WO2023074911A1 - 新規べと病抵抗性遺伝子を有するホウレンソウ植物 - Google Patents

新規べと病抵抗性遺伝子を有するホウレンソウ植物 Download PDF

Info

Publication number
WO2023074911A1
WO2023074911A1 PCT/JP2022/040890 JP2022040890W WO2023074911A1 WO 2023074911 A1 WO2023074911 A1 WO 2023074911A1 JP 2022040890 W JP2022040890 W JP 2022040890W WO 2023074911 A1 WO2023074911 A1 WO 2023074911A1
Authority
WO
WIPO (PCT)
Prior art keywords
chr3
downy mildew
resistant
spinach plant
gene
Prior art date
Application number
PCT/JP2022/040890
Other languages
English (en)
French (fr)
Inventor
遥 中村
亮 木村
雄一 杉原
陽介 森玉
Original Assignee
株式会社サカタのタネ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サカタのタネ filed Critical 株式会社サカタのタネ
Priority to KR1020247013312A priority Critical patent/KR20240099198A/ko
Priority to AU2022376201A priority patent/AU2022376201A1/en
Priority to JP2023556710A priority patent/JPWO2023074911A1/ja
Priority to CA3236539A priority patent/CA3236539A1/en
Priority to CN202280068472.3A priority patent/CN118103506A/zh
Publication of WO2023074911A1 publication Critical patent/WO2023074911A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/10Seeds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/12Leaves
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/02Amaranthaceae or Chenopodiaceae, e.g. beet or spinach
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing

Definitions

  • the present invention relates to spinach plants having genes that provide resistance to broad-spectrum downy mildew, and methods for producing the same.
  • This application claims priority based on Japanese Patent Application No. 2021-178897 filed in Japan on November 1, 2021, the content of which is incorporated herein.
  • Plant varieties generally include fixed species and hybrid first-generation (hereinafter referred to as "F1") varieties, and F1 varieties are widespread in major crops.
  • the F1 variety grows vigorously due to hybrid vigor (heterosis).
  • hybrid vigor heterosis
  • the F1 cultivar has significant advantages such as fast growth and high yield, and is expected to have improved environmental adaptability such as resistance to pests and cold and heat resistance.
  • the F1 cultivar exhibits extremely high phenotype uniformity because it has the same genotype even though it is heterozygous. This increases the marketability of the product.
  • useful traits controlled by dominant genes in the parents of the F1 variety can be accumulated, rapid breeding becomes possible.
  • Non-Patent Document 2 The search for new resistant materials is very important in spinach breeding in order to respond to the continuous emergence of new races.
  • a search for downy mildew-resistant genetic material is being conducted not only for cultivated species but also for wild species. For example, by the Center for Genetic Resources, the Netherlands (CGN), in 2008, Spinacia turkestanica, a wild spinach, and in 2011, Spinacia tetrandra, a wild spinach. A search for disease-resistant genetic material was carried out. Also, in 2011, Correll et al. announced that six types of genes called RPF control known downy mildew resistance (Non-Patent Document 2).
  • RPF1 to RPF10 RPF11 (Patent Document 1), RPF12 (Patent Document 2), RPF13 (Patent Document 3), RPF14 (Patent Document 4), RPF15 (Patent Document 5), R6 (Patent Document 6), R15 (Patent Document 7), etc.
  • Spinach with high downy mildew resistance can be produced by introducing a downy mildew-resistant gene derived from wild spinach into a cultivated spinach, Spinacia oleracea L. (Patent Document 8). .
  • a single resistance gene that confers resistance to all named Pfs races (Pfs1 to Pfs19), UA1014 type, Be2105B type, and PV2144 type is currently unknown. Therefore, in order to obtain resistance to all known Pfs races using known resistance genes, it is necessary to combine multiple resistance genes.
  • the object of the present invention is to provide a single dominant downy mildew resistance gene that confers resistance to at least all of Pfs1 to Pfs19, UA1014 type, Be2105B type, and PV2144 type.
  • the present inventors have found that on the third chromosome of Spinacia tetrandra strain RNR140003, resistance to at least all of Pfs1 to Pfs19, UA1014 type, Be2105B type, and PV2144 type.
  • a new dominant downy mildew-resistant gene was found to exist, and the gene was named RPF-SK1 gene.
  • interspecific crossing between the wild spinach having the downy mildew resistance gene and the cultivated spinach is performed to obtain an F1 individual having downy mildew resistance, and the F1 individual is further crossed with the cultivated spinach.
  • the present inventors have found that spinach plants having downy mildew resistance attributed to the downy mildew-resistant gene and traits close to those of cultivated species can be grown, and have completed the present invention.
  • the present invention is as follows. [1] having a downy mildew-resistant RPF-SK1 gene in at least one allele;
  • the RPF-SK1 gene is (a) the SNP identified by chr3_1215815 is cytosine, (b) the SNP identified by chr3_1215855 is thymine; (c) the SNP identified by chr3_1216014 is cytosine; (d) the SNP identified by chr3_1216093 is guanine, the SNP identified by chr3_1216094 is guanine, and the SNP identified by chr3_1216095 is adenine; (e) the SNP identified by chr3_1216288 is adenine, or (f) the SNP identified by chr3_1216291 is guanine, Downy mildew resistant spinach plant.
  • X locus is "the site occupied by the X gene in the chromosome”. Therefore, in the present invention and the specification of the present application, "a spinach plant having an X locus” is a spinach plant having a site occupied by the X gene in the chromosome, and is synonymous with "a spinach plant having an X gene”. be.
  • the downy mildew-resistant spinach plant according to the present invention includes a spinach plant in which a chromosome fragment containing the RPF-SK1 locus has replaced the region corresponding to the fragment in chromosome 3, a translocation, etc. spinach plants into which a chromosomal fragment containing the RPF-SK1 locus has been introduced outside the region corresponding to the RPF-SK1 locus in chromosome 3 of Spinasia tetrandra.
  • Chromosomal fragments containing the RPF-SK1 locus include, for example, nucleic acids represented by SEQ ID NOs: 3, 4, 5, and Table 1.
  • the introduction of the RPF-SK1 gene into the genomic DNA can be carried out by cross-breeding using Spinacia tetrandra as the parent strain, or by genetic modification methods such as genome editing.
  • the downy mildew-resistant spinach plant according to the present invention is an interspecific hybrid plant between Spinacia tetrandra and a spinach plant other than Spinacia tetrandra, and has downy mildew resistance derived from the RPF-SK1 gene.
  • derived from plants that have "Interspecific hybrid plants” include, in addition to plants produced by interspecies crossing of species belonging to the genus Spinasia, somatic cell hybrid plants resulting from cell fusion between different species of plants of the genus Spinasia, and plants of the genus Spinasia. Also included are grafted hybrid plants obtained by grafting between different species.
  • an interspecific hybrid plant between Spinasia tetrandra and a spinach plant other than Spinasia tetrandra includes not only the interspecific hybrid plant but also progeny of the interspecific hybrid plant.
  • progeny of a spinach plant means, in addition to progeny obtained by intraspecific crossing of the spinach plant, an individual obtained as a parent line of the spinach plant and its progeny, and the spinach plant. It includes somatic hybrid plants and their progeny obtained by cell fusion between cells and plant cells of other cultivars, and individuals obtained by grafting the spinach plant as a rootstock or scion and their progeny. "Progeny” includes both individuals resulting from intraspecific and interspecific hybrids.
  • individual obtained from a (plant) parental line means an individual obtained by intraspecific crossing, interspecific crossing, cell fusion, or grafting using the plant as a parental line.
  • the spinach plant to be used as a material for producing the downy mildew-resistant spinach plant according to the present invention is not particularly limited as long as it has the RPF-SK1 gene possessed by Spinacia tetrandra line RNR140003.
  • Spinacia tetrandra strains include progeny strains inheriting the RPF-SK1 gene from RNR140003.
  • the downy mildew-resistant spinach plant according to the present invention may be the progeny of an F1 individual obtained by interspecific crossing between Spinasia tetrandra and a spinach plant other than Spinasia tetrandra.
  • a spinach plant other than Spinasia tetrandra For example, spinachia tetrandra and cultivar spinach plants are crossed to obtain F1 seeds, and plant individuals grown from the obtained F1 seeds are backcrossed or selfed with cultivar spinach plant individuals to obtain seeds. Then, individuals having the RPF-SK1 gene are selected from plant individuals grown from the obtained seeds.
  • Downy mildew-resistant spinach is obtained by repeatedly crossing the selected plant individuals with self-fertilized or cultivated spinach plants and selecting individuals having the RPF-SK1 gene from progeny obtained by the crossing. A fixed seed of the plant can be obtained. Selfing, crossing with cultivar spinach plants, cultivation, and collection of seeds can be carried out according to conventional spinach cultivation methods.
  • Individuals having the RPF-SK1 gene can be selected from progeny obtained by crossing, for example, by examining downy mildew resistance. Specifically, Pfs of each race is inoculated to the leaves of test plant individuals to be examined for downy mildew resistance, and the presence or absence of downy mildew disease is examined. If the test plant does not develop downy mildew, it is evaluated as being resistant to the inoculated race. From progeny obtained by crossing, plant individuals having resistance to at least all races represented by downy mildew races Pfs1 to Pfs19, UA1014 type, Be2105B type, and PV2144 type are defined as individuals having the RPF-SK1 gene. be selected as
  • Individuals having the RPF-SK1 gene can be selected from progeny obtained by crossing, for example, by examining whether the genomic DNA contains a chromosomal fragment containing the RPF-SK1 gene. Specifically, DNA markers in the RPF-SK1 locus of spinach plants are used for identification.
  • a DNA marker is one that can detect differences in DNA sequences on chromosomes that can distinguish between chromosome fragments derived from different breeds.
  • DNA markers include SNP (Single Nucleotide Polymorphism) markers, SSR (Simple Sequence Repeats) markers, and RFLP (Restriction Fragment Length Polymorphism) markers. be done.
  • DNA markers can be detected by a conventional method. For example, using DNA extracted from each plant as a template, a nucleic acid amplification reaction is performed using primers and a polymerase that can specifically hybridize with a specific SNP or SSR, and the presence or absence of an amplified product is determined using electrophoresis or the like. Each polymorphism can be detected and identified. In addition, each polymorphism can be identified by detecting the pattern of DNA fragments by electrophoresis or the like after treating the DNA extracted from each individual plant with a restriction enzyme.
  • Primers that can specifically hybridize with specific SNPs and SSRs are selected according to the nucleotide sequence of the genomic DNA of spinach and the nucleotide sequences of the SNPs and SSRs to be detected using commonly used primer design tools and the like. can be designed by conventional methods and synthesized by methods well known in the art.
  • chr3_1216093, chr3_1216094, and chr3_1216095 have a sequence consisting of three bases that is a base sequence specific to the RPF-SK1 gene, and the combination of these three SNPs is a DNA used for selecting individuals having the RPF-SK1 gene. become a marker.
  • SNP bases can be identified using, for example, KASP (Kompetitive Allele Specific PCR) genotyping assay (manufactured by LGC Genomics).
  • KASP Kompetitive Allele Specific PCR genotyping assay
  • the bases of these SNPs can also be identified by PCR-amplifying the region containing chr3_1215815 to chr3_1216291 using the genomic DNA extracted from the test spinach plant as a template, and identifying the base sequence of the resulting amplification product. can be done.
  • spinach plants having a fragment containing the RPF-SK1 locus of Spinasia tetrandra line RNR140003 homozygously or heterozygously have chr3 — 1215815 in at least one allele.
  • the SNP identified is cytosine
  • the SNP identified by chr3_1215855 is thymine
  • the SNP identified by chr3_1216014 is cytosine
  • the three consecutive SNPs identified by chr3_1216093 to chr3_1216095 are guanine-guanine-adenine
  • the SNP identified by chr3 — 1216288 is adenine
  • the SNP identified by chr3 — 1216291 is guanine.
  • the downy mildew-resistant spinach plant according to the present invention preferably has traits other than downy mildew resistance, particularly traits as an agricultural product, that are the same as or similar to cultivated spinach.
  • the traits of agricultural crops include taste, leaf shape, yield, ease of cultivation, and the like.
  • the "cultivated traits” means traits suitable for agricultural crops.
  • the downy mildew-resistant spinach plant according to the present invention preferably has at least one downy mildew-resistant gene other than the RPF-SK1 gene.
  • the RPF-SK1 gene alone can confer resistance to a wider range of races than known resistance genes, but it also has other downy mildew resistance genes to break through resistance. It can also be expected to contribute to suppressing the appearance of
  • the downy mildew-resistant gene other than the RPF-SK1 gene is not particularly limited, and examples thereof include the RPF1 gene to RPF15 gene, R6 gene, R15 gene and the like in the case of heterozygotes.
  • the downy mildew-resistant spinach plant according to the present invention may be a whole plant or a part of the plant. That is, the downy mildew-resistant spinach plant according to the present invention includes all of the spinach plant having the RPF-SK1 gene, the above-ground part of the spinach plant, and the tissue of the spinach plant.
  • a downy mildew-resistant spinach plant according to the present invention also includes cells obtained from a tissue of a spinach plant having the RPF-SK1 gene. Tissues can include embryos, meristematic cells, callus, pollen, leaves, anthers, stems, petioles, roots, root tips, fruits, seeds, flowers, cotyledons, and hypocotyls.
  • the cells are plant cells that have spinach plant genomic DNA and that have the RPF-SK1 gene.
  • a spinach plant cell having the RPF-SK1 gene may be a single cell or a cell mass composed of a plurality of cells.
  • the spinach plant cells having the RPF-SK1 gene may be collected from any tissue of the spinach plant, or may be a cell mixture in which cells collected from different tissues are mixed. Such tissues include those listed above. Among them, single cells derived from leaf blade or petiole tissue are preferred.
  • the downy mildew resistance of the downy mildew-resistant spinach plants according to the present invention exhibits dominant expression. Therefore, by crossing interspecifically or intraspecifically with the downy mildew-resistant spinach plant according to the present invention as a parent line, a new spinach plant strain resistant to downy mildew derived from the RPF-SK1 gene is cultivated. becomes possible.
  • the method for screening a downy mildew-resistant spinach plant according to the present invention examines whether a test spinach plant has the RPF-SK1 gene, and if it is determined to have the RPF-SK1 gene, the test spinach plant. Select as downy mildew resistant spinach plants.
  • whether or not a test spinach plant has the RPF-SK1 gene is determined by DNA markers at or near the RPF-SK1 locus, or by strongly combining these DNA markers. Judgment is based on the genotype of the linked DNA markers.
  • the genotype of the DNA marker at or near the RPF-SK1 locus or the DNA marker strongly linked to these DNA markers has the RPF-SK1 gene, such as the RNR140003 strain, and is susceptible to downy mildew If it is of the same genotype as the resistant Spinacia tetrandra, the test spinach plant is selected as a downy mildew-resistant spinach plant.
  • DNA markers for determining the presence or absence of the RPF-SK1 gene include the SNPs listed in Table 1. Among them, the SNP identified by chr3_1215815, the SNP identified by chr3_1215855, the SNP identified by chr3_1216014, the SNP identified by chr3_1216093, the SNP identified by chr3_1216094, the SNP identified by chr3_1216095, and chr3_121628 of the spinach plant at 8
  • One or more selected from the group consisting of the identified SNP, the SNP identified by chr3_1216291, and SNPs that are strongly genetically linked to these SNPs are DNAs for determining the presence or absence of the RPF-SK1 gene Suitable as a marker.
  • the SNP identified by chr3_1215815 is cytosine
  • the SNP identified by chr3_1215855 is thymine
  • the SNP identified by chr3_1216014 is cytosine.
  • the SNP identified by chr3_1216093 is guanine
  • the SNP identified by chr3_1216094 is guanine
  • the SNP identified by chr3_1216095 is adenine
  • the SNP identified by chr3_1216288 is adenine
  • the presence or absence of the RPF-SK1 gene can be more easily determined using the kit.
  • Selection for downy mildew resistant spinach plants can be done at discretion.
  • the forward primer and reverse primer for PCR-amplifying the region containing chr3_1215815 to chr3_1216291 in the genomic DNA of the spinach plant can be included in the kit used to select the spinach plant having the RPF-SK1 gene. .
  • a primer set for identifying the genotype of the SNP identified by chr3_1215815 of spinach plants a primer set for identifying the genotype of the SNP identified by chr3_1215855, and identifying the genotype of the SNP identified by chr3_1216014 a primer set for identifying the genotypes of three consecutive SNPs identified by chr3_1216093, chr3_1216094, and chr3_1216095; a primer set for identifying the genotype of the SNP identified by chr3_1216288;
  • a kit containing a set of primers for identifying the genotype of the SNP identified by chr3_1216291 is useful for identifying the genotype of these SNPs for determining the presence or absence of the RPF-SK1 gene in test spinach plants.
  • the method for predicting downy mildew resistance of a spinach plant according to the present invention examines whether the test spinach plant has the RPF-SK1 gene, and if it is determined to have the RPF-SK1 gene, the test spinach plant are likely to be downy mildew resistant.
  • whether or not a test spinach plant has the RPF-SK1 gene is determined by DNA markers at or near the RPF-SK1 locus, or with these DNA markers. Judgment is based on the genotype of strongly linked DNA markers.
  • the genotype of the DNA marker at or near the RPF-SK1 locus or the DNA marker strongly linked to these DNA markers has the RPF-SK1 gene, such as the RNR140003 strain, and is susceptible to downy mildew
  • the test spinach plant has the RPF-SK1 gene, and has the RPF-SK1 gene such as the RNR140003 strain, and is resistant to downy mildew
  • the genotype is different from that of Spinacia tetrandra, it is determined that the test spinach plant does not have the RPF-SK1 gene.
  • DNA markers for determining the presence or absence of the RPF-SK1 gene include the SNPs listed in Table 1. For example, in at least one allele, (a) the SNP identified by chr3_1215815 is cytosine, (b) the SNP identified by chr3_1215855 is thymine, (c) the SNP identified by chr3_1216014 is cytosine.
  • the SNP identified by chr3_1216093 is guanine
  • the SNP identified by chr3_1216094 is guanine
  • the SNP identified by chr3_1216095 is adenine
  • the SNP identified by chr3_1216288 is adenine
  • the test spinach plant carries the RPF-SK1 gene and is likely to be downy mildew resistant.
  • the primer set for identifying the genotype of the DNA marker for judging the presence or absence of the RPF-SK1 gene and the kit thereof may be the same as those described above.
  • ⁇ Method for producing downy mildew-resistant spinach plant By crossing spinach plants having the RPF-SK1 gene as materials, downy mildew resistance derived from the RPF-SK1 gene is introduced into spinach plants that do not have the RPF-SK1 gene to develop a novel downy mildew. Resistant spinach plants can be produced.
  • the RPF-SK1 gene which is a single dominant resistance gene, can be easily introduced into any line and can accelerate the development of spinach varieties.
  • the use of a spinach plant homozygous for the RPF-SK1 gene as a parent line facilitates the breeding of cultivars having resistance to a wider range of races.
  • the RPF-SK1 gene can be combined in the same haplotype with other single dominant resistance alleles at different loci than the RPF-SK1 locus.
  • the method for producing downy mildew-resistant spinach plants according to the present invention is a method that utilizes crossbreeding using a spinach plant having the RPF-SK1 gene as a parent line. Specifically, a first crossing step of crossing a spinach plant having the RPF-SK1 gene with any spinach plant, and the F1 individuals obtained by the first crossing step are selfed, backcrossed, or A second crossing step of obtaining a segregating population by performing interspecific crossing or intraspecific crossing with a spinach plant different from the parent line used in the first crossing step, and spinach plants having the RPF-SK1 gene from the segregating population. and a selection step of selecting. Selfing, backcrossing, interspecific crossing, intraspecific crossing, cultivation of spinach plants, and harvesting of seeds can be carried out by conventional spinach cultivation methods.
  • the spinach plant having the RPF-SK1 gene used as the parent line in the first crossing step Spinasia tetrandra can be used, and the downy mildew-resistant spinach plant according to the present invention can also be used.
  • the spinach plant having the RPF-SK1 gene to be used as a parent line should be a downy mildew-resistant spinach plant that has both the RPF-SK1 gene and traits as a cultivated species. preferable.
  • Any spinach plant used as a parent line in the first crossing step and any spinach plant used as a parent line for interspecific or intraspecific cross in the second crossing step are not particularly limited, and RPF-SK1 Various spinach plants that do not have the gene can be used as appropriate.
  • a downy mildew-resistant spinach plant that has the RPF-SK1 gene and also has traits as a cultivated species and a cultivated spinach plant that does not have the RPF-SK1 gene are used as parent lines.
  • Any spinach plant used as a parent line in the first crossing step, or any spinach plant used as a parent line for interspecific or intraspecific cross in the second crossing step, downy mildew resistance other than the RPF-SK1 gene It is preferably a spinach plant having at least one gene, and more preferably a cultivar spinach plant having at least one downy mildew-resistant gene other than the RPF-SK1 gene.
  • a novel spinach line containing both the RPF-SK1 gene and other downy mildew-resistant genes is created by using a spinach plant having at least one or more downy mildew-resistant genes other than the RPF-SK1 gene as a parent line, It can be produced relatively easily.
  • the selection of spinach plants having the RPF-SK1 gene from the segregating population is carried out, for example, by inoculating the leaves of test plant individuals with Pfs of each race and examining downy mildew resistance. can be done. From the segregating population, plant individuals having resistance to at least all races represented by downy mildew races Pfs1 to Pfs19, UA1014 type, Be2105B type and PV2144 type are selected as individuals having the RPF-SK1 gene.
  • Selection of individuals having the RPF-SK1 gene in the selection process can be performed using the RPF-SK1 locus of spinach plants and DNA markers in the vicinity thereof.
  • the DNA markers and specific methods to be used can be carried out in the same manner as in the aforementioned screening method according to the present invention.
  • the other downy mildew-resistant DNA markers used for selecting individuals having the RPF-SK1 gene are selected.
  • a DNA marker capable of identifying the presence or absence of the sex gene is used.
  • an SNP or the like present in the gene locus of the other downy mildew-resistant gene and its vicinity can be used.
  • the number of repetitions of self-breeding is not particularly limited as long as it is one or more times, and may be 2 to 3 times, or may be 3 times or more.
  • This tray was raised in a glass greenhouse for 2 weeks and inoculated with a Pfs spore suspension (5 ⁇ 10 4 /mL) by spraying at the true leaf 2-leaf stage. Immediately after inoculation, the tray was covered with a plastic cover and maintained under the conditions of a temperature of 15° C., a humidity of 100%, and a day length of 12 hours. 7 to 10 days after inoculation, after fully confirming the onset of the disease in the control group, resistance and susceptibility were determined for each individual. Strains in which hyphae and spores appeared on cotyledons or true leaves and the disease was observed were regarded as susceptible, and strains in which neither cotyledons nor true leaves were observed to develop the disease were regarded as resistant.
  • Downy mildew races were obtained in Japan from The University of Arkansas (Dr. Jim Correll) and Naktuinbouw. Also, for race discrimination of downy mildew, a known differential set of spinach cultivars showing different resistance patterns to each race can be used as discriminant cultivars. Differential cultivars used to determine downy mildew resistance of each race are available from USDA (United States Department of Agriculture) and Naktuinbouw (Non-Patent Document 4).
  • Tables 2 and 3 show the resistance reported for each discriminated variety.
  • "-" is resistant
  • “(-)” is moderately resistant
  • "+” is susceptible
  • “(+)” is downy mildew symptoms and spores. Formation is observed only on cotyledons and not on true leaves, respectively.
  • “*" means that resistance results differ depending on individual tests.
  • Example 1 From 2015 to 2016, a new downy mildew-resistant line was created using the wild Spinacia tetrandra line RNR140003 obtained from CGN in the Netherlands as a parent line.
  • F1BC2 seeds were obtained by backcrossing SDF as a pollen parent with an F1BC1 individual whose resistance was confirmed as a seed parent.
  • F1BC3 seeds were obtained by backcrossing SDF as a pollen parent with an F1BC2 individual whose resistance was confirmed as a seed parent.
  • the applicant deposited the seeds of the SDF (RNR) line with the National Institute of Technology and Evaluation Patent Organism Depositary Center (2-5-8 Kazusa Kamatari, Kisarazu City, Chiba Prefecture). Identification given by the depositor of the SDF (RNR) strain: SSC-SPI-21-001, accession number is FERM BP-22426 (deposit date: August 13, 2021).
  • Example 2 The Viroflay strain that has no resistance to any race is used as a seed parent, and the SDF (RNR) strain produced in Example 1 is used as a pollen parent, and the obtained F1 individuals are crossed with Pfs1, Pfs2, and Pfs3. , Pfs4, Pfs5, Pfs6, Pfs7, Pfs8, Pfs9, Pfs10, Pfs11, Pfs12, Pfs13, Pfs14, Pfs15, Pfs16, Pfs17, Pfs18, Pfs19, UA1014 type, Be2105B type, and PV2144 type. inoculation test and investigated the resistance to these.
  • the genotype of the RPF-SK1 gene of each individual was obtained by using the genomic DNA extracted from each individual as a template and using the forward primer and reverse primer shown in Table 4 at 94°C for 60 seconds for one cycle, followed by 94°C. 30 seconds at 62°C for 30 seconds, 35 cycles at 72°C for 60 seconds, and 1 cycle at 72°C for 60 seconds. I went by.
  • the F1 individuals obtained by crossing the Viroflay line and the SDF (RNR) line showed resistance to all races.
  • Pfs1 7 individuals were considered to be disease-resistant, but all of these were individuals showing a disease-resistant response, with only a slight degree of disease on the cotyledons (rather low percentage of rating 5-50%).
  • RPF-SK1 gene can confer dominant resistance to at least the races represented by Pfs1 to Pfs19, UA1014 type, Be2105B type, and PV2144 type.
  • Example 3 F1 seeds obtained by crossing the Viroflay line as a seed parent and the SDF(RNR) line produced in Example 1 as a pollen parent were selfed to prepare an F2 segregating population. This F2 population was subjected to an inoculation test using races represented by Pfs3, Pfs4, Pfs8, Pfs15, and UA1014 types to examine resistance to these. Table 6 shows the results. The genotypes and the like described in the table are the same as in Table 5.
  • the downy mildew resistance of the SDF (RNR) line was close to 3:1 for the Pfs3, Pfs4, Pfs8, Pfs15, and UA1014 types. separated. Therefore, the RPF-SK1 gene was assumed to be monodominant. This assumption was also supported by the results of the Chi - square test (p>0.05).
  • the F1 strain obtained by crossing the Viroflay strain and the SDF (RNR) strain produced in Example 1 was selfed to prepare an F2 segregating population.
  • an inoculation test was performed using the race indicated by the UA1014 type, and the resistance to this was examined. As a result, there were 76 resistant individuals and 20 susceptible individuals. Genetic analysis was performed on these individuals, and regions in the genome were searched so that resistant individuals would be homozygous or heterozygous, and susceptible individuals would be homozygous.
  • Individuals subjected to the trait investigation were used as a population for linkage analysis, and genomic DNA was extracted from each individual. Genotyping was performed using the DNA of the population for linkage analysis and the SNP markers designed on the SpinachBase reference genome. Genotyping was performed using the KASP genotyping assay.
  • the SNP identified by chr3_1215815 is cytosine
  • the SNP identified by chr3_1215855 is thymine
  • the SNP identified by chr3_1216014 is cytosine.
  • the SNP identified by chr3_1216093 is guanine
  • the SNP identified by chr3_1216094 is guanine
  • the SNP identified by chr3_1216095 is adenine
  • the SNP identified by chr3_1216288 is adenine
  • the SNP identified by chr3_1216291 is The SNP found was guanine.
  • the RPF-SK1 gene was different in genotype from the reference genome and the known WOLF (RPF) gene, and the RPF-SK1 gene was a novel downy mildew-resistant gene.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental Sciences (AREA)
  • Developmental Biology & Embryology (AREA)
  • Botany (AREA)
  • General Health & Medical Sciences (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本発明は、広範囲なレースに抵抗性を有するホウレンソウ植物、及び当該ホウレンソウ植物を製造する方法等を提供する。本発明は、少なくとも一方のアレルにおいて、べと病抵抗性RPF-SK1遺伝子を有しており、前記RPF-SK1遺伝子は、(a)chr3_1215815で特定されるSNPがシトシンである、(b)chr3_1215855で特定されるSNPがチミンである、(c)chr3_1216014で特定されるSNPがシトシンである、(d)chr3_1216093で特定されるSNPがグアニンであり、chr3_1216094で特定されるSNPがグアニンであり、かつchr3_1216095で特定されるSNPがアデニンである、(e)chr3_1216288で特定されるSNPがアデニンである、又は(f)chr3_1216291で特定されるSNPがグアニンである、べと病抵抗性ホウレンソウ植物である。

Description

新規べと病抵抗性遺伝子を有するホウレンソウ植物
 本発明は、べと病の広範囲なレースに抵抗性を示す遺伝子を有するホウレンソウ植物、及びその製造方法に関する。
 本願は、2021年11月1日に日本に出願された特願2021-178897号に基づき優先権を主張し、その内容をここに援用する。
 ホウレンソウ(Spinacia oleracea L.)は、ヒユ科ホウレンソウ属の一年草又は多年草であって、アジア西部原産で広く栽培され、日本には江戸時代に中国から伝えられたと考えられている。ホウレンソウは主に根生葉(ロゼット状)を食用とし、ビタミン類や鉄、カルシウム分の含有量は野菜の中でも特に高く、栄養価値はきわめて高い。近年は、栄養素と簡便性の面からベビーリーフの市場が欧米を中心に急拡大している。このように、ホウレンソウは重要野菜の一つとして位置付けられている。
 植物品種には、一般的に、固定種と雑種第一代(以下、「F1」と記す)品種があり、主要作物においてはF1品種が普及している。F1品種は、雑種強勢(ヘテロシス)により生育が旺盛である。これにより、F1品種は、生育が早く、収量性が高まるなど大きな利点があり、さらに、病害虫への耐性や、耐寒・耐暑性などの環境適応性の向上も期待できる。また、F1品種は、ヘテロ性でありながら同一の遺伝子型であるため、表現型は極めて高い均一性を示す。このため、生産物の市場性が高まる。さらにF1品種の両親に優性遺伝子に支配されている有用形質を集積できるため、迅速な育種が可能となる。以上のような優位性があることから、F1品種は、主要作物において栽培品種の主流を占めるようになった。食用とされているホウレンソウにおいても、1960年代までは固定種が中心であったが、1970年代以降は急速にF1化が進み、現在ではそのほとんどがF1品種である。
 一方で、ホウレンソウに被害を与える病害の1つに、糸状菌であるPeronospora effusa(別名:Peronospora farinosa f. sp. spinaciae)(Pfs)によって引き起こされるべと病がある。べと病は、発生すると急速に被害が拡大し、収量、品質に非常に深刻な被害を与える最重要病害である。べと病対策としては、耕種的、又は農薬などを用いた化学的な病原菌の防除も試みられているが、環境への影響、栽培労力やコスト等から、抵抗性品種の利用が最も効果的な方法である。
 べと病は、レース分化が早いことで知られ、抵抗性品種を侵す新しいレースが次々と出現し、それまで抵抗性をもつと思われていた品種が発病する事例が数多く認められている。The International Working Group on Peronospora in spinach(IWGP)は、米国のアーカンソー大学とカリフォルニア大学のサポートを受けた種苗会社と、オランダのThe Netherlands Inspection Service for Horticulture(Naktuinbouw)によるコンソーシアムであり、新たなべと病のレースの出現と広がりを監視し、公式な命名を決定している。1824年に最初のべと病の発生が報告されて以降、今日までに19レースが命名された(非特許文献1)。
 新レースの連続的な出現に対応するため、ホウレンソウの育種においては、新規抵抗性素材の探索は非常に重要である。栽培種のみならず野生種においても、べと病への抵抗性遺伝素材の探索が行われている。例えば、Center for Genetic Resources, the Netherlands(CGN)によって、2008年に野生種ホウレンソウであるスピナシア・トルケスタニカ(Spinacia turkestanica)について、2011年に野生種ホウレンソウであるスピナシア・テトランドラ(Spinacia tetrandra)について、べと病への抵抗性遺伝素材の探索が行われた。また、2011年には、Correllらが、6種類のRPFと呼ばれる遺伝子が既知のべと病抵抗性を制御していることを発表した(非特許文献2)。さらに、べと病抵抗性遺伝子として、RPF1~RPF10、RPF11(特許文献1)、RPF12(特許文献2)、RPF13(特許文献3)、RPF14(特許文献4)、RPF15(特許文献5)、R6(特許文献6)、R15(特許文献7)等が報告されている。野生種ホウレンソウ由来のべと病抵抗性遺伝子を、栽培種ホウレンソウであるスピナシア・オレラシア L(Spinacia oleracea L.)へ導入することにより、べと病抵抗性の高いホウレンソウが作出できる(特許文献8)。
 RPF遺伝子は、RPF遺伝子座と呼ばれている一つの遺伝子座にある複数の対立遺伝子、又は密に連鎖した複数の遺伝子であり、F1品種では、2つの対立遺伝子を持たせることにより、幅広い抵抗性を示してきた(非特許文献3、特許文献5)。例えば、RPF1遺伝子、RPF2遺伝子及びRPF3遺伝子は第3染色体に座上しており(非特許文献3)、RPF15遺伝子も第3染色体上に座上する(特許文献5)。また、特許文献8に記載されているべと病抵抗性遺伝子は、連鎖群6に座上するとされているが、シーケンス情報によると、実際は第3染色体に座上する(特許文献5)。
 べと病抵抗性遺伝子座には、その構造により、alpha WOLF遺伝子及びbeta WOLF遺伝子に大別される1つ又は2つのWOLF遺伝子が隣接して存在する(特許文献9)。alpha及びbeta WOLF遺伝子は、それぞれ特定の抵抗性プロファイルを付与する複数の対立遺伝子を含み、それぞれのWOLF遺伝子のLRRドメイン配列及びそれぞれの遺伝子型のべと病レースに対する抵抗性パターンが開示されている。理論上は、異なる抵抗性パターンを有するWOLF遺伝子の組み合わせにより、所望の抵抗性パターンを設計することが可能である。しかし、従来の交雑育種では、非常に緊密に連鎖した遺伝子を任意に組み合わせるのは事実上不可能である。
 その他にも、形質転換による外部からのべと病抵抗性遺伝子の導入(GMO)や、内因性遺伝子を改変(Gene Editing)することにより、所望の抵抗性パターンを付与する変異体を作製することができる。しかし、GMOや遺伝子改変により作出された作物は、いまだ大衆に広く受け入れられていない、という問題がある。
 べと病抵抗性遺伝子p10は、第1染色体に座上し、Pfs1、Pfs2、Pfs3、Pfs4、Pfs5、Pfs6、Pfs7、Pfs8、Pfs9、Pfs10、Pfs11、Pfs12、Pfs13、Pfs14、Pfs15、及びPfs16に抵抗性を示すと報告されている。しかし、p10遺伝子により付与される抵抗性は、ホモ接合の時にのみ発現し、かつその抵抗性程度は中間である(特許文献10)。このため、p10遺伝子を用いた抵抗性品種育成は、優性の抵抗性遺伝子を用いた育成よりも、困難なだけでなく、耐性の程度も実用上十分なものとは言えないことが推測される。また、スピナシア・テトランドラ系統CGN120251は、第4染色体中にべと病抵抗性遺伝子を有しており、Pfs4、Pfs7、Pfs9、Pfs10、Pfs11、Pfs12、Pfs13、Pfs14、Pfs15、Pfs16、及びPfs17に抵抗性を示すことが報告された(特許文献11)。
 市販されているホウレンソウの品種は、固定種もあるが、ほとんどが雌系と雄系を利用した雑種である。雄性と雌性の親系統は、それぞれ異なる抵抗性遺伝子を持っているのが一般的である。例えば、ハイブリッド品種のアンドロメダ(Nunhems社製)は、Pfs1~12とPfs14に耐性がある。Pfs1、3、5、8、9、11、12、14に対する抵抗性は、一方の親からの抵抗性遺伝子によって付与され、Pfs1~10に対する抵抗性は、他方の親からの抵抗性遺伝子によって付与される(特許文献4)。
米国特許第10258001号明細書 米国特許第10258002号明細書 国際公開第2015/036378号 国際公開第2019/145446号 国際公開第2019/145447号 特許第6457269号公報 米国特許第9974276号明細書 特許第6684207号公報 国際公開第2018/059651号 米国特許出願公開第2019/0104700号明細書 国際公開第2020/239215号
Plantum,"Denomination of Pe: 18 and 19, two new races of downy mildew in spinach",[online],2021年4月15日,[2021年10月4日検索],インターネット<URL:https://plantum.nl/denomination-of-pe-18-and-19-two-new-races-of-downy-mildew-in-spinach/> Correll et al., European Journal of Plant Pathology, 2011, vol.129, p.193-205. Feng et al., Euphytica, 2018, 214:174. International Seed Federation, "Differential Sets Peronospora farinosa f. sp. spinaciae (P. effusa)", 2018, <on line>  https://www.worldseed.org/wp-content/uploads/2018/04/Spinach-downy-mildew_April2018.pdf Iwata and Ninomiya, Breeding Science, 2006, vol.56(4), p.371-377.
 命名された全てのPfsレース(Pfs1~Pfs19)、UA1014タイプ、Be2105Bタイプ、及びPV2144タイプに対して抵抗性を付与する単一の抵抗性遺伝子は、現在のところ知られていない。このため、既知の抵抗性遺伝子を用いて、既知の全てのPfsレースに対する抵抗性を獲得するためには、複数の抵抗性遺伝子を組み合わせる必要がある。
 そこで本発明は、少なくともPfs1~Pfs19、UA1014タイプ、Be2105Bタイプ、及びPV2144タイプの全てに対して耐性を付与する、単一の優性べと病抵抗性遺伝子を提供することを目的とする。
 本発明者らは、上記課題を解決すべく研究した結果、スピナシア・テトランドラ系統RNR140003の第3染色体上に、少なくともPfs1~Pfs19、UA1014タイプ、Be2105Bタイプ、及びPV2144タイプの全てに対して抵抗性を示す優性の新規なべと病抵抗性遺伝子が存在していることを見出し、当該遺伝子をRPF-SK1遺伝子と命名した。さらに、当該べと病抵抗性遺伝子を有する野生種ホウレンソウと栽培種ホウレンソウとによる種間交雑を行い、べと病抵抗性を備えるF1個体を得、このF1個体に対してさらに栽培種ホウレンソウとの交雑を繰り返すことにより、当該べと病抵抗性遺伝子に起因するべと病抵抗性と、栽培種に近い形質を備えるホウレンソウ植物が育成できることを見出し、本発明を完成させた。
 すなわち、本発明は、下記の通りである。
[1] 少なくとも一方のアレルにおいて、べと病抵抗性RPF-SK1遺伝子を有しており、
 前記RPF-SK1遺伝子は、
(a)chr3_1215815で特定されるSNPがシトシンである、
(b)chr3_1215855で特定されるSNPがチミンである、
(c)chr3_1216014で特定されるSNPがシトシンである、
(d)chr3_1216093で特定されるSNPがグアニンであり、chr3_1216094で特定されるSNPがグアニンであり、かつchr3_1216095で特定されるSNPがアデニンである、
(e)chr3_1216288で特定されるSNPがアデニンである、又は
(f)chr3_1216291で特定されるSNPがグアニンである、
べと病抵抗性ホウレンソウ植物。
[2] 前記RPF-SK1遺伝子が、ホモ接合性又はヘテロ接合性である、前記[1]のべと病抵抗性ホウレンソウ植物。
[3] 少なくとも、べと病のレースPfs1、Pfs2、Pfs3、Pfs4、Pfs5、Pfs6、Pfs7、Pfs8、Pfs9、Pfs10、Pfs11、Pfs12、Pfs13、Pfs14、Pfs15、Pfs16、Pfs17、Pfs18、Pfs19、及びUA1014タイプに抵抗性である、及びUA1014タイプが示すレースに抵抗性である、前記[1]又は[2]のべと病抵抗性ホウレンソウ植物。
[4] 少なくとも、べと病のBe2105Bタイプ及びPV2144タイプに抵抗性である、前記[1]~[3]のいずれかのべと病抵抗性ホウレンソウ植物。
[5] 前記べと病抵抗性ホウレンソウ植物が、スピナシア・テトランドラと栽培種ホウレンソウの種間雑種植物に由来するものである、前記[1]~[4]のいずれかのべと病抵抗性ホウレンソウ植物。
[6] 受託番号FERM BP-22426で特定される植物由来のべと病抵抗性を有する、前記[1]~[5]のいずれかのべと病抵抗性ホウレンソウ植物。
[7] 前記RPF-SK1遺伝子以外のべと病抵抗性遺伝子を少なくとも1種以上有する、前記[1]~[6]のいずれかのべと病抵抗性ホウレンソウ植物。
[8] 受託番号FERM BP-22426で特定されるべと病抵抗性ホウレンソウ植物、前記べと病抵抗性ホウレンソウ植物を親系統として得られた雑種植物、又はそれらの後代である、べと病抵抗性ホウレンソウ植物。
[9] 被験ホウレンソウ植物のchr3_1215815、chr3_1215855、chr3_1216014、chr3_1216093、chr3_1216094、chr3_1216095、chr3_1216288、及びchr3_1216291からなる群より選択される1種以上の遺伝子型を調べ、少なくとも一方のアレルにおいて、
(a)chr3_1215815で特定されるSNPがシトシンである、
(b)chr3_1215855で特定されるSNPがチミンである、
(c)chr3_1216014で特定されるSNPがシトシンである、
(d)chr3_1216093で特定されるSNPがグアニンであり、chr3_1216094で特定されるSNPがグアニンであり、かつchr3_1216095で特定されるSNPがアデニンである、
(e)chr3_1216288で特定されるSNPがアデニンである、又は
(f)chr3_1216291で特定されるSNPがグアニンである場合に、
当該被験ホウレンソウ植物がべと病抵抗性である可能性が高いと予測する、ホウレンソウ植物のべと病抵抗性の予測方法。
[10] 被験ホウレンソウ植物のchr3_1215815、chr3_1215855、chr3_1216014、chr3_1216093、chr3_1216094、chr3_1216095、chr3_1216288、及びchr3_1216291からなる群より選択される1種以上の遺伝子型を調べ、少なくとも一方のアレルにおいて、
(a)chr3_1215815で特定されるSNPがシトシンである、
(b)chr3_1215855で特定されるSNPがチミンである、
(c)chr3_1216014で特定されるSNPがシトシンである、
(d)chr3_1216093で特定されるSNPがグアニンであり、chr3_1216094で特定されるSNPがグアニンであり、かつchr3_1216095で特定されるSNPがアデニンである、
(e)chr3_1216288で特定されるSNPがアデニンである、又は
(f)chr3_1216291で特定されるSNPがグアニンである場合に、
当該被験ホウレンソウ植物を、べと病抵抗性ホウレンソウ植物として選抜する、べと病抵抗性ホウレンソウ植物のスクリーニング方法。
[11] RPF-SK1遺伝子を有するホウレンソウ植物と任意のホウレンソウ植物とを交雑する第1交雑工程と、
 前記第1交雑工程により得られたF1個体に対して、自殖、戻し交雑、又は前記第1交雑工程において用いた親系統とは異なるホウレンソウ植物との種間交雑又は種内交雑を行い、分離集団を得る第2交雑工程と、
 前記分離集団から、RPF-SK1遺伝子を有するホウレンソウ植物を選抜する選抜工程と、
を有する、べと病抵抗性ホウレンソウ植物の製造方法。
[12] 前記任意のホウレンソウ植物、又は前記第2交雑工程における種間交雑又は種内交雑で用いる親系統が、前記RPF-SK1遺伝子以外のべと病抵抗性遺伝子を少なくとも1種以上有するホウレンソウ植物である、前記[11]のべと病抵抗性ホウレンソウ植物の製造方法。
[13] 前記[1]~[8]のいずれかのべと病抵抗性ホウレンソウ植物の植物体の一部。
[14] 前記[1]~[8]のいずれかのべと病抵抗性ホウレンソウ植物の葉。
[15] 前記[1]~[8]のいずれかのべと病抵抗性ホウレンソウ植物の種子。
[16] 被験ホウレンソウ植物のchr3_1215815~chr3_1216291を含む領域をPCR増幅するためのフォワードプライマー及びリバースプライマーを含む、
 RPF-SK1遺伝子を有するホウレンソウ植物を選抜するために用いられる、キット。
 本発明により、広範なレースに対して抵抗性を示すべと病抵抗性ホウレンソウ植物が提供される。
 また、本発明に係るホウレンソウ植物を親系統として利用することにより、広範なレースに対して抵抗性を示す新規ホウレンソウ系統を育成することもできる。
ホウレンソウの第3染色体のRPF-SK1遺伝子座近傍(chr3_1215795~chr3_1215913)のアラインメント図である。 ホウレンソウの第3染色体のRPF-SK1遺伝子座近傍(chr3_1215987~chr3_1216108)のアラインメント図である。 ホウレンソウの第3染色体のRPF-SK1遺伝子座近傍(chr3_1216278~chr3_1216376)のアラインメント図である。 ホウレンソウの第3染色体のRPF-SK1遺伝子座近傍(chr3_1216377~chr3_1216498)のアラインメント図である。 ホウレンソウの第3染色体のRPF-SK1遺伝子座近傍(chr3_1216499~chr3_1216602)のアラインメント図である。
 本発明及び本願明細書において、ホウレンソウ植物はスピナシア属(Spinacia)に分類される植物である。野生種ホウレンソウとして、スピナシア・テトランドラ、スピナシア・トルケスタニカ等がある。また、栽培種ホウレンソウとして、スピナシア・オレラシア L(Spinacia oleracea L.)が挙げられる。なお、本発明及び本願明細書において、「栽培種」とは、栽培に供される系統の植物であって、固定種のみならず、F1品種も含む。
 本発明及び本願明細書において、べと病とは、Peronosporaceae科に属する菌による病害である。ホウレンソウべと病の主な病原菌は、Pfs(ペロノスポラ・ファリノーサ・分化型・スピナシアエ)であり、現在、Pfs1~Pfs19までのレースが報告されている。これら以外にも、UA1014タイプ、Be2105Bタイプ、及びPV2144タイプの病原性が示すレースの様に、採番されていないものも多く存在する。
 本発明及び本願明細書において、ホウレンソウ植物の「chrX_Y」(X及びYは整数)は、当該ホウレンソウ植物のゲノムのうち、「SpinachBase(http://spinachbase.org/)において公開されているリファレンスゲノム(Spinach genome sequence (v1))における染色体番号X(第X染色体ともいう)のY番目の塩基に相当する塩基」を意味する。なお、とあるホウレンソウ植物における「SpinachBaseのリファレンスゲノム上の第X染色体のY番目の塩基に相当する塩基」とは、当該ホウレンソウ植物のゲノムDNAの塩基配列とSpinachBaseのリファレンスゲノムの塩基配列を、最もホモロジー(配列同一性)が高くなるようにアラインメントすることにより決定することができる。
 よって、とあるホウレンソウ植物の第X染色体は、当該ホウレンソウ植物のゲノムDNAの塩基配列とSpinachBaseのリファレンスゲノムの塩基配列を、最もホモロジー(配列同一性)が高くなるようにアラインメントすることにより決定したホウレンソウ植物の第X染色体として示すことができる。
 本発明及び本願明細書においては、「染色体」には、染色体全体のみならず、その一部も含まれる。すなわち、「染色体の一部」も、単に「染色体」ということがある。
 「X遺伝子座」は、「染色体中のX遺伝子が占める部位」である。このため、本発明及び本願明細書においては、「X遺伝子座を有するホウレンソウ植物」とは、染色体中にX遺伝子が占める部位を有するホウレンソウ植物であり、「X遺伝子を有するホウレンソウ植物」と同意である。
 本発明及び本願明細書においては、「製造方法」は、「作出方法」、「育成方法」、又は「生産方法」とも言い換えることができる。すなわち、ここでいう「製造」と「作出」、「育成」、「生産」との用語は同等の意味で使用される。
 本発明及び本願明細書において、「植物体の一部」とは、当該植物体の細胞又は組織を含むものであり、具体的には、葉、種子、花、茎、根、果実等が挙げられる。その他、当該植物体の細胞から得られるプロトプラストも含まれる。
<べと病抵抗性ホウレンソウ植物>
 本発明に係るべと病抵抗性ホウレンソウ植物は、野生種ホウレンソウであるスピナシア・テトランドラ系統RNR140003のRPF遺伝子座に座上するべと病抵抗性遺伝子であるRPF-SK1遺伝子を有している、スピナシア・テトランドラ以外のホウレンソウ植物である。RPF-SK1遺伝子は、ホウレンソウ植物のRPF遺伝子のうち、下記のいずれかのSNPを有する遺伝子である。
(a)chr3_1215815で特定されるSNPがシトシンである、
(b)chr3_1215855で特定されるSNPがチミンである、
(c)chr3_1216014で特定されるSNPがシトシンである、
(d)chr3_1216093で特定されるSNPがグアニンであり、chr3_1216094で特定されるSNPがグアニンであり、かつchr3_1216095で特定されるSNPがアデニンである、
(e)chr3_1216288で特定されるSNPがアデニンである、又は
(f)chr3_1216291で特定されるSNPがグアニンである。
 RPF-SK1遺伝子は、少なくともPfs1~Pfs19、UA1014タイプ、Be2105Bタイプ、及びPV2144タイプが示すレースの全てに対して抵抗性となる新規のべと病抵抗性遺伝子である。これまでにも、べと病抵抗性遺伝子として様々なRPF遺伝子が報告されているものの、いずれも、広範囲なレースに対して抵抗性を付与するためには、RPF複対立遺伝子を利用するしかなかった。RPF-SK1遺伝子は、1アレルで、Pfs1~Pfs19、UA1014タイプ、Be2105Bタイプ、及びPV2144タイプが示すレースの全てに対して抵抗性を付与できるため、従来になく非常に優れたべと病抵抗性遺伝子であり、べと病抵抗性ホウレンソウの育成に非常に有用である。
 RPF-SK1遺伝子は、優性に後代へ遺伝する遺伝子である。このため、本発明に係るホウレンソウ植物は、RPF-SK1遺伝子がホモ接合性である、すなわちRPF-SK1遺伝子をホモ接合で有するホウレンソウ植物であってもよく、RPF-SK1遺伝子をヘテロ接合で有するホウレンソウ植物であってもよい。本発明に係るホウレンソウ植物は、単独で非常に広範なべと病レースへ耐性を付与する単一優性のべと病抵抗性遺伝子であるRPF-SK1遺伝子を有するため、べと病抵抗性ホウレンソウとして非常に優れている。
 本発明に係るべと病抵抗性ホウレンソウ植物は、スピナシア・テトランドラ以外のホウレンソウ植物のゲノムDNAに、RPF-SK1遺伝子を導入することにより作出することができる。ゲノムDNAへのRPF-SK1遺伝子の導入は、例えば、スピナシア・テトランドラ系統RNR140003のRPF-SK1遺伝子の座上する部位(RPF-SK1遺伝子座)を含む染色体断片を導入することにより行うことができる。RPF-SK1遺伝子座を含む染色体断片が導入される染色体中の部位は、特に限定されるものではなく、染色体外であってもよい。例えば、本発明に係るべと病抵抗性ホウレンソウ植物には、RPF-SK1遺伝子座を含む染色体断片によって、第3染色体中の当該断片に相当する領域が置換されているホウレンソウ植物や、転座等によりRPF-SK1遺伝子座を含む染色体断片が、スピナシア・テトランドラの第3染色体中のRPF-SK1遺伝子座に相当する領域以外に導入されたホウレンソウ植物が含まれる。RPF-SK1遺伝子座を含む染色体断片としては、例えば、配列番号3、4、5、及び表1で表される核酸が挙げられる。
 RPF-SK1遺伝子のゲノムDNAへの導入は、スピナシア・テトランドラを親系統として用いる交雑育種法や、ゲノム編集法等の遺伝子改変法などにより行うことができる。
 例えば、本発明に係るべと病抵抗性ホウレンソウ植物は、スピナシア・テトランドラと、スピナシア・テトランドラ以外のホウレンソウ植物との種間雑種植物であって、RPF-SK1遺伝子に由来するべと病抵抗性を有する植物に由来する。なお、「種間雑種植物」には、スピナシア属に属する種における異種間での交雑によって生じる植物に加えて、スピナシア属植物の異種間での細胞融合による体細胞雑種植物や、スピナシア属植物の異種間での接ぎ木により得られる接ぎ木雑種植物も含まれる。また、「スピナシア・テトランドラと、スピナシア・テトランドラ以外のホウレンソウ植物との種間雑種植物」には、当該種間雑種植物に加えて、当該種間雑種植物の後代も含む。
 本発明及び本願明細書において、「ホウレンソウ植物の後代」とは、当該ホウレンソウ植物の種内交雑により得られる子孫に加えて、当該ホウレンソウ植物を親系統として得られる個体とその子孫、当該ホウレンソウ植物の細胞と他品種の植物細胞との細胞融合による体細胞雑種植物とその子孫、当該ホウレンソウ植物を台木又は穂木とした接ぎ木により得られた個体とその子孫が含まれる。「子孫」には、種内交雑により得られる個体と種間雑種により得られる個体の両方が含まれる。また、「(植物を)親系統として得られる個体」とは、当該植物を親系統とした種内交雑、種間交雑、又は細胞融合若しくは接ぎ木により得られる個体を意味する。
 例えば、本発明に係るべと病抵抗性ホウレンソウ植物は、スピナシア・テトランドラと、スピナシア・テトランドラ以外のホウレンソウ植物とを交雑することにより作出できる。スピナシア・テトランドラを親系統とした種間交雑により得られるF1個体は、少なくとも一方のアレルが、スピナシア・テトランドラに由来するRPF-SK1遺伝子を有する。RPF-SK1遺伝子は、優性遺伝子であるため、スピナシア・テトランドラに由来する第3染色体を備えるF1個体は、RPF-SK1遺伝子に由来するべと病抵抗性を有する。
 本発明に係るべと病抵抗性ホウレンソウ植物の作出の素材として用いられるホウレンソウ植物としては、スピナシア・テトランドラ系統RNR140003が有しているRPF-SK1遺伝子を有するものであれば特に限定されるものではない。例えば、スピナシア・テトランドラの系統としては、RNR140003の他には、RNR140003からRPF-SK1遺伝子を受け継いだ後代系統等が挙げられる。
 本発明に係るべと病抵抗性ホウレンソウ植物を作出するために、スピナシア・テトランドラと交雑する親系統としては、スピナシア・テトランドラ以外のホウレンソウ植物であれば特に限定されるものではないが、農作物として栽培されている栽培種ホウレンソウ植物であることが好ましい。スピナシア・テトランドラは、野生種であり、発芽、花粉品質、葉色や葉型などの形質が、農作物としては栽培種ホウレンソウよりも劣る。スピナシア・テトランドラと交雑する親系統を栽培種ホウレンソウ植物とすることにより、得られるべと病抵抗性ホウレンソウ植物のべと病抵抗性以外の形質を、農作物として好ましい形質に近づけることができる。栽培種ホウレンソウ植物としては、スピナシア・オレラシア Lや、スピナシア・オレラシア Lを親系統として作出された種間雑種ホウレンソウ植物が挙げられる。
 本発明に係るべと病抵抗性ホウレンソウ植物は、スピナシア・テトランドラと、スピナシア・テトランドラ以外のホウレンソウ植物との種間交雑により得られるF1個体の後代であってもよい。例えば、スピナシア・テトランドラと栽培種ホウレンソウ植物を交雑してF1種子を得、得られたF1種子から生育させた植物個体に、栽培種ホウレンソウ植物個体を戻し交雑、又は自殖して種子を得る。次いで、得られた種子から生育させた植物個体からRPF-SK1遺伝子を有する個体を選抜する。選抜された植物個体に対して、自殖又は栽培種ホウレンソウ植物との交雑と、交雑により得られた後代からのRPF-SK1遺伝子を有する個体の選抜とを繰り返すことにより、べと病抵抗性ホウレンソウ植物の固定種を得ることができる。自殖、栽培種ホウレンソウ植物との交雑、栽培、及び種子の採種は、ホウレンソウ栽培の常法により行うことができる。
 交雑により得られた後代からのRPF-SK1遺伝子を有する個体の選抜は、例えば、べと病抵抗性を調べることにより行うことができる。具体的には、べと病抵抗性を調べる被験植物個体の葉に対して、各レースのPfsを接種させ、べと病の発病の有無を調べる。べと病を発病しなかった場合に、当該被検植物個体は、接種したレースに対して抵抗性であると評価する。交雑により得られた後代から、少なくともべと病のレースPfs1~Pfs19、UA1014タイプ、Be2105Bタイプ、及びPV2144タイプが示すレースの全てに対して抵抗性を有する植物個体を、RPF-SK1遺伝子を有する個体として選抜する。
 交雑により得られた後代からのRPF-SK1遺伝子を有する個体の選抜は、例えば、ゲノムDNA中にRPF-SK1遺伝子を含む染色体断片を含むかどうかを調べる方法により行うことができる。具体的には、ホウレンソウ植物のRPF-SK1遺伝子座中のDNAマーカーを利用して識別する。
 本発明及び本願明細書において、DNAマーカーとは、異なる品種由来の染色体断片同士を識別し得る染色体上のDNA配列の差異を検出し得るものである。DNAマーカーとしては、例えば、SNP(Single Nucleotide Polymorphism、一塩基多型)マーカーやSSR(Simple Sequence Repeats、単純反復配列)マーカー、RFLP(Restriction Fragment Length Polymorphism、制限酵素断片長多型)マーカー等が挙げられる。
 DNAマーカーの検出は、常法により行うことができる。例えば、各植物個体から抽出したDNAを鋳型とし、特定のSNPやSSRと特異的にハイブリダイズし得るプライマーとポリメラーゼを用いた核酸増幅反応を行い、電気泳動法等を用いて増幅産物の有無を検出し、各多型を識別することができる。また、各植物個体から抽出したDNAを制限酵素処理した後、電気泳動法等を用いてDNA断片のパターンを検出し、各多型を識別することができる。なお、特定のSNPやSSRと特異的にハイブリダイズし得るプライマーは、ホウレンソウのゲノムDNAの塩基配列や、検出対象のSNPやSSRの塩基配列に応じて、汎用されているプライマー設計ツール等を用いて常法により設計し、当該技術分野においてよく知られている方法により合成することができる。
 RPF-SK1遺伝子を有する個体の選抜に用いるDNAマーカーとしては、chr3_1215815、chr3_1215855、chr3_1216014、chr3_1216093、chr3_1216094、chr3_1216095、chr3_1216288、及びchr3_1216291のSNPが挙げられる。ただし、chr3_1216093、chr3_1216094、chr3_1216095は、3個の塩基からなる配列がRPF-SK1遺伝子に特異的な塩基配列であり、この3個のSNPの組み合わせがRPF-SK1遺伝子を有する個体の選抜に用いるDNAマーカーとなる。これらのSNPについて、RPF-SK1遺伝子の遺伝子型と、SpinachBaseにおいて公開されているリファレンスゲノムの遺伝子型を表1に示す。表1中、Gはグアニン、Cはシトシン、Aはアデニン、Tはチミンを意味する。
Figure JPOXMLDOC01-appb-T000001
 これらのSNPの塩基の識別は、例えば、KASP(Kompetitive Allele Specific PCR)ジェノタイピングアッセイ(LGC Genomics社製)を用いて行うことができる。また、被験ホウレンソウ植物から抽出されたゲノムDNAを鋳型として、chr3_1215815~chr3_1216291を含む領域をPCR増幅し、得られた増幅産物の塩基配列を同定することによっても、これらのSNPの塩基を識別することができる。
 例えば、本発明に係るべと病抵抗性ホウレンソウ植物のうち、スピナシア・テトランドラ系統RNR140003のRPF-SK1遺伝子座を含む断片をホモ接合又はヘテロ接合で有するホウレンソウ植物は、少なくとも一方のアレルにおいて、chr3_1215815で特定されるSNPがシトシンであり、chr3_1215855で特定されるSNPがチミンであり、chr3_1216014で特定されるSNPがシトシンであり、chr3_1216093~chr3_1216095で特定される3個の連続したSNPがグアニン-グアニン-アデニンであり、chr3_1216288で特定されるSNPがアデニンであり、chr3_1216291で特定されるSNPがグアニンである。
 本発明に係るべと病抵抗性ホウレンソウ植物は、べと病抵抗性以外の形質、特に農作物としての形質は、栽培種ホウレンソウと同じ又は近似しているものが好ましい。農作物としての形質とは、食味、葉の形状、収量、栽培の容易さ等が挙げられる。なお、「栽培種としての形質」とは、農作物としての形質が、農作物として適している形質であることを意味する。
 本発明に係るべと病抵抗性ホウレンソウ植物としては、RPF-SK1遺伝子以外のべと病抵抗性遺伝子を少なくとも1種以上有することが好ましい。RPF-SK1遺伝子は、単独で既知の抵抗性遺伝子よりも広範囲なレースに対する抵抗性を付与することができるが、その他のべと病抵抗性遺伝子をも有することにより、抵抗性を打破する新レースの出現を抑制することにも寄与することが期待できる。例えば、RPF-SK1遺伝子以外のべと病抵抗性遺伝子としては、特に限定されるものではなく、例えば、ヘテロ接合体の場合、RPF1遺伝子~RPF15遺伝子、R6遺伝子、R15遺伝子等が挙げられる。
 本発明に係るべと病抵抗性ホウレンソウ植物は、植物体の全部及び一部のいずれであってもよい。すなわち、本発明に係るべと病抵抗性ホウレンソウ植物は、RPF-SK1遺伝子を有するホウレンソウ植物の植物体の全体、当該ホウレンソウ植物の地上部、及び当該ホウレンソウ植物の組織のいずれも包含する。また、本発明に係るべと病抵抗性ホウレンソウ植物は、RPF-SK1遺伝子を有するホウレンソウ植物の一組織から得られる細胞も包含する。組織としては、胚、***組織細胞、カルス、花粉、葉、葯、茎、葉柄、根、根端、果実、種子、花、子葉、及び胚軸を挙げることができる。
 また、本発明に係るべと病抵抗性ホウレンソウ植物の組織から採取された細胞も有用である。当該細胞は、ホウレンソウ植物のゲノムDNAを有しており、かつRPF-SK1遺伝子を有する植物細胞である。RPF-SK1遺伝子を有するホウレンソウ植物細胞は、単一細胞であってもよく、複数の細胞からなる細胞塊であってもよい。RPF-SK1遺伝子を有するホウレンソウ植物細胞としては、ホウレンソウ植物のいずれの組織から採取されたものであってもよく、異なる組織から採取された細胞を混合した細胞混合物であってもよい。当該組織としては、前記で列挙されたものが挙げられる。中でも、葉身又は葉柄の組織由来の単一細胞が好ましい。
 本発明に係るべと病抵抗性ホウレンソウ植物のべと病抵抗性は、優性的な発現を示す。このため、本発明に係るべと病抵抗性ホウレンソウ植物を親系統として種間交雑又は種内交雑することにより、RPF-SK1遺伝子に由来するべと病抵抗性を備えるホウレンソウ植物の新規系統の育成が可能となる。
<べと病抵抗性ホウレンソウ植物のスクリーニング方法>
 本発明に係るべと病抵抗性ホウレンソウ植物のスクリーニング方法は、被験ホウレンソウ植物がRPF-SK1遺伝子を有するか否かを調べ、RPF-SK1遺伝子を有すると判断された場合に、当該被験ホウレンソウ植物をべと病抵抗性ホウレンソウ植物として選抜する。本発明に係るべと病抵抗性ホウレンソウ植物のスクリーニング方法では、被験ホウレンソウ植物がRPF-SK1遺伝子を有するか否かを、RPF-SK1遺伝子座又はその近傍のDNAマーカーや、これらのDNAマーカーと強く連鎖するDNAマーカーの遺伝子型に基づいて判断する。少なくとも一方のアレルにおいて、RPF-SK1遺伝子座又はその近傍のDNAマーカーやこれらのDNAマーカーと強く連鎖するDNAマーカーの遺伝子型が、RNR140003株等のようなRPF-SK1遺伝子を有し、べと病抵抗性を示すスピナシア・テトランドラと同じ遺伝子型の場合には、当該被験ホウレンソウ植物をべと病抵抗性ホウレンソウ植物として選抜する。
 RPF-SK1遺伝子の有無を判断するためのDNAマーカーとしては、例えば、表1に記載のSNPが挙げられる。中でも、ホウレンソウ植物の、chr3_1215815で特定されるSNP、chr3_1215855で特定されるSNP、chr3_1216014で特定されるSNP、chr3_1216093で特定されるSNP、chr3_1216094で特定されるSNP、chr3_1216095で特定されるSNP、chr3_1216288で特定されるSNP、chr3_1216291で特定されるSNP、及びこれらのSNPと遺伝的に強く連鎖しているSNPからなる群より選択される1種以上が、RPF-SK1遺伝子の有無を判断するためのDNAマーカーとして好適である。例えば、少なくとも一方のアレルにおいて、(a)chr3_1215815で特定されるSNPがシトシンである、(b)chr3_1215855で特定されるSNPがチミンである、(c)chr3_1216014で特定されるSNPがシトシンである、(d)chr3_1216093で特定されるSNPがグアニンであり、chr3_1216094で特定されるSNPがグアニンであり、かつchr3_1216095で特定されるSNPがアデニンである、(e)chr3_1216288で特定されるSNPがアデニンである、又は(f)chr3_1216291で特定されるSNPがグアニンである場合に、当該被験ホウレンソウ植物をべと病抵抗性ホウレンソウ植物として選抜する。
 RPF-SK1遺伝子の有無を判断するためのDNAマーカーの遺伝子型を識別するためのプライマーセットを、予めキット化しておくことにより、当該キットを用いることにより、より簡便にRPF-SK1遺伝子の有無を判断して、べと病抵抗性ホウレンソウ植物の選抜を行うことができる。例えば、ホウレンソウ植物のゲノムDNA中のchr3_1215815~chr3_1216291を含む領域をPCR増幅するためのフォワードプライマー及びリバースプライマーは、RPF-SK1遺伝子を有するホウレンソウ植物を選抜するために用いられるキットに含ませることができる。また、ホウレンソウ植物のchr3_1215815で特定されるSNPの遺伝子型を識別するためのプライマーセット、chr3_1215855で特定されるSNPの遺伝子型を識別するためのプライマーセット、chr3_1216014で特定されるSNPの遺伝子型を識別するためのプライマーセット、chr3_1216093、chr3_1216094、及びchr3_1216095で特定される3個の連続したSNPの遺伝子型を識別するためのプライマーセット、chr3_1216288で特定されるSNPの遺伝子型を識別するためのプライマーセット、又はchr3_1216291で特定されるSNPの遺伝子型を識別するためのプライマーセットをまとめたキットは、被験ホウレンソウ植物のRPF-SK1遺伝子の有無を判断するためのこれらのSNPの遺伝子型識別に有用である。
<ホウレンソウ植物のべと病抵抗性の予測方法>
 本発明に係るホウレンソウ植物のべと病抵抗性の予測方法は、被験ホウレンソウ植物がRPF-SK1遺伝子を有するか否かを調べ、RPF-SK1遺伝子を有すると判断された場合に、当該被験ホウレンソウ植物がべと病抵抗性である可能性が高いと予測する。本発明に係るホウレンソウ植物のべと病抵抗性の予測方法では、被験ホウレンソウ植物がRPF-SK1遺伝子を有するか否かを、RPF-SK1遺伝子座又はその近傍のDNAマーカーや、これらのDNAマーカーと強く連鎖するDNAマーカーの遺伝子型に基づいて判断する。少なくとも一方のアレルにおいて、RPF-SK1遺伝子座又はその近傍のDNAマーカーやこれらのDNAマーカーと強く連鎖するDNAマーカーの遺伝子型が、RNR140003株等のようなRPF-SK1遺伝子を有し、べと病抵抗性を示すスピナシア・テトランドラと同じ遺伝子型の場合には、当該被験ホウレンソウ植物がRPF-SK1遺伝子を有すると判断し、RNR140003株等のようなRPF-SK1遺伝子を有し、べと病抵抗性を示すスピナシア・テトランドラと異なる遺伝子型の場合には、当該被験ホウレンソウ植物がRPF-SK1遺伝子を有さないと判断する。
 RPF-SK1遺伝子の有無を判断するためのDNAマーカーとしては、表1に記載のSNPが挙げられる。例えば、少なくとも一方のアレルにおいて、(a)chr3_1215815で特定されるSNPがシトシンである、(b)chr3_1215855で特定されるSNPがチミンである、(c)chr3_1216014で特定されるSNPがシトシンである、(d)chr3_1216093で特定されるSNPがグアニンであり、chr3_1216094で特定されるSNPがグアニンであり、かつchr3_1216095で特定されるSNPがアデニンである、(e)chr3_1216288で特定されるSNPがアデニンである、又は(f)chr3_1216291で特定されるSNPがグアニンである場合に、当該被験ホウレンソウ植物はRPF-SK1遺伝子を有しており、べと病抵抗性である可能性が高いと予測する。RPF-SK1遺伝子の有無を判断するためのDNAマーカーの遺伝子型を識別するためのプライマーセット及びこれのキットは、前記と同様のものを用いることができる。
<べと病抵抗性ホウレンソウ植物の製造方法>
 RPF-SK1遺伝子を有するホウレンソウ植物を材料として交雑を行うことによって、RPF-SK1遺伝子を有していないホウレンソウ植物にRPF-SK1遺伝子に由来するべと病抵抗性を導入して新規のべと病抵抗性ホウレンソウ植物を製造することができる。単一優性の抵抗性遺伝子であるRPF-SK1遺伝子は、任意の系統へ導入することが容易であり、ホウレンソウの品種育成を加速させることができる。例えば、RPF-SK1遺伝子をホモ接合で有するホウレンソウ植物を親系統として用いることにより、より広範囲なレースに抵抗性を有する品種の育成が容易になる。また、RPF-SK1遺伝子は、RPF-SK1遺伝子座とは異なる遺伝子座にあるその他の単一優性抵抗性対立遺伝子と同一のハプロタイプに併せ持つことが可能である。
 本発明に係るべと病抵抗性ホウレンソウ植物の製造方法は、RPF-SK1遺伝子を有するホウレンソウ植物を親系統として用いた交雑育種を利用する方法である。具体的には、RPF-SK1遺伝子を有するホウレンソウ植物と任意のホウレンソウ植物とを交雑する第1交雑工程と、前記第1交雑工程により得られたF1個体に対して、自殖、戻し交雑、又は前記第1交雑工程において用いた親系統とは異なるホウレンソウ植物との種間交雑又は種内交雑を行い、分離集団を得る第2交雑工程と、前記分離集団から、RPF-SK1遺伝子を有するホウレンソウ植物を選抜する選抜工程と、を有する。自殖、戻し交雑、種間交雑、種内交雑、ホウレンソウ植物の栽培、及び採種は、ホウレンソウ栽培の常法により行うことができる。
 第1交雑工程において親系統として用いるRPF-SK1遺伝子を有するホウレンソウ植物としては、スピナシア・テトランドラを用いることができ、前記の本発明に係るべと病抵抗性ホウレンソウ植物を用いることもできる。本発明においては、親系統として用いるRPF-SK1遺伝子を有するホウレンソウ植物としては、RPF-SK1遺伝子を有しつつ、栽培種としての形質を兼ね合わせているべと病抵抗性ホウレンソウ植物であることが好ましい。
 第1交雑工程において親系統として用いる任意のホウレンソウ植物や、第2交雑工程において種間交雑又は種内交雑の親系統として用いる任意のホウレンソウ植物としては、特に限定されるものではなく、RPF-SK1遺伝子を有していない各種のホウレンソウ植物を適宜用いることができる。本発明においては、親系統としては、栽培種ホウレンソウ植物を用いることが好ましい。例えば、RPF-SK1遺伝子を有しつつ、栽培種としての形質を兼ね合わせているべと病抵抗性ホウレンソウ植物と、RPF-SK1遺伝子を有していない栽培種ホウレンソウ植物とを親系統として、両者を交雑させ、得られたF1個体に対して、自殖、戻し交雑、又は第1交雑工程において用いた親系統とは異なる栽培種ホウレンソウ植物との種間交雑又は種内交雑を行うことにより、RPF-SK1遺伝子に由来するべと病抵抗性を備え、かつ栽培種としても好適な形質を備えた新規ホウレンソウ系統を、比較的容易に作出することができる。
 第1交雑工程において親系統として用いる任意のホウレンソウ植物や、第2交雑工程において種間交雑又は種内交雑の親系統として用いる任意のホウレンソウ植物としては、RPF-SK1遺伝子以外のべと病抵抗性遺伝子を少なくとも1種以上有するホウレンソウ植物であることが好ましく、RPF-SK1遺伝子以外のべと病抵抗性遺伝子を少なくとも1種以上有する栽培種ホウレンソウ植物であることがより好ましい。RPF-SK1遺伝子以外のべと病抵抗性遺伝子を少なくとも1種以上有するホウレンソウ植物を親系統とすることにより、RPF-SK1遺伝子とその他のべと病抵抗性遺伝子の両方を含む新規ホウレンソウ系統を、比較的容易に作出することができる。
 選抜工程における、分離集団からのRPF-SK1遺伝子を有するホウレンソウ植物の選抜は、例えば、被験植物個体の葉に対して各レースのPfsを接種させて、べと病抵抗性を調べることにより行うことができる。分離集団から、少なくともべと病のレースPfs1~Pfs19、UA1014タイプ、Be2105Bタイプ、及びPV2144タイプが示すレース全てに対して抵抗性を有する植物個体を、RPF-SK1遺伝子を有する個体として選抜する。
 選抜工程におけるRPF-SK1遺伝子を有する個体の選抜は、ホウレンソウ植物のRPF-SK1遺伝子座及びその近傍のDNAマーカーを利用して、行うことができる。使用するDNAマーカーや具体的な方法は、前記の本発明に係るスクリーニング方法と同様にして行うことができる。
 RPF-SK1遺伝子とその他のべと病抵抗性遺伝子の両方を含む植物個体を選抜する場合には、前記のRPF-SK1遺伝子を有する個体の選抜に用いるDNAマーカーと共に、当該他のべと病抵抗性遺伝子の有無を識別可能なDNAマーカーを用いる。当該他のべと病抵抗性遺伝子の有無を識別可能なDNAマーカーとしては、当該他のべと病抵抗性遺伝子の遺伝子座とその近傍に存在するSNP等を用いることができる。
 その後、選抜された後代個体から採種された種子の自殖を繰り返すことにより、より形質が安定し、発芽率、収穫量、採種量等が、農作物として安定して栽培可能な程度のべと病抵抗性ホウレンソウ植物が得られる。自殖の繰り返し回数は、1回以上であれば特に限定されるものではなく、2~3回であってもよく、3回以上であってもよい。
 次に実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
<べと病抵抗性を調べるレース接種試験>
 ホウレンソウ植物に対するPfsの接種試験は、下記の方法で行った。
 ホウレンソウ種子を培土「スーパーミックスA」(サカタのタネ社製)を詰めたトレイに播種し、培土「メトロミックス350」(ハイポネックスジャパン社製)を用いて覆土をした。播種する際、各トレイに、接種するレースに対して罹病性を示す系統の種子を播種し、発病の対照区を設けた。このトレイをガラス温室内で2週間育苗し、本葉2葉期に、Pfsの胞子懸濁液(5 × 10/mL)を噴霧接種した。接種後、ただちにトレイをプラスチックカバーで覆い、温度15℃、湿度100%、12時間日長の条件下で管理した。
 接種から7~10日後、対照区の発病を十分に確認した後に、個体ごとに抵抗性・罹病性の判定を行った。子葉又は本葉に菌糸及び胞子が出現して発病が認められた株を罹病性とし、子葉及び本葉ともに発病が認められなかった株を抵抗性とした。
 べと病の各レースは、日本国内、The University of Arkansas(Dr. Jim Correll)及びNaktuinbouwから入手した。また、べと病のレース判別には、各レースに異なる抵抗性パターンを示す既知のホウレンソウ品種(differential set)を判別品種として利用することができる。各レースのべと病抵抗性を判別するために用いられる判別品種は、USDA(アメリカ合衆国農務省)及びNaktuinbouwから入手可能である(非特許文献4)。
 各判別品種について報告されている抵抗性を表2及び表3に示す。表中、「-」が抵抗性であること、「(-)」が中程度の抵抗性であること、「+」が罹病性であること、「(+)」はべと病症状と胞子形成は子葉でのみで観察され、本葉では観察されないことを、それぞれ意味する。また、「*」は、個々のテストによって抵抗性の結果が異なっていることを意味する。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
[実施例1]
 2015年~2016年に、オランダのCGNより入手した野生種スピナシア・テトランドラ系統RNR140003を親系統として、新規なべと病抵抗性系統を作出した。
 まず、スピナシア・テトランドラ系統RNR140003を播種し、発芽した個体に対してPfs10を接種した。この結果、全個体が抵抗性を示した。
 次いで、このスピナシア・テトランドラ系統RNR140003の個体と、優良親系統であるスピナシア・オレラシア L系統SDFを交配し、F1種子を得た。なお、優良親系統とは、栽培種として好適な形質を発現する系統を作出するための親系統として好適な系統を意味する。
 得られたF1種子18粒を播種し、発芽した個体に対してPfs10を接種した。この結果、全個体が抵抗性を示した。抵抗性が確認された個体を種子親として、SDFを花粉親として戻し交配し、F1BC1種子を得た。得られたF1BC1種子を播種し、生育した個体に対し、SDFが抵抗性を示さないPfs10を接種したところ、抵抗性個体(R)と罹病性個体(抵抗性を示さない個体)(S)は、R:S=7:4に分離した。
 F1BC1個体のうちの抵抗性が確認された個体を種子親として、SDFを花粉親として戻し交配し、F1BC2種子を得た。得られたF1BC2種子を播種し、生育した個体に対し、Pfs10を接種したところ、R:S=15:28に分離した。
 F1BC2個体のうちの抵抗性が確認された個体を種子親として、SDFを花粉親として戻し交配し、F1BC3種子を得た。得られたF1BC3種子を播種し、生育した個体に対し、Pfs10を接種したところ、R:S=28:38に分離した。
 F1BC3個体のうちの抵抗性が確認された個体を自殖して、F1BC3S1種子を得た。得られたF1BC3S1種子を播種し、生育した個体に対し、Pfs10を接種したところ、R:S=18:2に分離した。
 F1BC3S1個体のうちの抵抗性が確認された個体を自殖し、F1BC3S2種子を得た。得られたF1BC3S2種子を播種し、生育した個体に対し、Pfs10を接種したところ、R:S=26:0であり、抵抗性型に固定していた。Pfs10に対する抵抗性が確認された全個体に、Pfs12を接種したところ、R:S=23:0であり、抵抗性型に固定していた。つまり、F1BC3S2個体は、全て、Pfs10とPfs12の両方に対する抵抗性を有していた。この系統を集団採種し、SDF(RNR)系統と命名した。
 各工程では、耐病性による選抜だけでなく、葉色、葉型、葉の大きさ等を吟味し、出来るだけ栽培型に近い形質を有する個体の選抜を合わせて行った。
 出願人は、SDF(RNR)系統について、その種子を、独立行政法人製品評価技術基盤機構特許生物寄託センター(千葉県木更津市かずさ鎌足2-5-8)に寄託した。SDF(RNR)系統の寄託者が付した識別のための表示:SSC-SPI-21-001、受託番号がFERM BP-22426(寄託日:令和3年8月13日)である。
[実施例2]
 いずれのレースにも抵抗性を有さないViroflay系統を種子親、実施例1で作出したSDF(RNR)系統を花粉親として交雑を行い、得られたF1個体に対して、Pfs1、Pfs2、Pfs3、Pfs4、Pfs5、Pfs6、Pfs7、Pfs8、Pfs9、Pfs10、Pfs11、Pfs12、Pfs13、Pfs14、Pfs15、Pfs16、Pfs17、Pfs18、Pfs19、UA1014タイプ、Be2105Bタイプ、及びPV2144タイプが示すレースを用いた接種試験を行い、これらに対する抵抗性を調べた。なお、ホウレンソウは雌雄異株の作物であるが、その同一個体に雌ずいと雄ずいの両方の器官を生じる間性を示す系統も存在する。Viroflayを種子親にしたF1採種においては、Viroflayの自殖種子が含まれてしまうことがある。
 各個体のRPF-SK1遺伝子の遺伝子型は、各個体から抽出されたゲノムDNAを鋳型とし、表4に記載のフォワードプライマーとリバースプライマーを用いて、94℃で60秒間を1サイクル、次いで94℃で30秒間、62℃で30秒間、72℃で60秒間を35サイクル、さらに、72℃で60秒間を1サイクルの温度条件でPCRを行い、得られたPCR産物の塩基配列をシークエンサーで確認することにより行った。
Figure JPOXMLDOC01-appb-T000004
 結果を表5に示す。表5中、「nt」は実験を行っておらず、データがないことを意味する。「Viroflay」の系統のうちの各レースの欄において、「-」は抵抗性であることを意味し、「+」は罹病性であることを意味する。なお、表5中に記載されたRPF遺伝子型のうち、「RPF-SK1」は、スピナシア・テトランドラ由来の抵抗性の遺伝子型、「rpf-0」は、Viroflay由来の罹病性の遺伝子型をそれぞれ意味する。したがって、「RPF-SK1/RPF-SK1」は抵抗性のホモ接合型、「rpf-0/rpf-0」は罹病性のホモ接合型、「RPF-SK1/rpf-0」は抵抗性と罹病性のヘテロ接合型をそれぞれ意味する。
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、Viroflay系統とSDF(RNR)系統を交雑して得られたF1個体は、全てのレースに対して抵抗性を示した。なお、Pfs1では7個体が罹病性個体とされたが、これらはいずれも、わずかに子葉に発病する程度(rating 5-50%のうち、かなり低いパーセント)であり、耐病性反応を示す個体であった。これらの結果から、RPF-SK1遺伝子は、少なくともPfs1~Pfs19、UA1014タイプ、Be2105Bタイプ、及びPV2144タイプが示すレースに対して優性の抵抗性を付与できることがわかった。
[実施例3]
 Viroflay系統を種子親、実施例1で作出したSDF(RNR)系統を花粉親として交雑して得られたF1種子を自殖し、F2分離集団を作製した。このF2集団に対して、Pfs3、Pfs4、Pfs8、Pfs15、及びUA1014タイプが示すレースを用いた接種試験を行い、これらに対する抵抗性を調べた。結果を表6に示す。表中に記載した遺伝子型等は表5と同じである。
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、SDF(RNR)系統の有するべと病抵抗性は、Pfs3、Pfs4、Pfs8、Pfs15、及びUA1014タイプに対して、抵抗性個体:罹病性個体が3:1に近似して分離した。このため、RPF-SK1遺伝子は、単一優性と想定された。この想定は、χ2乗検定(p>0.05)の結果によっても支持された。
[実施例4]
 RPF-SK1遺伝子の染色体の座上領域を特定するための遺伝解析及び遺伝子マーカー作製を行った。
 まず、Viroflay系統と実施例1で作出したSDF(RNR)系統を交雑して得たF1を自殖し、F2分離集団を作製した。
 得られたF2分離集団96個体について、UA1014タイプが示すレースを用いた接種試験を行い、これに対する抵抗性を調べた。この結果、抵抗性個体が76個体、罹病性個体が20個体であった。
 これらの個体の遺伝解析を行い、抵抗性個体では抵抗性ホモ型又はヘテロ型となり、罹病性個体では罹病性ホモ型となるような領域を、ゲノム中から探索した。
 形質調査を行った個体を連鎖解析用集団とし、各個体からゲノムDNAを抽出した。連鎖解析用集団のDNAと、SpinachBaseのリファレンスゲノム上に設計したSNPマーカーを用いて、ジェノタイピングを行った。ジェノタイピングは、KASPジェノタイピングアッセイを用いて行った。
 RPF-SK1遺伝子のシークエンス解析を行ったところ、chr3_1215795~chr3_1216602までの領域に、SpinachBaseのリファレンスゲノム(Spinach genome sequence (v1))や、特許文献9に開示されている各種WOLF遺伝子の塩基配列とは相違する領域が確認された。第3染色体中のchr3_1215795~chr3_1216602までの塩基配列のアラインメント図を図1A~図1Eに示す。図1中の各塩基配列にふられている番号は、表7に記載の遺伝子を示す。
Figure JPOXMLDOC01-appb-T000007
 この結果、SDF(RNR)系統がホモ接合で有するRPF-SK1遺伝子は、chr3_1215815で特定されるSNPがシトシンであり、chr3_1215855で特定されるSNPがチミンであり、chr3_1216014で特定されるSNPがシトシンであり、chr3_1216093で特定されるSNPがグアニンであり、chr3_1216094で特定されるSNPがグアニンであり、chr3_1216095で特定されるSNPがアデニンであり、chr3_1216288で特定されるSNPがアデニンであり、chr3_1216291で特定されるSNPがグアニンであった。これらのSNPにおいて、RPF-SK1遺伝子はリファレンスゲノムや公知のWOLF(RPF)遺伝子とは遺伝子型が相違しており、RPF-SK1遺伝子は、新規なべと病抵抗性遺伝子であった。
 FERM BP-22426
[規則26に基づく補充 22.11.2022] 
Figure WO-DOC-RO134

Claims (16)

  1.  少なくとも一方のアレルにおいて、べと病抵抗性RPF-SK1遺伝子を有しており、
    (a)chr3_1215815で特定されるSNPがシトシンである、
    (b)chr3_1215855で特定されるSNPがチミンである、
    (c)chr3_1216014で特定されるSNPがシトシンである、
    (d)chr3_1216093で特定されるSNPがグアニンであり、chr3_1216094で特定されるSNPがグアニンであり、かつchr3_1216095で特定されるSNPがアデニンである、
    (e)chr3_1216288で特定されるSNPがアデニンである、又は
    (f)chr3_1216291で特定されるSNPがグアニンである、
    べと病抵抗性ホウレンソウ植物。
  2.  前記RPF-SK1遺伝子が、ホモ接合性又はヘテロ接合性である、請求項1に記載のべと病抵抗性ホウレンソウ植物。
  3.  少なくとも、べと病のレースPfs1、Pfs2、Pfs3、Pfs4、Pfs5、Pfs6、Pfs7、Pfs8、Pfs9、Pfs10、Pfs11、Pfs12、Pfs13、Pfs14、Pfs15、Pfs16、Pfs17、Pfs18、Pfs19、及びUA1014タイプが示すレースに抵抗性である、請求項1に記載のべと病抵抗性ホウレンソウ植物。
  4.  少なくとも、べと病のBe2105Bタイプ及びPV2144タイプが示すレースに抵抗性である、請求項1に記載のべと病抵抗性ホウレンソウ植物。
  5.  前記べと病抵抗性ホウレンソウ植物が、スピナシア・テトランドラと栽培種ホウレンソウの種間雑種植物に由来するものである、請求項1に記載のべと病抵抗性ホウレンソウ植物。
  6.  受託番号FERM BP-22426で特定される植物由来のべと病抵抗性を有する、請求項1に記載のべと病抵抗性ホウレンソウ植物。
  7.  前記RPF-SK1遺伝子以外のべと病抵抗性遺伝子を少なくとも1種以上有する、請求項1に記載のべと病抵抗性ホウレンソウ植物。
  8.  受託番号FERM BP-22426で特定されるべと病抵抗性ホウレンソウ植物、前記べと病抵抗性ホウレンソウ植物を親系統として得られた雑種植物、又はそれらの後代である、べと病抵抗性ホウレンソウ植物。
  9.  被験ホウレンソウ植物のchr3_1215815、chr3_1215855、chr3_1216014、chr3_1216093、chr3_1216094、chr3_1216095、chr3_1216288、及びchr3_1216291からなる群より選択される1種以上の遺伝子型を調べ、少なくとも一方のアレルにおいて、
    (a)chr3_1215815で特定されるSNPがシトシンである、
    (b)chr3_1215855で特定されるSNPがチミンである、
    (c)chr3_1216014で特定されるSNPがシトシンである、
    (d)chr3_1216093で特定されるSNPがグアニンであり、chr3_1216094で特定されるSNPがグアニンであり、かつchr3_1216095で特定されるSNPがアデニンである、
    (e)chr3_1216288で特定されるSNPがアデニンである、又は
    (f)chr3_1216291で特定されるSNPがグアニンである場合に、
    当該被験ホウレンソウ植物がべと病抵抗性である可能性が高いと予測する、ホウレンソウ植物のべと病抵抗性の予測方法。
  10.  被験ホウレンソウ植物のchr3_1215815、chr3_1215855、chr3_1216014、chr3_1216093、chr3_1216094、chr3_1216095、chr3_1216288、及びchr3_1216291からなる群より選択される1種以上の遺伝子型を調べ、少なくとも一方のアレルにおいて、
    (a)chr3_1215815で特定されるSNPがシトシンである、
    (b)chr3_1215855で特定されるSNPがチミンである、
    (c)chr3_1216014で特定されるSNPがシトシンである、
    (d)chr3_1216093で特定されるSNPがグアニンであり、chr3_1216094で特定されるSNPがグアニンであり、かつchr3_1216095で特定されるSNPがアデニンである、
    (e)chr3_1216288で特定されるSNPがアデニンである、又は
    (f)chr3_1216291で特定されるSNPがグアニンである場合に、
    当該被験ホウレンソウ植物を、べと病抵抗性ホウレンソウ植物として選抜する、べと病抵抗性ホウレンソウ植物のスクリーニング方法。
  11.  RPF-SK1遺伝子を有するホウレンソウ植物と任意のホウレンソウ植物とを交雑する第1交雑工程と、
     前記第1交雑工程により得られたF1個体に対して、自殖、戻し交雑、又は前記第1交雑工程において用いた親系統とは異なるホウレンソウ植物との種間交雑又は種内交雑を行い、分離集団を得る第2交雑工程と、
     前記分離集団から、RPF-SK1遺伝子を有するホウレンソウ植物を選抜する選抜工程と、
    を有する、べと病抵抗性ホウレンソウ植物の製造方法。
  12.  前記任意のホウレンソウ植物、又は前記第2交雑工程における種間交雑又は種内交雑で用いる親系統が、前記RPF-SK1遺伝子以外のべと病抵抗性遺伝子を少なくとも1種以上有するホウレンソウ植物である、請求項11に記載のべと病抵抗性ホウレンソウ植物の製造方法。
  13.  請求項1~8のいずれか一項に記載のべと病抵抗性ホウレンソウ植物の植物体の一部。
  14.  請求項1~8のいずれか一項に記載のべと病抵抗性ホウレンソウ植物の葉。
  15.  請求項1~8のいずれか一項に記載のべと病抵抗性ホウレンソウ植物の種子。
  16.  被験ホウレンソウ植物のchr3_1215815~chr3_1216291を含む領域をPCR増幅するためのフォワードプライマー及びリバースプライマーを含む、
     RPF-SK1遺伝子を有するホウレンソウ植物を選抜するために用いられる、キット。
PCT/JP2022/040890 2021-11-01 2022-11-01 新規べと病抵抗性遺伝子を有するホウレンソウ植物 WO2023074911A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020247013312A KR20240099198A (ko) 2021-11-01 2022-11-01 신규 노균병 저항성 유전자를 갖는 시금치 식물
AU2022376201A AU2022376201A1 (en) 2021-11-01 2022-11-01 Spinach plant having novel downy mildew resistance gene
JP2023556710A JPWO2023074911A1 (ja) 2021-11-01 2022-11-01
CA3236539A CA3236539A1 (en) 2021-11-01 2022-11-01 Spinach plant having novel downy mildew resistance gene
CN202280068472.3A CN118103506A (zh) 2021-11-01 2022-11-01 具有新型霜霉病抗性基因的菠菜植物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021178897 2021-11-01
JP2021-178897 2021-11-01

