WO2023071249A1 - 一种时隙协商方法及装置 - Google Patents

一种时隙协商方法及装置 Download PDF

Info

Publication number
WO2023071249A1
WO2023071249A1 PCT/CN2022/101373 CN2022101373W WO2023071249A1 WO 2023071249 A1 WO2023071249 A1 WO 2023071249A1 CN 2022101373 W CN2022101373 W CN 2022101373W WO 2023071249 A1 WO2023071249 A1 WO 2023071249A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
time slot
request information
request
flexe
Prior art date
Application number
PCT/CN2022/101373
Other languages
English (en)
French (fr)
Inventor
余伟伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22885155.6A priority Critical patent/EP4344147A4/en
Publication of WO2023071249A1 publication Critical patent/WO2023071249A1/zh
Priority to US18/418,915 priority patent/US20240205074A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/40Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass for recovering from a failure of a protocol instance or entity, e.g. service redundancy protocols, protocol state redundancy or protocol service redirection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0668Management of faults, events, alarms or notifications using network fault recovery by dynamic selection of recovery network elements, e.g. replacement by the most appropriate element after failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • H04J3/1658Optical Transport Network [OTN] carrying packets or ATM cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0823Errors, e.g. transmission errors
    • H04L43/0829Packet loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • H04L43/087Jitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/16Threshold monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/24Negotiation of communication capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0823Errors, e.g. transmission errors
    • H04L43/0847Transmission error

