WO2023071936A1 - 非负载型双金属加氢催化剂及其制备方法和应用 - Google Patents

非负载型双金属加氢催化剂及其制备方法和应用 Download PDF

Info

Publication number
WO2023071936A1
WO2023071936A1 PCT/CN2022/126700 CN2022126700W WO2023071936A1 WO 2023071936 A1 WO2023071936 A1 WO 2023071936A1 CN 2022126700 W CN2022126700 W CN 2022126700W WO 2023071936 A1 WO2023071936 A1 WO 2023071936A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
acid
carboxylic acids
catalyst
metals
Prior art date
Application number
PCT/CN2022/126700
Other languages
English (en)
French (fr)
Inventor
侯焕娣
王廷
董明
陶梦莹
赵毅
龙军
Original Assignee
中国石油化工股份有限公司
中石化石油化工科学研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111244223.9A external-priority patent/CN116020565A/zh
Priority claimed from CN202111244222.4A external-priority patent/CN116020564A/zh
Priority claimed from CN202111244221.XA external-priority patent/CN116020563A/zh
Application filed by 中国石油化工股份有限公司, 中石化石油化工科学研究院有限公司 filed Critical 中国石油化工股份有限公司
Publication of WO2023071936A1 publication Critical patent/WO2023071936A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used

