WO2022264307A1 - 自己校正機能付きadコンバータ - Google Patents

自己校正機能付きadコンバータ Download PDF

Info

Publication number
WO2022264307A1
WO2022264307A1 PCT/JP2021/022842 JP2021022842W WO2022264307A1 WO 2022264307 A1 WO2022264307 A1 WO 2022264307A1 JP 2021022842 W JP2021022842 W JP 2021022842W WO 2022264307 A1 WO2022264307 A1 WO 2022264307A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
unit
reference voltage
integrated
integration
Prior art date
Application number
PCT/JP2021/022842
Other languages
English (en)
French (fr)
Inventor
直志 美濃谷
賢一 松永
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/022842 priority Critical patent/WO2022264307A1/ja
Priority to JP2023528834A priority patent/JPWO2022264307A1/ja
Publication of WO2022264307A1 publication Critical patent/WO2022264307A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/10Calibration or testing

Definitions

  • the present invention relates to an AD converter with a self-calibration function that does not require a measuring instrument for calibration.
  • the AD converter consists of a DA converter that outputs a known voltage and a comparator, and is the smallest DA converter that changes the output value of the DA converter sequentially and the output of the comparator changes from a low output voltage to a high output voltage. is used as the conversion value of the AD converter (Non-Patent Document 1). Variation due to aging of the offset and linearity of the DA converter leads to aging of the AD converter.
  • Typical DA converters include R-2R ladder circuits, resistor string circuits (Non-Patent Document 2), and PWM circuits (Non-Patent Document 3).
  • the resistor string circuit has low power consumption and high monotonicity, but the linearity of the output to the setting code depends on the uniformity and layout of the resistor elements, so trial and error is required for layout design and manufacturing.
  • PWM circuits do not require a row of resistor elements and can be manufactured using only digital circuits, so they have the advantage of stable performance.
  • the following low-pass filters must be designed and manufactured with high frequency accuracy.
  • Non-Patent Document 2 discloses a method for determining whether conversion accuracy is a long period of time.
  • the present invention has been made in view of this problem, and an object of the present invention is to provide an AD converter with a self-calibrating function that does not require a measuring instrument for calibration.
  • An AD converter with a self-calibration function includes a first reference voltage section that generates a temperature-compensated first reference voltage, and a second reference voltage section that generates a second reference voltage calibrated with the first reference voltage.
  • 2 a reference voltage unit, an integrator that generates an integrated voltage by accumulating a unit voltage using any one of the first reference voltage, the second reference voltage, and the ground voltage as an initial value during calibration, and the integrated voltage and the threshold voltage.
  • a comparator for comparing the value voltage and outputting a judgment signal; and an offset between the unit voltage and the comparator for measuring the integrated time from the initial value until the integrated voltage exceeds the threshold voltage during calibration.
  • a calibration control unit that calibrates the voltage, and a conversion control unit that converts the input voltage into a digital value using the conversion integration time, which is the integration time when the input voltage is the initial value, and the second reference voltage.
  • the gist is to provide
  • an AD converter with a self-calibration function that does not require an external measuring device for calibration.
  • FIG. 1 is a functional block diagram showing a configuration example of an AD converter with a self-calibration function according to an embodiment of the present invention
  • FIG. 2 is a diagram for explaining the operation of an integrator shown in FIG. 1
  • FIG. It is a figure explaining switching of a unit voltage.
  • 2 is a diagram showing the relationship between integrated voltage and current values and the number of times of integration in the integration unit shown in FIG. 1;
  • FIG. 1 is a functional block diagram showing a configuration example of an AD converter with a self-calibration function according to an embodiment of the present invention
  • FIG. 2 is a diagram for explaining the operation of an integrator shown in FIG. 1
  • FIG. It is a figure explaining switching of a unit voltage
  • 2 is a diagram showing the relationship between integrated voltage and current values and the number of times of integration in the integration unit shown in FIG. 1;
  • FIG. 1 is a functional block diagram showing a configuration example of an AD converter with self-calibration function according to an embodiment of the present invention.
  • the AD converter 100 shown in FIG. 1 generates an integrated voltage by integrating the unit voltage with the input voltage as an initial value in the integrating/converting section, and compares the integrated voltage with the threshold voltage in the comparator and converts it into a digital value. do.
  • the AD converter 100 includes a first reference voltage section 10 , a second reference voltage section 11 , an integration/conversion section 30 and a control section 20 .
  • the integrating/converting section 30 includes a switching section 31 , an integrating section 32 , a threshold voltage section 33 and a comparator 34 .
  • the control unit 20 is composed of a calibration control unit 21 and a conversion control unit 22.
  • the calibration control section 21 includes an offset measurement section 210 , a correlation measurement section 211 , a unit voltage measurement section 212 and a reference voltage correction section 213 .
  • the first reference voltage unit 10 generates a temperature-compensated first reference voltage.
  • the second reference voltage unit 11 generates a second reference voltage calibrated with the first reference voltage.
  • the integrator 32 generates an integrated voltage by accumulating unit voltages using any one of the first reference voltage, the second reference voltage, and the ground voltage as an initial value during calibration.
  • the comparator 34 compares the integrated voltage and the threshold voltage and outputs a determination signal.
  • the calibration control unit 21 measures the integration time from the initial value until the integrated voltage exceeds the threshold voltage, and calibrates the unit voltage and the offset voltage of the comparator 34 .
  • the conversion control unit 22 converts the input voltage into a digital value using the conversion integration time, which is the integration time when the input voltage is the initial value, and the second reference voltage.
  • FIG. 2 is a diagram showing a circuit model of the integrating section 32. As shown in FIG.
  • the integrating section 32 includes a current source 320, SW1, and a capacitor C0.
  • FIG. 2 shows a1 and d1 of SW1 necessary for explaining the integration operation for integrating the unit voltage, and other terminals are omitted.
  • the voltage Vo,1 of the capacitor C0 is obtained by the following equation in one integration operation in which a1 and d1 of SW1 are connected for ⁇ t seconds and then a1 and d1 are disconnected.
  • Voltage Vo can be expressed by the following equation.
  • the unit voltage VG and the offset voltage of the comparator 34 need to be calibrated.
  • the calibration is performed by controlling the integration/conversion section 30 with a signal from the calibration control section 21 and measuring the number of times of integration.
  • the calibration control unit 21 includes an offset measurement unit 210, a correlation measurement unit 211, a unit voltage measurement unit 212, and a reference voltage correction unit 213.
  • the offset measurement unit 210 performs offset measurement processing.
  • the second reference voltage Vrefs is used as an initial value, and the number of integrations until the voltage Vo of the capacitor C0 reaches the threshold voltage Vth is measured.
  • the offset voltage Vofc of the comparator 34 is Vth+Vofc>Vo before the start of integration, but becomes Vth+Vofc ⁇ Vo after repeating the integration operation.
  • the controller 20 repeats the integration operation after setting the initial value, and measures the number of times of integration until the determination signal changes. .
  • the number of integrations of the coarse adjustment unit voltage VG2 and the fine adjustment unit voltage VG1 repeated until the determination signal changes is ko2 and ko1. holds.
  • Switching between the coarse adjustment unit voltage VG2 and the fine adjustment unit voltage VG1 can be performed by the following method.
  • FIG. 3 shows a circuit for explaining the switching operation between VG2 and VG1.
  • I2 and I1 be the current values of current source 320 at VG2 and VG1, respectively.
  • a signal MAGP from the control unit 20 is used to switch the current value.
  • FIG. 4 is a diagram showing the relationship between the integrated voltage and current values in the integrating section 32 and the number of times of integration.
  • FIG. 4(a) shows the relationship between the number of times of integration and the integrated voltage
  • FIG. 4(b) shows the relationship between the number of times of integration and the current value.
  • the correlation measurement unit 211 After setting the reference voltage to the initial value, the correlation measurement unit 211 integrates the coarse adjustment unit voltages for the number of times obtained by subtracting 1 from the first coarse adjustment number, and then integrates the fine adjustment unit voltage. Correlation measurement processing is performed to integrate until the value Vth is exceeded.
  • the unit voltage measurement unit 212 integrates the second rough adjustment integration count, which is the integration count until the integrated voltage obtained by integrating the coarse adjustment unit voltage with the ground voltage as the initial value exceeds the threshold voltage Vth, and the fine adjustment unit voltage.
  • a unit voltage measurement process is performed to measure the second fine adjustment integration count, which is the integration count until the integrated voltage obtained exceeds the threshold voltage Vth.
  • the ground voltage is used as the initial value, and the integration operation is repeated until the determination signal changes.
  • ki2 and ki1 are the number of integrations for the coarse adjustment unit voltage VG2 and the fine adjustment unit voltage VG1, respectively, the following equations hold.
  • the input voltage Vi is used as the initial value, and the accumulation operation is repeated until the determination signal changes.
  • kv2 and kv1 are the number of integrations for the coarse adjustment unit voltage VG2 and the fine adjustment unit voltage VG1, respectively, the following equations hold.
  • the input voltage can be expressed by the following equation from ko2, ko1, kp1, ki2, ki1 measured during calibration and kv2, kv1 measured during conversion.
  • Equation (8) represents the voltage after conversion.
  • the conversion error can be improved because Vofc and the unit voltage are calibrated at the time of calibration.
  • a high-precision reference voltage source that is capable of temperature compensation and uses a Zener diode or the like is known to have small fluctuations in reference voltage with respect to temperature fluctuations and small drifts.
  • the voltage is large because of the Zener diode, and the power consumption is large because a heater is used for temperature compensation. Therefore, constant use of the reference voltage source for calibration is unsuitable because the continuous use time of the battery-driven terminal will be shortened.
  • the high-precision reference voltage Vrefo (first reference voltage) is set equal to the stored reference voltage Vref.
  • reference voltage calibration processing is performed in addition to offset measurement processing, correlation measurement processing, and unit voltage measurement processing.
  • the high-precision reference voltage Vrefo is set as the initial value, and the accumulation operation is repeated until the determination signal changes. Assuming that kr2 and kr1 are the number of integrations for the coarse adjustment unit voltage VG2 and the fine adjustment unit voltage VG1, respectively, the following equations hold.
  • VG1 can be derived from equations (4) to (6) as follows.
  • Vrefs can be expressed by the following formula.
  • the AD converter 100 according to the present embodiment has high long-term stability of conversion accuracy and low power consumption.
  • the AD converter 100 includes the first reference voltage section 10 that generates the temperature-compensated first reference voltage, the second reference voltage section 11 that generates the second reference voltage calibrated with the reference voltage, At the time of calibration, an integrator 32 that generates an integrated voltage by accumulating a unit voltage with any of the first reference voltage, the second reference voltage, and the ground voltage as an initial value, and a determination signal that compares the integrated voltage with the threshold voltage a calibration control unit 21 that measures the integration time from the initial value until the integrated voltage exceeds the threshold voltage during calibration, and calibrates the unit voltage and the offset voltage of the comparator 34; It also includes a conversion control unit 22 that converts the input voltage into a digital value using the conversion integration time, which is the integration time when the input voltage is the initial value, and the second reference voltage. This makes it possible to provide an AD converter with a self-calibration function that does not require an external measuring device for calibration.
  • the calibration control unit 21 controls the first integration count until the integrated voltage obtained by integrating the coarse adjustment unit voltage with the second reference voltage as the initial value exceeds the threshold voltage, and the integrated voltage obtained by integrating the fine adjustment unit voltage. After setting the second reference voltage to the initial value, the rough adjustment unit voltage is integrated by the number of times obtained by subtracting 1 from the first integration number.
  • the correlation measurement unit 211 measures the third integration number until the integrated voltage obtained by integrating the fine adjustment unit voltage exceeds the threshold voltage
  • the integrated voltage obtained by integrating the coarse adjustment unit voltage with the ground voltage as the initial value is a unit voltage measuring unit 212 for measuring a fourth integration number of times until the threshold voltage is exceeded and a fifth integration number of times until the integrated voltage obtained by integrating the fine adjustment unit voltage exceeds the threshold voltage; and a second reference voltage.
  • the offset of the comparator 34 and the capacitance constituting the integration unit fluctuate over time
  • the offset of the comparator 34 and the integration unit 32 which is the analog value output unit of the DA converter, can be calibrated, and an AD converter with high long-term stability can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

温度補償された基準電圧を生成する第1基準電圧部10と、基準電圧で校正される第2基準電圧を生成する第2基準電圧部11と、校正時に、基準電圧、第2基準電圧、及びグランド電圧の何れかを初期値として単位電圧を積算した積算電圧を生成する積算部32と、積算電圧としきい値電圧34を比較して判定信号を出力する比較器34と、校正時に、積算電圧が初期値からしきい値電圧を越えるまでの積算時間を計測し、単位電圧と比較器34のオフセット電圧を校正する校正制御部21と、変換時に、入力電圧を初期値とした場合の積算時間である変換積算時間と第2基準電圧を用いて入力電圧をデジタル値に変換する変換制御部22とを備える。

Description

自己校正機能付きADコンバータ
 本発明は、校正のための測定器を必要としない自己校正機能付きADコンバータに関する。
 ADコンバータは周知のように既知の電圧を出力するDAコンバータと比較器で構成され、DAコンバータの出力値を順次変化させ比較器の出力が低出力電圧から高出力電圧に変化する最小のDAコンバータの出力値を設定した時のデジタル値をADコンバータの変換値として使用する(非特許文献1)。DAコンバータのオフセットや線形性の経時変化による変動がADコンバータの経時変化につながる。
 代表的なDAコンバータにはR-2Rラダー回路、抵抗ストリング回路(非特許文献2)、PWM回路(非特許文献3)がある。
〔令和3年6月10日検索〕、インターネット(URL: http://memes.sakura.ne.jp/memes/?page_id=1120) 〔令和3年6月10日検索〕、インターネット(URL: http://ednjapn.com/edn/articles/1611/08/news012.html) 〔令和3年6月10日検索〕、インターネット(https://service.macnica.co.jp/library/107577)
 R-2Rラダー回路では、比較的少ない抵抗素子数で高分解能・高精度な可変信号源を構成可能である。しかし、設定コードに対する出力の精度を高めるためにはMSB側に高い精度の抵抗が必要である。
 抵抗ストリング回路は低消費電力で単調増加性が高いが、設定コードに対する出力の線形性が抵抗素子の均一性とレイアウトに依存するため、レイアウト設計と製造の試行錯誤が必要である。
 PWM回路では、R-2Rラダー回路や抵抗ストリング回路のように抵抗素子列が不要でデジタル回路のみで製造できるため性能が安定しているという利点はあるが、出力に現れるリプルノイズ除去のための高次の低域通過フィルタに周波数精度の高い設計と製造が必要なる。
 R-2Rラダー回路と抵抗ストリング回路に関しては、製造の最終段階での抵抗素子の調整や設定コードと出力の関係の補正により、線形性や精度を向上させることが可能である。しかし、この場合ではR-2Rラダー回路と抵抗ストリング回路の出力を確認しながら調整や補正を行うため、回路の外部に基準となる測定器が必要となる。
 また、比較器のオフセット電圧、及びDAコンバータの単位電圧とその線形性は、時間が経過すれば変化する。よって、長期間にわたって変換精度を維持するためには、定期的な校正が不可欠である(非特許文献2)。
 しかしながら、比較器のオフセット電圧、及びDAコンバータの単位電圧の調整には、ADコンバータの外部に基準となる測定器が必要である。例えば遠隔地に配置されたADコンバータを校正するためには、測定器を携えて出かけなければならない。よって、遠隔地にある複数のADコンバータを校正するのは、困難であるという課題がある。
 本発明は、この課題に鑑みてなされたものであり、校正のための測定器が不要な自己校正機能付きADコンバータを提供することを目的とする。
 本発明の一態様に係る自己校正機能付きADコンバータは、温度補償された第1基準電圧を生成する第1基準電圧部と、前記第1基準電圧で校正される第2基準電圧を生成する第2基準電圧部と、校正時に、前記第1基準電圧、前記第2基準電圧、及びグランド電圧の何れかを初期値として単位電圧を積算した積算電圧を生成する積算部と、前記積算電圧としきい値電圧を比較して判定信号を出力する比較器と、校正時に、前記積算電圧が前記初期値から前記しきい値電圧を越えるまでの積算時間を計測し、前記単位電圧と前記比較器のオフセット電圧を校正する校正制御部と、変換時に、入力電圧を初期値とした場合の前記積算時間である変換積算時間と前記第2基準電圧を用いて前記入力電圧をデジタル値に変換する変換制御部とを備えることを要旨とする。
 本発明によれば、校正のために外部に測定器が不要な自己校正機能付きADコンバータを提供することができる。
本発明の実施形態に係る自己校正機能付きADコンパータの構成例を示す機能ブロック図である。 図1に示す積算部の動作を説明する図である。 単位電圧の切り替えを説明する図である。 図1に示す積算部における積算電圧及び電流値と、積算回数との関係を示す図である。
 以下、本発明の実施形態について図面を用いて説明する。複数の図面中同一のものには同じ参照符号を付し、説明は繰り返さない。
 図1は、本発明の実施例に係る自己校正機能付きADコンバータの構成例を示す機能ブロック図である。図1に示すADコンバータ100は、積算・変換部において、入力電圧を初期値として単位電圧を積算して積算電圧を生成し、比較器で積算電圧としきい値電圧を比較してデジタル値に変換する。
 ADコンバータ100は、第1基準電圧部10、第2基準電圧部11、積算・変換部30、及び制御部20を備える。積算・変換部30は、切換部31、積算部32、しきい値電圧部33、及び比較器34を備える。
 制御部20は、校正制御部21と変換制御部22で構成される。校正制御部21は、オフセット計測部210、相関計測部211、単位電圧計測部212、及び基準電圧補正部213を備える。
 第1基準電圧部10は、温度補償された第1基準電圧を生成する。第2基準電圧部11は、第1基準電圧で校正される第2基準電圧を生成する。
 積算部32は、校正時に、第1基準電圧、第2基準電圧、及びグランド電圧の何れかを初期値として単位電圧を積算した積算電圧を生成する。
 比較器34は、積算電圧としきい値電圧を比較して判定信号を出力する。
 校正制御部21は、校正時に、積算電圧が期値からしきい値電圧を越えるまでの積算時間を計測し、単位電圧と比較器34のオフセット電圧を校正する。
 変換制御部22は、変換時に、入力電圧を初期値とした場合の積算時間である変換積算時間と第2基準電圧を用いて入力電圧をデジタル値に変換する。
 ADコンバータ100の各機能構成部の動作を詳しく説明する。
 (積算部)
 図2は、積算部32の回路モデルを示す図である。積算部32は、電流源320、SW1、及び容量C0を備える。
 図2は、単位電圧を積算する積算動作の説明に必要なSW1のa1とd1を示し、他の端子は省略している。
 容量C0にVo,0に相当する電荷が蓄積された状態で、SW1のa1とd1をΔt秒間接続した後にa1とd1を切断する1回の積算動作で容量C0の電圧Vo,1は次式で表せる。
Figure JPOXMLDOC01-appb-M000001
 このとき(I0/C0)Δtを単位電圧VGと定義する(VG=(I0/C0)Δt)。上記の積算動作をk回繰り返した場合の容量C0の電圧Vo,kは次式で表せる。
Figure JPOXMLDOC01-appb-M000002
 容量C0の電圧の初期値をVo,0とし、大きな単位電圧VGの粗調整単位電圧VG2で積算動作をk2回、小さな単位電圧VGの微調整単位電圧VG1でk1回積算した場合の容量C0の電圧Voは次式で表せる。
Figure JPOXMLDOC01-appb-M000003
 単位電圧VGと比較器34のオフセット電圧は校正する必要がある。その校正は、校正制御部21からの信号で積算・変換部30を制御して積算回数を計測することにより実施する。
 校正制御部21は、オフセット計測部210、相関計測部211、単位電圧計測部212、及び基準電圧補正部213を備える。オフセット計測部210は、オフセット計測処理を行う。
 オフセット計測処理は、第2基準電圧Vrefsを初期値として容量C0の電圧Voがしきい値電圧Vthとなるまでの積算回数を計測する。比較器34のオフセット電圧Vofcは、積算開始前はVth+Vofc>Voとなっているが、積算動作を繰り返すとVth+Vofc<Voとなる。
 Vth+Vofc>Voの場合とVth+Vofc<Voの場合で比較器34の出力である判定信号が変化するため、制御部20では初期値設定後に積算動作を繰り返し判定信号が変化するまでの積算回数を計測する。
 オフセット計測処理において、第2基準電圧Vrefsの初期値を設定後、判定信号が変化するまでに繰り返した粗調整単位電圧VG2と微調整単位電圧VG1での積算回数をそれぞれko2,ko1とすると次式が成立する。
Figure JPOXMLDOC01-appb-M000004
 粗調整単位電圧VG2と微調整単位電圧VG1の切替は以下の方法で実施できる。
 図3は、VG2とVG1の切替動作を説明する回路を示す。VG2とVG1での電流源320の電流値をそれぞれI2,I1とする。電流値の切替は制御部20からの信号MAGPで行う。
 図4は、積算部32における積算電圧および電流値と、積算回数との関係を示す図である。図4(a)は積算回数と積算電圧、図4(b)は積算回数と電流値の関係を示す。
 VG2で積算している時では、SW1のa1とd1を接続し電流源320からのI2の電流が容量C0だけでなく抵抗部321にも流れる。抵抗部321の抵抗をRgとするとI2の電流が流れている瞬間では積算電圧にRG・I2の電圧が重畳している。
 SW1のa1とc1を接続しI2の電流が流れなくなった時では抵抗部321で生じる電圧がゼロになる。積算部32では、電流源320からVG2を生じさせる電流が流れているときの積算電圧に抵抗部321で生じる電圧が重畳しているときの電圧がしきい値電圧Vthと比較器34のオフセット電圧の和を超えたら、VG1を生じさせる電流に電流源320の電流を切替える。
 相関計測部211は、基準電圧を初期値にした後、第1粗調整回数から1を減じた回数分の粗調整単位電圧を積算した後に、微調整単位電夏を積算した積算電圧がしきい値Vthを越えるまで積算する相関計測処理を行う。
 相関計測処理は、初期値Vrefsを設定した後、ko2-1回VG2で積算した後、判定信号が変化するまでVG1で積算する。このとき判定信号が変化するまでVG1で積算をkp1とすると次式が成立する。
Figure JPOXMLDOC01-appb-M000005
 単位電圧計測部212は、グランド電圧を初期値として粗調整単位電圧を積算した積算電圧がしきい値電圧Vthを越えるまでの積算回数である第2粗調整積算回数と、微調整単位電圧を積算した積算電圧がしきい値電圧Vthを越えるまでの積算回数である第2微調整積算回数を計測する単位電圧計測処理を行う。
 単位電圧計測処理は、グランド電圧を初期値として、判定信号が変化するまで積算動作を繰り返す。粗調整単位電圧VG2と微調整単位電圧VG1での積算回数をそれぞれki2,ki1とすると次式が成立する。
Figure JPOXMLDOC01-appb-M000006
 変換時は、入力電圧Viを初期値として、判定信号が変化するまで積算動作を繰り返す。粗調整単位電圧VG2と微調整単位電圧VG1での積算回数をそれぞれkv2,kv1とすると次式が成立する。
Figure JPOXMLDOC01-appb-M000007
 校正時に計測したko2,ko1,kp1,ki2,ki1と、変換時に計測したkv2,kv1から入力電圧は次式で表せる。
Figure JPOXMLDOC01-appb-M000008
 式(8)の右辺は変換後の電圧を表す。
 比較器34のオフセット電圧Vofcや単位電圧を校正する電流I0と容量C0は温度や時間で変動するため、Vofc,I0,C0をメモリ等に記憶して式(7)を用いて変換すると変換誤差が大きくなる可能性がある。
 本実施形態に係るADコンバータ100によれば、校正時にVofcと単位電圧を校正するため変換誤差を改善することができる。
 (基準電圧の変動)
 バンドギャップレファレンスなどの集積回路で構成された低電力な基準電圧源から出力される基準電圧は温度変動や時間で変動することが知られている。本ADコンバータ100の変換動作では基準電圧Vrefmは予め記憶しているため、実際の標準基準電圧Vrefsが記憶している基準電圧Vrefmから変動すると実際の入力電圧と変換後の電圧との間に誤差が生じる。実際の標準基準電圧Vrefsでの変換値をVi,s、記憶している基準電圧Vrefmでの変換値をVi,mとすると、変換誤差は次式で表される。
Figure JPOXMLDOC01-appb-M000009
 (高精度基準電圧源を使用した校正)
 温度補償可能でツェナーダイオード等を利用した高精度基準電圧源は、温度変動に対する基準電圧の変動が小さくドリフトも小さいことが知られている。しかし、ツェナーダイオードのため電圧が大きく、温度補償のためにヒータを使用することから消費電力が大きい。このため、基準電圧源として常時校正に使用することは電池駆動の端末の連続使用時間が短くなり不向きである。
 低頻度で標準基準電圧Vrefs(第2基準電圧)の校正に使用することで端末の連続使用時間と精度を確保できる。
 本ADコンバータ100では、高精度基準電圧Vrefo(第1基準電圧)を記憶する基準電圧Vrefと等しくしておく。高精度基準電圧源を使用して校正する場合では、オフセット計測処理、相関計測処理、単位電圧計測処理に加えて基準電圧校正処理を実施する。基準電圧校正処理おいて、初期値に高精度基準電圧Vrefoを設定して、判定信号が変化するまで積算動作を繰り返す。粗調整単位電圧VG2と微調整単位電圧VG1での積算回数をそれぞれkr2,kr1とすると次式が成立する。
Figure JPOXMLDOC01-appb-M000010
 |Vrefo-Vrefs|<VG2の場合はkr2=ko2となる。この場合、式(4)と(10)の差を取ることにより、VrefoとVrefsの関係式が求められる。
Figure JPOXMLDOC01-appb-M000011
 VG1は、式(4)~(6)から以下のように導出できる。
Figure JPOXMLDOC01-appb-M000012
 式(11)と(12)からVrefsは次式で表せる。
Figure JPOXMLDOC01-appb-M000013
 式(13)を式(8)に代入すると変換後の電圧は次式で求めることができる。
Figure JPOXMLDOC01-appb-M000014
 記憶している基準電圧VremとVrefoが等しいことから、記憶している基準電圧Vremでの変換値Vi,mは式(14)と等しくなるため、実際の変換値Vi,sとの誤差はゼロとなる。
 このように、本実施形態に係るADコンバータ100は、変換精度の長期安定性が高く低消費電力である。
 以上説明したようにADコンバータ100は、温度補償された第1基準電圧を生成する第1基準電圧部10と、基準電圧で校正される第2基準電圧を生成する第2基準電圧部11と、校正時に、第1基準電圧、第2基準電圧、及びグランド電圧の何れかを初期値として単位電圧を積算した積算電圧を生成する積算部32と、積算電圧としきい値電圧を比較して判定信号を出力する比較器34と、校正時に、積算電圧が初期値からしきい値電圧を越えるまでの積算時間を計測し、単位電圧と比較器34のオフセット電圧を校正する校正制御部21と、変換時に、入力電圧を初期値とした場合の積算時間である変換積算時間と第2基準電圧を用いて入力電圧をデジタル値に変換する変換制御部22とを備える。これにより、校正のために外部に測定器が不要な自己校正機能付きADコンバータを提供することができる。
 また、校正制御部21は、第2基準電圧を初期値として粗調整単位電圧を積算した積算電圧が前記しきい値電圧を越えるまでの第1積算回数と、微調整単位電圧を積算した積算電圧がしきい値電圧を越えるまでの第2積算回数を計測するオフセット計測部210と、第2基準電圧を初期値にした後、第1積算回数から1を減した回数分粗調整単位電圧を積算した後に、微調整単位電圧を積算した積算電圧がしきい値電圧を越えるまでの第3積算回数を計測する相関計測部211と、グランド電圧を初期値として粗調整単位電圧を積算した積算電圧がしきい値電圧を越えるまでの第4積算回数と、微調整単位電圧を積算した積算電圧がしきい値電圧を越えるまでの第5積算回数を計測する単位電圧計測部212と、第2基準電圧を初期値として粗調整単位電圧を積算した積算電圧がしきい値電圧を越えるまでの第6積算回数と、微調整単位電圧を積算した積算電圧がしきい値電圧を越えるまでの第7積算回数を計測する基準電圧補正部213とを備える。
 以上の説明で示した実施形態により、比較器34のオフセットや積算単位を構成する容量等が経時変化により変動しても、比較器34のオフセットとDAコンバータのアナログ値出力部である積算部32の校正が可能であり長期安定性の高いADコンバータを提供できる。
10:第1基準電圧部
11:第2基準電圧部
20:制御部
21:校正制御部
22:変換制御部
30:積算・変換部
31:切替部
32:積算部
33:しきい値電圧部
34:比較器
100:自己校正機能付きADコンバータ
210:オフセット計測部
211:相関計測部
212:単位電圧計測部
213:基準電圧補正部
320:電流源

Claims (2)

  1.  温度補償された第1基準電圧を生成する第1基準電圧部と、
     前記第1基準電圧で校正される第2基準電圧を生成する第2基準電圧部と、
     校正時に、前記第1基準電圧、前記第2基準電圧、及びグランド電圧の何れかを初期値として単位電圧を積算した積算電圧を生成する積算部と、
     前記積算電圧としきい値電圧を比較して判定信号を出力する比較器と、
     校正時に、前記積算電圧が前記初期値から前記しきい値電圧を越えるまでの積算時間を計測し、前記単位電圧と前記比較器のオフセット電圧を校正する校正制御部と、
     変換時に、入力電圧を初期値とした場合の前記積算時間である変換積算時間と前記第2基準電圧を用いて前記入力電圧をデジタル値に変換する変換制御部と
     を備える自己校正機能付きADコンバータ。
  2.  前記校正制御部は、
     前記第2基準電圧を初期値として粗調整単位電圧を積算した前記積算電圧が前記しきい値電圧を越えるまでの第1積算回数と、微調整単位電圧を積算した前記積算電圧が前記しきい値電圧を越えるまでの第2積算回数を計測するオフセット計測部と、
     前記第2基準電圧を初期値にした後、前記第1積算回数から1を減した回数分前記粗調整単位電圧を積算した後に、前記微調整単位電圧を積算した前記積算電圧が前記しきい値電圧を越えるまでの第3積算回数を計測する相関計測部と、
     前記グランド電圧を初期値として粗調整単位電圧を積算した前記積算電圧が前記しきい値電圧を越えるまでの第4積算回数と、前記微調整単位電圧を積算した前記積算電圧が前記しきい値電圧を越えるまでの第5積算回数を計測する単位電圧計測部と、
     前記第2基準電圧を初期値として粗調整単位電圧を積算した前記積算電圧が前記しきい値電圧を越えるまでの第6積算回数と、前記微調整単位電圧を積算した前記積算電圧が前記しきい値電圧を越えるまでの第7積算回数を計測する基準電圧補正部と
     を備える請求項1に記載の自己校正機能付きADコンバータ。
PCT/JP2021/022842 2021-06-16 2021-06-16 自己校正機能付きadコンバータ WO2022264307A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/022842 WO2022264307A1 (ja) 2021-06-16 2021-06-16 自己校正機能付きadコンバータ
JP2023528834A JPWO2022264307A1 (ja) 2021-06-16 2021-06-16

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/022842 WO2022264307A1 (ja) 2021-06-16 2021-06-16 自己校正機能付きadコンバータ

Publications (1)

Publication Number Publication Date
WO2022264307A1 true WO2022264307A1 (ja) 2022-12-22

Family

ID=84526362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022842 WO2022264307A1 (ja) 2021-06-16 2021-06-16 自己校正機能付きadコンバータ

Country Status (2)

Country Link
JP (1) JPWO2022264307A1 (ja)
WO (1) WO2022264307A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020080456A (ja) * 2018-11-12 2020-05-28 日本電信電話株式会社 自己校正機能付きadコンバータ
WO2020234995A1 (ja) * 2019-05-21 2020-11-26 日本電信電話株式会社 自己校正機能付きadコンバータ
WO2021084645A1 (ja) * 2019-10-30 2021-05-06 日本電信電話株式会社 自己校正機能付きadコンバータ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020080456A (ja) * 2018-11-12 2020-05-28 日本電信電話株式会社 自己校正機能付きadコンバータ
WO2020234995A1 (ja) * 2019-05-21 2020-11-26 日本電信電話株式会社 自己校正機能付きadコンバータ
WO2021084645A1 (ja) * 2019-10-30 2021-05-06 日本電信電話株式会社 自己校正機能付きadコンバータ

Also Published As

Publication number Publication date
JPWO2022264307A1 (ja) 2022-12-22

Similar Documents

Publication Publication Date Title
JP7079914B2 (ja) 自己校正機能付きadコンバータ
US20080278359A1 (en) Analog-to-Digital Converter Offset and Gain Calibration Using Internal Voltage References
US20120200440A1 (en) A/d converter and semiconductor device
US7112950B2 (en) Integrated circuit for use with an external hall sensor, and hall sensor module
CN114553225A (zh) 用于数模转换芯片的测试装置
JP7239863B2 (ja) 自己校正機能付きadコンバータ
US7944286B2 (en) Systems and methods for filter tuning using binary search algorithm
JP7315868B2 (ja) 自己校正機能付きadコンバータ
WO2022264307A1 (ja) 自己校正機能付きadコンバータ
US11984903B2 (en) Variable reference voltage source
US9823285B2 (en) Charge measurement
JP5488159B2 (ja) 定電力制御回路
JPH0755588A (ja) 温度検出器
JP7406168B2 (ja) 自己校正機能付きadコンバータ
KR102052728B1 (ko) Adc 측정범위의 확장방법 및 장치
US7796075B2 (en) Method and apparatus for internally calibrating mixed-signal devices
US11714437B2 (en) Variable reference voltage source
KR101446759B1 (ko) 용량성 압력센서의 출력사양 조정장치
KR20120066708A (ko) 온도보상기능을 갖는 홀 집적회로
US11515858B2 (en) Time constant calibration circuit and method
JP5763558B2 (ja) 測定装置及びそれを用いた測定方法
JP2000337982A (ja) 圧力センサ回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945984

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023528834

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18563115

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21945984

Country of ref document: EP

Kind code of ref document: A1