WO2023070552A1 - 一种电池卷芯卷绕覆盖检测方法、装置及设备 - Google Patents

一种电池卷芯卷绕覆盖检测方法、装置及设备 Download PDF

Info

Publication number
WO2023070552A1
WO2023070552A1 PCT/CN2021/127557 CN2021127557W WO2023070552A1 WO 2023070552 A1 WO2023070552 A1 WO 2023070552A1 CN 2021127557 W CN2021127557 W CN 2021127557W WO 2023070552 A1 WO2023070552 A1 WO 2023070552A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
cathode
anode
distance
boundary
Prior art date
Application number
PCT/CN2021/127557
Other languages
English (en)
French (fr)
Inventor
陈继伟
王绪明
谢金潭
张园园
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2021/127557 priority Critical patent/WO2023070552A1/zh
Priority to CN202180091951.2A priority patent/CN116762205A/zh
Publication of WO2023070552A1 publication Critical patent/WO2023070552A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of batteries, in particular to a method, device and equipment for detecting battery core winding coverage.
  • batteries are mainly used as power in electric vehicles.
  • the batteries have the characteristics of high capacity, high output voltage, and good charge-discharge cycle performance.
  • it is generally necessary to wind the anode pole piece, the cathode pole piece, and the diaphragm into a core.
  • the boundary of the anode coating should cover the boundary of the cathode coating. If the coverage is not good, it is easy to cause the winding core to pierce the separator during cycle charge and discharge. In severe cases, it may even cause an explosion, which has a great impact on the safety of the battery.
  • the present application provides a battery core winding coverage detection method, device and equipment, which can accurately detect the coverage between the anode pole piece and the cathode pole piece during the battery core winding process.
  • the present application provides a method for detecting coverage of a battery core.
  • the detected battery core includes: an anode pole piece with an anode coating, a cathode pole piece with a cathode coating, and a battery located between the anode pole piece and the cathode pole piece.
  • the separator between the pole pieces; the detection method is applied to the winding preparation stage of the battery core.
  • the method includes:
  • the anode coating side image includes the image of the anode pole piece in the state of being rolled into the coil or the state of winding
  • the image of the cathode coating side includes the image of the anode pole piece in the state of being rolled into the coil Image of the cathode electrode sheet.
  • the first reference line is a reference line calibrated by the first image capture device used to capture the image of the anode coating side.
  • the third distance between the boundary of the first cathode coating on the side of the cathode coating away from the tab and the second reference line, and the second cathode coating on the side of the cathode coating near the tab The fourth distance between the boundary and the second reference line, wherein the second reference line is the reference line marked by the second image acquisition device used to collect the image of the cathode coating side, and the first reference line and the second reference line are at the same Coincident in the coordinate system.
  • the first reference line of the first image acquisition device used to acquire the image of the anode coating side and the second image acquisition device used to acquire the image of the cathode coating side is set to coincide in the same coordinate system (for example, the first reference line and the second reference line coincide in the world coordinate system), so that in the anode coating side image, the first reference line is used as a reference to calculate the
  • the first distance and the third distance calculated with reference to the second reference line in the cathode coating side image are equivalent to following the same reference line in the same coordinate system.
  • the first reference line and the second reference line are determined, it can be accurately judged whether the boundary of the first anode coating covers the boundary of the first cathode coating through the first distance and the third distance.
  • the second distance calculated with reference to the first reference line in the image of the anode coating side and the fourth distance calculated with reference to the second reference line in the image of the cathode coating side are equivalent to being in the same coordinate system Following the same reference line, and since the first reference line and the second reference line are determined, it can be accurately judged whether the second anode coating boundary covers the second cathode coating boundary through the second distance and the fourth distance. That is, through the above method, the coverage between the anode electrode piece and the cathode electrode piece during the winding process of the battery core can be accurately detected.
  • the anode pole piece included in the image on the anode coating side and the cathode pole piece included in the image on the cathode coating side are in the same winding section in the battery core; wherein, The wound section includes at least one pair of target anode tabs and target cathode tabs, the target anode tabs and target cathode tabs being adjacent.
  • the anode pole piece included in the image of the anode coating side and the cathode pole piece included in the image of the cathode coating side are in the same winding section in the battery core, so that the first distance What the third distance evaluates is the coverage between the first anode coating boundary and the first cathode coating boundary at the same position on the winding core; similarly, the second distance and the fourth distance evaluate the same position on the winding core.
  • the coverage between the second anodic coating boundary and the second cathodic coating boundary of the location Therefore, it is possible to determine the coverage between the anode pole piece and the cathode pole piece at the same position of the winding core, so that the coverage detection is more accurate.
  • the winding section includes at least one pair of adjacent target anode tabs and target cathode tabs, which can facilitate image analysis, using the target anode tab and the target cathode tab as a reference to capture the same
  • the location of the anode coating boundary and the cathode coating boundary thus, helps to improve the accuracy of coverage detection.
  • the aforementioned according to the image of the anode coating side, determine the first distance between the first anode coating boundary on the anode coating side away from the tab and the first reference line, and The second distance between the boundary of the second anode coating on the side of the anode coating near the lug and the first reference line, including:
  • the first distance is calculated by the distance between the first anode coating boundary between the target anode tab and the target cathode tab in the anode coating side image and the first reference line; by the target anode in the anode coating side image
  • a second distance is calculated from the distance between the second anode coating boundary between the tab and the target cathode tab and the first reference line.
  • the boundary of the first anode coating used to calculate the first distance and the second anode coating used to calculate the second distance The boundaries are all located between the target anode lug and the target cathode lug, that is, the first anode coating boundary and the second anode coating boundary at the same position can be accurately captured, so that the first distance and the second distance reflect the The distance between the first anodic coating boundary and the second anodic coating boundary, respectively, and the first baseline.
  • the first distance including: determining the pixel equivalent of the anode coating according to the distance between the boundary of the first anode coating and the boundary of the second anode coating and the number of pixels occupied by the anode coating in the image of the anode coating side ; Determine the first distance as the product of the number of pixels between the first anode coating boundary and the first reference line between the target anode lug and the target cathode lug in the anode coating side image and the pixel equivalent of the anode coating .
  • the second distance including: determining the pixel equivalent of the anode coating according to the distance between the boundary of the first anode coating and the boundary of the second anode coating and the number of pixels occupied by the anode coating in the image of the anode coating side ; Determine the second distance as the product of the number of pixels between the second anode coating boundary between the target anode lug and the target cathode lug and the first reference line in the anode coating side image and the pixel equivalent of the anode coating .
  • the image of the anode coating side is analyzed to calculate the pixel equivalent of the anode coating (that is, the distance represented by one pixel in the image of the anode coating side), and then, through the pixel equivalent of the anode coating and the distance located at the target
  • the accurate first distance at the same position can be obtained by multiplying the first anode coating boundary between the anode tab and the target cathode tab by the number of pixels between the first reference line.
  • the third distance is calculated by the distance between the first cathode coating boundary between the target anode tab and the target cathode tab in the cathode coating side image and the second reference line; by the cathode coating side image located between the target anode
  • a fourth distance is calculated from the distance between the second cathode coating boundary between the tab and the target cathode tab and the second reference line.
  • the boundary of the first cathode coating used to calculate the third distance and the second cathode coating used to calculate the fourth distance are all located between the target anode tab and the target cathode tab, that is, the first cathode coating boundary and the second cathode coating boundary at the same position can be accurately captured, so that the third distance and the fourth distance reflect the The distance between the first cathode coating boundary and the second cathode coating boundary, respectively, and the second baseline.
  • the third distance including: determining the pixel equivalent of the cathode coating according to the distance between the boundary of the first cathode coating and the boundary of the second cathode coating and the number of pixels occupied by the cathode coating in the image on the cathode coating side ; Determine the third distance as the product of the number of pixels between the first cathode coating boundary and the second reference line between the target anode lug and the target cathode lug in the cathode coating side image and the pixel equivalent of the anode coating .
  • the fourth distance including: determining the pixel equivalent of the cathode coating according to the distance between the boundary of the first cathode coating and the boundary of the second cathode coating and the number of pixels occupied by the cathode coating in the image on the cathode coating side ; Determine the fourth distance as the product of the number of pixels between the second cathode coating boundary between the target anode lug and the target cathode lug and the second reference line in the cathode coating side image and the pixel equivalent of the cathode pole piece .
  • the image on the cathode coating side is analyzed to calculate the pixel equivalent of the cathode coating (that is, the distance represented by one pixel in the image on the cathode coating side), and then, through the pixel equivalent of the cathode coating and the distance located at the target
  • the accurate third distance at the same position can be obtained by multiplying the boundary of the first cathode coating between the anode tab and the target cathode tab by the number of pixels between the second reference line.
  • the aforementioned "determine whether the first anode coating boundary covers the first cathode coating boundary according to the first distance and the third distance" includes: if the first distance minus the third If the difference obtained by the distance is greater than or equal to the first preset threshold, it is determined that the boundary of the first anode coating covers the boundary of the first cathode coating.
  • the first preset threshold by setting the first preset threshold, it is determined that the first anode coating boundary covers the first cathode coating boundary only when the first distance is greater than the third distance, so that the coverage detection result is more accurate. Being cautious can avoid misjudgments caused by measurement errors.
  • the aforementioned "according to the second distance and the fourth distance, determine whether the second anode coating boundary covers the second cathode coating boundary" includes: if the second distance minus the fourth If the difference obtained by the distance is greater than or equal to the second preset threshold, it is determined that the boundary of the second anode coating covers the boundary of the second cathode coating.
  • the method further includes: according to the side image of the cathode coating, determining that the insulating coating is close to A fifth distance between the boundary of the cathode tab and the second reference line; according to the fifth distance and the second distance, it is determined whether the boundary of the insulating coating close to the cathode tab covers the boundary of the second anode coating.
  • an insulating coating is provided between the boundary of the second cathode coating and the cathode tab, so that, according to the side image of the cathode coating, the distance between the boundary of the insulating coating close to the cathode tab and the second
  • the fifth distance between the reference lines is based on the coincidence of the first reference line and the second reference line in the same coordinate system, thus, the fifth distance calculated with the second reference line as a reference and the calculated distance with the first reference line
  • the second distance follows the same reference line, and the first reference line and the second reference line are determined, therefore, it can be accurately judged whether the boundary of the insulating coating close to the cathode tab covers the second anode through the fifth distance and the second distance Coated borders.
  • the aforementioned "according to the fifth distance and the second distance, determine whether the boundary of the insulating coating close to the cathode tab covers the boundary of the second anode coating" includes: if the fifth distance minus If the difference obtained from the second distance is greater than or equal to the third preset threshold, it is determined that the boundary of the insulating coating close to the cathode tab covers the boundary of the second anode coating.
  • the first reference line is the centerline of the field of view of the first image acquisition device
  • the second reference line is the centerline of the field of view of the second image acquisition device.
  • the first reference line is set as the center line of the field of view of the first image acquisition device
  • the second reference line is set as the center line of the field of view of the second image acquisition device, which can facilitate the computing equipment to separately calculate the anode coating
  • the side image and the cathode coating side image are identified, processed and calculated, which is beneficial to improve the accuracy of the coverage detection results.
  • the centerline of the field of view of the first image acquisition device is located at the circumferential centerline of the anode sheet
  • the centerline of the field of view of the second image acquisition device is located at the circumferential centerline of the cathode sheet.
  • the centerline of the field of view of the first image acquisition device is located at the circumferential centerline position of the anode pole piece, so that the anode pole piece is located in the middle of the image on the anode coating side, which can facilitate the calculation of the image on the anode coating side by the computing equipment. Carrying out the recognition processing calculation is beneficial to improve the accuracy of the coverage detection result.
  • the centerline of the field of view of the second image acquisition device is located at the circumferential centerline position of the cathode pole piece, so that the cathode pole piece is located in the middle of the image on the cathode coating side, which can facilitate the calculation equipment to identify, process and calculate the image on the cathode coating side, which is beneficial To improve the accuracy of coverage detection results.
  • the first image acquisition device includes an infrared light source and a first line scan camera
  • the second image acquisition device includes a visible light source and a second line scan camera
  • the first image acquisition device adopts an infrared light source and a first line scan camera.
  • the first line scan camera can continuously photograph the anode pole piece of the winding core during the winding process, and the For real-time monitoring, on the other hand, the infrared light source can penetrate the diaphragm to help the first line scan camera to obtain the image of the anode pole piece and improve the image quality of the anode coating side.
  • the second image acquisition device adopts a visible light source and a second line scan camera, which can continuously capture the cathode pole pieces of the core during the winding process, and monitor the core in real time.
  • the visible light source can help the second line scan camera to obtain a clear image of the cathode image of the pole piece, improving the quality of the image on the cathode coating side. Improving the quality of the image on the anode coating side and the image on the cathode coating side by the above method is beneficial to improving the accuracy of the coverage detection result.
  • the present application provides a battery core winding coverage detection device, including an image acquisition module, a boundary distance determination module, and a coverage determination module.
  • the image acquisition module is used to acquire the image of the anode coating side and the image of the cathode coating side, the image of the anode coating side includes the image of the anode pole piece in the state of being about to enter the volume or the winding state, and the image of the cathode coating side includes the image of the Image of the cathode sheet in the ready-to-coil condition.
  • a boundary distance determination module configured to determine the first distance between the first anode coating boundary on the anode coating side far away from the tab and the first reference line, and the first distance between the first anode coating boundary on the anode coating side close to the pole according to the anode coating side image.
  • the boundary distance determination module is also used to determine the third distance between the first cathode coating boundary on the cathode coating side far away from the tab and the second reference line according to the cathode coating side image, and the third distance between the cathode coating side and the second reference line on the cathode coating side.
  • the coverage determination module is used to determine whether the first anode coating boundary covers the first cathode coating boundary according to the first distance and the third distance; wherein, the coverage determination module is also used to determine whether the first anode coating boundary covers the first cathode coating boundary according to the second distance and the fourth distance. Whether the second anode coating boundary overlaps the second cathode coating boundary.
  • the boundary distance determination module calculates the first distance and The third distance calculated with reference to the second reference line in the cathode coating side image is equivalent to following the same reference line in the same coordinate system.
  • the coverage determination module can accurately determine whether the first anode coating boundary covers the first cathode coating boundary through the first distance and the third distance.
  • the second distance calculated by the boundary distance determination module with reference to the first reference line in the anode coating side image and the fourth distance calculated with reference to the second reference line in the cathode coating side image are equivalent to follow the same reference line in the same coordinate system, and, since the first reference line and the second reference line are determined, the coverage determination module can accurately judge whether the second anode coating boundary covers the first reference line through the second distance and the fourth distance Two cathode coating borders. That is, through the above method, the above device can accurately detect the coverage between the anode pole piece and the cathode pole piece during the winding process of the battery core.
  • the present application provides a battery core winding coverage detection device.
  • the battery core includes: an anode pole piece with an anode coating, a cathode pole piece with a cathode coating, and an anode pole piece and a cathode pole piece. The diaphragm between the pole pieces.
  • the detection equipment includes a first image acquisition device, a second image acquisition device, a processor and a memory, wherein the first image acquisition device is used to acquire an image of the anode coating side, and the image of the anode coating side includes a coil in a roll-in state or a coil In the image of the anode sheet in the state, the first reference line is the reference line calibrated by the first image acquisition device.
  • the second image acquisition device is used to collect the image of the cathode coating side, the image of the cathode coating side includes the image of the cathode pole piece in the roll-in state, the second reference line is the reference line marked by the second image acquisition device, and the first reference line The line and the second datum line are coincident in the same coordinate system.
  • the processor is respectively connected in communication with the first image acquisition device and the second image acquisition device to acquire the anode coating side image, the cathode coating side image, the first reference line and the second reference line.
  • the memory is connected in communication with the processor, the memory stores instructions executable by the processor, and the instructions are executed by the processor, so that the processor can execute the method of the first aspect.
  • the battery core winding coverage detection device can accurately detect the coverage between the anode pole piece and the cathode pole piece during the winding process.
  • the present application provides a battery core winding machine, which includes the battery core winding coverage detection device of the third aspect.
  • the battery winding machine has accurate coverage detection capability, which is beneficial to ensure that the produced battery cores are qualified.
  • Fig. 1 is a schematic diagram of the battery core winding process provided by some embodiments of the present application.
  • Fig. 2 is a schematic diagram of the coverage relationship between the anode pole piece and the cathode pole piece provided by some embodiments of the present application;
  • FIG. 3 is a schematic diagram of coverage detection based on the diaphragm provided by some embodiments of the present application.
  • FIG. 4 is a schematic flowchart of a battery core winding coverage detection method provided by some embodiments of the present application.
  • Fig. 5 is a schematic diagram of acquisition of an anode coating side image and a cathode coating side image provided by some embodiments of the present application;
  • FIG. 6 is a schematic diagram of coverage detection based on the first reference line and the second reference line provided by some embodiments of the present application;
  • Fig. 7 is a schematic diagram of acquisition of an anode coating side image and a cathode coating side image provided by some embodiments of the present application;
  • Fig. 8 is a schematic diagram of a sub-flow process of step S20 in the method shown in Fig. 4;
  • Fig. 9 is a schematic diagram of acquisition of the boundary of the anode coating and the boundary of the cathode coating provided by some embodiments of the present application.
  • Fig. 10 is a schematic diagram of a sub-flow process of step S21 in the method shown in Fig. 8;
  • Fig. 11 is a schematic diagram of a sub-flow process of step S22 in the method shown in Fig. 8;
  • Fig. 12 is a schematic diagram of a sub-flow process of step S30 in the method shown in Fig. 4;
  • Fig. 13 is a schematic diagram of a sub-flow process of step S31 in the method shown in Fig. 12;
  • Fig. 14 is a schematic diagram of a sub-flow process of step S32 in the method shown in Fig. 12;
  • Fig. 15 is a schematic diagram of a sub-flow process of step S40 in the method shown in Fig. 4;
  • Fig. 16 is a schematic diagram of a sub-flow process of step S50 in the method shown in Fig. 4;
  • Figure 17 is a schematic diagram of an anode coating side image and a cathode coating side image provided by some embodiments of the present application;
  • Figure 18 is a schematic flow chart of a battery core winding coverage detection method provided by some embodiments of the present application.
  • FIG. 19 is a schematic diagram of a sub-flow of step S70 in the method shown in FIG. 18;
  • Fig. 20 is a schematic structural diagram of a battery core winding coverage detection device provided by some embodiments of the present application.
  • Fig. 21 is a schematic structural diagram of a battery core winding coverage detection device provided by some embodiments of the present application.
  • multiple refers to more than two (including two), and similarly, “multiple groups” refers to more than two groups (including two groups), and “multiple pieces” refers to More than two pieces (including two pieces).
  • the coverage between the two pole pieces is an important index to measure the quality of the battery cell. If the coverage between the two pole pieces does not meet the requirements, it will have a significant impact on the service life and safety performance of the battery cell, and even It will directly lead to the scrapping of the winding core.
  • the first septum 101 and the second septum 102 enter the winding needle 103 together, and at the winding needle After being wound on 103 for at least one turn, as shown in FIG.
  • the cathode pole piece 105 enters the volume needle 103 at the side of the second diaphragm 102 away from the anode pole piece 104, and the cathode pole piece 105 enters After entering the rolling state, it enters the stable winding stage.
  • the first separator 101 , the anode electrode sheet 104 , the second separator sheet 102 and the cathode electrode sheet 105 are stacked in order and then enter the winding needle 103 for winding. It can be understood that the first membrane 101 , the anode pole piece 104 , the second membrane 102 and the cathode pole piece 105 can all be transported through the guide roller 106 .
  • the first separator 101 is used to insulate between the anode pole piece 104 and the winding needle 103
  • the second separator 102 is used to insulate between the cathode pole piece 105 and the anode pole piece 104
  • the first membrane 101 and the second membrane 102 are milky white.
  • the two surfaces of the anode pole piece 104 are respectively coated with an anode coating, and the anode coating is generally black, and the two surfaces of the cathode pole piece 105 are respectively coated with a cathode coating.
  • one side of the anode sheet is provided with a plurality of anode tabs (not shown in Figure 1) arranged according to distance
  • one side of the cathode sheet is provided with a plurality of cathode tabs arranged according to distance (Fig. 1 not shown)
  • the distance between the anode tabs on the anode pole piece gradually increases from the winding head end to the tail end, which can be calculated and set in advance according to the winding; the distance between the cathode tabs on the cathode pole piece, from The winding head end to the tail end gradually increases, which can be calculated and set in advance according to the winding.
  • the arrangement of pole pieces is well known to those skilled in the art, and will not be described in detail here.
  • the winding core in addition to the alignment of the cathode tab and the alignment of the anode tab, it is also necessary to maintain each section of the winding core, and the first diaphragm and the second diaphragm are beyond the edge of the two pole pieces (anode pole piece and cathode pole piece). , to better insulate and prevent short circuits; in addition, the anode coating boundary on the anode plate should cover the outside of the cathode coating. Explosion will have a great impact on the safety of the battery.
  • the coverage here refers to the anode coating away from the anode lug in the direction of the central axis of the core.
  • the boundary exceeds the boundary of the cathode coating away from the cathode tab, and the boundary of the anode coating near the anode tab exceeds the boundary of the cathode coating near the cathode tab.
  • the core winding coverage detection equipment is used to check the coverage between the anode pole piece and the cathode pole piece Real-time detection.
  • a camera is used to obtain the image of the pole piece before entering the needle, as shown in Figure 3, Figure 3 (a) is the image A captured by the camera on the anode pole piece side, and Figure 3 (b) is Image B captured by the camera on the cathode sheet side.
  • Figure 3 (a) is the image A captured by the camera on the anode pole piece side
  • Figure 3 (b) is Image B captured by the camera on the cathode sheet side.
  • the distance from the boundary of the anode coating on the anode sheet to the boundary of the diaphragm is obtained according to image A.
  • X1 and X3 according to image B, the distances X2 and X4 from the boundary of the cathode coating on the cathode sheet to the boundary of the diaphragm are obtained.
  • (X2-X1) and (X4-X3) it can be determined respectively that the boundaries of the two anode coatings on the anode pole piece cover the boundaries of the two cathode coatings on the cathode pole piece respectively.
  • the inventors of the present application have found through research that accurate reference lines can be set in the anode coating side image and the cathode coating side image (as shown in Figure 3 (a) and Figure 3 (b) respectively) to
  • the reference line is used as a reference, and the first distance and the second distance from the two anode coating boundaries to the reference line are respectively obtained, and the third distance and the fourth distance from the two cathode coating boundaries to the reference line are respectively obtained, so that, based on the first distance, the second distance, the third distance and the fourth distance can accurately detect the coverage between the anode pole piece and the cathode pole piece.
  • the image of the anode coating side and the image of the cathode coating side are acquired, the image of the anode coating side includes the image of the anode pole piece in the state of being rolled into or in the winding state, and the image of the cathode coating side includes the image of the anode pole piece in the state of being rolled into the roll.
  • From the image of the anode coating side determine the first distance between the boundary of the first anode coating on the anode coating side away from the tab and the first reference line, and the second anode coating on the anode coating side close to the tab The second distance between the boundary and the first baseline. From the image of the cathode coating side, determine the third distance between the boundary of the first cathode coating on the side of the cathode coating away from the tab and the second reference line, and the second cathode coating on the side of the cathode coating near the tab The fourth distance between the boundary and the second baseline.
  • the first reference line is the reference line calibrated by the first image acquisition device for collecting the image of the anode coating side
  • the second reference line is the reference line calibrated by the second image acquisition device for collecting the image of the cathode coating side
  • the first reference line and the second reference line coincide in the same coordinate system, for example, the first reference line and the second reference line coincide in the world coordinate system.
  • the first reference line of the first image acquisition device used to capture the image of the anode coating side and the second reference line of the second image acquisition device used to capture the image of the cathode coating side are at the same Coincident in the coordinate system, for example, the first datum line and the second datum line coincide in the world coordinate system. Therefore, the first distance calculated with reference to the first reference line in the image of the anode coating side and the third distance calculated with reference to the second reference line in the image of the cathode coating side are equivalent to being in the same coordinate system follow the same baseline.
  • the first reference line and the second reference line are determined, it can be accurately judged whether the boundary of the first anode coating covers the boundary of the first cathode coating through the first distance and the third distance.
  • the second distance calculated with reference to the first reference line in the image of the anode coating side and the fourth distance calculated with reference to the second reference line in the image of the cathode coating side are equivalent to being in the same coordinate system Following the same reference line, and since the first reference line and the second reference line are determined, it can be accurately judged whether the second anode coating boundary covers the second cathode coating boundary through the second distance and the fourth distance. That is, through the above method, the coverage between the anode pole piece and the cathode pole piece during the winding process of the battery core can be accurately detected.
  • the method provided in the embodiment of the present application relates to a battery winding coverage detection method
  • the method can be applied to a battery winding coverage detection device.
  • the battery core winding coverage detection equipment is arranged around the battery core winding machine or on the battery core winding machine, and is used in conjunction with the battery core winding machine, so that it can
  • the battery core winding coverage detection equipment is applied to the battery core winding machine to provide the coverage detection function for the battery core winding machine.
  • the battery core winding machine includes a battery core winding coverage detection device.
  • FIG. 4 is a schematic flow chart of a method for detecting coverage of battery winding cores provided in an embodiment of the present application.
  • the method S200 may specifically include the following steps:
  • S10 acquiring an image of an anode coating side and an image of a cathode coating side.
  • the image on the anode coating side includes an image of the anode pole piece in a state of being rolled or wound
  • the image of the cathode coating side includes an image of the cathode pole piece in a state of being rolled.
  • the winding state refers to the state after winding into the winding needle. As shown in FIG. 5 , the winding state can be understood as the state of being wound on the winding needle 103 .
  • the state of being about to be rolled refers to the state of being ready to be rolled but not yet rolled. As shown in FIG. 5 , the state about to be rolled can be understood as the state before entering the winding needle 103 after passing the guide roller 106 .
  • the image of the anode coating side when the first image acquisition device 107 is facing the winding needle 103 to acquire an image of the anode coating side, the image of the anode coating side includes an image of the anode pole piece 104 in a wound state.
  • the image of the anode coating side includes the image of the anode pole piece 104 in the state of being rolled.
  • the position of the first image acquisition device 107 can be adjusted so that the image of the anode coating side includes the image of the anode pole piece 104 in the winding state.
  • the second image acquisition device 108 is facing the cathode pole piece 105 before the winding needle 103 behind the guide roller 106 to collect the cathode coating side image, then the cathode coating side
  • the images include an image of the cathode tab 105 in the ready-to-roll state.
  • S20 According to the image of the anode coating side, determine the first distance between the first anode coating boundary far away from the tab on the anode coating side and the first reference line, and the second anode close to the tab on the anode coating side The second distance between the coating boundary and the first reference line.
  • the first reference line is the reference line calibrated by the first image acquisition device used to acquire the image of the anode coating side.
  • FIG. 6(a) shows a schematic diagram of an anode coating side image, as shown in Figure 6(a), "0" and "4096" represent the field of view of the first image acquisition device, representing a total of 4096 images in the width direction Pixels, L1 is the first reference line. It can be understood that Y1 in Fig. 6(a) is the first distance between the boundary of the first anode coating and the first reference line, and Y2 is the second distance between the boundary of the second anode coating and the first reference line .
  • the first baseline is pre-calibrated on the first acquisition device.
  • the first reference line can be the median line of the image on the anode coating side in the image coordinate system. If the field of view of the first image acquisition device is (0,4096), the width of the image on the anode coating side is 4096 pixels , the first reference line is at 2048 pixels. It can be understood that the possible range of pixel positions of the first reference line is (0, 4096).
  • the first reference line is at 2048 pixels, and the circumferential centerline of the anode pole piece is in the middle of the field of view of the first image acquisition device, the first reference line (at 2048 pixels) ) is projected on the circumferential centerline of the anode pole piece in the world coordinate system.
  • the circumferential center line refers to the center line in the winding circumferential direction.
  • the second reference line is the reference line calibrated by the second image acquisition device for collecting the image of the cathode coating side, and the first reference line and the second reference line coincide in the same coordinate system.
  • FIG. 6(b) shows a schematic diagram of a cathode coating side image, as shown in Figure 6(b), "0" and "4096" indicate the field of view of the second image acquisition device, representing a total of 4096 images in the width direction Pixels, L2 is the second reference line. It can be understood that, in Fig. 6 (b), Y3 is the third distance between the boundary of the first cathode coating and the second reference line, and Y4 is the fourth distance between the boundary of the second cathode coating and the second reference line .
  • the second baseline is pre-calibrated on the second acquisition device.
  • the second reference line can be the median line of the image on the cathode coating side in the image coordinate system. If the field of view of the second image acquisition device is (0,4096), the width of the image on the cathode coating side is 4096 pixels , the second baseline is at 2048 pixels. It can be understood that the possible range of pixel positions of the second reference line is (0, 4096).
  • the second reference line is at 2048 pixels, and the circumferential centerline of the cathode pole piece is in the middle of the field of view of the second image acquisition device, the second reference line (at 2048 pixels) ) is projected on the circumferential midline of the cathode sheet in the world coordinate system.
  • the axial center line refers to the center line in the winding circumferential direction.
  • first reference line and the second reference line coincide in the same coordinate system.
  • first reference line is projected on the circumferential centerline of the anode pole piece in the world coordinate system
  • second reference line is projected on the circumferential centerline of the cathode pole piece in the world coordinate system.
  • the anode pole piece The circumferential centerlines of the and cathode tabs may be approximately coincident, therefore, the first reference line and the second reference line coincide in the world coordinate system.
  • the first reference line and the second reference line are located at the same pixel, for example, both at 2048 pixels, then the first reference line coincides with the second reference line in the image coordinate system.
  • S40 Determine whether the first anode coating boundary covers the first cathode coating boundary according to the first distance and the third distance.
  • S50 Determine whether the second anode coating boundary covers the second cathode coating boundary according to the second distance and the fourth distance.
  • the first and third distances can be considered to refer to the same baseline
  • the second distance and the fourth distance are calculated with reference to the same baseline, therefore, it can be determined whether the first anode coating boundary covers the first cathode coating boundary according to the first distance and the third distance, for example, the first A distance greater than the third distance determines that the first anodic coating boundary overlaps the first cathodic coating boundary.
  • the first reference line of the first image acquisition device used to collect the image of the anode coating side and the second reference line of the second image acquisition device used to collect the image of the cathode coating side Set to coincide in the same coordinate system, for example, the first reference line and the second reference line coincide in the world coordinate system, so that the first distance calculated with the first reference line as a reference in the anode coating side image and the cathode
  • the third distance calculated with reference to the second reference line in the coating side image is equivalent to following the same reference line in the same coordinate system.
  • the first reference line and the second reference line are determined, it can be accurately judged whether the boundary of the first anode coating covers the boundary of the first cathode coating through the first distance and the third distance.
  • the second distance calculated with reference to the first reference line in the image of the anode coating side and the fourth distance calculated with reference to the second reference line in the image of the cathode coating side are equivalent to being in the same coordinate system Following the same reference line, and since the first reference line and the second reference line are determined, it can be accurately judged whether the second anode coating boundary covers the second cathode coating boundary through the second distance and the fourth distance. That is, through the above method, the coverage between the anode pole piece and the cathode pole piece during the winding process of the battery core can be accurately detected.
  • the anode pole piece included in the image of the anode coating side and the cathode pole piece included in the image of the cathode coating side are in the same winding section in the battery core; wherein, The wound section includes at least one pair of target anode tabs and target cathode tabs, the target anode tabs and target cathode tabs being adjacent.
  • image 1# and image 2# are acquired at the same moment by the first image acquisition device and the second image acquisition device respectively, then in the winding segment in image 1# and in image 2#
  • the winding sections are not in the same section, so that the measurement positions of the first distance and the second distance are respectively misaligned with the third distance, the fourth distance and the measurement positions on the winding section, which affects the accuracy of the coverage detection result.
  • the first image acquisition device and the second image acquisition device are set up for the same winding section Shooting, for example, when the winding section A is delivered to the field of view of the second image acquisition device, the cathode coating side image is captured by the second image acquisition device, and when the winding section A is delivered to the needle, that is, in the first When within the field of view of the image acquisition device, the image of the anode coating side is captured by the first image acquisition device.
  • anode coating side image and cathode coating side image be the image of both sides of winding section A respectively, make the measuring position of first distance, the second distance and the measuring position of the third distance, the fourth distance respectively in winding
  • the segment is the same position, which is beneficial to the accuracy of the detection result.
  • the winding section includes at least one pair of adjacent target anode tabs and target cathode tabs, which can facilitate image analysis, using the target anode tab and the target cathode tab as a reference, and can easily grab the same position The boundary of the anode coating and the boundary of the cathode coating make the overlay detection result more accurate.
  • the anode pole piece included in the image of the anode coating side and the cathode pole piece included in the image of the cathode coating side are in the same winding section in the battery core, so that the first distance What the third distance evaluates is the coverage between the first anode coating boundary and the first cathode coating boundary at the same position on the winding core.
  • the second distance and the fourth distance evaluate the same position on the winding core. The coverage between the second anodic coating boundary and the second cathodic coating boundary of the location. Therefore, it is possible to determine the coverage between the anode pole piece and the cathode pole piece at the same position of the winding core, so that the coverage detection is more accurate.
  • the winding section includes at least one pair of adjacent target anode tabs and target cathode tabs, which can facilitate image analysis, using the target anode tab and the target cathode tab as a reference to capture the same
  • the location of the anode coating boundary and the cathode coating boundary thus, helps to improve the accuracy of coverage detection.
  • the aforementioned step S20 specifically includes:
  • S21 Calculate a first distance according to the distance between the first anode coating boundary located between the target anode tab and the target cathode tab in the anode coating side image and the first reference line.
  • S22 Calculate a second distance from the distance between the second anode coating boundary located between the target anode tab and the target cathode tab in the anode coating side image and the first reference line.
  • the winding segment in the anode coating side image and the cathode coating side image includes the adjacent target anode tab C and target cathode tab D, if the target anode tab C and the target cathode tab
  • the distance between ears D is 6 mm.
  • a boundary pixel 3 mm above the target anode ear C can be taken on the side away from the ear, as the boundary of the first anode coating.
  • the first distance is calculated from the distance between the first anodic coating boundary and the first reference line.
  • a section of boundary pixels 3 mm above the target anode tab C can be taken on the side close to the tab as the boundary of the second anode coating.
  • the second distance is calculated from the distance between the second anodic coating boundary and the first reference line.
  • the boundary of the first anode coating used to calculate the first distance and the second anode coating used to calculate the second distance The boundaries are all located between the target anode lug and the target cathode lug, that is, the first anode coating boundary and the second anode coating boundary at the same position can be accurately captured, so that the first distance and the second distance reflect the The distance between the first anodic coating boundary and the second anodic coating boundary, respectively, and the first baseline.
  • step S21 specifically includes:
  • S211 Determine the pixel equivalent of the anode coating according to the distance between the boundary of the first anode coating and the boundary of the second anode coating and the number of pixels occupied by the anode coating in the image on the anode coating side.
  • S212 Determine the first distance as the number of pixels between the first anode coating boundary between the target anode tab and the target cathode tab in the anode coating side image and the first reference line and the pixel equivalent of the anode coating product.
  • the distance between the boundary of the first anode coating and the boundary of the second anode coating is equivalent to the width of the anode sheet (taking the winding direction as the length direction), and the pixel equivalent of the anode coating reflects one pixel in the image of the anode coating side Therefore, the pixel equivalent of the anode coating can be obtained by dividing the width of the anode pole piece by the number of pixels occupied by the anode coating in the image of the anode coating side.
  • the first distance can be calculated. For example, please refer to Figure 9 again, take the first anode coating boundary 3mm above the target anode tab C on the side away from the tab, and then calculate the pixel points between the first anode coating boundary and the first reference line The number is multiplied by the pixel equivalent of the anode coating to obtain the first distance.
  • the image of the anode coating side is analyzed to calculate the pixel equivalent of the anode coating (that is, the distance represented by one pixel in the image of the anode coating side), and then, through the pixel equivalent of the anode coating and the distance located at the target
  • the accurate first distance at the same position can be obtained by multiplying the first anode coating boundary between the anode tab and the target cathode tab by the number of pixels between the first reference line.
  • step S22 specifically includes:
  • S221 Determine the pixel equivalent of the anode coating according to the distance between the boundary of the first anode coating and the boundary of the second anode coating and the number of pixels occupied by the anode coating in the image on the anode coating side.
  • S222 Determine the second distance as the number of pixels between the second anode coating boundary between the target anode tab and the target cathode tab in the anode coating side image and the first reference line and the pixel equivalent of the anode coating product.
  • the distance between the boundary of the first anode coating and the boundary of the second anode coating is equivalent to the width of the anode sheet (taking the winding direction as the length direction), and the pixel equivalent of the anode coating reflects one in the image of the anode coating side
  • the pixel represents the distance, therefore, the anode coating pixel equivalent can be obtained by dividing the width of the anode pole piece by the number of pixels occupied by the anode coating in the image of the anode coating side.
  • the second distance can be calculated. For example, please refer to Figure 9 again, take the second anode coating boundary 3 mm above the target anode lug C on the side close to the tab, and then calculate the pixel points between the second anode coating boundary and the first reference line amount, and then multiplied by the pixel equivalent of the anode coating to get the second distance.
  • the image of the anode coating side is analyzed to calculate the pixel equivalent of the anode coating (that is, the distance represented by one pixel in the image of the anode coating side), and then, through the pixel equivalent of the anode coating and the distance located at the target
  • the second anode coating boundary between the anode lug and the target cathode lug is multiplied by the number of pixels between the first reference line to obtain an accurate second distance at the same position.
  • step S30 specifically includes:
  • S31 Calculate a third distance from the distance between the first cathode coating boundary between the target anode tab and the target cathode tab in the cathode coating side image and the second reference line.
  • S32 Calculate a fourth distance from the distance between the second cathode coating boundary located between the target anode tab and the target cathode tab in the cathode coating side image and the second reference line.
  • the winding segment in the anode coating side image and the cathode coating side image includes adjacent target anode tab C and target cathode tab D, if target anode tab C and target cathode tab D The distance between them is 6 mm.
  • a section of boundary pixels 3 mm below the target cathode tab D can be taken away from the tab side as the boundary of the first cathode coating.
  • a third distance is calculated from the distance between the first cathode coating boundary and the second reference line.
  • a section of boundary pixels 3 mm below the target cathode tab D can be taken near the tab side as the boundary of the second cathode coating.
  • a fourth distance is calculated from the distance between the second cathode coating boundary and the second reference line.
  • the boundary of the first cathode coating used to calculate the third distance and the second cathode coating used to calculate the fourth distance are all located between the target anode tab and the target cathode tab, that is, the first cathode coating boundary and the second cathode coating boundary at the same position can be accurately captured, so that the third distance and the fourth distance reflect the The distance between the first cathode coating boundary and the second cathode coating boundary, respectively, and the second baseline.
  • step S31 specifically includes:
  • S311 Determine the pixel equivalent of the cathode coating according to the distance between the boundary of the first cathode coating and the boundary of the second cathode coating and the number of pixels occupied by the cathode coating in the image on the cathode coating side.
  • S312 Determine the third distance as the number of pixels between the first cathode coating boundary and the second reference line between the target anode tab and the target cathode tab in the cathode coating side image and the pixel equivalent of the anode coating product.
  • the distance between the boundary of the first cathode coating and the boundary of the second cathode coating is equivalent to the width of the cathode pole piece (taking the winding direction as the length direction), and the pixel equivalent of the cathode coating reflects one pixel in the cathode coating side image Therefore, the pixel equivalent of the cathode coating can be obtained by dividing the width of the cathode electrode sheet by the number of pixels occupied by the cathode coating in the image on the cathode coating side.
  • the third distance can be calculated. For example, please refer to Fig. 8 again, take the boundary of the first cathode coating at 3 mm below the target anode tab D on the side away from the tab, and then calculate the pixel points between the boundary of the first cathode coating and the second reference line amount, multiplied by the cathodic coating pixel equivalent, to obtain the third distance.
  • the image on the cathode coating side is analyzed to calculate the pixel equivalent of the cathode coating (that is, the distance represented by one pixel in the image on the cathode coating side), and then, through the pixel equivalent of the cathode coating and the distance located at the target
  • the accurate third distance at the same position can be obtained by multiplying the boundary of the first cathode coating between the anode tab and the target cathode tab by the number of pixels between the second reference line.
  • step S32 specifically includes:
  • S321 Determine the pixel equivalent of the cathode coating according to the distance between the boundary of the first cathode coating and the boundary of the second cathode coating and the number of pixels occupied by the cathode coating in the image on the cathode coating side.
  • S322 Determine the fourth distance as the number of pixels between the second cathode coating boundary and the second reference line between the target anode lug and the target cathode lug in the cathode coating side image and the pixel equivalent of the cathode pole piece product.
  • the distance between the boundary of the first cathode coating and the boundary of the second cathode coating is equivalent to the width of the cathode pole piece (taking the winding direction as the length direction), and the pixel equivalent of the cathode coating reflects one pixel in the cathode coating side image Therefore, the pixel equivalent of the cathode coating can be obtained by dividing the width of the cathode electrode sheet by the number of pixels occupied by the cathode coating in the image on the cathode coating side.
  • the fourth distance can be calculated. For example, please refer to Figure 9 again, take the second cathode coating boundary at 3 mm below the target anode tab D on the side close to the tab, and then calculate the pixel points between the second cathode coating boundary and the second reference line amount, multiplied by the cathodic coating pixel equivalent, to obtain the fourth distance.
  • the image on the cathode coating side is analyzed to calculate the pixel equivalent of the cathode coating (that is, the distance represented by one pixel in the image on the cathode coating side), and then, through the pixel equivalent of the cathode coating and the distance located at the target
  • the accurate fourth distance at the same position can be obtained by multiplying the second cathode coating boundary between the anode tab and the target cathode tab by the number of pixels between the second reference line.
  • step S40 specifically includes:
  • the first preset threshold is set, and when the difference obtained by subtracting the third distance from the first distance is greater than or equal to the first preset threshold, it is determined that the first anode coating boundary covers the first cathode coating boundary, so that the coverage detection result is more accurate. Be careful, there will be no false detections or missed detections. It can be understood that the first preset threshold can be set by those skilled in the art according to actual conditions.
  • the first preset threshold by setting the first preset threshold, it is determined that the first anode coating boundary covers the first cathode coating boundary only when the first distance is greater than the third distance, so that the coverage detection result is more accurate. Being cautious can avoid misjudgments caused by measurement errors.
  • step S50 specifically includes:
  • the second distance needs to be greater than the fourth distance. Because there may be errors in the second distance and the fourth distance obtained by measurement and calculation, in order to reduce the influence of measurement errors on coverage detection results.
  • the second preset threshold is set, and when the difference obtained by subtracting the fourth distance from the second distance is greater than or equal to the second preset threshold, it is determined that the second anode coating boundary covers the second cathode coating boundary, so that the coverage detection result is more accurate. Be careful, there will be no false detections or missed detections. It can be understood that the second preset threshold can be set by those skilled in the art according to actual conditions.
  • an insulating coating is provided between the boundary of the second cathode coating and the cathode tab. It is understood that the insulating coating is made of insulating material. The insulating coating prevents internal short circuits caused by contact of the anode coating with the cathode foil.
  • the boundary of the insulating coating near the cathode lug exceeds the boundary of the second anode coating
  • the boundary of the second anode coating exceeds the boundary of the second cathode coating, that is, the insulation coating is close to the cathode
  • the tab boundary overlaps the second anode coating boundary
  • the second anode coating boundary overlaps the second cathode coating boundary.
  • the method S200 also includes:
  • S60 Determine a fifth distance between a boundary of the insulating coating near the cathode tab and the second reference line according to the cathode coating side image.
  • Y1 is the first distance between the boundary of the first anode coating and the first reference line
  • Y2 is the second distance between the boundary of the second anode coating and the first reference line
  • Y3 is the first distance between the boundary of the first anode coating and the first reference line.
  • Y4 is the fourth distance between the boundary of the second cathode coating and the second reference line
  • Y5 is the boundary between the boundary of the insulating coating close to the cathode tab and the second The fifth distance between baselines.
  • the fifth distance Y5 and the second distance Y2 can be considered is calculated with reference to the same reference line, therefore, it can be determined according to the fifth distance Y5 and the second distance Y2 whether the boundary of the insulating coating close to the cathode tab covers the boundary of the second anode coating, for example, if the fifth distance Y5 is greater than the second The distance Y2 determines that the boundary of the insulating coating close to the cathode tab covers the boundary of the second anode coating.
  • an insulating coating is provided between the boundary of the second cathode coating and the cathode tab, so that, according to the side image of the cathode coating, the distance between the boundary of the insulating coating close to the cathode tab and the second
  • the fifth distance between the reference lines is based on the coincidence of the first reference line and the second reference line in the same coordinate system, thus, the fifth distance calculated with the second reference line as a reference and the calculated distance with the first reference line
  • the second distance follows the same reference line, and the first reference line and the second reference line are determined, therefore, it can be accurately judged whether the boundary of the insulating coating close to the cathode tab covers the second anode through the fifth distance and the second distance Coated borders.
  • step S70 specifically includes:
  • the fifth distance needs to be greater than the second distance. Since errors may exist between the fifth distance and the second distance obtained through measurement and calculation, in order to reduce the impact of measurement errors on coverage detection results.
  • a third preset threshold is set, and when the difference obtained by subtracting the second distance from the fifth distance is greater than or equal to the third preset threshold, it is determined that the boundary of the insulating coating close to the cathode tab covers the boundary of the second anode coating, so that the coverage The detection results are more cautious, and there will be no false detection or missed detection.
  • the first preset threshold can be set by those skilled in the art according to actual conditions.
  • the first reference line is the midline of the visual field of the first image acquisition device
  • the second reference line is the midline of the visual field of the second image acquisition device
  • the width of the image on the anode coating side is 4096 pixels, and when the first reference line is at 2048 pixels, it is the first image acquisition device midline of vision. It can be understood that when the first reference line is the centerline of the field of view of the first image acquisition device, after the image of the anode coating side captured by the first image acquisition device is acquired, the size of the image of the anode coating side can be directly obtained The first reference line is determined, and the calculation is simple and convenient.
  • the width of the image on the anode coating side is 4096 pixels
  • the first reference line is at 2048 pixels, it is the center line of the field of view of the first image acquisition device .
  • the second reference line is the centerline of the field of view of the second image acquisition device, after the cathode coating side image captured by the second image acquisition device is obtained, the size of the cathode coating side image can be directly obtained
  • the second reference line is determined, and the calculation is simple and convenient.
  • the first reference line is set as the center line of the field of view of the first image acquisition device
  • the second reference line is set as the center line of the field of view of the second image acquisition device, which can facilitate the computing equipment to separately calculate the anode coating
  • the side image and the cathode coating side image are identified, processed and calculated, which is beneficial to improve the accuracy of the coverage detection results.
  • the centerline of the field of view of the first image acquisition device is located at the circumferential centerline of the anode sheet
  • the centerline of the field of view of the second image acquisition device is located at the circumferential centerline of the cathode sheet.
  • the pole piece is in the middle of the image on the anode coating side. It can be understood that since the anode pole piece is wound on the winding needle after being rolled, the circumferential center line refers to the center line in the winding circumferential direction.
  • the existing recognition algorithm can be used directly based on the middle of the anode coating side image to quickly identify it, saving the time to find the anode pole piece, and improving the calculation efficiency and the accuracy of the detection results.
  • the existing recognition algorithm may be a target recognition algorithm trained by those skilled in the art using a deep neural network, or the existing recognition algorithm may also be a pixel comparison method.
  • centerline of the field of view of the second image acquisition device is located at the circumferential centerline of the cathode sheet, which also has the above effects, and will not be repeated here.
  • the centerline of the field of view of the first image acquisition device is located at the circumferential centerline position of the anode pole piece, so that the anode pole piece is located in the middle of the image on the anode coating side, which can facilitate the calculation of the image on the anode coating side by the computing equipment. Carrying out the recognition processing calculation is beneficial to improve the accuracy of the coverage detection result.
  • the centerline of the field of view of the second image acquisition device is located at the circumferential centerline position of the cathode pole piece, so that the cathode pole piece is located in the middle of the image on the cathode coating side, which can facilitate the calculation equipment to identify, process and calculate the image on the cathode coating side, which is beneficial To improve the accuracy of coverage detection results.
  • the first image acquisition device includes an infrared light source and a first line scan camera
  • the second image acquisition device includes a visible light source and a second line scan camera
  • the infrared light source is a non-illumination electric light source whose main purpose is to generate infrared radiation.
  • Infrared radiation is a range of electromagnetic radiation with wavelengths greater than that of red light.
  • the infrared light source can be an infrared lamp, which is used in conjunction with the first line scan camera.
  • the infrared light source can penetrate the diaphragm to help the first line scan camera to acquire the image of the anode pole piece and improve the image quality of the anode coating side.
  • the first line scan camera can be a linear array Charge Coupled Device (CCD) industrial camera, which is composed of one or more rows of photosensitive chips.
  • CCD Charge Coupled Device
  • the visible light source may be an electric light source that emits white light. Under the visible light source, the second line scan camera can clearly capture the image of the cathode coating side.
  • the second line scan camera can also be a linear charge-coupled device (CCD) industrial camera, which is composed of one or more rows of photosensitive chips.
  • CCD charge-coupled device
  • the first image acquisition device adopts an infrared light source and a first line scan camera.
  • the first line scan camera can continuously photograph the anode pole piece of the winding core during the winding process, and the For real-time monitoring, on the other hand, the infrared light source can penetrate the diaphragm to help the first line scan camera to obtain the image of the anode pole piece and improve the image quality of the anode coating side.
  • the second image acquisition device adopts a visible light source and a second line scan camera, which can continuously capture the cathode pole pieces of the core during the winding process, and monitor the core in real time.
  • the visible light source can help the second line scan camera to obtain a clear image of the cathode image of the pole piece, improving the quality of the image on the cathode coating side. Improving the quality of the image on the anode coating side and the image on the cathode coating side by the above method is beneficial to improving the accuracy of the coverage detection result.
  • a method for detecting coverage of a battery core includes: an anode pole piece with an anode coating, a cathode pole piece with a cathode coating, and an anode pole piece and an Separator between cathode sheets; test method applied to the winding preparation stage of battery cores.
  • the method includes:
  • the first image acquisition device is used to obtain the image of the anode coating side, and the image of the anode coating side includes the image of the anode pole piece in the winding state
  • the second image acquisition device is used to obtain the image of the cathode coating
  • the side image, the cathode coating side image includes an image of the cathode sheet in its ready-to-roll state.
  • the first image acquisition device includes an infrared light source and a 4K line scan camera
  • the field of view of the first image acquisition device includes 4096 pixels
  • the center line of the field of view (at 2048 pixels) is marked as the first reference line
  • the second image acquisition device includes a visible light source and a 4K line scan camera
  • the field of view of the second image acquisition device includes 4096 pixels
  • the center line of the field of view (at 2048 pixels) is marked as the second reference line.
  • the first reference line and the second reference line coincide in the world coordinate system.
  • the anode pole piece included in the image of the anode coating side and the cathode pole piece included in the image of the cathode coating side are in the same winding section in the battery core; wherein the winding section includes at least one pair of target anode tabs and the target cathode tab, the target anode tab is adjacent to the target cathode tab.
  • the first reference line of the first image acquisition device used to collect the image of the anode coating side and the second reference line of the second image acquisition device used to collect the image of the cathode coating side Set to coincide in the same coordinate system, for example, the first reference line and the second reference line coincide in the world coordinate system, so that the first distance calculated with the first reference line as a reference in the anode coating side image and the cathode
  • the third distance calculated with reference to the second reference line in the coating side image is equivalent to following the same reference line in the same coordinate system.
  • the first reference line and the second reference line are determined, it can be accurately judged whether the boundary of the first anode coating covers the boundary of the first cathode coating through the first distance and the third distance.
  • the second distance calculated with reference to the first reference line in the image of the anode coating side and the fourth distance calculated with reference to the second reference line in the image of the cathode coating side are equivalent to being in the same coordinate system Following the same reference line, and since the first reference line and the second reference line are determined, it can be accurately judged whether the second anode coating boundary covers the second cathode coating boundary through the second distance and the fourth distance.
  • the anode pole piece included in the image of the anode coating side and the cathode pole piece included in the image of the cathode coating side are in the same winding section in the battery core, so that the evaluation of the first distance and the third distance is on the core Coverage between the first anodic coating boundary and the first cathodic coating boundary at the same location.
  • the evaluation of the second distance and the third distance is the coverage between the boundary of the second anode coating and the boundary of the second cathode coating at the same position on the winding core. Therefore, it is possible to determine the coverage between the anode pole piece and the cathode pole piece at the same position of the winding core, so that the coverage detection is more accurate.
  • the winding section includes at least one pair of adjacent target anode tabs and target cathode tabs, which can facilitate image analysis, using the target anode tab and the target cathode tab as a reference to capture the same
  • the location of the anode coating boundary and the cathode coating boundary thus, helps to improve the accuracy of coverage detection.
  • the coverage between the anode electrode piece and the cathode electrode piece during the winding process of the battery core can be accurately detected.
  • the present application also provides a battery core winding coverage detection device 300 , including an image acquisition module 301 , a boundary distance determination module 302 and a coverage determination module 303 .
  • the image acquisition module 301 is used to acquire an anode coating side image and a cathode coating side image.
  • the anode coating side image includes an image of the anode pole piece in a state about to be rolled or in a coiled state
  • the cathode coating side image includes Image of a cathode sheet in its ready-to-roll condition.
  • the boundary distance determining module 302 is used to determine the first distance between the first anode coating boundary far away from the lug on the anode coating side and the first reference line according to the image of the anode coating side, and the first distance between the first anode coating boundary on the anode coating side that is close to the tab.
  • the boundary distance determination module 302 is also used to determine the third distance between the boundary of the first cathode coating on the cathode coating side far away from the tab and the second reference line and the cathode coating side image according to the cathode coating side image.
  • the coverage determination module 303 is used to determine whether the first anode coating boundary covers the first cathode coating boundary according to the first distance and the third distance; wherein, the coverage determination module 303 is also used to determine according to the second distance and the fourth distance, Determine if the second anode coating boundary overlaps the second cathode coating boundary.
  • the first reference line of the first image acquisition device used to capture the image of the anode coating side and the second reference line of the second image capture device used to capture the image of the cathode coating side at the same coordinate system, for example, the first reference line and the second reference line coincide in the world coordinate system, so that the first distance calculated by the boundary distance determination module 302 in the image of the anode coating side with the first reference line as a reference and the first distance in the cathode
  • the third distance calculated with reference to the second reference line in the coating side image is equivalent to following the same reference line in the same coordinate system.
  • the coverage determination module 303 can accurately determine whether the first anode coating boundary covers the first cathode coating boundary through the first distance and the third distance.
  • the second distance calculated by the boundary distance determination module 302 in the anode coating side image with reference to the first reference line is equivalent to the fourth distance calculated in the cathode coating side image with reference to the second reference line Therefore, the same reference line is followed in the same coordinate system, and since the first reference line and the second reference line are determined, the coverage determination module 303 can accurately determine whether the second anode coating boundary is Cover the second cathode coating border. That is, through the above method, the above device can accurately detect the coverage between the anode pole piece and the cathode pole piece during the winding process of the battery core.
  • the present application also provides a battery core winding coverage detection device 400, the battery core includes: an anode pole piece with an anode coating, a cathode with a cathode coating pole piece, and a diaphragm located between the anode pole piece and the cathode pole piece.
  • the detection device 400 includes a first image acquisition device 401, a second image acquisition device 402, a processor 403 and a memory 404, wherein the first image acquisition device 401 is used to acquire an image of the anode coating side, and the image of the anode coating side includes For the image of the anode sheet in the rolled state or in the wound state, the first reference line is the reference line calibrated by the first image acquisition device 401 .
  • the second image acquisition device 402 is used to collect the cathode coating side image, the cathode coating side image includes the image of the cathode pole piece in the rolling state, the second reference line is the reference line marked by the second image acquisition device 402, the second reference line The first reference line and the second reference line coincide in the same coordinate system.
  • the processor 403 is connected in communication with the first image acquisition device 401 and the second image acquisition device 402 respectively, so as to acquire an anode coating side image, a cathode coating side image, a first reference line and a second reference line.
  • the memory 404 is connected in communication with the processor 403, and the memory 404 stores instructions executable by the processor 403, and the instructions are executed by the processor 403, so that the processor 403 can execute the battery winding core winding coverage detection method in the embodiment of the present application .
  • the memory 404 may include a read-only memory and a random access memory, and provides instructions and data to the processor. A part of the memory 404 may also include a non-volatile random access memory (non-volatile random accedd memory, NVRAM).
  • the memory 404 stores operating instructions, executable modules or data structures, or a subset thereof, or an extension thereof.
  • the processor 403 may be an integrated circuit chip and has a signal processing capability. In the process of implementation, each step of the battery core winding coverage detection method in the embodiment of the present application may be completed by an integrated logic circuit of hardware in the processor 403 or instructions in the form of software.
  • the above-mentioned processor 403 can be a general-purpose processor, a digital signal processor (digital signal processing, DSP), a microprocessor or a microcontroller, and can further include an application specific integrated circuit (ASIC), field programmable Field-programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • the processor can implement or execute the battery core winding coverage detection method in the embodiment of the present application.
  • the battery core winding coverage detection device can accurately detect the coverage between the anode pole piece and the cathode pole piece during the winding process.
  • the present application also provides a battery core winding machine, which includes the foregoing battery core winding coverage detection device.
  • the battery core winding machine has accurate coverage detection capability, which is beneficial to ensure that the produced battery cores are qualified.
  • the battery core winding coverage detection equipment is arranged around the battery core winding machine or on the battery core winding machine, and is used in conjunction with the battery core winding machine, so that it can
  • the battery core winding coverage detection equipment is applied to the battery core winding machine to provide the coverage detection function for the battery core winding machine.
  • the battery core winding machine includes a battery core winding coverage detection device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Secondary Cells (AREA)

Abstract

本申请涉及电池领域,具体涉及一种电池卷芯卷绕覆盖检测方法、装置及设备。在检测方法中,通过将第一图像采集装置的第一基准线和第二图像采集装置的第二基准线设置为在同一坐标系中重合,使得在阳极涂层侧图像中以第一基准线为参考计算得到的第一距离和在阴极涂层侧图像中以第二基准线为参考计算得到的第三距离相当于是在同一坐标系中遵循同一基准线,因此可通过第一距离和第三距离能够准确判断第一阳极涂层边界是否覆盖第一阴极涂层边界。同理,可通过第二距离和第四距离能够准确判断第二阳极涂层边界是否覆盖第二阴极涂层边界。通过上述方式,能准确检测电池卷芯卷绕过程中阳极极片与阴极极片之间的覆盖情况。

Description

一种电池卷芯卷绕覆盖检测方法、装置及设备 技术领域
本申请涉及电池领域,具体涉及一种电池卷芯卷绕覆盖检测方法、装置及设备。
背景技术
目前电动汽车上主要使用电池作为动力,电池具有高容量、输出电压高、较好的充放电循环性能等特点。在电池的生产过程中,一般需要将阳极极片、阴极极片、隔膜卷绕成卷芯。
在电池卷绕技术中,通常需要检测卷芯在卷绕过程中的覆盖情况,一般阳极涂层边界应该覆盖阴极涂层边界,如果覆盖不良,容易导致卷芯在循环充放电时刺穿隔膜,严重时甚至会导致燃爆,对电池的安全性影响极大。
发明内容
鉴于上述问题,本申请提供一种电池卷芯卷绕覆盖检测方法、装置及设备,能准确检测电池卷芯卷绕过程中阳极极片与阴极极片之间的覆盖情况。
第一方面,本申请提供了一种电池卷芯覆盖检测方法,被检测的电池卷芯包括:具有阳极涂层的阳极极片、具有阴极涂层的阴极极片、以及位于阳极极片和阴极极片之间的隔膜;检测方法应用于电池卷芯的卷绕制备阶段。
该方法包括:
获取阳极涂层侧图像和阴极涂层侧图像,阳极涂层侧图像包括处于即将入卷状态下或卷绕状态下的阳极极片的图像,阴极涂层侧图像包括处于即将入卷状态下的阴极极片的图像。
根据阳极涂层侧图像,确定阳极涂层侧中远离极耳的第一阳极涂层边界与第一基准线之间的第一距离、以及阳极涂层侧中靠近极耳的第二阳极涂层边界与第一基准线之间的第二距离,其中,第一基准线为用于采集阳极涂层侧图像的第一图像采集装置标定的基准线。
根据阴极涂层侧图像,确定阴极涂层侧中远离极耳的第一阴极涂层边界与第二基准线之间的第三距离、以及阴极涂层侧中靠近极耳的第二阴极涂层边界与第二基准线之间的第四距离,其中,第二基准线为用于采集阴极涂层侧图像的第二图像采集装置标定的基准线,第一基准线和第二基准线在同一坐标系中重合。
根据第一距离和第三距离,确定第一阳极涂层边界是否覆盖第一阴极涂层边界;根据第二距离和第四距离,确定第二阳极涂层边界是否覆盖第二阴极涂层边界。
本申请实施例的技术方案中,在上述检测方法中,通过将用于采集阳极涂层侧图像的第一图像采集装置的第一基准线和用于采集阴极涂层侧图像的第二图像采集装置的第二基准线设置为在同一坐标系中重合(例如第一基准线和第二基准线在世界坐标系重合),从而使得在阳极涂层侧图像中以第一基准线为参考计算得到的第一距离和在阴极涂层侧图像中以第二基准线为参考计算得到的第三距离相当于是在同一坐标系中遵循同一基准线。并且,由于第一基准线和第二基准线是确定的,因此通过第一距离和第三距离能够准确判断第一阳极涂层边界是否覆盖第一阴极涂层边界。同理,在阳极涂层侧图像中以第一基准线为参考计算得到的第二距离和在阴极涂层侧图像中以第二基准线为参考计算得到的第四距离相当于是在同一坐标系遵循同一基准线,并且,由于第一基准线和第二基准线是确定的,因此,通过第二距离和第四距离能够准确判断第二阳极涂层边界是否覆盖第二阴极涂层边界。即通过上述方式,能准确检测电池卷芯卷绕过程中阳极极片与阴极极片之间的覆盖情况。
在第一方面的一种可能实现方式中,阳极涂层侧图像中所包括的阳极极片与阴极涂层侧图像中所包括的阴极极片在电池卷芯中处于同一卷绕段;其中,该卷绕段包括至少一对目标阳极极耳和目标阴极极耳,该目标阳极极耳和目标阴极极耳相邻。
本申请实施例的技术方案中,通过阳极涂层侧图像中所包括的阳极极片与阴极涂层侧图像中所包括的阴极极片在电池卷芯中处于同一卷绕段,使得第一距离和第三距离评价的是卷芯上同一位置的第一阳极涂层边界和第一阴极涂层边界之间的覆盖情况;同理,使得第二距离和第四距离评价的是卷芯上同一位置的第二阳极涂层边界和第二阴极涂层边界之间的覆盖 情况。从而,能够确定卷心的同一位置上阳极极片和阴极极片之间的覆盖情况,使得覆盖检测更加准确。可以理解的是,该卷绕段包括至少一对相邻的目标阳极极耳和目标阴极极耳,能够方便在进行图像分析时,以目标阳极极耳和目标阴极极耳为参考,抓取同一位置的阳极涂层边界和阴极涂层边界,从而,有助于提高覆盖检测的准确性。
在第一方面的一种可能实现方式中,前述“根据阳极涂层侧图像,确定阳极涂层侧中远离极耳的第一阳极涂层边界与第一基准线之间的第一距离、以及阳极涂层侧中靠近极耳的第二阳极涂层边界与第一基准线之间的第二距离”,包括:
通过阳极涂层侧图像中位于目标阳极极耳和目标阴极极耳之间的第一阳极涂层边界与第一基准线之间的距离计算第一距离;通过阳极涂层侧图像中位于目标阳极极耳和目标阴极极耳之间的第二阳极涂层边界与第一基准线之间的距离计算第二距离。
本申请实施例的技术方案中,通过以目标阳极极耳和目标阴极极耳为参考,使得用于计算第一距离的第一阳极涂层边界和用于计算第二距离的第二阳极涂层边界均位于目标阳极极耳和目标阴极极耳之间,即能够实现准确抓取同一位置的第一阳极涂层边界和第二阳极涂层边界,使得第一距离和第二距离反映同一位置处第一阳极涂层边界和第二阳极涂层边界分别和第一基线之间的距离。
在第一方面的一种可能实现方式中,前述“通过阳极涂层侧图像中位于目标阳极极耳和目标阴极极耳之间的第一阳极涂层边界与第一基准线之间的距离计算第一距离”,包括:根据第一阳极涂层边界与第二阳极涂层边界之间的距离和阳极涂层在阳极涂层侧图像中所占用的像素点个数,确定阳极涂层像素当量;确定第一距离为阳极涂层侧图像中位于目标阳极极耳和目标阴极极耳之间的第一阳极涂层边界与第一基准线之间的像素点数量和阳极涂层像素当量的乘积。
在第一方面的一种可能实现方式中,前述“通过阳极涂层侧图像中位于目标阳极极耳和目标阴极极耳之间的第二阳极涂层边界与第一基准线之间的距离计算第二距离”,包括:根据第一阳极涂层边界与第二阳极涂层边界之间的距离和阳极涂层在阳极涂层侧图像中所占用的像素点个数,确定阳极涂层像素当量;确定第二距离为阳极涂层侧图像中位于目标阳极极耳和目标阴极 极耳之间的第二阳极涂层边界与第一基准线之间的像素点数量和阳极涂层像素当量的乘积。
本申请实施例的技术方案中,对阳极涂层侧图像进行分析,计算阳极涂层像素当量(即阳极涂层侧图像中一个像素代表的距离),然后,通过阳极涂层像素当量和位于目标阳极极耳和目标阴极极耳之间的第一阳极涂层边界与第一基准线之间的像素点数量相乘,能够得到同一位置处准确的第一距离。同理,以类似的方式,通过阳极涂层像素当量和位于目标阳极极耳和目标阴极极耳之间的第二阳极涂层边界与第一基准线之间的像素点数量相乘,能够得到同一位置处准确的第二距离。
在第一方面的一种可能实现方式中,前述“根据阴极涂层侧图像,确定阴极涂层侧中远离极耳的第一阴极涂层边界与第二基准线之间的第三距离、以及阴极涂层侧中靠近极耳的第二阴极涂层边界与第二基准线之间的第四距离”,包括:
通过阴极涂层侧图像中位于目标阳极极耳和目标阴极极耳之间的第一阴极涂层边界与第二基准线之间的距离计算第三距离;通过阴极涂层侧图像中位于目标阳极极耳和目标阴极极耳之间的第二阴极涂层边界与第二基准线之间的距离计算第四距离。
本申请实施例的技术方案中,通过以目标阳极极耳和目标阴极极耳为参考,使得用于计算第三距离的第一阴极涂层边界和用于计算第四距离的第二阴极涂层边界均位于目标阳极极耳和目标阴极极耳之间,即能够实现准确抓取同一位置的第一阴极涂层边界和第二阴极涂层边界,使得第三距离和第四距离反映同一位置处第一阴极涂层边界和第二阴极涂层边界分别和第二基线之间的距离。
在第一方面的一种可能实现方式中,前述“通过阴极涂层侧图像中位于目标阳极极耳和目标阴极极耳之间的第一阴极涂层边界与第二基准线之间的距离计算第三距离”,包括:根据第一阴极涂层边界与第二阴极涂层边界之间的距离和阴极涂层在阴极涂层侧图像中所占用的像素点个数,确定阴极涂层像素当量;确定第三距离为阴极涂层侧图像中位于目标阳极极耳和目标阴极极耳之间的第一阴极涂层边界与第二基准线之间的像素点数量和阳极涂层像素当量的乘积。
在第一方面的一种可能实现方式中,前述“通过阴极涂层侧图像中位于 目标阳极极耳和目标阴极极耳之间的第二阴极涂层边界与第二基准线之间的距离计算第四距离”,包括:根据第一阴极涂层边界与第二阴极涂层边界之间的距离和阴极涂层在阴极涂层侧图像中所占用的像素点个数,确定阴极涂层像素当量;确定第四距离为阴极涂层侧图像中位于目标阳极极耳和目标阴极极耳之间的第二阴极涂层边界与第二基准线之间的像素点数量和阴极极片像素当量的乘积。
本申请实施例的技术方案中,对阴极涂层侧图像进行分析,计算阴极涂层像素当量(即阴极涂层侧图像中一个像素代表的距离),然后,通过阴极涂层像素当量和位于目标阳极极耳和目标阴极极耳之间的第一阴极涂层边界与第二基准线之间的像素点数量相乘,能够得到同一位置处准确的第三距离。同理,以类似的方式,通过阴极涂层像素当量和位于目标阳极极耳和目标阴极极耳之间的第二阴极涂层边界与第二基准线之间的像素点数量相乘,能够得到同一位置处准确的第四距离。
在第一方面的一种可能实现方式中,前述“根据第一距离和第三距离,确定第一阳极涂层边界是否覆盖第一阴极涂层边界”,包括:如果第一距离减去第三距离得到的差值大于或等于第一预设阈值,则确定第一阳极涂层边界覆盖第一阴极涂层边界。
本申请实施例的技术方案中,通过设置第一预设阈值,使得第一距离大于第三距离的情况下,才确定第一阳极涂层边界覆盖第一阴极涂层边界,使得覆盖检测结果更加谨慎,能够避免测量误差来带的误判。
在第一方面的一种可能实现方式中,前述“根据第二距离和第四距离,确定第二阳极涂层边界是否覆盖第二阴极涂层边界”,包括:如果第二距离减去第四距离得到的差值大于或等于第二预设阈值,则确定第二阳极涂层边界覆盖第二阴极涂层边界。
本申请实施例的技术方案中,通过设置第二预设阈值,使得第二距离大于第四距离的情况下,才确定第二阳极涂层边界覆盖第二阴极涂层边界,使得覆盖检测结果更加谨慎,能够避免测量误差来带的误判。
在第一方面的一种可能实现方式中,当在第二阴极涂层边界与阴极极耳之间设置有绝缘涂层时,该方法还包括:根据阴极涂层侧图像,确定绝缘涂层靠近阴极极耳的边界与第二基准线之间的第五距离;根据第五距离和第二距离,确定绝缘涂层靠近阴极极耳的边界是否覆盖第二阳极涂层边界。
本申请实施例的技术方案中,第二阴极涂层边界与阴极极耳之间设置有绝缘涂层,从而,可以根据阴极涂层侧图像,计算绝缘涂层靠近阴极极耳的边界与第二基准线之间的第五距离,基于第一基准线和第二基准线在同一坐标系中重合,从而,以第二基准线为参考计算得到的第五距离和以第一基准线计算得到的第二距离遵循同一基准线,并且,第一基准线和第二基准线是确定的,因此,通过第五距离和第二距离能够准确判断绝缘涂层靠近阴极极耳的边界是否覆盖第二阳极涂层边界。
在第一方面的一种可能实现方式中,前述“根据第五距离和第二距离,确定绝缘涂层靠近阴极极耳的边界是否覆盖第二阳极涂层边界”,包括:如果第五距离减去第二距离得到的差值大于或等于第三预设阈值,则确定绝缘涂层靠近阴极极耳的边界覆盖第二阳极涂层边界。
本申请实施例的技术方案中,通过设置第三预设阈值,使得第五距离大于第二距离的情况下,才确定绝缘涂层靠近阴极极耳的边界覆盖第二阳极涂层边界,使得覆盖检测结果更加谨慎,能够避免测量误差来带的误判。
在第一方面的一种可能实现方式中,第一基准线为第一图像采集装置的视野中线,第二基准线为第二图像采集装置的视野中线。
本申请实施例的技术方案中,将第一基准线设置为第一图像采集装置的视野中线,将第二基准线设置为第二图像采集装置的视野中线,能够方便计算设备分别对阳极涂层侧图像和阴极涂层侧图像进行识别处理计算,有益于提高覆盖检测结果的准确性。
在第一方面的一种可能实现方式中,第一图像采集装置的视野中线位于阳极极片的周向中线位置,第二图像采集装置的视野中线位于阴极极片的周向中线位置。
本申请实施例的技术方案中,第一图像采集装置的视野中线位于阳极极片的周向中线位置,使得阳极极片位于阳极涂层侧图像的中间,能够方便计算设备对阳极涂层侧图像进行识别处理计算,有益于提高覆盖检测结果的准确性。同理,第二图像采集装置的视野中线位于阴极极片的周向中线位置,使得阴极极片位于阴极涂层侧图像的中间,能够方便计算设备对阴极涂层侧图像进行识别处理计算,有益于提高覆盖检测结果的准确性。
在第一方面的一种可能实现方式中,第一图像采集装置包括红外光源和第一线扫描相机,第二图像采集装置包括可见光光源和第二线扫描相机。
本申请实施例的技术方案中,第一图像采集装置采用红外光源和第一线扫描相机,一方面,第一线扫描相机能够连续拍摄到卷绕过程中卷芯的阳极极片,对卷芯进行实时监测,另外一方面,红外光源能够穿透隔膜,帮助第一线扫描相机获取阳极极片的图像,提高阳极涂层侧图像的质量。另外,第二图像采集装置采用可见光光源和第二线扫描相机,能够连续拍摄到卷绕过程中卷芯的阴极极片,对卷芯进行实时监测,可见光光源能够帮助第二线扫描相机获取清晰的阴极极片的图像,提高阴极涂层侧图像的质量。通过上述方式提高阳极涂层侧图像和阴极涂层侧图像的质量,有益于提高覆盖检测结果的准确性。
第二方面,本申请提供了一种电池卷芯卷绕覆盖检测装置,包括图像获取模块、边界距离确定模块和覆盖确定模块。
图像获取模块,用于获取阳极涂层侧图像和阴极涂层侧图像,阳极涂层侧图像包括处于即将入卷状态下或卷绕状态下的阳极极片的图像,阴极涂层侧图像包括处于即将入卷状态下的阴极极片的图像。
边界距离确定模块,用于根据阳极涂层侧图像,确定阳极涂层侧中远离极耳的第一阳极涂层边界与第一基准线之间的第一距离、以及阳极涂层侧中靠近极耳的第二阳极涂层边界与第一基准线之间的第二距离,其中,第一基准线为用于采集阳极涂层侧图像的第一图像采集装置标定的基准线。
其中,边界距离确定模块还用于根据阴极涂层侧图像,确定阴极涂层侧中远离极耳的第一阴极涂层边界与第二基准线之间的第三距离、以及阴极涂层侧中靠近极耳的第二阴极涂层边界与第二基准线之间的第四距离,其中,第二基准线为用于采集阴极涂层侧图像的第二图像采集装置标定的基准线,第一基准线和第二基准线在同一坐标系中重合。
覆盖确定模块,用于根据第一距离和第三距离,确定第一阳极涂层边界是否覆盖第一阴极涂层边界;其中,覆盖确定模块还用于根据第二距离和第四距离,确定第二阳极涂层边界是否覆盖第二阴极涂层边界。
本申请实施例的技术方案中,通过设置用于采集阳极涂层侧图像的第一图像采集装置的第一基准线和用于采集阴极涂层侧图像的第二图像采集装置的第二基准线在同一坐标系中重合,例如第一基准线和第二基准线在世界坐标系重合,从而使得边界距离确定模块在阳极涂层侧图像中以第一基准线为参考计算得到的第一距离和在阴极涂层侧图像中以第二基准线为参考计算得 到的第三距离相当于是在同一坐标系中遵循同一基准线。并且,由于第一基准线和第二基准线是确定的,因此,覆盖确定模块通过第一距离和第三距离能够准确判断第一阳极涂层边界是否覆盖第一阴极涂层边界。同理,边界距离确定模块在阳极涂层侧图像中以第一基准线为参考计算得到的第二距离和在阴极涂层侧图像中以第二基准线为参考计算得到的第四距离相当于是在同一坐标系遵循同一基准线,并且,由于第一基准线和第二基准线是确定的,因此,覆盖确定模块通过第二距离和第四距离能够准确判断第二阳极涂层边界是否覆盖第二阴极涂层边界。即通过上述方式,上述装置能准确检测电池卷芯卷绕过程中阳极极片与阴极极片之间的覆盖情况。
第三方面,本申请提供了一种,电池卷芯卷绕覆盖检测设备,电池卷芯包括:具有阳极涂层的阳极极片、具有阴极涂层的阴极极片、以及位于阳极极片和阴极极片之间的隔膜。
检测设备包括第一图像采集装置、第二图像采集装置、处理器和存储器,其中,第一图像采集装置用于采集阳极涂层侧图像,阳极涂层侧图像包括处于入卷状态下或卷绕状态下的阳极极片的图像,第一基准线为第一图像采集装置标定的基准线。第二图像采集装置用于采集阴极涂层侧图像,阴极涂层侧图像包括处于入卷状态下的阴极极片的图像,第二基准线为第二图像采集装置标定的基准线,第一基准线和第二基准线在同一坐标系中重合。处理器分别与第一图像采集装置和第二图像采集装置通信连接,以获取阳极涂层侧图像、阴极涂层侧图像、第一基准线和第二基准线。存储器与处理器通信连接,存储器存储有可被处理器执行的指令,指令被处理器执行,以使处理器能够执行第一方面的方法。
本申请实施例的技术方案中,电池卷芯卷绕覆盖检测设备,能够准确检测卷绕过程中阳极极片与阴极极片之间的覆盖情况。
第四方面,本申请提供了一种电池卷芯卷绕机,其包括第三方面的电池卷芯卷绕覆盖检测设备。
本申请实施例的技术方案中,电池卷芯卷绕机具有准确的覆盖检测能力,有益于确保生产出来的电池卷芯合格。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
通过阅读对下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1为本申请一些实施例提供的电池卷芯卷绕过程示意图;
图2为本申请一些实施例提供的阳极极片和阴极极片之间的覆盖关系示意图;
图3为本申请一些实施例提供的以隔膜为基准的覆盖检测示意图;
图4为本申请一些实施例提供的电池卷芯卷绕覆盖检测方法的流程示意图;
图5为本申请一些实施例提供的阳极涂层侧图像和阴极涂层侧图像的采集示意图;
图6为本申请一些实施例提供的以第一基准线和第二基准线为基准的覆盖检测示意图;
图7为本申请一些实施例提供的阳极涂层侧图像和阴极涂层侧图像的采集示意图;
图8为图4所示方法中步骤S20的一子流程示意图;
图9为本申请一些实施例提供的阳极涂层边界和阴极涂层边界的获取示意图;
图10为图8所示方法中步骤S21的一子流程示意图;
图11为图8所示方法中步骤S22的一子流程示意图;
图12为图4所示方法中步骤S30的一子流程示意图;
图13为图12所示方法中步骤S31的一子流程示意图;
图14为图12所示方法中步骤S32的一子流程示意图;
图15为图4所示方法中步骤S40的一子流程示意图;
图16为图4所示方法中步骤S50的一子流程示意图;
图17为本申请一些实施例提供的阳极涂层侧图像和阴极涂层侧图像的示意图;
图18为本申请一些实施例提供的电池卷芯卷绕覆盖检测方法的流程 示意图;
图19为图18所示方法中步骤S70的一子流程示意图;
图20为本申请一些实施例提供的电池卷芯卷绕覆盖检测装置的结构示意图;以及
图21为本申请一些实施例提供的电池卷心卷绕覆盖检测设备的结构示意图。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个), 同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
随着绿色能源的发展,电池的应用越来越广泛,尤其是在近年来兴起的新能源汽车领域、信息家电领域或光伏发电领域,电池都作为重要的储能供电设备,例如,为新能源汽车或终端设备等供电,为太阳能板储能。随着电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
在卷绕电池的生产过程中,需要先将阳极极片、阴极极片、隔膜卷绕成卷芯。该工序中,两极片之间的覆盖情况是衡量电芯质量的一个重要的指标,如果两极片之间的覆盖情况达不到要求,会对电芯的使用寿命和安全性能产生重大影响,甚至会直接导致卷芯的报废。
在实际的卷绕操作中,如图1所示,在卷绕起始阶段,首先如图1(a)所示,第一隔膜101和第二隔膜102一起先进入卷针103,在卷针103上卷绕至少一圈后,如图1(b)所示,阳极极片104在第一隔膜101和第二隔膜102之间进入卷针103。在阳极极片104进入卷针103一定长度后,如图1(c)所示,阴极极片105在第二隔膜102远离阳极极片104的一侧进入卷针103,等阴极极片105进入入卷状态后,进入稳定卷绕阶段。在稳定卷绕阶段,从卷芯外看,按照第一隔膜101、阳极极片104、第二隔膜102和阴极极片105的顺序层叠后一起进入卷针103进行卷绕。可以理解的是, 第一隔膜101、阳极极片104、第二隔膜102和阴极极片105均可以经过导辊106传送。
在卷芯中,第一隔膜101用于使阳极极片104与卷针103之间绝缘,第二隔膜102用于使阴极极片105和阳极极片104之间绝缘。在一些实施例中,第一隔膜101和第二隔膜102呈乳白色。阳极极片104的两个表面分别涂覆有阳极涂层,阳极涂层一般为黑色,阴极极片105的两个表面分别涂覆有阴极涂层。
可以理解的是,阳极极片的一侧设置有按距离排布的多个阳极极耳(图1未示),阴极极片的一侧设置有按距离排布的多个阴极极耳(图1未示),卷绕后,在卷芯中,多个阳极极耳对齐,多个阴极极耳对齐。可以理解的是,阳极极片上阳极极耳之间的距离,从卷绕头端至尾端逐渐增大,具体可根据卷绕而事先计算设置;阴极极片上阴极极耳之间的距离,从卷绕头端至尾端逐渐增大,具体可根据卷绕而事先计算设置。关于极片的设置是本领域技术人员所熟知的,在此不再详细介绍。
对于卷芯,除了需要满足阴极极耳对齐、阳极极耳对齐外,还需要保持在卷芯的各段,第一隔膜和第二隔膜均超出两极片(阳极极片和阴极极片)的边缘,以更好地绝缘,防止短路;此外,阳极极片上的阳极涂层边界应该覆盖阴极涂层外界,如果覆盖不良,容易导致卷芯在循环充放电时刺穿隔膜,严重时甚至会导致燃爆,对电池的安全性影响极大。可以理解的是,如图2所示(为方便示意,图2中未示出第一隔膜和第二隔膜),这里的覆盖是指在卷芯中心轴线方向,远离阳极极耳的阳极涂层边界超过远离阴极极耳的阴极涂层边界,靠近阳极极耳的阳极涂层边界超过靠近阴极极耳的阴极涂层边界。
为了监测卷芯中阳极极片和阴极极片之间的覆盖情况,在卷芯的卷绕制备阶段,采用卷芯卷绕覆盖检测设备,对阳极极片和阴极极片之间的覆盖情况进行实时检测。在一种实施方式中,采用相机获取进入卷针前的极片的图像,如图3所示,图3(a)是相机在阳极极片侧拍摄到的图像A,图3(b)为相机在阴极极片侧拍摄到的图像B,正常情况下,第一隔膜和第二隔膜重叠,以两个隔膜的边界为基准,根据图像A获取阳极极片上阳极涂层边界至隔膜边界的距离X1和X3,根据图像B获取阴极极片上阴极涂层边界至隔膜边界的距离X2和X4。从而,根据(X2-X1)和(X4-X3)则 可以分别确定阳极极片上两阳极涂层边界分别覆盖阴极极片上两阴极涂层边界。
然而,在卷绕过程中,由于震动或其它干扰因素,会导致第一隔膜和第二隔膜发生错位现象(如图3(a)中所示),从而,在对图像A和图像B进行分析时,导致误抓隔膜边界,使得获取到的隔膜边界不准确,则上述距离X1、X2、X3和X4均不准确,使得覆盖检测结果不准确,误差较大,影响生产。
基于以上考虑,本申请发明人经过研究发现,可以分别在阳极涂层侧图像和阴极涂层侧图像(如图3(a)和图3(b)所示)中设置准确的基准线,以基准线为参考,获取两个阳极涂层边界分别至基准线的第一距离和第二距离,获取两个阴极涂层边界分别至基准线的第三距离和第四距离,从而,基于第一距离、第二距离、第三距离和第四距离即可准确检测出阳极极片与阴极极片之间的覆盖情况。
具体地,获取阳极涂层侧图像和阴极涂层侧图像,阳极涂层侧图像包括处于即将入卷状态下或卷绕状态下的阳极极片的图像,阴极涂层侧图像包括处于即将入卷状态下的阴极极片的图像。
根据阳极涂层侧图像,确定阳极涂层侧中远离极耳的第一阳极涂层边界与第一基准线之间的第一距离、以及阳极涂层侧中靠近极耳的第二阳极涂层边界与第一基准线之间的第二距离。根据阴极涂层侧图像,确定阴极涂层侧中远离极耳的第一阴极涂层边界与第二基准线之间的第三距离、以及阴极涂层侧中靠近极耳的第二阴极涂层边界与第二基准线之间的第四距离。
其中,第一基准线为用于采集阳极涂层侧图像的第一图像采集装置标定的基准线,第二基准线为用于采集阴极涂层侧图像的第二图像采集装置标定的基准线,由于第一基准线和第二基准线在同一坐标系中重合,例如第一基准线和第二基准线在世界坐标系重合。从而,可以根据第一距离和第三距离,确定第一阳极涂层边界是否覆盖第一阴极涂层边界,根据第二距离和第四距离,确定第二阳极涂层边界是否覆盖第二阴极涂层边界。
在上述方案中,通过将用于采集阳极涂层侧图像的第一图像采集装置的第一基准线和用于采集阴极涂层侧图像的第二图像采集装置的第二基准线设置为在同一坐标系中重合,例如第一基准线和第二基准线在世界坐标系重合。从而使得在阳极涂层侧图像中以第一基准线为参考计算得到的第一距离和在 阴极涂层侧图像中以第二基准线为参考计算得到的第三距离相当于是在同一坐标系中遵循同一基准线。并且,由于第一基准线和第二基准线是确定的,因此通过第一距离和第三距离能够准确判断第一阳极涂层边界是否覆盖第一阴极涂层边界。同理,在阳极涂层侧图像中以第一基准线为参考计算得到的第二距离和在阴极涂层侧图像中以第二基准线为参考计算得到的第四距离相当于是在同一坐标系遵循同一基准线,并且,由于第一基准线和第二基准线是确定的,因此,通过第二距离和第四距离能够准确判断第二阳极涂层边界是否覆盖第二阴极涂层边界。即通过上述方式,能准确检测电池卷芯卷绕过程中阳极极片与阴极极片之间的覆盖情况。
由于本申请实施例提供的方法涉及电池卷芯卷绕覆盖检测方法,该方法可以应用于电池卷芯卷绕覆盖检测设备。
可以理解的是,在进行卷绕检测时,电池卷芯卷绕覆盖检测设备设置于电池卷芯卷绕机周边或电池卷芯卷绕机上,与电池卷芯卷绕机配合使用,从而,可以将电池卷芯卷绕覆盖检测设备应用于电池卷芯卷绕机,为电池卷芯卷绕机提供覆盖检测功能。从而,电池卷芯卷绕机包括电池卷芯卷绕覆盖检测设备。
根据本申请的一些实施例,请参照图4,图4为本申请实施例提供的电池卷芯卷绕覆盖检测方法的一种流程示意图,该方法S200具体可以包括如下步骤:
S10:获取阳极涂层侧图像和阴极涂层侧图像。
阳极涂层侧图像包括处于即将入卷状态下或卷绕状态下的阳极极片的图像,阴极涂层侧图像包括处于即将入卷状态下的阴极极片的图像。
其中,卷绕状态是指卷绕进入卷针后的状态。如图5所示,卷绕状态可以理解为卷绕在卷针103上的状态。即将入卷状态是指准备入卷而未入卷的状态。如图5所示,即将入卷状态可以理解为经过导辊106后未进入卷针103前的状态。
如图5所示,当第一图像采集装置107正对卷针103采集阳极涂层侧图像时,阳极涂层侧图像包括卷绕状态下的阳极极片104的图像。当第一图像采集装置107正对处于导辊106后卷针前的阳极极片104采集阳极涂层侧图像时,阳极涂层侧图像包括即将入卷状态下的阳极极片104的图像。可选地,在另一实施例中,可调整第一图像采集装置107的位置,使得阳极涂层侧图 像包括卷绕状态下的阳极极片104的图像。
可以理解的是,为了拍摄到阴极极片105的图像,将第二图像采集装置108正对处于导辊106后卷针103前的阴极极片105采集阴极涂层侧图像,则阴极涂层侧图像包括即将入卷状态下的阴极极片105的图像。
S20:根据阳极涂层侧图像,确定阳极涂层侧中远离极耳的第一阳极涂层边界与第一基准线之间的第一距离、以及阳极涂层侧中靠近极耳的第二阳极涂层边界与第一基准线之间的第二距离。
其中,第一基准线为用于采集阳极涂层侧图像的第一图像采集装置标定的基准线。
基于阳极极片一侧分布有极耳(这里的极耳也可以称为阳极极耳),将远离极耳的阳极涂层边界称为第一阳极涂层边界,将靠近极耳的阳极涂层边界称为第二阳极涂层边界。图6(a)示出了一阳极涂层侧图像的示意图,如图6(a)所示,“0”和“4096”表示第一图像采集装置的视野范围,代表图像宽度方向共有4096个像素点,L1为第一基准线。可以理解的是,图6(a)中Y1为第一阳极涂层边界与第一基准线之间的第一距离,Y2为第二阳极涂层边界与第一基准线之间的第二距离。
该第一基准线是在第一采集装置上事先标定的。例如,第一基准线在图像坐标系中可以为阳极涂层侧图像的中位线,若第一图像采集装置的视野范围为(0,4096),则阳极涂层侧图像的宽度为4096像素,第一基准线在2048像素处。可以理解的而是,第一基准线的像素位置的可取范围为(0,4096)。基于世界坐标系是现实空间中的绝对坐标系,当第一基准线在2048像素处,且阳极极片的周向中线位于第一图像采集装置的视野中间时,第一基准线(2048像素处)在世界坐标系中投影于阳极极片的周向中线。这里,可以理解的是,由于阳极极片入卷后是卷绕在卷针上,从而,周向中线指卷绕周向上的中位线。
S30:根据阴极涂层侧图像,确定阴极涂层侧中远离极耳的第一阴极涂层边界与第二基准线之间的第三距离、以及阴极涂层侧中靠近极耳的第二阴极涂层边界与第二基准线之间的第四距离。
其中,第二基准线为用于采集阴极涂层侧图像的第二图像采集装置标定的基准线,第一基准线和第二基准线在同一坐标系中重合。
基于阴极极片一侧分布有极耳(这里的极耳也可以称为阴极极耳),将 远离极耳的阴极涂层边界称为第一阴极涂层边界,将靠近极耳的阴极涂层边界称为第二阴极涂层边界。图6(b)示出了一阴极涂层侧图像的示意图,如图6(b)所示,“0”和“4096”表示第二图像采集装置的视野范围,代表图像宽度方向共有4096个像素点,L2为第二基准线。可以理解的是,图6(b)中Y3为第一阴极涂层边界与第二基准线之间的第三距离,Y4为第二阴极涂层边界与第二基准线之间的第四距离。
该第二基准线是在第二采集装置上事先标定的。例如,第二基准线在图像坐标系中可以为阴极涂层侧图像的中位线,若第二图像采集装置的视野范围为(0,4096),则阴极涂层侧图像的宽度为4096像素,第二基准线在2048像素处。可以理解的而是,第二基准线的像素位置的可取范围为(0,4096)。基于世界坐标系是现实空间中的绝对坐标系,当第二基准线在2048像素处,且阴极极片的周向中线位于第二图像采集装置的视野中间时,第二基准线(2048像素处)在世界坐标系中投影于阴极极片的周向中线。这里,可以理解的是,由于阴极极片入卷后是卷绕在卷针上,从而,轴向中线指卷绕周向上的中位线。
这里,第一基准线和第二基准线在同一坐标系中重合。例如,第一基准线在世界坐标系中投影于阳极极片的周向中线,第二基准线在世界坐标系中投影于阴极极片的周向中线,而在实际卷绕中,阳极极片和阴极极片的周向中线可近似于重合,因此,第一基准线和第二基准线在世界坐标系中重合。
再例如,若阳极涂层侧图像和阴极涂层侧图像的大小相同,图像比例相同时,第一基准线和第二基准线位于同一像素处,例如均在2048像素处,则第一基准线和第二基准线在图像坐标系中重合。
S40:根据第一距离和第三距离,确定第一阳极涂层边界是否覆盖第一阴极涂层边界。
S50:根据第二距离和第四距离,确定第二阳极涂层边界是否覆盖第二阴极涂层边界。
由于第一基准线和第二基准线在同一坐标系中重合,即使第一基准线和第二基准线在两个独立的图像中,也可认为第一距离和第三距离是参考同一基准线计算得到的,第二距离和第四距离是参考同一基准线计算得到的,因此,可以根据第一距离和第三距离确定第一阳极涂层边界是否覆盖第一阴极涂层边界,例如第一距离大于第三距离,则确定第一阳极涂层边界覆盖第一 阴极涂层边界。同理,可以根据第二距离和第四距离确定第二阳极涂层边界是否覆盖第二阴极涂层边界,例如第二距离大于第四距离,则确定第二阳极涂层边界覆盖第二阴极涂层边界。
本申请实施例的技术方案中,通过将用于采集阳极涂层侧图像的第一图像采集装置的第一基准线和用于采集阴极涂层侧图像的第二图像采集装置的第二基准线设置为在同一坐标系中重合,例如第一基准线和第二基准线在世界坐标系重合,从而使得在阳极涂层侧图像中以第一基准线为参考计算得到的第一距离和在阴极涂层侧图像中以第二基准线为参考计算得到的第三距离相当于是在同一坐标系中遵循同一基准线。并且,由于第一基准线和第二基准线是确定的,因此通过第一距离和第三距离能够准确判断第一阳极涂层边界是否覆盖第一阴极涂层边界。同理,在阳极涂层侧图像中以第一基准线为参考计算得到的第二距离和在阴极涂层侧图像中以第二基准线为参考计算得到的第四距离相当于是在同一坐标系遵循同一基准线,并且,由于第一基准线和第二基准线是确定的,因此,通过第二距离和第四距离能够准确判断第二阳极涂层边界是否覆盖第二阴极涂层边界。即通过上述方式,能准确检测电池卷芯卷绕过程中阳极极片与阴极极片之间的覆盖情况。
根据本申请的一些实施例,可选地,阳极涂层侧图像中所包括的阳极极片与阴极涂层侧图像中所包括的阴极极片在电池卷芯中处于同一卷绕段;其中,该卷绕段包括至少一对目标阳极极耳和目标阴极极耳,该目标阳极极耳和目标阴极极耳相邻。
请参阅图7,由于阳极涂层侧图像和阴极涂层侧图像是在卷芯卷绕过程中拍摄的,且用于拍摄阳极涂层侧图像的第一图像采集装置107和用于拍摄阴极涂层侧图像的第二图像采集装置108安装设置在不同的位置,若第一图像采集装置107和第二图像采集装置108在同一时刻同时拍摄,则获取到的阳极涂层侧图像和阴极涂层侧图像不是同一卷绕段的图像。例如,如图7所示,图像1#和图像2#是分别由第一图像采集装置和第二图像采集装置在同一时刻获取,则在图像1#中的卷绕段和图像2#中的卷绕段不是同一段,从而,使得第一距离、第二距离的测量位置分别与第三距离、第四距离和测量位置在卷绕段上错位,影响覆盖检测结果的准确性。
为了避免第一距离、第二距离的测量位置分别与第三距离、第四距离的测量位置在卷绕段上错位的问题,设置第一图像采集装置和第二图像采集装 置对同一卷绕段拍摄,例如,卷绕段A传送至第二图像采集装置的视野范围内时,由第二图像采集装置拍摄获得阴极涂层侧图像,当卷绕段A传送至卷针上,即在第一图像采集装置的视野范围内时,由第一图像采集装置拍摄获取阳极涂层侧图像。从而,使得阳极涂层侧图像和阴极涂层侧图像分别是卷绕段A两面的图像,使得第一距离、第二距离的测量位置分别与第三距离、第四距离的测量位置在卷绕段上是同一位置,有益于检测结果的准确性。
此外,该卷绕段包括至少一对相邻的目标阳极极耳和目标阴极极耳,能够方便在进行图像分析时,以目标阳极极耳和目标阴极极耳为参考,能够方便抓取同一位置的阳极涂层边界和阴极涂层边界,使得覆盖检测结果更加准确。
本申请实施例的技术方案中,通过阳极涂层侧图像中所包括的阳极极片与阴极涂层侧图像中所包括的阴极极片在电池卷芯中处于同一卷绕段,使得第一距离和第三距离评价的是卷芯上同一位置的第一阳极涂层边界和第一阴极涂层边界之间的覆盖情况,同理,使得第二距离和第四距离评价的是卷芯上同一位置的第二阳极涂层边界和第二阴极涂层边界之间的覆盖情况。从而,能够确定卷心的同一位置上阳极极片和阴极极片之间的覆盖情况,使得覆盖检测更加准确。可以理解的是,该卷绕段包括至少一对相邻的目标阳极极耳和目标阴极极耳,能够方便在进行图像分析时,以目标阳极极耳和目标阴极极耳为参考,抓取同一位置的阳极涂层边界和阴极涂层边界,从而,有助于提高覆盖检测的准确性。
根据本申请的一些实施例,可选地,请参阅图8,前述步骤S20具体包括:
S21:通过阳极涂层侧图像中位于目标阳极极耳和目标阴极极耳之间的第一阳极涂层边界与第一基准线之间的距离计算第一距离。
S22:通过阳极涂层侧图像中位于目标阳极极耳和目标阴极极耳之间的第二阳极涂层边界与第一基准线之间的距离计算第二距离。
例如,如图9所示,阳极涂层侧图像和阴极涂层侧图像中的卷绕段包括相邻的目标阳极极耳C和目标阴极极耳D,若目标阳极极耳C和目标阴极极耳D之间间隔6mm,在进行图像分析时,可以在远离极耳侧取目标阳极极耳C上方3mm处一段边界像素,作为第一阳极涂层边界。通过第一阳极涂层边界和第一基准线之间的距离计算得到第一距离。可以在靠近极耳侧取目标阳极极耳C上方3mm处一段边界像素,作为第二阳极涂层边界。通过第二阳极 涂层边界和第一基准线之间的距离计算得到第二距离。
本申请实施例的技术方案中,通过以目标阳极极耳和目标阴极极耳为参考,使得用于计算第一距离的第一阳极涂层边界和用于计算第二距离的第二阳极涂层边界均位于目标阳极极耳和目标阴极极耳之间,即能够实现准确抓取同一位置的第一阳极涂层边界和第二阳极涂层边界,使得第一距离和第二距离反映同一位置处第一阳极涂层边界和第二阳极涂层边界分别和第一基线之间的距离。
根据本申请的一些实施例,可选地,请参阅图10,步骤S21具体包括:
S211:根据第一阳极涂层边界与第二阳极涂层边界之间的距离和阳极涂层在阳极涂层侧图像中所占用的像素点个数,确定阳极涂层像素当量。
S212:确定第一距离为阳极涂层侧图像中位于目标阳极极耳和目标阴极极耳之间的第一阳极涂层边界与第一基准线之间的像素点数量和阳极涂层像素当量的乘积。
这里,第一阳极涂层边界与第二阳极涂层边界之间的距离相当于阳极极片的宽(以卷绕方向为长度方向),阳极涂层像素当量反映阳极涂层侧图像中一个像素代表的距离,从而,将阳极极片的宽除以阳极涂层在阳极涂层侧图像中所占用的像素点个数,即可得到阳极涂层像素当量。
在确定阳极涂层像素当量后,将阳极涂层侧图像中位于目标阳极极耳和目标阴极极耳之间的第一阳极涂层边界与第一基准线之间的像素点数量乘以阳极涂层像素当量,即可计算得到第一距离。例如,请再次参阅图9,在远离极耳侧取目标阳极极耳C上方3mm处的第一阳极涂层边界,然后,计算该第一阳极涂层边界与第一基准线之间的像素点数量,再乘以阳极涂层像素当量,得到第一距离。
本申请实施例的技术方案中,对阳极涂层侧图像进行分析,计算阳极涂层像素当量(即阳极涂层侧图像中一个像素代表的距离),然后,通过阳极涂层像素当量和位于目标阳极极耳和目标阴极极耳之间的第一阳极涂层边界与第一基准线之间的像素点数量相乘,能够得到同一位置处准确的第一距离。
根据本申请的一些实施例,可选地,请参阅图11,步骤S22具体包括:
S221:根据第一阳极涂层边界与第二阳极涂层边界之间的距离和阳极涂层在阳极涂层侧图像中所占用的像素点个数,确定阳极涂层像素当量。
S222:确定第二距离为阳极涂层侧图像中位于目标阳极极耳和目标阴极 极耳之间的第二阳极涂层边界与第一基准线之间的像素点数量和阳极涂层像素当量的乘积。
同理,第一阳极涂层边界与第二阳极涂层边界之间的距离相当于阳极极片的宽(以卷绕方向为长度方向),阳极涂层像素当量反映阳极涂层侧图像中一个像素代表的距离,从而,将阳极极片的宽除以阳极涂层在阳极涂层侧图像中所占用的像素点个数,即可得到阳极涂层像素当量。
在确定阳极涂层像素当量后,将阳极涂层侧图像中位于目标阳极极耳和目标阴极极耳之间的第二阳极涂层边界与第一基准线之间的像素点数量乘以阳极涂层像素当量,即可计算得到第二距离。例如,请再次参阅图9,在靠近极耳侧取目标阳极极耳C上方3mm处的第二阳极涂层边界,然后,计算该第二阳极涂层边界与第一基准线之间的像素点数量,再乘以阳极涂层像素当量,得到第二距离。
本申请实施例的技术方案中,对阳极涂层侧图像进行分析,计算阳极涂层像素当量(即阳极涂层侧图像中一个像素代表的距离),然后,通过阳极涂层像素当量和位于目标阳极极耳和目标阴极极耳之间的第二阳极涂层边界与第一基准线之间的像素点数量相乘,能够得到同一位置处准确的第二距离。
根据本申请的一些实施例,可选地,请参阅图12,步骤S30具体包括:
S31:通过阴极涂层侧图像中位于目标阳极极耳和目标阴极极耳之间的第一阴极涂层边界与第二基准线之间的距离计算第三距离。
S32:通过阴极涂层侧图像中位于目标阳极极耳和目标阴极极耳之间的第二阴极涂层边界与第二基准线之间的距离计算第四距离。
请再次参阅图9,阳极涂层侧图像和阴极涂层侧图像中的卷绕段包括相邻的目标阳极极耳C和目标阴极极耳D,若目标阳极极耳C和目标阴极极耳D之间间隔6mm,在进行图像分析时,可以在远离极耳侧取目标阴极极耳D下方3mm处一段边界像素,作为第一阴极涂层边界。通过第一阴极涂层边界和第二基准线之间的距离计算第三距离。可以在靠近极耳侧取目标阴极极耳D下方3mm处一段边界像素,作为第二阴极涂层边界。通过第二阴极涂层边界和第二基准线之间的距离计算第四距离。
本申请实施例的技术方案中,通过以目标阳极极耳和目标阴极极耳为参考,使得用于计算第三距离的第一阴极涂层边界和用于计算第四距离的第二阴极涂层边界均位于目标阳极极耳和目标阴极极耳之间,即能够实现准确抓 取同一位置的第一阴极涂层边界和第二阴极涂层边界,使得第三距离和第四距离反映同一位置处第一阴极涂层边界和第二阴极涂层边界分别和第二基线之间的距离。
根据本申请的一些实施例,可选地,请参阅图13,步骤S31具体包括:
S311:根据第一阴极涂层边界与第二阴极涂层边界之间的距离和阴极涂层在阴极涂层侧图像中所占用的像素点个数,确定阴极涂层像素当量。
S312:确定第三距离为阴极涂层侧图像中位于目标阳极极耳和目标阴极极耳之间的第一阴极涂层边界与第二基准线之间的像素点数量和阳极涂层像素当量的乘积。
这里,第一阴极涂层边界与第二阴极涂层边界之间的距离相当于阴极极片的宽(以卷绕方向为长度方向),阴极涂层像素当量反映阴极涂层侧图像中一个像素代表的距离,从而,将阴极极片的宽除以阴极涂层在阴极涂层侧图像中所占用的像素点个数,即可得到阴极涂层像素当量。
在确定阴极涂层像素当量后,将阴极涂层侧图像中位于目标阳极极耳和目标阴极极耳之间的第一阴极涂层边界与第二基准线之间的像素点数量乘以阴极涂层像素当量,即可计算得到第三距离。例如,请再次参阅图8,在远离极耳侧取目标阳极极耳D下方3mm处的第一阴极涂层边界,然后,计算该第一阴极涂层边界与第二基准线之间的像素点数量,再乘以阴极涂层像素当量,得到第三距离。
本申请实施例的技术方案中,对阴极涂层侧图像进行分析,计算阴极涂层像素当量(即阴极涂层侧图像中一个像素代表的距离),然后,通过阴极涂层像素当量和位于目标阳极极耳和目标阴极极耳之间的第一阴极涂层边界与第二基准线之间的像素点数量相乘,能够得到同一位置处准确的第三距离。
根据本申请的一些实施例,可选地,请参阅图14,步骤S32具体包括:
S321:根据第一阴极涂层边界与第二阴极涂层边界之间的距离和阴极涂层在阴极涂层侧图像中所占用的像素点个数,确定阴极涂层像素当量。
S322:确定第四距离为阴极涂层侧图像中位于目标阳极极耳和目标阴极极耳之间的第二阴极涂层边界与第二基准线之间的像素点数量和阴极极片像素当量的乘积。
这里,第一阴极涂层边界与第二阴极涂层边界之间的距离相当于阴极极片的宽(以卷绕方向为长度方向),阴极涂层像素当量反映阴极涂层侧图像 中一个像素代表的距离,从而,将阴极极片的宽除以阴极涂层在阴极涂层侧图像中所占用的像素点个数,即可得到阴极涂层像素当量。
在确定阴极涂层像素当量后,将阴极涂层侧图像中位于目标阳极极耳和目标阴极极耳之间的第二阴极涂层边界与第二基准线之间的像素点数量乘以阴极涂层像素当量,即可计算得到第四距离。例如,请再次参阅图9,在靠近极耳侧取目标阳极极耳D下方3mm处的第二阴极涂层边界,然后,计算该第二阴极涂层边界与第二基准线之间的像素点数量,再乘以阴极涂层像素当量,得到第四距离。
本申请实施例的技术方案中,对阴极涂层侧图像进行分析,计算阴极涂层像素当量(即阴极涂层侧图像中一个像素代表的距离),然后,通过阴极涂层像素当量和位于目标阳极极耳和目标阴极极耳之间的第二阴极涂层边界与第二基准线之间的像素点数量相乘,能够得到同一位置处准确的第四距离。
根据本申请的一些实施例,可选地,请参阅图15,步骤S40具体包括:
S41:如果第一距离减去第三距离得到的差值大于或等于第一预设阈值,则确定第一阳极涂层边界覆盖第一阴极涂层边界。
可以理解的是,在第一阳极涂层边界覆盖第一阴极涂层边界的情况下,需要第一距离大于第三距离即可。由于测量计算得到的第一距离和第三距离可能存在误差,为了减少测量误差对覆盖检测结果的影响。设置第一预设阈值,当第一距离减去第三距离得到的差值大于或等于第一预设阈值,才确定第一阳极涂层边界覆盖第一阴极涂层边界,使得覆盖检测结果更加谨慎,不会出现误检漏检。可以理解的是,第一预设阈值可由本领域技术人员根据实际情况而设置。
本申请实施例的技术方案中,通过设置第一预设阈值,使得第一距离大于第三距离的情况下,才确定第一阳极涂层边界覆盖第一阴极涂层边界,使得覆盖检测结果更加谨慎,能够避免测量误差来带的误判。
根据本申请的一些实施例,可选地,请参阅图16,步骤S50具体包括:
S51:如果第二距离减去第四距离得到的差值大于或等于第二预设阈值,则确定第二阳极涂层边界覆盖第二阴极涂层边界。
可以理解的是,在第二阳极涂层边界覆盖第二阴极涂层边界的情况下,需要第二距离大于第四距离即可。由于测量计算得到的第二距离和第四距离可能存在误差,为了减少测量误差对覆盖检测结果的影响。设置第二预设阈 值,当第二距离减去第四距离得到的差值大于或等于第二预设阈值,才确定第二阳极涂层边界覆盖第二阴极涂层边界,使得覆盖检测结果更加谨慎,不会出现误检漏检。可以理解的是,第二预设阈值可由本领域技术人员根据实际情况而设置。
本申请实施例的技术方案中,通过设置第二预设阈值,使得第二距离大于第四距离的情况下,才确定第二阳极涂层边界覆盖第二阴极涂层边界,使得覆盖检测结果更加谨慎,能够避免测量误差来带的误判。
根据本申请的一些实施例,可选地,如图17所示,在第二阴极涂层边界与阴极极耳之间设置有绝缘涂层。可以理解的是,绝缘涂层由绝缘材料制成。绝缘涂层能够防止因阳极涂层与阴极极片箔材接触而引起的内部短路。
对于卷芯,需要保持在卷芯的各段,绝缘涂层靠近阴极极耳的边界超过第二阳极涂层边界,第二阳极涂层边界超过第二阴极涂层边界,即绝缘涂层靠近阴极极耳的边界覆盖第二阳极涂层边界,第二阳极涂层边界覆盖第二阴极涂层边界。
请参阅图18,该方法S200还包括:
S60:根据阴极涂层侧图像,确定绝缘涂层靠近阴极极耳的边界与第二基准线之间的第五距离。
S70:根据第五距离和第二距离,确定绝缘涂层靠近阴极极耳的边界是否覆盖第二阳极涂层边界。
请再次参阅图17,Y1为第一阳极涂层边界与第一基准线之间的第一距离,Y2为第二阳极涂层边界与第一基准线之间的第二距离,Y3为第一阴极涂层边界与第二基准线之间的第三距离,Y4为第二阴极涂层边界与第二基准线之间的第四距离,Y5为绝缘涂层靠近阴极极耳的边界与第二基准线之间的第五距离。由上可知,第一基准线和第二基准线在同一坐标系中重合,即使第一基准线和第二基准线在两个独立的图像中,也可认为第五距离Y5和第二距离Y2是参考同一基准线计算得到的,因此,可以根据第五距离Y5和第二距离Y2确定绝缘涂层靠近阴极极耳的边界是否覆盖第二阳极涂层边界,例如若第五距离Y5大于第二距离Y2,则确定绝缘涂层靠近阴极极耳的边界覆盖第二阳极涂层边界。
本申请实施例的技术方案中,第二阴极涂层边界与阴极极耳之间设置有绝缘涂层,从而,可以根据阴极涂层侧图像,计算绝缘涂层靠近阴极极耳的 边界与第二基准线之间的第五距离,基于第一基准线和第二基准线在同一坐标系中重合,从而,以第二基准线为参考计算得到的第五距离和以第一基准线计算得到的第二距离遵循同一基准线,并且,第一基准线和第二基准线是确定的,因此,通过第五距离和第二距离能够准确判断绝缘涂层靠近阴极极耳的边界是否覆盖第二阳极涂层边界。
根据本申请的一些实施例,可选地,请参阅图19,前述步骤S70具体包括:
S71:如果第五距离减去第二距离得到的差值大于或等于第三预设阈值,则确定绝缘涂层靠近阴极极耳的边界覆盖第二阳极涂层边界。
可以理解的是,在绝缘涂层靠近阴极极耳的边界覆盖第二阳极涂层边界的情况下,需要第五距离大于第二距离即可。由于测量计算得到的第五距离和第二距离可能存在误差,为了减少测量误差对覆盖检测结果的影响。设置第三预设阈值,当第五距离减去第二距离得到的差值大于或等于第三预设阈值,才确定绝缘涂层靠近阴极极耳的边界覆盖第二阳极涂层边界,使得覆盖检测结果更加谨慎,不会出现误检漏检。可以理解的是,第一预设阈值可由本领域技术人员根据实际情况而设置。
本申请实施例的技术方案中,通过设置第三预设阈值,使得第五距离大于第二距离的情况下,才确定绝缘涂层靠近阴极极耳的边界覆盖第二阳极涂层边界,使得覆盖检测结果更加谨慎,能够避免测量误差来带的误判。
根据本申请的一些实施例,可选地,第一基准线为第一图像采集装置的视野中线,第二基准线为第二图像采集装置的视野中线。
请再次参阅图6,若第一图像采集装置的视野范围为(0,4096),则阳极涂层侧图像的宽度为4096像素,第一基准线在2048像素处时,为第一图像采集装置的视野中线。可以理解的是,当第一基准线为第一图像采集装置的视野中线时,在获取到由第一图像采集装置拍摄到的阳极涂层侧图像后,可直接由阳极涂层侧图像的尺寸确定第一基准线,计算简单方便。
同理,若第一图像采集装置的视野范围为(0,4096),则阳极涂层侧图像的宽度为4096像素,第一基准线在2048像素处时,为第一图像采集装置的视野中线。可以理解的是,当第二基准线为第二图像采集装置的视野中线时,在获取到由第二图像采集装置拍摄到的阴极涂层侧图像后,可直接由阴极涂层侧图像的尺寸确定第二基准线,计算简单方便。
本申请实施例的技术方案中,将第一基准线设置为第一图像采集装置的视野中线,将第二基准线设置为第二图像采集装置的视野中线,能够方便计算设备分别对阳极涂层侧图像和阴极涂层侧图像进行识别处理计算,有益于提高覆盖检测结果的准确性。
根据本申请的一些实施例,可选地,第一图像采集装置的视野中线位于阳极极片的周向中线位置,第二图像采集装置的视野中线位于阴极极片的周向中线位置。
在对由第一图像采集装置拍摄到的阳极涂层侧图像进行计算处理时,首先需要识别出阳极极片,若第一图像采集装置的视野中线位于阳极极片的周向中线位置,则阳极极片位于阳极涂层侧图像的中间。可以理解的是,由于阳极极片入卷后是卷绕在卷针上,从而,周向中线指卷绕周向上的中位线。
因此,在识别阳极极片时,可以直接以阳极涂层侧图像的中间为基础采用现有识别算法即可快速识别,节省寻找阳极极片的时间,提高运算效率和检测结果的准确性。其中,现有识别算法可以为本领域技术人员采用深度神经网络训练好的目标识别算法,或,现有识别算法也可以为像素对比法。
可以理解的是,第二图像采集装置的视野中线位于阴极极片的周向中线位置,也具有上述效果,在此不再赘述。
本申请实施例的技术方案中,第一图像采集装置的视野中线位于阳极极片的周向中线位置,使得阳极极片位于阳极涂层侧图像的中间,能够方便计算设备对阳极涂层侧图像进行识别处理计算,有益于提高覆盖检测结果的准确性。同理,第二图像采集装置的视野中线位于阴极极片的周向中线位置,使得阴极极片位于阴极涂层侧图像的中间,能够方便计算设备对阴极涂层侧图像进行识别处理计算,有益于提高覆盖检测结果的准确性。
根据本申请的一些实施例,可选地,第一图像采集装置包括红外光源和第一线扫描相机,第二图像采集装置包括可见光光源和第二线扫描相机。
其中,红外光源为以产生红外辐射为主要目的的非照明用电光源。红外辐射是波长大于红色光波长的一定范围的电磁辐射。这里,红外光源可以为红外灯,和第一线扫描相机配合使用。具体地,红外光源能够穿透隔膜,帮助第一线扫描相机获取阳极极片的图像,提高阳极涂层侧图像的质量。
第一线扫描相机可以为线阵电荷耦合器件(Charge Coupled Device,CCD)工业相机,由一行或多行感光芯片构成,拍照时,卷芯卷绕,形成相对运动, 获得阳极涂层侧图像。
可见光光源可以为发射白光的电光源。在可见光光源下,第二线扫描相机能够清晰拍摄到阴极涂层侧图像。
第二线扫描相机也可以为线阵电荷耦合器件(Charge Coupled Device,CCD)工业相机,由一行或多行感光芯片构成,拍照时,卷芯卷绕,形成相对运动,获得阴极涂层侧图像。
本申请实施例的技术方案中,第一图像采集装置采用红外光源和第一线扫描相机,一方面,第一线扫描相机能够连续拍摄到卷绕过程中卷芯的阳极极片,对卷芯进行实时监测,另外一方面,红外光源能够穿透隔膜,帮助第一线扫描相机获取阳极极片的图像,提高阳极涂层侧图像的质量。另外,第二图像采集装置采用可见光光源和第二线扫描相机,能够连续拍摄到卷绕过程中卷芯的阴极极片,对卷芯进行实时监测,可见光光源能够帮助第二线扫描相机获取清晰的阴极极片的图像,提高阴极涂层侧图像的质量。通过上述方式提高阳极涂层侧图像和阴极涂层侧图像的质量,有益于提高覆盖检测结果的准确性。
根据本申请的一些实施例,提供一种电池卷芯覆盖检测方法,被检测的电池卷芯包括:具有阳极涂层的阳极极片、具有阴极涂层的阴极极片、以及位于阳极极片和阴极极片之间的隔膜;检测方法应用于电池卷芯的卷绕制备阶段。
该方法包括:
(1)如图5所示,采用第一图像获取装置获取阳极涂层侧图像,阳极涂层侧图像包括处于卷绕状态下的阳极极片的图像,采用第二图像获取装置获取阴极涂层侧图像,阴极涂层侧图像包括处于即将入卷状态下的阴极极片的图像。
其中,第一图像获取装置包括红外光源和4K线扫描相机,第一图像获取装置的视野包括4096像素点,将其视野中线(2048像素处)标定为第一基准线。第二图像获取装置包括可见光光源和4K线扫描相机,第二图像获取装置的视野包括4096像素点,将其视野中线(2048像素处)标定为第二基准线。第一基准线和第二基准线在世界坐标系中重合。
阳极涂层侧图像中所包括的阳极极片与阴极涂层侧图像中所包括的阴极极片在电池卷芯中处于同一卷绕段;其中,该卷绕段包括至少一对目标阳极 极耳和目标阴极极耳,该目标阳极极耳和目标阴极极耳相邻。
(2)通过阳极涂层侧图像中位于目标阳极极耳和目标阴极极耳之间的第一阳极涂层边界与第一基准线之间的距离计算第一距离;通过阳极涂层侧图像中位于目标阳极极耳和目标阴极极耳之间的第二阳极涂层边界与第一基准线之间的距离计算第二距离
(3)通过阴极涂层侧图像中位于目标阳极极耳和目标阴极极耳之间的第一阴极涂层边界与第二基准线之间的距离计算第三距离;通过阴极涂层侧图像中位于目标阳极极耳和目标阴极极耳之间的第二阴极涂层边界与第二基准线之间的距离计算第四距离。
(4)根据第一距离和第三距离,确定第一阳极涂层边界是否覆盖第一阴极涂层边界;根据第二距离和第四距离,确定第二阳极涂层边界是否覆盖第二阴极涂层边界。
本申请实施例的技术方案中,通过将用于采集阳极涂层侧图像的第一图像采集装置的第一基准线和用于采集阴极涂层侧图像的第二图像采集装置的第二基准线设置为在同一坐标系中重合,例如第一基准线和第二基准线在世界坐标系重合,从而使得在阳极涂层侧图像中以第一基准线为参考计算得到的第一距离和在阴极涂层侧图像中以第二基准线为参考计算得到的第三距离相当于是在同一坐标系中遵循同一基准线。并且,由于第一基准线和第二基准线是确定的,因此通过第一距离和第三距离能够准确判断第一阳极涂层边界是否覆盖第一阴极涂层边界。同理,在阳极涂层侧图像中以第一基准线为参考计算得到的第二距离和在阴极涂层侧图像中以第二基准线为参考计算得到的第四距离相当于是在同一坐标系遵循同一基准线,并且,由于第一基准线和第二基准线是确定的,因此,通过第二距离和第四距离能够准确判断第二阳极涂层边界是否覆盖第二阴极涂层边界。
阳极涂层侧图像中所包括的阳极极片与阴极涂层侧图像中所包括的阴极极片在电池卷芯中处于同一卷绕段,使得第一距离和第三距离评价的是卷芯上同一位置的第一阳极涂层边界和第一阴极涂层边界之间的覆盖情况。同理,使得第二距离和第三距离评价的是卷芯上同一位置的第二阳极涂层边界和第二阴极涂层边界之间的覆盖情况。从而,能够确定卷心的同一位置上阳极极片和阴极极片之间的覆盖情况,使得覆盖检测更加准确。可以理解的是,该卷绕段包括至少一对相邻的目标阳极极耳和目标阴极极耳,能够方便在进行 图像分析时,以目标阳极极耳和目标阴极极耳为参考,抓取同一位置的阳极涂层边界和阴极涂层边界,从而,有助于提高覆盖检测的准确性。
即通过上述方式,能准确检测电池卷芯卷绕过程中阳极极片与阴极极片之间的覆盖情况。
根据本申请的一些实施例,请参阅图20,本申请还提供了一种电池卷芯卷绕覆盖检测装置300,包括图像获取模块301、边界距离确定模块302和覆盖确定模块303。
图像获取模块301,用于获取阳极涂层侧图像和阴极涂层侧图像,阳极涂层侧图像包括处于即将入卷状态下或卷绕状态下的阳极极片的图像,阴极涂层侧图像包括处于即将入卷状态下的阴极极片的图像。
边界距离确定模块302,用于根据阳极涂层侧图像,确定阳极涂层侧中远离极耳的第一阳极涂层边界与第一基准线之间的第一距离、以及阳极涂层侧中靠近极耳的第二阳极涂层边界与第一基准线之间的第二距离,其中,第一基准线为用于采集阳极涂层侧图像的第一图像采集装置标定的基准线。
其中,边界距离确定模块302还用于根据阴极涂层侧图像,确定阴极涂层侧中远离极耳的第一阴极涂层边界与第二基准线之间的第三距离、以及阴极涂层侧中靠近极耳的第二阴极涂层边界与第二基准线之间的第四距离,其中,第二基准线为用于采集阴极涂层侧图像的第二图像采集装置标定的基准线,第一基准线和第二基准线在同一坐标系中重合。
覆盖确定模块303,用于根据第一距离和第三距离,确定第一阳极涂层边界是否覆盖第一阴极涂层边界;其中,覆盖确定模块303还用于根据第二距离和第四距离,确定第二阳极涂层边界是否覆盖第二阴极涂层边界。
在上述实施方式中,通过设置用于采集阳极涂层侧图像的第一图像采集装置的第一基准线和用于采集阴极涂层侧图像的第二图像采集装置的第二基准线在同一坐标系中重合,例如第一基准线和第二基准线在世界坐标系重合,从而使得边界距离确定302模块在阳极涂层侧图像中以第一基准线为参考计算得到的第一距离和在阴极涂层侧图像中以第二基准线为参考计算得到的第三距离相当于是在同一坐标系中遵循同一基准线。并且,由于第一基准线和第二基准线是确定的,因此,覆盖确定模块303通过第一距离和第三距离能够准确判断第一阳极涂层边界是否覆盖第一阴极涂层边界。同理,边界距离确定模块302在阳极涂层侧图像中以第一基准线为参考计算得到的第二距离 和在阴极涂层侧图像中以第二基准线为参考计算得到的第四距离相当于是在同一坐标系遵循同一基准线,并且,由于第一基准线和第二基准线是确定的,因此,覆盖确定模块303通过第二距离和第四距离能够准确判断第二阳极涂层边界是否覆盖第二阴极涂层边界。即通过上述方式,上述装置能准确检测电池卷芯卷绕过程中阳极极片与阴极极片之间的覆盖情况。
根据本申请的一些实施例,请参阅图21,本申请还提供了一种电池卷芯卷绕覆盖检测设备400,电池卷芯包括:具有阳极涂层的阳极极片、具有阴极涂层的阴极极片、以及位于阳极极片和阴极极片之间的隔膜。
检测设备400包括第一图像采集装置401、第二图像采集装置402、处理器403和存储器404,其中,第一图像采集装置401用于采集阳极涂层侧图像,阳极涂层侧图像包括处于入卷状态下或卷绕状态下的阳极极片的图像,第一基准线为第一图像采集装置401标定的基准线。第二图像采集装置402用于采集阴极涂层侧图像,阴极涂层侧图像包括处于入卷状态下的阴极极片的图像,第二基准线为第二图像采集装置402标定的基准线,第一基准线和第二基准线在同一坐标系中重合。
处理器403分别与第一图像采集装置401和第二图像采集装置402通信连接,以获取阳极涂层侧图像、阴极涂层侧图像、第一基准线和第二基准线。存储器404与处理器403通信连接,存储器404存储有可被处理器403执行的指令,指令被处理器403执行,以使处理器403能够执行本申请实施例中的电池卷芯卷绕覆盖检测方法。
其中,存储器404可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器404的一部分还可以包括非易失性随机存取存储器(non-volatile random accedd memory,NVRAM)。存储器404存储有操作指令、可执行模块或者数据结构,或者它们的子集,或者它们的扩展集。
处理器403可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,本申请实施例中的电池卷芯卷绕覆盖检测方法的各步骤可以通过处理器403中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器403可以是通用处理器、数字信号处理器(diginal signal processing,DSP)、微处理器或微控制器,还可进一步包括专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field-programmable gate array,FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。该 处理器可实现或者执行本申请实施例中的电池卷芯卷绕覆盖检测方法。
在上述实施例中,电池卷芯卷绕覆盖检测设备,能够准确检测卷绕过程中阳极极片与阴极极片之间的覆盖情况。
根据本申请的一些实施例,本申请还提供了一种电池卷芯卷绕机,其包括前述电池卷芯卷绕覆盖检测设备。
在上述实施例中,电池卷芯卷绕机具有准确的覆盖检测能力,有益于确保生产出来的电池卷芯合格。
可以理解的是,在进行卷绕检测时,电池卷芯卷绕覆盖检测设备设置于电池卷芯卷绕机周边或电池卷芯卷绕机上,与电池卷芯卷绕机配合使用,从而,可以将电池卷芯卷绕覆盖检测设备应用于电池卷芯卷绕机,为电池卷芯卷绕机提供覆盖检测功能。从而,电池卷芯卷绕机包括电池卷芯卷绕覆盖检测设备。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (16)