Definitions

  • the present application relates to the technical field of hydrogenation catalysts, in particular to a non-supported bimetallic hydrogenation catalyst and its preparation method and application.
  • supported catalysts are hydrogenation catalysts with the earliest research time, the largest number of industrial applications, and the widest range of hydrogenation catalysts in the processing of hydrocarbon-containing compounds. It consists of three components: catalytically active components, auxiliary catalytically active components and carriers.
  • the active components and auxiliary catalytically active components are mainly metals, and the carrier is silicon-aluminum materials such as alumina, silica, kaolin, and molecular sieves. or porous material.
  • hydrogenation catalysts have been developed into bimetallic and multimetallic catalysts.
  • Distillate oil hydrotreating catalysts mostly use Mo-Ni and W-Ni hydrofining catalysts
  • vacuum distillate oil hydrogenation pretreatment mostly use W-Mo-Ni catalysts, Mo, W, Ni and other non-precious metal hydrogenation catalysts It mostly exists in the form of sulfide and is loaded in the pores of the carrier.
  • the metal-helping component For the role of the metal-helping component, there are intercalation models (Co or Ni embedded in the structure of MoS 2 or WS 2 ), “synergy model (Co exists as Co 9 S 8 )", “single-layer model (MoO 3 or WO 3 in Monolayer distribution on the support)” and other theories to explain the influence of the helper metal component on the main metal sulfide structure or the distribution of the main metal component on the support.
  • the catalytic hydrogenation reaction of hydrocarbons is a heterogeneous catalytic reaction, which needs to go through seven steps: that is, the raw material molecules diffuse to the outer surface of the catalyst - the raw material molecules diffuse into the catalyst pores ——Raw material molecules are adsorbed on the active center of the catalyst——The surface catalytic reaction between the raw material molecules and the catalyst activity occurs——The reaction product desorbs from the surface of the catalyst active center——The reaction product diffuses from the inside of the catalyst pores——The reaction product flows from the outer surface of the catalyst Diffusion into the liquid phase system, etc.
  • the diffusion step seriously affects the probability and efficiency of the hydrogenation reaction of the supported bimetallic catalyst, which limits the catalytic activity of the catalyst.
  • Chinese patent announcement ZL201510275523.1 discloses an oil-soluble Mo-Ni bimetallic catalyst, its preparation method and application. The method is to dissolve nickel nitrate and ammonium molybdate in 15-25 times the mass of distilled water, and add a small amount of ethylene glycol; then add ammonia water to the solution to adjust the pH value to alkaline; under stirring, heat the above solution After reacting at 130-160°C for 3-5h, filter the product to obtain a solid intermediate product; dry the solid intermediate product at 100°C under normal pressure, mix it with oleic acid, and react at 230-260°C for 2-4h, The obtained product is the oil-soluble Mo-Ni bimetallic catalyst.
  • the bimetallic mass ratio of the catalyst is flexible and adjustable, with high hydrogenation activity and good coke suppression effect.
  • this method needs to add additional ethylene glycol and ammonia water in the first step, and the reaction product obtained in the first step needs to be filtered to obtain an intermediate product. , and the metal content of the target product is low.
  • Chinese patent announcement ZL201610862714.2 discloses a molybdenum-nickel catalyst for hydrocracking and its preparation method.
  • the preparation method is to dissolve and disperse a hexavalent molybdenum source compound with a solvent, add an inorganic acid catalyst, and react a C1-C5 organic acid at a temperature of 40-150°C for 0.5-10h, and add C6- C16 organic acid or C6-C16 ester is reacted at 160-320°C for 2-22h; the product of step (2) is cooled to 20-80°C, and nickel-containing inorganic substances are added to react at 50-95°C for 3 -10h, then heat up to 100-180°C and react for 1-8h; separate the product obtained in step (3), remove the solvent phase, wash the oil phase, and distill under reduced pressure to remove light components to obtain a hydrocracking molybdenum-nickel catalyst .
  • the catalyst is applied to heavy oil hydrocracking reaction with high conversion rate and high yield of light oil.
  • the preparation method has many steps, the process is complicated, the raw materials are expensive, and the reaction product needs to be washed with water, which will generate a large amount of waste water and the process is poor in environmental protection; during the synthesis process, the two metals are added at different times and steps, and the final synthesized product cannot be confirmed to be two Mixtures of organometallic compounds also form an organobimetallic compound.
  • US Patent No. 7,842,635 B2 discloses a method for preparing an oil-soluble bimetallic catalyst.
  • the method is to react a molybdenum source compound with an organic carboxylic acid in a mixed flow of N and H to obtain an organic molybdenum compound; react another metal compound with an organic carboxylic acid to obtain its organometallic compound; Mix according to a certain ratio to obtain a bimetallic organometallic mixture.
  • this preparation method belongs to the gas-liquid-solid three-phase reaction, the conversion rate is low, the energy consumption is high, and a large amount of three waste products are produced.
  • the purpose of this application is to provide a new type of non-supported bimetallic hydrogenation catalyst and its preparation method and application.
  • the catalyst contains an organometallic complex, which has high oil phase dispersibility, and catalyzes the hydrogenation reaction of hydrocarbon compounds When it belongs to homogeneous catalytic reaction, the diffusion step of heterogeneous catalytic reaction is eliminated, which is beneficial to improve the hydrogenation activity.
  • the application provides a non-supported bimetallic hydrogenation catalyst, which is composed of a complex formed by a metal center atom or a center ion and an organic ligand through a coordination bond, and the catalyst has The schematic composition shown in general formula (I):
  • M 1 and M 2 represent metals
  • R(COO) x represents organic ligands
  • R represents hydrocarbon groups in organic ligands
  • COO represents coordination groups in organic ligands
  • x represents coordination groups in organic ligands
  • a represents the molar ratio of non-coordinative bonded oxygen atoms connected to the metal to the total amount of metal
  • b represents the molar ratio of organic ligands to the total amount of metal
  • M1 and M2 are different from each other and are independently selected from one of VB group metals, VIB group metals, VIII group metals and IB group metals with hydrogenation properties;
  • R is a C3-C19 hydrocarbon group
  • x is 1, 2 or 3, preferably 1 or 2;
  • a is a positive number of 0-5, preferably a positive number of 1-3;
  • b is a positive number of 1-6, preferably a positive number of 2-5,
  • the infrared spectrogram of the catalyst has characteristic peaks at the positions of 700-1000cm -1 , 1350-1450cm -1 and 1500-1610cm -1 .
  • the application provides a method for preparing non-supported bimetallic hydrogenation catalyst, comprising the following steps:
  • step 2) make the mixture of step 1) gained react the time of t1 under temperature T1;
  • step 2) make the material of step 2) gained react the time of t2 under temperature T2;
  • step 3 Optionally, adding a second metal source or a dispersion thereof to the material obtained in step 3), and allowing the resulting material to react at a temperature T2 for a time of t3;
  • first and second metal sources are each independently selected from simple metals, metal oxides, metal hydroxides, metal oxyacids, metal inorganic salts or combinations thereof, in the first and second metal sources
  • the metals are the same or different from each other, and are each independently one or two of Group VB metals, Group VIB metals, Group VIII metals and Group IB metals with hydrogenation properties,
  • the organic ligand compound is selected from C4-C20 organic carboxylic acids or anhydrides thereof,
  • the molar ratio of the organic ligand compound to the total amount of metals in the first and second metal sources is 1-10:1,
  • the temperature T1 is 50-150°C, the time t1 is 5-180min,
  • the temperature T2 is 100-350°C, the time t2 is 1-8h,
  • the time t3 is 1-8h
  • the condition is that when only the first metal source is used or the second metal source is the same as the metal in the first metal source, the metal in the first metal source is VB group metal, VIB group metal, VIII group metal with hydrogenation performance Two of the metals and Group IB metals.
  • the application provides a bimetallic hydrogenation catalyst composition, comprising the non-supported bimetallic hydrogenation catalyst and at least one organic ligand compound and/or an organic solvent, wherein the organic ligand
  • the compound is selected from C4-C20 organic carboxylic acids
  • the organic solvent is selected from aliphatic hydrocarbons, aromatic hydrocarbons, alicyclic hydrocarbons, halogenated hydrocarbons, alcohol solvents, ether solvents, ester solvents, ketone solvents or combinations thereof .
  • a method for hydrotreating a hydrocarbon-containing feedstock comprising the step of contacting the hydrocarbon-containing feedstock with the non-supported bimetallic hydrogenation catalyst or the bimetallic hydrogenation catalyst composition according to the present application for hydrogenation reaction .
  • the application provides a non-supported catalyst composition, which comprises 10-45% of a hydrogenation catalyst component, 45-80% of a dispersion medium and 1.0-10% of an activated catalyst composition by weight.
  • agents of which:
  • the hydrogenation catalyst component consists of the non-supported bimetallic hydrogenation catalyst of the present application and an optional organic ligand compound, wherein the organic ligand compound is selected from C4-C20 organic carboxylic acids,
  • the dispersion medium is selected from organic solvents, petroleum fractions or their combinations, and the organic solvents are selected from aliphatic hydrocarbons, aromatic hydrocarbons, alicyclic hydrocarbons, halogenated hydrocarbons, alcohol solvents, ether solvents, ester solvents, ketones A solvent or a combination thereof, the petroleum fraction is selected from distillate oils with a distillation range of 150-524°C or residual oil components with a boiling point > 524°C,
  • the activator is selected from elemental sulfur, sulfur-containing compounds, or combinations thereof.
  • the present application provides a heavy oil hydro-upgrading method, comprising under heating conditions, the heavy oil raw material is hydrogenated in the presence of hydrogen and the non-supported catalyst composition of the present application that is optionally presulfurized Steps in the modification reaction.
  • the non-supported bimetallic hydrogenation catalyst and the composition thereof are used in the hydrogenation reaction of hydrocarbon-containing raw materials, they have higher oil phase dispersibility, stability, hydrogenation activity and target product selectivity.
  • the catalyst preparation method of the present application requires less raw materials, simple preparation process, low material consumption and energy consumption, and the preparation process is green and efficient; the metal content of the obtained catalyst (especially the metal complex contained therein) is higher, and the storage stability better.
  • Fig. 1 has shown the infrared spectrogram of embodiment 1 gained product
  • Fig. 2 has shown the infrared spectrogram of embodiment 2 gained products
  • Fig. 3 has shown the infrared spectrogram of embodiment 3 gained products
  • Fig. 4 has shown the infrared spectrogram of embodiment 4 gained product
  • Fig. 5 has shown the infrared spectrogram of embodiment 5 gained products
  • Fig. 6 has shown the infrared spectrogram of embodiment 6 gained product
  • Fig. 7 has shown the effect figure that embodiment 1 gained catalyst is dispersed in toluene
  • Fig. 8 shows the effect diagram of catalyst obtained in Example 3 dispersed in toluene.
  • any matters or matters not mentioned are directly applicable to aspects known in the art without any changes.
  • any of the implementations described herein can be freely combined with one or more other implementations described herein, and the resulting technical solutions or technical ideas are regarded as a part of the original disclosure or original record of the application, and should not be It is regarded as a new content that has not been disclosed or expected in this paper, unless those skilled in the art think that the combination is obviously unreasonable.
  • M 1 and M 2 represent metals
  • R(COO) x represents organic ligands
  • R represents hydrocarbon groups in organic ligands
  • COO represents coordination groups in organic ligands
  • x represents coordination groups in organic ligands
  • a represents the molar ratio of non-coordinative bonded oxygen atoms connected to the metal to the total amount of metal
  • b represents the molar ratio of organic ligands to the total amount of metal
  • M1 and M2 are different from each other and are independently selected from one of VB group metals, VIB group metals, VIII group metals and IB group metals with hydrogenation properties;
  • R is a C3-C19 hydrocarbon group, preferably selected from C5-C11 normal alkyl, C5-C11 isomeric alkyl, C5-C12 cycloalkyl and C6-C12 aryl;
  • x is 1, 2 or 3, preferably 1 or 2;
  • a is a positive number of 0-5, preferably a positive number of 1-3;
  • b is a positive number of 1-6, preferably a positive number of 2-5,
  • the infrared spectrogram of the catalyst has characteristic peaks at the positions of 700-1000cm -1 , 1350-1450cm -1 and 1500-1610cm -1 .
  • the non-supported bimetallic hydrogenation catalyst consists only of the complex without any solid support components.
  • the non-supported bimetallic hydrogenation catalyst of the present application may also exist and be used in the form of a composition formed with a liquid component capable of dispersing the catalyst, such as an organic solvent and an organic ligand compound, as required.
  • the VB group metals, VIB group metals, VIII group metals and IB group metals with hydrogenation properties can be central atoms or central ions or central ions form.
  • the non-supported bimetallic hydrogenation catalyst can be a mixture of various complexes, and the catalyst composition includes oxygen atoms and organic ligands with the total amount of metals (i.e. metals M 1 and M 2
  • the molar ratios a and b of the total amount) are calculated values based on metal content and elemental composition analysis, and thus may be non-integer.
  • M 1 and M 2 in the composition only indicate which metals exist and do not indicate the molar ratio relationship among the metals.
  • At least part of the complex in the catalyst has a structure shown in formula (I-1):
  • M 1 and M 2 represent metals, which are different from each other and are independently selected from one of VB group metals, VIB group metals, VIII group metals and IB group metals with hydrogenation properties;
  • represents a coordination bond
  • R is a C3-C19 hydrocarbon group, preferably selected from C5-C11 normal alkyl, C5-C11 isomeric alkyl, C5-C12 cycloalkyl and C6-C12 aryl;
  • x is the number of coordination groups in the organic ligand, and is 1 or 2, preferably 1;
  • n represents the coordination number, and is a positive number of 1-6, preferably a positive number of 2-5;
  • y represents the number of non-coordinatively bonded oxygen atoms connecting metal M1 and metal M2 , and is 0 or 1, preferably 1;
  • z represents the number of non-coordinatively bonded oxygen atoms that are only connected to the metal M 2 , and is a positive number of 0-2, preferably 0 or 1.
  • the distance between a characteristic peak at the position of 1350-1450 cm -1 and a peak position of the characteristic peak at the position of 1500-1610 cm -1 in the infrared spectrum of the catalyst is greater than 145 cm -1 .
  • the VB group metals, VIB group metals, VIII group metals and IB group metals with hydrogenation properties are selected from V, Cr, Mo, W, Fe, Co, Ru, Ni, Cu and Pd , more preferably selected from Mo, Ni, W, Fe, V and Co.
  • C3-C19 hydrocarbon group refers to a hydrocarbon group with 3-19 carbon atoms, which may be saturated or unsaturated, linear, branched or carbocyclic, including but not limited to C3-C19 normal alkyl, C3-C19 isoalkyl, C5-C19 cycloalkyl and C6-C19 aryl.
  • C3-C19 normal alkyl refers to a straight-chain alkyl group with 3-19 carbon atoms, preferably a straight-chain alkyl group with 5-11 carbon atoms, such as n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl.
  • C3-C19 iso-alkyl refers to a branched chain alkyl group with 3-19 carbon atoms, preferably an iso-alkyl group with 5-11 carbon atoms, such as isopentyl, isohexyl, Isoheptyl, isooctyl, isononyl, isodecyl, isoundecyl.
  • C5-C19 cycloalkyl group refers to a saturated hydrocarbon group containing a saturated carbocyclic ring having 5-19 carbon atoms, preferably a cycloalkyl group containing 5-12 carbon atoms, such as cyclopentyl base, cyclohexyl, methylcyclohexyl, decahydronaphthyl, methyldecalinyl, ethyldecalinyl, etc.
  • C6-C19 aryl refers to a group containing an aromatic ring having 6-19 carbon atoms, such as phenyl, naphthyl, anthracenyl, p-tolyl, benzyl, methylnaphthyl , methyl anthracenyl, etc., preferably an aryl group with 6-12 carbon atoms.
  • the C3-C19 hydrocarbon group, C3-C19 normal alkyl group, C3-C19 isomeric alkyl group, C5-C19 cycloalkyl group and C6-C19 aryl group may be optionally substituted, for example may be Unsubstituted, or may be substituted by one or more groups selected from halo, nitro, sulfonic acid and the like.
  • the organic ligands in the complex are derived from C4-C20 organic carboxylic acids, preferably derived from C4-C20 normal or isomeric alkyl carboxylic acids, C6-C20 containing saturated carbon One or more of cycloalkane carboxylic acids and C7-C20 aromatic carboxylic acids containing aromatic rings, more preferably normal or isomeric alkyl carboxylic acids derived from C6-C12, C6-C13 containing saturated One or more of carbocyclic naphthenic carboxylic acids and C7-C13 aromatic carboxylic acids containing aromatic rings, more preferably derived from succinic acid, caproic acid, adipic acid, heptanoic acid, octanoic acid, nonanoic acid, One or more of ethylhexanoic acid, oleic acid, petroleum acid, salicylic acid, benzoic acid, and phenylacetic acid.
  • the metal content in the non-supported bimetallic hydrogenation catalyst is 5-35%, preferably 8-30%, more preferably 10-25%, based on the weight of the catalyst. , particularly preferably 10-20%.
  • the non-supported bimetallic hydrogenation catalyst is obtained by making VB group metals, VIB group metals, VIII group metals, IB group metals, their oxides, their hydroxides, their It is obtained by the direct reaction of metal oxyacids and/or metal inorganic salts thereof with organic ligand compounds, wherein the organic ligand compounds are selected from C4-C20 organic carboxylic acids, preferably selected from C4-C20 normal or isoparaffins carboxylic acid, C6-C20 naphthenic carboxylic acid containing saturated carbocycle, C7-C20 aromatic carboxylic acid containing aromatic ring or their combination.
  • C4-C20 normal alkyl carboxylic acid refers to a carboxylic acid with 4-20 carbon atoms obtained by linking one or more carboxyl groups on a straight-chain alkane, such as butyric acid, butane Acid, valeric acid, caproic acid, adipic acid, heptanoic acid, octanoic acid, nonanoic acid, ethylhexanoic acid, tridecanoic acid, oleic acid, etc.
  • a straight-chain alkane such as butyric acid, butane Acid, valeric acid, caproic acid, adipic acid, heptanoic acid, octanoic acid, nonanoic acid, ethylhexanoic acid, tridecanoic acid, oleic acid, etc.
  • C4-C20 isomeric alkyl carboxylic acid refers to a carboxylic acid with 4-20 carbon atoms obtained by linking one or more carboxyl groups on a branched alkane, such as isobutyric acid, iso Valeric acid, isocaproic acid, ethylhexanoic acid.
  • C6-C20 naphthenic carboxylic acid containing a saturated carbocycle refers to a carboxylic acid with 6-20 carbon atoms obtained by linking one or more carboxyl groups to an alkane compound containing a saturated carbocycle , such as cyclohexanoic acid, cyclohexanedioic acid, decalin, decahydronaphthalene.
  • C7-C20 aromatic carboxylic acid containing an aromatic ring refers to an aromatic hydrocarbon, that is, a hydrocarbon compound containing an aromatic ring, which is obtained by linking one or more carboxyl groups with 7-20 carbon atoms.
  • Carboxylic acids such as benzoic acid, phenylacetic acid, phthalic acid, phenylpropionic acid.
  • the organic ligand compound is selected from C6-C12 normal or isomeric alkyl carboxylic acids, C6-C13 naphthenic carboxylic acids containing saturated carbocycles, C7-C13 containing aromatic Aromatic carboxylic acids or combinations thereof, more preferably selected from succinic acid, caproic acid, adipic acid, heptanoic acid, octanoic acid, nonanoic acid, ethylhexanoic acid, oleic acid, petroleum acid, salicylic acid, benzene Formic acid, phenylacetic acid, or a combination thereof.
  • the application provides a method for preparing an unsupported bimetallic hydrogenation catalyst, comprising the following steps:
  • step 2) make the mixture of step 1) gained react the time of t1 under temperature T1;
  • step 2) make the material of step 2) gained react the time of t2 under temperature T2;
  • step 3 Optionally, adding a second metal source or a dispersion thereof to the material obtained in step 3), and allowing the resulting material to react at a temperature T2 for a time of t3;
  • first and second metal sources are each independently selected from simple metals, metal oxides, metal hydroxides, metal oxyacids, metal inorganic salts or combinations thereof, in the first and second metal sources
  • the metals are the same or different from each other, and are each independently one or two of Group VB metals, Group VIB metals, Group VIII metals and Group IB metals with hydrogenation properties,
  • the organic ligand compound is selected from C4-C20 organic carboxylic acids or anhydrides thereof,
  • the molar ratio of the organic ligand compound to the total amount of metals in the first and second metal sources is 1:1-10
  • the temperature T1 is 50-150°C, preferably 80-120°C, and the time t1 is 5-180min, preferably 10-150min,
  • the temperature T2 is 100-350°C, preferably 160-260°C, and the time t2 is 1-8h, preferably 2-5h,
  • the time t3 is 1-8h, preferably 2-5h,
  • the condition is that when only the first metal source is used or the second metal source is the same as the metal in the first metal source, the metal in the first metal source is VB group metal, VIB group metal, VIII group metal with hydrogenation performance Two of the metals and Group IB metals.
  • the catalyst preparation method of the present application increases the pre-reaction step 2) (that is, the pre-reaction time t1 at T1 temperature), so that the metal content in the obtained metal complex can be higher and the storage stability is better.
  • steps 2), 3) and 4) have no strict requirements on the pressure and reaction atmosphere used, for example, the reaction pressure can be normal pressure, and the reaction atmosphere can be air, nitrogen or an inert atmosphere.
  • the mixture obtained in step 1) consists of the first metal source and the organic ligand compound; or the first metal source, a dispersion medium for dispersing the first metal source and the organic ligand compound composition.
  • the C4-C20 organic carboxylic acid used as the organic ligand compound in step 1) may be those specifically described in the first aspect of the present application.
  • the organic ligand compound is selected from C4-C20 normal or isomeric alkyl carboxylic acids, C6-C20 naphthenic carboxylic acids containing saturated carbocycles, C7-C20 containing Aromatic carboxylic acids of aromatic rings or combinations thereof, preferably selected from C6-C12 normal or isomeric alkyl carboxylic acids, C6-C13 naphthenic carboxylic acids containing saturated carbocycles, C7-C13 containing aromatic rings Aromatic carboxylic acids or combinations thereof, more preferably selected from succinic acid, caproic acid, adipic acid, heptanoic acid, caprylic acid, nonanoic acid, ethylhexanoic acid, oleic acid, petroleum acid, salicylic acid, benzoic acid, benzen
  • the first and second metal sources may each independently contain one or two metals of Group VB, Group VIB, Group VIII or Group IB with hydrogenation properties.
  • the first and second metal sources may each independently be a single metal source comprising the two metals, or two or more sources comprising one or two of the metals, respectively. Mixtures of metal sources of the metals mentioned above.
  • step 4) when step 4) is adopted, at least part of the metal in the second metal source is different from the metal in the first metal source, for example, the first metal source contains a metal, And the second metal source contains another metal different from it, or the first metal source contains a metal, and the second metal source contains two metals, one of which is the same as the first metal.
  • the metals in the metal source are the same.
  • each of the first metal source and the second metal source contains a kind of metal, and the metals contained in the two are different.
  • the molar ratio of the first metal source and the second metal source can be any ratio, and the present application is not strictly limited to this.
  • the first metal source and the second metal source The dosage ratio of the two metal sources is 1:1-5.
  • the method comprises the steps of:
  • step 1) adding an organic ligand compound to the dispersion obtained in step 1), heating to temperature T1, and reacting at temperature T1 for a time of t1;
  • step iii) heating the material obtained in step ii) to temperature T2, and reacting at temperature T2 for a time of t2;
  • the method includes the following steps:
  • step ii) heating the mixture obtained in step i) to temperature T1, and reacting at temperature T1 for a time of t1;
  • step iii) heating the material obtained in step ii) to temperature T2, and reacting at temperature T2 for a time of t2;
  • the method includes the following steps:
  • step b) heating the mixture obtained in step a) to temperature T1, and reacting at temperature T1 for a time of t1;
  • step b) heating the material obtained in step b) to temperature T2, and reacting at temperature T2 for a time of t2;
  • step c) adding a second metal source to the material obtained in step c), and reacting at a temperature T2 for a time of t3;
  • the metal inorganic salt can be an inorganic acid salt of the metal, such as chloride, sulfide, sulfate, nitrate, carbonate, etc., or a metal oxyacid of the metal Salts such as ammonium metal oxoacids.
  • the first and second metal sources are each independently selected from metal oxides, metal hydroxides, metal chlorides, metal sulfides, metal sulfates, metal nitrates, metal carbonates , metal oxo acids, metal oxo salts, or combinations thereof, such as oxides, hydroxides, chlorides, sulfides, sulfuric acid selected from V, Mo, W, Fe, Co, Ni, Cu, and Zn Salts, nitrates and carbonates, molybdic acid, tungstic acid, various forms of ammonium molybdate, ammonium tungstate, or combinations thereof.
  • the dispersion medium in the dispersion of the metal source can be an inorganic dispersion medium or an organic dispersion medium, and the inorganic dispersion medium can be selected from water, carbonic acid, hydrochloric acid, sulfuric acid or phosphoric acid;
  • the medium can be selected from aliphatic hydrocarbons, aromatic hydrocarbons, alicyclic hydrocarbons, halogenated hydrocarbons, alcohol solvents, ether solvents, ester solvents, ketone solvents or combinations thereof, more preferably selected from ethanol, toluene, xylene, petroleum Ether, gasoline, diesel, or a combination thereof.
  • the weight ratio of the dispersion medium to the first metal source in the first metal source dispersion and the weight ratio of the dispersion medium to the other metal sources in the second metal source dispersion are each Independently 1-25:1, more preferably 2-8:1.
  • the molar ratio of the first metal source and the second metal source is 1:1-5.
  • the reaction step has no strict requirements on the reaction pressure and reaction atmosphere, for example, the reaction pressure can be normal pressure, and the reaction atmosphere can be air, nitrogen or an inert atmosphere.
  • the reaction can be carried out in the presence of anhydrous or water (for example, 0-10 times the weight of water relative to the weight of the organic ligand compound).
  • the reaction can be carried out without other components (such as catalyst, alkaline pH, etc.) Regulators, etc.) in the presence of conditions.
  • the application provides a bimetallic hydrogenation catalyst composition, comprising the non-supported bimetallic hydrogenation catalyst according to the application and at least one organic ligand compound and/or organic solvent, wherein the organic The ligand compound is selected from C4-C20 organic carboxylic acids.
  • the C4-C20 organic carboxylic acid contained as the organic ligand compound in the bimetallic hydrogenation catalyst composition may be those specifically described in the first aspect of the present application.
  • the organic ligand compound is selected from C4-C20 normal or isomeric alkyl carboxylic acids, C6-C20 naphthenic carboxylic acids containing saturated carbocycles, C7-C20 containing Aromatic carboxylic acids of aromatic rings or combinations thereof, preferably selected from C6-C12 normal or isomeric alkyl carboxylic acids, C6-C13 naphthenic carboxylic acids containing saturated carbocycles, C7-C13 containing aromatic rings Aromatic carboxylic acids or combinations thereof, more preferably selected from succinic acid, caproic acid, adipic acid, heptanoic acid, caprylic acid, nonanoic acid, ethylhexanoic acid, oleic acid, petroleum acid, salicylic acid, benzo