Publications (1)

Publication Number Publication Date
WO2023074911A1 true WO2023074911A1 (ja) 2023-05-04

Family

ID=86158116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040890 WO2023074911A1 (ja) 2021-11-01 2022-11-01 新規べと病抵抗性遺伝子を有するホウレンソウ植物

Country Status (7)

Country Link
JP (1) JPWO2023074911A1 (ja)
KR (1) KR20240099198A (ja)
CN (1) CN118103506A (ja)
AU (1) AU2022376201A1 (ja)
CA (1) CA3236539A1 (ja)
TW (1) TW202334411A (ja)
WO (1) WO2023074911A1 (ja)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015036378A1 (en) 2013-09-13 2015-03-19 Nunhems B.V. Spinach plants that are resistant to downy mildew
JP2015231359A (ja) * 2014-02-27 2015-12-24 セミニス・ベジタブル・シーズ・インコーポレイテツドSeminis Vegetable Seeds,Inc. ホウレンソウにおけるペロノスポラ耐性のための組成物及び方法
JP2016532437A (ja) * 2013-10-08 2016-10-20 セミニス・ベジタブル・シーズ・インコーポレイテツドSeminis Vegetable Seeds,Inc. ホウレンソウにおけるperonospora耐性のための方法及び組成物
WO2018059651A1 (en) 2016-09-30 2018-04-05 Rijk Zwaan Zaadteelt En Zaadhandel B.V. Method for modifying the resistance profile of spinacia oleracea to downy mildew
US9974276B2 (en) 2015-11-20 2018-05-22 Rijk Zwaan Zaadteelt En Zaadhandel B.V. Peronospora resistance in Spinacia oleracea
JP6457269B2 (ja) 2011-10-31 2019-01-23 ライク・ズワーン・ザードテールト・アン・ザードハンデル・ベスローテン・フェンノートシャップ ホウレンソウ(spinaciaoleracea)のペロノスポラ(peronospora)耐性
US20190104700A1 (en) 2016-05-13 2019-04-11 Rijk Zwaan Zaadteelt En Zaadhandel B.V. Non r-gene mediated resistance
US10258002B2 (en) 2013-09-13 2019-04-16 Nunhems B.V. Spinach plants that are resistant to downy mildew
US10258001B2 (en) 2013-09-13 2019-04-16 Nunhems B.V. Spinach plants that are resistant to downy mildew
WO2019145446A1 (en) 2018-01-26 2019-08-01 Nunhems B.V. Spinach plants resistant to at least peronospora farinosa races 8 and 10 to 16
WO2019145447A1 (en) 2018-01-26 2019-08-01 Nunhems B.V. Spinach plants resistant to at least peronospora farinosa races 8, 9, 11, 13 and 16
WO2020239215A1 (en) 2019-05-29 2020-12-03 Bejo Zaden B.V. Downy mildew resistant spinach plant
JP2021178897A (ja) 2020-05-12 2021-11-18 信越化学工業株式会社 オルガノポリシロキサン生ゴムの製造方法、及び、その生ゴムを用いたシリコーンゴム組成物
JP2022113045A (ja) * 2021-01-22 2022-08-03 タキイ種苗株式会社 ホウレンソウ植物

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6457269U (ja) 1987-10-01 1989-04-10
JPH0384207U (ja) 1989-12-19 1991-08-27
JP2015036378A (ja) 2013-08-16 2015-02-23 Dic株式会社 ポリヒドロキシナフタレンの製造方法
JP6580014B2 (ja) 2016-10-04 2019-09-25 昭和金属工業株式会社 信号弾発射装置
JP2019145446A (ja) 2018-02-23 2019-08-29 トヨタ自動車株式会社 ニッケル水素電池
JP6962235B2 (ja) 2018-02-23 2021-11-05 トヨタ自動車株式会社 リチウムイオン二次電池用正極の製造方法
KR102493157B1 (ko) 2018-03-02 2023-01-27 엘지전자 주식회사 식기세척기
JP7194913B2 (ja) 2018-09-04 2022-12-23 株式会社関電工 電線仮支持具

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6457269B2 (ja) 2011-10-31 2019-01-23 ライク・ズワーン・ザードテールト・アン・ザードハンデル・ベスローテン・フェンノートシャップ ホウレンソウ(spinaciaoleracea)のペロノスポラ(peronospora)耐性
WO2015036378A1 (en) 2013-09-13 2015-03-19 Nunhems B.V. Spinach plants that are resistant to downy mildew
US10258002B2 (en) 2013-09-13 2019-04-16 Nunhems B.V. Spinach plants that are resistant to downy mildew
US10258001B2 (en) 2013-09-13 2019-04-16 Nunhems B.V. Spinach plants that are resistant to downy mildew
JP6684207B2 (ja) 2013-10-08 2020-04-22 セミニス・ベジタブル・シーズ・インコーポレイテツドSeminis Vegetable Seeds,Inc. ホウレンソウにおけるperonospora耐性のための方法及び組成物
JP2016532437A (ja) * 2013-10-08 2016-10-20 セミニス・ベジタブル・シーズ・インコーポレイテツドSeminis Vegetable Seeds,Inc. ホウレンソウにおけるperonospora耐性のための方法及び組成物
JP2015231359A (ja) * 2014-02-27 2015-12-24 セミニス・ベジタブル・シーズ・インコーポレイテツドSeminis Vegetable Seeds,Inc. ホウレンソウにおけるペロノスポラ耐性のための組成物及び方法
US9974276B2 (en) 2015-11-20 2018-05-22 Rijk Zwaan Zaadteelt En Zaadhandel B.V. Peronospora resistance in Spinacia oleracea
US20190104700A1 (en) 2016-05-13 2019-04-11 Rijk Zwaan Zaadteelt En Zaadhandel B.V. Non r-gene mediated resistance
WO2018059651A1 (en) 2016-09-30 2018-04-05 Rijk Zwaan Zaadteelt En Zaadhandel B.V. Method for modifying the resistance profile of spinacia oleracea to downy mildew
WO2019145447A1 (en) 2018-01-26 2019-08-01 Nunhems B.V. Spinach plants resistant to at least peronospora farinosa races 8, 9, 11, 13 and 16
WO2019145446A1 (en) 2018-01-26 2019-08-01 Nunhems B.V. Spinach plants resistant to at least peronospora farinosa races 8 and 10 to 16
WO2020239215A1 (en) 2019-05-29 2020-12-03 Bejo Zaden B.V. Downy mildew resistant spinach plant
JP2021178897A (ja) 2020-05-12 2021-11-18 信越化学工業株式会社 オルガノポリシロキサン生ゴムの製造方法、及び、その生ゴムを用いたシリコーンゴム組成物
JP2022113045A (ja) * 2021-01-22 2022-08-03 タキイ種苗株式会社 ホウレンソウ植物

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BHATTARAI GEHENDRA, SHI AINONG, FENG CHUNDA, DHILLON BRAHAM, MOU BEIQUAN, CORRELL JAMES C.: "Genome Wide Association Studies in Multiple Spinach Breeding Populations Refine Downy Mildew Race 13 Resistance Genes", FRONTIERS IN PLANT SCIENCE, vol. 11, 21 October 2020 (2020-10-21), CH , XP055883207, ISSN: 1664-462X, DOI: 10.3389/fpls.2020.563187 *
CORRELL ET AL., EUROPEAN JOURNAL OF PLANT PATHOLOGY, vol. 129, 2011, pages 193 - 205
DENOMINATION OF PE: 18 AND 19, TWO NEW RACES OF DOWNY MILDEW IN SPINACH, 15 April 2021 (2021-04-15), Retrieved from the Internet <URL:https://plantum.nl/denomination-of-pe-18-and-19-two-new-races-of-downy-mildew-in-spinach>
FENG, EUPHYTICA, vol. 214, 2018, pages 174
GEHENDRA BHATTARAI;WEI YANG;AINONG SHI;CHUNDA FENG;BRAHAM DHILLON;JAMESC. CORRELL;BEIQUAN MOU: "High resolution mapping and candidate gene identification of downy mildew race 16 resistance in spinach", BMC GENOMICS, vol. 22, no. 1, 26 June 2021 (2021-06-26), London, UK , pages 1 - 17, XP021293024, DOI: 10.1186/s12864-021-07788-8 *
INTERNATIONAL SEED FEDERATION, DIFFERENTIAL SETS PERONOSPORA FARINOSA F. SP. SPINACIAE (P. EFFUSA, 2018, Retrieved from the Internet <URL:https://worldseed.org/wp-content/uploads/2018/04/Spinach-downy-mildew_April2018.pdf>
IWATANINOMIYA, BREEDING SCIENCE, vol. 56, no. 4, 2006, pages 371 - 377

Also Published As

Publication number Publication date
JPWO2023074911A1 (ja) 2023-05-04
CA3236539A1 (en) 2023-05-04
AU2022376201A1 (en) 2024-06-06
KR20240099198A (ko) 2024-06-28
CN118103506A (zh) 2024-05-28
TW202334411A (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
JP2023153180A (ja) トバモウイルスであるトマト褐色縮葉フルーツウイルス(tbrfv)に対するソヌラム・リコペルシカム植物における耐性
US12022788B2 (en) Prolific flowering watermelon
KR20110138219A (ko) 푸사리움 저항성 오이 식물
US20140059721A1 (en) Rice resistant/tolerant to hppd inhibiting herbicides
JP2011120597A (ja) ゲノムdna断片の選抜方法
US20180265887A1 (en) Basil Plants With High Tolerance to Downy Mildew
US11771030B2 (en) Hybrid cucumber ‘Coatzin’
WO2023074911A1 (ja) 新規べと病抵抗性遺伝子を有するホウレンソウ植物
AU2021367884A1 (en) Novel type of long shelf-life melon plants
WO2022239824A1 (ja) 新規べと病抵抗性遺伝子を有するホウレンソウ植物
US11839189B2 (en) Hybrid cucumber ‘E23S.16382’
US20230323385A1 (en) Plants with improved nematode resistance
RU2792674C2 (ru) Растение арбуза, характеризующееся продуктивным цветением
JP2024043696A (ja) 新規炭疽病抵抗性遺伝子を有するブラシカ・ラパ植物
WO2023012325A1 (en) Resistance to leveillula taurica in pepper
KR20240112909A (ko) 노균병 저항성을 갖는 신규한 스쿼시 식물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22887236

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023556710

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2024/004981

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 3236539

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2022376201

Country of ref document: AU

Ref document number: AU2022376201

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2022887236

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022376201

Country of ref document: AU

Date of ref document: 20221101

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022887236

Country of ref document: EP

Effective date: 20240603