Definitions

  • the present application relates to the communication field, in particular to a time slot negotiation method and device.
  • Flexible Ethernet (FlexE) technology has the advantages of flexible allocation of bandwidth on demand, which can meet the needs of network scenarios such as mobile bearer, home broadband, and dedicated line access. Therefore, the application of FlexE technology will become more and more extensive.
  • the FlexE technology can be deployed on two network devices that are neighbors to each other, so that the two network devices use the FlexE technology to communicate. After the FlexE technology is deployed on the aforementioned two network devices, time slot configuration needs to be performed on the two network devices.
  • the network device as the sending end sends data based on the time slot configuration
  • the network device as the receiving end sends data based on the time slot configuration.
  • the received data is analyzed.
  • the time slot configurations of the two network devices may be inconsistent, resulting in the inability of the two network devices to perform FlexE communication.
  • the embodiment of the present application provides a time slot negotiation method, which can make the time slot configurations of two network devices deployed with FlexE consistent, so that the two network devices can use FlexE to communicate.
  • the embodiment of the present application provides a time slot negotiation method, which can be implemented by a first communication device serving as a receiving end.
  • the first communication device may send request information to the second communication device serving as a sender, where the request information is used to request the second communication device to initiate a negotiation request for switching FlexE time slots. Then, the first communication device receives the negotiation request sent by the second communication device based on the request information.
  • the negotiation of switching the FlexE time slot can be triggered by the first communication device as the receiving end, so that in some embodiments, the negotiation of the FlexE time slot can be performed in time, so that the first The communication device and the second communication device are capable of communicating using FlexE.
  • the first communication device may send the request information to the second communication device after the link failure between the second communication device and the first communication device is restored, so that the After the link fault recovers, the FlexE time slot negotiation can be performed in time.
  • the request information sent by the first communication device to the second communication device is used to request the second communication device to initiate a negotiation request for switching the FlexE time slot table, so that the first communication device It is consistent with the FlexE time slot table used by the second communication device.
  • the request information sent by the first communication device to the second communication device is used to request the second communication device to initiate a time slot negotiation request for small-grained services, so that the first communication device It is consistent with the time slot configuration of the small-grained service used by the second communication device.
  • the time slot configuration of the first communication device may be inconsistent with the time slot configuration of the second communication device, and accordingly Yes, if waiting for the second communication device to initiate the negotiation of the FlexE time slot configuration, it may cause a long-term service interruption.
  • the first communication device may send the request information to the second communication device after the link failure between the second communication device and the first communication device is recovered, thereby effectively avoiding long-term service interruption.
  • the recovery of the link failure may be that the optical signal jitter of the link disappears, the bit error rate of the link is less than or equal to the bit error rate threshold, and the packet loss rate of the link is less than or equal to the packet loss one or more of the rate threshold and the disappearance of the link layer fault of the link.
  • the first communication device may send a message to the second communication device Send the request information.
  • the FlexE time slot negotiation can be performed as early as possible, so that the time slot configuration of the first communication device It is consistent with the time slot configuration of the second communication device, so that the first communication device and the second communication device can normally perform FlexE communication, reducing service interruption time.
  • the time slot configuration used by the second communication device is inconsistent with the time slot configuration used by the first communication device, and it may be that the time slot table used by the second communication device is different from the time slot configuration used by the first communication device.
  • the slot tables used by the first communication device are inconsistent. For this case, when the time slot table used by the second communication device is inconsistent with the time slot table used by the first communication device, send the request information to the second communication device
  • the time slot configuration used by the second communication device is inconsistent with the time slot configuration used by the first communication device, and may be a time slot of a small-grained service used by the second communication device
  • the configuration is inconsistent with the time slot configuration of the small-grained service used by the first communication device.
  • the first communication device may report to the second communication device The communication device sends the request information.
  • the first communication device may send the request information to the second communication device through a FlexE overhead.
  • the first communication device may send the FlexE overhead including the request information to the second communication device.
  • the request information may be carried in a reserved field of the FlexE overhead.
  • the first communication device if a small-grained service is transmitted between the first communication device and the second communication device, the first communication device will send a data block including the FGU basic frame overhead to the second communication device, so , when the request information is used to request the second communication device to initiate a time slot negotiation request for a small-grained service, the first communication device may carry the request information in the aforementioned data block including FGU basic frame overhead sent to the second communication device.
  • the request information may be carried in a reserved field of the FGU basic frame overhead.
  • the embodiment of the present application provides a time slot negotiation method, which is characterized in that it is implemented by the second communication device as the sending end.
  • the second communication device can receive the time slot sent by the first communication device as the receiving end.
  • request information the request information is used to request the second communication device to initiate a negotiation request for switching flexible Ethernet FlexE time slots; after receiving the request information, the second communication device may send the first communication device the Negotiate request.
  • the negotiation of switching the FlexE time slot can be triggered by the first communication device as the receiving end, so that in some embodiments, the negotiation of the FlexE time slot can be performed in time, so that the first The communication device and the second communication device are capable of communicating using FlexE.
  • the first communication device may send the request information to the second communication device after the link failure between the second communication device and the first communication device is restored, so that the After the link fault recovers, the FlexE time slot negotiation can be performed in time.
  • the request information is used to request the second communication device to initiate a negotiation request for switching the FlexE time slot table.
  • the request information is used to request the second communication apparatus to initiate a time slot negotiation request for a small-grained service.
  • the receiving the request information sent by the first communication device includes:
  • the request information sent by the first communication device is received.
  • the link fault recovery includes at least one of the following:
  • the bit error rate of the link is less than or equal to the bit error rate threshold
  • the packet loss rate of the link is less than or equal to the packet loss rate threshold
  • the receiving the request information sent by the first communication device serving as the receiving end includes:
  • receiving the request information sent by the first communication device include:
  • receiving the request information sent by the first communication device include:
  • the receiving the request information sent by the first communication device includes:
  • the FlexE overhead includes a reserved field, and the reserved field is used to carry the request information.
  • the receiving the request information sent by the first communication device includes:
  • the data block sent by the first communication device is received, the data block includes a small granular unit FGU basic frame overhead, and the FGU basic frame overhead includes the request information.
  • the FGU basic frame overhead includes a reserved field, and the reserved field is used to carry the request information.
  • the embodiment of the present application provides a time slot negotiation device, which is applied to the first communication device as the receiving end, and the device includes: a sending unit, configured to send request information to the second communication device as the sending end, the The request information is used to request the second communication device to initiate a negotiation request for switching flexible Ethernet FlexE time slots; a receiving unit is configured to receive the negotiation request sent by the second communication device.
  • the request information is used to request the second communication device to initiate a negotiation request for switching the FlexE time slot table.
  • the request information is used to request the second communication apparatus to initiate a time slot negotiation request for a small-grained service.
  • the sending unit is configured to: after the link failure between the second communication device and the first communication device is restored, send the request information.
  • the link fault recovery includes at least one of the following: the optical signal jitter of the link disappears; the bit error rate of the link is less than or equal to the bit error rate threshold; the link The packet loss rate of the link is less than or equal to the packet loss rate threshold; the link layer fault of the link disappears.
  • the sending unit is configured to: when the time slot configuration used by the second communication device is inconsistent with the time slot configuration used by the first communication device, send the The device sends the request information.
  • the sending unit is configured to: when the time slot table used by the second communication device is inconsistent with the time slot table used by the first communication device, send the The device sends the request information.
  • the sending unit is configured to: the time slot configuration of the small-grain service used by the second communication device is inconsistent with the time slot configuration of the small-grain service used by the first communication device , sending the request information to the second communication device.
  • the sending unit is configured to: send a FlexE overhead to the second communication device, where the FlexE overhead includes the request information.
  • the FlexE overhead includes a reserved field, and the reserved field is used to carry the request information.
  • the sending unit is configured to: send a data block to the second communication device, the data block includes a small granular unit FGU basic frame overhead, and the FGU basic frame overhead includes the request information.
  • the FGU basic frame overhead includes a reserved field, and the reserved field is used to carry the request information.
  • the embodiment of the present application provides a time slot negotiation device, which is applied to the second communication device as the sending end, and the device includes: a receiving unit, configured to receive request information sent by the first communication device as the receiving end, The request information is used to request the second communication device to initiate a negotiation request for switching flexible Ethernet FlexE time slots; a sending unit is configured to send the negotiation request to the first communication device.
  • the request information is used to request the second communication device to initiate a negotiation request for switching the FlexE time slot table.
  • the request information is used to request the second communication apparatus to initiate a time slot negotiation request for a small-grained service.
  • the receiving unit is configured to: after the link failure between the second communication device and the first communication device is restored, receive the request information.
  • the link fault recovery includes at least one of the following: the optical signal jitter of the link disappears; the bit error rate of the link is less than or equal to the bit error rate threshold; the link The packet loss rate of the link is less than or equal to the packet loss rate threshold; the link layer fault of the link disappears.
  • the receiving unit is configured to: when the time slot configuration used by the second communication device is inconsistent with the time slot configuration used by the first communication device, receive the first communication The request information sent by the device.
  • the receiving unit is configured to: when the time slot table used by the second communication device is inconsistent with the time slot table used by the first communication device, receive the first communication The request information sent by the device.
  • the receiving unit is configured to: the time slot configuration of the small-grain service used by the second communication device is inconsistent with the time slot configuration of the small-grain service used by the first communication device , receiving the request information sent by the first communication device.
  • the receiving unit is configured to: receive the FlexE overhead sent by the first communication device, where the FlexE overhead includes the request information.
  • the FlexE overhead includes a reserved field, and the reserved field is used to carry the request information.
  • the receiving unit is configured to: receive the data block sent by the first communication device, the data block includes a small granular unit FGU basic frame overhead, and the FGU basic frame overhead Include the requested information.
  • the FGU basic frame overhead includes a reserved field, and the reserved field is used to carry the request information.
  • the present application provides a first communication device, the first communication device includes a memory and a processor; the memory is used to store program code; the processor is used to run the program code instructions, so that the first communication device executes the above first aspect and the method described in any one of the first aspect.
  • the present application provides a first communication device, the first communication device includes a communication interface and a processor, and the communication interface is used to execute the first aspect described in any one of the above first aspect and the first aspect.
  • a transceiving operation performed by a communication device the processor is configured to perform other operations performed by the first communication device described in any one of the above first aspect and the first aspect, except for the transceiving operation.
  • the present application provides a second communication device, the second communication device includes a memory and a processor; the memory is used to store program code; the processor is used to run the program code instructions, so that the second communication device executes the above second aspect and the method described in any one of the second aspect.
  • the present application provides a second communication device, the second communication device includes a communication interface and a processor, and the communication interface is used to perform the first communication described in any one of the above second aspect and the second aspect.
  • a transceiving operation performed by a communication device the processor is configured to perform operations other than the transceiving operation performed by the first communication device described in any one of the above second aspect and the second aspect.
  • the embodiment of the present application provides a computer-readable storage medium, including instructions or computer programs, which, when run on a computer, cause the computer to perform the method described in any one of the above first aspects, or perform the above The method according to any one of the second aspect.
  • the embodiment of the present application provides a computer program product including instructions or computer programs, which, when run on a computer, cause the computer to execute the method described in any one of the above first aspects, or to execute the above second aspect.
  • the embodiment of the present application provides a communication system, the communication system includes: the first communication device performing the method described in any one of the above first aspect and the above first aspect, and performing the above second aspect And the second communication device of the method described in any one of the above second aspects.
  • FIG. 1 is a schematic structural diagram of a data provided in an embodiment of the present application.
  • FIG. 2 is a signaling interaction diagram of time slot negotiation
  • FIG. 3 is a signaling interaction diagram of a time slot negotiation method provided in an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a time slot negotiation device provided in an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a time slot negotiation device provided in an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the embodiment of the present application provides a time slot negotiation method, which can make the time slot configurations of two network devices deployed with FlexE consistent, so that the two network devices can use FlexE to communicate.
  • FlexE group One or more PHYs included in each FlexE group. When multiple PHYs are included, the multiple PHYs are physically independent.
  • a network device using the FlexE technology can identify which PHYs are included in a FlexE group through the number of the PHY, so as to realize the logical bundling of multiple PHYs. For example, the number of each PHY can be identified by a number between 1 and 254, and 0 and 255 are reserved numbers.
  • a PHY number may correspond to an interface on a network device. Two adjacent network devices need to use the same number to identify the same PHY. The numbers of each PHY included in a FlexE group do not have to be consecutive.
  • FlexE can be used to carry at least one client, and one client can be transmitted on at least one PHY.
  • FlexE can support the mapping and transmission of any number of different FlexE Clients on any set of PHYs, so as to realize functions such as PHY bundling, channelization, and sub-rate.
  • FlexE client corresponding to various user interfaces or bandwidth of the network.
  • FlexE Client represents the customer data flow transmitted in the specified time slot (one time slot or multiple time slots) on the FlexE Group. Multiple FlexE Clients can be carried on one FlexE Group, and one FlexE Client can correspond to one or more user service data flows (It can also be called MAC Client).
  • FlexE client can be flexibly configured according to bandwidth requirements, and supports Ethernet MAC data streams of various rates (such as 10G, 40G, n*25G data streams, and even non-standard rate data streams). The data flow is passed to the FlexE shim layer. Clients sent through the same FlexE group need to share the same clock, and these clients need to be adapted according to the assigned slot rate.
  • the FlexE client (also referred to as the FlexE client interface) can be used to transmit the corresponding FlexE client business data flow.
  • the FlexE client interface is a logical interface.
  • Each FlexE interface can be logically divided into one or more FlexE client interfaces, and each FlexE interface can be divided into multiple time slots in the time domain, and each FlexE client interface occupies at least one of the multiple time slots time slot.
  • FlexE shim As an additional logical layer inserted between the MAC and PHY (PCS sublayer) of the traditional Ethernet architecture, it is the core architecture of FlexE technology based on the time slot distribution mechanism.
  • the main function of FlexE shim is to encapsulate data into pre-divided time slots (slots). Then, according to the FlexE time slot table, each divided time slot is mapped to the PHY in the FlexE group for transmission. Among them, each time slot is mapped to a PHY in the FlexE group.
  • the FlexE Shim layer can divide each 100GE PHY in the FlexE Group into 20 slots (slots) of data bearing channels, and the corresponding bandwidth of each slot is 5Gbps.
  • FIG. 1 is a schematic structural diagram of data provided by an embodiment of the present application.
  • the data sent by the sender includes a data segment 110 and an overhead 120 .
  • the FlexE Shim at the receiving end will extract the FlexE OH and form a multiframe (MultiFrame). Then, according to the information in the FlexE slot table and MultiFrame, restore the data of the FlexE Group to the original data of the FlexE Client and continue the transmission.
  • MultiFrame multiframe
  • FlexE OH frames can form a FlexE overhead frame
  • 32 FlexE overhead frames can form a FlexE multiframe.
  • the "FlexE time slot table” may be referred to as “time slot table” for short.
  • the slot corresponding to the large bandwidth can be further divided into multiple sub-slots (sub-slots) for carrying small-granularized services.
  • the slot corresponding to the bandwidth of 5 Gbps is further divided into 480 sub-slots according to the granularity of 10 Mbps, and these 480 sub-slots are used to bear small granular services.
  • the first sub-slot, the third sub-slot, and the fifth sub-slot among the 480 sub-slots are used to carry small-grained services 1 .
  • FlexE shim when transmitting small-grained services, for the sender, FlexE shim can encapsulate data into pre-divided sub-slots for transmission according to the small-grained time slot configuration. For the receiving end, FlexE shim can restore the data received through the slot with a corresponding bandwidth of 5Gbps to the original small-grained service data according to the small-grained time slot configuration and continue the transmission.
  • the small-grain service data may be carried in the data segment 110 shown in FIG. 1 , wherein the data segment 110 includes multiple data blocks, that is, the small-grain service is carried in the data block instead of the overhead block.
  • the data segment 110 may include a small granularity unit (fine granularity unit, FGU) base frame, the FGU base frame includes an FGU base frame overhead and a FGU base frame payload, and the FGU base frame overhead is used to carry a small Granular time slot configuration, the FGU basic frame payload is used to bear the small granular service data.
  • FGU fine granularity unit
  • the time slot configuration of the small granularity may be a mapping relationship between sub-slot and sub-client.
  • the two network devices cannot perform FlexE communication. Among them, the time slot configurations of the two network devices are inconsistent, which means that the time slot configurations of the two FlexE groups are inconsistent.
  • the FlexE time slot negotiation can be initiated by the network device as the sending end, so that the time slot configurations of the two network devices are consistent.
  • the FlexE time slot negotiation initiated by the network device as the sending end may cause service interruption between the two network devices for a long time. In an example: after the network device as the sending end initiates the negotiation of the FlexE time slot, it completes the update of the time slot configuration itself, and sends a confirmation message of completing the update of the time slot configuration to the network device as the receiving end.
  • FIG. 2 is a signaling interaction diagram of time slot negotiation. as shown in picture 2:
  • the sending end sends a time slot negotiation request to the receiving end;
  • the receiving end may send a response message to the sending end for the time slot negotiation request;
  • the sending end After receiving the response message, the sending end can update the time slot configuration; further, the sending end sends an acknowledgment message to the receiving end, and the acknowledgment message is used to indicate that the sending end has completed the update of the time slot configuration;
  • the receiving end After receiving the confirmation message, the receiving end updates the time slot configuration. So far, the time slot negotiation between the sending end and the receiving end is completed.
  • the link between the sending end and the receiving end fails, and the receiving end cannot receive the aforementioned confirmation message. Further, the receiving end will No update of slot configuration will be performed. However, since the sending end updates the time slot configuration after receiving the response message, this causes the sending end to update the time slot configuration, but the receiving end does not update the time slot configuration, so that the time slot configuration of the sending end It is inconsistent with the time slot configuration of the receiving end.
  • the time slot negotiation in the embodiment of the present application may be the negotiation of the FlexE time slot table, or the time slot negotiation of the small-grained service.
  • an embodiment of the present application provides a time slot negotiation method.
  • FIG. 3 the figure is a schematic flowchart of a time slot negotiation method provided by an embodiment of the present application.
