WO2023078456A1 - 电缆结构、电缆冷却装置及车辆 - Google Patents

电缆结构、电缆冷却装置及车辆 Download PDF

Info

Publication number
WO2023078456A1
WO2023078456A1 PCT/CN2022/130592 CN2022130592W WO2023078456A1 WO 2023078456 A1 WO2023078456 A1 WO 2023078456A1 CN 2022130592 W CN2022130592 W CN 2022130592W WO 2023078456 A1 WO2023078456 A1 WO 2023078456A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
cooling jacket
joint
cable
water inlet
Prior art date
Application number
PCT/CN2022/130592
Other languages
English (en)
French (fr)
Inventor
王超
Original Assignee
长春捷翼汽车科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长春捷翼汽车科技股份有限公司 filed Critical 长春捷翼汽车科技股份有限公司
Publication of WO2023078456A1 publication Critical patent/WO2023078456A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/42Insulated conductors or cables characterised by their form with arrangements for heat dissipation or conduction
    • H01B7/421Insulated conductors or cables characterised by their form with arrangements for heat dissipation or conduction for heat dissipation
    • H01B7/423Insulated conductors or cables characterised by their form with arrangements for heat dissipation or conduction for heat dissipation using a cooling fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/32Insulated conductors or cables characterised by their form with arrangements for indicating defects, e.g. breaks or leaks
    • H01B7/324Insulated conductors or cables characterised by their form with arrangements for indicating defects, e.g. breaks or leaks comprising temperature sensing means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to the technical field of electrical equipment, in particular to a cable structure, a cable cooling device and a vehicle.
  • the long charging time of current electric vehicles has become a bottleneck restricting the widespread use of electric vehicles.
  • the current for fast charging electric vehicles reaches 150-400A.
  • the high current brings high heat generation of charging cables, which is also the main reason for limiting the charging current of electric vehicles.
  • the cooling of high-current charging cables mostly adopts liquid cooling and air cooling technologies.
  • the liquid cooling technology has a good cooling effect, it needs to add additional cooling pipelines in the cable.
  • the system structure is complex, and it has extremely high requirements on safety and stability, which will also lead to increased costs.
  • the air-cooling technology is limited by the installation size and space, and has low cooling efficiency, which will generate additional noise and affect the NVH (Noise, Vibration, Harshness) of the vehicle.
  • the object of the present invention is to provide a cable structure, a cable cooling device and a vehicle to alleviate the technical problem that the cable is difficult to cool.
  • the present invention provides a cable structure, comprising: a cable body and a cooling sleeve, the cooling sleeve is wound outside the cable body;
  • the invention provides a cable cooling device, including a cooling jacket, a pump and a cooling system, the cooling jacket can be wound outside the cable body; the cooling jacket is provided with a lumen, and the cooling jacket is connected with The water inlet joint and the water return joint communicated with the lumen, the cooling jacket is configured so that the cooling liquid enters the lumen through the water inlet joint and flows out through the water return joint, the pump and the cooling The system is connected with the water inlet joint and the water return joint.
  • the present invention provides a vehicle, comprising: a pump, a cooling system and the above-mentioned cable structure, the pump and the cooling system are connected to a water inlet joint and a water return joint.
  • the cooling sleeve is attached to the cable body, the cooling sleeve absorbs the heat of the cable body, and the cooling liquid flows through the cooling sleeve to take away the heat to realize cooling of the cable body and significantly reduce the temperature rise of the cable circuit.
  • the cooling sleeve is wound and matched with the cable body.
  • the cooling sleeve can be deformed with the trend of the cable body.
  • the cooling sleeve has a strong attachment, and the cooling sleeve can be matched according to the outer diameter of the cable body. It has the advantages of simple and flexible assembly. ;
  • the water inlet joint and the return water joint are respectively set at one end or both ends of the cable, which can be selected according to the length of the cable and the specific environment of assembly to achieve a better assembly and cooling scheme;
  • the cooling jacket is spiral and the inner diameter is smaller than the inner diameter of the cable, which can be easily wound on the cable and closely contacted with the cable to achieve better heat transfer;
  • Setting the temperature sensor can quickly obtain the real-time temperature of the cable, and can use the pump and cooling system to adjust the temperature in time;
  • the cooling sleeve is assembled on the outer periphery of the cable body instead of being integrated with the cable body. When the cooling sleeve is damaged, the cooling sleeve can be replaced directly without removing the cable body. The cooling sleeve is wound on the cable body in a spiral manner. The cable body needs to be powered off for easy maintenance and replacement. Moreover, since the cable body is protected by an external insulating layer, the cable body will not be short-circuited when the coolant leaks from the cooling sleeve.
  • Fig. 1 is a structural schematic diagram of an embodiment of a cable structure provided by the present invention
  • Fig. 2 is a structural schematic diagram of another embodiment of the cable structure provided by the present invention.
  • Fig. 3 is an enlarged view of the cable structure shown in Fig. 1;
  • Fig. 4 is an enlarged view of the cable structure shown in Fig. 2;
  • Fig. 5-Fig. 8 are schematic diagrams of the water outlet joint and its connection structure in the cable structure shown in Fig. 1;
  • FIGS 9-10 are schematic diagrams of the water inlet joint and its connection structure in the cable structure shown in Figure 1;
  • FIGs 11-13 are schematic diagrams of the water outlet joint, the water inlet structure and their connection structures in the cable structure shown in Figure 2;
  • Figures 14-18 are schematic diagrams of the cooperation between the cable body and the cooling sleeve in the cable structure provided by the present invention.
  • Fig. 19 is a schematic diagram of the cable cooling device provided by the present invention.
  • the present invention provides a cable structure, as shown in Figures 1-15, the cable structure includes: a cable body 10 and a cooling sleeve 20, the cooling sleeve 20 is wound outside the cable body 10; cavity 30, the cooling jacket 20 is connected with a water inlet joint 40 and a return water joint 50 communicating with the tube cavity 30, and the cooling jacket 20 is configured such that the cooling liquid enters the tube cavity 30 through the water inlet joint 40 and flows out through the return water joint 50 .
  • the cooling sleeve 20 is attached to the cable body 10, and the cooling sleeve 20 absorbs the heat of the cable body 10, and the cooling liquid flows through the cooling sleeve 20 to take away the heat, thereby cooling the cable body 10 and making the temperature rise of the cable circuit obvious reduce.
  • the cooling jacket 20 is wound and matched with the cable body 10.
  • the cooling jacket 20 can be deformed with the trend of the cable body 10.
  • the cooling jacket 20 has a strong attachment, and the cooling jacket 20 can be matched according to the outer diameter of the cable body 10. , which has the advantages of simple and flexible assembly.
  • the cable structure can be applied to electric vehicles, and the cable body 10 can be a high-power cable for electric vehicles.
  • the cooling jacket 20 can be made of PVC (Polyvinyl chloride, polyvinyl chloride) or silica gel.
  • the cross section of the lumen 30 has a width direction 21 and a thickness direction 22 , and the sidewall of the lumen 30 in the width direction 21 is in contact with the cable body 10 .
  • the cross section of the lumen 30 is flat, and the size of the width direction 21 of the lumen 30 is greater than the size of the thickness direction 22 of the lumen 30.
  • the lumen 30 The side wall and the cable body 10 have a larger contact area, which is beneficial for the cooling sleeve 20 to absorb the heat of the cable body 10 .
  • the cross section of the lumen 30 is rectangular.
  • the ratio of the dimension in the width direction 21 of the lumen 30 to the dimension in the thickness direction 22 ranges from 1:1 to 10:1.
  • the dimensions in the width direction and thickness direction of the lumen 30 determine the cooling effect of the cooling jacket 20.
  • the inventor selected 10 Cable structures with the same cross-sectional area, the same material, and the same length are passed through with the same current, and the tube cavity 30 with a different ratio of the dimension in the width direction to the dimension in the thickness direction is used to cool the cable structure and read the temperature rise of each cable structure , recorded in Table 1.
  • the experimental method is that in a closed environment, the cable structure of the lumen 30 with different ratios of the dimension in the width direction to the dimension in the thickness direction is used, the same current is conducted, and the temperature before the electrification and the temperature when the temperature is stable after the electrification is recorded, and Make a difference and take the absolute value.
  • a temperature rise of less than 50K is a qualified value.
  • Table 1 The effect of lumen 30 with different ratios of width dimension to thickness dimension on the temperature rise of the cable structure
  • the lumen 30 includes a first cavity 31 and a second cavity 32 arranged side by side, as shown in Figures 2, 4 and 11-13, the first end of the cooling jacket 20 is provided with a communication channel 34, the communication channel 34 communicates with the first chamber 31 and the second chamber 32 respectively; the water inlet joint 40 and the return water joint 50 are both arranged at the second end of the cooling jacket 20, and the water inlet joint 40 is connected with the first chamber 31 The water return joint 50 communicates with the second cavity 32 .
  • the side walls of the first cavity 31 and the side walls of the second cavity 32 are in contact with the cable body 10, as shown in Figure 11 and Figure 12, the first cavity 31 and the second cavity 32 are distributed along the width direction 21, The side walls of the first chamber 31 in the width direction 21 and the side walls of the second chamber 32 in the width direction 21 are in contact with the cable body 10, so that the cooling liquid can absorb the heat of the cable body 10 during the inflow process and the outflow process. It is beneficial for the coolant to fully exert its cooling performance.
  • the cooling jacket 20 includes a lumen partition 33 disposed between the first chamber 31 and the second chamber 32, and the lumen partition 33 separates the first chamber 31 from the second chamber 32, so that The cooling liquid flows from the second end of the cooling jacket 20 to the first end of the cooling jacket 20 through the first cavity 31 , and then flows to the second end of the cooling jacket 20 through the second cavity 32 .
  • the structure of the communication channel 34 is not limited to one, for example: the communication channel 34 is a communication tube, one end of the communication tube communicates with the first cavity 31 , and the other end communicates with the second cavity 32 .
  • the communication channel 34 is a through hole disposed on the lumen partition 33 .
  • the cable structure is relatively flexible in application, and can be selected according to the application environment, such as considering the layout and installation process of the high-voltage electrical equipment of the vehicle, to select the embodiment in which the water inlet joint 40 and the return water joint 50 are separately arranged at both ends as shown in Figure 1, or Figure 2
  • the shown embodiment in which the water inlet joint 40 and the water return joint 50 are arranged at the same end flexibly matches the general layout and the general assembly process route.
  • the return water joint 50 is provided with a return water buffer cavity 51, as shown in FIGS.
  • the cross-sectional area of the tube cavity 30 and the return water buffer cavity 51 play a buffer role for the cooling liquid, making the flow rate of the cooling liquid more stable, which is beneficial for the cooling liquid to absorb the heat of the cable body 10, and ensures the stability of heat transfer.
  • the water inlet connector 40 is provided with a water inlet buffer cavity 41, as shown in FIGS. area, the water inlet buffer cavity 41 plays a buffer role on the cooling liquid, making the flow rate of the cooling liquid more stable, which is beneficial for the cooling liquid to absorb the heat of the cable body 10, and ensures the stability of the cooling performance.
  • the water inlet joint 40 is socketed on the cooling jacket 20
  • the return water connector 50 is socketed on the cooling jacket 20 .
  • the water inlet connector 40 is plugged into the cooling jacket 20
  • the return water connector 50 is plugged into the cooling jacket 20, so that the water inlet connector 40 and the cooling jacket 20 and the return water connector 50 and the cooling jacket 20 is more convenient to assemble.
  • the water inlet joint 40 is interference fit with the cooling jacket 20, and a glue layer is provided between the water inlet joint 40 and the cooling jacket 20;
  • the water return joint 50 is interference fit with the cooling jacket 20, and, A glue layer is provided between the return water joint 50 and the cooling jacket 20, so that the connection between the water inlet joint 40 and the cooling jacket 20 and between the return water joint 50 and the cooling jacket 20 are more tightly connected, and the sealing performance is improved.
  • the cooling jacket 20 is in a spiral shape in a free state, and the cooling jacket 20 has elasticity, which is convenient for the cooling jacket 20 to be wound outside the cable body 10, and the cooling jacket 20 can be deformed according to the trend of the cable body 10 , so that the cooling jacket 20 is more tightly connected to the cable body 10 .
  • the cooling jacket 20 has the characteristic of automatically recovering its shape, which is beneficial for the inner diameter of the cooling jacket 20 to cooperate with the outer diameter of the cable to maintain a certain interference fit and ensure the tightness of the fit.
  • the width dimension of the cooling jacket 20 in an assembled state accounts for 40% to 98% of the pitch.
  • the pitch of the cooling sleeves 20 is the distance between the centers of two adjacent cooling sleeves 20 along the axial direction of the cable body 10 .
  • the percentage of the dimension in the width direction of the cooling jacket 20 to the pitch is too small, the coverage area of the cooling jacket 20 on the cable body 10 is too small to achieve the cooling effect, and the temperature rise of the cable body 10 is unqualified;
  • the percentage of the dimension in the width direction to the pitch is too large, although the temperature rise is acceptable, the tightness of the cooling sleeve 20 may easily lead to poor structural flexibility of the cable, making it impossible to assemble.
  • the inventor selected 10 cable structures with the same cross-sectional area, the same material, and the same length, and passed the same current, wherein the cooling jacket
  • the width dimension of the tube 20 accounts for different percentages of the pitch
  • the cable structure is cooled, and the temperature rise values of each cable structure are read and recorded in Table 2.
  • the experimental method is that in a closed environment, the cable structure of the cooling jacket 20 with different width direction dimensions accounting for the percentage of the pitch will be used, the same current will be conducted, and the temperature before the power-on and the temperature when the temperature is stable after the power-on will be recorded. Take the absolute value of the difference. In this embodiment, a temperature rise of less than 50K is a qualified value.
  • the inventor selected 10 cable structures with the same cross-sectional area, the same material, and the same length. Among them, the width direction of the cooling jacket 20 The percentage of the size to the pitch is different, bend the cable structure to the maximum arc, measure the angle between the tangent at one end of the arc and the tangent at the midpoint of the arc, and record the angle in Table 2. In this experiment, the angle greater than 30° is a qualified value.
  • Table 2 The effect of cooling jacket 20 on the temperature rise and flexibility of the cable structure with different dimensions in the width direction as a percentage of the pitch
  • the inventor selected the width dimension of the cooling jacket 20 as a percentage of the pitch in the range of 40% to 98%.
  • the inner diameter of the cooling jacket 20 in a free state is smaller than the outer diameter of the cable body 10, as shown in Figures 15-18, the inner diameter of the cooling jacket 20 in a free state is denoted as D, and the outer diameter of the cable body 10 is denoted as D1, D1 ⁇ D, the cooling sleeve 20 is in interference fit with the cable body 10 , so that the cooling sleeve 20 and the cable body 10 fit closely.
  • the cable body 10 includes a core 11 and a wire insulation 12 , and the side wall of the cooling sleeve 20 is closely attached to the side wall of the wire insulation 12 .
  • the cooling jacket 20 and the cable body 10 can be fixed with a fixing tie 60, and the fixing tie 60 can prevent the cooling jacket 20 from moving axially, so that the cooling jacket 20 and the cable
  • the connection between the main bodies 10 is more firm.
  • the fixing strap 60 and the cooling jacket 20 may be connected by glue.
  • the cooling jacket 20 can be deformed according to the trend of the cable body, and the adhesion is relatively good.
  • the cable structure can be quickly installed, the installation is simple and flexible, and the cooling sleeve 20 is closely combined with the cable body 10 , which has a good cooling effect on the cable body 10 and its body.
  • the return water joint 50 is connected with a temperature sensor 72, the temperature sensor 72 can provide a PTC or NTC signal to the cooling controller 71, and provide cooling liquid temperature information for the cooling controller 71, and the cooling controller 71 can The 72 system adjusts the power of the pump 84 and the heat exchange system to improve the cooling effect.
  • the cooling rate of the cooling jacket 20 ranges from 0.3K/s to 10K/s.
  • the inventor selected 10 cable structures with the same cross-sectional area, the same material, and the same length, and passed the same current, and adopted cable bodies 10 with different cooling rates. , to cool the cable structure, and read the temperature rise of each cable structure, which is recorded in Table 3.
  • the experimental method is to use the cable structure of the cooling jacket 20 with different cooling rates in a closed environment, conduct the same current, record the temperature before power-on and the temperature when the temperature is stable after power-on, and make a difference to get the absolute value.
  • a temperature rise of less than 50K is a qualified value.
  • Table 3 The effect of cooling jacket 20 with different cooling rates on the temperature rise of the cable structure
  • the present invention provides a cable cooling device, comprising a cooling jacket 20, the cooling jacket 20 can be wound outside the cable body 10; the cooling jacket 20 is provided with a lumen 30, and the cooling jacket 20 is connected with The water inlet joint 40 and the water return joint 50 , the cooling jacket 20 is configured such that the cooling liquid enters the tube cavity 30 through the water inlet joint 40 and flows out through the water return joint 50 .
  • the cable cooling device can cool down the temperature of the cable body 10 and can be applied to vehicles, and the cable body 10 can be a high-power cable of an electric vehicle.
  • the cable cooling device includes a pump 84 and a cooling system 80, the pump 84 and the cooling system 80 are connected to the water inlet joint 40 and the return water joint 50, the cooling system 80 cools the cooling liquid, and the pump 84 delivers the cooling liquid to the water inlet joint 40 , to lower the temperature of the cable body 10 .
  • the cable cooling device When the cable cooling device is applied to a vehicle, it can be connected to the heat exchange system of the whole vehicle, and the heat exchange system of the whole vehicle plays the role of the pump 84 and the cooling system 80; the pump 84 and the cooling system 80 can also be built independently.
  • the cooling system 80 includes a refrigeration system 81 and a heat exchanger 82 , and an expansion valve 83 is provided between the refrigeration system 81 and the heat exchanger 82 .
  • the cooling controller 71 is electrically connected to the pump 84 .
  • the present invention provides a vehicle, which includes: a pump 84 , a cooling system 80 and the above-mentioned cable structure, the pump 84 and the cooling system 80 are connected to the water inlet joint 40 .
  • the cooling system 80 cools down the cooling liquid, and the pump 84 delivers the cooling liquid to the water inlet joint 40 to cool down the cable body 10 .
  • the automobile has the functions and effects of the above-mentioned cable structure, which will not be repeated here.
  • the cable body 10 in the cable structure can be a high-power cable for electric vehicles.
  • the cable structure can be connected to the vehicle heat exchange system, and the vehicle heat exchange system functions as the pump 84 and the cooling system 80 .
  • the pump 84 and the cooling system 80 can also be built independently.

Landscapes

  • Insulated Conductors (AREA)

Abstract

本发明提供了一种电缆结构、电缆冷却装置及车辆,该电缆结构包括:电缆本体和冷却套管,所述冷却套管缠绕于所述电缆本体外;所述冷却套管设有管腔,所述冷却套管连接有与所述管腔连通的进水接头和回水接头,所述冷却套管被构造成冷却液经所述进水接头进入所述管腔并经所述回水接头流出。通过本发明,缓解了电缆难以进行冷却的技术问题。

Description

电缆结构、电缆冷却装置及车辆
相关申请
本申请要求专利申请号为202111313327.0、申请日为2021年11月08日、发明名称为“电缆结构、电缆冷却装置及车辆”的中国发明专利的优先权。
技术领域
本发明涉及电气设备技术领域,尤其是一种电缆结构、电缆冷却装置及车辆。
背景技术
目前的电动汽车充电时间长,成为限制电动汽车普遍使用的瓶颈。目前给电动汽车进行快速充电的电流达到150~400A,大电流带来的就是充电线缆的高发热量,也是限制电动汽车充电电流的主要原因。
为了解决这个问题,一是急需增大线缆的截面积,降低线缆的发热,但是线缆的成本会大幅度增加。二是采用冷却技术,给线缆进行降温冷却。
现阶段,大电流充电线缆冷却多采用液冷和风冷技术。液冷技术虽然冷却效果好,但需要额外在线缆中增加冷却管路,***结构复杂,对安全和稳定性要求极高,还会导致成本提高。风冷技术受安装尺寸空间限制,存在冷却效率低,会产生额外的噪音,影响整车的NVH(Noise、Vibration、Harshness,噪声、振动与声振粗糙度)的问题。
因此,电流传输领域急需一种能够快速对线缆进行降温,具有冷却功能的线缆。
发明内容
本发明的目的是提供一种电缆结构、电缆冷却装置及车辆,以缓解电缆难以进行冷却的技术问题。
本发明的上述目的可采用下列技术方案来实现:
本发明提供一种电缆结构,包括:电缆本体和冷却套管,所述冷却套管缠绕于所述电缆本体外;
本发明提供一种电缆冷却装置,包括冷却套管、泵和冷却***,所述冷却套管能够缠绕于电缆本体外;所述冷却套管设有管腔,所述冷却套管连接有与所述管腔连通的进 水接头和回水接头,所述冷却套管被构造成冷却液经所述进水接头进入所述管腔并经所述回水接头流出,所述泵和所述冷却***与所述进水接头和所述回水接头连接。
本发明提供一种车辆,包括:泵、冷却***和上述的电缆结构,所述泵和所述冷却***与进水接头和回水接头连接。
本发明的特点及优点是:
1、冷却套管与电缆本体贴合,冷却套管吸收电缆本体的热量,冷却液流经冷却套管,将热量带走,实现对电缆本体进行冷却,使电缆回路温升明显降低。冷却套管与电缆本体缠绕配合,冷却套管能够随电缆本体的走势进行变形,冷却套管具有较强的依附性,可以根据电缆本体的外径来匹配冷却套管,具有组装简单灵活的优点;
2、进水接头和回水接头分别设置在电缆的一端或两端,可以根据电缆的长度和装配的具体环境进行选择,实现更优的装配和冷却方案;
3、冷却套管呈螺旋状且内径小于电缆内径,可以方便缠绕在电缆上并与电缆紧密接触,实现更好的热传递;
4、设置温度传感器可以快速的获取电缆的实时温度,能够及时利用泵和冷却***进行温度调节;
5、冷却套管装配在电缆本体外周,而不是与电缆本体一体,当冷却套管损坏时可以直接更换冷却套管,无需拆除电缆本体,冷却套管螺旋方式缠绕在电缆本体上,拆除时不需要将电缆本体断电,便于维修和更换,而且,由于电缆本体有外部绝缘层保护,当冷却套管出现冷却液泄露的情况时不会造成电缆本体发生短路。
附图说明
以下附图仅旨在于对本发明做示意性说明和解释,并不限定本发明的范围。其中:
图1为本发明提供的电缆结构一实施方式的结构示意图;
图2为本发明提供的电缆结构另一实施方式的结构示意图;
图3为图1所示的电缆结构的放大图;
图4为图2所示的电缆结构的放大图;
图5-图8为图1所示的电缆结构中的出水接头及其连接结构的示意图;
图9-图10为图1所示的电缆结构中的进水接头及其连接结构的示意图;
图11-图13为图2所示的电缆结构中的出水接头与进水结构及其连接结构的示意图;
图14-图18为本发明提供的电缆结构中的电缆本体与冷却套管的配合示意图;
图19为本发明提供的电缆冷却装置的示意图。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图说明本发明的具体实施方式。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
方案一
本发明提供了一种电缆结构,如图1-图15所示,该电缆结构包括:电缆本体10和冷却套管20,冷却套管20缠绕于电缆本体10外;冷却套管20设有管腔30,冷却套管20连接有与管腔30连通的进水接头40和回水接头50,冷却套管20被构造成冷却液经进水接头40进入管腔30并经回水接头50流出。
冷却套管20与电缆本体10贴合,冷却套管20吸收电缆本体10的热量,冷却液流经冷却套管20,将热量带走,实现对电缆本体10进行冷却,使电缆回路温升明显降低。冷却套管20与电缆本体10缠绕配合,冷却套管20能够随电缆本体10的走势进行变形,冷却套管20具有较强的依附性,可以根据电缆本体10的外径来匹配冷却套管20,具有组装简单灵活的优点。
该电缆结构可以应用于电动汽车,电缆本体10可以为电动汽车高功率电缆。冷却套管20的材质可以使用PVC(Polyvinyl chloride,聚氯乙烯)或硅胶。
管腔30的横截面具有宽度方向21和厚度方向22,管腔30的宽度方向21的侧壁与电缆本体10相接触。管腔30的横截面呈扁平状,管腔30的宽度方向21的尺寸大于管腔30的厚度方向22的尺寸,在一实施方式中,如图6和图12所示,使得管腔30的侧壁与电缆本体10具有较大的接触面积,有利于冷却套管20吸收电缆本体10的热量。例如,管腔30的横截面呈长方形。
在一实施方式中,管腔30的宽度方向21的尺寸与厚度方向22的尺寸的比值范围为1:1~10:1。管腔30的宽度方向与厚度方向的尺寸决定了冷却套管20的冷却效果,为验证管腔30的宽度方向尺寸与厚度方向尺寸的比值对冷却套管20性能的影响,发明人选用10根相同截面积、相同材质、相同长度的电缆结构,并通相同的电流,采用宽度方向尺寸与厚度方向尺寸的比值不同的管腔30,对电缆结构进行冷却,并读取各个电缆结构的温升值,记录在表1中。
实验方法是在封闭的环境中,将采用不同宽度方向尺寸与厚度方向尺寸的比值的管 腔30的电缆结构,导通相同的电流,记录通电前的温度和通电后温度稳定时的温度,并作差取绝对值。在本实施例中,温升小于50K为合格值。
表1:不同宽度方向尺寸与厚度方向尺寸的比值的管腔30对电缆结构温升的影响
Figure PCTCN2022130592-appb-000001
从上表中可以看出,当管腔30的宽度方向21的尺寸与厚度方向22的尺寸的比值小于1:1时,管腔30的宽度方向21的尺寸小于厚度方向22的尺寸,管腔30的侧壁与电缆本体10之间的接触面积较小,不利于冷却套管20吸收电缆本体10的热量,电缆结构的温升值大于合格值;当管腔30的宽度方向尺寸与厚度方向尺寸的比值大于10:1时,由于管腔30宽度方向的中间部分没有内部支撑结构,宽度过大容易导致管腔30中间部分内壁相接触,冷却液通过冷却套管20的速率变慢,冷却效果降低,电缆结构的温升值大于合格值。因此,发明人将管腔30的宽度方向尺寸与厚度方向尺寸的比值范围设定为1:1~10:1。
在一实施方式中,管腔30包括并排设置的第一腔31和第二腔32,如图2、图4和图11-图13所示,冷却套管20的第一端设有连通通道34,连通通道34分别与第一腔31和第二腔32连通;进水接头40和回水接头50均设置于冷却套管20的第二端,并且,进水接头40与第一腔31连通,回水接头50与第二腔32连通。
进一步地,第一腔31的侧壁和第二腔32的侧壁均与电缆本体10相接触,如图11和图12所示,第一腔31和第二腔32沿宽度方向21分布,第一腔31的宽度方向21的侧壁与第二腔32的宽度方向21的侧壁均与电缆本体10接触,使得冷却液在流入过程和流出过程中均能够吸收电缆本体10的热量,有利于冷却液充分发挥冷却效能。
如图11所示,冷却套管20包括设置于第一腔31与第二腔32之间的管腔隔板33,管腔隔板33将第一腔31与第二腔32隔开,使得冷却液从冷却套管20的第二端经第一腔31流向冷却套管20的第一端,再经第二腔32流向冷却套管20的第二端。连通通道34的结构形式不限于一种,例如:连通通道34为连通管,连通管一端与第一腔31连通,另一端与第二腔32连通。在本发明的一实施例中,连通通道34为设置于管腔隔板33的通孔。
在另一实施方式中,如图1、图3和图5-图10所示,进水接头40和回水接头50分别设置于冷却套管20的两端,冷却液单向地流经冷却套管20。
该电缆结构应用比较灵活,可以根据应用环境,如考虑整车高压电气的布置及安装工艺,来选用图1所示的进水接头40和回水接头50分设于两端的实施方式,或者图2所示的进水接头40和回水接头50设于同一端的实施方式,灵活匹配总布置及总装工艺路线。
在一实施方式中,回水接头50设有回水缓存腔51,如图6-图8和图12-图13所示,回水缓存腔51的横截面面积大于与回水接头50连通的管腔30的横截面面积,回水缓存腔51对冷却液起到缓冲作用,使冷却液的流速更加平稳,有利于冷却液吸收电缆本体10的热量,保障热传递的稳定性。
在一实施方式中,进水接头40设有进水缓存腔41,如图9-图12所示,进水缓存腔41的横截面面积大于与进水接头40连通的管腔30的横截面面积,进水缓存腔41对冷却液起到缓冲作用,使冷却液的流速更加平稳,有利于冷却液吸收电缆本体10的热量,保障冷却效能的稳定性。
如图7-图8、图10和图13所示,进水接头40套接于冷却套管20,回水接头50套接于冷却套管20。进一步地,进水接头40插接于冷却套管20内,回水接头50插接于冷却套管20内,使进水接头40与冷却套管20之间和回水接头50与冷却套管20之间更方便组装。
更进一步地,进水接头40与冷却套管20过盈配合,并且,进水接头40与冷却套管20之间设有胶层;回水接头50与冷却套管20过盈配合,并且,回水接头50与冷却套管20之间设有胶层,使进水接头40与冷却套管20之间和回水接头50与冷却套管20之间连接得更加紧密,提高了密封性。
在本发明的一实施方式中,冷却套管20自由状态呈螺旋状,冷却套管20具有弹性,便于冷却套管20缠绕于电缆本体10外,冷却套管20可以随电缆本体10的走势变形,使冷却套管20与电缆本体10连接更加紧密。该冷却套管20具有自动恢复形状的特性,有利于冷却套管20的内径与电缆外径配合,保持一定过盈配合,保证配合的紧密度。
在一实施方式中,冷却套管20在装配状态下宽度方向尺寸占螺距的百分比范围为40%~98%。在装配状态下,冷却套管20的螺距为沿电缆本体10轴线方向相邻两冷却套管20的中心之间的距离。当冷却套管20的宽度方向尺寸占螺距的百分比过小时,冷却套管20在电缆本体10上的覆盖面积过小,不能达到冷却效果,电缆本体10温升不合格;当冷却套管20的宽度方向尺寸占螺距的百分比过大时,虽然温升合格,但是由于冷却套管20过于紧密,容易导致电缆结构柔性差,无法进行装配。
为了验证冷却套管20的宽度方向尺寸占螺距的百分比对电缆结构温升的影响,发明人选用10根相同截面积、相同材质、相同长度的电缆结构,并通相同的电流,其中,冷却套管20的宽度方向尺寸占螺距的百分比不同,对电缆结构进行冷却,并读取各个电缆结构的温升值,记录在表2中。实验方法是在封闭的环境中,将采用不同宽度方向尺寸占螺距的百分比的冷却套管20的电缆结构,导通相同的电流,记录通电前的温度和通电后温度稳定时的温度,并作差取绝对值。在本实施例中,温升小于50K为合格值。
为了验证冷却套管20的宽度方向尺寸占螺距的百分比对电缆结构弯折性能的影响,发明人选用10根相同截面积、相同材质、相同长度的电缆结构,其中,冷却套管20的宽度方向尺寸占螺距的百分比不同,将电缆结构弯折到最大的弧度,测量圆弧一端的切线与圆弧中点切线之间的角度,将角度记录在表2中。在本实验中,该角度大于30°为合格值。
表2:不同宽度方向尺寸占螺距的百分比的冷却套管20对电缆结构温升和柔性的影响
Figure PCTCN2022130592-appb-000002
如表2所示,当冷却套管20的宽度方向尺寸占螺距的百分比小于40%时,冷却套管20在电缆本体10上的覆盖面积过小,不能达到冷却效果,电缆本体10温升不合格;当冷却套管20的宽度方向尺寸占螺距的百分比大于98%时,虽然电缆本体10温升合格,但是温升降低并不明显,而且电缆结构弯折角度不合格,弯折性能较差,此时的电缆结构柔性较差,容易导致无法进行装配。因此,发明人选定冷却套管20的宽度方向尺寸占螺距的百分比范围为40%~98%。
进一步地,冷却套管20自由状态下的内径小于电缆本体10的外径,如图15-图18所示,冷却套管20自由状态下的内径记为D,电缆本体10的外径记为D1,D1≥D,冷却套管20与电缆本体10过盈配合,使冷却套管20与电缆本体10紧密贴合。如图15所示,电缆本体10包括线芯11和导线绝缘皮12,冷却套管20的侧壁与导线绝缘皮12的侧壁紧密贴合。
为保证安装后冷却套管20侧壁与电缆本体10外壁紧密贴合,需保证安装后冷却套管20施加在电缆本体10上的径向力Fr≥2N,根据实际安装环境及可接受高压回路外 径要求,装配后冷却套管20的径向形变量△D的范围为4mm~8mm,其中△D=D1-D,因此,冷却套管20在线性弹性形变范围内的弹性模量M≥Fr/△D,在此范围内可以使冷却套管20侧壁与电缆本体10外壁紧密贴合,保证高效的热传输,确保冷却效率。
如图5和图9所示,冷却套管20与电缆本体10之间可以采用固定扎带60进行固定,固定扎带60可以阻止冷却套管20发生轴向移动,使冷却套管20与电缆本体10之间连接得更加牢固。固定扎带60与冷却套管20之间可以采用胶接的方式连接。根据电缆本体10的外径匹配不同内径的冷却套管20,冷却套管20可以根据线缆本体的走势变形,依附性比较好。该电缆结构可进行快速安装,安装简单灵活,冷却套管20与电缆本体10结合紧密,对电缆本体10及起到良好地降温效果。
在一实施方式中,回水接头50连接有温度传感器72,温度传感器72可向冷却控制器71提供PTC或者NTC信号,为冷却控制器71提供冷却液温度信息,冷却控制器71可根据温度传感器72***调整泵84及热交换***的功率,改善冷却效果。
在一实施方式中,冷却套管20的冷却速率范围为0.3K/s~10K/s。发明人为了验证冷却套管20的冷却速率对电缆本体10温升的影响,选用10根相同截面积、相同材质、相同长度的电缆结构,并通相同的电流,采用不同冷却速率的电缆本体10,对电缆结构进行冷却,并读取各个电缆结构的温升值,记录在表3中。
实验方法是在封闭的环境中,将采用不同冷却速率的冷却套管20的电缆结构,导通相同的电流,记录通电前的温度和通电后温度稳定时的温度,并作差取绝对值。在本实施例中,温升小于50K为合格值。
表3:不同冷却速率的冷却套管20对电缆结构温升的影响
Figure PCTCN2022130592-appb-000003
从上表中可以看出,当冷却套管20的冷却速率小于0.3K/s时,电缆结构的温升值小于合格值,冷却套管20的冷却速率越大,温升值越小。但是当冷却套管20的冷却速率大于10K/s时,受电缆结构本身发热量及冷却套管20自身功率的影响,温升值降低不明显,但是冷却套管20功率却增大,不符合经济性。因此,发明人将冷却套管20的冷却速率范围设定为0.3K/s~10K/s。
方案二
本发明提供了一种电缆冷却装置,包括冷却套管20,冷却套管20能够缠绕于电缆本体10外;冷却套管20设有管腔30,冷却套管20连接有与管腔30连通的进水接头40和回水接头50,冷却套管20被构造成冷却液经进水接头40进入管腔30并经回水接头50流出。
该电缆冷却装置可以对电缆本体10进行降温,可以应用于车辆,电缆本体10可以为电动汽车高功率电缆。
该电缆冷却装置包括泵84和冷却***80,泵84和冷却***80与进水接头40及回水接头50连接,冷却***80对冷却液进行降温,泵84将冷却液输送至进水接头40,对电缆本体10进行降温。该电缆冷却装置应用于车辆时,可以接入整车热交换***,整车热交换***起到泵84和冷却***80的作用;泵84和冷却***80也可以单独自建。
如图19所示,冷却***80包括制冷***81和热交换器82,制冷***81和热交换器82之间设有膨胀阀83。冷却控制器71与泵84电连接。
方案三
本发明提供了一种车辆,该车辆包括:泵84、冷却***80和上述的电缆结构,泵84和冷却***80与进水接头40连接。冷却***80对冷却液进行降温,泵84将冷却液输送至进水接头40,对电缆本体10进行降温。该汽车具有上述电缆结构的功能和效果,在此不再赘述。
电缆结构中的电缆本体10可以为电动汽车高功率电缆。电缆结构可以接入整车热交换***,整车热交换***起到泵84和冷却***80的作用。泵84和冷却***80也可以单独自建。
以上所述仅为本发明示意性的具体实施方式,并非用以限定本发明的范围。任何本领域的技术人员,在不脱离本发明的构思和原则的前提下所作的等同变化与修改,均应属于本发明保护的范围。

Claims (18)

  1. 一种电缆结构,其中,包括:电缆本体和冷却套管,所述冷却套管缠绕于所述电缆本体外;
    所述冷却套管设有管腔,所述冷却套管连接有与所述管腔连通的进水接头和回水接头,所述冷却套管被构造成冷却液经所述进水接头进入所述管腔并经所述回水接头流出。
  2. 如权利要求1所述的电缆结构,其中,所述管腔的横截面呈扁平状。
  3. 如权利要求1或者2所述的电缆结构,其中,所述管腔的宽度方向尺寸与厚度方向尺寸的比值范围为1:1~10:1。
  4. 如权利要求1或者2所述的电缆结构,其中,所述管腔包括并排设置的第一腔和第二腔,所述冷却套管的第一端设有连通通道,所述连通通道分别与所述第一腔和所述第二腔连通;
    所述进水接头和所述回水接头均设置于所述冷却套管的第二端,并且,所述进水接头与所述第一腔连通,所述回水接头与所述第二腔连通。
  5. 如权利要求4所述的电缆结构,其中,所述第一腔的侧壁和所述第二腔的侧壁均与所述电缆本体相接触。
  6. 如权利要求4所述的电缆结构,其中,所述冷却套管包括设置于所述第一腔与所述第二腔之间的管腔隔板,所述连通通道为设置于所述管腔隔板的通孔。
  7. 如权利要求1或者2所述的电缆结构,其中,所述进水接头和所述回水接头分别设置于所述冷却套管的两端。
  8. 如权利要求1或者2所述的电缆结构,其中,所述进水接头设有进水缓存腔,所述进水缓存腔的横截面面积大于与所述进水接头连通的所述管腔的横截面面积;
    和/或,所述回水接头设有回水缓存腔,所述回水缓存腔的横截面面积大于与所述回水接头连通的所述管腔的横截面面积。
  9. 如权利要求1或者2所述的电缆结构,其中,所述进水接头套接于所述冷却套管;和/或,所述回水接头套接于所述冷却套管。
  10. 如权利要求9所述的电缆结构,其中,所述进水接头插接于所述冷却套管内;和/或,所述回水接头插接于所述冷却套管内。
  11. 如权利要求10所述的电缆结构,其中,所述进水接头与所述冷却套管过盈配合,并且,所述进水接头与所述冷却套管之间设有胶层;
    和/或,所述回水接头与所述冷却套管过盈配合,并且,所述回水接头与所述冷却套 管之间设有胶层。
  12. 如权利要求1或者2所述的电缆结构,其中,所述冷却套管自由状态呈螺旋状,并且所述冷却套管具有弹性。
  13. 如权利要求12所述的电缆结构,其中,所述冷却套管自由状态下的内径小于所述电缆本体的外径。
  14. 如权利要求12所述的电缆结构,其中,所述冷却套管在装配状态下宽度方向尺寸占螺距的百分比范围为40%~98%。
  15. 如权利要求1所述的电缆结构,其中,所述回水接头连接有温度传感器。
  16. 如权利要求1所述的电缆结构,其中,所述冷却套管的冷却速率范围为0.3K/s~10K/s。
  17. 一种电缆冷却装置,其中,包括冷却套管、泵和冷却***,所述冷却套管能够缠绕于电缆本体外;
    所述冷却套管设有管腔,所述冷却套管连接有与所述管腔连通的进水接头和回水接头,所述冷却套管被构造成冷却液经所述进水接头进入所述管腔并经所述回水接头流出,所述泵和所述冷却***与所述进水接头和所述回水接头连接。
  18. 一种车辆,其中,包括:泵、冷却***和权利要求1-16中任一项所述的电缆结构,所述泵和所述冷却***与进水接头和回水接头连接。
PCT/CN2022/130592 2021-11-08 2022-11-08 电缆结构、电缆冷却装置及车辆 WO2023078456A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111313327.0A CN113990574A (zh) 2021-11-08 2021-11-08 电缆结构、电缆冷却装置及车辆
CN202111313327.0 2021-11-08

Publications (1)

Publication Number Publication Date
WO2023078456A1 true WO2023078456A1 (zh) 2023-05-11

Family

ID=79747097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130592 WO2023078456A1 (zh) 2021-11-08 2022-11-08 电缆结构、电缆冷却装置及车辆

Country Status (2)

Country Link
CN (1) CN113990574A (zh)
WO (1) WO2023078456A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0982145A (ja) * 1995-09-11 1997-03-28 Chubu Electric Power Co Inc 直冷電力ケーブル
CN102930932A (zh) * 2012-11-13 2013-02-13 江苏科技大学 大功率手持变压器绕组用水浸式漆包线电缆
CN113192667A (zh) * 2021-04-20 2021-07-30 江铃汽车股份有限公司 电能传输装置及电动汽车充电***
CN216212525U (zh) * 2021-11-08 2022-04-05 长春捷翼汽车零部件有限公司 电缆结构、电缆冷却装置及车辆

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201122454Y (zh) * 2007-11-26 2008-09-24 上海电力设计院有限公司 电缆水冷装置
CN206098029U (zh) * 2016-11-01 2017-04-12 上海电力设计院有限公司 用于电力电缆的螺旋式扁平水冷管
US10714236B2 (en) * 2018-06-13 2020-07-14 Te Connectivity Corporation Charging system with cooling tube
CN210271862U (zh) * 2019-09-11 2020-04-07 昆山浩正辰电子有限公司 带散热结构的抗弯折的汽车线束
CN210984367U (zh) * 2019-12-28 2020-07-10 燕通电缆有限公司 一种用于新能源电动汽车的水冷高压电缆

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0982145A (ja) * 1995-09-11 1997-03-28 Chubu Electric Power Co Inc 直冷電力ケーブル
CN102930932A (zh) * 2012-11-13 2013-02-13 江苏科技大学 大功率手持变压器绕组用水浸式漆包线电缆
CN113192667A (zh) * 2021-04-20 2021-07-30 江铃汽车股份有限公司 电能传输装置及电动汽车充电***
CN216212525U (zh) * 2021-11-08 2022-04-05 长春捷翼汽车零部件有限公司 电缆结构、电缆冷却装置及车辆

Also Published As

Publication number Publication date
CN113990574A (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
TWI673187B (zh) 車輛的充電裝置以及車輛
CN108832222A (zh) 一种集成式电池包冷却装置
WO2023160118A1 (zh) 电池、用电装置
WO2023078456A1 (zh) 电缆结构、电缆冷却装置及车辆
CN216212525U (zh) 电缆结构、电缆冷却装置及车辆
CN104807350A (zh) 一种空调热交换器
CN208333749U (zh) 一种压力传感器外壳
WO2019206307A1 (zh) 一种控制器与电机连接的水道结构
CN212725415U (zh) 一种铅酸蓄电池散热装置
WO2019062970A1 (zh) 车辆的充电装置以及车辆
WO2019062969A1 (zh) 车辆的充电装置以及车辆
CN214014852U (zh) 一种压铸或浇铸式液冷散热器及其空调变频器、电子设备
CN202309482U (zh) 防爆变频器及其冷却装置
CN207459115U (zh) 一种新能源汽车用动力电池组热管理装置
CN220915638U (zh) 用于adas域控制器散热的液冷***
CN214014848U (zh) 一种压铸或浇铸式散热器及空调变频器、电子设备
WO2020259701A1 (zh) 插接组件、插接装置、电连接器和电动汽车
CN104676871A (zh) 散热装置、空调器及散热装置的装配方法
CN208315708U (zh) 一种散热管及其接头以及电池箱
CN217544600U (zh) 水冷板组件和显示装置
CN218676787U (zh) 一种具有散热结构的固态电解质电容器
CN220254868U (zh) 一种带有散热结构的功率控制器
CN219160603U (zh) 一种流体电加热器
WO2019062939A1 (zh) 充电连接件的散热器以及充电装置和车辆
CN213844965U (zh) 散热效果好的变压器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889477

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022889477

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022889477

Country of ref document: EP

Effective date: 20240610