  • the present application is not strictly limited to the organic solvent, as long as it can disperse the non-supported bimetallic hydrogenation catalyst or be miscible with the non-supported bimetallic hydrogenation catalyst, for example, it can be an aliphatic hydrocarbon , aromatic hydrocarbons, alicyclic hydrocarbons, halogenated hydrocarbons, alcohol solvents, ether solvents, ester solvents, ketone solvents or combinations thereof, preferably selected from toluene, gasoline, ethanol, diesel oil, or combinations thereof.
  • the content of the non-supported bimetallic hydrogenation catalyst is 50-95%, preferably 80-95%; the organic ligand compound and the organic solvent The total content is 5-50%, preferably 5-20%.
  • the composition comprises at least one organic ligand compound
  • the infrared spectrum of the composition is at 700-1000cm -1 , 1350-1450cm -1 , 1500-1100cm -1 and 1700-
  • characteristic peaks at the position of 1750cm -1 among which the characteristic peaks at the positions of 700-1000cm -1 , 1350-1450cm -1 and 1500-1610cm -1 are the characteristic peaks of coordination compounds, and the characteristic peaks at the position of 1700-1750cm -1
  • the peaks are characteristic peaks of organic ligand compounds.
  • the hydrogenation catalyst composition consists of the unsupported bimetallic hydrogenation catalyst and at least one organic ligand compound.
  • the composition of the hydrogenation catalyst composition can also be represented schematically by the formula (I), M 1 M 2 O a [R(COO) x ] b , wherein except b represents organic ligands and organic M 1 , M 2 , a, R and x are as defined above except for the molar ratio of the total amount of ligand compounds to the total amount of metals M 1 and M 2 .
  • the hydrogenation catalyst composition can also be used to contain other components that improve oil solubility, storage stability and oxidation resistance, such as organic substances with reducing functions such as formic acid, oxalic acid, formaldehyde, acetonitrile, etc. Diamine, oleylamine, etc., based on the weight of the composition, the content of the other components can be 0-80%, preferably 0-50%.
  • the application of the non-supported bimetallic hydrogenation catalyst or bimetallic hydrogenation catalyst composition according to the present application in the hydrogenation reaction of hydrocarbon-containing feedstock is provided.
  • a method for hydrotreating a hydrocarbon-containing feedstock comprising contacting a hydrocarbon-containing feedstock with the non-supported bimetallic hydrogenation catalyst or bimetallic hydrogenation catalyst composition according to the present application to carry out the hydrogenation reaction step.
  • the hydrocarbon-containing raw materials can be various unsaturated hydrocarbon compounds, such as benzene, alkylbenzene, naphthalene, alkylnaphthalene, anthracene, alkylanthracene, etc.; A mixture of compounds, such as crude oil, gasoline, diesel, wax oil, residual oil, etc.
  • the conditions of the hydrogenation reaction include a reaction temperature of 380-430°C, an initial hydrogen pressure of 5-20MPa, a fresh feed liquid hourly space velocity of 0.05-1.0h -1 , based on the entire feed catalyst concentration (in Metal meter) 50-10000 ⁇ g/g.
  • the present application provides a non-supported catalyst composition, which comprises 10-45% of hydrogenation catalyst component, 45-80% of dispersion medium and 1.0-10% of An activator, wherein the hydrogenation catalyst component is composed of the non-supported bimetallic hydrogenation catalyst of the present application and an optional organic ligand compound, wherein the organic ligand compound is selected from C4-C20 organic carboxylic acids.
  • the C4-C20 organic carboxylic acid that may be included as the organic ligand compound in the hydrogenation catalyst component may be those specifically described in the first aspect of the present application, and will not be repeated here.
  • the dispersion medium suitable for the non-supported catalyst composition can be any liquid material capable of strengthening the dissolution and dispersion of the metal-organic complex in the non-supported bimetallic hydrogenation catalyst, including but not limited to Organic solvents and petroleum fractions capable of dispersing or miscible with the catalyst.
  • the organic solvent can be selected from aliphatic hydrocarbons, aromatic hydrocarbons, alicyclic hydrocarbons, halogenated hydrocarbons, alcohol solvents, ether solvents, ester solvents, ketone solvents or combinations thereof, preferably selected from aliphatic hydrocarbons, aromatic hydrocarbons, Alicyclic hydrocarbons or their combinations, such as n-octane, cyclohexane, toluene and decahydronaphthalene, more preferably aromatic solvents.
  • the petroleum fraction can be selected from distillate oils with a distillation range of 150-524° C. or residual oil components with a boiling point > 524° C., such as solvent naphtha, AGO fractions, LCO, oil slurry, furfural extracted oil, atmospheric residue and Vacuum residue, preferably a petroleum fraction rich in aromatics.
  • the activator suitable for the non-supported catalyst composition is a substance capable of activating the M-O bond in the metal-organic complex in the non-supported bimetallic hydrogenation catalyst to form a hydrogenation active phase M-S bond , for example, can be elemental sulfur, sulfur-containing compounds, mixtures of sulfur-containing compounds, or combinations thereof, preferably selected from mercaptans, thioethers, carbon disulfide, sulfur, thiophenes, or combinations thereof.
  • the content of the hydrogenation catalyst component is 10-45%, preferably 10-30%, and the content of the dispersion medium is 45-80% %, preferably 60-80%, the content of the activator is 1.0-10%, preferably 3.0-10.0%.
  • the application of the non-supported catalyst composition of the present application in heavy oil hydro-upgrading reaction is provided.
  • the present application provides a heavy oil hydro-upgrading method, comprising, under heating conditions, making the heavy oil raw material in the presence of hydrogen and the non-supported hydrogenation catalyst composition of the present application which is optionally presulfurized The step of carrying out hydrogenation upgrading reaction.
  • the conditions of the hydrogenation upgrading reaction include: in terms of metal and based on the weight of the heavy oil feedstock, the amount of the non-supported catalyst composition is 50-10000 ⁇ g/g, preferably 50- 3000 ⁇ g/g; the initial hydrogen pressure is 5-20MPa, preferably 5-15MPa; the reaction temperature is 360-480°C, preferably 390-450°C; the liquid hourly space velocity is 0.05-2.0h -1 , preferably 0.05-1.0h -1 ; The volume ratio of hydrogen to oil is 300-2000, preferably 500-1500.
  • the metal content of the resulting product is measured using a SPECTRO ARCOS SOP plasma emission spectrometer using an inductively coupled plasma emission spectrometry (ICP-OES). -770nm.
  • the elemental composition of the resulting product is measured in the following manner: element C and H content are measured by the Italian Cara Erba EA1110 type elemental analyzer using the SH0656 method; the S element content is measured by the energy dispersive X-ray fluorescence spectrometry GB17040 method; O Element content was determined by O-content method.
  • the infrared spectrum of the obtained product was measured using a NICOLET IS50 spectrometer from Thermo Fisher Company, the measurement conditions were that the scanning wavelength was from 400 to 4000 cm -1 , and the number of scanning was 16 times.
  • the ZnSe crystal and the mercury cadmium telluride infrared detector are used together to measure the attenuated total reflectance (ATR) of the sample with a resolution of 4cm -1 .
  • Example 1 Take the compound of corresponding weight as shown in Table 1, be placed in the three-necked flask, then react under the conditions shown in Table 1, after the reaction finishes, metal compound dissolves completely in the flask of embodiment 1-5, and embodiment 6 then remains unreacted metal compound in the flask.
  • the liquid reaction products in the flasks of Examples 1-5 were poured out to obtain the target catalyst product; the product of Example 6 was filtered to remove unreacted metal compounds to obtain the target catalyst product.
  • Comparative Example 1 uses the same raw materials as Example 1, but the preparation method is slightly different.
  • the metal content of the catalyst was determined by inductively coupled plasma optical emission spectrometry (ICP-OES), the elemental composition of the catalyst was measured by a corresponding method, and the composition of the catalyst was obtained according to the measured metal content and elemental composition.
  • ICP-OES inductively coupled plasma optical emission spectrometry
  • the reaction raw materials, reaction conditions and test results used in Examples 1-6 and Comparative Example 1 are shown in Table 1.
  • the metal content of the non-supported bimetallic catalyst or bimetallic hydrogenation catalyst composition of the present application can reach 12.30-33.3%.
  • the molar ratio of the organic ligand to the total amount of the organic ligand compound relative to the total amount of the metal in the composition is 1.7-3.7.
  • the characteristic peak of the coordination between the group and the metal, and the distance between the characteristic peak at the position of 1350-1450cm -1 and the peak position of the characteristic peak at the position of 1500-1610cm -1 (that is, the difference in wave number corresponding to the peak position) greater than 145 cm -1 it indicates that there is a complex with a monodentate coordination structure in the catalyst, and the corresponding structural formula is:
  • the data in Table 1 shows that, compared with Comparative Example 1, the preparation process of Example 1 adds step 2 (ie pre-reaction at T1 temperature t1 time), and the metal content in the obtained complex is higher.
  • the data in Table 4 shows that, compared with Comparative Example 1, the storage stability of the complex prepared in Example 1 is higher.
  • the stability change value refers to the change value of the total metal content of the initial complex compared with the initial complex after storage for 3 months by elemental determination.
  • Example 1 and Example 3 were respectively dispersed in toluene to investigate the oil solubility of the non-supported hydrogenation catalyst prepared by the method of the present application.
  • the dissolution and dispersion of the products of Example 1 and Example 3 in toluene are shown in Figure 7 and Figure 8 respectively.
  • the non-supported hydrogenation catalyst synthesized by the present application is completely miscible with toluene, indicating that it has good oil solubility.
  • the product prepared in Examples 1 and 4 is used as a catalyst in the hydrogenation reaction of aromatic hydrocarbon phenanthrene, wherein tetrahydronaphthalene is used as solvent, and the mass fraction of pyrene in 10g of total reactants (pyrene+solvent) is 10%.
  • the test conditions include an initial hydrogen pressure of 9MPa, a reaction temperature of 420°C, and a reaction time of 60 minutes. Based on the weight of the total reactants, the concentration of the catalyst (calculated as metal) is 2500 ⁇ g/g.
  • the experimental results are shown in Table 5.
  • Example 1 was replaced by a conventional supported catalyst (Ni-Mo supported catalyst for residual oil hydrogenation, Mo mass content 9.3%, and Ni mass content 2.52%) according to the equivalent substitution mode of metal amount Prepared product.
  • a conventional supported catalyst Ni-Mo supported catalyst for residual oil hydrogenation, Mo mass content 9.3%, and Ni mass content 2.52%
  • the non-supported bimetallic catalyst of the present application has higher phenanthrene conversion and deep hydrogenation product yield; Increased by 72-98%.
  • the product prepared in Example 1 and the organic ligand compound (ethylhexanoic acid) are configured into a composition according to a mass ratio of 95:5, and the composition and the product prepared in Example 6 are respectively used as catalysts to catalyze the alkylaromatic dodecane
  • the experimental results are shown in Table 6.
  • the non-supported bimetallic catalyst and composition thereof of the present application can realize 100% cracking conversion rate and zero condensation rate of dodecylpyrene; compared to the product of Example 6, further adding organic
  • the catalyst composition of the ligand compound has higher hydrogen consumption, indicating that the catalyst composition of the present application has higher hydrogen activation activity than the catalyst itself, and the hydrogen consumption is higher under the same conditions.
  • Example 13 The test was carried out with reference to Example 13, and the catalyst used in Example 13 was replaced by a conventional supported catalyst (Ni-Mo supported catalyst for residual oil hydrogenation, Mo mass content 9.3%, Ni mass content 2.52%). The experimental results are shown in Table 7.
  • the non-supported bimetallic hydrogenation catalyst of the present application has a higher residue cracking rate, a lower condensation rate and a higher High distillate yield.
  • the catalyst products, dispersion medium and activator of Examples 1 and 6 were used to form a non-supported hydrogenation catalyst composition, and the content of each component in the obtained non-supported hydrogenation catalyst composition is shown in Table 8 for details.
  • the catalyst composition obtained in Example 17 was presulfurized under the conditions of reaction temperature 360° C., hydrogen initial pressure 5 MPa, and reaction time 30 minutes. After the test, the reaction product was collected.
  • the catalyst composition product of embodiment 17, 18 and 19 and the catalyst product of embodiment 1 are respectively mixed with 200g asphaltenes content is 12.8%, carbon residue value is 26.3%, and heavy metal (Ni+V) content is 220 ⁇ g/g reduction
  • the pressure residue oil B raw materials were mixed, and the vacuum residue oil hydrogenation heat conversion test was carried out in a 2L batch high-pressure reactor, the reaction temperature was 425°C, the initial hydrogen pressure was 9MPa, and the reaction time was 130min.
  • the test results are listed in Table 9. .
  • Example 21 From the comparison of the results of Example 21 and Example 20 in Table 9, it can be seen that compared with the product of Example 1 without an activator, the non-supported catalyst composition product comprising an activator in Example 17 has a slightly higher slag Oil conversion rate, higher asphaltene lightening rate and lower condensation rate, and the condensation rate is reduced by 47%, indicating that it has higher performance of inhibiting asphaltene condensation reaction.
  • the organic ligand compound (That is, the non-supported catalyst composition product of ethylhexanoic acid) has higher residual oil conversion rate and asphaltene lightening rate, and lower condensation rate.
  • Example 23 In addition, from the comparison of the results of Example 23 and Example 20 in Table 9, it can be seen that when the unsupported catalyst composition product of Example 17 is presulfurized, the conversion rate of residue oil and the lightening rate of asphaltene can be further improved , and the condensation rate is further reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