  1. 一种电池卷芯覆盖检测方法,其特征在于,所述电池卷芯包括:具有阳极涂层的阳极极片、具有阴极涂层的阴极极片、以及位于所述阳极极片和所述阴极极片之间的隔膜;
    所述检测方法应用于电池卷芯的卷绕制备阶段,所述方法包括:
    获取阳极涂层侧图像和阴极涂层侧图像,所述阳极涂层侧图像包括处于即将入卷状态下或卷绕状态下的阳极极片的图像,所述阴极涂层侧图像包括处于即将入卷状态下的阴极极片的图像;
    根据所述阳极涂层侧图像,确定所述阳极涂层侧中远离极耳的第一阳极涂层边界与第一基准线之间的第一距离、以及所述阳极涂层侧中靠近极耳的第二阳极涂层边界与所述第一基准线之间的第二距离,其中,所述第一基准线为用于采集所述阳极涂层侧图像的第一图像采集装置标定的基准线;
    根据所述阴极涂层侧图像,确定所述阴极涂层侧中远离极耳的第一阴极涂层边界与第二基准线之间的第三距离、以及所述阴极涂层侧中靠近极耳的第二阴极涂层边界与所述第二基准线之间的第四距离,其中,所述第二基准线为用于采集所述阴极涂层侧图像的第二图像采集装置标定的基准线,所述第一基准线和所述第二基准线在同一坐标系中重合;
    根据所述第一距离和所述第三距离,确定所述第一阳极涂层边界是否覆盖所述第一阴极涂层边界;
    根据所述第二距离和所述第四距离,确定所述第二阳极涂层边界是否覆盖所述第二阴极涂层边界。
  2. 根据权利要求1所述的方法,其特征在于,所述阳极涂层侧图像中所包括的阳极极片与所述阴极涂层侧图像中所包括的阴极极片在所述电池卷芯中处于同一卷绕段;
    其中,所述卷绕段包括至少一对目标阳极极耳和目标阴极极耳,所述目标阳极极耳和所述目标阴极极耳相邻。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述阳极涂层侧图像,确定所述阳极涂层侧中远离极耳的第一阳极涂层边界与第一基准线之间的第一距离、以及所述阳极涂层侧中靠近极耳的第二阳极涂层边界与所述第一基准线之间的第二距离,包括:
    通过所述阳极涂层侧图像中位于目标阳极极耳和目标阴极极耳之间的所述第一阳极涂层边界与所述第一基准线之间的距离计算所述第一距离;
    通过所述阳极涂层侧图像中位于所述目标阳极极耳和所述目标阴极极耳之间的所述第二阳极涂层边界与所述第一基准线之间的距离计算所述第二距离。
  4. 根据权利要求3所述的方法,其特征在于,
    所述通过所述阳极涂层侧图像中位于目标阳极极耳和目标阴极极耳之间的所述第一阳极涂层边界与所述第一基准线之间的距离计算所述第一距离,包括:
    根据所述第一阳极涂层边界与所述第二阳极涂层边界之间的距离和所述阳极涂层在所述阳极涂层侧图像中所占用的像素点个数,确定阳极涂层像素当量;
    确定所述第一距离为所述阳极涂层侧图像中位于所述目标阳极极耳和所述目标阴极极耳之间的所述第一阳极涂层边界与所述第一基准线之间的像素点数量和所述阳极涂层像素当量的乘积;
    或,
    所述通过所述阳极涂层侧图像中位于所述目标阳极极耳和所述目标阴极极耳之间的所述第二阳极涂层边界与所述第一基准线之间的距离计算所述第二距离,包括:
    根据所述第一阳极涂层边界与所述第二阳极涂层边界之间的距离和所述阳极涂层在所述阳极涂层侧图像中所占用的像素点个数,确定阳极涂层像素当量;
    确定所述第二距离为所述阳极涂层侧图像中位于所述目标阳极极耳和所述目标阴极极耳之间的所述第二阳极涂层边界与所述第一基准线之间的像素点数量和所述阳极涂层像素当量的乘积。
  5. 根据权利要求2所述的方法,其特征在于,所述根据所述阴极涂层侧图像,确定所述阴极涂层侧中远离极耳的第一阴极涂层边界与第二基准线之间的第三距离、以及所述阴极涂层侧中靠近极耳的第二阴极涂层边界与所述第二基准线之间的第四距离,包括:
    通过所述阴极涂层侧图像中位于所述目标阳极极耳和所述目标阴极极耳之间的所述第一阴极涂层边界与所述第二基准线之间的距离计算所述第三距 离;
    通过所述阴极涂层侧图像中位于所述目标阳极极耳和所述目标阴极极耳之间的所述第二阴极涂层边界与所述第二基准线之间的距离计算所述第四距离。
  6. 根据权利要求5所述的方法,其特征在于,
    所述通过所述阴极涂层侧图像中位于所述目标阳极极耳和所述目标阴极极耳之间的所述第一阴极涂层边界与所述第二基准线之间的距离计算所述第三距离,包括:
    根据所述第一阴极涂层边界与所述第二阴极涂层边界之间的距离和所述阴极涂层在所述阴极涂层侧图像中所占用的像素点个数,确定阴极涂层像素当量;
    确定所述第三距离为所述阴极涂层侧图像中位于所述目标阳极极耳和所述目标阴极极耳之间的所述第一阴极涂层边界与所述第二基准线之间的像素点数量和所述阳极涂层像素当量的乘积;
    或,
    所述通过所述阴极涂层侧图像中位于所述目标阳极极耳和所述目标阴极极耳之间的所述第二阴极涂层边界与所述第二基准线之间的距离计算所述第四距离,包括:
    根据所述第一阴极涂层边界与所述第二阴极涂层边界之间的距离和所述阴极涂层在所述阴极涂层侧图像中所占用的像素点个数,确定阴极涂层像素当量;
    确定所述第四距离为所述阴极涂层侧图像中位于所述目标阳极极耳和所述目标阴极极耳之间的所述第二阴极涂层边界与所述第二基准线之间的像素点数量和所述阴极极片像素当量的乘积。
  7. 根据权利要求1所述的方法,其特征在于,所述根据所述第一距离和所述第三距离,确定所述第一阳极涂层边界是否覆盖所述第一阴极涂层边界,包括:
    如果所述第一距离减去所述第三距离得到的差值大于或等于第一预设阈值,则确定所述第一阳极涂层边界覆盖所述第一阴极涂层边界。
  8. 根据权利要求1-7中任意一项所述的方法,其特征在于,所述根据所述第二距离和所述第四距离,确定所述第二阳极涂层边界是否覆盖所述第二阴 极涂层边界,包括:
    如果所述第二距离减去所述第四距离得到的差值大于或等于第二预设阈值,则确定所述第二阳极涂层边界覆盖所述第二阴极涂层边界。
  9. 根据权利要求1所述的方法,其特征在于,当在所述第二阴极涂层边界与阴极极耳之间设置有绝缘涂层时,所述方法还包括:
    根据所述阴极涂层侧图像,确定所述绝缘涂层靠近所述阴极极耳的边界与所述第二基准线之间的第五距离;
    根据所述第五距离和所述第二距离,确定所述绝缘涂层靠近所述阴极极耳的边界是否覆盖所述第二阳极涂层边界。
  10. 根据权利要求9所述的方法,其特征在于,所述根据所述第五距离和所述第二距离,确定所述绝缘涂层靠近所述阴极极耳的边界是否覆盖所述第二阳极涂层边界,包括:
    如果所述第五距离减去所述第二距离得到的差值大于或等于第三预设阈值,则确定所述绝缘涂层靠近所述阴极极耳的边界覆盖所述第二阳极涂层边界。
  11. 根据权利要求1所述的方法,其特征在于,所述第一基准线为所述第一图像采集装置的视野中线,所述第二基准线为所述第二图像采集装置的视野中线。
  12. 根据权利要求1所述的方法,其特征在于,所述第一图像采集装置的视野中线位于所述阳极极片的周向中线位置,所述第二图像采集装置的视野中线位于所述阴极极片的周向中线位置。
  13. 根据权利要求11或12所述的方法,其特征在于,所述第一图像采集装置包括红外光源和第一线扫描相机,所述第二图像采集装置包括可见光光源和第二线扫描相机。
  14. 一种电池卷芯卷绕覆盖检测装置,其特征在于,包括:
    图像获取模块,用于获取阳极涂层侧图像和阴极涂层侧图像,所述阳极涂层侧图像包括处于即将入卷状态下或卷绕状态下的阳极极片的图像,所述阴极涂层侧图像包括处于即将入卷状态下的阴极极片的图像;
    边界距离确定模块,用于根据所述阳极涂层侧图像,确定所述阳极涂层侧中远离极耳的第一阳极涂层边界与第一基准线之间的第一距离、以及所述阳极涂层侧中靠近极耳的第二阳极涂层边界与所述第一基准线之间的第二距 离,其中,所述第一基准线为用于采集所述阳极涂层侧图像的第一图像采集装置标定的基准线;
    其中,所述边界距离确定模块还用于根据所述阴极涂层侧图像,确定所述阴极涂层侧中远离极耳的第一阴极涂层边界与第二基准线之间的第三距离、以及所述阴极涂层侧中靠近极耳的第二阴极涂层边界与所述第二基准线之间的第四距离,其中,所述第二基准线为用于采集所述阴极涂层侧图像的第二图像采集装置标定的基准线,所述第一基准线和所述第二基准线在同一坐标系中重合;以及
    覆盖确定模块,用于根据所述第一距离和所述第三距离,确定所述第一阳极涂层边界是否覆盖所述第一阴极涂层边界;
    其中,所述覆盖确定模块还用于根据所述第二距离和所述第四距离,确定所述第二阳极涂层边界是否覆盖所述第二阴极涂层边界。
  15. 一种电池卷芯卷绕覆盖检测设备,其特征在于,所述电池卷芯包括:具有阳极涂层的阳极极片、具有阴极涂层的阴极极片、以及位于所述阳极极片和阴极极片之间的隔膜;
    所述检测设备包括:
    第一图像采集装置,用于采集阳极涂层侧图像,所述阳极涂层侧图像包括处于入卷状态下或卷绕状态下的阳极极片的图像,第一基准线为所述第一图像采集装置标定的基准线;
    第二图像采集装置,用于采集阴极涂层侧图像,所述阴极涂层侧图像包括处于入卷状态下的阴极极片的图像,第二基准线为所述第二图像采集装置标定的基准线,所述第一基准线和所述第二基准线在同一坐标系中重合;
    处理器,所述处理器分别与所述第一图像采集装置和所述第二图像采集装置通信连接,以获取所述阳极涂层侧图像、所述阴极涂层侧图像、所述第一基准线和所述第二基准线;
    存储器,所述存储器与所述处理器通信连接,所述存储器存储有可被所述处理器执行的指令,所述指令被所述处理器执行,以使所述处理器能够执行如权利要求1-14中任意一项所述的方法。
  16. 一种电池卷芯卷绕机,其特征在于,包括如权利要求15所述的电池卷芯卷绕覆盖检测设备。
PCT/CN2021/127557 2021-10-29 2021-10-29 一种电池卷芯卷绕覆盖检测方法、装置及设备 WO2023070552A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/127557 WO2023070552A1 (zh) 2021-10-29 2021-10-29 一种电池卷芯卷绕覆盖检测方法、装置及设备
CN202180091951.2A CN116762205A (zh) 2021-10-29 2021-10-29 一种电池卷芯卷绕覆盖检测方法、装置及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/127557 WO2023070552A1 (zh) 2021-10-29 2021-10-29 一种电池卷芯卷绕覆盖检测方法、装置及设备

Publications (1)

Publication Number Publication Date
WO2023070552A1 true WO2023070552A1 (zh) 2023-05-04

Family

ID=86158882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127557 WO2023070552A1 (zh) 2021-10-29 2021-10-29 一种电池卷芯卷绕覆盖检测方法、装置及设备

Country Status (2)

Country Link
CN (1) CN116762205A (zh)
WO (1) WO2023070552A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117091505A (zh) * 2023-07-24 2023-11-21 广东奥普特科技股份有限公司 电芯正负极片对齐度检测方法、装置、设备和存储介质
CN117109447A (zh) * 2023-10-24 2023-11-24 钛玛科(北京)工业科技有限公司 自适应极耳宽度检测方法、装置及设备
CN117638194A (zh) * 2024-01-26 2024-03-01 宁德时代新能源科技股份有限公司 电池生产***和方法
CN117704968A (zh) * 2024-02-06 2024-03-15 钛玛科(北京)工业科技有限公司 一种基于图像投影的锂电卷绕OverHang检测方法及***

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006145298A (ja) * 2004-11-17 2006-06-08 Sony Corp 巻回装置および巻きずれ検査方法
CN101911365A (zh) * 2008-01-11 2010-12-08 丰田自动车株式会社 电极卷绕装置和电极卷绕方法
CN105987919A (zh) * 2014-09-08 2016-10-05 Ckd株式会社 检查装置和卷绕设备
CN109444145A (zh) * 2018-08-31 2019-03-08 广州超音速自动化科技股份有限公司 极片制片贴胶和极片纠偏检测方法、设备、介质及***
CN111416142A (zh) * 2020-03-31 2020-07-14 广东利元亨智能装备股份有限公司 电芯的纠偏方法、装置、纠偏控制设备和纠偏***
CN112577421A (zh) * 2019-12-11 2021-03-30 广东利元亨智能装备股份有限公司 一种电芯检测方法、装置及设备
JP2021061196A (ja) * 2019-10-08 2021-04-15 株式会社豊田自動織機 電極捲回装置及び電極捲回方法
CN113313677A (zh) * 2021-05-17 2021-08-27 武汉工程大学 一种卷绕锂电池x光图像的质量检测方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006145298A (ja) * 2004-11-17 2006-06-08 Sony Corp 巻回装置および巻きずれ検査方法
CN101911365A (zh) * 2008-01-11 2010-12-08 丰田自动车株式会社 电极卷绕装置和电极卷绕方法
CN105987919A (zh) * 2014-09-08 2016-10-05 Ckd株式会社 检查装置和卷绕设备
CN109444145A (zh) * 2018-08-31 2019-03-08 广州超音速自动化科技股份有限公司 极片制片贴胶和极片纠偏检测方法、设备、介质及***
JP2021061196A (ja) * 2019-10-08 2021-04-15 株式会社豊田自動織機 電極捲回装置及び電極捲回方法
CN112577421A (zh) * 2019-12-11 2021-03-30 广东利元亨智能装备股份有限公司 一种电芯检测方法、装置及设备
CN111416142A (zh) * 2020-03-31 2020-07-14 广东利元亨智能装备股份有限公司 电芯的纠偏方法、装置、纠偏控制设备和纠偏***
CN113313677A (zh) * 2021-05-17 2021-08-27 武汉工程大学 一种卷绕锂电池x光图像的质量检测方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117091505A (zh) * 2023-07-24 2023-11-21 广东奥普特科技股份有限公司 电芯正负极片对齐度检测方法、装置、设备和存储介质
CN117109447A (zh) * 2023-10-24 2023-11-24 钛玛科(北京)工业科技有限公司 自适应极耳宽度检测方法、装置及设备
CN117109447B (zh) * 2023-10-24 2024-01-05 钛玛科(北京)工业科技有限公司 自适应极耳宽度检测方法、装置及设备
CN117638194A (zh) * 2024-01-26 2024-03-01 宁德时代新能源科技股份有限公司 电池生产***和方法
CN117638194B (zh) * 2024-01-26 2024-06-11 宁德时代新能源科技股份有限公司 电池生产***和方法
CN117704968A (zh) * 2024-02-06 2024-03-15 钛玛科(北京)工业科技有限公司 一种基于图像投影的锂电卷绕OverHang检测方法及***
CN117704968B (zh) * 2024-02-06 2024-05-14 钛玛科(北京)工业科技有限公司 一种基于图像投影的锂电卷绕OverHang检测方法及***

Also Published As

Publication number Publication date
CN116762205A (zh) 2023-09-15

Similar Documents

Publication Publication Date Title
WO2023070552A1 (zh) 一种电池卷芯卷绕覆盖检测方法、装置及设备
EP4350621A1 (en) Bare cell appearance inspection method and apparatus, computer device, and storage medium
WO2024108847A1 (zh) 辊、点检方法及装置、卷材传送方法及装置、设备、介质
CN109358064B (zh) 极片制片卷绕缺陷全功能检测方法、设备、介质及***
US20240077432A1 (en) Cell detection method, apparatus, and system, computer device, and storage medium
CN109786853A (zh) 一种锂电池卷绕层边界位移的自动修正方法
CN112577421A (zh) 一种电芯检测方法、装置及设备
CN117213372B (zh) 极片检测方法及***
CN112525917A (zh) 电芯极耳检测方法、装置、***及存储介质
WO2023133836A1 (zh) 极片表面贴胶检测方法、装置、设备及极片贴胶机
CN115593884B (zh) 极片料线位置抓取方法、***、装置、设备和存储介质
CN114740001A (zh) 一种锂电池极片尺寸检测装置及方法
US11823370B2 (en) Method and apparatus for inspecting battery tab and storage medium
US20240202904A1 (en) Overhang detection method, apparatus and device for battery electrode sheet, and storage medium
CN116295049A (zh) 一种卷绕卷针上极耳状态检测方法及***
CN114865103A (zh) 极片覆盖情况确定方法、装置、电子设备及存储介质
CN116324864A (zh) 检测方法、电子设备和计算机可读存储介质
WO2023202209A1 (zh) 对复合料带的阴极极片进行折角检测的方法、装置和***
US20240094146A1 (en) Inspection method and inspection apparatus for wound cell
CN217359628U (zh) 一种锂电池极片尺寸检测装置
CN116338487A (zh) 电芯检测方法、装置、电子设备及存储介质
WO2023155122A1 (zh) 极片检测的方法和装置
WO2023133690A1 (zh) 极片卷绕间隙的检测方法、其检测装置及其检测***
WO2024016266A1 (zh) 检测电芯组件的极耳外观的方法与装置、电子设备
CN116298998B (zh) 电池电芯检测方法、装置、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21961907

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180091951.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE