敏度方向为图示向右;第二半桥中磁电阻桥臂421b1和421b2的灵敏度方向相反,具体的,磁电阻桥臂421b1的灵敏度方向为图示向左,磁电阻桥臂421b2的灵敏度方向为图示向右。
结合前述分析和图1&图4可知,第一分流铜排11和第二分流铜排21只会抵消和减小共模磁场H CM,而不产生差模磁场H DM,抵消后的共模磁场H CM可能同向、归零或反向。
假设抵消过后的共模磁场为向右,并且叠加差模磁场后,第一磁感应单元411位置处向右的磁场大于第二磁感应单元421位置处向右的磁场,则磁电阻桥臂411b1的电阻大于磁电阻桥臂411b2的电阻,磁电阻桥臂421b1的电阻大于磁电阻桥臂421b2的电阻,且磁电阻桥臂411b1和411b2的电阻差大于磁电阻桥臂421b1和421b2的电阻差,实现磁场到电压的变化。由此,图4中第一磁感应单元411的电桥的输出电压V1b和第二磁感应单元421的电桥的输出电压V2b会根据待测电流的情况产生相应的变化,两者的输出电压差值形成差分电压信号。
参考图5所示,为图1所示电流传感器的又一种电桥结构的示意图。如图5所示,第一磁感应单元411包含一个第一全桥,第二磁感应单元421包含一个第二全桥。第一全桥包含四个磁电阻桥臂411c1、411c2、411c3和411c4,第二全桥包含四个磁电阻桥臂421c1、421c2、421c3和421c4。每个电桥中磁电阻桥臂的灵敏度方向可以不完全相同。
第一全桥中,每个磁电阻桥臂411c1、411c2、411c3和411c4在全桥连接结构 中都和与其电气相邻的磁电阻桥臂灵敏度方向相反。即,磁电阻桥臂411c1和与其相邻的磁电阻桥臂411c2和411c3的灵敏度方向相反,磁电阻桥臂411c4和与其相邻的磁电阻桥臂411c2和411c3的灵敏度方向相反。由此可得,磁电阻桥臂411c1和411c4的灵敏度方向相同且为图示向右,磁电阻桥臂411c2和411c3的灵敏度方向相同且为图示向左,磁电阻桥臂411c1和411c2的灵敏度方向相反。
第二全桥中,每个磁电阻桥臂421c1、421c2、421c3和421c4在全桥连接结构中都和与其电气相邻的磁电阻桥臂灵敏度方向相反。即,磁电阻桥臂421c1和与其相邻的磁电阻桥臂421c2和421c3的灵敏度方向相反,磁电阻桥臂421c4和与其相邻的磁电阻桥臂421c2和421c3的灵敏度方向相反。由此可得,磁电阻桥臂421c1和421c4的灵敏度方向相同且为图示向右,磁电阻桥臂421c2和421c3的灵敏度方向相同且为图示向左,磁电阻桥臂421c1和421c2的灵敏度方向相反。
结合前述分析和图1&图5可知,第一分流铜排11和第二分流铜排21只会抵消和减小共模磁场H CM,而不产生差模磁场H DM,抵消后的共模磁场H CM可能同向、归零或反向。
假设抵消过后的共模磁场为向右,并且叠加差模磁场后,第一磁感应单元411位置处向右的磁场大于第二磁感应单元421位置处向右的磁场,则磁电阻桥臂411c2和411c3的电阻大于磁电阻桥臂411c1和411c4的电阻,磁电阻桥臂421c2和421c3的电阻大于磁电阻桥臂421c1和421c4的电阻。并且,磁电阻桥臂411c2和411c3的电阻与磁电阻桥臂411c1和411c4的电阻之间的差值为差值1,磁电阻桥臂421c2和421c3的电阻与磁电阻桥臂421c1和421c4的电阻之间的差值为差值2,差值1大于差值2。由此实现磁场到电压的变化,其中,图5中V1c1和V1c2的电压差形成第一磁感应单元411的电桥的输出电压,V2c1和V2c2的电压差形成第二磁感应单元421的电桥的输出电压。第一磁感应单元411的输出电压和第二磁感应单元421 的输出电压会根据待测电流的情况产生相应的变化,两者的输出电压差值形成差分电压信号。
以上所述磁电阻桥臂由一个磁电阻敏感元件构成,或者,以上所述磁电阻桥臂由多个磁电阻敏感元件通过串并联连接方式构成。
示例性的,在上述任意实施例的基础上,根据闭环磁场电流传感器线性度高、温度特性好、稳定可靠、高精度电流测量等特点,将闭环磁场反馈线圈集成到电流传感器内部,实现电流的高精度测量。以下为具体示例。