一种非负载型双金属加氢催化剂及其制备方法和应用,该催化剂是由金属中心原子或中心离子与有机配体通过配位键键合形成的配合物组成,所述催化剂具有通式(I)所示的示意性组成:M 1M 2O a[R(C00) x] b(I),其中M 1 、M2代表金属,R(C00)x代表有机配体,R代表有机配体中的炷基,C00代表有机配体中的配位基团,x代表有机配体中配位基团的个数,a;代表与金属相连的非配位键合的氧原子与金属总量的摩尔比,b代表有机配体与金属总量的摩尔比。该催化剂及其组合物用于含炷原料的加氢反应时,具有较高的油相分散性、加氢活性和目标产物选择性。

Description

非负载型双金属加氢催化剂及其制备方法和应用 技术领域
本申请涉及加氢催化剂的技术领域,具体涉及一种非负载型双金属加氢催化剂及其制备方法和应用。
背景技术
2020年中国原油对外依存度超过70%,进口的原油多为中东和南美的劣质、重质原油,其渣油所占比例超过50%。因而,有效利用石油资源,尤其是实现渣油的深度加工不仅提高石油资源利用率,也是缓解我国能源安全危机。
在原油加工过程中,负载型催化剂是含烃类化合物加工过程研究时间最早、工业应用数量最多、范围最广加氢催化剂。其由催化活性组分、辅助催化活性组分和载体三种成分构成,其中活性组分及辅助催化活性组分主要是金属,载体是氧化铝、氧化硅、高岭土、分子筛之类的硅铝材料或多孔材料。为了改善催化剂上金属活性中心的性质,使其更有利于提高催化剂的活性、选择性和稳定性,加氢催化剂发展为双金属和多金属催化剂。馏分油加氢精制催化剂多采用Mo-Ni、W-Ni加氢精制催化剂,减压馏分油加氢预处理多采用W-Mo-Ni催化剂,Mo、W、Ni等这类非贵金属加氢催化剂多以硫化物形式存在,负载在载体的孔道内。对于助金属组元的作用,有嵌入模型(Co或Ni嵌入MoS 2或WS 2的结构)、“协同模型(Co以Co 9S 8存在)”、“单层模型(MoO 3或WO 3在载体上成单层分布)”等理论来解释助金属组元对主金属硫化物结构或主金属组元在载体上的分布的影响。
由于现有的双金属催化剂都是负载型催化剂,其在烃类催化加氢反应都属于多相催化反应,需要经历七步骤:即原料分子扩散到催化剂外表面——原料分子扩散到催化剂孔道内——原料分子吸附到催化剂活性中心上——原料分子与催化剂活性发生表面催化反应——反应产物从催化剂活性中心表面脱附——反应产物从催化剂孔道内向外扩散——反应产物从催化剂外表面扩散到液相体系等。其中扩散步骤严重影响了负载型双金属催化剂加氢反应发生的概率和效率,限制了催化剂的催化活性。
为了提高催化剂的分散度和油溶性,国内外众多研究者开展了相关的研究工作。中国专利公告ZL201510275523.1公布了一种油溶性Mo-Ni双金属催化剂、制备方法及用途。该方法是将硝酸镍和钼酸铵溶于15-25倍质量的蒸馏水,并加入少量乙二醇;然后在溶液中加入氨水调节PH值至碱性后;在搅拌作用下,将上述溶液加热至在130-160℃下反应3-5h,将产物过滤得到固体中间产物;将上述固体中间产物在100℃下常压干燥后,与油酸混合,在230-260℃下反应2-4h,所得产物即为油溶性Mo-Ni双金属催化剂。催化剂双金属质量比灵活可调,加氢活性高,抑焦效果好。但该方法在第一步中需要添加额外的乙二醇和氨水,第一步得到的反应产物需要过滤得到中间产物,中间产物干燥后再进行第二步反应,制备过程复杂,过滤会产生废弃物,而且目标产物的金属含量低。
中国专利公告ZL201610862714.2公开了一种应用于加氢裂化的钼镍催化剂及制备方法。该制备方法是将六价钼源化合物与溶剂溶解分散,加入无机酸催化剂,以及C1-C5有机酸在温度40-150℃下反应0.5-10h,在步骤(1)的反应产物中加入C6-C16有机酸或C6-C16酯在温度为160-320℃条件下反应2-22h;步骤(2)的产物降温至20-80℃,加入含镍无机物,在50-95℃条件下反应3-10h,再升温至100-180℃条件下反应1-8h;分离步骤(3)所得的产物,除去溶剂相,水洗油相,减压蒸馏脱除轻组分后得到加氢裂化钼镍催化剂。该催化剂应用于重油加氢裂化反应转化率高,轻油收率高。但该制备方法步骤多,过程复杂,原料昂贵,且需要水洗反应产物,会产生大量废水,过程环保性差;合成过程中两种金属在不同时间和步骤添加,最终合成的产物无法证实是两种有机金属化合物的混合物还是形成一种有机双金属化合物。
美国专利US 7842635 B2公布了一种油溶性双金属催化剂的制备方法。该方法是将钼源化合物与有机羧酸在N 2和H 2的混合气流中反应后得到有机钼化合物;另一种金属化合物与有机羧酸反应后得到其有机金属化合物;再将两种金属按照一定比例混合得到双金属有机金属混合物。但该制备方法属于气液固三相反应,转化率较低,能耗高,产生大量三废产品。
发明内容
本申请的目的是提供一种新型的非负载型双金属加氢催化剂及其制备方法和应用,该催化剂包含有机金属配合物,其具有较高的油相分散性,催化烃类化合物加氢反应时属于均相催化反应,消除了多相催化反应的扩散步骤,从而有利于提高加氢活性。
为了实现上述目的,一方面,本申请提供了一种非负载型双金属加氢催化剂,由金属中心原子或中心离子与有机配体通过配位键键合形成的配合物组成,所述催化剂具有通式(I)所示的示意性组成:
M 1M 2O a[R(COO) x] b    (I),
其中M 1、M 2代表金属,R(COO) x代表有机配体,R代表有机配体中的烃基,COO代表有机配体中的配位基团,x代表有机配体中配位基团的个数,a代表与金属相连的非配位键合的氧原子与金属总量的摩尔比,b代表有机配体与金属总量的摩尔比,其中:
M 1和M 2彼此不同且相互独立地选自具有加氢性能的VB族金属、VIB族金属、VIII族金属和IB族金属中的一种;
R为C3-C19烃基;
x为1、2或3,优选为1或2;
a为0-5的正数,优选为1-3的正数;以及
b为1-6的正数,优选为2-5的正数,
其中所述催化剂的红外谱图在700-1000cm -1、1350-1450cm -1和1500-1610cm -1位置处具有特征峰。
另一方面,本申请提供了一种制备非负载型双金属加氢催化剂的方法,包括以下步骤:
1)将第一金属源或其分散体与有机配体化合物混合;
2)使步骤1)所得的混合物在温度T1下反应t1的时间;
3)使步骤2)所得的物料在温度T2下反应t2的时间;
4)任选地,向步骤3)所得的物料中加入第二金属源或其分散体,并使所得物料在温度T2下反应t3的时间;以及
5)收集所得液体产物,
其中所述第一和第二金属源各自独立地选自金属单质、金属氧化 物、金属氢氧化物、金属含氧酸、金属无机盐或者它们的组合,所述第一和第二金属源中的金属彼此相同或不同,且各自独立地为具有加氢性能的VB族金属、VIB族金属、VIII族金属和IB族金属中的一种或两种,
所述有机配体化合物选自C4-C20的有机羧酸或其酸酐,
所述有机配体化合物与所述第一和第二金属源中的金属总量的摩尔比为1-10∶1,
所述温度T1为50-150℃,时间t1为5-180min,
所述温度T2为100-350℃,时间t2为1-8h,
所述时间t3为1-8h,
条件是当仅采用第一金属源或者第二金属源与第一金属源中的金属相同时,所述第一金属源中的金属为具有加氢性能的VB族金属、VIB族金属、VIII族金属和IB族金属中的两种。
再一方面,本申请提供了一种双金属加氢催化剂组合物,包含所述的非负载型双金属加氢催化剂和至少一种有机配体化合物和/或有机溶剂,其中所述有机配体化合物选自C4-C20的有机羧酸,所述有机溶剂选自脂肪烃、芳香烃、脂环烃、卤代烃、醇类溶剂、醚类溶剂、酯类溶剂、酮类溶剂或者它们的组合。
又一方面,提供了对含烃原料进行加氢处理的方法,包括使含烃原料与根据本申请的非负载型双金属加氢催化剂或者双金属加氢催化剂组合物接触进行加氢反应的步骤。
又一方面,本申请提供了一种非负载型催化剂组合物,以重量计,该组合物包含10-45%的加氢催化剂组分,45-80%的分散介质和1.0-10%的活化剂,其中:
所述加氢催化剂组分由本申请的非负载型双金属加氢催化剂和任选的有机配体化合物组成,其中所述有机配体化合物选自C4-C20的有机羧酸,
所述分散介质选自有机溶剂、石油馏分或者它们的组合,所述有机溶剂选自脂肪烃、芳香烃、脂环烃、卤代烃、醇类溶剂、醚类溶剂、酯类溶剂、酮类溶剂或者它们的组合,所述石油馏分选自馏程范围在150-524℃的馏分油或沸点>524℃的渣油组分,
所述活化剂选自单质硫、含硫化合物、或者它们的组合。
又一方面,提供了本申请的非负载型催化剂组合物在重油加氢改质反应中的应用。
又一方面,本申请提供了一种重油加氢改质方法,包括在加热条件下,使重油原料在氢气和任选经过预硫化的本申请的非负载型催化剂组合物的存在下进行加氢改质反应的步骤。
本申请的非负载型双金属加氢催化剂及其组合物用于含烃原料的加氢反应中时,具有较高的油相分散性、稳定性、加氢活性和目标产物选择性。同时,本申请的催化剂制备方法所需原料少、制备工艺简单,物耗能耗低,制备过程绿色高效;所得催化剂(特别是其中所含的金属配合物)的金属含量更高,且储存稳定性更好。
本申请的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本申请的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本申请,但并不构成对本申请的限制。在附图中:
图1显示了实施例1所得产品的红外谱图;
图2显示了实施例2所得产品的红外谱图
图3显示了实施例3所得产品的红外谱图;
图4显示了实施例4所得产品的红外谱图;
图5显示了实施例5所得产品的红外谱图;
图6显示了实施例6所得产品的红外谱图;
图7显示了实施例1所得催化剂在甲苯中分散的效果图,以及
图8显示了实施例3所得催化剂在甲苯中分散的效果图。
具体实施方式
以下结合附图对本申请的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。
在本文中所披露的任何具体数值(包括数值范围的端点)都不限于该数值的精确值,而应当理解为还涵盖了接近该精确值的值,例如 在该精确值±5%范围内的所有可能的数值。并且,对于所披露的数值范围而言,在该范围的端点值之间、端点值与范围内的具体点值之间,以及各具体点值之间可以任意组合而得到一个或多个新的数值范围,这些新的数值范围也应被视为在本文中具体公开。
除非另有说明,本文所用的术语具有与本领域技术人员通常所理解的相同的含义,如果术语在本文中有定义,且其定义与本领域的通常理解不同,则以本文的定义为准。
本申请中,除了明确说明的内容之外,未提到的任何事宜或事项均直接适用本领域已知的方面而无需进行任何改变。而且,本文描述的任何实施方式均可以与本文描述的一种或多种其他实施方式自由结合,由此形成的技术方案或技术思想均视为本申请原始公开或原始记载的一部分,而不应被视为是本文未曾披露或预期过的新内容,除非本领域技术人员认为该结合明显不合理。
在本文中提及的所有专利和非专利文献,包括但不限于教科书和期刊文章等,均通过引用方式全文并入本文。
如上所述,在第一方面,本申请提供了一种非负载型双金属加氢催化剂,由金属中心原子或中心离子与有机配体通过配位键键合形成的配合物组成,其中所述金属选自具有加氢性能的VB族金属、VIB族金属、VIII族金属和IB族金属中的两种,所述有机配体包含烃基部分和配位基团部分,其中所述配位基团为-C(=O)-O基团,并通过氧原子与所述金属中心原子或中心离子形成配位键,所述催化剂具有式(I)所示的示意性组成:
M 1M 2O a[R(COO) x] b     (I),
其中M 1、M 2代表金属,R(COO) x代表有机配体,R代表有机配体中的烃基,COO代表有机配体中的配位基团,x代表有机配体中配位基团的个数,a代表与金属相连的非配位键合的氧原子与金属总量的摩尔比,b代表有机配体与金属总量的摩尔比,其中:
M 1和M 2彼此不同且相互独立地选自具有加氢性能的VB族金属、VIB族金属、VIII族金属和IB族金属中的一种;
R为C3-C19烃基,优选选自C5-C11正构烷基、C5-C11异构烷基、 C5-C12含环烷基和C6-C12芳基;
x为1、2或3,优选为1或2;
a为0-5的正数,优选为1-3的正数;以及
b为1-6的正数,优选为2-5的正数,
其中所述催化剂的红外谱图在700-1000cm -1、1350-1450cm -1和1500-1610cm -1位置处具有特征峰。
根据本申请,所述非负载型双金属加氢催化剂仅由所述配合物组成,而不含任何的固体载体组分。但是,根据需要,本申请的非负载型双金属加氢催化剂也可以与能够使所述催化剂分散的液体组分,如有机溶剂和有机配体化合物,形成的组合物形式存在和使用。
根据本申请,取决于所用的金属,在本申请的配合物中,所述具有加氢性能的VB族金属、VIB族金属、VIII族金属和IB族金属可以是中心原子或中心离子或者中心离子的形式。
根据本申请,所述非负载型双金属加氢催化剂可以是多种不同配合物的混合物,所述催化剂组成中氧原子和有机配体与所述金属总量(即金属M 1和M 2的总量)的摩尔比a和b是基于金属含量和元素组成分析等得到的计算值,因而可以是非整数。此外,所述组成中M 1和M 2仅表示存在哪些金属而不表示各金属之间的摩尔比例关系。
在优选的实施方式中,所述催化剂中的至少部分配合物具有式(I-1)所示的结构:
Figure PCTCN2022126700-appb-000001
其中M 1和M 2代表金属,它们彼此不同且相互独立地选自具有加氢性能的VB族金属、VIB族金属、VIII族金属和IB族金属中的一种;
→代表配位键;
R为C3-C19烃基,优选选自C5-C11正构烷基、C5-C11异构烷基、C5-C12含环烷基和C6-C12芳基;
x为有机配体中配位基团的个数,且为1或2,优选为1;
n代表配位数,且为1-6的正数,优选为2-5的正数;
y代表连接金属M 1和金属M 2的非配位键合的氧原子个数,且为0或1,优选为1;以及
z代表仅与金属M 2相连的非配位键合的氧原子个数,且为0-2的正数,优选为0或1。
在优选的实施方式中,所述催化剂的红外谱图在1350-1450cm -1位置处的一个特征峰与在1500-1610cm -1位置处的一个特征峰的峰顶位置的间距大于145cm -1
在优选的实施方式中,所述具有加氢性能的VB族金属、VIB族金属、VIII族金属和IB族金属选自V、Cr、Mo、W、Fe、Co、Ru、Ni、Cu和Pd,更优选选自Mo、Ni、W、Fe、V和Co。
在本申请中,术语“C3-C19烃基”指具有3-19个碳原子的烃基,所述烃基可以是饱和或不饱和的,直链、支链或具有碳环的烃基,包括但不限于C3-C19正构烷基、C3-C19异构烷基、C5-C19含环烷基和C6-C19芳基。
在本申请中,术语“C3-C19正构烷基”指具有3-19个碳原子的直链烷基,优选5-11个碳原子的直链烷基,例如正戊基、正己基、正庚基、正辛基、正壬基、正癸基、正十一基。
在本申请中,术语“C3-C19异构烷基”指具有3-19个碳原子的支链烷基,优选5-11个碳原子的异构烷基,例如异戊基、异己基、异庚基、异辛基、异壬基、异癸基、异十一烷基。
在本申请中,术语“C5-C19含环烷基”指具有5-19个碳原子的包含饱和碳环的饱和烃基基团,优选5-12个碳原子的含环烷基,例如环戊基、环己基、甲基环己基、十氢萘基、甲基十氢萘基、乙基十氢萘基等。
在本申请中,术语“C6-C19芳基”指具有6-19个碳原子的包含芳环的基团,例如苯基、萘基、蒽基、对甲苯基、苄基、甲基萘基、甲基蒽基等,优选6-12个碳原子的芳基。
根据本申请,所述C3-C19烃基、C3-C19正构烷基、C3-C19异构烷基、C5-C19含环烷基和C6-C19芳基可以是任选取代的,例如可以是未取代的,或者可以被一个或多个选自卤代、硝基、磺酸基等的基团取代。
在优选的实施方式中,所述配合物中的有机配体源自C4-C20的有机羧酸,优选源自C4-C20的正构或异构烷基羧酸、C6-C20的包含饱和碳环的环烷羧酸和C7-C20的包含芳环的芳香羧酸中的一种或多种,更优选源自C6-C12的正构或异构烷基羧酸、C6-C13的包含饱和碳环的环烷羧酸和C7-C13的包含芳环的芳香羧酸种的一种或多种,进一步优选源自丁二酸、己酸、己二酸、庚酸、辛酸、壬酸、乙基己酸、油酸、石油酸、水杨酸、苯甲酸和苯乙酸中的一种或多种。
在优选的实施方式中,以金属计并以催化剂的重量为基准,所述非负载型双金属加氢催化剂中的金属含量为5-35%,优选8-30%,更优选10-25%,特别优选10-20%。
在优选的实施方式中,所述非负载型双金属加氢催化剂通过使具有加氢性能的VB族金属、VIB族金属、VIII族金属、IB族金属、其氧化物、其氢氧化物、其金属含氧酸和/或其金属无机盐与有机配体化合物直接反应得到,其中所述有机配体化合物选自C4-C20的有机羧酸,优选选自C4-C20的正构或异构烷基羧酸、C6-C20的包含饱和碳环的环烷羧酸、C7-C20的包含芳环的芳香羧酸或者它们的组合。
根据本申请,所述“C4-C20的正构烷基羧酸”是指在直链烷烃上链接一个或多个羧基得到的具有4-20个碳原子的羧酸,例如丁酸、丁二酸、戊酸、己酸、己二酸、庚酸、辛酸、壬酸、乙基己酸、十三烷酸、油酸等。
根据本申请,所述“C4-C20的异构烷基羧酸”是指在支链烷烃上链接一个或多个羧基得到的具有4-20个碳原子的羧酸,例如异丁酸、异戊酸、异己酸、乙基己酸。
根据本申请,所述“C6-C20的包含饱和碳环的环烷羧酸”是指在包含饱和碳环的烷烃化合物上链接一个或多个羧基得到的具有6-20个碳原子的羧酸,例如环己酸、环己基二酸、十氢化萘酸、十氢化萘二酸。
根据本申请,所述“C7-C20的包含芳环的芳香羧酸”是指在芳烃,即包含芳环的烃类化合物,上链接一个或多个羧基得到的具有7-20个碳原子的羧酸,例如苯甲酸、苯乙酸、苯二甲酸、苯丙酸。
在进一步优选的实施方式中,所述有机配体化合物选自C6-C12的正构或异构烷基羧酸、C6-C13的包含饱和碳环的环烷羧酸、C7-C13 的包含芳环的芳香羧酸或者它们的组合,更进一步优选选自丁二酸、己酸、己二酸、庚酸、辛酸、壬酸、乙基己酸、油酸、石油酸、水杨酸、苯甲酸、苯乙酸或者它们的组合。
在第二方面,本申请提供了一种制备非负载型双金属加氢催化剂的方法,包括以下步骤:
1)将第一金属源或其分散体与有机配体化合物混合;
2)使步骤1)所得的混合物在温度T1下反应t1的时间;
3)使步骤2)所得的物料在温度T2下反应t2的时间;
4)任选地,向步骤3)所得的物料中加入第二金属源或其分散体,并使所得物料在温度T2下反应t3的时间;以及
5)收集所得液体产物,
其中所述第一和第二金属源各自独立地选自金属单质、金属氧化物、金属氢氧化物、金属含氧酸、金属无机盐或者它们的组合,所述第一和第二金属源中的金属彼此相同或不同,且各自独立地为具有加氢性能的VB族金属、VIB族金属、VIII族金属和IB族金属中的一种或两种,
所述有机配体化合物选自C4-C20的有机羧酸或其酸酐,
所述有机配体化合物与所述第一和第二金属源中的金属总量的摩尔比为1∶1-10,
所述温度T1为50-150℃,优选80-120℃,时间t1为5-180min,优选10-150min,
所述温度T2为100-350℃,优选160-260℃,时间t2为1-8h,优选2-5h,
所述时间t3为1-8h,优选2-5h,
条件是当仅采用第一金属源或者第二金属源与第一金属源中的金属相同时,所述第一金属源中的金属为具有加氢性能的VB族金属、VIB族金属、VIII族金属和IB族金属中的两种。
本申请的催化剂制备方法通过增加预反应步骤2)(即在T1温度预反应t1时间),可以使所得金属配合物中金属含量更高,并且储存稳定性更好。
根据本申请,步骤2)、3)和4)对所用的压力和反应气氛并没有严格的要求,例如反应压力可以为常压,反应气氛可以为空气、氮气 或惰性气氛。
在优选的实施方式中,步骤1)所得的混合物由所述第一金属源和所述有机配体化合物组成;或者由所述第一金属源、用于分散所述第一金属源的分散介质和所述有机配体化合物组成。
根据本申请,步骤1)中作为有机配体化合物使用的C4-C20的有机羧酸可以是本申请第一方面中具体描述的那些。例如,在优选的实施方式中,所述有机配体化合物选自C4-C20的正构或异构烷基羧酸、C6-C20的包含饱和碳环的环烷羧酸、C7-C20的包含芳环的芳香羧酸或者它们的组合,优选选自C6-C12的正构或异构烷基羧酸、C6-C13的包含饱和碳环的环烷羧酸、C7-C13的包含芳环的芳香羧酸或者它们的组合,更优选选自丁二酸、己酸、己二酸、庚酸、辛酸、壬酸、乙基己酸、油酸、石油酸、水杨酸、苯甲酸、苯乙酸或者它们的组合。
根据本申请,所述第一和第二金属源可以各自独立地包含一种或两种具有加氢性能的VB族金属、VIB族金属、VIII族金属或IB族金属。当包含两种所述金属时,所述第一和第二金属源可以各自独立地为包含所述两种金属的单一金属源,或者为两种或更多种分别包含一种或两种所述金属的金属源的混合物。
在优选的实施方式中,当采用步骤4)时,所述第二金属源中的至少部分金属不同于所述第一金属源中的金属,例如所述第一金属源中包含一种金属,而所述第二金属源中包含与之不同的另一种金属,或者所述第一金属源中包含一种金属,而所述第二金属源中包含两种金属,其中一种与第一金属源中的金属相同。进一步优选地,所述第一金属源和第二金属源各自包含一种金属,且两者所含的金属不同。
根据本申请,以金属计,所述第一金属源和第二金属源用量的摩尔比可以为任意比例,本申请对此并没有严格的限制,在优选的实施方式中第一金属源和第二金属源的用量比为1∶1-5。
在某些具体实施方式中,所述方法包括以下步骤:
i)将第一金属源分散到分散介质中得到第一金属源分散体;
ii)在步骤1)所得的分散体中加入有机配体化合物,加热升温至温度T1,并在温度T1下反应t1的时间;
iii)将步骤ii)所得的物料加热升温至温度T2,并在温度T2下反应t2的时间;以及
iv)反应结束后降温,并收集所得液体产物。
在另一些具体实施方式中,所述方法包括以下步骤:
i)将第一金属源直接分散到有机配体化合物中;
ii)将步骤i)所得的混合物加热升温至温度T1,并在温度T1下反应t1的时间;
iii)将步骤ii)所得的物料加热升温至温度T2,并在温度T2下反应t2的时间;以及
iv)反应结束后降温,并收集所得液体产物。
在另一些具体实施方式中,所述方法包括以下步骤:
a)将第一金属源或其分散体加入到有机配体化合物中;
b)将步骤a)所得的混合物加热升温至温度T1,并在温度T1下反应t1的时间;
c)将步骤b)所得的物料加热升温至温度T2,并在温度T2下反应t2的时间;
d)向步骤c)所得的物料中加入第二金属源,并在温度T2下反应t3的时间;以及
e)反应结束后降温,并收集所得液体产物。
根据本申请的制备方法,所述金属无机盐可以是所述金属的无机酸盐,如氯化物、硫化物、硫酸盐、硝酸盐、碳酸盐等,或者是所述金属的金属含氧酸盐,如金属含氧酸铵。在优选的实施方式中,所述第一和第二金属源各自独立地选自金属氧化物、金属氢氧化物、金属氯化物、金属硫化物、金属硫酸盐、金属硝酸盐、金属碳酸盐、金属含氧酸、金属含氧酸盐,或者它们的组合,例如选自V、Mo、W、Fe、Co、Ni、Cu和Zn的氧化物、氢氧化物、氯化物、硫化物、硫酸盐、硝酸盐和碳酸盐,钼酸、钨酸、各种形式的钼酸铵、钨酸铵,或者它们的组合。
根据本申请的制备方法,所述金属源的分散体中的分散介质可以为无机分散介质或者有机分散介质,所述无机分散介质可以选自水、碳酸、盐酸、硫酸或磷酸;所述有机分散介质可以选自脂肪烃、芳香烃、脂环烃、卤代烃、醇类溶剂、醚类溶剂、酯类溶剂、酮类溶剂或者它们的组合,更优选选自乙醇、甲苯、二甲苯、石油醚、汽油、柴油、或它们的组合。
在优选的实施方式中,所述第一金属源分散体中分散介质与所述第一金属源的重量比和所述第二金属源分散体中分散介质与所述其它金属源的重量比各自独立地为1-25∶1,更优选2-8∶1。
在优选的实施方式中,以金属计,所述第一金属源和第二金属源用量的摩尔比为1∶1-5。
根据本申请,所述反应步骤对反应压力和反应气氛并没有严格的要求,例如反应压力可以为常压,反应气氛可以为空气、氮气或惰性气氛。
根据本申请,所述反应可以在无水或有水(例如相对于有机配体化合物重量为0-10倍重量的水)存在的条件下进行。
根据本申请,所述反应可以在除所述金属源、有机配体化合物和可选的溶剂(如水和甲苯、乙醇、柴油等有机溶剂)之外,没有其他组分(如催化剂、碱性pH调节剂等)存在的条件下进行。
在第三方面,本申请提供了一种双金属加氢催化剂组合物,包含根据本申请的非负载型双金属加氢催化剂和至少一种有机配体化合物和/或有机溶剂,其中所述有机配体化合物选自C4-C20的有机羧酸。
根据本申请,所述双金属加氢催化剂组合物中包含作为有机配体化合物的C4-C20的有机羧酸可以是本申请第一方面中具体描述的那些。例如,在优选的实施方式中,所述有机配体化合物选自C4-C20的正构或异构烷基羧酸、C6-C20的包含饱和碳环的环烷羧酸、C7-C20的包含芳环的芳香羧酸或者它们的组合,优选选自C6-C12的正构或异构烷基羧酸、C6-C13的包含饱和碳环的环烷羧酸、C7-C13的包含芳环的芳香羧酸或者它们的组合,更优选选自丁二酸、己酸、己二酸、庚酸、辛酸、壬酸、乙基己酸、油酸、石油酸、水杨酸、苯甲酸、苯乙酸或者它们的组合。
本申请对所述有机溶剂并没有严格的限制,只要其能够使所述非负载型双金属加氢催化剂分散或者与所述非负载型双金属加氢催化剂混溶即可,例如可以是脂肪烃、芳香烃、脂环烃、卤代烃、醇类溶剂、醚类溶剂、酯类溶剂、酮类溶剂或者它们的组合,优选选自甲苯、汽油、乙醇、柴油,或者它们的组合。
在优选的实施方式中,以所述组合物的重量为基准,所述非负载型双金属加氢催化剂的含量为50-95%,优选80-95%;所述有机配体化 合物和有机溶剂的总含量为5-50%,优选5-20%。
在优选的实施方式中,所述组合物包含至少一种有机配体化合物,且所述组合物的红外谱图在700-1000cm -1、1350-1450cm -1、1500-1100cm -1和1700-1750cm -1位置处具有特征峰,其中在700-1000cm -1、1350-1450cm -1和1500-1610cm -1位置处的特征峰为配位化合物的特征峰,1700-1750cm -1位置处的特征峰为有机配体化合物的特征峰。
在进一步优选的实施方式中,所述加氢催化剂组合物由所述非负载型双金属加氢催化剂和至少一种有机配体化合物组成。此时,所述加氢催化剂组合物的组成也可以示意性地用式(I),M 1M 2O a[R(COO) x] b,来表示,其中除b表示有机配体和有机配体化合物的总量与金属M 1和M 2总量的摩尔比之外,M 1、M 2、a、R和x的定义如前所述。