  • the method 100 shown in FIG. 3 may include, for example, the following S101-S104.
  • the communication device mentioned in the embodiment of this application may be a network device such as a switch or a router, or it may be a part of components on the network device, such as a single board, a line card, an interface on the network device, or a It may be a functional module on a network device, or a chip for implementing the method of the present application, which is not specifically limited in this embodiment of the present application.
  • the communication devices may be directly connected through Ethernet wires or optical cables.
  • the first communication device sends request information to the second communication device, where the request information is used to request the second communication device to initiate a negotiation request for switching FlexE time slots.
  • the first communication device is used as a receiving end
  • the second communication device is used as a sending end.
  • the negotiation request is used to request the second communication device to initiate a negotiation request for switching a FlexE time slot table.
  • both the first communication device and the second communication device are locally configured with two time slot tables, which are A table and B table respectively. One of the time slot tables is in use, and the other time slot table is in standby state.
  • the negotiation request for switching the FlexE time slot table may, for example, request to switch the used time slot table from the A table to the B table.
  • the negotiation request is used to request the second communication device to initiate a time slot negotiation request for the small-grain services.
  • the time slot configuration of the first communication device may be inconsistent with the time slot configuration of the second communication device. Yes, if waiting for the second communication device to initiate the negotiation of the FlexE time slot configuration, it may cause a long-term service interruption.
  • the first communication device may send the request information to the second communication device after the link failure between the second communication device and the first communication device is recovered. As an example, the first communication device may send the request information to the second communication device immediately after detecting that the link failure is recovered.
  • the negotiation of the FlexE time slot can be performed as early as possible, so that the time slot configuration of the first communication device is consistent with the time slot configuration of the second communication device, so that the first The communication device and the second communication device can normally perform FlexE communication, reducing service interruption time.
  • the recovery of the link failure may be that the optical signal jitter of the link disappears, the bit error rate of the link is less than or equal to the bit error rate threshold, and the packet loss rate of the link is less than or equal to the packet loss one or more of the rate threshold and the disappearance of the link layer fault of the link.
  • the first communication device may determine that the optical signal jitter of the link disappears according to the optical power detected by the optical module of the first communication device, for example, when the optical power is greater than a certain threshold, determine that The optical signal jitter of the link disappears.
  • the first communication device may determine the bit error rate of the link by using a forward error correction (forward error correction, FEC) technology.
  • FEC forward error correction
  • the first communication device may determine the packet loss rate of the link through Operation Administration and Maintenance (OAM) technology or in-situ Flow Information Telemetry (iFIT) technology .
  • OAM Operation Administration and Maintenance
  • iFIT in-situ Flow Information Telemetry
  • the first communication device may send a link layer discovery protocol (Link Layer Discovery Protocol, LLDP) message to the second communication device to determine the link layer failure recovery of the link. For example, the recovery of the link layer failure of the link may be determined in a case of receiving the response message sent by the second communication device for the LLDP message.
  • Link Layer Discovery Protocol LLDP
  • the first communication device may send the request information.
  • the first communication device may first determine the time slot configuration used by the second communication device, and then compare the time slot configuration used by itself with the time slot configuration used by the second communication device, and determine the time slot configuration used by itself When the used time slot configuration is inconsistent with the time slot configuration used by the second communication device, the request information is sent to the second communication device.
  • the FlexE time slot negotiation can be performed as early as possible, so that the time slot configuration of the first communication device It is consistent with the time slot configuration of the second communication device, so that the first communication device and the second communication device can normally perform FlexE communication, reducing service interruption time.
  • the time slot configuration used by the second communication device is inconsistent with the time slot configuration used by the first communication device, which may include two situations.
  • the time slot table used by the second communication device is inconsistent with the time slot table used by the first communication device.
  • Another situation is that: the time slot configuration of the small granular service used by the second communication device is inconsistent with the time slot configuration of the small granular service used by the first communication device.
  • the first communication device can pass The FlexE overhead sent by the second communication device determines the time slot table used by the second communication device, and further compares the time slot table used by the second communication device with the time slot table used by itself, so that It is determined that the time slot table used by the second communication device is inconsistent with the time slot table used by the first communication device.
  • the The first communication device may determine the time slot configuration of the small-grained service used by the second communication device through the FGU basic frame overhead sent by the second communication device, and further assign the small-granularity service used by the second communication device to The time slot configuration of the small granular service used by the second communication device is compared with the time slot configuration of the small granular service used by itself, so as to determine the time slot configuration of the small granular service used by the second communication device and the time slot configuration of the small granular service used by the first communication device
  • the gap configuration is inconsistent.
  • the first communication device may send the request information to the second communication device through a data channel.
  • the request information is sent to the second communication device through a data channel for transmitting data packets.
  • the request information may also be sent to the second communication device through a management channel, for example, the request information is carried in an OAM message and sent to the second communication device.
  • the first communication device will send the FlexE overhead to the second communication device.
  • sending a data segment inserts a FlexE overhead. Therefore, when the request information is used to request the second communication device to initiate a negotiation request for switching the FlexE time slot table, the first communication device may carry the request information in the FlexE overhead and send it to the second communication device. communication device. In some embodiments, the request information may be carried through a reserved field in the FlexE overhead.
  • bit17-bit63 in the second overhead and bit35-bit47 in the third overhead are reserved fields, therefore, you can use bit17-bit63 in the second overhead
  • Some or all of the bits in the , or some or all of the bits in bit35-bit47 in the third overhead carry the request information.
  • one of bit17-bit63 in the second overhead is used to carry the request information, and when the value of this bit is 1, it indicates that the FlexE overhead carries the request information.
  • the request information is carried by using one of bits 35-bit47 in the third overhead, and when the value of this bit is 1, it indicates that the FlexE overhead carries the request information.
  • the first communication device may carry the request information in the aforementioned data block including the FGU basic frame overhead and send it to the second communication device device.
  • the request information may be carried through a reserved field in the FGU basic frame overhead.
  • S102 The second communication device receives the request information.
  • S103 The second communication device sends a negotiation request for switching FlexE time slots to the first communication device.
  • S104 The first communication device receives the negotiation request sent by the second communication device.
  • the second communication device may receive the request information, and further initiate a FlexE time slot negotiation based on the request information. Specifically, the second communication device may send a negotiation request for switching the FlexE time slot to the first communication device, and the first communication device receives the negotiation request. So far, the first communication device and the second communication device can start to negotiate the FlexE time slot.
  • the negotiation request may request, for example, to switch the used FlexE time slot table from A table to Table B.
  • the format of the negotiation request can refer to the relevant description part of IEEE 802.3, which will not be described in detail here.
  • the negotiation request may include, for example, the sub-client identification (identifier, ID) corresponding to each small-grain service and the sub-client ID corresponding to each sub-client ID respectively.
  • ID sub-client identification
  • the negotiation of switching the FlexE time slot can be triggered by the first communication device as the receiving end, so that in some embodiments, the negotiation of the FlexE time slot can be performed in time, so that the first A communication device and a second communication device are capable of communicating using FlexE.
  • the embodiment of the present application also provides a corresponding device.
  • FIG. 4 the figure is a schematic structural diagram of a time slot negotiation device provided by an embodiment of the present application.
  • the time slot negotiating device 400 shown in FIG. 4 is configured to perform the steps performed by the first communication device in the above method 100 .
  • the time slot negotiating apparatus 400 may include, for example, a sending unit 401 and a receiving unit 402 .
  • a sending unit 401 configured to send request information to a second communication device serving as a sender, where the request information is used to request the second communication device to initiate a negotiation request for switching flexible Ethernet FlexE time slots;
  • the receiving unit 402 is configured to receive the negotiation request sent by the second communication device.
  • the request information is used to request the second communication device to initiate a negotiation request for switching the FlexE time slot table.
  • the request information is used to request the second communication apparatus to initiate a time slot negotiation request for a small-grained service.
  • the sending unit 401 is configured to: after the link failure between the second communication device and the first communication device is restored, send the request information.
  • the link fault recovery includes at least one of the following: the optical signal jitter of the link disappears; the bit error rate of the link is less than or equal to the bit error rate threshold; the link The packet loss rate of the link is less than or equal to the packet loss rate threshold; the link layer fault of the link disappears.
  • the sending unit 401 is configured to: when the time slot configuration used by the second communication device is inconsistent with the time slot configuration used by the first communication device, send the The communication device sends the request information.
  • the sending unit 401 is configured to: when the time slot table used by the second communication device is inconsistent with the time slot table used by the first communication device, send the The communication device sends the request information.
  • the sending unit 401 is configured to: configure the time slot configuration of the small-grained service used by the second communication device and the time slot configuration of the small-granular service used by the first communication device If inconsistent, send the request information to the second communication device.
  • the sending unit 401 is configured to: send a FlexE overhead to the second communication device, where the FlexE overhead includes the request information.
  • the FlexE overhead includes a reserved field, and the reserved field is used to carry the request information.
  • the sending unit 401 is configured to: send a data block to the second communication device, the data block includes a small granular unit FGU basic frame overhead, and the FGU basic frame overhead includes The requested information.
  • the FGU basic frame overhead includes a reserved field, and the reserved field is used to carry the request information.
  • the device 400 is a device corresponding to the method performed by the first communication device provided in the above method embodiment, the specific implementation of each unit of the device 400 is the same idea as the above method embodiment, therefore, regarding the For the specific implementation of each unit of the device 400, reference may be made to the description of the method performed by the first communication device in the above method embodiments, and details are not repeated here.
  • FIG. 5 the figure is a schematic structural diagram of a time slot negotiation device provided by an embodiment of the present application.
  • the time slot negotiating device 500 shown in FIG. 5 is configured to perform the steps performed by the second communication device in the above method 100 .
  • the time slot negotiating apparatus 500 may include, for example, a receiving unit 501 and a sending unit 502 .
  • the receiving unit 501 is configured to receive request information sent by the first communication device serving as a receiving end, where the request information is used to request the second communication device to initiate a negotiation request for switching flexible Ethernet FlexE time slots;
  • the request information is used to request the second communication device to initiate a negotiation request for switching the FlexE time slot table.
  • the request information is used to request the second communication apparatus to initiate a time slot negotiation request for a small-grained service.
  • the receiving unit 501 is configured to: after the link failure between the second communication device and the first communication device is restored, receive the message sent by the first communication device The requested information.
  • the link fault recovery includes at least one of the following: the optical signal jitter of the link disappears; the bit error rate of the link is less than or equal to the bit error rate threshold; the link The packet loss rate of the link is less than or equal to the packet loss rate threshold; the link layer fault of the link disappears.
  • the receiving unit 501 is configured to: when the time slot configuration used by the second communication device is inconsistent with the time slot configuration used by the first communication device, receive the first The request information sent by the communication device.
  • the receiving unit 501 is configured to: when the time slot table used by the second communication device is inconsistent with the time slot table used by the first communication device, receive the first The request information sent by the communication device.
  • the receiving unit 501 is configured to:
  • the receiving unit 501 is configured to: receive the FlexE overhead sent by the first communication device, where the FlexE overhead includes the request information.
  • the FlexE overhead includes a reserved field, and the reserved field is used to carry the request information.
  • the receiving unit 501 is configured to: receive the data block sent by the first communication device, the data block includes a small granular unit FGU basic frame overhead, and the FGU basic frame overhead Include the request information in .
  • the FGU basic frame overhead includes a reserved field, and the reserved field is used to carry the request information.
  • the device 500 is a device corresponding to the method performed by the second communication device provided in the above method embodiment, the specific realization of each unit of the device 500 is the same idea as the above method embodiment, therefore, regarding the For the specific implementation of each unit of the device 500, reference may be made to the description of the method performed by the second communication device in the above method embodiments, and details are not repeated here.
  • the embodiment of the present application also provides a communication device 600 , as shown in FIG. 6 , which is a schematic structural diagram of a communication device provided in the embodiment of the present application.
  • the communication device 600 includes a communication interface 601 and a processor 602 connected to the communication interface 601 .
  • the communication device 600 may be used to execute the method 100 in the above embodiment.
  • the communication device 600 may execute the method 100 in the above embodiment.
  • the communication device 600 is equivalent to the first communication device in the method 100 .
  • the communication interface 601 is configured to perform the transceiving operation performed by the first communication device in the method 100 .
  • the processor 602 is configured to perform the operations performed by the first communication device in the method 100 except for the transceiving operation.
  • the communication interface 601 is used to send request information to the second communication device, the request information is used to request the second communication device to initiate a negotiation request for switching flexible Ethernet FlexE time slots, and receive the request sent by the second communication device The negotiation request.
  • the processor 602 is configured to generate the request information.
  • the communication device 600 may execute the method 100 in the above embodiment.
  • the communication device 600 is equivalent to the second communication device in the method 100 .
  • the communication interface 601 is configured to perform the transceiving operation performed by the second communication device in the method 100 .
  • the processor 602 is configured to perform the operations performed by the second communication device in the method 100 except for the transceiving operation.
  • the communication interface 601 is used to receive the request information sent by the first communication device, the request information is used to request the second communication device to initiate a negotiation request for switching flexible Ethernet FlexE time slots, and send the request to the first communication device The negotiation request.
  • the processor 602 is configured to generate the negotiation request.
  • the embodiment of the present application also provides a communication device 700 , as shown in FIG. 7 , which is a schematic structural diagram of a communication device provided in the embodiment of the present application.
  • the communication device 700 may be used to execute the method 100 in the above embodiment.
  • a communication device 700 may include a processor 710 , a memory 720 coupled to the processor 710 , and a transceiver 730 .
  • the transceiver 730 may be, for example, a communication interface, an optical module, and the like.
  • the processor 710 may be a central processing unit (English: central processing unit, abbreviated: CPU), a network processor (English: network processor, abbreviated: NP) or a combination of CPU and NP.
  • the processor can also be an application-specific integrated circuit (English: application-specific integrated circuit, abbreviation: ASIC), a programmable logic device (English: programmable logic device, abbreviation: PLD) or a combination thereof.
  • the above PLD can be a complex programmable logic device (English: complex programmable logic device, abbreviated: CPLD), field programmable logic gate array (English: field-programmable gate array, abbreviated: FPGA), general array logic (English: generic array logic, abbreviation: GAL) or any combination thereof.
  • Processor 710 may refer to one processor, or may include multiple processors.
  • the memory 720 may include a volatile memory (English: volatile memory), such as a random access memory (English: random-access memory, abbreviated: RAM); the memory may also include a non-volatile memory (English: non-volatile memory) , such as read-only memory (English: read-only memory, abbreviation: ROM), flash memory (English: flash memory), hard disk (English: hard disk drive, abbreviation: HDD) or solid-state drive (English: solid-state drive , abbreviation: SSD); the storage 720 may also include a combination of the above-mentioned types of storage.
  • the storage 720 may refer to one storage, or may include multiple storages.
  • computer-readable instructions are stored in the memory 720 , and the computer-readable instructions include a plurality of software modules, such as a sending module 721 , a processing module 722 and a receiving module 723 .
  • the processor 710 may perform corresponding operations according to the instructions of each software module.
  • an operation performed by a software module actually refers to an operation performed by the processor 710 according to an instruction of the software module.
  • the communication device 700 may execute the method 100 in the above embodiment.
  • the communication device 700 is equivalent to the first communication device in the method 100 .
  • the transceiver 730 is configured to perform the transceiving operation performed by the first communication device in the method 100 .
  • the transceiver 710 is configured to perform operations other than transceiving operations performed by the first communication device in the method 100 .
  • the transceiver 730 is used to send request information to the second communication device, the request information is used to request the second communication device to initiate a negotiation request for switching flexible Ethernet FlexE time slots, and receive the request sent by the second communication device The negotiation request.
  • the transceiver 710 is used to generate the request information.
  • the communication device 700 may execute the method 100 in the above embodiment.
  • the communication device 700 is equivalent to the second communication device in the method 100 .
  • the transceiver 730 is configured to perform the transceiving operation performed by the second communication device in the method 100 .
  • the transceiver 710 is configured to perform operations performed by the second communication device in the method 100 other than the transceiving operation.
  • the transceiver 730 is used to receive the request information sent by the first communication device, the request information is used to request the second communication device to initiate a negotiation request for switching flexible Ethernet FlexE time slots, and send the request to the first communication device The negotiation request.
  • the transceiver 710 is configured to generate the negotiation request.
  • the present application also provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the computer-readable storage medium is run on a computer, it causes the computer to execute the methods described in the foregoing embodiments (for example, method 100 ) in any one or more operations.
  • the present application also provides a computer program product, including a computer program, which, when run on a computer, causes the computer to perform any one or more operations in the methods described in the foregoing embodiments (such as method 100).
  • the present application also provides a communication system, including the first communication device and the second communication device mentioned in the above embodiments.
  • the present application also provides a communication system, including at least one memory and at least one processor, the at least one memory stores instructions, and the at least one processor executes the instructions, so that the communication system executes the above-mentioned embodiments of the present application. Any one or more operations in any method described in any embodiment (for example, method 100).
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of units is only a logical business division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or integrated. to another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • a unit described as a separate component may or may not be physically separated, and a component displayed as a unit may or may not be a physical unit, that is, it may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each business unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software business units.
  • the integrated unit is realized in the form of a software business unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or part of the contribution to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods in various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .
  • the services described in the present invention may be implemented by hardware, software, firmware or any combination thereof.
  • the services may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage media may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Environmental & Geological Engineering (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种时隙协商方法,该方法由作为接收端的第一通信装置实现。第一通信装置向作为发送端的第二通信装置发送请求信息,该请求信息用于请求第二通信装置发起切换FlexE时隙的协商请求。而后,第一通信装置接收第二通信装置基于请求信息发送的协商请求。由此可见,在本申请实施例中,由作为接收端的第一通信装置来触发切换FlexE时隙的协商,从而使得在一些实施例中,能够及时进行FlexE时隙的协商,从而使得第一通信装置和第二通信装置能够使用FlexE进行通信。

Description

一种时隙协商方法及装置
本申请要求于2021年10月28日提交中国国家知识产权局、申请号为202111266392.2、申请名称为“一种时隙协商方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种时隙协商方法及装置。
背景技术
灵活以太(Flexible Ethernet,FlexE)技术具备带宽按需灵活分配的优点,其可以满足移动承载、家庭宽带、专线接入等网络场景需求。因此,FlexE技术的应用即将越来越广泛。
可以在两个互为邻居关系的网络设备上均部署FlexE技术,以使得这两个网络设备利用FlexE技术进行通信。当前述两个网络设备上部署FlexE技术之后,还需要在这两个网络设备上进行时隙配置,作为发送端的网络设备基于时隙配置发送数据,作为接收端的网络设备基于该时隙配置对接收到的数据进行解析。
但是,在一些场景中,可能会出现两个网络设备的时隙配置不一致,从而导致两个网络设备无法进行FlexE通信。
发明内容
本申请实施例提供了一种时隙协商方法,可以使得部署FlexE的两个网络设备的时隙配置一致,从而使得这两个网络设备可以使用FlexE进行通信。
第一方面,本申请实施例提供了一种时隙协商方法,该方法可以由作为接收端的第一通信装置实现。在一个示例中,第一通信装置可以向作为发送端的第二通信装置发送请求信息,该请求信息用于请求第二通信装置发起切换FlexE时隙的协商请求。而后,所述第一通信装置接收第二通信装置基于所述请求信息发送的协商请求。由此可见,在本申请实施例中,可以由作为接收端的第一通信装置来触发切换FlexE时隙的协商,从而使得在一些实施例中,能够及时进行FlexE时隙的协商,从而使得第一通信装置和第二通信装置能够使用FlexE进行通信。作为一个示例,第一通信装置可以在所述第二通信装置到所述第一通信装置之间的链路故障恢复后,向所述第二通信装置发送所述请求信息,从而使得在所述链路故障恢复后,能够及时进行FlexE时隙的协商。
在一种可能的实现方式中,第一通信装置向第二通信装置发送的请求信息,用于请求所述第二通信装置发起切换FlexE时隙表的协商请求,以使得所述第一通信装置和所述第二通信装置所使用的FlexE时隙表一致。
在一种可能的实现方式中,第一通信装置向第二通信装置发送的请求信息,用于请求所述第二通信装置发起小颗粒业务的时隙协商请求,以使得所述第一通信装置和所述第二通信装置所使用的小颗粒业务的时隙配置一致。
在一种可能的实现方式中,在第二通信装置到第一通信装置之间的链路发生故障时,第一通信装置的时隙配置和第二通信装置的时隙配置有可能不一致,相应的,若等待第二通信装置发起FlexE时隙配置的协商,则有可能导致业务长时间中断。鉴于此,第一通信装置可以在所述第二通信装置到所述第一通信装置之间的链路故障恢复后,向所述第二通信装置发送所述请求信息,从而有效避免业务长时间中断。
在一种可能的实现方式中,由于所述链路的光信号抖动消失、所述链路的误码率小于或者等于误码率阈值、所述链路的丢包率小于或者等于丢包率阈值、以及所述链路的链路层故障消失,都可以说明所述链路故障恢复。因此,所述链路故障恢复,可以是所述链路的光信号抖动消失、所述链路的误码率小于或者等于误码率阈值、所述链路的丢包率小于或者等于丢包率阈值、以及所述链路的链路层故障消失中的其中一项或者多项。
在一种可能的实现方式中,所述第一通信装置可以在所述第二通信装置使用的时隙配置与所述第一通信装置使用的时隙配置不一致时,向所述第二通信装置发送所述请求信息。这样一来,可以第一通信装置使用的时隙配置和第二通信装置使用的时隙配置不一致的情况下,尽可能早的进行FlexE时隙的协商,从而使得第一通信装置的时隙配置与第二通信装置的时隙配置一致,从而使得第一通信装置和第二通信装置可以正常进行FlexE通信,减少业务中断的时间。
在一种可能的实现方式中,所述第二通信装置使用的时隙配置与所述第一通信装置使用的时隙配置不一致,可以是所述第二通信装置使用的时隙表与所述第一通信装置使用的时隙表不一致。对于这种情况,在所述第二通信装置使用的时隙表与所述第一通信装置使用的时隙表不一致时,向所述第二通信装置发送所述请求信息
在一种可能的实现方式中,所述第二通信装置使用的时隙配置与所述第一通信装置使用的时隙配置不一致,可以是所述第二通信装置使用的小颗粒业务的时隙配置与所述第一通信装置使用的小颗粒业务的时隙配置不一致。对于这种情况,第一通信装置可以在所述第二通信装置使用的小颗粒业务的时隙配置与所述第一通信装置使用的小颗粒业务的时隙配置不一致时,向所述第二通信装置发送所述请求信息。
在一种可能的实现方式中,第一通信装置可以通过FlexE开销将所述请求信息发送给所述第二通信装置。换言之,第一通信装置可以向所述第二通信装置发送包括所述请求信息FlexE开销。
在一种可能的实现方式中,所述请求信息可以承载在所述FlexE开销的保留字段中。
在一种可能的实现方式中,若第一通信装置和第二通信装置之间传输小颗粒业务,则所述第一通信装置会向第二通信装置发送包括FGU基帧开销的数据块,因此,当所述请求信息用于请求所述第二通信装置发起小颗粒业务的时隙协商请求时,所述第一通信装置可以将所述请求信息携带在前述包括FGU基帧开销的数据块中发送给所述第二通信装置。
在一种可能的实现方式中,所述请求信息可以承载在所述FGU基帧开销的保留字段中。
第二方面,本申请实施例提供了一种时隙协商方法,其特征在于,由作为发送端的第二通信装置实现,在一个示例中,第二通信装置可以接收作为接收端的第一通信装置发送的请求信息,所述请求信息用于请求所述第二通信装置发起切换灵活以太FlexE时隙的协商请求;第二通信装置接收到该请求信息之后,可以向所述第一通信装置发送所述协商请求。由此可见,在本申请实施例中,可以由作为接收端的第一通信装置来触发切换FlexE时隙的协商,从而使得在一些实施例中,能够及时进行FlexE时隙的协商,从而使得第一通信装置和第二通信装置能够使用FlexE进行通信。作为一个示例,第一通信装置可以在所述第二通信装置到所述第一通信装置之间的链路故障恢复后,向所述第二通信装置发送所 述请求信息,从而使得在所述链路故障恢复后,能够及时进行FlexE时隙的协商。
在一种可能的实现方式中,所述请求信息用于请求所述第二通信装置发起切换FlexE时隙表的协商请求。
在一种可能的实现方式中,所述请求信息用于请求所述第二通信装置发起小颗粒业务的时隙协商请求。
在一种可能的实现方式中,所述接收所述第一通信装置发送的所述请求信息,包括:
在所述第二通信装置到所述第一通信装置之间的链路故障恢复后,接收所述第一通信装置发送的所述请求信息。
在一种可能的实现方式中,所述链路故障恢复包括以下至少一项:
所述链路的光信号抖动消失;
所述链路的误码率小于或者等于误码率阈值;
所述链路的丢包率小于或者等于丢包率阈值;
所述链路的链路层故障消失。
在一种可能的实现方式中,所述接收作为接收端的第一通信装置发送的请求信息,包括:
在所述第二通信装置使用的时隙配置与所述第一通信装置使用的时隙配置不一致时,接收所述第一通信装置发送的所述请求信息。
在一种可能的实现方式中,在所述第二通信装置使用的时隙配置与所述第一通信装置使用的时隙配置不一致时,接收所述第一通信装置发送的所述请求信息,包括:
在所述第二通信装置使用的时隙表与所述第一通信装置使用的时隙表不一致时,接收所述第一通信装置发送的所述请求信息。
在一种可能的实现方式中,在所述第二通信装置使用的时隙配置与所述第一通信装置使用的时隙配置不一致时,接收所述第一通信装置发送的所述请求信息,包括:
在所述第二通信装置使用的小颗粒业务的时隙配置与所述第一通信装置使用的小颗粒业务的时隙配置不一致时,接收所述第一通信装置发送的所述请求信息。
在一种可能的实现方式中,所述接收所述第一通信装置发送的所述请求信息,包括:
接收所述第一通信装置发送的FlexE开销,所述FlexE开销中包括所述请求信息。
在一种可能的实现方式中,所述FlexE开销包括保留字段,所述保留字段用于承载所述请求信息。
在一种可能的实现方式中,所述接收所述第一通信装置发送的所述请求信息,包括:
接收所述第一通信装置发送的数据块,所述数据块中包括小颗粒单元FGU基帧开销,所述FGU基帧开销中包括所述请求信息。
在一种可能的实现方式中,所述FGU基帧开销包括保留字段,所述保留字段用于承载所述请求信息。
第三方面,本申请实施例提供了一种时隙协商装置,应用于作为接收端的第一通信装置,所述装置包括:发送单元,用于向作为发送端的第二通信装置发送请求信息,所述请求信息用于请求所述第二通信装置发起切换灵活以太FlexE时隙的协商请求;接收单元,用于接收所述第二通信装置发送的所述协商请求。
在一种可能的实现方式中,所述请求信息用于请求所述第二通信装置发起切换FlexE时隙表的协商请求。
在一种可能的实现方式中,所述请求信息用于请求所述第二通信装置发起小颗粒业务的时隙协商请求。
在一种可能的实现方式中,所述发送单元,用于:在所述第二通信装置到所述第一通信装置之间的链路故障恢复后,向所述第二通信装置发送所述请求信息。
在一种可能的实现方式中,所述链路故障恢复包括以下至少一项:所述链路的光信号抖动消失;所述链路的误码率小于或者等于误码率阈值;所述链路的丢包率小于或者等于丢包率阈值;所述链路的链路层故障消失。
在一种可能的实现方式中,所述发送单元,用于:在所述第二通信装置使用的时隙配置与所述第一通信装置使用的时隙配置不一致时,向所述第二通信装置发送所述请求信息。
在一种可能的实现方式中,所述发送单元,用于:在所述第二通信装置使用的时隙表与所述第一通信装置使用的时隙表不一致时,向所述第二通信装置发送所述请求信息。
在一种可能的实现方式中,所述发送单元,用于:在所述第二通信装置使用的小颗粒业务的时隙配置与所述第一通信装置使用的小颗粒业务的时隙配置不一致时,向所述第二通信装置发送所述请求信息。
在一种可能的实现方式中,所述发送单元,用于:向所述第二通信装置发送FlexE开销,所述FlexE开销中包括所述请求信息。
在一种可能的实现方式中,所述FlexE开销包括保留字段,所述保留字段用于承载所述请求信息。
在一种可能的实现方式中,所述发送单元,用于:向所述第二通信装置数据块,所述数据块中包括小颗粒单元FGU基帧开销,所述FGU基帧开销中包括所述请求信息。
在一种可能的实现方式中,所述FGU基帧开销包括保留字段,所述保留字段用于承载所述请求信息。
第四方面,本申请实施例提供了一种时隙协商装置,应用于作为发送端的第二通信装置,所述装置包括:接收单元,用于接收作为接收端的第一通信装置发送的请求信息,所述请求信息用于请求所述第二通信装置发起切换灵活以太FlexE时隙的协商请求;发送单元,用于向所述第一通信装置发送所述协商请求。
在一种可能的实现方式中,所述请求信息用于请求所述第二通信装置发起切换FlexE时隙表的协商请求。
在一种可能的实现方式中,所述请求信息用于请求所述第二通信装置发起小颗粒业务的时隙协商请求。
在一种可能的实现方式中,所述接收单元,用于:在所述第二通信装置到所述第一通信装置之间的链路故障恢复后,接收所述第一通信装置发送的所述请求信息。
在一种可能的实现方式中,所述链路故障恢复包括以下至少一项:所述链路的光信号抖动消失;所述链路的误码率小于或者等于误码率阈值;所述链路的丢包率小于或者等于丢包率阈值;所述链路的链路层故障消失。
在一种可能的实现方式中,所述接收单元,用于:在所述第二通信装置使用的时隙配 置与所述第一通信装置使用的时隙配置不一致时,接收所述第一通信装置发送的所述请求信息。
在一种可能的实现方式中,所述接收单元,用于:在所述第二通信装置使用的时隙表与所述第一通信装置使用的时隙表不一致时,接收所述第一通信装置发送的所述请求信息。
在一种可能的实现方式中,所述接收单元,用于:在所述第二通信装置使用的小颗粒业务的时隙配置与所述第一通信装置使用的小颗粒业务的时隙配置不一致时,接收所述第一通信装置发送的所述请求信息。
在一种可能的实现方式中,所述接收单元,用于:接收所述第一通信装置发送的FlexE开销,所述FlexE开销中包括所述请求信息。
在一种可能的实现方式中,所述FlexE开销包括保留字段,所述保留字段用于承载所述请求信息。
在一种可能的实现方式中,所述接收单元,用于:接收所述第一通信装置发送的数据块,所述数据块中包括小颗粒单元FGU基帧开销,所述FGU基帧开销中包括所述请求信息。
在一种可能的实现方式中,所述FGU基帧开销包括保留字段,所述保留字段用于承载所述请求信息。
第五方面,本申请提供了一种第一通信装置,所述第一通信装置包括存储器和处理器;所述存储器,用于存储程序代码;所述处理器,用于运行所述程序代码中的指令,使得所述第一通信装置执行以上第一方面以及第一方面任意一项所述的方法。
第六方面,本申请提供了一种第一通信装置,所述第一通信装置包括通信接口和处理器,所述通信接口用于执行以上第一方面以及第一方面任意一项所述的第一通信装置执行的收发操作,所述处理器用于执行以上第一方面以及第一方面任意一项所述的第一通信装置执行的除收发操作之外的其它操作。
第七方面,本申请提供了一种第二通信装置,所述第二通信装置包括存储器和处理器;所述存储器,用于存储程序代码;所述处理器,用于运行所述程序代码中的指令,使得所述第二通信装置执行以上第二方面以及第二方面任意一项所述的方法。
第八方面,本申请提供了一种第二通信装置,所述第二通信装置包括通信接口和处理器,所述通信接口用于执行以上第二方面以及第二方面任意一项所述的第一通信装置执行的收发操作,所述处理器用于执行以上第二方面以及第二方面任意一项所述的第一通信装置执行的除收发操作之外的其它操作。
第九方面,本申请实施例提供了一种计算机可读存储介质,包括指令或计算机程序,当其在计算机上运行时,使得计算机执行以上第一方面任意一项所述的方法,或者执行以上第二方面任意一项所述的方法。
第十方面,本申请实施例提供了一种包含指令或计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行以上第一方面任意一项所述的方法,或者执行以上第二方面任意一项所述的方法。
第十一方面,本申请实施例提供了一种通信***,所述通信***包括:执行以上第一方面以及以上第一方面任意一项所述的方法的第一通信装置以及执行以上第二方面以及以 上第二方面任意一项所述的方法的第二通信装置。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种数据的结构示意图;
图2为一种时隙协商的信令交互图;
图3为本申请实施例提供的一种时隙协商方法的信令交互图;
图4为本申请实施例提供的一种时隙协商装置的结构示意图;
图5为本申请实施例提供的一种时隙协商装置的结构示意图;
图6为本申请实施例提供的一种通信装置的结构示意图;
图7为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
本申请实施例提供了一种时隙协商方法,可以使得部署FlexE的两个网络设备的时隙配置一致,从而使得这两个网络设备可以使用FlexE进行通信。
为方便理解,首先对FlexE的相关内容进行介绍。
FlexE group:每个FlexE group包括的一个或多个PHY。当包括多个PHY时,所述多个PHY在物理上是独立的。应用了FlexE技术的网络设备可以通过PHY的编号来标识一个FlexE group中包含哪些PHY,来实现多个PHY的逻辑捆绑。例如,每个PHY的编号可用1~254之间的一个数字来标识,0和255为保留数字。一个PHY的编号可对应网络设备上的一个接口。相邻的两个网络设备之间需采用相同的编号来标识同一个PHY。一个FlexE group中包括的每个PHY的编号不必是连续的。通常情况下,两个网络设备之间具有一个FlexE group,但本申请并不限定两个网络设备之间仅存在一个FlexE group,即两个网络设备之间也可以具有多个FlexE group。一个PHY可用于承载至少一个client,一个client可在至少一个PHY上传输。FlexE可以支持任意多个不同FlexE Client在任意一组PHY上的映射和传输,从而实现PHY捆绑、通道化及子速率等功能。
FlexE client:对应于网络的各种用户接口或带宽。FlexE Client代表在FlexE Group上指定时隙(一个时隙或多个时隙)传输的客户数据流,一个FlexE Group上可承载多个FlexE Client,一个FlexE Client可对应一个到多个用户业务数据流(也可以称为MAC Client)。FlexE client可根据带宽需求灵活配置,支持各种速率的以太网MAC数据流(如10G、40G、n*25G数据流,甚至非标准速率数据流),例如可以通过64B/66B的编码的方式将数据流传递至FlexE shim层。通过同一FlexE group发送的客户需要共用同一时钟,且这些客户需要按照分配的时隙速率进行适配。本申请中,可以通过FlexE client(也可以被称为FlexE client接口),用于传输相应的FlexE client的业务数据流。FlexE client接口是一个逻辑接口。每个FlexE接口在逻辑上可以划分为一个或多个FlexE client接口,每个FlexE接口在时域上可以划分为多个时隙,每个FlexE client接口占用所述多个时隙中的至少一个时隙。
FlexE shim:作为***传统以太架构的MAC与PHY(PCS子层)中间的一个额外逻辑 层,是基于时隙分发机制实现FlexE技术的核心架构。对于发送端而言,FlexE shim的主要作用是将数据封装至预先划分的时隙(slot)中。然后,根据FlexE时隙表,将划分好的各时隙映射至FlexE group中的PHY上进行传输。其中,每个时隙映射于FlexE group中的一个PHY。以100GE PHY为例,FlexE Shim层可以把FlexE Group中的每个100GE PHY划分为20个时隙(slot)的数据承载通道,每个slot对应的带宽为5Gbps。PHY每发送1023*20Slot的64/66B数据就会***一个开销FlexE(Overhead,OH),从而告知接收端如何对接收到的数据进行解析。可参见图1,图1为本申请实施例提供的一种数据的结构示意图。如图1所示,发送端发送的数据包括数据段110和开销120。接收端的FlexE Shim会提取出FlexE OH并组成复帧(MultiFrame)。然后,根据FlexE时隙表以及MultiFrame中的信息将FlexE Group的数据恢复成FlexE Client原始数据并继续传输。其中:8个FlexE OH可以构成一个FlexE开销帧,32个FlexE开销帧可以构成一个FlexE复帧。在本申请实施例中,“FlexE时隙表”可以简称为“时隙表”。
小颗粒业务:在一些实施例中,大带宽对应的slot还可以进一步划分成多个子slot(sub-slot),用于承载小颗粒业务。例如,将对应带宽为5Gbps的slot按照10Mbps粒度进行进一步划分,划分成480个sub-slot,这480个sub-slot用于承载小颗粒业务。例如,这480个sub-slot中的第1个sub-slot、第3个sub-slot和第5个sub-slot用于承载小颗粒业务1。其中,传输小颗粒业务时,对于发送端而言,FlexE shim的可以根据小颗粒的时隙配置将数据封装至预先划分的sub-slot中传输。对于接收端而言,FlexE shim可以根据小颗粒的时隙配置将通过该对应带宽为5Gbps的slot接收的数据恢复成原始小颗粒业务数据并继续传输。在一个示例中,小颗粒业务数据可以携带在图1所示的数据段110中,其中,数据段110包括多个数据块,即小颗粒业务承载在数据块而非开销块中。在一个示例中,所述数据段110可以包括小颗粒单元(fine granularity unit,FGU)基帧,FGU基帧包括FGU基帧开销和FGU基帧净荷,所述FGU基帧开销用于承载小颗粒的时隙配置,所述FGU基帧净荷用于承载所述小颗粒业务数据。其中,小颗粒的时隙配置,可以是sub-slot与sub-client之间的映射关系。
关于FlexE OH***方式以及开销帧的结构,可以参考电气与电子工程师协会(Institute of Electrical and Electronics Engineers,IEEE)802.3的相关描述部分,此处不做详述。关于FGU基帧的结构,例如可以参考***通信企业标准的相关描述部分,此处不做详述。
若两个网络设备的时隙配置不一致,则会导致两个网络设备无法进行FlexE通信。其中,两个网络设备的时隙配置不一致,指的是两个FlexE group的时隙配置不一致。目前,可以由作为发送端的网络设备发起FlexE时隙协商,以使得两个网络设备的时隙配置一致。但是,在一些场景中,由作为发送端的网络设备发起FlexE时隙协商,可能会使得这两个网络设备之间出现较长时间的业务中断。在一个示例中:作为发送端的网络设备发起FlexE时隙的协商之后,自身完成了时隙配置的更新,并将完成时隙配置更新的确认消息发送给作为接收端的网络设备。但是,由于发送端到接收端的链路故障,故而接收端并未接收到前述确认消息,因此,接收端并未执行时隙配置更新操作,这就使得作为发送端的网络设备的时隙配置和作为接收端的网络设备的时隙配置不一致。现结合图2进行说明。图2为一种时隙协商的信令交互图。如图2所示:
发送端向接收端发送时隙协商请求;
接收端接收到该时隙协商请求之后,可以向发送端发送针对该时隙协商请求的应答消息;
发送端接收到该应答消息之后,可以进行时隙配置的更新;进一步地,发送端向接收端发送确认消息,该确认消息用于指示发送端的已经完成了时隙配置的更新;
接收端接收到该确认消息之后,进行时隙配置的更新。至此,发送端和接收端之间的时隙协商完成。
但是,在一些场景中,例如,在接收端向发送端发送应答消息之后,由发送端到达接收端之间的链路出现故障,则接收端无法接收到前述确认消息,进一步地,接收端则不会进行时隙配置的更新。但是,由于发送端接收到应答消息之后即进行了时隙配置的更新,这就导致发送端进行了时隙配置的更新,而接收端未进行时隙配置的更新,从而使得发送端的时隙配置和接收端的时隙配置不一致。
出现这种情况之后,目前,只有等待发送端再次发起时隙协商。若发送端未及时重新发起时隙协商,则发送端和接收端之间会出现较长时间的业务中断。
本申请实施例中的时隙协商,可以是FlexE时隙表的协商,也可以是小颗粒业务的时隙协商。
为了解决上述问题,本申请实施例提供了一种时隙协商方法。参见图3,该图为本申请实施例提供的一种时隙协商方法的流程示意图。图3所示的方法100例如可以包括如下S101-S104。
需要说明的是,本申请实施例中提及的通信装置,可以是交换机、路由器等网络设备,也可以是网络设备上的一部分组件,例如是网络设备上的单板,线卡,接口,还可以是网络设备上的一个功能模块,还可以是用于实现本申请方法的芯片,本申请实施例不做具体限定。通信装置之间例如可以但不限于通过以太网线或光缆直接连接。
S101:第一通信装置向第二通信装置发送请求信息,所述请求信息用于请求所述第二通信装置发起切换FlexE时隙的协商请求。
此处的第一通信装置作为接收端,第二通信装置作为发送端。
在一个示例中,所述协商请求用于请求所述第二通信装置发起切换FlexE时隙表的协商请求。在一个示例中,第一通信装置和第二通信装置本地均配置有两个时隙表,分别为A表和B表。其中一个时隙表处于使用状态,另外一个时隙表处于备用状态。所述切换FlexE时隙表的协商请求,例如可以请求将使用的时隙表由A表切换为B表。在又一个示例中,若第一通信装置和第二通信装置之间传输小颗粒业务,则所述协商请求用于请求第二通信装置发起小颗粒业务的时隙协商请求。
如上对于图2的描述可知,在第二通信装置到第一通信装置之间的链路发生故障时,则第一通信装置的时隙配置和第二通信装置的时隙配置有可能不一致,相应的,若等待第二通信装置发起FlexE时隙配置的协商,则有可能导致业务长时间中断。鉴于此,在一个示例中,第一通信装置可以在所述第二通信装置到所述第一通信装置之间的链路故障恢复后,向所述第二通信装置发送所述请求信息。作为一个示例,所述第一通信装置可以在检测到所述链路故障恢复之后,即刻向第二通信装置发送所述请求信息。这样一来,可以在 所述链路故障恢复之后,尽可能早的进行FlexE时隙的协商,从而使得第一通信装置的时隙配置与第二通信装置的时隙配置一致,从而使得第一通信装置和第二通信装置可以正常进行FlexE通信,减少业务中断的时间。
在申请实施例中,考虑到所述链路的光信号抖动消失、所述链路的误码率小于或者等于误码率阈值、所述链路的丢包率小于或者等于丢包率阈值、以及所述链路的链路层故障消失,都可以说明所述链路故障恢复。因此,所述链路故障恢复,可以是所述链路的光信号抖动消失、所述链路的误码率小于或者等于误码率阈值、所述链路的丢包率小于或者等于丢包率阈值、以及所述链路的链路层故障消失中的其中一项或者多项。
在一些实施例中,所述第一通信装置可以根据第一通信装置的光模块检测的光功率,确定所述链路的光信号抖动消失,例如,当所述光功率大于一定阈值时,确定所述链路的光信号抖动消失。
在一些实施例中,所述第一通信装置可以通过前向纠错(forward error correction,FEC)技术确定所述链路的误码率。
在一些实施例中,所述第一通信装置可以通过操作维护管理(Operation Administration and Maintenance,OAM)技术或者随流检测(in-situ Flow Information Telemetry,iFIT)技术确定所述链路的丢包率。
在一些实施例中,所述第一通信装置可以通过向第二通信装置发送链路层发现协议(Link Layer Discovery Protocol,LLDP)报文,以确定所述链路的链路层故障恢复。例如,可以在接收到所述第二通信装置针对所述LLDP报文发送的应答报文的情况下,确定所述链路的链路层故障恢复。
在一些实施例中,所述第一通信装置可以在所述第二通信装置使用的时隙配置与所述第一通信装置使用的时隙配置不一致时,向所述第二通信装置发送所述请求信息。在一个示例中,所述第一通信装置可以首先确定第二通信装置所使用的时隙配置,而后,比较自身所使用的时隙配置以及第二通信装置所使用的时隙配置,在确定自身所使用的时隙配置和第二通信装置所使用的时隙配置不一致的情况下,向所述第二通信装置发送所述请求信息。这样一来,可以第一通信装置使用的时隙配置和第二通信装置使用的时隙配置不一致的情况下,尽可能早的进行FlexE时隙的协商,从而使得第一通信装置的时隙配置与第二通信装置的时隙配置一致,从而使得第一通信装置和第二通信装置可以正常进行FlexE通信,减少业务中断的时间。
如上文对FlexE技术的介绍可知,所述第二通信装置使用的时隙配置与所述第一通信装置使用的时隙配置不一致,可以包括两种情况。
其中一种情况是:所述第二通信装置使用的时隙表与所述第一通信装置使用的时隙表不一致。另外一种情况是:所述第二通信装置使用的小颗粒业务的时隙配置与所述第一通信装置使用的小颗粒业务的时隙配置不一致。
对于第一种情况,由于所述第二通信装置向第一通信装置发送的FlexE开销中,携带所述第二通信装置所使用的时隙表的信息,因此,所述第一通信装置可以通过第二通信装置发送的FlexE开销,确定所述第二通信装置所使用的时隙表,并进一步将所述第二通信装置所使用的时隙表与自身所使用的时隙表进行比较,从而确定所述第二通信装置使用的 时隙表与所述第一通信装置使用的时隙表不一致。
对于第二种情况,由于所述第二通信装置向第一通信装置发送的FGU基帧开销中,携带所述第二通信装置所使用的小颗粒业务的时隙配置的信息,因此,所述第一通信装置可以通过第二通信装置发送的FGU基帧开销,确定所述第二通信装置所使用的小颗粒业务的时隙配置,并进一步将所述第二通信装置所使用的小颗粒业务的时隙配置与自身所使用的小颗粒业务的时隙配置进行比较,从而确定所述第二通信装置使用的小颗粒业务的时隙配置与所述第一通信装置使用的小颗粒业务的时隙配置不一致。
在本申请实施例中,第一通信装置可以通过数据通道将所述请求信息发送给第二通信装置。例如,通过传输数据报文的数据通道将所述请求信息发送给第二通信装置。也可以通过管理通道将所述请求信息发送给第二通信装置,例如将所述请求信息携带在OAM消息中发送给第二通信装置。本申请实施例不做具体限定。
作为一个示例,考虑到第一通信装置和第二通信装置之间进行FlexE通信,则第一通信装置会向第二通信装置发送FlexE开销。如图1所示,发送一段数据段***一个FlexE开销。因此,当所述请求信息用于请求所述第二通信装置发起切换FlexE时隙表的协商请求时,所述第一通信装置可以将所述请求信息携带在FlexE开销中发送给所述第二通信装置。在一些实施例中,可以通过所述FlexE开销中的保留字段携带所述请求信息。目前,构成FlexE开销帧的8个FlexE开销中,第2个开销中的bit17-bit63以及第3个开销中的bit35-bit47为保留字段,因此,可以通过第2个开销中的bit17-bit63中的其中部分或者全部比特、或者第3个开销中的bit35-bit47中的其中部分或者全部比特携带所述请求信息。例如,利用所述第2个开销中的bit17-bit63中的其中一个比特携带所述请求信息,当该比特的值为1时,表示该FlexE开销携带所述请求信息。又如,利用所述第3个开销中的bit35-bit47中的其中一个比特携带所述请求信息,当该比特的值为1时,表示该FlexE开销携带所述请求信息。
另外,若第一通信装置和第二通信装置之间传输小颗粒业务,则所述第一通信装置会向第二通信装置发送包括FGU基帧开销的数据块,因此,当所述请求信息用于请求所述第二通信装置发起小颗粒业务的时隙协商请求时,所述第一通信装置可以将所述请求信息携带在前述包括FGU基帧开销的数据块中发送给所述第二通信装置。在一些实施例中,可以通过所述FGU基帧开销中的保留字段携带所述请求信息。
S102:第二通信装置接收所述请求信息。
S103:第二通信装置向所述第一通信装置发送切换FlexE时隙的协商请求。
S104:第一通信装置接收第二通信装置发送的所述协商请求。
第一通信装置将所述请求信息发送给第二通信装置之后,所述第二通信装置可以接收所述请求信息,并进一步基于所述请求信息发起FlexE时隙的协商。具体地,第二通信装置可以向第一通信装置发送切换FlexE时隙的协商请求,第一通信装置接收该协商请求。至此,所述第一通信装置和第二通信装置可以开始进行FlexE时隙的协商。
关于所述协商请求,需要说明的是,若所述协商请求用于请求切换FlexE时隙表,则在一个示例中,所述协商请求例如可以请求将使用的FlexE时隙表由A表切换为B表。对于这种情况,所述协商请求的格式,可以参考IEEE 802.3的相关描述部分,此处不做详述。
若所述协商请求用于请求切换小颗粒业务的时隙配置,则所述协商请求中例如可以包括各个小颗粒业务对应的sub-client标识(identifier,ID)和各个sub-client ID分别对应的sub-slot之间的映射关系。
关于FlexE时隙的协商的后续过程,可以参考上文对于图2的描述部分,此处不做重复描述。
通过以上描述可知,在本申请实施例中,可以由作为接收端的第一通信装置来触发切换FlexE时隙的协商,从而使得在一些实施例中,能够及时进行FlexE时隙的协商,从而使得第一通信装置和第二通信装置能够使用FlexE进行通信。
基于以上实施例提供的时隙协商方法,本申请实施例还提供了对应的装置。接下来,结合附图介绍该装置。
参见图4,该图为本申请实施例提供的一种时隙协商装置的结构示意图。图4所示的时隙协商装置400,用于执行以上方法100中第一通信装置所执行的步骤。在一个示例中,所述时隙协商装置400,例如可以包括发送单元401和接收单元402。
发送单元401,用于向作为发送端的第二通信装置发送请求信息,所述请求信息用于请求所述第二通信装置发起切换灵活以太FlexE时隙的协商请求;
接收单元402,用于接收所述第二通信装置发送的所述协商请求。
在一种可能的实现方式中,所述请求信息用于请求所述第二通信装置发起切换FlexE时隙表的协商请求。
在一种可能的实现方式中,所述请求信息用于请求所述第二通信装置发起小颗粒业务的时隙协商请求。
在一种可能的实现方式中,所述发送单元401,用于:在所述第二通信装置到所述第一通信装置之间的链路故障恢复后,向所述第二通信装置发送所述请求信息。
在一种可能的实现方式中,所述链路故障恢复包括以下至少一项:所述链路的光信号抖动消失;所述链路的误码率小于或者等于误码率阈值;所述链路的丢包率小于或者等于丢包率阈值;所述链路的链路层故障消失。
在一种可能的实现方式中,所述发送单元401,用于:在所述第二通信装置使用的时隙配置与所述第一通信装置使用的时隙配置不一致时,向所述第二通信装置发送所述请求信息。
在一种可能的实现方式中,所述发送单元401,用于:在所述第二通信装置使用的时隙表与所述第一通信装置使用的时隙表不一致时,向所述第二通信装置发送所述请求信息。
在一种可能的实现方式中,所述发送单元401,用于:在所述第二通信装置使用的小颗粒业务的时隙配置与所述第一通信装置使用的小颗粒业务的时隙配置不一致时,向所述第二通信装置发送所述请求信息。
在一种可能的实现方式中,所述发送单元401,用于:向所述第二通信装置发送FlexE开销,所述FlexE开销中包括所述请求信息。
在一种可能的实现方式中,所述FlexE开销包括保留字段,所述保留字段用于承载所述请求信息。
在一种可能的实现方式中,所述发送单元401,用于:向所述第二通信装置数据块,所 述数据块中包括小颗粒单元FGU基帧开销,所述FGU基帧开销中包括所述请求信息。
在一种可能的实现方式中,所述FGU基帧开销包括保留字段,所述保留字段用于承载所述请求信息。
由于所述装置400是与以上方法实施例提供的由第一通信装置执行的方法对应的装置,所述装置400的各个单元的具体实现,均与以上方法实施例为同一构思,因此,关于所述装置400的各个单元的具体实现,可以参考以上方法实施例中关于第一通信装置所执行的方法的描述部分,此处不再赘述。
参见图5,该图为本申请实施例提供的一种时隙协商装置的结构示意图。图5所示的时隙协商装置500,用于执行以上方法100中第二通信装置所执行的步骤。在一个示例中,所述时隙协商装置500,例如可以包括接收单元501和发送单元502。
接收单元501,用于接收作为接收端的第一通信装置发送的请求信息,所述请求信息用于请求所述第二通信装置发起切换灵活以太FlexE时隙的协商请求;
发送单元502,用于向所述第一通信装置发送所述协商请求。
在一种可能的实现方式中,所述请求信息用于请求所述第二通信装置发起切换FlexE时隙表的协商请求。
在一种可能的实现方式中,所述请求信息用于请求所述第二通信装置发起小颗粒业务的时隙协商请求。
在一种可能的实现方式中,所述接收单元501,用于:在所述第二通信装置到所述第一通信装置之间的链路故障恢复后,接收所述第一通信装置发送的所述请求信息。
在一种可能的实现方式中,所述链路故障恢复包括以下至少一项:所述链路的光信号抖动消失;所述链路的误码率小于或者等于误码率阈值;所述链路的丢包率小于或者等于丢包率阈值;所述链路的链路层故障消失。
在一种可能的实现方式中,所述接收单元501,用于:在所述第二通信装置使用的时隙配置与所述第一通信装置使用的时隙配置不一致时,接收所述第一通信装置发送的所述请求信息。
在一种可能的实现方式中,所述接收单元501,用于:在所述第二通信装置使用的时隙表与所述第一通信装置使用的时隙表不一致时,接收所述第一通信装置发送的所述请求信息。
在一种可能的实现方式中,所述接收单元501,用于:
在所述第二通信装置使用的小颗粒业务的时隙配置与所述第一通信装置使用的小颗粒业务的时隙配置不一致时,接收所述第一通信装置发送的所述请求信息。
在一种可能的实现方式中,所述接收单元501,用于:接收所述第一通信装置发送的FlexE开销,所述FlexE开销中包括所述请求信息。
在一种可能的实现方式中,所述FlexE开销包括保留字段,所述保留字段用于承载所述请求信息。
在一种可能的实现方式中,所述接收单元501,用于:接收所述第一通信装置发送的数据块,所述数据块中包括小颗粒单元FGU基帧开销,所述FGU基帧开销中包括所述请求信息。
在一种可能的实现方式中,所述FGU基帧开销包括保留字段,所述保留字段用于承载所述请求信息。
由于所述装置500是与以上方法实施例提供的由第二通信装置执行的方法对应的装置,所述装置500的各个单元的具体实现,均与以上方法实施例为同一构思,因此,关于所述装置500的各个单元的具体实现,可以参考以上方法实施例中关于第二通信装置所执行的方法的描述部分,此处不再赘述。
此外,本申请实施例还提供了一种通信装置600,参见图6所示,图6为本申请实施例提供的一种通信装置的结构示意图。该通信装置600包括通信接口601和与通信接口601连接的处理器602。该通信装置600可以用于执行以上实施例中的方法100。
在一个示例中,所述通信装置600可以执行以上实施例中的方法100,当通信装置600用于执行以上实施例中的方法100时,通信装置600相当于方法100中的第一通信装置。通信接口601用于执行方法100中第一通信装置执行的收发操作。处理器602用于执行方法100中第一通信装置执行的除收发操作之外的操作。例如:通信接口601用于向第二通信装置发送请求信息,所述请求信息用于请求所述第二通信装置发起切换灵活以太FlexE时隙的协商请求,并接收所述第二通信装置发送的所述协商请求。处理器602用于生成所述请求信息。
在一个示例中,所述通信装置600可以执行以上实施例中的方法100,当通信装置600用于执行以上实施例中的方法100时,通信装置600相当于方法100中的第二通信装置。通信接口601用于执行方法100中第二通信装置执行的收发操作。处理器602用于执行方法100中第二通信装置执行的除收发操作之外的操作。例如:通信接口601用于接收第一通信装置发送的请求信息,所述请求信息用于请求所述第二通信装置发起切换灵活以太FlexE时隙的协商请求,并向所述第一通信装置发送所述协商请求。处理器602用于生成所述协商请求。
此外,本申请实施例还提供了一种通信装置700,参见图7所示,图7为本申请实施例提供的一种通信装置的结构示意图。该通信装置700可以用于执行以上实施例中的方法100。
如图7所示,通信装置700可以包括处理器710,与所述处理器710耦合连接的存储器720,收发器730。收发器730例如可以是通信接口,光模块等。处理器710可以是中央处理器(英文:central processing unit,缩写:CPU),网络处理器(英文:network processor,缩写:NP)或者CPU和NP的组合。处理器还可以是专用集成电路(英文:application-specific integrated circuit,缩写:ASIC),可编程逻辑器件(英文:programmable logic device,缩写:PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(英文:complex programmable logic device,缩写:CPLD),现场可编程逻辑门阵列(英文:field-programmable gate array,缩写:FPGA),通用阵列逻辑(英文:generic array logic,缩写:GAL)或其任意组合。处理器710可以是指一个处理器,也可以包括多个处理器。存储器720可以包括易失性存储器(英文:volatile memory),例如随机存取存储器(英文:random-access memory,缩写:RAM);存储器也可以包括非易失性存储器(英文:non-volatile memory),例如只读存储器(英文:read-only memory,缩写:ROM),快闪存储器(英文:flash memory),硬盘(英文:hard disk drive,缩写:HDD)或固态硬盘(英文:solid-state drive,缩写:SSD);存储 器720还可以包括上述种类的存储器的组合。存储器720可以是指一个存储器,也可以包括多个存储器。在一个实施方式中,存储器720中存储有计算机可读指令,所述计算机可读指令包括多个软件模块,例如发送模块721,处理模块722和接收模块723。处理器710执行各个软件模块后可以按照各个软件模块的指示进行相应的操作。在本实施例中,一个软件模块所执行的操作实际上是指处理器710根据所述软件模块的指示而执行的操作。
在一个示例中,所述通信装置700可以执行以上实施例中的方法100,当通信装置700用于执行以上实施例中的方法100时,通信装置700相当于方法100中的第一通信装置。收发器730用于执行方法100中第一通信装置执行的收发操作。收发器710用于执行方法100中第一通信装置执行的除收发操作之外的操作。例如:收发器730用于向第二通信装置发送请求信息,所述请求信息用于请求所述第二通信装置发起切换灵活以太FlexE时隙的协商请求,并接收所述第二通信装置发送的所述协商请求。收发器710用于生成所述请求信息。
在一个示例中,所述通信装置700可以执行以上实施例中的方法100,当通信装置700用于执行以上实施例中的方法100时,通信装置700相当于方法100中的第二通信装置。收发器730用于执行方法100中第二通信装置执行的收发操作。收发器710用于执行方法100中第二通信装置执行的除收发操作之外的操作。例如:收发器730用于接收第一通信装置发送的请求信息,所述请求信息用于请求所述第二通信装置发起切换灵活以太FlexE时隙的协商请求,并向所述第一通信装置发送所述协商请求。收发器710用于生成所述协商请求。
本申请还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得所述计算机执行前述实施例中所述的方法(例如方法100)中任意一个或多个操作。
本申请还提供了一种计算机程序产品,包括计算机程序,当其在计算机上运行时,使得所述计算机执行前述实施例中所述的方法(例如方法100)中任意一个或多个操作。
本申请还提供了一种通信***,包括以上实施例提及的第一通信装置和第二通信装置。
本申请还提供了一种通信***,包括至少一个存储器和至少一个处理器,该至少一个存储器存储有指令,该至少一个处理器执行所述指令,使得所述通信***执行本申请前述实施例中任一实施例所述的方法(例如方法100)中任意一个或多个操作。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***,装置和方法,可以通 过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑业务划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各业务单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件业务单元的形式实现。
集成的单元如果以软件业务单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的业务可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些业务存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上仅为本发明的具体实施方式而已。
以上,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (52)

  1. 一种时隙协商方法,其特征在于,由作为接收端的第一通信装置实现,所述方法包括:
    向作为发送端的第二通信装置发送请求信息,所述请求信息用于请求所述第二通信装置发起切换灵活以太FlexE时隙的协商请求;
    接收所述第二通信装置发送的所述协商请求。
  2. 根据权利要求1所述的方法,其特征在于,所述请求信息用于请求所述第二通信装置发起切换FlexE时隙表的协商请求。
  3. 根据权利要求1所述的方法,其特征在于,所述请求信息用于请求所述第二通信装置发起小颗粒业务的时隙协商请求。
  4. 根据权利要求1-3任意一项所述的方法,其特征在于,所述向作为发送端的第二通信装置发送请求信息,包括:
    在所述第二通信装置到所述第一通信装置之间的链路故障恢复后,向所述第二通信装置发送所述请求信息。
  5. 根据权利要求4所述的方法,其特征在于,所述链路故障恢复包括以下至少一项:
    所述链路的光信号抖动消失;
    所述链路的误码率小于或者等于误码率阈值;
    所述链路的丢包率小于或者等于丢包率阈值;
    所述链路的链路层故障消失。
  6. 根据权利要求1所述的方法,其特征在于,所述向作为发送端的第二通信装置发送请求信息,包括:
    在所述第二通信装置使用的时隙配置与所述第一通信装置使用的时隙配置不一致时,向所述第二通信装置发送所述请求信息。
  7. 根据权利要求6所述的方法,其特征在于,在所述第二通信装置使用的时隙配置与所述第一通信装置使用的时隙配置不一致时,向所述第二通信装置发送所述请求信息,包括:
    在所述第二通信装置使用的时隙表与所述第一通信装置使用的时隙表不一致时,向所述第二通信装置发送所述请求信息。
  8. 根据权利要求6所述的方法,其特征在于,在所述第二通信装置使用的时隙配置与所述第一通信装置使用的时隙配置不一致时,向所述第二通信装置发送所述请求信息,包括:
    在所述第二通信装置使用的小颗粒业务的时隙配置与所述第一通信装置使用的小颗粒业务的时隙配置不一致时,向所述第二通信装置发送所述请求信息。
  9. 根据权利要求2所述的方法,其特征在于,向所述第二通信装置发送所述请求信息,包括:
    向所述第二通信装置发送FlexE开销,所述FlexE开销中包括所述请求信息。
  10. 根据权利要求9所述的方法,其特征在于,所述FlexE开销包括保留字段,所述保留字段用于承载所述请求信息。
  11. 根据权利要求3所述的方法,其特征在于,向所述第二通信装置发送所述请求信息,包括:
    向所述第二通信装置数据块,所述数据块中包括小颗粒单元FGU基帧开销,所述FGU 基帧开销中包括所述请求信息。
  12. 根据权利要求11所述的方法,其特征在于,所述FGU基帧开销包括保留字段,所述保留字段用于承载所述请求信息。
  13. 一种时隙协商方法,其特征在于,由作为发送端的第二通信装置实现,所述方法包括:
    接收作为接收端的第一通信装置发送的请求信息,所述请求信息用于请求所述第二通信装置发起切换灵活以太FlexE时隙的协商请求;
    向所述第一通信装置发送所述协商请求。
  14. 根据权利要求13所述的方法,其特征在于,所述请求信息用于请求所述第二通信装置发起切换FlexE时隙表的协商请求。
  15. 根据权利要求13所述的方法,其特征在于,所述请求信息用于请求所述第二通信装置发起小颗粒业务的时隙协商请求。
  16. 根据权利要求13-15任意一项所述的方法,其特征在于,所述接收所述第一通信装置发送的所述请求信息,包括:
    在所述第二通信装置到所述第一通信装置之间的链路故障恢复后,接收所述第一通信装置发送的所述请求信息。
  17. 根据权利要求16所述的方法,其特征在于,所述链路故障恢复包括以下至少一项:
    所述链路的光信号抖动消失;
    所述链路的误码率小于或者等于误码率阈值;
    所述链路的丢包率小于或者等于丢包率阈值;
    所述链路的链路层故障消失。
  18. 根据权利要求13所述的方法,其特征在于,所述接收作为接收端的第一通信装置发送的请求信息,包括:
    在所述第二通信装置使用的时隙配置与所述第一通信装置使用的时隙配置不一致时,接收所述第一通信装置发送的所述请求信息。
  19. 根据权利要求18所述的方法,其特征在于,在所述第二通信装置使用的时隙配置与所述第一通信装置使用的时隙配置不一致时,接收所述第一通信装置发送的所述请求信息,包括:
    在所述第二通信装置使用的时隙表与所述第一通信装置使用的时隙表不一致时,接收所述第一通信装置发送的所述请求信息。
  20. 根据权利要求18所述的方法,其特征在于,在所述第二通信装置使用的时隙配置与所述第一通信装置使用的时隙配置不一致时,接收所述第一通信装置发送的所述请求信息,包括:
    在所述第二通信装置使用的小颗粒业务的时隙配置与所述第一通信装置使用的小颗粒业务的时隙配置不一致时,接收所述第一通信装置发送的所述请求信息。
  21. 根据权利要求14所述的方法,其特征在于,所述接收所述第一通信装置发送的所述请求信息,包括:
    接收所述第一通信装置发送的FlexE开销,所述FlexE开销中包括所述请求信息。
  22. 根据权利要求21所述的方法,其特征在于,所述FlexE开销包括保留字段,所述保留字段用于承载所述请求信息。
  23. 根据权利要求15所述的方法,其特征在于,所述接收所述第一通信装置发送的所述请求信息,包括:
    接收所述第一通信装置发送的数据块,所述数据块中包括小颗粒单元FGU基帧开销,所述FGU基帧开销中包括所述请求信息。
  24. 根据权利要求23所述的方法,其特征在于,所述FGU基帧开销包括保留字段,所述保留字段用于承载所述请求信息。
  25. 一种时隙协商装置,其特征在于,应用于作为接收端的第一通信装置,所述装置包括:
    发送单元,用于向作为发送端的第二通信装置发送请求信息,所述请求信息用于请求所述第二通信装置发起切换灵活以太FlexE时隙的协商请求;
    接收单元,用于接收所述第二通信装置发送的所述协商请求。
  26. 根据权利要求25所述的装置,其特征在于,所述请求信息用于请求所述第二通信装置发起切换FlexE时隙表的协商请求。
  27. 根据权利要求25所述的装置,其特征在于,所述请求信息用于请求所述第二通信装置发起小颗粒业务的时隙协商请求。
  28. 根据权利要求25-27任意一项所述的装置,其特征在于,所述发送单元,用于:
    在所述第二通信装置到所述第一通信装置之间的链路故障恢复后,向所述第二通信装置发送所述请求信息。
  29. 根据权利要求28所述的装置,其特征在于,所述链路故障恢复包括以下至少一项:
    所述链路的光信号抖动消失;
    所述链路的误码率小于或者等于误码率阈值;
    所述链路的丢包率小于或者等于丢包率阈值;
    所述链路的链路层故障消失。
  30. 根据权利要求25所述的装置,其特征在于,所述发送单元,用于:
    在所述第二通信装置使用的时隙配置与所述第一通信装置使用的时隙配置不一致时,向所述第二通信装置发送所述请求信息。
  31. 根据权利要求30所述的装置,其特征在于,所述发送单元,用于:
    在所述第二通信装置使用的时隙表与所述第一通信装置使用的时隙表不一致时,向所述第二通信装置发送所述请求信息。
  32. 根据权利要求30所述的装置,其特征在于,所述发送单元,用于:
    在所述第二通信装置使用的小颗粒业务的时隙配置与所述第一通信装置使用的小颗粒业务的时隙配置不一致时,向所述第二通信装置发送所述请求信息。
  33. 根据权利要求26所述的装置,其特征在于,所述发送单元,用于:
    向所述第二通信装置发送FlexE开销,所述FlexE开销中包括所述请求信息。
  34. 根据权利要求33所述的装置,其特征在于,所述FlexE开销包括保留字段,所述保留字段用于承载所述请求信息。
  35. 根据权利要求27所述的装置,其特征在于,所述发送单元,用于:
    向所述第二通信装置数据块,所述数据块中包括小颗粒单元FGU基帧开销,所述FGU基帧开销中包括所述请求信息。
  36. 根据权利要求35所述的装置,其特征在于,所述FGU基帧开销包括保留字段,所述保留字段用于承载所述请求信息。
  37. 一种时隙协商装置,其特征在于,应用于作为发送端的第二通信装置,所述装置包括:
    接收单元,用于接收作为接收端的第一通信装置发送的请求信息,所述请求信息用于请求所述第二通信装置发起切换灵活以太FlexE时隙的协商请求;
    发送单元,用于向所述第一通信装置发送所述协商请求。
  38. 根据权利要求37所述的装置,其特征在于,所述请求信息用于请求所述第二通信装置发起切换FlexE时隙表的协商请求。
  39. 根据权利要求37所述的装置,其特征在于,所述请求信息用于请求所述第二通信装置发起小颗粒业务的时隙协商请求。
  40. 根据权利要求37-39任意一项所述的装置,其特征在于,所述接收单元,用于:
    在所述第二通信装置到所述第一通信装置之间的链路故障恢复后,接收所述第一通信装置发送的所述请求信息。
  41. 根据权利要求40所述的装置,其特征在于,所述链路故障恢复包括以下至少一项:
    所述链路的光信号抖动消失;
    所述链路的误码率小于或者等于误码率阈值;
    所述链路的丢包率小于或者等于丢包率阈值;
    所述链路的链路层故障消失。
  42. 根据权利要求37所述的装置,其特征在于,所述接收单元,用于:在所述第二通信装置使用的时隙配置与所述第一通信装置使用的时隙配置不一致时,接收所述第一通信装置发送的所述请求信息。
  43. 根据权利要求42所述的装置,其特征在于,所述接收单元,用于:在所述第二通信装置使用的时隙表与所述第一通信装置使用的时隙表不一致时,接收所述第一通信装置发送的所述请求信息。
  44. 根据权利要求42所述的装置,其特征在于,所述接收单元,用于:
    在所述第二通信装置使用的小颗粒业务的时隙配置与所述第一通信装置使用的小颗粒业务的时隙配置不一致时,接收所述第一通信装置发送的所述请求信息。
  45. 根据权利要求38所述的装置,其特征在于,所述接收单元,用于:
    接收所述第一通信装置发送的FlexE开销,所述FlexE开销中包括所述请求信息。
  46. 根据权利要求45所述的装置,其特征在于,所述FlexE开销包括保留字段,所述保留字段用于承载所述请求信息。
  47. 根据权利要求39所述的装置,其特征在于,所述接收单元,用于:
    接收所述第一通信装置发送的数据块,所述数据块中包括小颗粒单元FGU基帧开销,所述FGU基帧开销中包括所述请求信息。
  48. 根据权利要求47所述的装置,其特征在于,所述FGU基帧开销包括保留字段,所述保留字段用于承载所述请求信息。
  49. 一种第一通信装置,用作接收端,其特征在于,包括:处理器和存储器;
    所述存储器,用于存储指令或计算机程序;
    所述处理器,用于执行所述指令或计算机程序,使得所述第一通信装置执行权利要求1-12任意一项所述的方法。
  50. 一种第二通信装置,用作接收端,其特征在于,包括:处理器和存储器;
    所述存储器,用于存储指令或计算机程序;
    所述处理器,用于执行所述指令或计算机程序,使得所述第二通信装置执行权利要求13-24任意一项所述的方法。
  51. 一种计算机程序产品,其特征在于,包括程序,当所述程序在处理器上运行时,实现权利要求1-24任意一项所述的方法。
  52. 一种通信***,其特征在于,所述通信***包括:
    执行以上权利要求1-12任意一项所述的方法的通信装置以及执行权利要求13-24任意一项所述的方法的通信装置。
PCT/CN2022/101373 2021-10-28 2022-06-27 一种时隙协商方法及装置 WO2023071249A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22885155.6A EP4344147A4 (en) 2021-10-28 2022-06-27 TIME SLOT NEGOTIATION PROCEDURE AND DEVICE
US18/418,915 US20240205074A1 (en) 2021-10-28 2024-01-22 Slot negotiation method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111266392.2 2021-10-28
CN202111266392.2A CN116055016A (zh) 2021-10-28 2021-10-28 一种时隙协商方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/418,915 Continuation US20240205074A1 (en) 2021-10-28 2024-01-22 Slot negotiation method and apparatus

Publications (1)

Publication Number Publication Date
WO2023071249A1 true WO2023071249A1 (zh) 2023-05-04

Family

ID=86130041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101373 WO2023071249A1 (zh) 2021-10-28 2022-06-27 一种时隙协商方法及装置

Country Status (4)

Country Link
US (1) US20240205074A1 (zh)
EP (1) EP4344147A4 (zh)
CN (1) CN116055016A (zh)
WO (1) WO2023071249A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107888516A (zh) * 2016-09-29 2018-04-06 中兴通讯股份有限公司 一种承载业务的方法、设备和***
CN109981208A (zh) * 2017-12-27 2019-07-05 华为技术有限公司 基于灵活以太网FlexE传输业务流的方法和装置
WO2020151280A1 (zh) * 2019-01-25 2020-07-30 中兴通讯股份有限公司 灵活以太网协议中切换时隙配置的方法及相关设备
CN112491492A (zh) * 2019-09-12 2021-03-12 华为技术有限公司 一种时隙协商的方法和设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112022004518A2 (pt) * 2019-09-12 2022-05-31 Huawei Tech Co Ltd Método de negociação de slot e dispositivo

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107888516A (zh) * 2016-09-29 2018-04-06 中兴通讯股份有限公司 一种承载业务的方法、设备和***
CN109981208A (zh) * 2017-12-27 2019-07-05 华为技术有限公司 基于灵活以太网FlexE传输业务流的方法和装置
WO2020151280A1 (zh) * 2019-01-25 2020-07-30 中兴通讯股份有限公司 灵活以太网协议中切换时隙配置的方法及相关设备
CN112491492A (zh) * 2019-09-12 2021-03-12 华为技术有限公司 一种时隙协商的方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4344147A4

Also Published As

Publication number Publication date
EP4344147A4 (en) 2024-05-15
EP4344147A1 (en) 2024-03-27
US20240205074A1 (en) 2024-06-20
CN116055016A (zh) 2023-05-02

Similar Documents

Publication Publication Date Title
US11271668B2 (en) Data transmission methods, apparatuses, devices, and system
WO2022022263A1 (zh) 一种传输数据的方法和设备
US11528169B2 (en) Method for adjusting PHY in FlexE group, related device, and storage medium
US11792067B2 (en) Flexible ethernet communication method and network device
WO2022042743A1 (zh) 数据传输方法和装置、电子设备、计算机可读介质
US12047165B2 (en) Slot negotiation method and device
US20210385127A1 (en) Flexible ethernet communication method and network device
WO2019029286A1 (zh) 一种通信方法、设备及存储介质
US20210273826A1 (en) Communication method and communications apparatus
EP4117237A1 (en) Service flow adjustment method and communication device
US11804982B2 (en) Communication method and apparatus
WO2023071249A1 (zh) 一种时隙协商方法及装置
WO2023116284A1 (zh) 一种灵活以太网FlexE中小颗粒业务的时隙协商及装置
WO2023197770A1 (zh) 一种故障通告方法及装置
WO2024032191A1 (zh) 一种故障码块处理方法及装置
WO2024087975A1 (zh) 一种通信方法及装置
CN113382430B (zh) 网络切片的数据传输方法、装置以及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885155

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022885155

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022885155

Country of ref document: EP

Effective date: 20231222

NENP Non-entry into the national phase

Ref country code: DE