WO2023053817A1 - 積層構造体、半導体装置及び結晶性酸化物膜の成膜方法 - Google Patents

積層構造体、半導体装置及び結晶性酸化物膜の成膜方法 Download PDF

Info

Publication number
WO2023053817A1
WO2023053817A1 PCT/JP2022/032495 JP2022032495W WO2023053817A1 WO 2023053817 A1 WO2023053817 A1 WO 2023053817A1 JP 2022032495 W JP2022032495 W JP 2022032495W WO 2023053817 A1 WO2023053817 A1 WO 2023053817A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
oxide film
crystalline oxide
laminated structure
substrate
Prior art date
Application number
PCT/JP2022/032495
Other languages
English (en)
French (fr)
Inventor
武紀 渡部
洋 橋上
崇寛 坂爪
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to JP2023550474A priority Critical patent/JPWO2023053817A1/ja
Priority to US18/693,977 priority patent/US20240250185A1/en
Priority to KR1020247009166A priority patent/KR20240087704A/ko
Publication of WO2023053817A1 publication Critical patent/WO2023053817A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22

Definitions

  • the present invention relates to a laminated structure having a base substrate and a crystalline oxide film containing gallium oxide as a main component, a semiconductor device, and a method for forming a crystalline oxide film.
  • gallium oxide Ga 2 O 3
  • Gallium oxide is known to have five crystal forms of ⁇ , ⁇ , ⁇ , ⁇ and ⁇ . It is very large and is expected to be used as a material for power semiconductors.
  • Patent Document 1 discloses a semiconductor device including a base substrate having a corundum crystal structure, a semiconductor layer having a corundum crystal structure, and an insulating film having a corundum crystal structure, and a sapphire substrate.
  • An example of forming an ⁇ -Ga 2 O 3 film as a semiconductor layer is described above.
  • Patent Document 2 an n-type semiconductor layer containing as a main component a crystalline oxide semiconductor having a corundum structure, a p-type semiconductor layer containing as a main component an inorganic compound having a hexagonal crystal structure, and an electrode is disclosed.
  • ⁇ -Ga 2 O 3 is a metastable phase
  • a single crystal substrate has not been put into practical use, and it is generally formed by heteroepitaxial growth on a sapphire substrate or the like.
  • stress may be applied to the semiconductor film due to the difference in lattice constant from sapphire, resulting in the formation of many crystal defects or warping of the semiconductor film.
  • the ⁇ -Ga 2 O 3 film becomes a so-called mosaic crystal in which there are regions (domains) with slightly different tilts (inclination of the crystal axis of the growth orientation) and twists (rotation of the crystal axis within the surface plane).
  • the ⁇ -Ga 2 O 3 layer is in a metastable phase and the deposition temperature is relatively low.
  • Patent Document 3 discloses that providing a buffer layer with a quantum well structure reduces the rotation domain of the ⁇ -Ga 2 O 3 film and improves the crystallinity, but the effect was not sufficient.
  • a crystalline oxide containing gallium oxide as a main component which has extremely few crystal defects, excellent crystallinity, and excellent semiconductor characteristics when applied to a semiconductor device.
  • An object of the present invention is to provide a laminated structure and a semiconductor device having a film, and a method for forming the crystalline oxide film.
  • the present invention has been made to achieve the above objects, and provides a laminated structure having at least a base substrate and a crystalline oxide film containing gallium oxide as a main component, the laminated structure comprising: Provided is a laminated structure having an average reflectance of 16% or more for light having a wavelength of 400 to 800 nm on the surface on the crystalline oxide film side.
  • a crystalline oxide film forming such a laminated structure has extremely few crystal defects and excellent crystallinity, and when applied to a semiconductor device, it exhibits excellent semiconductor characteristics.
  • the underlying substrate may be a single crystal
  • the crystalline oxide film may be a laminated structure of a single crystal or a uniaxially oriented film.
  • the base substrate can be a laminated structure that is any one of a sapphire substrate, a lithium tantalate substrate, and a lithium niobate substrate.
  • the crystalline oxide film can be a laminated structure having a corundum structure.
  • the laminated structure according to the present invention is suitable for such a crystalline oxide film having a corundum structure.
  • the crystalline oxide film having the corundum structure can be a laminated structure having an X-ray rocking curve half width of the (006) plane of 5 to 20 seconds.
  • the crystalline oxide film containing gallium oxide as a main component according to the present invention is a laminated structure having a crystalline oxide film with superior crystallinity.
  • the base substrate may be a laminated structure having a surface having the crystalline oxide film with an area of 100 mm 2 or more, or a diameter of 2 inches (50 mm) or more.
  • the present invention is also a method of forming a crystalline oxide film containing gallium oxide as a main component by a mist CVD method by supplying a carrier gas containing mist from a nozzle to a base substrate placed in a film forming chamber. Accordingly, a method for forming a crystalline oxide film is provided in which the temperature of the nozzle or the inner wall of the film formation chamber is set higher than room temperature.
  • the temperature of the nozzle can be 50 to 250°C.
  • the present invention also provides a semiconductor device comprising a crystalline oxide film containing gallium oxide as a main component as an insulating thin film or a conductive thin film, wherein light having a wavelength of 400 to 800 nm is emitted from the surface on the crystalline oxide film side.
  • a semiconductor device having an average reflectance of 16% or more.
  • Such a crystalline oxide film has remarkably few crystal defects and excellent crystallinity, resulting in a semiconductor device with excellent semiconductor characteristics such as a high dielectric breakdown voltage.
  • the laminated structure of the present invention crystal defects are remarkably reduced, crystallinity is excellent, and when applied to a semiconductor device, a crystalline oxide film having excellent semiconductor characteristics is obtained.
  • a crystalline oxide film having extremely few crystal defects and excellent crystallinity, and having excellent semiconductor characteristics when applied to a semiconductor device can be obtained. be able to.
  • a semiconductor device having excellent semiconductor characteristics such as a high dielectric breakdown voltage can be obtained.
  • FIG. 5 is a diagram showing an example of reflectance spectra of laminated structures according to Example 1 and Comparative Example 1.
  • FIG. FIG. 10 is a diagram showing an example of a reflectance spectrum of a laminated structure according to Example 2;
  • FIG. 10 is a diagram showing an example of a reflectance spectrum of a laminated structure according to Example 3;
  • 1 is a schematic configuration diagram showing an example of a semiconductor device using a laminated structure according to the present invention;
  • FIG. 1 is a schematic configuration diagram showing an example of a film forming apparatus (mist CVD apparatus) preferably used for film forming of a laminated structure according to the present invention;
  • FIG. It is a figure explaining an example of the misting part used for this invention.
  • FIG. 10 is a diagram showing an example of a reflectance spectrum of a laminated structure according to Example 4;
  • FIG. 11 is a diagram showing an example of a reflectance spectrum of a laminated structure according to Example 5;
  • FIG. 10 is a diagram showing an example of a reflectance spectrum of a laminated structure according to Comparative Example 2;
  • a laminated structure and a semiconductor device comprising a crystalline oxide film containing gallium oxide as a main component, which has extremely few crystal defects, excellent crystallinity, and excellent semiconductor characteristics when applied to a semiconductor device, and , a method for forming the above crystalline oxide film has been desired.
  • the inventors of the present invention have found a laminated structure having at least a base substrate and a crystalline oxide film containing gallium oxide as a main component, When applied to a semiconductor device, the laminated structure having an average reflectance of 16% or more for light with a wavelength of 400 to 800 nm on the crystalline oxide film side has extremely few crystal defects and excellent crystallinity.
  • the inventors have found that a crystalline oxide film having excellent semiconductor characteristics can be obtained, and completed the present invention.
  • the present inventors have also proposed a method of forming a crystalline oxide film containing gallium oxide as a main component by a mist CVD method by supplying a carrier gas containing mist from a nozzle to a base substrate placed in a film forming chamber.
  • the present inventors have found that a crystalline oxide film having excellent semiconductor characteristics can be obtained when the above conditions are applied, and have completed the present invention.
  • the present inventors have further proposed a semiconductor device comprising a crystalline oxide film containing gallium oxide as a main component as an insulating thin film or a conductive thin film, wherein a wavelength of 400 to 800 nm
  • a semiconductor device having an average light reflectance of 16% or more provides a semiconductor device having excellent semiconductor characteristics such as a high dielectric breakdown voltage, and completed the present invention.
  • FIG. 4 shows a preferred example of a semiconductor device 100 using a laminated structure 110 according to the present invention.
  • a laminated structure 110 according to the present invention as shown in FIG. 4, has a base substrate 101 and a crystalline oxide film 103 containing at least gallium oxide as a main component.
  • the average value of the reflectance of light with a wavelength of 400 to 800 nm on the surface 103c on the crystalline oxide film side is 16% or more.
  • the reflectance is considered to reflect the refractive index of the produced crystalline oxide film. If the reaction is incomplete, hydroxyl groups and the like remain in the film, lowering the refractive index and, as a result, lowering the reflectance. On the contrary, when an ideal reaction occurs, there are no unintended hydroxy groups in the film, the refractive index of the film increases, and the reflectance of the laminated structure increases. This state means that the reflectance of the laminated structure is higher than the reflectance when the film is removed to leave only the substrate.
  • the wavelength range of 400 to 800 nm of the reflected light is a range in which the spectrum changes relatively slowly, and by adopting the average value of the wavelength range of such reflected light, the crystallinity of the film can be evaluated stably and accurately. It is possible. Since the refractive index of gallium oxide is about 2.0 when an ideal reaction occurs, the upper limit of the reflectance is estimated to be about 19%. Conversely, if the reaction is incomplete, the refractive index of gallium oxide will be less than 2.0, with a corresponding decrease in reflectance.
  • the reflectance When the reflectance is 16% or less, it corresponds to the case where the refractive index is 1.9 or less, the crystallinity is poor, and the expected properties of gallium oxide cannot be obtained. In this way, a film with a high average reflectance for light with a wavelength of 400 to 800 nm suppresses residues such as hydroxyl groups in the film, has extremely few crystal defects, and has excellent crystallinity, making it an ideal film. This indicates that a production reaction has taken place.
  • the upper limit of the reflectance also depends on the underlying substrate, which will be described later.
  • the upper limit of the reflectance is about 19% as described above, but when the base substrate is lithium tantalate, the upper limit of the reflectance is about 35%.
  • the reflectance can be obtained, for example, by calculating from the results of measuring the reflectance spectrum with a spectrophotometer.
  • Reflectance includes specular reflectance, diffuse reflectance, and total reflectance, which is a combination of these. Although either may be used, it is desirable to evaluate with total reflectance. This is to reduce the influence of surface conditions such as unevenness of the surface due to differences in film formation conditions.
  • a spectrophotometer has at least an integrating sphere for detecting light reflected from a sample.
  • the total reflectance is obtained by irradiating the sample with light at an incident angle of about 10 degrees or less, and measuring not only the diffusely reflected light but also the specularly reflected light with an integrating sphere.
  • a baseline measurement is performed first. The reflectance is measured with a standard white plate such as barium sulfate attached to the integrating sphere, and this is used as a baseline. Once the baseline is obtained, the standard whiteboard is removed and the sample is attached to measure the reflectance spectrum.
  • the separate layer is a layer having a composition different from that of the substrate and the outermost crystalline oxide film, and is also called a buffer layer.
  • the buffer layer may be a crystalline oxide film, a semiconductor film , an insulating film , a metal film , or the like . In 2 O 3 , Rh 2 O 3 , V 2 O 3 , Ti 2 O 3 , Ir 2 O 3 and the like are preferably used.
  • the thickness of the buffer layer is preferably 0.1 ⁇ m to 2 ⁇ m.
  • the base substrate in the laminated structure according to the present invention is not particularly limited as long as it serves as a support for the crystalline oxide film.
  • the material is not particularly limited, and a known substrate can be used, and it may be an organic compound or an inorganic compound.
  • a known substrate can be used, and it may be an organic compound or an inorganic compound.
  • polysulfone, polyethersulfone, polyphenylene sulfide, polyetheretherketone, polyimide, polyetherimide, fluororesin, metals such as iron, aluminum, stainless steel, and gold, quartz, glass, calcium carbonate, gallium oxide, ZnO, etc. is mentioned.
  • single crystal substrates such as silicon, sapphire, lithium tantalate, lithium niobate, SiC, GaN, iron oxide, chromium oxide, etc.
  • a crystalline substrate is preferred. With these, a crystalline oxide film of better quality can be obtained.
  • sapphire substrates, lithium tantalate substrates, and lithium niobate substrates are relatively inexpensive and industrially advantageous.
  • the thickness of the base substrate is preferably 100-5000 ⁇ m. Within such a range, handling is easy and thermal resistance can be suppressed at the time of film formation, making it easier to obtain a good quality film.
  • the size of the underlying substrate is not particularly limited, but if the surface area of the underlying substrate on which the crystalline oxide film is formed is 100 mm 2 or more, or if the diameter is 2 inches (50 mm) or more, the crystallinity is good. It is preferable because a large area film can be obtained. Although the upper limit of the area of the underlying substrate is not particularly limited, it can be 100000 mm 2 or less.
  • the crystalline oxide film in the laminated structure according to the present invention is a crystalline oxide film containing gallium oxide as a main component.
  • an oxide film is composed of metal and oxygen, but in the crystalline oxide film in the laminated structure according to the present invention, gallium may be used as the main component of the metal.
  • gallium in the present invention, "mainly containing gallium” means that 50 to 100% of the metal component is gallium.
  • Metal components other than gallium may include, for example, one or more metals selected from iron, indium, aluminum, vanadium, titanium, chromium, rhodium, iridium, nickel and cobalt.
  • a dopant element may be contained in the crystalline oxide film.
  • Examples include n-type dopants such as tin, germanium, silicon, titanium, zirconium, vanadium, and niobium, and p-type dopants such as copper, silver, tin, iridium, rhodium, and magnesium, but are not particularly limited.
  • the dopant concentration may be, for example, about 1 ⁇ 10 16 /cm 3 to 1 ⁇ 10 22 /cm 3 , and a low concentration of about 1 ⁇ 10 17 /cm 3 or less may be about 1 ⁇ 10 20 /cm 3 .
  • the concentration may be as high as cm 3 or more.
  • the crystal structure of the crystalline oxide film is not particularly limited, and may be a ⁇ -gallia structure, a corundum structure, or a cubic crystal. Although a plurality of crystal structures may be mixed or may be polycrystalline, a single crystal or uniaxially oriented film is preferred. Whether it is a single crystal or uniaxially oriented film can be confirmed by an X-ray diffraction device, an electron beam diffraction device, or the like. When the film is irradiated with X-rays or electron beams, a diffraction image corresponding to the crystal structure is obtained, but only specific peaks appear when the film is uniaxially oriented. From this, it can be determined that the film is uniaxially oriented. Further, it is preferable that the crystalline oxide film according to the present invention has a corundum structure, and in this case, the half width of the (006) plane of the X-ray diffraction rocking curve is 5 to 20 seconds. can be done.
  • the film thickness of the crystalline oxide film is not particularly limited, it is preferably 1 ⁇ m or more.
  • the upper limit is not particularly limited. For example, it may be 100 ⁇ m or less, preferably 50 ⁇ m or less, more preferably 20 ⁇ m or less.
  • a semiconductor device includes a crystalline oxide film containing gallium oxide as a main component as an insulating thin film or a conductive thin film.
  • the average value of the reflectance of light with a wavelength of 400 to 800 nm on the surface on the crystalline oxide film side is 16% or more.
  • Such a crystalline oxide film has extremely few crystal defects and excellent crystallinity, and a semiconductor device having excellent semiconductor characteristics such as a high dielectric breakdown voltage can be obtained.
  • the crystalline oxide film 103 is formed on the underlying substrate 101 .
  • the crystalline oxide film 103 is formed by stacking an insulating thin film 103a and a conductive thin film 103b in order from the base substrate 101 side.
  • a gate insulating film 105 is formed on the conductive thin film 103b.
  • a gate electrode 107 is formed on the gate insulating film 105 .
  • Source/drain electrodes 109 are formed on the conductive thin film 103b so as to sandwich the gate electrode 107 therebetween. According to such a configuration, the depletion layer formed in the conductive thin film 103b can be controlled by the gate voltage applied to the gate electrode 107, enabling transistor operation (FET device).
  • Semiconductor devices formed using the laminated structure according to the present invention include transistors and TFTs such as MIS, HEMT, and IGBT, Schottky barrier diodes utilizing semiconductor-metal junctions, PN or PIN diodes and light emitting/receiving elements are included.
  • the laminated structure according to the present invention is useful for improving the characteristics of these devices.
  • the laminated structure as described above can be formed by known methods such as vapor deposition, MBE, sputtering, CVD, mist CVD, and liquid phase epitaxy.
  • mist refers to a general term for fine particles of liquid dispersed in gas, and includes what is called mist, liquid droplets, and the like.
  • FIG. 5 shows an example of a film forming apparatus 201 used in the mist CVD method.
  • the film formation apparatus 201 includes a mist formation section 220 that forms a mist from the raw material solution 204a to generate mist, a carrier gas supply section 230 that supplies a carrier gas for transporting the mist, a mist formation section 220, and a film formation chamber 207.
  • It has at least a supply pipe 209 which is connected and transports mist by a carrier gas, and a film formation chamber 207 which heats the mist supplied together with the carrier gas from the supply pipe 209 to form a film on the base substrate 210. ing.
  • the mist generating unit 220 mists the raw material solution 204a to generate mist.
  • the misting means is not particularly limited as long as it can mist the raw material solution 204a, and may be a known misting means, but it is preferable to use a misting means using ultrasonic vibration. This is because mist can be made more stably.
  • the mist generation unit 220 includes a mist generation source 204 containing a raw material solution 204a, a container 205 containing a medium capable of transmitting ultrasonic vibrations, such as water 205a, and an ultrasonic oscillator attached to the bottom surface of the container 205.
  • 206 may be included.
  • the mist generation source 204 which consists of a container containing the raw material solution 204a, can be accommodated in a container 205 containing water 205a using a support (not shown).
  • An ultrasonic transducer 206 may be provided at the bottom of the container 205, and the ultrasonic transducer 206 and the oscillator 216 may be connected. When the oscillator 216 is operated, the ultrasonic oscillator 206 vibrates, ultrasonic waves propagate into the mist generating source 204 through the water 205a, and the raw material solution 204a becomes mist.
  • the raw material solution 204a contains gallium, and the material contained in the solution is not particularly limited as long as it can be misted, and may be an inorganic material or an organic material.
  • materials other than gallium metals or metal compounds are preferably used.
  • one or more metals selected from iron, indium, aluminum, vanadium, titanium, chromium, rhodium, nickel and cobalt are used. You can use whatever you have.
  • a metal in the form of a complex or a salt dissolved or dispersed in an organic solvent or water can be preferably used.
  • Salt forms include, for example, halide salts such as metal chloride salts, metal bromide salts, and metal iodide salts. Further, a solution obtained by dissolving the above metal in a hydrogen halide such as hydrobromic acid, hydrochloric acid or hydroiodic acid can also be used as a salt solution. Examples of forms of the complex include acetylacetonate complexes, carbonyl complexes, ammine complexes, hydride complexes, and the like. Acetylacetonate complexes can also be formed by mixing acetylacetone with the aforementioned salt solutions.
  • the metal concentration in the raw material solution 204a is not particularly limited, and can be 0.005 to 1 mol/L.
  • the temperature during mixing and dissolution is preferably 20°C or higher.
  • the hydrohalic acid includes, for example, hydrobromic acid, hydrochloric acid, hydroiodic acid, etc. Among them, hydrobromic acid and hydroiodic acid are preferable.
  • the oxidizing agent include hydrogen peroxide (H 2 O 2 ), sodium peroxide (Na 2 O 2 ), barium peroxide (BaO 2 ), benzoyl peroxide (C 6 H 5 CO) 2 O 2 and the like.
  • the raw material solution may contain a dopant.
  • a dopant is not specifically limited. Examples include n-type dopants such as tin, germanium, silicon, titanium, zirconium, vanadium or niobium, or p-type dopants such as copper, silver, iridium, rhodium and magnesium.
  • the carrier gas supply section 230 has a carrier gas source 202a that supplies carrier gas.
  • a flow control valve 203a for adjusting the flow rate of the carrier gas sent from the carrier gas source 202a may be provided.
  • a carrier gas source 202b for dilution that supplies a carrier gas for dilution and a flow control valve 203b for adjusting the flow rate of the carrier gas for dilution sent out from the carrier gas source 202b for dilution can also be provided as necessary. .
  • the type of carrier gas is not particularly limited, and can be appropriately selected according to the film to be deposited. Examples thereof include oxygen, ozone, inert gases such as nitrogen and argon, and reducing gases such as hydrogen gas and forming gas. Also, the number of carrier gases may be one, or two or more. For example, as the second carrier gas, a diluent gas obtained by diluting the same gas as the first carrier gas with another gas (for example, diluted 10 times) may be used, or air may be used.
  • the flow rate of carrier gas is not particularly limited. For example, when forming a film on a substrate with a diameter of 2 inches (approximately 50 mm), the carrier gas flow rate is preferably 0.05 to 50 L/min, more preferably 5 to 20 L/min.
  • the film forming apparatus 201 has a supply pipe 209 that connects the misting section 220 and the film forming chamber 207 .
  • the mist is carried by the carrier gas from the mist generation source 204 of the misting section 220 through the supply pipe 209 and supplied into the film forming chamber 207 .
  • a quartz tube, a glass tube, a resin tube, or the like can be used for the supply tube 209, for example.
  • a substrate 210 is placed in the deposition chamber 207, and a heater 208 for heating the substrate 210 can be provided.
  • the heater 208 may be provided outside the film forming chamber 207 as shown in FIG. 5, or may be provided inside the film forming chamber 207 .
  • the mist supplied from the supply pipe 209 passes through the piping in the film forming chamber 207 and is jetted from the nozzle toward the substrate 210 together with the carrier gas.
  • the deposition chamber 207 may be provided with an exhaust port 212 for exhaust gas at a position that does not affect the supply of mist to the substrate 210 .
  • the substrate 210 may be placed on the top surface of the film formation chamber 207 to face down, or the substrate 210 may be placed on the bottom surface of the film formation chamber 207 to face up.
  • the mist CVD method generally includes a mist generating step in which a raw material solution containing gallium is turned into mist to generate mist in a mist generating section, and a carrier gas supply for supplying a carrier gas for conveying the mist to the mist generating section. a transporting step of transporting the mist by the carrier gas from the mist generating unit to the film forming chamber via a supply pipe connecting the mist generating unit and the film forming chamber; and a film forming step of heat-treating the mist to form a film on the underlying substrate.
  • the raw material solution 204a mixed as described above is accommodated in the mist generation source 204, the substrate 210 is placed in the film formation chamber 207, and the heater 208 is activated.
  • the flow control valves 203a and 203b are opened to supply the carrier gas from the carrier gas sources 202a and 202b into the film forming chamber 207.
  • the carrier gas is supplied. Adjust the flow rate and the flow rate of the carrier gas for dilution.
  • the ultrasonic oscillator 206 is vibrated, and the vibration is propagated to the raw material solution 204a through the water 205a, thereby misting the raw material solution 204a and generating mist.
  • a carrier gas for transporting mist is supplied to the misting section 220 .
  • the mist is transported from the mist generating unit 220 to the film forming chamber 207 via the supply pipe 209 that connects the mist generating unit 220 and the film forming chamber 207 using a carrier gas.
  • the mist transported to the film forming chamber 207 is heated to cause a thermal reaction, thereby forming a film on part or all of the surface of the substrate 210 .
  • the temperature of the substrate surface must be at least 400° C. or higher during the reaction.
  • the mist CVD method requires that the source material reach the substrate surface in a mist-like liquid state. Therefore, the temperature of the substrate surface is greatly lowered. Therefore, the temperature of the substrate surface during the reaction differs from the set temperature of the apparatus. It is preferable to measure and control the temperature of the substrate surface during the reaction, but if this is difficult, the state of the reaction can be monitored by introducing only a carrier gas or water mist containing no solute. The temperature can be measured by simulating and used as a substitute.
  • the thermal reaction also depends on the temperature of the environment around the substrate. Therefore, when a carrier gas containing mist is supplied from a nozzle to a base substrate placed in a deposition chamber to form a crystalline oxide film containing gallium oxide as a main component by the mist CVD method, the Film formation is performed with the temperature of the inner wall of the chamber set higher than room temperature. This is because the thermal reaction is stabilized.
  • the nozzle temperature is preferably 50 to 250°C. Thereby, a crystalline oxide film having more excellent crystallinity can be obtained.
  • the thermal reaction may be carried out under vacuum, under a non-oxygen atmosphere, under a reducing gas atmosphere, under an air atmosphere, or under an oxygen atmosphere, and may be appropriately set according to the film to be deposited.
  • the reaction pressure may be under atmospheric pressure, under increased pressure or under reduced pressure, but film formation under atmospheric pressure is preferable because the apparatus configuration can be simplified.
  • an appropriate buffer layer may be provided between the substrate and the crystalline oxide film.
  • the method of forming the buffer layer is not particularly limited, and it can be formed by a known method such as a sputtering method or a vapor deposition method. It's easy and convenient. Specifically, one or more metals selected from aluminum, gallium, chromium, iron, indium, rhodium, vanadium, titanium, and iridium are dissolved or dispersed in water in the form of complexes or salts. can be suitably used as the raw material aqueous solution.
  • Examples of forms of the complex include acetylacetonate complexes, carbonyl complexes, ammine complexes, hydride complexes, and the like.
  • Salt forms include, for example, metal chloride salts, metal bromide salts, and metal iodide salts.
  • a solution obtained by dissolving the above metal in hydrobromic acid, hydrochloric acid, hydroiodic acid, or the like can also be used as an aqueous salt solution.
  • the solute concentration is preferably 0.005 to 1 mol/L, and the dissolution temperature is preferably 20° C. or higher.
  • the buffer layer can also be formed under the same conditions as above. After forming the buffer layer to a predetermined thickness, the film is formed by the method described above.
  • the film formation temperature of the buffer layer may be higher than the film formation temperature of the crystalline oxide film.
  • the buffer layer may be deposited at 450.degree. C. and the crystalline oxide film at 400.degree. C., or the buffer layer may be deposited at 500.degree. By doing so, the crystallinity of the crystalline oxide film is further improved.
  • the laminated structure according to the present invention may be heat-treated at 200 to 600.degree. As a result, unreacted species and the like in the film are further removed, making it possible to obtain a laminated structure of higher quality.
  • the heat treatment may be performed in air, in an oxygen atmosphere, or in an inert gas atmosphere such as nitrogen or argon.
  • the heat treatment time can be determined as appropriate, and can be, for example, 5 to 240 minutes.
  • the crystalline oxide film may be separated from the underlying substrate.
  • the peeling means is not particularly limited, and known means may be used. Examples of peeling means include means for applying mechanical impact to peel, means for applying heat and utilizing thermal stress for peeling, means for peeling by applying vibration such as ultrasonic waves, and means for peeling by etching. etc. By such peeling, a crystalline oxide film can be obtained as a self-supporting film.
  • the method of manufacturing a laminated structure according to the present invention has been described above using the mist CVD method as an example.
  • the laminated structure according to the present invention can be manufactured. If it is difficult to accurately measure the temperature of the substrate, etc., prepare multiple laminated structure samples with different temperature conditions, measure the reflectance spectrum, and select the one with the desired characteristics. It is also possible to obtain a laminated structure according to the present invention.
  • the film forming apparatus 201 includes a carrier gas source 202a that supplies a carrier gas, a flow control valve 203a that adjusts the flow rate of the carrier gas sent from the carrier gas source 202a, and a dilution carrier gas that supplies a dilution carrier gas.
  • the film formation conditions were simulated using a dummy substrate and water mist, and the temperature of the substrate surface was measured. Specifically, pure water was used as the raw material solution 204a, and a c-plane sapphire substrate with a diameter of 4 inches (100 mm) was used as the dummy substrate. This substrate was placed in the film formation chamber 207, the heater 208 was set to 450° C., the temperature was raised, and the temperature in the film formation chamber was stabilized by leaving it for 30 minutes. Subsequently, the flow control valves 203a and 203b are opened to supply the carrier gas from the carrier gas sources 202a and 202b into the film forming chamber 207.
  • the carrier gas After sufficiently replacing the atmosphere in the film forming chamber 207 with the carrier gas, the carrier gas is supplied. The flow rate was adjusted to 2 L/min, and the flow rate of the carrier gas for dilution was adjusted to 6 L/min. Compressed air was used as the carrier gas.
  • the ultrasonic oscillator 206 was vibrated at 2.4 MHz, and the vibration was propagated through the water 205a to the raw material solution 204a (pure water), thereby misting the pure water and generating mist. This mist was introduced into the film formation chamber 207 through the supply pipe 209 by the carrier gas. Temperatures at various locations in the film formation chamber at this time were measured using thermocouples. As a result, the temperature of the substrate surface was 424.degree. C., the temperature of the tip of the nozzle was 146.degree.
  • a gallium oxide film was formed.
  • a 4-inch (100 mm) c-plane sapphire substrate was prepared as the substrate 210 . This substrate was placed in the film formation chamber 207, the heater 208 was set to 450° C., the temperature was raised, and the temperature in the film formation chamber including the nozzle was stabilized for 30 minutes.
  • the raw material solution 204a uses ultrapure water as a solvent and gallium bromide as a solute.
  • the gallium concentration in the raw material solution was set to 0.1 mol/L.
  • This raw material solution 204 a was accommodated in the mist generation source 204 .
  • the flow control valves 203a and 203b are opened to supply the carrier gas from the carrier gas sources 202a and 202b into the film forming chamber 207. After sufficiently replacing the atmosphere in the film forming chamber 207 with the carrier gas, the carrier gas is supplied.
  • the flow rate was adjusted to 2 L/min, and the flow rate of the carrier gas for dilution was adjusted to 6 L/min. Nitrogen was used as the carrier gas.
  • the ultrasonic oscillator 206 was vibrated at 2.4 MHz, and the vibration was propagated through the water 205a to the raw material solution 204a, thereby misting the raw material solution 204a to generate mist.
  • This mist was introduced into the film formation chamber 207 through the supply pipe 209 by the carrier gas, and the mist was thermally reacted on the substrate 210 to form a thin film of gallium oxide on the substrate 210 .
  • the film formation time was 30 minutes. It is presumed that the temperatures in various parts of the film formation chamber at this time are the temperatures obtained in the preliminary temperature measurement.
  • the incident angle of the measuring light to the sample was set to about 5 degrees, and the total reflectance was measured.
  • a standard white plate of barium sulfate was used to acquire the baseline. The results are shown in FIG.
  • the calculated average reflectance from 400 to 800 nm was 17.1%. Further, when the film thickness was measured with an optical interference type film thickness meter, the film thickness was 179 nm.
  • Example 1 When forming a gallium oxide film in the same manner as in Example 1, the heater 208 was set to 500° C., and the film was formed without temperature stabilization after raising the temperature. Film formation and evaluation were performed under the same conditions as in Example 1 except for this. As a result, the FWHM of the rocking curve of the (006) plane of ⁇ -Ga 2 O 3 was 102 seconds, and the crystallinity deteriorated. The reflectance spectrum is shown in FIG. 1 together with Example 1. A decrease in reflectance was confirmed, and the average reflectance from 400 to 800 nm was 11.6%.
  • Example 2 A film was formed and evaluated in the same manner as in Example 1 except that an AlGaO film was formed as a buffer layer and the film thickness of gallium oxide was set to 3 ⁇ m. The rocking curve half width was as good as 15 seconds. A reflectance spectrum is shown in FIG. The average reflectance from 400 to 800 nm was 17.1%.
  • Example 3 A film was formed and evaluated in the same manner as in Example 2 except that the film thickness of gallium oxide was 6 ⁇ m. The rocking curve half width was as good as 18 seconds. A reflectance spectrum is shown in FIG. The average reflectance from 400 to 800 nm was 17.0%.
  • Example 4 The heater 208 was set to 430.degree. The rocking curve half width was as good as 9 seconds. A reflectance spectrum is shown in FIG. The average reflectance from 400 to 800 nm was 16.4%.
  • Example 5 When forming the same gallium oxide film as in Example 1, the heater 208 was set to 550.degree. The rocking curve half width was good at 6 seconds. A reflectance spectrum is shown in FIG. The average reflectance from 400 to 800 nm was 18.3%.
  • Example 2 When forming a gallium oxide film in the same manner as in Example 1, the heater 208 was set to 550° C., and film formation was performed without temperature stabilization after raising the temperature. Film formation and evaluation were performed under the same conditions as in Example 1 except for this. As a result, the half width of the rocking curve was 88 seconds and the crystallinity was deteriorated. A reflectance spectrum is shown in FIG. The average reflectance from 400 to 800 nm was 15.1%.
  • the obtained laminated structure has a high average reflectance of 400 to 800 nm, the crystallinity of the obtained film is good.
  • Forming a semiconductor device using the laminated structure according to the present invention is useful for improving the characteristics of the semiconductor device.
  • the present invention is not limited to the above embodiments.
  • the above-described embodiment is an example, and any device having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect is the present invention. included in the technical scope of

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Bipolar Transistors (AREA)
  • Pressure Sensors (AREA)
  • Dispersion Chemistry (AREA)

Abstract

本発明は、少なくとも、下地基板と、酸化ガリウムを主成分とする結晶性酸化物膜とを有する積層構造体であって、前記積層構造体の前記結晶性酸化物膜側の面における波長400~800nmの光の反射率の平均値が16%以上のものである積層構造体である。これにより、結晶欠陥が著しく少なく結晶性に優れ、半導体装置に適用した場合に半導体特性が優れる、酸化ガリウムを主成分とする結晶性酸化物膜を有する積層構造体が提供される。

Description

積層構造体、半導体装置及び結晶性酸化物膜の成膜方法
 本発明は、下地基板と、酸化ガリウムを主成分とする結晶性酸化物膜とを有する積層構造体、半導体装置及び結晶性酸化物膜の成膜方法に関する。
 近年、酸化ガリウム(Ga)が半導体用材料として着目されている。酸化ガリウムはα、β、γ、δ及びεの5つの結晶型を有することが知られているが、この中で、準安定相であるα-Gaはバンドギャップが5.3eVと非常に大きく、パワー半導体用材料として期待を集めている。
 例えば、特許文献1には、コランダム型結晶構造を有する下地基板と、コランダム型結晶構造を有する半導体層と、コランダム型結晶構造を有する絶縁膜とを備えた半導体装置が開示されており、サファイア基板上に、半導体層としてα-Ga膜を成膜した例が記載されている。また、特許文献2には、コランダム構造を有する結晶性酸化物半導体を主成分として含むn型半導体層と、六方晶の結晶構造を有する無機化合物を主成分とするp型半導体層と、電極とを備えた半導体装置が開示されている。特許文献2の実施例には、c面サファイア基板上に、n型半導体層として準安定相であるコランダム構造を有するα-Ga膜を、p型半導体層として六方晶の結晶構造を有するα-Rh膜を形成して、ダイオードを作製することが開示されている。
 しかしながら、α-Gaは準安定相であるため、単結晶基板が実用化されておらず、サファイア基板等へのヘテロエピタキシャル成長で形成されるのが一般的である。このような場合、サファイアとの格子定数差に起因して半導体膜中に応力が印加され、結晶欠陥が多数形成されたり、半導体膜に反りが生じたりする場合がある。
 α-Ga中の結晶欠陥低減に向けて、サファイアとα-Ga層間にバッファ層を形成する手法が報告されている。例えば、非特許文献1には、サファイアとα-Ga層間にバッファ層として(Al,Ga1-x層(x=0.2~0.9)を導入することで、刃状転位とらせん転位が、それぞれ3×10/cm及び6×10/cmとなるとされる例が示されている。
特開2014-72533号公報 特開2016-25256号公報 特開2016-157878号公報
Riena Jinno et al., Reduction IN edge dislocation density IN corundum-structured α-Ga2O3 layers on sapphire substrates with quasi-graded α-(Al,Ga)2O3 buffer layers, Applied Physics Express, Japan, tHE Japan Society of Applied Physics, June 1, 2016, vol.9, pages 071101-1 to 071101-4
 しかしながら、α-Ga膜などの酸化ガリウムを主成分とする結晶性酸化物膜を、高耐圧が要求されるパワー半導体等に利用する場合、結晶欠陥の多寡によって絶縁破壊電界特性が左右されるため、更なる結晶欠陥の低減が望まれる。また、α-Ga膜は、チルト(成長方位の結晶軸の傾き)やツイスト(表面面内の結晶軸の回転)がわずかに異なる領域(ドメイン)が存在する、いわゆるモザイク結晶となる場合がある。これはα-Ga層が準安定相であるため成膜温度が比較的低いことが原因の一つと考えられる。しかし、パワー半導体等に利用する場合、ドメイン間の粒界の存在によって絶縁破壊電界特性が低下するおそれがあるため、ドメイン形成の抑制も望まれる。特許文献3では、量子井戸構造のバッファ層を設けることで、α-Ga膜の回転ドメインが低減され、結晶性が改善することが開示されているが、効果は十分ではなかった。
 本発明は、上記問題を解決するためになされたものであり、結晶欠陥が著しく少なく結晶性に優れ、半導体装置に適用した場合に半導体特性が優れる、酸化ガリウムを主成分とする結晶性酸化物膜を備えた積層構造体及び半導体装置、並びに、上記結晶性酸化物膜の成膜方法を提供することを目的とする。
 本発明は、上記目的を達成するためになされたものであり、少なくとも、下地基板と、酸化ガリウムを主成分とする結晶性酸化物膜とを有する積層構造体であって、前記積層構造体の前記結晶性酸化物膜側の面における波長400~800nmの光の反射率の平均値が16%以上のものである積層構造体を提供する。
 このような積層構造体を構成する結晶性酸化物膜は、結晶欠陥が著しく少なく結晶性に優れ、半導体装置に適用した場合に半導体特性が優れたものとなる。
 このとき、前記下地基板は単結晶であり、前記結晶性酸化物膜は単結晶又は一軸配向した膜である積層構造体とすることができる。
 これにより、より結晶性に優れた結晶性酸化物膜を有する積層構造体となる。
 このとき、前記下地基板は、サファイア基板、タンタル酸リチウム基板又はニオブ酸リチウム基板のいずれかである積層構造体とすることができる。
 これにより、工業的に安価に、結晶性に優れた結晶性酸化物膜を有する積層構造体となる。
 このとき、前記結晶性酸化物膜はコランダム構造を有するものである積層構造体とすることができる。
 本発明に係る積層構造体は、このようなコランダム構造を有する結晶性酸化物膜に好適である。
 このとき、前記コランダム構造を有する前記結晶性酸化物膜は、(006)面のX線ロッキングカーブ半値幅が5~20秒のものである積層構造体とすることができる。
 このように本発明に係る酸化ガリウムを主成分とする結晶性酸化物膜は、結晶性により優れた結晶性酸化物膜を有する積層構造体である。
 このとき、前記下地基板は、前記結晶性酸化物膜を有する面の面積が100mm以上、又は、直径2インチ(50mm)以上のものである積層構造体とすることができる。
 これにより、大面積の結晶性に優れた結晶性酸化物膜を有する積層構造体となる。
 本発明は、また、ノズルからミストを含むキャリアガスを成膜室内に設置した下地基板に供給して、ミストCVD法により酸化ガリウムを主成分とする結晶性酸化物膜を成膜する方法であって、ノズル又は成膜室の内壁の温度を室温よりも高くした状態で成膜を行う結晶性酸化物膜の成膜方法を提供する。
 これにより、結晶欠陥が著しく少なく結晶性に優れ、半導体装置に適用した場合に半導体特性が優れたものとなる結晶性酸化物膜を得ることができる。
 このとき、ノズルの温度を50~250℃とすることができる。
 これにより、より結晶性に優れた結晶性酸化物膜を得ることができる。
 本発明は、また、酸化ガリウムを主成分とする結晶性酸化物膜を絶縁性薄膜又は導電性薄膜として備える半導体装置であって、前記結晶性酸化物膜側の面における波長400~800nmの光の反射率の平均値が16%以上のものである半導体装置を提供する。
 このような結晶性酸化物膜は結晶欠陥が著しく少なく結晶性に優れており、絶縁破壊電圧が高いなど、半導体特性が優れた半導体装置となる。
 以上のように、本発明の積層構造体によれば、結晶欠陥が著しく少なく結晶性に優れ、半導体装置に適用した場合には半導体特性に優れた結晶性酸化物膜を有するものとなる。また、本発明の結晶性酸化物膜の成膜方法によれば、結晶欠陥が著しく少なく結晶性に優れ、半導体装置に適用した場合に半導体特性が優れたものとなる結晶性酸化物膜を得ることができる。さらに、本発明の半導体装置によれば、絶縁破壊電圧が高いなど、半導体特性が優れた半導体装置となる。
実施例1及び比較例1に係る積層構造体の反射率スペクトルの一例を示す図である。 実施例2に係る積層構造体の反射率スペクトルの一例を示す図である。 実施例3に係る積層構造体の反射率スペクトルの一例を示す図である。 本発明に係る積層構造体を用いた半導体装置の一例を示す概略構成図である。 本発明に係る積層構造体の成膜に好適に用いられる成膜装置(ミストCVD装置)の一例を示す概略構成図である。 本発明に用いられるミスト化部の一例を説明する図である。 実施例4に係る積層構造体の反射率スペクトルの一例を示す図である。 実施例5に係る積層構造体の反射率スペクトルの一例を示す図である。 比較例2に係る積層構造体の反射率スペクトルの一例を示す図である。
 以下、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
 上述のように、結晶欠陥が著しく少なく結晶性に優れ、半導体装置に適用した場合に半導体特性が優れる、酸化ガリウムを主成分とする結晶性酸化物膜を備えた積層構造体及び半導体装置、並びに、上記結晶性酸化物膜の成膜方法が求められていた。
 本発明者らは、上記課題について鋭意検討を重ねた結果、少なくとも、下地基板と、酸化ガリウムを主成分とする結晶性酸化物膜とを有する積層構造体であって、前記積層構造体の前記結晶性酸化物膜側の面における波長400~800nmの光の反射率の平均値が16%以上のものである積層構造体により、結晶欠陥が著しく少なく結晶性に優れ、半導体装置に適用した場合に半導体特性が優れた結晶性酸化物膜を有するものとなることを見出し、本発明を完成した。
 本発明者らは、また、ノズルからミストを含むキャリアガスを成膜室内に設置した下地基板に供給して、ミストCVD法により酸化ガリウムを主成分とする結晶性酸化物膜を成膜する方法であって、ノズル又は成膜室の内壁の温度を室温よりも高くした状態で成膜を行う結晶性酸化物膜の成膜方法により、結晶欠陥が著しく少なく結晶性に優れ、半導体装置に適用した場合に半導体特性が優れたものとなる結晶性酸化物膜を得ることができることを見出し、本発明を完成した。
 本発明者らは、さらに、酸化ガリウムを主成分とする結晶性酸化物膜を絶縁性薄膜又は導電性薄膜として備える半導体装置であって、前記結晶性酸化物膜側の面における波長400~800nmの光の反射率の平均値が16%以上のものである半導体装置により、絶縁破壊電圧が高いなど、半導体特性が優れた半導体装置となることを見出し、本発明を完成した。
 以下、図面を参照して説明する。
 (積層構造体)
 図4は、本発明に係る積層構造体110を用いた半導体装置100の好適な例を示す。本発明に係る積層構造体110は、図4に示すように、下地基板101と、少なくとも酸化ガリウムを主成分とする結晶性酸化物膜103とを有している。そして、結晶性酸化物膜側の面103cにおける波長400~800nmの光の反射率の平均値が16%以上のものである。
 これにより、結晶欠陥が著しく少なく結晶性に優れ、半導体装置に適用した場合に半導体特性が優れたものとなる。反射率は、生成した結晶性酸化物膜の屈折率を反映していると考えられる。反応が不完全である場合、膜中にヒドロキシ基などが残留して、屈折率が低くなり、結果として反射率が低下する。反対に、理想的な反応がおきた場合には、意図しないヒドロキシ基が膜中に存在しなくなり、膜の屈折率は高くなって積層構造体の反射率は高くなる。この様子は、積層構造体の反射率が、膜を除去して基板のみとした場合の反射率と比べ、反射率が高いことを意味する。
 ここで、本発明に係る積層構造体において光の反射率で規定した点について説明する。反射光の波長400~800nmの範囲はスペクトルの変化が比較的緩慢な範囲であり、このような反射光の波長範囲の平均値を採用することで、膜の結晶性を安定して精度良く評価可能である。理想的な反応がおきた場合の酸化ガリウムの屈折率は2.0程度であることから、反射率の上限は19%程度と推定される。反対に、反応が不完全である場合の酸化ガリウムの屈折率は2.0より低くなり、これに対応して反射率も低下する。反射率が16%以下となる場合は、屈折率が1.9以下となっている場合に相当し、結晶性は悪く、期待される酸化ガリウムの特性は得られなくなる。このように、波長400~800nmの光の反射率の平均値が高いものは、膜中のヒドロキシ基などの残留物が抑制され、結晶欠陥が著しく少なく結晶性に優れており、理想的な膜生成反応が行われたものであることを示している。
 なお、反射率の上限は後述する下地基板にも依存する。下地基板がサファイアである場合は上述のように反射率の上限は19%程度となるが、下地基板がタンタル酸リチウムの場合は反射率の上限は35%程度となる。
 反射率は、例えば分光光度計により反射率スペクトルを測定した結果から計算して得ることができる。反射率には、鏡面反射率と拡散反射率ならびに、これらを合わせて測定する全反射率がある。いずれを用いても構わないが、全反射率で評価することが望ましい。表面の凹凸など、成膜条件の違いによる表面の状態の影響を受けにくくするためである。
 分光光度計は、試料から反射した光を検出するための積分球を少なくとも有する。全反射率は、試料に対して約10度以下の入射角で光を照射し、拡散反射光だけでなく鏡面反射光も積分球で測定する。測定に際しては、最初にベースライン測定を行う。積分球に硫酸バリウムなどの標準白板を取り付けた状態で反射率を測定し、これをベースラインとする。ベースラインを取得したら標準白板を取り外し、試料を取り付けることで反射率スペクトルを測定することができる。
 基板と結晶性酸化物膜の間には別の層が介在しても構わない。別の層とは、基板ならびに最表層の結晶性酸化物膜と組成が異なる層であり、バッファ層とも呼ばれる。バッファ層は、結晶性酸化物膜、半導体膜、絶縁膜、金属膜等、いずれでもよく、材料としては、例えば、Al、Ga、Cr、Fe、In、Rh、V、Ti、Ir、等が好適に用いられる。バッファ層の厚さとしては0.1μm~2μmが好ましい。
 (下地基板)
 本発明に係る積層構造体における下地基板は、上記の結晶性酸化物膜の支持体となるものであれば特に限定されない。材料は特に限定されず、公知の基板を用いることができ、有機化合物であってもよいし、無機化合物であってもよい。例えば、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリイミド、ポリエーテルイミド、フッ素樹脂、鉄やアルミニウム、ステンレス鋼、金等の金属、石英、ガラス、炭酸カルシウム、酸化ガリウム、ZnO等が挙げられる。これらに加え、シリコン、サファイアや、タンタル酸リチウム、ニオブ酸リチウム、SiC、GaN、酸化鉄、酸化クロム、などの単結晶基板が挙げられ、本発明に係る積層構造体においては以上のような単結晶基板が望ましい。これらにより、より良質な結晶性酸化物膜を得ることができる。特に、サファイア基板、タンタル酸リチウム基板、ニオブ酸リチウム基板は比較的安価であり、工業的に有利である。
 下地基板の厚さは100~5000μmであることが好ましい。このような範囲であれば、ハンドリングが容易であり、かつ、成膜時に熱抵抗を抑制できるため良質の膜が得られやすくなる。
 下地基板の大きさに特に制限はないが、下地基板における結晶性酸化物膜が形成される表面の面積が100mm以上、又は、直径2インチ(50mm)以上であれば、結晶性の良好な大面積の膜が得られ好ましい。下地基板の面積の上限は特に限定されないが、100000mm以下とすることができる。
 (結晶性酸化物膜)
 本発明に係る積層構造体における結晶性酸化物膜は、酸化ガリウムを主成分とする結晶性酸化物膜である。一般に酸化物膜は金属と酸素から構成されるが、本発明に係る積層構造体における結晶性酸化物膜においては、金属としてガリウムを主成分としていればよい。なお、本発明において「ガリウムを主成分とする」とは、金属成分のうち50~100%がガリウムであることを意味する。ガリウム以外の金属成分としては、例えば、鉄、インジウム、アルミニウム、バナジウム、チタン、クロム、ロジウム、イリジウム、ニッケル及びコバルトから選ばれる1種又は2種以上の金属を含んでもよい。
 結晶性酸化物膜中には、ドーパント元素が含まれていてもよい。例えば、スズ、ゲルマニウム、ケイ素、チタン、ジルコニウム、バナジウム又はニオブ等のn型ドーパント、又は、銅、銀、スズ、イリジウム、ロジウム、マグネシウム等のp型ドーパントなどが挙げられ特に限定されない。ドーパントの濃度は、例えば、約1×1016/cm~1×1022/cmであってもよく、約1×1017/cm以下の低濃度としても、約1×1020/cm以上の高濃度としてもよい。
 結晶性酸化物膜の結晶構造は特に限定されず、βガリア構造であってもよいし、コランダム構造であってもよいし、直方晶でもよい。複数の結晶構造が混在していても、多結晶でもかまわないが、単結晶又は一軸配向した膜であることが好ましい。単結晶又は一軸配向した膜であることは、X線回折装置や電子線回折装置などで確認することができる。膜にX線や電子線を照射すると結晶構造に応じた回折像が得られるが、一軸配向していると特定のピークのみが出現する。これにより、一軸配向していると判断できる。また、本発明に係る結晶性酸化物膜がコランダム構造を有するものであることが好ましく、この場合は、X線回折ロッキングカーブの(006)面の半値幅が5~20秒のものとすることができる。
 結晶性酸化物膜の膜厚は特に限定されないが、1μm以上であることが好ましい。上限値は特に限定されない。例えば、100μm以下であってよく、好ましくは50μm以下であり、より好ましくは20μm以下とすることができる。
 (半導体装置)
 本発明に係る半導体装置は、酸化ガリウムを主成分とする結晶性酸化物膜を絶縁性薄膜又は導電性薄膜として備えている。そして、結晶性酸化物膜側の面における波長400~800nmの光の反射率の平均値が16%以上のものである。このような結晶性酸化物膜は結晶欠陥が著しく少なく結晶性に優れており、絶縁破壊電圧が高いなど、半導体特性が優れた半導体装置となる。
 (半導体装置の構成例)
 図4に示す半導体装置100の例では、下地基板101上に結晶性酸化物膜103が形成されている。結晶性酸化物膜103は、下地基板101側から順に絶縁性薄膜103aと導電性薄膜103bが積層されて構成されている。導電性薄膜103b上にゲート絶縁膜105が形成されている。ゲート絶縁膜105上にはゲート電極107が形成されている。また、導電性薄膜103b上には、ゲート電極107を挟むように、ソース・ドレイン電極109が形成されている。このような構成によれば、ゲート電極107に印加するゲート電圧によって、導電性薄膜103bに形成される空乏層の制御が可能となり、トランジスタ動作(FETデバイス)が可能となる。
 本発明に係る積層構造体を用いて形成される半導体装置としては、MISやHEMT、IGBT等のトランジスタやTFT、半導体-金属接合を利用したショットキーバリアダイオード、他のP層と組み合わせたPN又はPINダイオード、受発光素子が挙げられる。本発明に係る積層構造体は、これらデバイスの特性向上に有用である。
 上記のような積層構造体は、蒸着法、MBE法、スパッタ法、CVD法、ミストCVD法、液相エピタキシー、などの公知の方法で形成することが可能である。
 以下に、ミストCVD法を例として、本発明に係る積層構造体の製造方法を説明する。ここで、本発明でいうミストとは、気体中に分散した液体の微粒子の総称を指し、霧、液滴等と呼ばれるものを含む。
 (成膜装置)
 まず、本発明に係る積層構造体の製造に適したミストCVD法で用いる成膜装置(ミストCVD装置)について説明する。図5にミストCVD法で用いる成膜装置201の一例を示す。成膜装置201は、原料溶液204aをミスト化してミストを発生させるミスト化部220と、ミストを搬送するキャリアガスを供給するキャリアガス供給部230と、ミスト化部220と成膜室207とを接続し、キャリアガスによってミストが搬送される供給管209と、供給管209からキャリアガスとともに供給されたミストを熱処理して、下地基板210上に成膜を行う成膜室207とを少なくとも有している。
 (ミスト化部)
 ミスト化部220では、原料溶液204aをミスト化してミストを発生させる。ミスト化手段は、原料溶液204aをミスト化できさえすれば特に限定されず、公知のミスト化手段であってよいが、超音波振動によるミスト化手段を用いることが好ましい。より安定してミスト化することができるためである。
 このようなミスト化部220の一例を図6に示す。ミスト化部220は、原料溶液204aが収容されるミスト発生源204と、超音波振動を伝達可能な媒体、例えば水205aが入れられる容器205と、容器205の底面に取り付けられた超音波振動子206を含んでもよい。詳細には、原料溶液204aが収容されている容器からなるミスト発生源204が、水205aが収容されている容器205に、支持体(図示せず)を用いて収納されることができる。容器205の底部には、超音波振動子206が備え付けられていてもよく、超音波振動子206と発振器216とが接続されていてもよい。そして、発振器216を作動させると超音波振動子206が振動し、水205aを介してミスト発生源204内に超音波が伝播し、原料溶液204aがミスト化するように構成されることができる。
 (原料溶液)
 原料溶液204aは、ガリウムを含み、ミスト化が可能であれば溶液に含まれる材料は特に限定されず、無機材料であっても、有機材料であってもよい。ガリウム以外に含まれる材料としては、金属又は金属化合物が好適に用いられ、例えば、鉄、インジウム、アルミニウム、バナジウム、チタン、クロム、ロジウム、ニッケル及びコバルトから選ばれる1種又は2種以上の金属を含むものを使用してもかまわない。以上のような原料溶液として、金属を錯体又は塩の形態で、有機溶媒又は水に溶解又は分散させたものを好適に用いることができる。塩の形態としては、例えば、塩化金属塩、臭化金属塩、ヨウ化金属塩のようなハロゲン化塩などが挙げられる。また、上記金属を、臭化水素酸、塩酸、ヨウ化水素酸のようなハロゲン化水素等に溶解したものも塩の溶液として用いることができる。錯体の形態としては、例えば、アセチルアセトナート錯体、カルボニル錯体、アンミン錯体、ヒドリド錯体などが挙げられる。前述した塩の溶液にアセチルアセトンを混合することによっても、アセチルアセトナート錯体を形成することができる。原料溶液204a中の金属濃度は特に限定されず、0.005~1mol/Lなどとすることができる。混合、溶解時の温度は20℃以上が好ましい。
 原料溶液には、ハロゲン化水素酸や酸化剤等の添加剤を混合してもよい。ハロゲン化水素酸としては、例えば、臭化水素酸、塩酸、ヨウ化水素酸などが挙げられるが、なかでも、臭化水素酸またはヨウ化水素酸が好ましい。酸化剤としては、例えば、過酸化水素(H)、過酸化ナトリウム(Na)、過酸化バリウム(BaO)、過酸化ベンゾイル(CCO)等の過酸化物、次亜塩素酸(HClO)、過塩素酸、硝酸、オゾン水、過酢酸やニトロベンゼン等の有機過酸化物などが挙げられる。
 原料溶液には、ドーパントが含まれていてもよい。ドーパントは特に限定されない。例えば、スズ、ゲルマニウム、ケイ素、チタン、ジルコニウム、バナジウム又はニオブ等のn型ドーパント、又は、銅、銀、イリジウム、ロジウム、マグネシウム等のp型ドーパントなどが挙げられる。
 (キャリアガス供給部)
 図5に示すように、キャリアガス供給部230はキャリアガスを供給するキャリアガス源202aを有する。このとき、キャリアガス源202aから送り出されるキャリアガスの流量を調節するための流量調節弁203aを備えていてもよい。また、必要に応じて希釈用キャリアガスを供給する希釈用キャリアガス源202bや、希釈用キャリアガス源202bから送り出される希釈用キャリアガスの流量を調節するための流量調節弁203bを備えることもできる。
 キャリアガスの種類は、特に限定されず、成膜物に応じて適宜選択可能である。例えば、酸素、オゾン、窒素やアルゴン等の不活性ガス、又は水素ガスやフォーミングガス等の還元ガスなどが挙げられる。また、キャリアガスの種類は1種類でも、2種類以上であってもよい。例えば、第2のキャリアガスとして、第1のキャリアガスと同じガスをそれ以外のガスで希釈した(例えば10倍に希釈した)希釈ガスなどをさらに用いてもよく、空気を用いることもできる。キャリアガスの流量は特に限定されない。例えば、直径2インチ(約50mm)の基板上に成膜する場合には、キャリアガスの流量は0.05~50L/分とすることが好ましく、5~20L/分とすることがより好ましい。
 (供給管)
 成膜装置201は、ミスト化部220と成膜室207とを接続する供給管209を有する。この場合、ミストは、ミスト化部220のミスト発生源204から供給管209を介してキャリアガスによって搬送され、成膜室207内に供給される。供給管209は、例えば、石英管やガラス管、樹脂製のチューブなどを使用することができる。
 (成膜室)
 成膜室207内には基板210が設置されており、該基板210を加熱するためのヒーター208を備えることができる。ヒーター208は、図5に示されるように成膜室207の外部に設けられていてもよいし、成膜室207の内部に設けられていてもよい。供給管209から供給されたミストは成膜室207内の配管を通り、ノズルから基板210に向けてキャリアガスとともに噴出される。また、成膜室207には、基板210へのミストの供給に影響を及ぼさない位置に、排ガスの排気口212が設けられてもよい。また、基板210を成膜室207の上面に設置するなどして、フェイスダウンとしてもよいし、基板210を成膜室207の底面に設置して、フェイスアップとしてもよい。
 (成膜方法)
 次に、図5,6を参照しながら、本発明に係る積層構造体の製造方法の一例を説明する。ミストCVD法は、概略、ミスト化部において、ガリウムを含む原料溶液をミスト化してミストを発生させるミスト発生工程と、前記ミストを搬送するためのキャリアガスを前記ミスト化部に供給するキャリアガス供給工程と、前記ミスト化部と成膜室とを接続する供給管を介して、前記ミスト化部から前記成膜室へと、前記ミストを前記キャリアガスにより搬送する搬送工程と、前記搬送されたミストを熱処理して下地基板上に成膜を行う成膜工程とからなる。
 上記のようにして混合した原料溶液204aをミスト発生源204内に収容し、基板210を成膜室207内に載置して、ヒーター208を作動させる。次に、流量調節弁203a、203bを開いてキャリアガス源202a、202bからキャリアガスを成膜室207内に供給し、成膜室207の雰囲気をキャリアガスで十分に置換した後、キャリアガスの流量と希釈用キャリアガスの流量をそれぞれ調節する。
 次に、ミスト発生工程として、超音波振動子206を振動させ、その振動を、水205aを通じて原料溶液204aに伝播させることによって、原料溶液204aをミスト化してミストを発生させる。
 次に、キャリアガス供給工程として、ミストを搬送するためのキャリアガスをミスト化部220に供給する。
 次に、搬送工程として、ミスト化部220と成膜室207とを接続する供給管209を介して、ミスト化部220から成膜室207へと、ミストをキャリアガスにより搬送する。
 次に、成膜工程として、成膜室207に搬送されたミストを加熱し熱反応を生じさせて、基板210の表面の一部又は全部に成膜を行う。
 熱反応は、加熱によりミストに含まれるガリウム等の反応を進行する必要がある。このため、反応時の基板表面の温度を少なくとも400℃以上とする必要がある。ミストCVD法では、他のCVD法と異なり、原料をミスト状の液体の状態で基板表面まで到達させる必要がある。このため、基板表面の温度は大きく低下する。従って、反応時の基板表面の温度は、装置の設定の温度とは異なる。反応時も基板表面の温度を測定、制御することが好ましいが、これが困難な場合は、キャリアガスのみを導入したり、溶質を含まない水ミストを導入したりするなどして、反応の様子を模擬的に作って温度を測定し代用することができる。
 さらには、熱反応は基板周囲の環境の温度にも依存する。従って、ノズルからミストを含むキャリアガスを成膜室内に設置した下地基板に供給して、ミストCVD法により酸化ガリウムを主成分とする結晶性酸化物膜を成膜する場合に、ノズル又は成膜室の内壁の温度を室温よりも高くした状態で成膜を行う。上記熱反応が安定するためである。例えば、ノズル温度は50~250℃とすることが好ましい。これにより、より結晶性に優れた結晶性酸化物膜を得ることができる。
 なお、熱反応は、真空下、非酸素雰囲気下、還元ガス雰囲気下、空気雰囲気下及び酸素雰囲気下のいずれの雰囲気下で行われてもよく、成膜物に応じて適宜設定すればよい。また、反応圧力は、大気圧下、加圧下又は減圧下のいずれの条件下で行われてもよいが、大気圧下の成膜であれば、装置構成が簡略化できるので好ましい。
 (バッファ層の形成)
 上記のように、基板と結晶性酸化物膜の間に適宜バッファ層を設けてもよい。バッファ層の形成方法は特に限定されず、スパッタ法、蒸着法など公知の方法により成膜することができるが、上記のようなミストCVD法を用いる場合は、原料溶液を適宜変更するだけで形成でき簡便である。具体的には、アルミニウム、ガリウム、クロム、鉄、インジウム、ロジウム、バナジウム、チタン、イリジウム、から選ばれる1種又は2種以上の金属を、錯体又は塩の形態で水に溶解又は分散させたものを原料水溶液として好適に用いることができる。錯体の形態としては、例えば、アセチルアセトナート錯体、カルボニル錯体、アンミン錯体、ヒドリド錯体などが挙げられる。塩の形態としては、例えば、塩化金属塩、臭化金属塩、ヨウ化金属塩などが挙げられる。また、上記金属を、臭化水素酸、塩酸、ヨウ化水素酸等に溶解したものも塩の水溶液として用いることができる。この場合も、溶質濃度は0.005~1mol/Lが好ましく、溶解温度は20℃以上とすることが好ましい。他の条件についても、上記と同様にすることでバッファ層を形成することが可能である。バッファ層を所定の厚さ成膜した後、上述の方法により成膜を行う。
 バッファ層形成方法の特殊な場合として、結晶性酸化物膜と同一の材料を用いた場合がある。このとき、バッファ層の成膜温度を、結晶性酸化物膜の成膜温度より高くしてもよい。例えば、バッファ層の成膜温度を450℃とし、結晶性酸化物膜の成膜温度を400℃としてもよいし、バッファ層を500℃、結晶性酸化物膜を450℃などとしてもよい。こうすることで、結晶性酸化物膜の結晶性がより向上する。
 (熱処理)
 また、本発明に係る積層構造体を、200~600℃で熱処理してもよい。これにより、膜中の未反応種などがさらに除去され、より高品質の積層構造体を得ることができる。熱処理は、空気中、酸素雰囲気中で行ってもよいし、窒素やアルゴン等の不活性ガス雰囲気下で行ってもかまわない。熱処理時間は適宜決定できるが、例えば、5~240分とすることができる。
 (剥離)
 本発明に係る積層構造体においては、結晶性酸化物膜を下地基板から剥離してもよい。剥離手段は特に限定されず、公知の手段であってもよい。剥離手段の方法としては例えば、機械的衝撃を与えて剥離する手段、熱を加えて熱応力を利用して剥離する手段、超音波等の振動を加えて剥離する手段、エッチングして剥離する手段などが挙げられる。このような剥離によって、結晶性酸化物膜を自立膜として得ることができる。
 (その他の製造方法)
 以上、ミストCVD法を例にして本発明に係る積層構造体の製造方法について説明したが、ミストCVD法以外の方法の場合にも、結晶性酸化物膜の成膜時の温度、特に基板表面の温度を制御することで、本発明に係る積層構造体を製造することができる。基板等の温度の正確な測定等が困難な場合には、温度の条件を振った複数の積層構造体のサンプルを作製し、反射率スペクトルを測定して所望の特性を有するものを選別することにより、本発明に係る積層構造体を得ることも可能である。
 以下、実施例を挙げて本発明について具体的に説明するが、これは本発明を限定するものではない。
 [実施例1]
 図5を参照しながら、本実施例で用いた成膜装置201を説明する。成膜装置201は、キャリアガスを供給するキャリアガス源202aと、キャリアガス源202aから送り出されるキャリアガスの流量を調節するための流量調節弁203aと、希釈用キャリアガスを供給する希釈用キャリアガス源202bと、希釈用キャリアガス源202bから送り出される希釈用キャリアガスの流量を調節するための流量調節弁203bと、原料溶液204aが収容されるミスト発生源204と、水205aが収容された容器205と、容器205の底面に取り付けられた超音波振動子206と、ヒーター208を具備する成膜室207と、ミスト発生源204から成膜室207までをつなぐ石英製の供給管209と、を備えている。
 (事前温度測定)
 まず、ダミー基板と水ミストにより模擬的に成膜条件を再現し、基板表面の温度を測定した。具体的には、原料溶液204aは純水とし、ダミー基板は直径4インチ(100mm)のc面サファイア基板とした。この基板を成膜室207内に載置し、ヒーター208を450℃に設定、昇温し、30分放置して成膜室内の温度を安定化させた。続いて、流量調節弁203a、203bを開いてキャリアガス源202a、202bからキャリアガスを成膜室207内に供給し、成膜室207の雰囲気をキャリアガスで十分に置換した後、キャリアガスの流量を2L/分に、希釈用キャリアガスの流量を6L/分にそれぞれ調節した。キャリアガスとしては圧縮空気を用いた。次に、超音波振動子206を2.4MHzで振動させ、その振動を、水205aを通じて原料溶液204a(純水)に伝播させることによって、純水をミスト化してミストを生成した。このミストを、キャリアガスによって供給管209を経て成膜室207内に導入した。このときの成膜室内各所の温度を、熱電対を用いて測定した。この結果、基板表面の温度は424℃、ノズル先端部の温度は146℃、成膜室壁面の温度は43℃であった。
 (酸化ガリウム膜の成膜)
 引き続いて、酸化ガリウム膜の成膜を行った。基板210として、4インチ(100mm)のc面サファイア基板を用意した。この基板を成膜室207内に載置し、ヒーター208を450℃に設定、昇温し、30分放置して、ノズルを含む成膜室内の温度を安定化させた。
 原料溶液204aは、溶媒として超純水、溶質として臭化ガリウムを用いた。原料溶液中のガリウム濃度は0.1mol/Lとした。この原料溶液204aをミスト発生源204内に収容した。続いて、流量調節弁203a、203bを開いてキャリアガス源202a、202bからキャリアガスを成膜室207内に供給し、成膜室207の雰囲気をキャリアガスで十分に置換した後、キャリアガスの流量を2L/分に、希釈用キャリアガスの流量を6L/分にそれぞれ調節した。キャリアガスとしては窒素を用いた。
 次に、超音波振動子206を2.4MHzで振動させ、その振動を、水205aを通じて原料溶液204aに伝播させることによって、原料溶液204aをミスト化してミストを生成した。このミストを、キャリアガスによって供給管209を経て成膜室207内に導入し、基板210上でミストを熱反応させて、基板210上に酸化ガリウムの薄膜を形成した。成膜時間は30分とした。このときの成膜室内各所の温度は、上記事前温度測定で得られた温度になっていると推定される。
 (評価)
 基板210上に形成した薄膜について、X線回折により、α-Gaが形成されていることを確認した。α-Gaの(006)面のロッキングカーブを測定したところ、半値幅は6秒と極めて結晶性が良好であった。なお、ロッキングカーブ測定に際しては、チャンネルカット結晶を2つ組み合わせた4結晶モノクロメータを用いることでX線の単色性を高め、より高精度で測定を行っている。次いで、日本分光社製の分光光度計V-770を用い、得られた積層構造体の成膜面側の反射率スペクトルを測定した。測定に際し、試料を積分球に取り付けた後、測定光は試料への入射角を約5度として、全反射率を測定した。また、ベースライン取得には、硫酸バリウムの標準白板を用いた。結果を図1に示す。400~800nmの反射率の平均を計算したところ17.1%であった。また、膜厚を光干渉式の膜厚計で測定したところ、膜厚は179nmであった。
 [比較例1]
 実施例1と同様の酸化ガリウム膜の成膜時において、ヒーター208を500℃に設定し、昇温した後の温度安定化を行わずに、成膜を実施した。これ以外は実施例1と同じ条件で成膜、評価を行った。この結果、α-Gaの(006)面のロッキングカーブ半値幅は102秒となり、結晶性が悪化した。反射率スペクトルは、実施例1とともに図1に示してある。反射率の低下が確認され、400~800nmの反射率の平均は11.6%であった。
 [実施例2]
 バッファ層としてAlGaO膜を形成したこと、また、酸化ガリウムの膜厚を3μmとしたこと以外は実施例1と同様にして成膜、評価を行った。ロッキングカーブ半値幅は15秒と良好であった。反射率スペクトルを図2に示す。400~800nmの反射率の平均は17.1%であった。
 [実施例3]
 酸化ガリウムの膜厚を6μmとしたこと以外は実施例2と同様にして成膜、評価を行った。ロッキングカーブ半値幅は18秒と良好であった。反射率スペクトルを図3に示す。400~800nmの反射率の平均は17.0%であった。
 [実施例4]
 実施例1と同様の酸化ガリウム膜の成膜時において、ヒーター208を430℃に設定し、これ以外は実施例1と同じ条件で成膜、評価を行った。ロッキングカーブ半値幅は9秒と良好であった。反射率スペクトルを図7に示す。400~800nmの反射率の平均は16.4%であった。
 [実施例5]
 実施例1と同様の酸化ガリウム膜の成膜時において、ヒーター208を550℃に設定し、これ以外は実施例1と同じ条件で成膜、評価を行った。ロッキングカーブ半値幅は6秒と良好であった。反射率スペクトルを図8に示す。400~800nmの反射率の平均は18.3%であった。
 [比較例2]
 実施例1と同様の酸化ガリウム膜の成膜時において、ヒーター208を550℃に設定し、昇温した後の温度安定化を行わずに、成膜を実施した。これ以外は実施例1と同じ条件で成膜、評価を行った。この結果、ロッキングカーブ半値幅は88秒となり、結晶性が悪化した。反射率スペクトルを図9に示す。400~800nmの反射率の平均は15.1%であった。
 以上のように、得られた積層構造体の400~800nmの平均反射率が高いと、得られた膜の結晶性は良好となる。本発明に係る積層構造体を用いて半導体装置を形成すれば、半導体装置の特性向上に有用である。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (9)

  1.  少なくとも、下地基板と、酸化ガリウムを主成分とする結晶性酸化物膜とを有する積層構造体であって、
     前記積層構造体の前記結晶性酸化物膜側の面における波長400~800nmの光の反射率の平均値が16%以上のものであることを特徴とする積層構造体。
  2.  前記下地基板は単結晶であり、前記結晶性酸化物膜は単結晶又は一軸配向した膜であることを特徴とする請求項1に記載の積層構造体。
  3.  前記下地基板は、サファイア基板、タンタル酸リチウム基板又はニオブ酸リチウム基板のいずれかであることを特徴とする請求項1又は請求項2に記載の積層構造体。
  4.  前記結晶性酸化物膜はコランダム構造を有するものであることを特徴とする請求項1から請求項3のいずれか一項に記載の積層構造体。
  5.  前記コランダム構造を有する前記結晶性酸化物膜は、(006)面のX線ロッキングカーブ半値幅が5~20秒のものであることを特徴とする請求項4に記載の積層構造体。
  6.  前記下地基板は、前記結晶性酸化物膜を有する面の面積が100mm以上、又は、直径2インチ(50mm)以上のものであることを特徴とする請求項1から請求項5のいずれか一項に記載の積層構造体。
  7.  ノズルからミストを含むキャリアガスを成膜室内に設置した下地基板に供給して、ミストCVD法により酸化ガリウムを主成分とする結晶性酸化物膜を成膜する方法であって、
     ノズル又は成膜室の内壁の温度を室温よりも高くした状態で成膜を行うことを特徴とする結晶性酸化物膜の成膜方法。
  8.  前記ノズルの温度を50~250℃とすることを特徴とする請求項7に記載の結晶性酸化物膜の成膜方法。
  9.  酸化ガリウムを主成分とする結晶性酸化物膜を絶縁性薄膜又は導電性薄膜として備える半導体装置であって、
     前記結晶性酸化物膜側の面における波長400~800nmの光の反射率の平均値が16%以上のものであることを特徴とする半導体装置。
PCT/JP2022/032495 2021-09-30 2022-08-30 積層構造体、半導体装置及び結晶性酸化物膜の成膜方法 WO2023053817A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023550474A JPWO2023053817A1 (ja) 2021-09-30 2022-08-30
US18/693,977 US20240250185A1 (en) 2021-09-30 2022-08-30 Laminated structure, semiconductor device, and method of forming crystalline oxide film
KR1020247009166A KR20240087704A (ko) 2021-09-30 2022-08-30 적층구조체, 반도체장치 및 결정성 산화물막의 성막방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021160824 2021-09-30
JP2021-160824 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023053817A1 true WO2023053817A1 (ja) 2023-04-06

Family

ID=85750510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032495 WO2023053817A1 (ja) 2021-09-30 2022-08-30 積層構造体、半導体装置及び結晶性酸化物膜の成膜方法

Country Status (6)

Country Link
US (1) US20240250185A1 (ja)
JP (1) JPWO2023053817A1 (ja)
KR (1) KR20240087704A (ja)
CN (1) CN115911081A (ja)
TW (2) TWM643175U (ja)
WO (1) WO2023053817A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007046155A (ja) * 2005-07-14 2007-02-22 Noda Screen:Kk 成膜方法、および装置
JP2014031300A (ja) * 2012-08-06 2014-02-20 Namiki Precision Jewel Co Ltd 酸化ガリウム基板及びその製造方法
JP2014072533A (ja) 2013-10-10 2014-04-21 Roca Kk 半導体装置
JP2016025256A (ja) 2014-07-22 2016-02-08 株式会社Flosfia 半導体装置
JP2016157878A (ja) 2015-02-25 2016-09-01 株式会社Flosfia 結晶性酸化物半導体膜、半導体装置
JP2020002426A (ja) * 2018-06-28 2020-01-09 信越化学工業株式会社 成膜装置及び成膜方法
JP2020113570A (ja) * 2019-01-08 2020-07-27 信越化学工業株式会社 酸化物半導体膜、積層体及び酸化物半導体膜の製造方法
JP2021125676A (ja) * 2020-02-06 2021-08-30 信越化学工業株式会社 結晶性酸化物半導体膜および酸化ガリウム膜の製造方法、ならびに縦型半導体装置の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007046155A (ja) * 2005-07-14 2007-02-22 Noda Screen:Kk 成膜方法、および装置
JP2014031300A (ja) * 2012-08-06 2014-02-20 Namiki Precision Jewel Co Ltd 酸化ガリウム基板及びその製造方法
JP2014072533A (ja) 2013-10-10 2014-04-21 Roca Kk 半導体装置
JP2016025256A (ja) 2014-07-22 2016-02-08 株式会社Flosfia 半導体装置
JP2016157878A (ja) 2015-02-25 2016-09-01 株式会社Flosfia 結晶性酸化物半導体膜、半導体装置
JP2020002426A (ja) * 2018-06-28 2020-01-09 信越化学工業株式会社 成膜装置及び成膜方法
JP2020113570A (ja) * 2019-01-08 2020-07-27 信越化学工業株式会社 酸化物半導体膜、積層体及び酸化物半導体膜の製造方法
JP2021125676A (ja) * 2020-02-06 2021-08-30 信越化学工業株式会社 結晶性酸化物半導体膜および酸化ガリウム膜の製造方法、ならびに縦型半導体装置の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RIENA JINNO ET AL.: "Reduction IN edge dislocation density IN corundum-structured α-Ga 0 layers on sapphire substrates with quasi-graded α-(Al, Ga) O buffer layers, Applied Physics Express", JAPAN SOCIETY OF APPLIED PHYSICS, vol. 9, 1 June 2016 (2016-06-01), pages 1 - 4

Also Published As

Publication number Publication date
KR20240087704A (ko) 2024-06-19
TW202316584A (zh) 2023-04-16
TWM643175U (zh) 2023-07-01
CN115911081A (zh) 2023-04-04
JPWO2023053817A1 (ja) 2023-04-06
US20240250185A1 (en) 2024-07-25

Similar Documents

Publication Publication Date Title
JP7374282B2 (ja) ガリウム含有膜の成膜方法
JP2016064961A (ja) 結晶性積層構造体の製造方法および半導体装置
JP2022009326A (ja) 結晶性酸化物膜
JP6945121B2 (ja) 結晶性半導体膜および半導体装置
JP7432904B2 (ja) 酸化ガリウム半導体膜及び原料溶液
JP7413495B2 (ja) 結晶性酸化物薄膜
WO2023053817A1 (ja) 積層構造体、半導体装置及び結晶性酸化物膜の成膜方法
JP7105703B2 (ja) 酸化物半導体膜、積層体及び酸化物半導体膜の製造方法
WO2023149180A1 (ja) 結晶性酸化物膜、積層構造体、半導体装置、及び結晶性酸化物膜の製造方法
JP6941208B2 (ja) 酸化ガリウム膜の製造方法および縦型半導体装置の製造方法
WO2022230577A1 (ja) 積層構造体、半導体装置及び積層構造体の製造方法
CN221421215U (en) Laminated structure, semiconductor device, and system for manufacturing laminated structure
EP4407660A1 (en) Film-forming method, film-forming device, and crystalline oxide film
JP7045014B2 (ja) 積層構造体の製造方法
WO2024043049A1 (ja) 成膜方法、成膜装置、及びα-Ga2O3膜
JP2023156732A (ja) 結晶性積層構造体、半導体装置及び結晶性積層構造体の製造方法
JP7348777B2 (ja) 積層構造体の製造方法及び半導体装置の製造方法
WO2023238587A1 (ja) 成膜方法、及び成膜装置
WO2021157215A1 (ja) 結晶性酸化物半導体膜および酸化ガリウム膜の製造方法、ならびに縦型半導体装置の製造方法
WO2022039017A1 (ja) 成膜方法及び原料溶液
JP6774593B2 (ja) 結晶性酸化物膜
TW202424243A (zh) 成膜方法、成膜裝置及α-GaO膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875689

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023550474

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18693977

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202447022083

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022875689

Country of ref document: EP

Effective date: 20240430