可选第一磁感应单元至少包括一个磁电阻桥臂,第二磁感应单元至少包括一个磁电阻桥臂;第一磁感应单元的磁电阻桥臂和第二磁感应单元的磁电阻桥臂电气连接成差分半桥结构或者差分全桥结构;其中,各磁电阻桥臂的灵敏度方向相同,且磁电阻桥臂由至少一个磁电阻敏感元件串并联构成。可选磁感应单元由各向异性磁电阻AMR、巨磁电阻GMR、隧道磁电阻TMR和庞磁电阻CMR中的任意一种磁电阻敏感元件构成。
可选电流传感器还包括:闭环信号调理电路和磁场反馈线圈,闭环信号调理电路、磁场反馈线圈、第一磁感应单元和第二磁感应单元构成闭环磁场反馈结构;差分电压信号经闭环信号调理电路放大后,通过磁场反馈线圈产生反馈磁场以反向抵消差模磁场,达到磁场动态平衡时第一磁感应单元和第二磁感应单元工作在相等的共模磁场工作点,再对磁场反馈线圈的反馈电流进行取样后形成磁感应模块的输出信号。
参考图6所示,为本发明实施例提供的另一种电流传感器的示意图。参考图7所示,为图6所示电流传感器的差分全桥结构的示意图。如图6所示,电流传感器还包括:闭环信号调理电路441和磁场反馈线圈451。如图7所示,第一磁感应单 元411由两个磁电阻桥臂411d1和411d2构成,第二磁感应单元421由两个磁电阻桥臂421d1和421d2构成;每个磁电阻桥臂由一个或一个以上的磁电阻敏感元件通过串并联连接方式构成,四个磁电阻桥臂411d1、411d2、421d1和421d2的灵敏度方向相同,例如灵敏度方向如图6所示水平向右方向,并在电气上形成差分全桥结构。可选图7中构成磁感应单元的磁电阻敏感元件为隧道磁电阻TMR。
参考图6所示,第一分流铜排11、第二分流铜排21和差分铜排31并联对待测电流进行分流,差分铜排31形成差模磁场,第一分流铜排11和第二分流铜排21形成的共模磁场与差分铜排31形成的共模磁场相互抵消和减小。与图1所示差分式电流传感器的区别在于,图6所示电流传感器中采用如图7所示差分全桥电路、闭环信号调理电路441和磁场反馈线圈451等结构,形成了闭环磁场负反馈结构,以此构成了闭环磁场式电流传感器。闭环磁场电流传感器具有线性度高、温度特性好、稳定可靠和高精度电流测量的特点。
结合前述分析和图6&图7可知,待测电流输入组件在第一磁感应单元411和第二磁感应单元421位置处抵消后的共模磁场H CM为同向,差模磁场H DM导致第一磁感应单元411位置处向右的磁场大于第二磁感应单元421位置处向右的磁场。由于四个磁电阻桥臂411d1、411d2、421d1和421d2的灵敏度方向都向右,则磁电阻桥臂411d1和411d2位置处向右的磁场大于磁电阻桥臂421d1和421d2位置处向右的磁场,因此磁电阻桥臂411d1和411d2的电阻小于磁电阻桥臂421d1和421d2的电阻,由此,图7中Vd2电压大于Vd1电压,形成差分电压信号。
如上所述,闭环信号调理电路441、磁场反馈线圈451、第一磁感应单元411和第二磁感应单元421构成闭环磁场反馈。闭环信号调理电路441对第一磁感应单元411和第二磁感应单元421的差分电压信号进行调理放大、温度补偿和线性度修正;放大后的差分电压信号通过磁场反馈线圈451产生反馈磁场反向抵消差模磁场;达 到磁场动态平衡时,第一磁感应单元411和第二磁感应单元421工作在相等的共模磁场工作点,然后通过取样电阻对磁场反馈线圈451的反馈电流取样后形成磁感应模块41的输出信号。
可选磁场反馈线圈451集成设置于磁感应模块41的内部;或者,磁场反馈线圈451集成设置于基板51的内部。
如图6所示,磁场反馈线圈451、第一磁感应单元411和第二磁感应单元421均设置于磁感应模块41的内部。磁场反馈线圈451和磁感应单元不集成在一起,两者相对分开设置。
参考图8所示,为本发明实施例提供的又一种电流传感器的示意图。如图8所示,磁场反馈线圈451集成设置于磁感应模块41的内部,具体的,磁场反馈线圈451集成设置于第一磁感应单元411的内部,且磁场反馈线圈451还集成设置于第二磁感应单元421的内部。
参考图9所示,为本发明实施例提供的又一种电流传感器的示意图。如图9所示,磁场反馈线圈451集成设置于基板51的内部。
需要说明的是,磁场反馈线圈451所在平面平行于基板51所在平面,即磁场反馈线圈451所在平面平行于第一磁感应单元411和第二磁感应单元421所在平面。磁场反馈线圈451沿X-Z平面进行截面,其截面中线与Z方向平行,则截面中线两侧对称分布,该截面中线一侧的电流方向垂直于X-Z平面且与待测电流在铜排中的方向相反,该截面中线另一侧的电流方向垂直于X-Z平面且与待测电流在铜排中的方向相同。以图6为例,可选截面中线左侧的电流方向垂直纸面向外,截面中线右侧的电流方向垂直纸面向内,待测电流在铜排中的方向垂直纸面向内。
关于磁场反馈线圈451产生反馈磁场的方向,以前述第一磁感应单元411位置处向右磁场大于第二磁感应单元421位置处向右磁场的情况为例。为了反向抵消差 模磁场。如图6所示电流传感器的截面图中,磁场反馈线圈451在第一磁感应单元411下方水平排列的导线截面电流方向为垂直纸面向外,磁场反馈线圈451在第二磁感应单元421下方水平排列的导线截面电流方向为垂直纸面向内。由此磁场反馈线圈451在第一磁感应单元411位置处产生向左的反馈磁场,磁场反馈线圈451在第二磁感应单元421位置处产生向右的反馈磁场,以此反向抵消差模磁场,达到磁场动态平衡。
本发明实施例提供的电流传感器,通过第一分流铜排和第二分流铜排对差分铜排进行电流分流,且第一分流铜排和第二分流铜排在磁感应模块位置处产生的磁场方向相反,能够部分或全部抵消,使得电流测量范围可调且能有效增大待测电流范围。解决了磁电阻敏感元件容易饱和的问题,还解决了现有电流传感器中高精度对测量电流范围限制,具备良好的抗外磁场干扰能力、低噪声、线性度好、精度高和稳定性好等优点。
本发明实施例还提供一种电流传感器,该电流传感器与上述任意实施例所述的电流传感器存在区别,具体的,本实施例及以下各实施例提供的电流传感器不包含差分铜排。
参考图10所示,为本发明实施例提供的又一种电流传感器的示意图。如图10所示,本实施例提供的电流传感器包括:待测电流输入组件,待测电流输入组件包括并联连接的第一分流铜排12和第二分流铜排22;信号输出组件,待测电流输入组件与信号输出组件之间电气隔离,信号输出组件包括磁感应模块42与基板52,磁感应模块42固定于基板52上;待测电流从垂直于第一分流铜排12和第二分流铜排22的横截面流过,并在磁感应模块42位置处产生磁场;磁感应模块42至少包括第一磁感应单元412和第二磁感应单元422,第一磁感应单元412位于第一分流铜 排12和第二分流铜排22之间,第一磁感应单元412和第二磁感应单元422位于同一水平面上,且该水平面与基板52所在平面平行,沿垂直于基板52所在平面的方向Z上,第一分流铜排12和第二分流铜排22在基板52所在平面的竖直投影重合区域与第二磁感应单元422不交叠;第一磁感应单元412和第二磁感应单元422以差分方式感应待测电流输入组件产生的磁场并产生差分电压信号,该差分电压信号形成电流传感器的输出信号。
本实施例中,第一分流铜排12和第二分流铜排22的横截面为X-Z平面,待测电流沿垂直于X-Z平面的方向流过铜排,并产生磁场。即待测电流的电流方向垂直于X-Z平面,具体的电流方向均为垂直纸面向内。
磁感应模块42内至少包括第一磁感应单元412和第二磁感应单元422。第一磁感应单元412和第二磁感应单元422位于同一水平面上,且该水平面与基板52所在平面平行,具体的,第一磁感应单元412和第二磁感应单元422位于基板52的上方。
第一磁感应单元412位于第一分流铜排12和第二分流铜排22之间,即沿Z方向上,第一分流铜排12和第二分流铜排22的竖直投影重合范围覆盖第一磁感应单元412。而沿Z方向上,第一分流铜排12和第二分流铜排22的竖直投影重合范围与第二磁感应单元422不交叠,即第二磁感应单元422位于第一分流铜排12和第二分流铜排22的竖直投影重合范围之外。
第一磁感应单元412和第二磁感应单元422以差分方式感应待测电流流过待测电流输入组件时产生的磁场并产生差分电压信号,此时磁感应模块42输出的差分电压信号形成为电流传感器的输出信号。
可选电流传感器还包括:外壳62,待测电流输入组件和信号输出组件均固定设置在外壳62内。其中外壳62为机械支架外壳。需要说明的是,外壳62还支撑第二磁感应单元422,磁感应模块42采用开环信号调理电路432。
可选第一磁感应单元412的灵敏度方向和第二磁感应单元422的灵敏度方向相同。如图10所示,磁感应单元的灵敏度方向向右X方向。第一分流铜排12在第一磁感应单元412位置处产生向左的磁场,第二分流铜排22在第一磁感应单元412位置处产生向右的磁场,两者能够相互抵消和减小。待测电流输入组件在第二磁感应单元422位置处产生的磁场由第二磁感应单元422和待测电流输入组件的相对位置决定,在图10所示电流传感器的结构下,待测电流输入组件在第二磁感应单元422位置处产生的磁场可近似为零磁场。
本实施例中,第一分流铜排12和第二分流铜排22对待测电流进行分流,并在第一磁感应单元412处产生相反的磁场,两者能够相互抵消和减小;通过调整待测电流输入组件的位置和结构,可使第一分流铜排12和第二分流铜排22在第二磁感应单元422处产生零磁场。因此达到调整电流测量范围的效果,有效解决了大电流测量中磁电阻敏感元件容易饱和的问题,该电流传感器还具有构造简单、体积小、输入输出电气隔离、可测直流交流大电流、测量范围可调、成本低的特点。
本发明实施例还提供一种电流传感器,该电流传感器与上述任意实施例的电流传感器存在区别,具体的,本实施例提供的电流传感器仅采用一块分流铜排。
参考图11所示,为本发明实施例提供的又一种电流传感器的示意图。如图11所示,本实施例提供的电流传感器包括:待测电流输入组件,待测电流输入组件包括分流铜排13和差分铜排33,分流铜排13和差分铜排33沿同一方向设置;信号输出组件,待测电流输入组件与信号输出组件之间电气隔离,信号输出组件包括磁感应模块43与基板53,磁感应模块43固定于基板53上;待测电流从垂直于分流铜排13和差分铜排33的横截面流过,并在磁感应模块43位置处产生磁场;磁感应模块43至少包括第一磁感应单元413和第二磁感应单元423,第一磁感应单元413 和第二磁感应单元423位于同一水平面上,且该水平面与基板53所在平面平行;分流铜排13位于差分铜排33下方或磁感应模块43上方;沿垂直于基板53所在平面的方向上,差分铜排33在基板53所在平面的竖直投影覆盖第一磁感应单元413,且与第二磁感应单元423不交叠;分流铜排13在基板53所在平面的竖直投影覆盖第一磁感应单元413和第二磁感应单元423,第一磁感应单元413和第二磁感应单元423以差分方式感应待测电流输入组件产生的磁场并产生差分电压信号,该差分电压信号形成电流传感器的输出信号。
本实施例中,分流铜排13和差分铜排33的横截面为X-Z平面,待测电流沿垂直于X-Z平面的方向流过铜排,并产生磁场。即待测电流的电流方向垂直于X-Z平面,具体的电流方向均为垂直纸面向内。
磁感应模块43内至少包括第一磁感应单元413和第二磁感应单元423。第一磁感应单元413和第二磁感应单元423位于同一水平面上,且该水平面与基板53所在平面平行,具体的,第一磁感应单元413和第二磁感应单元423位于基板53的上方。
本实施例中,选取分流铜排13位于差分铜排33下方,分流铜排13在基板53所在平面的竖直投影Z方向上覆盖第一磁感应单元413和第二磁感应单元423;差分铜排33放置于基板53内部临近第一磁感应单元413一侧,其竖直投影覆盖第一磁感应单元413且与第二磁感应单元423不交叠。
第一磁感应单元413和第二磁感应单元423以差分方式感应待测电流流过待测电流输入组件时产生的磁场并产生差分电压信号,此时磁感应模块43输出的差分电压信号形成为电流传感器的输出信号。
可选电流传感器还包括:外壳63,待测电流输入组件和信号输出组件均固定设置在外壳63内。其中外壳63为机械支架外壳。磁感应模块43采用开环信号调理电路433。可选第一磁感应单元413的灵敏度方向和第二磁感应单元423的灵敏度方 向相同,如图11所示为向右X方向。通过控制分流铜排13和差分铜排33的电阻与串并联关系能够使大部分电流从分流铜排13流过,从而调整和扩大电流传感器的测量范围。另外,还可以采用分流铜排13和差分铜排33电流方向相反的连接方式,在磁感应模块43处产生相反的磁场。此外,也可以选取分流铜排13位于磁感应模块43上方,该情况下分流铜排13和差分铜排33同样能够在磁感应模块43处产生相反的磁场。
本实施例为前述实施例的简化版本,其结构更为简单,体积更小,进一步降低成本。通过调整待测电流输入组件的位置和结构,能够调整和扩大电流传感器的测量范围。输入输出电气隔离、可测直流交流大电流、测量范围可调、成本低的特点。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整、相互结合和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。

Claims (12)

  1. 一种电流传感器,其特征在于,包括:
    待测电流输入组件,所述待测电流输入组件包括第一分流铜排、第二分流铜排以及设置在所述第一分流铜排和所述第二分流铜排之间的差分铜排,所述第一分流铜排、所述第二分流铜排和所述差分铜排沿同一方向设置;
    信号输出组件,所述信号输出组件与所述待测电流输入组件之间电气隔离,所述信号输出组件包括磁感应模块与基板,所述磁感应模块固定于所述基板上;
    待测电流从垂直于所述第一分流铜排、所述第二分流铜排和所述差分铜排的横截面流过,并在所述磁感应模块位置处产生磁场;
    所述磁感应模块至少包括第一磁感应单元和第二磁感应单元,所述第一磁感应单元和所述第二磁感应单元位于所述差分铜排与所述第一分流铜排之间,所述第一磁感应单元和所述第二磁感应单元以差分方式感应所述待测电流输入组件产生的差模磁场,并产生差分电压信号以形成所述电流传感器的输出信号。
  2. 根据权利要求1所述的电流传感器,其特征在于,所述第一磁感应单元和所述第二磁感应单元位于同一水平面上,且该水平面与所述基板所在平面平行;
    沿垂直于所述基板所在平面的方向上,所述差分铜排在所述基板所在平面的竖直投影覆盖所述第一磁感应单元,且与所述第二磁感应单元不交叠;
    沿垂直于所述基板所在平面的方向上,所述第一分流铜排在所述基板所在平面的竖直投影覆盖所述第一磁感应单元和所述第二磁感应单元,且所述第二分流铜排在所述基板所在平面的竖直投影覆盖所述第一磁感应单元和所述第二磁感应单元。
  3. 根据权利要求2所述的电流传感器,其特征在于,所述第一磁感应单元的灵敏度方向、所述第二磁感应单元的灵敏度方向与所述待测电流通过所述差分铜排在所述第一磁感应单元位置处产生的磁场方向相同或相反。
  4. 根据权利要求1所述的电流传感器,其特征在于,还包括:外壳,所述待测电流输入组件和所述信号输出组件均固定设置在所述外壳内。
  5. 根据权利要求1所述的电流传感器,其特征在于,所述差分铜排设置在所述基板的内部。
  6. 根据权利要求1所述的电流传感器,其特征在于,所述第一磁感应单元至少包括一个磁电阻桥臂,所述第二磁感应单元至少包括一个磁电阻桥臂;
    所述第一磁感应单元的磁电阻桥臂和所述第二磁感应单元的磁电阻桥臂电气连接成差分半桥结构或者差分全桥结构;
    其中,各所述磁电阻桥臂的灵敏度方向相同,且所述磁电阻桥臂由至少一个磁电阻敏感元件串并联构成。
  7. 根据权利要求1所述的电流传感器,其特征在于,还包括:开环信号调理电路,所述开环信号调理电路对所述差分电压信号进行调理放大、温度补偿和线性度修正;或者
    还包括:闭环信号调理电路和磁场反馈线圈,所述闭环信号调理电路、所述磁场反馈线圈、所述第一磁感应单元和所述第二磁感应单元构成闭环磁场反馈结构;
    所述差分电压信号经所述闭环信号调理电路放大后,通过所述磁场反馈线圈产生反馈磁场以反向抵消所述差模磁场,达到磁场动态平衡时所述第一磁感应单元和所述第二磁感应单元工作在相等的共模磁场工作点,再对所述磁场反馈线圈的反馈电流进行取样后形成所述磁感应模块的输出信号。
  8. 根据权利要求7所述的电流传感器,其特征在于,所述磁场反馈线圈集成设置于所述磁感应模块的内部;或者,
    所述磁场反馈线圈集成设置于所述基板的内部。
  9. 根据权利要求1所述的电流传感器,其特征在于,所述第一磁感应单元包含 一个第一半桥或第一全桥,所述第二磁感应单元包含一个第二半桥或第二全桥;
    所述第一磁感应单元的电桥和所述第二磁感应单元的电桥之间的输出电压差产生所述差分电压信号。
  10. 根据权利要求9所述的电流传感器,其特征在于,所述第一半桥包含灵敏度方向相反的两个磁电阻桥臂,所述第二半桥包含灵敏度方向相反的两个磁电阻桥臂;或者,
    所述第一全桥包含四个磁电阻桥臂且电气连接的相邻两个磁电阻桥臂的灵敏度方向相反,所述第二全桥包含四个磁电阻桥臂且电气连接的相邻两个磁电阻桥臂的灵敏度方向相反;
    其中,所述磁电阻桥臂由一个磁电阻敏感元件构成或者由一个以上磁电阻敏感元件通过串并联连接构成。
  11. 一种电流传感器,其特征在于,包括:
    待测电流输入组件,所述待测电流输入组件包括并联连接的第一分流铜排和第二分流铜排;
    信号输出组件,所述待测电流输入组件与所述信号输出组件之间电气隔离,所述信号输出组件包括磁感应模块与基板,所述磁感应模块固定于所述基板上;
    待测电流从垂直于所述第一分流铜排和所述第二分流铜排的横截面流过,并在所述磁感应模块位置处产生磁场;
    所述磁感应模块至少包括第一磁感应单元和第二磁感应单元,所述第一磁感应单元位于所述第一分流铜排和所述第二分流铜排之间,所述第一磁感应单元和所述第二磁感应单元位于同一水平面上,且该水平面与所述基板所在平面平行,沿垂直于所述基板所在平面的方向上,所述第一分流铜排和所述第二分流铜排在所述基板所在平面的竖直投影重合区域与所述第二磁感应单元不交叠;
    所述第一磁感应单元和所述第二磁感应单元以差分方式感应所述待测电流输入组件产生的磁场并产生差分电压信号,该差分电压信号形成所述电流传感器的输出信号。
  12. 一种电流传感器,其特征在于,包括:
    待测电流输入组件,所述待测电流输入组件包括分流铜排和差分铜排,所述分流铜排和所述差分铜排沿同一方向设置;
    信号输出组件,所述待测电流输入组件与所述信号输出组件之间电气隔离,所述信号输出组件包括磁感应模块与基板,所述磁感应模块固定于所述基板上;
    待测电流从垂直于所述分流铜排和所述差分铜排的横截面流过,并在所述磁感应模块位置处产生磁场;
    所述磁感应模块至少包括第一磁感应单元和第二磁感应单元,所述第一磁感应单元和所述第二磁感应单元位于同一水平面上,且该水平面与所述基板所在平面平行;
    所述分流铜排位于所述差分铜排下方或所述磁感应模块上方;沿垂直于所述基板所在平面的方向上,所述差分铜排在所述基板所在平面的竖直投影覆盖所述第一磁感应单元,且与所述第二磁感应单元不交叠;所述分流铜排在所述基板所在平面的竖直投影覆盖所述第一磁感应单元和所述第二磁感应单元,
    所述第一磁感应单元和所述第二磁感应单元以差分方式感应所述待测电流输入组件产生的磁场并产生差分电压信号,该差分电压信号形成所述电流传感器的输出信号。
PCT/CN2022/132433 2021-12-21 2022-11-17 一种电流传感器 WO2023116277A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111569931.X 2021-12-21
CN202111569931.XA CN114217114B (zh) 2021-12-21 2021-12-21 一种电流传感器

Publications (1)

Publication Number Publication Date
WO2023116277A1 true WO2023116277A1 (zh) 2023-06-29

Family

ID=80704659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132433 WO2023116277A1 (zh) 2021-12-21 2022-11-17 一种电流传感器

Country Status (2)

Country Link
CN (1) CN114217114B (zh)
WO (1) WO2023116277A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114217114B (zh) * 2021-12-21 2023-04-14 江苏多维科技有限公司 一种电流传感器
CN115902345B (zh) * 2022-10-18 2024-07-02 苏州纳芯微电子股份有限公司 电流检测模块、用电设备及电流检测方法
CN116577544B (zh) * 2023-07-13 2023-09-26 江苏多维科技有限公司 一种用于电力设备的电流检测芯片

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120062224A1 (en) * 2009-06-12 2012-03-15 Alps Green Devices Co., Ltd. Magnetic balance type current sensor
CN103080755A (zh) * 2010-08-31 2013-05-01 阿尔卑斯绿色器件株式会社 电流传感器
WO2015133621A1 (ja) * 2014-03-07 2015-09-11 日立金属株式会社 電流量検出器
CN206311652U (zh) * 2016-08-05 2017-07-07 江苏多维科技有限公司 一种具有集成电流线圈的磁电阻电流传感器
US20180143226A1 (en) * 2016-11-04 2018-05-24 Hitachi Metals, Ltd. Current sensor
US20190219616A1 (en) * 2018-01-12 2019-07-18 Allegro Microsystems, Llc Current Sensor Using Modulation of or Change of Sensitivity of Magnetoresistance Elements
CN209446649U (zh) * 2018-11-30 2019-09-27 无锡乐尔科技有限公司 铜排型导线的电流测量装置
CN111693751A (zh) * 2020-07-10 2020-09-22 无锡乐尔科技有限公司 一种铜排电流传感器
CN113203885A (zh) * 2020-01-31 2021-08-03 Tdk株式会社 电流传感器、磁传感器和电路
CN114217114A (zh) * 2021-12-21 2022-03-22 江苏多维科技有限公司 一种电流传感器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109791169A (zh) * 2016-11-17 2019-05-21 株式会社村田制作所 电流传感器
DE102019125537B3 (de) * 2019-09-23 2021-02-18 Infineon Technologies Ag Sensorvorrichtungen mit Sensorchip und Stromschiene
CN112083211A (zh) * 2020-09-17 2020-12-15 上海矽睿科技有限公司 一种电流传感器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120062224A1 (en) * 2009-06-12 2012-03-15 Alps Green Devices Co., Ltd. Magnetic balance type current sensor
CN103080755A (zh) * 2010-08-31 2013-05-01 阿尔卑斯绿色器件株式会社 电流传感器
WO2015133621A1 (ja) * 2014-03-07 2015-09-11 日立金属株式会社 電流量検出器
CN206311652U (zh) * 2016-08-05 2017-07-07 江苏多维科技有限公司 一种具有集成电流线圈的磁电阻电流传感器
US20180143226A1 (en) * 2016-11-04 2018-05-24 Hitachi Metals, Ltd. Current sensor
US20190219616A1 (en) * 2018-01-12 2019-07-18 Allegro Microsystems, Llc Current Sensor Using Modulation of or Change of Sensitivity of Magnetoresistance Elements
CN209446649U (zh) * 2018-11-30 2019-09-27 无锡乐尔科技有限公司 铜排型导线的电流测量装置
CN113203885A (zh) * 2020-01-31 2021-08-03 Tdk株式会社 电流传感器、磁传感器和电路
CN111693751A (zh) * 2020-07-10 2020-09-22 无锡乐尔科技有限公司 一种铜排电流传感器
CN114217114A (zh) * 2021-12-21 2022-03-22 江苏多维科技有限公司 一种电流传感器

Also Published As

Publication number Publication date
CN114217114B (zh) 2023-04-14
CN114217114A (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
WO2023116277A1 (zh) 一种电流传感器
JP6403326B2 (ja) 電流センサ
WO2023116278A1 (zh) 一种电流传感器
JP4105142B2 (ja) 電流センサ
JP5531215B2 (ja) 電流センサ
JP4360998B2 (ja) 電流センサ
EP2878966B1 (en) Magnetic sensor and magnetic detecting method
JP6826994B2 (ja) 電流センサ
US7795862B2 (en) Matching of GMR sensors in a bridge
JP5648246B2 (ja) 電流センサ
CN101988956B (zh) 具有包括磁阻效应元件的桥接电路的磁传感器
WO2023116279A1 (zh) 一种电流传感器
WO2005081007A1 (ja) 磁界検出器、これを用いた電流検出装置、位置検出装置および回転検出装置
CN103901363A (zh) 一种单芯片z轴线性磁阻传感器
WO2012005042A1 (ja) 電流センサ
JP7140149B2 (ja) 電流センサ、磁気センサ及び回路
WO2023116280A1 (zh) 一种台阶式铜排电流检测装置
CN111650429A (zh) 磁传感芯片、温度补偿电流传感器及其制备方法
JPH07146315A (ja) 交流電流センサ
CN203480009U (zh) 一种单芯片z轴线性磁电阻传感器
JPWO2012053296A1 (ja) 電流センサ
WO2012046547A1 (ja) 電流センサ
Borole et al. Design, fabrication, and characterization of giant magnetoresistance (GMR) based open-loop current sensor with U-shaped current carrying conductor
JP5487403B2 (ja) 電流センサ
CN212410691U (zh) 磁传感芯片及温度补偿电流传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909593

Country of ref document: EP

Kind code of ref document: A1