在某些实施方式中,所述加氢催化剂组合物还可以用于包含提高油溶性能、储存稳定性能以及抗氧化性能的其他组分,例如具有还原功能的有机物如甲酸、草酸、甲醛、乙二胺、油胺等,以所述组合物的重量为基准,所述其他组分的含量可以为0-80%,优选0-50%。
在第四方面,提供了根据本申请的非负载型双金属加氢催化剂或者双金属加氢催化剂组合物在含烃原料的加氢反应中的应用。
在第五方面,提供了对含烃原料进行加氢处理的方法,包括使含烃原料与根据本申请的非负载型双金属加氢催化剂或者双金属加氢催化剂组合物接触进行加氢反应的步骤。
根据本申请,所述含烃原料可以是各种不饱和的烃类化合物,如苯、烷基苯、萘、烷基萘、蒽、烷基蒽等;也可以是各种包含不饱和烃类化合物的混合物,如原油、汽油、柴油、蜡油、渣油等。
在优选的实施方式中,所述加氢反应的条件包括反应温度380-430℃、初始氢压5-20MPa、新鲜进料液时空速0.05-1.0h -1、基于整个进料催化剂浓度(以金属计)50-10000μg/g。
在第六方面,本申请提供了一种非负载型催化剂组合物,以重量计,该组合物包含10-45%的加氢催化剂组分,45-80%的分散介质和1.0-10%的活化剂,其中所述加氢催化剂组分由本申请的非负载型双金属加氢催化剂和任选的有机配体化合物组成,其中所述有机配体化合物选自C4-C20的有机羧酸。
根据本申请,所述加氢催化剂组分中可能包含作为所述有机配体 化合物的C4-C20的有机羧酸可以是本申请第一方面中具体描述的那些,在此不再赘述。
根据本申请,适用于所述非负载型催化剂组合物的分散介质可以是任何能够强化所述非负载型双金属加氢催化剂中的金属有机配合物的溶解、分散的液体材料,包括但不限于能够使所述催化剂分散或者与所述催化剂混溶的有机溶剂和石油馏分。所述有机溶剂可以选自脂肪烃、芳香烃、脂环烃、卤代烃、醇类溶剂、醚类溶剂、酯类溶剂、酮类溶剂或者它们的组合,优选选自脂肪烃、芳香烃、脂环烃或者它们的组合,例如正辛烷、环己烷、甲苯和十氢萘,更优选芳烃溶剂。所述石油馏分可以选自馏程范围在150-524℃的馏分油或沸点>524℃的渣油组分,例如溶剂汽油、AGO馏分、LCO、油浆、糠醛抽出油、常压渣油和减压渣油,优选富含芳烃的石油馏分。
根据本申请,适用于所述非负载型催化剂组合物的活化剂是能够激活所述非负载型双金属加氢催化剂中的金属有机配合物中的M-O键,形成加氢活性相M-S键的物质,例如可以为单质硫、含硫化合物、含硫化合物的混合物,或者它们的组合,优选选自硫醇、硫醚、二硫化碳、硫磺、噻吩类化合物,或者它们的组合。
在优选的实施方式中,以所述非负载型催化剂组合物的重量为基准,所述加氢催化剂组分的含量为10-45%,优选10-30%,分散介质的含量为45-80%,优选60-80%,活化剂的含量为1.0-10%,优选3.0-10.0%。
在第七方面,提供了本申请的非负载型催化剂组合物在重油加氢改质反应中的应用。
在第八方面,本申请提供了一种重油加氢改质方法,包括在加热条件下,使重油原料在氢气和任选经过预硫化的本申请的非负载型加氢催化剂组合物的存在下进行加氢改质反应的步骤。
在优选的实施方式中,所述加氢改质反应的条件包括:以金属计并以重油原料的重量为基准,所述非负载型催化剂组合物的用量为50-10000μg/g,优选50-3000μg/g;初始氢气压力为5-20MPa,优选5-15MPa;反应温度为360-480℃,优选390-450℃;液时空速为0.05-2.0h -1,优选0.05-1.0h -1;氢油体积比为300-2000,优选500-1500。
实施例
以下通过实施例对本申请作进一步的详细说明,但本申请并不限于此。以下实施例中,如无特殊说明,所用试剂和原料均为市售产品,纯度为化学纯。
以下实施例中,所得产品的金属含量使用SPECTRO ARCOS SOP等离子体发射光谱仪采用电感耦合等离子体发射光谱法(ICP-OES)测定,测定条件为光室密闭充氩气,垂直观测,波长范围为130-770nm。
以下实施例中,所得产品的元素组成通过如下方式测定:元素C、H含量由意大利Cara Erba EA1110型元素分析仪、采用SH0656方法测定;S元素含量采用能量色散X荧光光谱法GB17040方法测定;O元素含量采用O-content方法测定。
以下实施例中,所得产品的红外谱图使用Thermo Fisher公司NICOLET IS50光谱仪测定,测定条件为扫描波长从400-4000cm -1,扫描次数为16次。ZnSe晶体和碲镉汞红外探测器一起用来测样品的衰减全反射比(ATR),分辨率4cm -1
实施例1-6和对比例1
按照表1所示称取相应重量的化合物,放置在三口烧瓶中,然后在表1所示的条件下进行反应,反应结束后,实施例1-5的烧瓶中金属化合物完全溶解,而实施例6的烧瓶中则残留有未反应的金属化合物。将实施例1-5烧瓶中的液体反应产物倒出,得到目标催化剂产品;实施例6的产物经过过滤将未反应的金属化合物去除后,得到目标催化剂产品。对比例1与实施例1采用相同的原料,在制备方法上略有不同。采用电感耦合等离子体发射光谱法(ICP-OES)测定催化剂的金属含量,采用相应方法测量催化剂的元素组成,并根据测得的金属含量和元素组成结果得到催化剂的组成。实施例1-6和对比例1所用的反应原料、反应条件和试验结果见表1。
Figure PCTCN2022126700-appb-000002
Figure PCTCN2022126700-appb-000003
如表1所示,本申请的非负载型双金属催化剂或双金属加氢催化剂组合物的金属含量可达12.30-33.3%,催化剂组成中有机配体相对于金属总量的摩尔比或催化剂组合物组成中有机配体与有机配体化合物总量相对于金属总量的摩尔比为1.7-3.7。
实施例1所得产品的元素分析结果如表2所示,由表2数据计算所得产品组成(MoNi)O a(i-C 7H 16COO) b中的a、b值,其中b=0.54/(0.10+0.10)=2.70,a=(1.26-2.0×0.54)/0.20=0.9。
表2实施例1所得产品的元素分析结果
元素 质量含量/% 摩尔含量/% 折合成相应基团的摩尔数
C 51.84 4.32 4.32/8=0.54
H 8.74 8.74 8.74/16=0.54
O 20.23 1.26 1.26
Mo 9.94 0.10 0.10
Ni 6.01 0.10 0.10
实施例3所得催化剂的元素分析结果如表3所示,由表3数据可以计算催化剂组成(MoCo)O a(C 7H 16COO) b中的a、b值,其中b=0.54/(0.11+0.11)=2.45,a=(1.36-2.0×0.54)/0.22=1.27。
表3实施例3所得催化剂的元素分析结果
元素 质量含量/% 摩尔含量/% 折合成相应基团的摩尔数
C 51.85 4.32 4.32/8=0.54
H 8.64 8.64 8.64/16=0.54
O 21.79 1.36 1.36
Mo 10.56 0.11 0.11
Co 6.38 0.11 0.11
实施例1-6所得催化剂的IR谱图如图1-6所示,从图1-6中可以明显看出,所有实施例的催化剂均在700-1000cm -1、1350-1450cm -1和1500-1610cm -1位置处具有特征峰。
如图1所示,实施例1的催化剂分别在700-1000cm -1位置处具有M-O振动特征峰,并且在1350-1450cm -1以及1500-1610cm -1位置处具有-C(=O)-O基团与金属配位的特征峰,且1350-1450cm -1位置处的特征峰与1500-1610cm -1位置处的特征峰的峰顶位置的间距(即峰顶位置对应的波数的差值)大于145cm -1,表明所述催化剂中存在具有单齿配合结构的配合物,对应的结构式为:
Figure PCTCN2022126700-appb-000004
表1数据显示,相比于对比例1,实施例1的制备过程增加了步骤2(即在T1温度预反应t1时间),所得的配合物中金属含量更高。表4的数据显示,相比于对比例1,实施例1制备的配合物的储存稳定性更高。
表4配合物储存3个月后的稳定性变化值
催化剂 实施例1 对比例1
储存前总金属含量 15.95% 14.56%
储存后总金属含量 >15.75% 14%
稳定性变化值*/百分点 <0.2 0.56
*注:稳定性变化值是指通过元素测定配合物储存3个月后相比初始配合物的总金属含量变化值。
实施例7-8
将实施例1及实施例3获得的催化剂产品分别分散在甲苯中,考察本申请方法制备的非负载型加氢催化剂的油溶性。实施例1和实施例3的产品在甲苯中的溶解、分散情况分别见图7和图8。由图可知,本申请合成的非负载型加氢催化剂与甲苯完全互溶,表明其具有很好的油溶性。
实施例9-10
将实施例1和4制备的产品作为催化剂应用于芳烃菲的加氢反应,其中以四氢萘作为溶剂,10g总反应物(芘+溶剂)中芘的质量分数为10%,在100ml全返混的高压反应釜内反应,试验条件包括初始氢压9MPa、反应温度为420℃、反应时间为60min,以总反应物的重量为基准,催化剂的浓度(以金属计)为2500μg/g。实验结果如表5所示。
对比例2
参照实施例9进行试验,区别只是按照金属量等量替代方式,以常规负载型催化剂(渣油加氢Ni-Mo负载型催化剂,Mo质量含量9.3%,Ni质量含量2.52%)替代实施例1制备的产品。实验结果如表5所示。
表5实施例9-10和对比例2的反应结果
Figure PCTCN2022126700-appb-000005
由表5的结果可知,相比于负载型催化剂,本申请的非负载型双金属催化剂具有更高的菲转化率和深度加氢产物收率;相比于负载型催化剂,菲加氢摩尔数增加了72-98%。
实施例11-12
将实施例1制备的产品与有机配体化合物(乙基己酸)按照质量比95∶5配置成组合物,分别以该组合物以及实施例6制备的产品作为催化剂,催化烷基芳烃十二烷基芘的临氢裂化反应,其中以十氢萘作为溶剂,10g总反应物(十二烷基芘+溶剂)中十二烷基芘的质量分数 为10%,在100ml高压反应釜内反应,试验条件包括初始氢压9MPa、反应温度为420℃、反应时间为60min,以总反应物的重量为基准,催化剂浓度(以金属计)为2500μg/g。实验结果如表6所示。
表6实施例11-12的反应结果
Figure PCTCN2022126700-appb-000006
由表6的结果可知,本申请的非负载型双金属催化剂及其组合物可以实现十二烷基芘的100%裂化转化率和零缩合率;相比于实施例6的产品,进一步添加有机配体化合物的催化剂组合物具有更高的氢耗,表明本申请的催化剂组合物相比催化剂本身具有更高的活化氢活性,相同条件下氢耗量更高。
实施例13-15
以200g沥青质含量为14%,残炭值为26.4%,重金属(Ni+V)含量为210μg/g的减压渣油A为原料,在2L容积的间歇高压反应釜内、在表7所示的催化剂和反应条件下进行渣油催化临氢热转化试验。实验结果如表7所示。
对比例3
参照实施例13进行试验,以常规负载型催化剂(渣油加氢Ni-Mo负载型催化剂,Mo质量含量9.3%,Ni质量含量2.52%)替代实施例13所用的催化剂。实验结果如表7所示。
表7实施例13-15和对比例3的反应结果
Figure PCTCN2022126700-appb-000007
由表7的结果可知,相比于常规的负载型催化剂,在相同的反应条件下,本申请的非负载型双金属加氢催化剂具有更高的渣油裂化率、更低的缩合率和更高的馏分油收率。
实施例16-18
以实施例1和6的催化剂产品、分散介质以及活化剂形成非负载型加氢催化剂组合物,所得非负载型加氢催化剂组合物中各组分的含量详见表8。
表8实施例16-18所得催化剂组合物的组成
Figure PCTCN2022126700-appb-000008
实施例19
将实施例17所得的催化剂组合物在反应温度360℃、氢初始压力5MPa、反应时间30min的条件下进行预硫化处理,试验结束后收集反应产物。
实施例20-23
将实施例17、18和19的催化剂组合物产品以及实施例1的催化剂产品分别与200g沥青质含量为12.8%,残炭值为26.3%,重金属(Ni+V)含量为220μg/g的减压渣油B原料混合,在2L容积的间歇高压反应釜内、反应温度425℃,初始氢气压力9MPa,反应时间130min的条件下进行减压渣油临氢热转化试验,试验结果列于表9。
表9实施例20-23的反应条件和结果
Figure PCTCN2022126700-appb-000009
由表9中实施例21与实施例20的结果比较可知,与不含活化剂的实施例1的产品相比,实施例17的包含活化剂的非负载型催化剂组合物产品具有略高的渣油转化率、更高的沥青质轻质化率及更低的缩合率,且缩合率降低了47%,表明其具有更高的抑制沥青质缩合反应的性能。
同时,由表9中实施例22与实施例20的结果比较可知,与不含有机配体化合物的实施例18的非负载型催化剂组合物产品相比,实施例17的包含有机配体化合物(即乙基己酸)的非负载型催化剂组合物产品具有更高的渣油转化率和沥青质轻质化率,以及更低的缩合率。
此外,由表9中实施例23与实施例20的结果比较可知,当实施例17的非负载型催化剂组合物产品经过预硫化处理后,可以进一步提高渣油转化率和沥青质轻质化率,同时缩合率也进一步降低。
以上详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。
此外,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。

Claims (22)

  1. 一种非负载型双金属加氢催化剂,由金属中心原子或中心离子与有机配体通过配位键键合形成的配合物组成,所述催化剂具有通式(I)所示的示意性组成:
    M 1M 2O a[R(COO) x] b  (I),
    其中M 1、M 2代表金属,R(COO) x代表有机配体,R代表有机配体中的烃基,COO代表有机配体中的配位基团,x代表有机配体中配位基团的个数,a代表与金属相连的非配位键合的氧原子与金属总量的摩尔比,b代表有机配体与金属总量的摩尔比,其中:
    M 1和M 2彼此不同且相互独立地选自具有加氢性能的VB族金属、VIB族金属、VIII族金属和IB族金属中的一种;
    R为C3-C19烃基,优选选自C5-C11正构烷基、C5-C11异构烷基、C5-C12含环烷基和C6-C12芳基;
    x为1、2或3,优选为1或2;
    a为0-5的正数,优选为1-3的正数;以及
    b为1-6的正数,优选为2-5的正数,
    其中所述催化剂的红外谱图在700-1000cm -1、1350-1450cm -1和1500-1610cm -1位置处具有特征峰。
  2. 根据权利要求1所述的非负载型双金属加氢催化剂,其中所述催化剂中的至少部分配合物具有式(I-1)所示的结构:
    Figure PCTCN2022126700-appb-100001
    其中M 1、M 2、R和x的定义如前所述;
    →代表配位键;
    x代表有机配体中配位基团的个数,且为1或2,优选为1;
    n代表配位数,且为1-6的正数,优选为2-5的正数;
    y代表连接金属M 1和金属M 2的非配位键合的氧原子个数,且为0或1,优选为1;以及
    z代表仅与金属M 2相连的非配位键合的氧原子个数,且为0-2的正数,优选为0或1。
  3. 根据权利要求1或2所述的非负载型双金属加氢催化剂,其中所述催化剂的红外谱图在1350-1450cm -1位置处的一个特征峰与在1500-1610cm -1位置处的一个特征峰的峰顶位置的间距大于145cm -1
  4. 根据权利要求1-3中任一项所述的非负载型双金属加氢催化剂,其中所述具有加氢性能的VB族金属、VIB族金属、VIII族金属和IB族金属选自V、Cr、Mo、W、Fe、Co、Ru、Ni、Cu和Pd,优选选自Mo、Ni、W、Fe、V和Co。
  5. 根据权利要求1-4中任一项所述的非负载型双金属加氢催化剂,其中所述的有机配体源自C4-C20的有机羧酸,优选源自C4-C20的正构或异构烷基羧酸、C6-C20的包含饱和碳环的环烷羧酸和C7-C20的包含芳环的芳香羧酸中的一种或多种,更优选源自C6-C12的正构或异构烷基羧酸、C6-C13的包含饱和碳环的环烷羧酸和C7-C13的包含芳环的芳香羧酸中的一种或多种,进一步优选源自丁二酸、己酸、己二酸、庚酸、辛酸、壬酸、乙基己酸、油酸、石油酸、水杨酸、苯甲酸和苯乙酸中的一种或多种。
  6. 根据权利要求1-5中任一项所述的非负载型双金属加氢催化剂,其中以金属计并以催化剂的重量为基准,所述催化剂的金属含量为5-35%,优选8-30%,更优选10-25%,特别优选10-20%。
  7. 根据权利要求1-6中任一项所述的非负载型双金属加氢催化剂的制备方法,包括以下步骤:
    1)将第一金属源或其分散体与有机配体化合物混合;
    2)使步骤1)所得的混合物在温度T1下反应t1的时间;
    3)使步骤2)所得的物料在温度T2下反应t2的时间;
    4)任选地,向步骤3)所得的物料中加入第二金属源或其分散体,并使所得物料在温度T2下反应t3的时间;以及
    5)收集所得液体产物,
    其中所述第一和第二金属源各自独立地选自金属单质、金属氧化 物、金属氢氧化物、金属含氧酸、金属无机盐或者它们的组合,所述第一和第二金属源中的金属彼此相同或不同,且各自独立地为具有加氢性能的VB族金属、VIB族金属、VIII族金属和IB族金属中的一种或两种,
    所述有机配体化合物选自C4-C20的有机羧酸或其酸酐,优选选自C4-C20的正构或异构烷基羧酸、C6-C20的包含饱和碳环的环烷羧酸、C7-C20的包含芳环的芳香羧酸、它们的酸酐或者它们的组合,
    所述有机配体化合物与所述第一和第二金属源中的金属总量的摩尔比为1-10∶1,
    所述温度T1为50-150℃,优选80-120℃,时间t1为5-180min,优选10-150min,
    所述温度T2为100-350℃,优选160-260℃,时间t2为1-8h,优选2-5h,
    所述时间t3为1-8h,优选2-5h,
    条件是当仅采用第一金属源或者第二金属源与第一金属源中的金属相同时,所述第一金属源中的金属为具有加氢性能的VB族金属、VIB族金属、VIII族金属和IB族金属中的两种。
  8. 根据权利要求7所述的方法,其中步骤1)所得的混合物由所述第一金属源和所述有机配体化合物组成;或者
    步骤1)所得的混合物由所述第一金属源、用于分散所述第一金属源的分散介质和所述有机配体化合物组成。
  9. 根据权利要求7-8中任一项所述的方法,其中所述第一和第二金属源各自独立地选自金属单质、金属氧化物、金属氢氧化物、金属氯化物、金属硫化物、金属硫酸盐、金属硝酸盐、金属碳酸盐、金属含氧酸、金属含氧酸盐,或者它们的组合。
  10. 根据权利要求7-9中任一项所述的方法,其中当采用金属源的分散体时,所述分散体中的分散介质为选自水、碳酸、盐酸、硫酸或磷酸的无机分散介质或者选自乙醇、甲苯、二甲苯、石油醚、汽油、柴油、或它们的组合的有机分散介质,
    优选地,所述第一金属源的分散体中分散介质与所述第一金属源的重量比和所述第二金属源的分散体中分散介质与所述第二金属源的重量比各自独立地为1-25∶1,更优选2-8∶1。
  11. 根据权利要求7-10中任一项所述的方法,其中以金属计,所述第一金属源和第二金属源用量的摩尔比为1∶1-5。
  12. 一种双金属加氢催化剂组合物,包含根据权利要求1-6中任一项所述的非负载型双金属加氢催化剂和至少一种有机配体化合物和/或有机溶剂,其中:
    所述有机配体化合物选自C4-C20的有机羧酸,优选选自C4-C20的正构或异构烷基羧酸、C6-C20的包含饱和碳环的环烷羧酸、C7-C20的包含芳环的芳香羧酸或者它们的组合,更优选选自C6-C12的正构或异构烷基羧酸、C6-C13的包含饱和碳环的环烷羧酸、C7-C13的包含芳环的芳香羧酸或者它们的组合,进一步优选选自丁二酸、己酸、己二酸、庚酸、辛酸、壬酸、乙基己酸、油酸、石油酸、水杨酸、苯甲酸、苯乙酸或者它们的组合;
    所述有机溶剂选自脂肪烃、芳香烃、脂环烃、卤代烃、醇类溶剂、醚类溶剂、酯类溶剂、酮类溶剂或者它们的组合,优选选自甲苯、汽油、乙醇、柴油,或者它们的组合。
  13. 根据权利要求12所述的组合物,其中所述组合物包含至少一种所述有机配体化合物,并且所述组合物的红外谱图在700-1000cm -1、1350-1450cm -1、1500-1610cm -1和1700-1750cm -1位置处具有特征峰。
  14. 根据权利要求12或13所述的组合物,其中,以所述组合物的重量为基准,所述非负载型双金属加氢催化剂的含量为50-95%,优选80-95%;所述有机配体化合物和有机溶剂的总含量为5-50%,优选5-20%。
  15. 对含烃原料进行加氢处理的方法,包括使含烃原料与权利要求1-6中任一项所述的非负载型双金属加氢催化剂或者权利要求12-14中任一项所述的双金属加氢催化剂组合物接触进行加氢反应的步骤,其中所述含烃原料为不饱和烃类化合物,如苯、烷基苯、萘、烷基萘、蒽、烷基蒽等;或者包含不饱和烃类化合物的混合物,如原油、汽油、柴油、蜡油、渣油等。
  16. 一种适用于重油加氢的非负载型催化剂组合物,以重量计,该组合物包含10-45%的加氢催化剂组分,45-80%的分散介质和1.0-10%的活化剂,其中:
    所述加氢催化剂组分由权利要求1-6中任一项所述的非负载型双 金属加氢催化剂和任选的有机配体化合物组成,其中所述有机配体化合物选自C4-C20的有机羧酸,
    所述分散介质选自有机溶剂、石油馏分或者它们的组合,所述有机溶剂选自脂肪烃、芳香烃、脂环烃、卤代烃、醇类溶剂、醚类溶剂、酯类溶剂、酮类溶剂或者它们的组合,所述石油馏分选自馏程范围在150-524℃的馏分油或沸点>524℃的渣油组分,
    所述活化剂选自单质硫、含硫化合物、或者它们的组合,优选选自硫醇、硫醚、二硫化碳、硫磺、噻吩类化合物,或者它们的组合。
  17. 根据权利要求16所述的非负载型催化剂组合物,其中所述有机配体化合物选自C4-C20的正构或异构烷基羧酸、C6-C20的包含饱和碳环的环烷羧酸、C7-C20的包含芳环的芳香羧酸或者它们的组合,优选选自C6-C12的正构或异构烷基羧酸、C6-C13的包含饱和碳环的环烷羧酸、C7-C13的包含芳环的芳香羧酸或者它们的组合,进一步优选选自丁二酸、己酸、己二酸、庚酸、辛酸、壬酸、乙基己酸、油酸、石油酸、水杨酸、苯甲酸、苯乙酸或者它们的组合。
  18. 根据权利要求16或17所述的非负载型催化剂组合物,其中以所述加氢催化剂组分的重量为基准,所述加氢催化剂组分的金属含量为5-35%,优选8-30%,更优选10-25%,特别优选10-20%,有机配体化合物含量为0-50%,优选5-50%,更优选5-20%。
  19. 根据权利要求16-18中任一项所述的非负载型催化剂组合物,其中所述加氢催化剂组分为权利要求7-11中任一项所述方法所得到的液体产物。
  20. 权利要求16-19中任一项所述的非负载型催化剂组合物在重油加氢改质反应中的应用。
  21. 一种重油加氢改质方法,包括在加热条件下,使重油原料在氢气和任选经过预硫化的权利要求16-19中任一项所述的非负载型催化剂组合物的存在下进行加氢改质反应的步骤。
  22. 根据权利要求20所述的应用或者权利要求21所述的方法,其中所述加氢改质反应的条件包括:以金属计并以重油原料的重量为基准,所述非负载型催化剂组合物的用量为50-10000μg/g,初始氢气压力为5-20MPa,反应温度为360-480℃,液时空速为0.05-2.0h -1,氢油体积比为300-2000;
    优选地所述加氢改质反应的条件包括:以金属计并以重油原料的重量为基准,所述非负载型催化剂组合物的用量为50-3000μg/g,初始氢气压力为5-15MPa,反应温度为390-450℃,液时空速为0.05-1.0h -1,氢油体积比为500-1500。
PCT/CN2022/126700 2021-10-25 2022-10-21 非负载型双金属加氢催化剂及其制备方法和应用 WO2023071936A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202111244223.9A CN116020565A (zh) 2021-10-25 2021-10-25 非负载型双金属加氢催化剂、其组合物及应用
CN202111244221.X 2021-10-25
CN202111244222.4A CN116020564A (zh) 2021-10-25 2021-10-25 适用于重油加氢的非负载型催化剂组合物及其应用
CN202111244222.4 2021-10-25
CN202111244221.XA CN116020563A (zh) 2021-10-25 2021-10-25 非负载型多金属加氢催化剂的制备方法
CN202111244223.9 2021-10-25

Publications (1)

Publication Number Publication Date
WO2023071936A1 true WO2023071936A1 (zh) 2023-05-04

Family

ID=86160329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126700 WO2023071936A1 (zh) 2021-10-25 2022-10-21 非负载型双金属加氢催化剂及其制备方法和应用

Country Status (2)

Country Link
TW (1) TW202317268A (zh)
WO (1) WO2023071936A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1362489A (zh) * 2001-01-05 2002-08-07 中国石油化工股份有限公司 悬浮床加氢裂化催化剂及工艺
CN101370582A (zh) * 2006-01-06 2009-02-18 上游技术革新有限公司 烃溶性双金属催化剂前体及其制备方法
CN107866278A (zh) * 2016-09-28 2018-04-03 中国石油化工股份有限公司 一种重油加氢裂化催化剂及其制备方法
CA3103254A1 (en) * 2019-12-23 2021-06-23 Cenovus Energy Inc. Systems and methods for hydrovisbreaking heavy oil

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1362489A (zh) * 2001-01-05 2002-08-07 中国石油化工股份有限公司 悬浮床加氢裂化催化剂及工艺
CN101370582A (zh) * 2006-01-06 2009-02-18 上游技术革新有限公司 烃溶性双金属催化剂前体及其制备方法
CN107866278A (zh) * 2016-09-28 2018-04-03 中国石油化工股份有限公司 一种重油加氢裂化催化剂及其制备方法
CA3103254A1 (en) * 2019-12-23 2021-06-23 Cenovus Energy Inc. Systems and methods for hydrovisbreaking heavy oil

Also Published As

Publication number Publication date
TW202317268A (zh) 2023-05-01

Similar Documents

Publication Publication Date Title
de Souza et al. Hydrodeoxygenation of phenol over Pd catalysts. Effect of support on reaction mechanism and catalyst deactivation
WO2023071930A1 (zh) 一种非负载型加氢催化剂及其制备方法和应用
Rana et al. Support effects in CoMo hydrodesulfurization catalysts prepared with EDTA as a chelating agent
Yan et al. Engineering Pt-Mn2O3 interface to boost selective oxidation of ethylene glycol to glycolic acid
Lai et al. Efficient one pot synthesis of mesoporous NiMo–Al2O3 catalysts for dibenzothiophene hydrodesulfurization
Yoshinaka et al. Hydrodesulfurization of dibenzothiophenes over molybdenum catalyst supported on TiO2–Al2O3
An et al. Pt1 enhanced CH activation synergistic with Ptn catalysis for glycerol cascade oxidation to glyceric acid
He et al. Catalytic CO bond hydrogenolysis of tetrahydrofuran-dimethanol over metal supported WOx/TiO2 catalysts
Kishan et al. Promoting synergy in CoW sulfide hydrotreating catalysts by chelating agents
Wang et al. Ternary copper–cobalt–cerium catalyst for the production of ethanol and higher alcohols through CO hydrogenation
Alphazan et al. Highly active nonpromoted hydrotreating catalysts through the controlled growth of a supported hexagonal WS2 phase
Bonita et al. Hydrogenation of cinnamaldehyde to cinnamyl alcohol with metal phosphides: Catalytic consequences of product and pyridine doping
Yang et al. Elucidating the structure of bimetallic NiW/SiO2 catalysts and its consequences on selective deoxygenation of m-cresol to toluene
CN107684919B (zh) 负载型Ni3P催化剂及其制备方法和应用
Zhang et al. Promotional effect of Co and Ni on MoO3 catalysts for hydrogenolysis of dibenzofuran to biphenyl under atmospheric hydrogen pressure
Rana et al. Effect of catalyst preparation and support composition on hydrodesulfurization of dibenzothiophene and Maya crude oil
Yu et al. A bifunctional Ni3P/γ-Al2O3 catalyst prepared by electroless plating for the hydrodeoxygenation of phenol
CN107626304A (zh) 一种负载型贵金属催化剂及其制备和应用
Xiang et al. Selective catalytic CO hydrogenation to short-and long-chain C 2+ alcohols
Mao et al. Identification and characteristics of catalytic quad-functions on Au/Anatase TiO2
CN103145545B (zh) 一种用于丙三醇催化氧化制备丙醇二酸的方法
WO2023071936A1 (zh) 非负载型双金属加氢催化剂及其制备方法和应用
Yue et al. High-efficient production of fatty alcohol via hydrogenation of fatty acid over Cu-NbOx/SBA-15 catalyst
Miao et al. Effects of preparation procedure in sol–gel method on performance of MoO3/SiO2 catalyst for liquid phase epoxidation of propylene with cumene hydroperoxide
Petrukhina et al. Nickel–molybdenum and cobalt–molybdenum sulfide hydrogenation and hydrodesulphurization catalysts synthesized in situ from bimetallic precursors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885813

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2401002427

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 202447039589

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2024113127

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE