WO2022214105A1 - 骨科手术配准装置、终端设备和存储介质 - Google Patents

骨科手术配准装置、终端设备和存储介质 Download PDF

Info

Publication number
WO2022214105A1
WO2022214105A1 PCT/CN2022/090083 CN2022090083W WO2022214105A1 WO 2022214105 A1 WO2022214105 A1 WO 2022214105A1 CN 2022090083 W CN2022090083 W CN 2022090083W WO 2022214105 A1 WO2022214105 A1 WO 2022214105A1
Authority
WO
WIPO (PCT)
Prior art keywords
bone surface
registration
model
point
points
Prior art date
Application number
PCT/CN2022/090083
Other languages
English (en)
French (fr)
Inventor
孟李艾俐
周越
Original Assignee
骨圣元化机器人(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 骨圣元化机器人(深圳)有限公司 filed Critical 骨圣元化机器人(深圳)有限公司
Publication of WO2022214105A1 publication Critical patent/WO2022214105A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2068Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis using pointers, e.g. pointers having reference marks for determining coordinates of body points
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2068Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis using pointers, e.g. pointers having reference marks for determining coordinates of body points
    • A61B2034/207Divots for calibration

Definitions

  • the embodiments of the present application belong to the technical field of medical devices, and in particular, relate to an orthopedic surgery registration device, a terminal device, and a storage medium.
  • the orthopaedic surgical robot is a robotic system that can assist orthopedic surgeons to perform precise surgical operations.
  • an orthopedic surgical robot consists of a robotic arm system, a preoperative planning system, an intraoperative positioning tracking and navigation system, and a visualization system.
  • the preoperative planning system can be used to design the surgical plan on the three-dimensional bone model obtained by the computer tomography (Computed Tomography, CT) performed before the patient's surgery.
  • CT computer tomography
  • the intraoperative positioning tracking and navigation system can ensure the accurate implementation of the preoperative planning.
  • how to correspond the three-dimensional bone model saved in the computer with the patient's real bone in the operating room and ensure the registration accuracy between the two is very important.
  • embodiments of the present application provide an orthopaedic surgery registration device, a terminal device, and a storage medium, so as to improve the registration accuracy between a three-dimensional bone model and a patient's real bone during orthopaedic surgery.
  • a first aspect of the embodiments of the present application provides an orthopaedic surgery registration device, including:
  • the rough registration module is used to obtain the bone surface coordinates of multiple bone surface marker points on the patient's bone surface, and obtain the model coordinates of multiple model marker points on the three-dimensional model that correspond to the multiple bone surface marker points one-to-one , determining a first transformation relationship according to the bone surface coordinates and the model coordinates, and using the first transformation relationship to transform the multiple bone surface marker points to obtain multiple rough registration marker points; wherein the The average Euclidean distance between the coarse registration coordinates of the plurality of coarse registration marks and the corresponding plurality of model marks is the shortest;
  • a center point fitting module configured to determine the translation vector from the model center point on the three-dimensional model to the bone surface center point on the bone surface after being converted by the first transformation relationship, and perform rough registration on the plurality of The marker points are translated along the translation vector to obtain a plurality of fitted marker points, and the first transformation relationship is updated to a second transformation relationship according to the plurality of fitted marker points;
  • the fine registration module is used for acquiring multiple bone surface area marking points of multiple preset areas on the patient's bone surface, and using the second transformation relationship to mark the multiple bone surface area marking points and the bone surface
  • the center point is converted to obtain a first bone surface fine registration point set, and a plurality of model area mark points corresponding to the plurality of bone surface area mark points in the first bone surface fine registration point set on the three-dimensional model are determined.
  • determining a third transformation relationship according to the plurality of model region marker points and the model center point and performing registration on the plurality of bone surface marker points and the plurality of model marker points according to the third transformation relationship.
  • a second aspect of the embodiments of the present application provides a terminal device, including a memory, a processor, and a computer program stored in the memory and executable on the processor, when the processor executes the computer program Implement the following steps:
  • the bone surface coordinates of multiple bone surface marker points on the patient's bone surface and obtain the model coordinates of multiple model marker points on the three-dimensional model that correspond to the multiple bone surface marker points one-to-one, according to the bone surface coordinates Determine a first transformation relationship with the model coordinates, and use the first transformation relationship to transform the multiple bone surface marker points to obtain multiple rough registration marker points; wherein, the multiple rough registration marker points The average Euclidean distance between the rough registration coordinates and the corresponding multiple model marker points is the shortest;
  • multiple bone surface area marker points of multiple preset areas on the patient's bone surface and use the second transformation relationship to convert the multiple bone surface area marker points and the bone surface center point to obtain the first a set of bone surface fine registration points, determine multiple model area marker points on the three-dimensional model that correspond to multiple bone surface area marker points in the first bone surface fine registration point set, and according to the multiple models
  • the region marker point and the model center point determine a third transformation relationship, and the plurality of bone surface marker points and the multiple model marker points are registered according to the third transformation relationship.
  • a third aspect of the embodiments of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the following steps are implemented:
  • the bone surface coordinates of multiple bone surface marker points on the patient's bone surface and obtain the model coordinates of multiple model marker points on the three-dimensional model that correspond to the multiple bone surface marker points one-to-one, according to the bone surface coordinates Determine a first transformation relationship with the model coordinates, and use the first transformation relationship to transform the multiple bone surface marker points to obtain multiple rough registration marker points; wherein, the multiple rough registration marker points The average Euclidean distance between the rough registration coordinates and the corresponding multiple model marker points is the shortest;
  • multiple bone surface area marker points of multiple preset areas on the patient's bone surface and use the second transformation relationship to convert the multiple bone surface area marker points and the bone surface center point to obtain the first a set of bone surface fine registration points, determine multiple model area marker points on the three-dimensional model that correspond to multiple bone surface area marker points in the first bone surface fine registration point set, and according to the multiple models
  • the region marker point and the model center point determine a third transformation relationship, and the plurality of bone surface marker points and the multiple model marker points are registered according to the third transformation relationship.
  • a fourth aspect of the embodiments of the present application provides a computer program product that, when the computer program product runs on a terminal device, causes the terminal device to perform the following steps:
  • the bone surface coordinates of multiple bone surface marker points on the patient's bone surface and obtain the model coordinates of multiple model marker points on the three-dimensional model that correspond to the multiple bone surface marker points one-to-one, according to the bone surface coordinates Determine a first transformation relationship with the model coordinates, and use the first transformation relationship to transform the multiple bone surface marker points to obtain multiple rough registration marker points; wherein, the multiple rough registration marker points The average Euclidean distance between the rough registration coordinates and the corresponding multiple model marker points is the shortest;
  • multiple bone surface area marker points of multiple preset areas on the patient's bone surface and use the second transformation relationship to convert the multiple bone surface area marker points and the bone surface center point to obtain the first a set of bone surface fine registration points, determine multiple model area marker points on the three-dimensional model that correspond to multiple bone surface area marker points in the first bone surface fine registration point set, and according to the multiple models
  • the region marker point and the model center point determine a third transformation relationship, and the plurality of bone surface marker points and the multiple model marker points are registered according to the third transformation relationship.
  • the embodiments of the present application include the following advantages:
  • the orthopaedic surgery registration device When performing femur or tibia registration, the orthopaedic surgery registration device provided in the embodiment of the present application sequentially goes through the steps of rough registration, center point fitting, and fine registration, and incorporates the center point of the femoral head and the center point of the ankle joint into the registration. In the whole process, the mechanical axis of the femur and the mechanical axis of the tibia are constrained during the registration process, which effectively improves the registration accuracy and reduces the probability of the prosthesis tilting in the sagittal plane.
  • FIG. 1 is a schematic diagram of an orthopaedic surgery registration device according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a step of femur registration according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a step of tibia registration according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • registration registration In the process of using orthopaedic surgery robot-assisted surgery, after the affected area is exposed, a step called “registration registration” is usually required. The operation can be completed according to the surgical planning scheme to ensure the accuracy and effectiveness of the prosthesis installation.
  • the industry-recognized indicators for evaluating the accuracy and effectiveness of prosthesis installation include:
  • Frontal tibial component angle (FTC): on the full-length X-ray film of the lower extremity under weight-bearing in standing position, the tangent of the medial and lateral platforms of the tibia is taken as the transverse axis of the tibia, and the angle between the axis and the mechanical axis of the tibia is measured, that is, the coronal axis.
  • Facial tibial component angle ideally 90°.
  • Frontal femoral component on the full-length X-ray film of the standing weight-bearing lower extremity, the tangent of the medial and lateral condyles of the femur is the transverse axis of the femoral side of the knee joint, and the clamp between this axis and the mechanical axis of the femur is measured.
  • the angle is the coronal femoral component angle, ideally 90°.
  • Sagittal femoral component angle (lateral femoral component, LFC): measure the angle between the axis of the femoral prosthesis and the femoral mechanical axis on the lateral X-ray of the knee joint, that is, the sagittal femoral component angle, the ideal value is 0°.
  • Sagittal tibial component angle (lateral tibial component, LTC): the angle between the transverse axis of the tibial prosthesis and the mechanical axis of the tibia, that is, the sagittal tibial component angle.
  • LTC lateral tibial component
  • the mechanical axes of femur and tibia are the core reference axes, so how to accurately evaluate the mechanical axes of femur and tibia in robot-assisted surgery is very important.
  • the mechanical axis of the femur is the line connecting the center point of the femoral head to the center point of the distal femur
  • the mechanical axis of the tibia is the line connecting the center point of the ankle joint to the center point of the tibial plateau. Therefore, the positioning accuracy of the center point of the femoral head and the center point of the ankle joint directly determines the accuracy of the entire prosthesis installation.
  • the fitting results obtained by the above-mentioned traditional SVD-ICP registration algorithm always have errors.
  • the errors of the femoral mechanical axis and the tibial mechanical axis are not completely constrained in the traditional SVD-ICP algorithm, which often leads to the unsatisfactory installation position of the prosthesis in the sagittal plane, which is commonly known as the prosthesis head-up/ Head down.
  • the embodiments of the present application provide an orthopaedic surgery registration device, a terminal device and a storage medium.
  • the algorithm incorporated into the whole process of registration restricts the mechanical axis of the femur and the mechanical axis of the tibia during the registration process, which effectively improves the registration accuracy and reduces the probability of the prosthesis tilting in the sagittal plane.
  • FIG. 1 a schematic diagram of an orthopaedic surgery registration device according to an embodiment of the present application is shown, and the device may specifically include a coarse registration module 101 , a center point fitting module 102 and a fine registration module 103 . in:
  • the rough registration module is used to obtain the bone surface coordinates of multiple bone surface marker points on the patient's bone surface, and obtain the model coordinates of multiple model marker points on the three-dimensional model that correspond one-to-one with the above-mentioned multiple bone surface marker points,
  • the first transformation relationship is determined according to the bone surface coordinates and the model coordinates, and the first transformation relationship is used to transform the multiple bone surface marker points to obtain multiple rough registration marker points; wherein, the rough registration of the multiple rough registration marker points
  • the average Euclidean distance between the coordinates and the corresponding multiple model markers is the shortest.
  • the center point fitting module is used to determine the translation vector from the model center point on the three-dimensional model converted by the first transformation relationship to the bone surface center point on the bone surface, and translate the plurality of rough registration mark points along the translation vector , obtain multiple fitting markers, and update the first transformation relation to the second transformation relation according to the multiple fitting markers.
  • the fine registration module is used to obtain multiple bone surface area marker points of multiple preset areas on the patient's bone surface, and use the second transformation relationship to convert the multiple bone surface area marker points and the bone surface center point to obtain the first Bone surface fine registration point set, to determine multiple model area marker points on the 3D model that correspond one-to-one with multiple bone surface area marker points in the first bone surface fine registration point set, and according to the multiple model area marker points and the model center point A third transformation relationship is determined, and the multiple bone surface marker points and the multiple model marker points are registered according to the third transformation relationship.
  • orthopaedic surgery registration device to perform registration during orthopaedic surgery mainly includes three steps, namely: a rough registration step, a femoral head center point/ankle joint center point fitting step, and a fine registration step.
  • the three-dimensional model may be a three-dimensional model of the patient's femur and tibia obtained by performing a CT scan on the affected part of the patient and performing image segmentation according to the CT scan result before surgery.
  • the coarse registration module can obtain multiple model marker points from the above-mentioned three-dimensional models of the femur and tibia.
  • the above-mentioned multiple model marking points can be further divided into femoral marking points and tibia marking points.
  • registration refers to one-to-one correspondence between multiple model marker points in the three-dimensional model and multiple bone surface marker points on the patient's bone surface.
  • the bone surface marking points and the above-mentioned model marking points have a one-to-one correspondence. That is, the bone surface marking points may also include a plurality of marking points shown in Table 1 above.
  • most of the bone surface marking points may be obtained by a doctor using a probe to select the bone surface of the patient during the operation.
  • the marked points with serial numbers 1-7 and 11-15 in Table 1 can be determined by the doctor using a probe to click on the patient's bone surface.
  • the femoral marker points 1-7 in Table 1 are all distributed on the side of the distal end of the femur, and the marker point 8 is located at the proximal end.
  • the marker point 8 cannot be directly selected by the probe. obtained by way of bone surface.
  • the industry-recognized method is to rigidly fix the reflective ball bracket on the femur, shake the thigh repeatedly to make the knee joint perform a circular motion, and use an infrared navigator to record the three-dimensional motion trajectory of the femur during this process. From this the center of the femoral head is calculated. Similarly, the markers 9-10 of the tibia are located at the distal end of the tibia, and the markers 11-15 are distributed at the proximal end of the tibia. During the operation, the marker points 9-10 cannot be obtained directly by the probe to select the bone surface. The information of the bone surface marker points determined above can be further processed by the coarse registration module.
  • the purpose of rough registration is to find the first transformation relationship (R 0 , t 0 ), so that each bone surface marker point in b is transformed by (R 0 , t 0 ) and corresponds to each model marker point in a
  • the average Euclidean distance is the shortest.
  • the rough registration module can use the following formula to determine the first transformation relationship:
  • (R 0 , t 0 ) is the first transformation relationship
  • w i is the weight value of each bone surface marker point
  • n is the number of multiple bone surface marker points
  • the multiple bone surface marker points include femur marker points or tibia markers Mark the point.
  • the weight values wi of the above-mentioned respective bone surface marking points are all equal.
  • the femoral markers include lateral epicondyle markers, medial epicondyle markers, distal femoral lateral markers, distal femoral medial markers, and femoral markers.
  • the lateral marking point of the posterior condyle, the medial marking point of the posterior femoral condyle, the marking point of the distal end of the femur and the center point of the bone surface, the center point of the bone surface is the center point of the femoral head. That is, the femoral marking points include the marking points No. 1-8 in Table 1.
  • the tibial markers include the tibial plateau center marker, the tibial tubercle marker, the posterior cruciate ligament insertion center marker, the tibial plateau lateral marker, the tibial plateau medial marker, and the tibial plateau marker.
  • the center point of the surface, the center point of the bone surface is the center point of the tibial ankle joint determined according to the marking point of the lateral malleolus and the marking point of the medial malleolus.
  • the position of the center point of the tibial ankle joint is a position on the line connecting the lateral malleolus mark point and the medial malleolus mark point and a predetermined proportional length away from the medial malleolus. That is, the tibial marking points include the marking points of Nos. 11-15 in Table 1, and the marking points obtained based on the marking points of No. 9-10 in Table 1 (the center point of the tibial ankle joint).
  • serial number 16 refers to the above-mentioned center point of the tibial ankle joint.
  • the above-mentioned preset ratio may be greater than 40% and less than 50%.
  • the preset ratio may be 46%, that is, the position of the center point of the tibial ankle joint is the position on the line connecting the lateral malleolus mark point and the medial malleolus mark point and 46% of the length away from the medial malleolus.
  • multiple bone surface marker points are transformed by using the first transformation relationship, multiple rough registration marker points can be obtained.
  • the center point fitting module can be used to perform the second step, that is, the fitting step of the center point of the femoral head/ankle joint.
  • the center point fitting module may first determine a translation vector, which may refer to a translation vector from the center point of the model to the center point of the bone surface after being transformed by the first transformation relationship.
  • the center point fitting module can use the following formula to determine the translation vector:
  • a m is the model coordinate of the model center point
  • b m is the bone surface coordinate of the bone surface center point
  • the fine registration module can be used to perform the fine registration step.
  • the fine registration step in the embodiment of the present application is an improvement based on the traditional SVD-ICP algorithm, which makes it more suitable for robot-assisted orthopaedic surgery.
  • the fine registration module may first obtain multiple bone surface area marking points of multiple preset areas on the patient's bone surface, and use the second transformation relationship to identify the multiple bone surface area marking points and the bone surface center point. Perform the transformation to obtain the first set of fine registration points on the bone surface.
  • the multiple preset regions may include the anterior femoral condyle region, the anterior femoral bevel region, the distal femoral region and the femoral posterior bevel region; when the fine registration module is used for During tibial registration, the plurality of preset regions may include a lateral tibial plateau region, a medial tibial plateau region, an anteromedial region, and an anterolateral region.
  • the fine registration module may execute step S2, and use the method of calculating the shortest distance from the point to the surface to determine multiple model area markers on the three-dimensional model that correspond one-to-one with multiple bone surface area marker points in the first bone surface fine registration point set
  • the first model precise registration point set can be obtained according to the multiple model area mark points and the model center point.
  • the fine registration module executes step S3, and determines a third transformation relationship (R 1 , t 1 ) according to the first bone surface fine registration point set and the first model fine registration point set.
  • the average Euclidean distance between the coordinates of each marker point in the first bone surface fine registration point set is transformed by the third transformation relationship and the corresponding coordinates of each marker point in the first model fine registration point set is the shortest.
  • the fine registration module can repeat the above steps S2 and S3 until the average Euclidean distance is less than the preset threshold r after p times of transformation:
  • the fine registration module can collect k markers from the lateral area of the tibial plateau, the medial area of the tibial plateau, the anteromedial area, and the anterolateral area, and then use the above-mentioned tibial ankle joint center point as the kth +1 point for inclusion in the point set.
  • the tibial registration is completed.
  • the obtained registration result is constrained by the position of the center point of the femoral head/ankle joint at each step in the cycle, and the obtained registration
  • the result ensures a more accurate femoral mechanical axis/tibial mechanical axis, which in turn ensures a more accurate coronal/sagittal femoral/tibial component angle, which effectively improves the registration accuracy and reduces the prosthesis in the sagittal plane. Probability of tilting.
  • FIG. 2 a schematic diagram of steps of femur registration according to an embodiment of the present application is shown, which may specifically include the following steps:
  • biomarkers may refer to the markers with serial numbers 1-8 in Table 1.
  • the biomarker point obtained by clicking in S202 is the model marker point in the foregoing embodiment.
  • the marked points numbered 1-7 in Table 1 can be obtained directly by the probe point selection.
  • the knee joint is made to draw a circle by shaking the patient's thigh repeatedly, and then In this process, the infrared navigator is used to record the three-dimensional motion trajectory of the femur, and the center point of the femoral head with the serial number 8 in Table 1 can be calculated from this.
  • the corresponding biomarker points obtained in S203 are the bone surface marker points in the foregoing embodiment.
  • the above-mentioned model coordinate system is the first coordinate system in the foregoing embodiment, and the femur coordinate system is the second coordinate system in the foregoing embodiment.
  • wi is the weight value of each marker point.
  • the weight values of all marked points are equal.
  • the above S201-S204 can be implemented by the coarse registration module in the foregoing embodiment.
  • This step is to fit the center point of the femoral head.
  • t 0' be the translation vector from a 8 to b 8 after (R f0 , t f0 ) transformation. which is:
  • the above S205 may be implemented by the center point fitting module in the foregoing embodiment.
  • the registration points of the above-mentioned femoral surface can be collected by the doctor using a probe on the patient's femoral surface according to multiple areas such as the anterior condyle of the femur, the anterior oblique surface of the femur, the distal end of the femur, and the posterior oblique surface of the femur.
  • Point b8 is included in the point set as the k+1th point to form the original point set for fine registration.
  • the above-mentioned fine-registration original point set is the first bone-surface fine-registration point set in the foregoing embodiment.
  • S207 Acquire the corresponding points of all the original points of fine registration in the three-dimensional model, and form a corresponding point set together with the center point of the femur in the three-dimensional model.
  • the shortest distance from the point to the surface (the surface of the 3D model is a mesh mesh composed of many triangles) can be calculated for the first k points (marked points on the bone surface) in the original point set of fine registration.
  • the corresponding point e 1 i of d 1 i on the three-dimensional model .
  • the corresponding point e 1 k+1 of d 1 k+1 on the three-dimensional model coincide with the center point a 8 of the femoral head in the three-dimensional model to form a set of corresponding points together.
  • the above transformation relationship is the third transformation relationship in the foregoing embodiment, and the third transformation relationship can make the average Euclidean distance between the original point of the fine registration after transformation and the corresponding point the shortest.
  • the third transformation relationship (R f1 , t f1 ) is searched, so that after the mark point in d 1 is transformed, the Euclidean distance between the mark point in e 1 and the mark point in e 1 is the shortest. which is:
  • the above S206-S209 can be implemented by the fine registration module in the foregoing embodiment.
  • the registration result obtained during the fine registration process is constrained by the position of the center point of the femoral head at each step in the cycle, and the obtained registration result ensures a more accurate femoral mechanical axis, thereby ensuring A more accurate coronal/sagittal femoral component angle helps to improve the accuracy of registration and reduce the probability of prosthesis tilting in the sagittal plane.
  • FIG. 3 a schematic diagram of steps of tibia registration according to an embodiment of the present application is shown, which may specifically include the following steps:
  • biomarkers may refer to the markers with serial numbers 9-15 in Table 1.
  • the biomarker point obtained by clicking in S302 is the model marker point in the foregoing embodiment.
  • the doctor obtains the corresponding biomarker points by means of probe selection, and uses the pre-defined ankle joint center point to replace the inner and outer ankle marker points.
  • the center point of the ankle joint is defined as the position on the connecting line between the inner and outer ankles that is 46% of the length of the line from the medial malleolus.
  • model coordinate system is the first coordinate system in the foregoing embodiment
  • tibia coordinate system is the second coordinate system in the foregoing embodiment.
  • the model coordinate system where the three-dimensional model of the tibia is located is C mt
  • the tibial coordinate system where the patient's real femur is located is C t .
  • a ⁇ a 9 , a 10 , .
  • the ankle joint center point in the three-dimensional model is a 16
  • the ankle joint center point on the real tibia is marked as b 16
  • b ⁇ b 11 , b 12 , ..., b 16 ⁇ .
  • the purpose of rough registration is to find the transformation relationship (R t0 , t t0 ), so that the Euclidean distance between the marked points in b and the marked points in a is the shortest after (R t0 , t t0 ) transformation. which is:
  • wi is the weight value of each marker point.
  • the weight values of all marked points are equal.
  • the above S301-S304 can be implemented by the coarse registration module in the foregoing embodiment.
  • This step is to fit the center point of the ankle joint.
  • t 0' be the translation vector of a 16 to b 16 after (R t0 , t t0 ) transformation. which is:
  • t t0′ (R t0 b 16 +t t0 )-a 16
  • the above S305 can be implemented by the center point fitting module in the foregoing embodiment.
  • the registration point of the above-mentioned tibial bone surface can be collected by a doctor using a probe on the patient's tibia surface according to multiple regions such as the outer side of the tibial plateau, the inner side of the tibial plateau, the anteromedial side, and the anterolateral side.
  • As the k+1th point it is included in the point set to form the original point set for fine registration.
  • the above-mentioned fine-registration original point set is the first bone-surface fine-registration point set in the foregoing embodiment.
  • S307 Acquire the corresponding points of all the original points of fine registration in the three-dimensional model, and form a set of corresponding points together with the center point of the ankle joint in the three-dimensional model.
  • the shortest distance from the point to the surface (the surface of the 3D model is a mesh mesh composed of many triangles) can be calculated for the first k points (marked points on the bone surface) in the original point set of fine registration.
  • the corresponding point e 1 i of d 1 i on the three-dimensional model .
  • the corresponding point e 1 k+1 of d 1 k+1 on the three-dimensional model coincide with the center point a 16 of the ankle joint in the three-dimensional model to form a set of corresponding points together.
  • the above transformation relationship is the third transformation relationship in the foregoing embodiment, and the third transformation relationship can make the average Euclidean distance between the original point of the fine registration after transformation and the corresponding point the shortest.
  • the third transformation relation (R t1 , t t1 ) is searched, so that after the mark point in d 1 is transformed, the Euclidean distance between the mark point in e 1 and the mark point in e 1 is the shortest. which is:
  • the registration result obtained during the fine registration process is constrained by the position of the center point of the ankle joint at each step in the cycle, and the obtained registration result ensures a more accurate tibial mechanical axis, thereby ensuring A more accurate coronal/sagittal tibial component angle helps to improve the accuracy of registration and reduce the probability of prosthesis tilting in the sagittal plane.
  • the terminal device 400 in this embodiment includes: a processor 410 , a memory 420 , and a computer program 421 stored in the memory 420 and running on the processor 410 .
  • the processor 410 executes the computer program 421
  • the femoral registration step or the tibial registration step in the above-mentioned embodiments is implemented, for example, steps S201 to S209 shown in FIG. 2 , or steps S301 to S309 shown in FIG. 3 .
  • the processor 410 executes the computer program 421
  • the functions of the modules/units in each of the foregoing apparatus embodiments, such as the functions of the modules 101 to 103 shown in FIG. 1 are implemented.
  • the computer program 421 may be divided into one or more modules/units, and the one or more modules/units are stored in the memory 420 and executed by the processor 410 to complete the this application.
  • the one or more modules/units may be a series of computer program instruction segments capable of performing specific functions, and the instruction segments may be used to describe the execution process of the computer program 421 in the terminal device 400 .
  • the computer program 421 can be divided into a rough registration module, a center point fitting module, and a fine registration module, and the specific functions of each module are as follows:
  • the rough registration module is used to obtain the bone surface coordinates of multiple bone surface marker points on the patient's bone surface, and obtain the model coordinates of multiple model marker points on the three-dimensional model that correspond to the multiple bone surface marker points one-to-one , determining a first transformation relationship according to the bone surface coordinates and the model coordinates, and using the first transformation relationship to transform the multiple bone surface marker points to obtain multiple rough registration marker points; wherein the The average Euclidean distance between the coarse registration coordinates of the plurality of coarse registration marks and the corresponding plurality of model marks is the shortest;
  • a center point fitting module configured to determine the translation vector from the model center point on the three-dimensional model to the bone surface center point on the bone surface after being converted by the first transformation relationship, and perform rough registration on the plurality of The marker points are translated along the translation vector to obtain a plurality of fitted marker points, and the first transformation relationship is updated to a second transformation relationship according to the plurality of fitted marker points;
  • the fine registration module is used for acquiring multiple bone surface area marking points of multiple preset areas on the patient's bone surface, and using the second transformation relationship to mark the multiple bone surface area marking points and the bone surface
  • the center point is converted to obtain a first bone surface fine registration point set, and a plurality of model area mark points corresponding to the plurality of bone surface area mark points in the first bone surface fine registration point set on the three-dimensional model are determined.
  • determining a third transformation relationship according to the plurality of model region marker points and the model center point and performing registration on the plurality of bone surface marker points and the plurality of model marker points according to the third transformation relationship.
  • the terminal device 400 may include, but is not limited to, a processor 410 and a memory 420 .
  • FIG. 4 is only an example of the terminal device 400, and does not constitute a limitation on the terminal device 400. It may include more or less components than the one shown, or combine some components, or different components, for example, the terminal device 400 may also include input and output devices, network access devices, buses, and the like.
  • the processor 410 may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), Off-the-shelf programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory 420 may be an internal storage unit of the terminal device 400 , such as a hard disk or a memory of the terminal device 400 .
  • the memory 420 may also be an external storage device of the terminal device 400, such as a plug-in hard disk, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) equipped on the terminal device 400 Card, Flash Card, etc.
  • the memory 420 may also include both an internal storage unit of the terminal device 400 and an external storage device.
  • the memory 420 is used to store the computer program 421 and other programs and data required by the terminal device 400 .
  • the memory 420 may also be used to temporarily store data that has been output or will be output.
  • An embodiment of the present application further discloses a terminal device, including a memory, a processor, and a computer program stored in the memory and running on the processor, where the processor implements the following steps when executing the computer program :
  • the bone surface coordinates of multiple bone surface marker points on the patient's bone surface and obtain the model coordinates of multiple model marker points on the three-dimensional model that correspond to the multiple bone surface marker points one-to-one, according to the bone surface coordinates Determine a first transformation relationship with the model coordinates, and use the first transformation relationship to transform the multiple bone surface marker points to obtain multiple rough registration marker points; wherein, the multiple rough registration marker points The average Euclidean distance between the rough registration coordinates and the corresponding multiple model marker points is the shortest;
  • multiple bone surface area marker points of multiple preset areas on the patient's bone surface and use the second transformation relationship to convert the multiple bone surface area marker points and the bone surface center point to obtain the first a set of bone surface fine registration points, determine multiple model area marker points on the three-dimensional model that correspond to multiple bone surface area marker points in the first bone surface fine registration point set, and according to the multiple models
  • the region marker point and the model center point determine a third transformation relationship, and the plurality of bone surface marker points and the multiple model marker points are registered according to the third transformation relationship.
  • the processor implements the following steps when executing the computer program:
  • a first coordinate system is constructed for the three-dimensional model, and model coordinates ⁇ a 1 , a 2 , ..., a n ⁇ of multiple model marker points on the three-dimensional model are obtained in the first coordinate system;
  • the patient's bone surface constructs a second coordinate system, obtains the bone surface coordinates ⁇ b 1 , b 2 , ..., bn ⁇ of the plurality of bone surface marker points in the second coordinate system, and uses the following formula to determine the Describe the first transformation relationship:
  • (R 0 , t 0 ) is the first transformation relationship
  • wi is the weight value of each bone surface marker point
  • n is the number of the multiple bone surface marker points
  • the multiple bone surface marker points Include femoral markers or tibial markers.
  • the femoral marker points include a lateral epicondyle marker, a medial epicondyle marker, a distal femoral lateral marker, a distal femoral marker
  • the tibial marker when the processor executes the computer program for tibial registration, includes a tibial plateau center marker, a tibial tubercle marker, a posterior cruciate ligament insertion center marker, The outer marking point of the tibial plateau, the inner marking point of the tibial plateau, and the center point of the bone surface, the center point of the bone surface being the center point of the tibial ankle joint determined according to the marking point of the lateral malleolus and the marking point of the medial malleolus.
  • the position of the center point of the tibial ankle joint is a position on the line connecting the lateral malleolus mark point and the medial malleolus mark point and a predetermined proportional length away from the medial malleolus.
  • the processor implements the following steps when executing the computer program:
  • the processor implements the following steps when executing the computer program:
  • the plurality of preset regions when the processor executes the computer program for femoral registration, include an anterior femoral condyle region, an anterior femoral oblique region, a distal femoral region, and a femoral posterior oblique region ;
  • the plurality of preset regions include a lateral tibial plateau region, a medial region of the tibial plateau, an anteromedial region and an anterolateral region.
  • the embodiment of the present application further discloses a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the following steps are implemented:
  • the bone surface coordinates of multiple bone surface marker points on the patient's bone surface and obtain the model coordinates of multiple model marker points on the three-dimensional model that correspond to the multiple bone surface marker points one-to-one, according to the bone surface coordinates Determine a first transformation relationship with the model coordinates, and use the first transformation relationship to transform the multiple bone surface marker points to obtain multiple rough registration marker points; wherein, the multiple rough registration marker points The average Euclidean distance between the rough registration coordinates and the corresponding multiple model marker points is the shortest;
  • multiple bone surface area marker points of multiple preset areas on the patient's bone surface and use the second transformation relationship to convert the multiple bone surface area marker points and the bone surface center point to obtain the first a set of bone surface fine registration points, determine multiple model area marker points on the three-dimensional model that correspond to multiple bone surface area marker points in the first bone surface fine registration point set, and according to the multiple models
  • the region marker point and the model center point determine a third transformation relationship, and the plurality of bone surface marker points and the multiple model marker points are registered according to the third transformation relationship.
  • a first coordinate system is constructed for the three-dimensional model, and model coordinates ⁇ a 1 , a 2 , ..., a n ⁇ of multiple model marker points on the three-dimensional model are obtained in the first coordinate system;
  • the patient's bone surface constructs a second coordinate system, obtains the bone surface coordinates ⁇ b 1 , b 2 , ..., bn ⁇ of the plurality of bone surface marker points in the second coordinate system, and uses the following formula to determine the Describe the first transformation relationship:
  • (R 0 , t 0 ) is the first transformation relationship
  • wi is the weight value of each bone surface marker point
  • n is the number of the multiple bone surface marker points
  • the multiple bone surface marker points Include femoral markers or tibial markers.
  • the femoral markers when the computer program is executed by the processor for femoral registration, include lateral epicondyle markers, medial epicondyle markers, distal femoral lateral markers, and distal femoral markers.
  • the tibial landmarks include the tibial plateau center landmark, the tibial tuberosity landmark, the posterior cruciate ligament insertion centre landmark, the tibial plateau landmark
  • the position of the center point of the tibial ankle joint is a position on the line connecting the lateral malleolus mark point and the medial malleolus mark point and a predetermined proportional length away from the medial malleolus.
  • the plurality of preset regions when the computer program is executed by the processor for femoral registration, include an anterior femoral condyle region, an anterior femoral bevel region, a distal femoral region and a posterior femoral bevel region;
  • the plurality of preset regions when the computer program is executed by the processor for tibial registration, include a lateral tibial plateau region, a medial tibial plateau region, an anteromedial region, and an anterolateral region.
  • the embodiment of the present application further discloses a computer program product, when the computer program product runs on a terminal device, the terminal device is made to perform the following steps:
  • the bone surface coordinates of multiple bone surface marker points on the patient's bone surface and obtain the model coordinates of multiple model marker points on the three-dimensional model that correspond to the multiple bone surface marker points one-to-one, according to the bone surface coordinates Determine a first transformation relationship with the model coordinates, and use the first transformation relationship to transform the multiple bone surface marker points to obtain multiple rough registration marker points; wherein, the multiple rough registration marker points The average Euclidean distance between the rough registration coordinates and the corresponding multiple model marker points is the shortest;
  • multiple bone surface area marker points of multiple preset areas on the patient's bone surface and use the second transformation relationship to convert the multiple bone surface area marker points and the bone surface center point to obtain the first a set of bone surface fine registration points, determine multiple model area marker points on the three-dimensional model that correspond to multiple bone surface area marker points in the first bone surface fine registration point set, and according to the multiple models
  • the region marker point and the model center point determine a third transformation relationship, and the plurality of bone surface marker points and the multiple model marker points are registered according to the third transformation relationship.
  • the terminal device when the computer program product runs on a terminal device, the terminal device is caused to perform the following steps:
  • a first coordinate system is constructed for the three-dimensional model, and model coordinates ⁇ a 1 , a 2 , ..., a n ⁇ of multiple model marker points on the three-dimensional model are obtained in the first coordinate system;
  • the patient's bone surface constructs a second coordinate system, obtains the bone surface coordinates ⁇ b 1 , b 2 , ..., bn ⁇ of the plurality of bone surface marker points in the second coordinate system, and uses the following formula to determine the Describe the first transformation relationship:
  • (R 0 , t 0 ) is the first transformation relationship
  • wi is the weight value of each bone surface marker point
  • n is the number of the multiple bone surface marker points
  • the multiple bone surface marker points Include femoral markers or tibial markers.
  • the femoral marker points include a lateral epicondyle marker point, a medial epicondyle marker point, a distal femur marker lateral marking point, medial marking point of distal end of femur, lateral marking point of posterior femoral condyle, medial marking point of posterior femoral condyle, center marking point of distal femur and said bone surface center point, said bone surface center point being the center point of femoral head .
  • the tibial marker points include a tibial plateau center marker point, a tibial tubercle marker point, a posterior cruciate ligament marker
  • the position of the center point of the tibial ankle joint is a position on the line connecting the lateral malleolus mark point and the medial malleolus mark point and a predetermined proportional length away from the medial malleolus.
  • the terminal device when the computer program product runs on a terminal device, the terminal device is caused to perform the following steps:
  • the terminal device when the computer program product runs on a terminal device, the terminal device is caused to perform the following steps:
  • the plurality of preset regions include an anterior femoral condyle region, an anterior femoral oblique region, and a distal femur region. area and the femoral posterior slope area; when the computer program product is run on the terminal device so that the terminal device performs tibial registration, the plurality of preset areas include the lateral tibial plateau area, the medial tibial plateau area, and the anteromedial area. and the anterolateral region.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Robotics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)
  • Image Processing (AREA)

Abstract

本申请实施例适用于医疗器械技术领域,提供了一种骨科手术配准装置、终端设备和存储介质,该装置包括:粗配准模块,用于根据多个骨面标记点以及多个模型标记点确定第一变换关系,采用第一变换关系对多个骨面标记点进行转换,得到多个粗配准标记点;中心点拟合模块,用于确定平移向量,将多个粗配准标记点沿平移向量进行平移,得到多个拟合标记点,将第一变换关系更新为第二变换关系;精配准模块,用于获取多个骨面区域标记点,采用第二变换关系对多个骨面区域标记点和骨面中心点进行转换,得到第一骨面精配准点集,确定多个模型区域标记点,根据第三变换关系对多个骨面标记点和多个模型标记点进行配准。采用该装置可提高骨科手术配准的精度。

Description

骨科手术配准装置、终端设备和存储介质
本申请要求于2021年4月9日在中国专利局提交的、申请号为202110380859.X的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例属于医疗器械技术领域,特别是涉及一种骨科手术配准装置、终端设备和存储介质。
背景技术
随着人均寿命的增长,人口老龄化进程的加快,骨科病的发病率也在不断增长,骨科手术的需求量逐年上升。作为最常见的骨科手术术式之一,关节置换手术的复杂度高,在手术过程中,既要保证三维空间的准确截骨以及与假体的准确匹配,又要注意软组织平衡,对医生的技巧及经验都提出了极高的要求。
骨科手术机器人是一种能够协助骨外科医生进行精准手术操作的机器人***,其优势在于手术精准度高、患者创伤小、术后恢复快,并能降低医生操作强度。通常,骨科手术机器人由机械臂***、术前规划***、术中定位跟踪导航***以及可视化***等组成。其中,术前规划***可用于在患者手术前进行的电子计算机断层扫描(Computed Tomography,CT)得出的骨头三维模型上进行手术方案设计。在手术过程中,通过术中定位跟踪导航***可确保术前规划方案得到精准的执行。为了确保上述过程顺利完成,如何将电脑中保存的骨头三维模型与手术室中的患者真实骨头进行对应,保证二者之间的配准精度就至关重要。
技术问题
有鉴于此,本申请实施例提供了一种骨科手术配准装置、终端设备和存储介质,用以提高在骨科手术过程中骨头三维模型与患者真实骨头之间的配准精度。
技术解决方案
本申请实施例的第一方面提供了一种骨科手术配准装置,包括:
粗配准模块,用于获取患者骨面上的多个骨面标记点的骨面坐标,以及获取三维模型上与所述多个骨面标记点一一对应的多个模型标记点的模型坐标,根据所述骨面坐标和所述模型坐标确定第一变换关系,采用所述第一变换关系对所述多个骨面标记点进行转换,得到多个粗配准标记点;其中,所述多个粗配准标记点的粗配准坐标与对应的所述多个模型标记点之间的平均欧氏距离最短;
中心点拟合模块,用于确定经所述第一变换关系转换后所述三维模型上的模型中心点到所述骨面上的骨面中心点的平移向量,将所述多个粗配准标记点沿所述平移向量进行平移,得到多个拟合标记点,根据所述多个拟合标记点将所述第一变换关系更新为第二变换关系;
精配准模块,用于获取所述患者骨面上多个预设区域的多个骨面区域标记点,采用所述第二变换关系对所述多个骨面区域标记点和所述骨面中心点进行转换,得到第一骨面精配准点集,确定所述三维模型上与所述第一骨面精配准点集中的多个骨面区域标记点一一对应的多个模型区域标记点,根据所述多个模型区域标记点和所述模型中心点确定第三变换关系,根据所述第三变换关系对所述多个骨面标记点和所述多个模型标记点进行配准。
本申请实施例的第二方面提供了一种终端设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如下步骤:
获取患者骨面上的多个骨面标记点的骨面坐标,以及获取三维模型上与所述多个骨面标记点一一对应的多个模型标记点的模型坐标,根据所述骨面坐标和所述模型坐标确定第一变换关系,采用所述第一变换关系对所述多个骨面标记点进行转换,得到多个粗配准标记点;其中,所述多个粗配准标记点的粗配准坐标与对应的所述多个模型标记点之间的平均欧氏距离最短;
确定经所述第一变换关系转换后所述三维模型上的模型中心点到所述骨面上的骨面中心点的平移向量,将所述多个粗配准标记点沿所述平移向量进行平移,得到多个拟合标记点,根据所述多个拟合标记点将所述第一变换关系更新为第二变换关系;
获取所述患者骨面上多个预设区域的多个骨面区域标记点,采用所述第二变换关系对所述多个骨面区域标记点和所述骨面中心点进行转换,得到第一骨面精配准点集,确定所述三维模型上与所述第一骨面精配准点集中的多个骨面区域标记点一一对应的多个模型区域标记点,根据所述多个模型区域标记点和所述模型中心点确定第三变换关系,根据所述第三变换关系对所述多个骨面标记点和所述多个模型标记点进行配准。
本申请实施例的第三方面提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如下步骤:
获取患者骨面上的多个骨面标记点的骨面坐标,以及获取三维模型上与所述多个骨面标记点一一对应的多个模型标记点的模型坐标,根据所述骨面坐标和所述模型坐标确定第一变换关系,采用所述第一变换关系对所述多个骨面标记点进行转换,得到多个粗配准标记点;其中,所述多个粗配准标记点的粗配准坐标与对应的所述多个模型标记点之间的平均欧氏距离最短;
确定经所述第一变换关系转换后所述三维模型上的模型中心点到所述骨面上的骨面中心点的平移向量,将所述多个粗配准标记点沿所述平移向量进行平移,得到多个拟合标记点,根据所述多个拟合标记点将所述第一变换关系更新为第二变换关系;
获取所述患者骨面上多个预设区域的多个骨面区域标记点,采用所述第二变换关系对所述多个骨面区域标记点和所述骨面中心点进行转换,得到第一骨面精配准点集,确定所述三维模型上与所述第一骨面精配准点集中的多个骨面区域标记点一一对应的多个模型区域标记点,根据所述多个模型区域标记点和所述模型中心点确定第三变换关系,根据所述第三变换关系对所述多个骨面标记点和所述多个模型标记点进行配准。
本申请实施例的第四方面提供了一种计算机程序产品,当所述计算机程序产品在终端设备上运行时,使得所述终端设备执行如下步骤:
获取患者骨面上的多个骨面标记点的骨面坐标,以及获取三维模型上与所述多个骨面标记点一一对应的多个模型标记点的模型坐标,根据所述骨面坐标和所述模型坐标确定第一变换关系,采用所述第一变换关系对所述多个骨面标记点进行转换,得到多个粗配准标记点;其中,所述多个粗配准标记点的粗配准坐标与对应的所述多个模型标记点之间的平均欧氏距离最短;
确定经所述第一变换关系转换后所述三维模型上的模型中心点到所述骨面上的骨面中心点的平移向量,将所述多个粗配准标记点沿所述平移向量进行平移,得到多个拟合标记点,根据所述多个拟合标记点将所述第一变换关系更新为第二变换关系;
获取所述患者骨面上多个预设区域的多个骨面区域标记点,采用所述第二变换关系对所述多个骨面区域标记点和所述骨面中心点进行转换,得到第一骨面精配准点集,确定所述三维模型上与所述第一骨面精配准点集中的多个骨面区域标记点一一对应的多个模型区域标记点,根据所述多个模型区域标记点和所述模型中心点确定第三变换关系,根据所述第三变换关系对所述多个骨面标记点和所述多个模型标记点进行配准。
与现有技术相比,本申请实施例包括以下优点:
本申请实施例提供的骨科手术配准装置在进行股骨或胫骨配准时,依次通过粗配准、中心点拟合和精配准等步骤,并将股骨头中心点和踝关节中心点纳入配准全流程,在注册配准过程中对股骨机械轴和胫骨机械轴进行了约束,有效地提高了注册配准的精度,降低了假体在矢状面发生倾斜的概率。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个实施例的一种骨科手术配准装置的示意图;
图2是本申请一个实施例的一种股骨配准的步骤示意图;
图3是本申请一个实施例的一种胫骨配准的步骤示意图。
图4是本申请一个实施例的一种终端设备的示意图。
本发明的实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定***结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域技术人员应当清楚,在没有这些具体细节的其他实施例中也可以实现本申请。在其他情况中,省略对众所周知的***、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
在使用骨科手术机器人辅助进行手术的过程中,完成患处显露后,通常需要进行一个叫做“注册配准”的步骤,其目的就是尽可能精确地拟合患者真实骨头与骨头三维模型,以确保医生可以按照手术规划方案完成手术,保证假体安装的准确性与有效性。
通常,在骨科手术过程中,业界公认的评价假体安装准确性与有效性的指标包括:
1)冠状面胫骨组件角(frontal tibial component,FTC):在立位负重下肢全长X线片上以胫骨内、外侧平台切线为胫骨侧横轴,测量该轴与胫骨机械轴的夹角即冠状面胫骨组件角,理想值为90°。
2)冠状面股骨组件角(frontal femoral component,FFC):在立位负重下肢全长X线片上以股骨内、外髁的切线为膝关节股骨侧横轴,测量该轴与股骨机械轴的夹角即冠状面股骨组件角,理想值为90°。
3)矢状面股骨组件角(lateral femoral component,LFC):在膝关节侧位X线片上测量股骨侧假体的轴线与股骨机械轴的夹角,即矢状面股骨组件角,理想值为0°。
4)矢状面胫骨组件角(lateral tibial component,LTC):胫骨侧假体横轴与胫骨机械轴线的夹角,即矢状面胫骨组件角,理想值根据所使用假体的设计不同而有所差别。
以上四个评价指标中,股骨、胫骨机械轴都是核心参考轴,因此如何在机器人辅助手术中准确地评估股骨与胫骨的机械轴至关重要。根据定义,股骨机械轴为股骨头中心点到股骨远端中心点的连线,胫骨机械轴为踝关节中心点到胫骨平台中心点的连线。因此,股骨头中心点和踝关节中心点的定位准确性也就直接决定了整个假体安装的准确性。
目前,注册配准的方法主要包括两种。一种是在手术过程中对手术区域进行CT扫描,获得术中实时的骨头三维模型,并在此基础上进行手术方案的规划与实施。该方法需要配合使用手术室中的术中CT设备,其造价极其昂贵,并且会大幅增加手术时间和复杂度。另一种方法则是在患处显露后,由医生利用装有红外反射球的探针在股骨和胫骨暴露骨面的特定区域采集生物特征点,然后利用奇异值分解-迭代最近点(Singular Value Decomposition-Iterative Closest Point,SVD-ICP)算法进行拟合,最终完成注册配准。
在实际应用中,由于患者骨面存在软骨、骨赘等干扰,上述传统的SVD-ICP配准算法得出的拟合结果总是存在误差的。尤其是股骨机械轴、胫骨机械轴的误差,在传统SVD-ICP算法中并未对其进行完整的约束,经常导致假体在矢状面的安装位置不理想,也就是俗称的假体抬头/低头。本申请实施例为了解决这一问题,提供了一种骨科手术配准装置、终端设备和存储介质,在传统SVD-ICP算法的基础上,提出了一种将股骨头中心点和踝关节中心点纳入配准全流程的算法,在注册配准过程中对股骨机械轴和胫骨机械轴进行了约束,有效地提高了注册配准的精度,降低了假体在矢状面发生倾斜的概率。
下面通过具体实施例来说明本申请的技术方案。
参照图1,示出了本申请一个实施例的一种骨科手术配准装置的示意图,该装置具体可以包括粗配准模块101、中心点拟合模块102和精配准模块103。其中:
粗配准模块,用于获取患者骨面上的多个骨面标记点的骨面坐标,以及获取三维模型上与上述多个骨面标记点一一对应的多个模型标记点的模型坐标,根据骨面坐标和模型坐标确定第一变换关系,采用第一变换关系对多个骨面标记点进行转换,得到多个粗配准标记点;其中,多个粗配准标记点的粗配准坐标与对应的多个模型标记点之间的平均欧氏距离最短。
中心点拟合模块,用于确定经第一变换关系转换后三维模型上的模型中心点到骨面上的骨面中心点的平移向量,将多个粗配准标记点沿该平移向量进行平移,得到多个拟合标记点,根据多个拟合标记点将第一变换关系更新为第二变换关系。
精配准模块,用于获取患者骨面上多个预设区域的多个骨面区域标记点,采用第二变换关系对多个骨面区域标记点和骨面中心点进行转换,得到第一骨面精配准点集,确定三维模型上与第一骨面精配准点集中的多个骨面区域标记点一一对应的多个模型区域标记点,根据多个模型区域标记点和模型中心点确定第三变换关系,根据第三变换关系对多个骨面标记点和多个模型标记点进行配准。
因此,使用上述骨科手术配准装置在骨科手术过程中进行配准主要包括三个步骤,即:粗配准步骤、股骨头中心点/踝关节中心点拟合步骤和精配准步骤。
在本申请实施例中,三维模型可以是在手术前,通过对患者患处进行CT扫描,并根据CT扫描结果进行图像分割,所获得的患者股骨和胫骨的三维模型。
粗配准模块可以从上述股骨和胫骨的三维模型中,获取到多个模型标记点。上述多个模型标记点又可以划分为股骨标记点和胫骨标记点。
示例性地,如下表一所示,是本申请实施例的多个标记点的示例。
表一,标记点示例。
Figure PCTCN2022090083-appb-000001
需要说明的是,上述多个标记点都是在骨科医学相关学术领域有获得业界公认及共识的,因此在实际应用中具有较强的可操作性。
另一方面,由于在骨科手术过程中,注册配准是指将三维模型中的多个模型标记点与患者骨面上的多个骨面标记点一一对应起来。其中,骨面标记点与上述模型标记点具有一一对应的关系。即,骨面标记点也可以包括上述表一中示出的多个标记点。
在本申请实施例中,大部分骨面标记点可以是在手术过程中,由医生使用探针在患者骨面进行点选的方式获得的。例如,对于表一中的序号为1-7以及11-15的标记点,可以由医生使用探针在患者骨面进行点选确定。
需要说明的是,在表一中的股骨标记点1-7均分布在股骨远心端一侧,标记点8则位于近心端。以膝关节置换手术为例,由于手术过程中,手术入路只在膝关节上,暴露的骨面也只在股骨远心端与胫骨近心端,因此标记点8无法直接通过探针点选骨面的方式获得。针对此问题,业界认可的方式是在股骨上刚性固定反光球支架后,通过反复摇晃大腿使膝关节做画圆的动作,并在这一过程中用红外线导航仪记录股骨的三维运动轨迹,并由此计 算出股骨头中心。类似的,胫骨的标记点9-10位于胫骨远心端,标记点11-15分布在胫骨近心端。在手术过程中,标记点9-10也无法直接通过探针点选骨面的方式获得。上述确定的骨面标记点的信息可以由粗配准模块做进一步处理。
在进行粗配准步骤时,粗配准模块具体用于:针对三维模型构建第一坐标系,获取三维模型上的多个模型标记点在第一坐标系中的模型坐标,即a={a 1、a 2、……、a n};针对患者骨面构建第二坐标系,获取多个骨面标记点在第二坐标系中的骨面坐标,即b={b 1、b 2、……、b n}。
粗配准的目的是寻找第一变换关系(R 0,t 0),使b中的各个骨面标记点在经过(R 0,t 0)的转换后,与a中对应的各个模型标记点的平均欧氏距离最短。
在具体实现中,粗配准模块可以采用如下公式确定第一变换关系:
Figure PCTCN2022090083-appb-000002
其中,(R 0,t 0)为第一变换关系,w i为各个骨面标记点的权重值,n为多个骨面标记点的数量,多个骨面标记点包括股骨标记点或胫骨标记点。
在本申请实施例中,上述各个骨面标记点的权重值w i均相等。
在本申请实施例中,当上述粗配准模块用于股骨配准时,股骨标记点包括外上髁标记点、内上髁标记点、股骨远端外侧标记点、股骨远端内侧标记点、股骨后髁外侧标记点、股骨后髁内侧标记点、股骨远端中心标记点和骨面中心点,该骨面中心点为股骨头中心点。即,股骨标记点包括表一中序号1-8的各个标记点。
当上述粗配准模块用于胫骨配准时,胫骨标记点包括胫骨平台中心标记点、胫骨结节标记点、后交叉韧带止点中心标记点、胫骨平台外侧标记点、胫骨平台内侧标记点和骨面中心点,该骨面中心点为根据外踝标记点和内踝标记点确定的胫骨踝关节中心点。其中,胫骨踝关节中心点的位置为位于外踝标记点和内踝标记点连线上且距离内踝侧预设比例长度处的位置。即,胫骨标记点包括表一中序号11-15的各个标记点,以及基于表一中序号9-10的标记点所得到的标记点(胫骨踝关节中心点)。为了便于说明,本申请实施例以序号16指代上述胫骨踝关节中心点。
在本申请实施例的一种可能的实现方式中,上述预设比例可以大于40%且小于50%。例如,该预设比例可以是46%,即胫骨踝关节中心点的位置为位于外踝标记点和内踝标记点连线上且距离内踝侧46%长度处的位置。
采用第一变换关系对多个骨面标记点进行转换后,可以得到多个粗配准标记点。
在完成上述粗配准步骤后,可以采用中心点拟合模块进行第二步,即股骨头中心点/踝关节中心点拟合步骤。
在本申请实施例中,中心点拟合模块可以首先确定平移向量,该平移向量可以是指在经过第一变换关系的转换后,模型中心点到骨面中心点的平移向量。
具体地,中心点拟合模块可以采用如下公式确定平移向量:
t 0′=(R 0b m+t 0)-a m
其中,a m为模型中心点的模型坐标、b m为骨面中心点的骨面坐标。
然后,中心点拟合模块可以将多个粗配准标记点沿上述平移向量t 0′进行平移,得到多个拟合标记点,拟合标记点可以即为c={c 1、c 2、……、c n}。
其中,c满足:c i=R 0b i+t 0+t 0′,i=1、2、……、n;
因此,中心点拟合模块可以将第一变换关系(R 0,t 0)更新为第二变换关系(R 0,T 0),其中,T 0=t 0+t 0′
在完成中心点拟合步骤后,可以采用精配准模块进行精配准步骤。本申请实施例中的精配准步骤是在传统的SVD-ICP算法基础上进行的改进,使其更加适合机器人辅助骨科手术。
在本申请实施例中,精配准模块可以首先获取患者骨面上多个预设区域的多个骨面区域标记点,采用第二变换关系对多个骨面区域标记点和骨面中心点进行转换,得到第一骨面精配准点集。
需要说明的是,当精配准模块用于股骨配准时,多个预设区域可以包括股骨前髁区域、股骨前斜面区域、股骨远端区域和股骨后斜面区域;当精配准模块用于胫骨配准时,多个预设区域可以包括胫骨平台外侧区域、胫骨平台内侧区域、前内侧区域和前外侧区域。
因此,在进行股骨配准时,精配准模块可以执行步骤S1,从股骨前髁区域、股骨前斜面区域、股骨远端区域和股骨后斜面区域中采集k个标记点,然后将上述股骨头中心点作为第k+1个点纳入点集。上述k+1个点经过第二变换关系转换后,得到第一骨面精配准点集,记为d 1={d 1 1…d 1 k+1}。
然后,精配准模块可以执行步骤S2,采用计算点到面的最短距离方法确定三维模型上与第一骨面精配准点集中的多个骨面区域标记点一一对应的多个模型区域标记点,通过令骨面中心点在三维模型中的对应点与该三维模型中的模型中心点重合,从而可以根据多个模型区域标记点和模型中心点得到第一模型精配准点集。
具体地,对于上述第一骨面精配准点集d 1中的前k个点,精配准模块可以采用计算点到面(经CT扫描得到的三维模型的表面为多个三角形组成的无线mesh网格)最短距离的方法求得d 1 i在三维模型上的对应点e 1 i。然后,令d 1 k+1在三维模型上的对应点e 1 k+1与三维模型中的股骨头中心点重合,得到第一模型精配准点集,记为e 1={e 1 1…e 1 k+1}。
接下来,精配准模块执行步骤S3,根据第一骨面精配准点集和第一模型精配准点集,确定第三变换关系(R 1,t 1)。其中,上述第一骨面精配准点集中各个标记点的坐标在经第三变换关系转换后,与对应的第一模型精配准点集中各个标记点的坐标之间的平均欧氏距离最短。即:
Figure PCTCN2022090083-appb-000003
精配准模块可以重复执行上述步骤S2和S3,直到在经过p次变换后,平均欧氏距离小于预设阈值r:
Figure PCTCN2022090083-appb-000004
至此,精配准步骤结束。
当然,在进行胫骨配准时,精配准模块则可以从胫骨平台外侧区域、胫骨平台内侧区域、前内侧区域和前外侧区域中采集k个标记点,然后将上述胫骨踝关节中心点作为第k+1个点纳入点集。上述k+1个点经过第二变换关系转换后,得到第一骨面精配准点集,记为d 1={d 1 1…d 1 k+1}。然后,经过上述与股骨配准类似的精配准步骤,完成胫骨配准。
采用本申请实施例提供的骨科手术配准装置进行股骨/胫骨配准,所得到的配准结果在循环中的每一步均受股骨头中心点/踝关节中心点位置的约束,获得的配准结果确保了更加准确的股骨机械轴/胫骨机械轴,进而确保了更加精确的冠状面/矢状面股骨/胫骨组件角,有效地提高了注册配准的精度,降低了假体在矢状面发生倾斜的概率。
为了便于理解,下面结合具体的流程,对采用本申请实施例提供的骨科手术配准装置进行股骨配准和胫骨配准的全过程作一介绍。
参照图2,示出了本申请一个实施例的一种股骨配准的步骤示意图,具体可以包括如下步骤:
S201、手术前,对患者患处进行CT扫描并重建股骨三维模型。
S202、在股骨三维模型中点选生物标记点。
上述生物标记点可以是指表一中序号为1-8的标记点。S202中点选获得的生物标记点为前述实施例中的模型标记点。
S203、手术中,医生通过摇晃患者大腿与探针点选的方式获取对应生物标记点。
其中,直接通过探针点选的方式可获得表一中序号为1-7的标记点,在股骨上刚性固定反光球支架后,通过反复摇晃患者大腿使膝关节做画圆的动作,并在这一过程中用红外线导航仪记录股骨的三维运动轨迹,可由此计算出表一中序号为8的股骨头中心点。S203中获得的对应生物标记点为前述实施例中的骨面标记点。
S204、确定股骨坐标系到模型坐标系之间的第一变换关系。
其中,上述模型坐标系为前述实施例中的第一坐标系,股骨坐标系为前述实施例中的第二坐标系。
假设股骨三维模型所在的模型坐标系为C mf,患者真实股骨所在的股骨坐标系为C f。令a={a 1、a 2、…、a 8}为股骨模型上的模型标记点的模型坐标,b={b 1、b 2、…、b 8}为患者骨面上的多个骨面标记点的骨面坐标,则粗配准的目的是寻找变换关系(R f0,t f0),使b中的标记点经过(R f0,t f0)转换后和a中的标记点的欧氏距离最短。即:
Figure PCTCN2022090083-appb-000005
其中,w i为各个标记点的权重值。在本申请实施例中,所有标记点的权重值均相等。
上述S201-S204可由前述实施例中的粗配准模块实现。
S205、拟合变换后两个坐标系下的股骨中心点,并以此平移向量为基准对股骨坐标系进行整体变换。
本步骤即是对股骨头中心点进行拟合。
令t 0′为经过(R f0,t f0)转换后,a 8到b 8的平移向量。即:
t f0′=(R f0b 8+t f0)-a 8
为了拟合股骨头中心点,可以将粗配准结果中的所有标记点全部沿t f0′进行平移。此步骤所得到的点集可以记为c={c 1、c 2、…、c 8},c满足:
c i=R f0b i+t f0+t f0′
则截止目前,第一变换关系(R f0,t f0)可以更新为第二变换关系(R f0,T f0),其中,T f0=t f0+t f0′
上述S205可由前述实施例中的中心点拟合模块实现。
S206、获取股骨骨面的注册点,并和股骨中心点一起组成精配准原始点集合。
上述股骨骨面的注册点可由医生使用探针在在患者股骨表面上按照股骨前髁、股骨前斜面、股骨远端、股骨后斜面等多个区域采集k个标记点,然后将上述股骨头中心点b8作为第k+1个点纳入点集,组成精配准原始点集合。上述精配准原始点集合即前述实施例中的第一骨面精配准点集。
S207、在三维模型中获取所有精配准原始点的对应点,并和三维模型中的股骨中心点一起组成对应点集合。
在本步骤中,可对精配准原始点集合中前k个点(骨面上的标记点)计算点到面(三维模型表面是由许多三角形组成的mesh网格)最短距离的方法求得d 1 i在三维模型上的对应点e 1 i。然后,令d 1 k+1在三维模型上的对应点e 1 k+1与三维模型中的股骨头中心点a 8重合,一起组成对应点集合。上述对应点集合即是前述实施例中的第一模型精配准点集,记为e 1={e 1 1…e 1 k+1}。
S208、计算精配准原始点到对应点的变换关系。
上述变换关系即前述实施例中的第三变换关系,该第三变换关系可使精配准原始点经过变换后和对应点之间的平均欧氏距离最短。
在本步骤中,即是寻找第三变换关系(R f1,t f1),使d 1中的标记点经过该变换后,与e 1中的标记点的欧氏距离最短。即:
Figure PCTCN2022090083-appb-000006
S209、将经过最优变换后的点集作为新的原始点集合,并重复上述变换获取步骤S207和S208,直到欧氏距离小于预先设定的阈值,完成股骨配准。
在本步骤中,将对d 1经过(R f1,t f1)变换后得到的d 2,再次重复上述步骤,即找到e 2和与之对应的(R f2,t f2),然后循环此步骤,直到经过p次变换后,得到的d p和e p之间的欧氏距离小于预先设定的阈值r,即:
Figure PCTCN2022090083-appb-000007
至此,股骨精配准步骤结束。
上述S206-S209可由前述实施例中的精配准模块实现。
在本申请实施例中,精配准过程中所得到的配准结果在循环中的每一步均受股骨头中心点位置的约束,获得的配准结果确保了更加准确的股骨机械轴,进而确保了更加精确的冠状面/矢状面股骨组件角,有助于提高注册配准的精度,降低假体在矢状面发生倾斜的概率。
参照图3,示出了本申请一个实施例的一种胫骨配准的步骤示意图,具体可以包括如下步骤:
S301、手术前,对患者患处进行CT扫描并重建胫骨三维模型。
S302、在胫骨三维模型中点选生物标记点。
上述生物标记点可以是指表一中序号为9-15的标记点。S302中点选获得的生物标记点为前述实施例中的模型标记点。
S303、手术中,医生通过探针点选的方式获取对应生物标记点,并采用预先定义的踝关节中心点替代内外踝标记点。
在本步骤中,可获得表一中序号为9-15的标记点。定义踝关节中心点为内外踝连线上距离内踝侧46%连线长度的位置。
S304、确定胫骨坐标系到模型坐标系之间的第一变换关系。
其中,上述模型坐标系为前述实施例中的第一坐标系,胫骨坐标系为前述实施例中的第二坐标系。
假设胫骨三维模型所在的模型坐标系为C mt,患者真实股骨所在的胫骨坐标系为C t。令a={a 9、a 10、…、a 15}为胫骨模型上的模型标记点的模型坐标,b={b 9、b 10、…、b 15}为患者骨面上的多个骨面标记点的骨面坐标。根据预先定义的踝关节中心点,将三维模型中的踝关节中心点即为a 16,将真实胫骨上的踝关节中心点记为b 16,更新点集a与b分别为a={a 11、a 12、…、a 16}、b={b 11、b 12、…、b 16}。
粗配准的目的是寻找变换关系(R t0,t t0),使b中的标记点经过(R t0,t t0)转换后和a中的标记点的欧氏距离最短。即:
Figure PCTCN2022090083-appb-000008
其中,w i为各个标记点的权重值。在本申请实施例中,所有标记点的权重值均相等。
上述S301-S304可由前述实施例中的粗配准模块实现。
S305、拟合变换后两个坐标系下的踝关节中心点,并以此平移向量为基准对胫骨坐标系进行整体变换。
本步骤即是对踝关节中心点进行拟合。
令t 0′为经过(R t0,t t0)转换后,a 16到b 16的平移向量。即:
t t0′=(R t0b 16+t t0)-a 16
为了拟合踝关节中心点,可以将粗配准结果中的所有标记点全部沿t t0′进行平移。此步骤所得到的点集可以记为c={c 11、c 12、…、c 16},c满足:
c i=R t0b i+t t0+t f0′
则截止目前,第一变换关系(R t0,t t0)可以更新为第二变换关系(R t0,T t0),其中,T t0=t t0+t t0′
上述S305可由前述实施例中的中心点拟合模块实现。
S306、获取胫骨骨面的注册点,并和踝关节中心点一起组成精配准原始点集合。
上述胫骨骨面的注册点可由医生使用探针在在患者胫骨表面上按照胫骨平台外侧、胫骨平台内侧、前内侧、前外侧等多个区域采集k个标记点,然后将上述踝关节中心点b16作为第k+1个点纳入点集,组成精配准原始点集合。上述精配准原始点集合即前述实施例中的第一骨面精配准点集。
S307、在三维模型中获取所有精配准原始点的对应点,并和三维模型中的踝关节中心点一起组成对应点集合。
在本步骤中,可对精配准原始点集合中前k个点(骨面上的标记点)计算点到面(三维模型表面是由许多三角形组成的mesh网格)最短距离的方法求得d 1 i在三维模型上的对应点e 1 i。然后,令d 1 k+1在三维模型上的对应点e 1 k+1与三维模型中的踝关节中心点a 16重合,一起组成对应点集合。上述对应点集合即是前述实施例中的第一模型精配准点集,记为e 1={e 1 1…e 1 k+1}。
S308、计算精配准原始点到对应点的变换关系。
上述变换关系即前述实施例中的第三变换关系,该第三变换关系可使精配准原始点经过变换后和对应点之间的平均欧氏距离最短。
在本步骤中,即是寻找第三变换关系(R t1,t t1),使d 1中的标记点经过该变换后,与e 1中的标记点的欧氏距离最短。即:
Figure PCTCN2022090083-appb-000009
S309、将经过最优变换后的点集作为新的原始点集合,并重复上述变换获取步骤S307和S308,直到欧氏距离小于预先设定的阈值,完成胫骨配准。
在本步骤中,将对d 1经过(R t1,t t1)变换后得到的d 2,再次重复上述步骤,即找到e 2和与之对应的(R t2,t t2),然后循环此步骤,直到经过p次变换后,得到的d p和e p之间的欧氏距离小于预先设定的阈值q,即:
Figure PCTCN2022090083-appb-000010
至此,胫骨精配准步骤结束。
上述S306-S309可由前述实施例中的精配准模块实现。
在本申请实施例中,精配准过程中所得到的配准结果在循环中的每一步均受踝关节中心点位置的约束,获得的配准结果确保了更加准确的胫骨机械轴,进而确保了更加精确的冠状面/矢状面胫骨组件角,有助于提高注册配准的精度,降低假体在矢状面发生倾斜的概率。
参照图4,示出了本申请一个实施例的一种终端设备的示意图。如图4所示,本实施例的终端设备400包括:处理器410、存储器420以及存储在所述存储器420中并可在所述处理器410上运行的计算机程序421。所述处理器410执行所述计算机程序421时实现上述各个实施例中的股骨配准步骤或胫骨配准步骤,例如图2所示的步骤S201至S209,或图3所示的步骤S301至S309。或者,所述处理器410执行所述计算机程序421时实现上述各装置实施例中各模块/单元的功能,例如图1所示模块101至103的功能。
示例性的,所述计算机程序421可以被分割成一个或多个模块/单元,所述一个或者多个模块/单元被存储在所述存储器420中,并由所述处理器410执行,以完成本申请。所述一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段可以用于描述所述计算机程序421在所述终端设备400中的执行过程。例如,所述计算机程序421可以被分割成粗配准模块、中心点拟合模块、精配准模块,各模块具体功能如下:
粗配准模块,用于获取患者骨面上的多个骨面标记点的骨面坐标,以及获取三维模型上与所述多个骨面标记点一一对应的多个模型标记点的模型坐标,根据所述骨面坐标和所述模型坐标确定第一变换关系,采用所述第一变换关系对所述多个骨面标记点进行转换,得到多个粗配准标记点;其中,所述多个粗配准标记点的粗配准坐标与对应的所述多个模型标记点之间的平均欧氏距离最短;
中心点拟合模块,用于确定经所述第一变换关系转换后所述三维模型上的模型中心点到所述骨面上的骨面中心点的平移向量,将所述多个粗配准标记点沿所述平移向量进行平移,得到多个拟合标记点,根据所述多个拟合标记点将所述第一变换关系更新为第二变换关系;
精配准模块,用于获取所述患者骨面上多个预设区域的多个骨面区域标记点,采用所述第二变换关系对所述多个骨面区域标记点和所述骨面中心点进行转换,得到第一骨面精配准点集,确定所述三维模型上与所述第一骨面精配准点集中的多个骨面区域标记点一一对应的多个模型区域标记点,根据所述多个模型区域标记点和所述模型中心点确定第三变换关系,根据所述第三变换关系对所述多个骨面标记点和所述多个模型标记点进行配准。
所述终端设备400可包括,但不仅限于,处理器410、存储器420。本领域技术人员可以理解,图4仅仅是终端设备400的一种示例,并不构成对终端设备400的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述终端设备400还可以包括输入输出设备、网络接入设备、总线等。
所述处理器410可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器420可以是所述终端设备400的内部存储单元,例如终端设备400的硬盘或内存。所述存储器420也可以是所述终端设备400的外部存储设备,例如所述终端设备400上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等等。进一步地,所述存储器420还可以既包括所述终端设备400的内部存储单元也包括外部存储设备。所述存储器420用于存储所述计算机程序421以及所述终端设备400所需的其他程序和数据。所述存储器420还可以用于暂时地存储已经输出或者将要输出的数据。
本申请实施例还公开了一种终端设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如下步骤:
获取患者骨面上的多个骨面标记点的骨面坐标,以及获取三维模型上与所述多个骨面标记点一一对应的多个模型标记点的模型坐标,根据所述骨面坐标和所述模型坐标确定第一变换关系,采用所述第一变换关系对所述多个骨面标记点进行转换,得到多个粗配准标记点;其中,所述多个粗配准标记点的粗配准坐标与对应的所述多个模型标记点之间的平均欧氏距离最短;
确定经所述第一变换关系转换后所述三维模型上的模型中心点到所述骨面上的骨面中心点的平移向量,将所述多个粗配准标记点沿所述平移向量进行平移,得到多个拟合标记点,根据所述多个拟合标记点将所述第一变换关系更新为第二变换关系;
获取所述患者骨面上多个预设区域的多个骨面区域标记点,采用所述第二变换关系对所述多个骨面区域标记点和所述骨面中心点进行转换,得到第一骨面精配准点集,确定所述三维模型上与所述第一骨面精配准点集中的多个骨面区域标记点一一对应的多个模型区域标记点,根据所述多个模型区域标记点和所述模型中心点确定第三变换关系,根据所述第三变换关系对所述多个骨面标记点和所述多个模型标记点进行配准。
在本申请实施例的一种可能的实现方式中,所述处理器执行所述计算机程序时实现如下步骤:
针对所述三维模型构建第一坐标系,获取所述三维模型上的多个模型标记点在所述第一坐标系中的模型坐标{a 1、a 2、……、a n};针对所述患者骨面构建第二坐标系,获取所述多个骨面标记点在所述第二坐标系中的骨面坐标{b 1、b 2、……、b n},采用如下公式确定所述第一变换关系:
Figure PCTCN2022090083-appb-000011
其中,(R 0,t 0)为所述第一变换关系,w i为各个骨面标记点的权重值,n为所述多个骨面标记点的数量,所述多个骨面标记点包括股骨标记点或胫骨标记点。
在本申请实施例中,当所述处理器执行所述计算机程序用于股骨配准时,所述股骨标记点包括外上髁标记点、内上髁标记点、股骨远端外侧标记点、股骨远端内侧标记点、股骨后髁外侧标记点、股骨后髁内侧标记点、股骨远端中心标记点和所述骨面中心点,所述骨面中心点为股骨头中心点。
在本申请实施例中,当所述处理器执行所述计算机程序用于胫骨配准时,所述胫骨标记点包括胫骨平台中心标记点、胫骨结节标记点、后交叉韧带止点中心标记点、胫骨平台外侧标记点、胫骨平台内侧标记点和所述骨面中心点,所述骨面中心点为根据外踝标记点和内踝标记点确定的胫骨踝关节中心点。
在本申请实施例中,所述胫骨踝关节中心点的位置为位于所述外踝标记点和所述内踝标记点连线上且距离内踝侧预设比例长度处的位置。
在本申请实施例的一种可能的实现方式中,所述处理器执行所述计算机程序时实现如下步骤:
采用如下公式确定所述平移向量:t 0′=(R 0b m+t 0)-a m,其中,am为所述模型中心点的模型坐标、bm为所述骨面中心点的骨面坐标;
将所述多个粗配准标记点沿所述平移向量t 0′进行平移,得到多个拟合标记点{c 1、c 2、……、c n},其中,c i=R 0b i+t 0+t 0′,i=1、2、……、n,
将所述第一变换关系(R 0,t 0)更新为第二变换关系(R 0,T 0),其中,T 0=t 0+t 0′
在本申请实施例的一种可能的实现方式中,所述处理器执行所述计算机程序时实现如下步骤:
S1、获取所述获取患者骨面上多个预设区域的多个骨面区域标记点,采用所述第二变换关系对所述多个骨面区域标记点和所述骨面中心点进行转换,得到第一骨面精配准点集;
S2、采用计算点到面的最短距离方法确定所述三维模型上与所述第一骨面精配准点集中的多个骨面区域标记点一一对应的多个模型区域标记点,令所述骨面中心点在所述三维模型中的对应点与所述三维模型中的模型中心点重合,根据所述多个模型区域标记点和所述模型中心点得到第一模型精配准点集;
S3、根据所述第一骨面精配准点集和所述第一模型精配准点集,确定第三变换关系,其中,所述第一骨面精配准点集中各个标记点的坐标在经所述第三变换关系转换后,与对应的所述第一模型精配准点集中各个标记点的坐标之间的平均欧氏距离最短;
S4、重复执行上述S2和S3步骤,直到所述平均欧氏距离小于预设阈值。
在本申请实施例中,当所述处理器执行所述计算机程序用于股骨配准时,所述多个预设区域包括股骨前髁区域、股骨前斜面区域、股骨远端区域和股骨后斜面区域;当所述处理器执行所述计算机程序用于胫骨配准时,所述多个预设区域包括胫骨平台外侧区域、胫骨平台内侧区域、前内侧区域和前外侧区域。
本申请实施例还公开了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如下步骤:
获取患者骨面上的多个骨面标记点的骨面坐标,以及获取三维模型上与所述多个骨面标记点一一对应的多个模型标记点的模型坐标,根据所述骨面坐标和所述模型坐标确定第一变换关系,采用所述第一变换关系对所述多个骨面标记点进行转换,得到多个粗配准标记点;其中,所述多个粗配准标记点的粗配准坐标与对应的所述多个模型标记点之间的平均欧氏距离最短;
确定经所述第一变换关系转换后所述三维模型上的模型中心点到所述骨面上的骨面中心点的平移向量,将所述多个粗配准标记点沿所述平移向量进行平移,得到多个拟合标记点,根据所述多个拟合标记点将所述第一变换关系更新为第二变换关系;
获取所述患者骨面上多个预设区域的多个骨面区域标记点,采用所述第二变换关系对所述多个骨面区域标记点和所述骨面中心点进行转换,得到第一骨面精配准点集,确定所述三维模型上与所述第一骨面精配准点集中的多个骨面区域标记点一一对应的多个模型区域标记点,根据所述多个模型区域标记点和所述模型中心点确定第三变换关系,根据所述第三变换关系对所述多个骨面标记点和所述多个模型标记点进行配准。
在本申请实施例的一种可能的实现方式中,所述计算机程序被处理器执行时实现如下步骤:
针对所述三维模型构建第一坐标系,获取所述三维模型上的多个模型标记点在所述第一坐标系中的模型坐标{a 1、a 2、……、a n};针对所述患者骨面构建第二坐标系,获取所述多个骨面标记点在所述第二坐标系中的骨面坐标{b 1、b 2、……、b n},采用如下公式确定所述第一变换关系:
Figure PCTCN2022090083-appb-000012
其中,(R 0,t 0)为所述第一变换关系,w i为各个骨面标记点的权重值,n为所述多个骨面标记点的数量,所述多个骨面标记点包括股骨标记点或胫骨标记点。
在本申请实施例中,当所述计算机程序被处理器执行用于股骨配准时,所述股骨标记点包括外上髁标记点、内上髁标记点、股骨远端外侧标记点、股骨远端内侧标记点、股骨后髁外侧标记点、股骨后髁内侧标记点、股骨远端中心标记点和所述骨面中心点,所述骨面中心点为股骨头中心点。
在本申请实施例中,当所述计算机程序被处理器执行用于胫骨配准时,所述胫骨标记点包括胫骨平台中心标记点、胫骨结节标记点、后交叉韧带止点中心标记点、胫骨平台外侧标记点、胫骨平台内侧标记点和所述骨面中心点,所述骨面中心点为根据外踝标记点和内踝标记点确定的胫骨踝关节中心点。
在本申请实施例中,所述胫骨踝关节中心点的位置为位于所述外踝标记点和所述内踝标记点连线上且距离内踝侧预设比例长度处的位置。
在本申请实施例的一种可能的实现方式中,所述计算机程序被处理器执行时实现如下步骤:
采用如下公式确定所述平移向量:t 0′=(R 0b m+t 0)-a m,其中,a m为所述模型中心 点的模型坐标、b m为所述骨面中心点的骨面坐标;
将所述多个粗配准标记点沿所述平移向量t 0′进行平移,得到多个拟合标记点{c 1、c 2、……、c n},其中,c i=R 0b i+t 0+t 0′,i=1、2、……、n;
将所述第一变换关系(R 0,t 0)更新为第二变换关系(R 0,T 0),其中,T 0=t 0+t 0′
在本申请实施例的一种可能的实现方式中,所述计算机程序被处理器执行时实现如下步骤:
S1、获取所述获取患者骨面上多个预设区域的多个骨面区域标记点,采用所述第二变换关系对所述多个骨面区域标记点和所述骨面中心点进行转换,得到第一骨面精配准点集;
S2、采用计算点到面的最短距离方法确定所述三维模型上与所述第一骨面精配准点集中的多个骨面区域标记点一一对应的多个模型区域标记点,令所述骨面中心点在所述三维模型中的对应点与所述三维模型中的模型中心点重合,根据所述多个模型区域标记点和所述模型中心点得到第一模型精配准点集;
S3、根据所述第一骨面精配准点集和所述第一模型精配准点集,确定第三变换关系,其中,所述第一骨面精配准点集中各个标记点的坐标在经所述第三变换关系转换后,与对应的所述第一模型精配准点集中各个标记点的坐标之间的平均欧氏距离最短;
S4、重复执行上述S2和S3步骤,直到所述平均欧氏距离小于预设阈值。
在本申请实施例中,当所述计算机程序被处理器执行用于股骨配准时,所述多个预设区域包括股骨前髁区域、股骨前斜面区域、股骨远端区域和股骨后斜面区域;当所述计算机程序被处理器执行用于胫骨配准时,所述多个预设区域包括胫骨平台外侧区域、胫骨平台内侧区域、前内侧区域和前外侧区域。
本申请实施例还公开了一种计算机程序产品,当所述计算机程序产品在终端设备上运行时,使得所述终端设备执行如下步骤:
获取患者骨面上的多个骨面标记点的骨面坐标,以及获取三维模型上与所述多个骨面标记点一一对应的多个模型标记点的模型坐标,根据所述骨面坐标和所述模型坐标确定第一变换关系,采用所述第一变换关系对所述多个骨面标记点进行转换,得到多个粗配准标记点;其中,所述多个粗配准标记点的粗配准坐标与对应的所述多个模型标记点之间的平均欧氏距离最短;
确定经所述第一变换关系转换后所述三维模型上的模型中心点到所述骨面上的骨面中心点的平移向量,将所述多个粗配准标记点沿所述平移向量进行平移,得到多个拟合标记点,根据所述多个拟合标记点将所述第一变换关系更新为第二变换关系;
获取所述患者骨面上多个预设区域的多个骨面区域标记点,采用所述第二变换关系对所述多个骨面区域标记点和所述骨面中心点进行转换,得到第一骨面精配准点集,确定所述三维模型上与所述第一骨面精配准点集中的多个骨面区域标记点一一对应的多个模型区域标记点,根据所述多个模型区域标记点和所述模型中心点确定第三变换关系,根据所述第三变换关系对所述多个骨面标记点和所述多个模型标记点进行配准。
在本申请实施例的一种可能的实现方式中,当所述计算机程序产品在终端设备上运行 时,使得所述终端设备执行如下步骤:
针对所述三维模型构建第一坐标系,获取所述三维模型上的多个模型标记点在所述第一坐标系中的模型坐标{a 1、a 2、……、a n};针对所述患者骨面构建第二坐标系,获取所述多个骨面标记点在所述第二坐标系中的骨面坐标{b 1、b 2、……、b n},采用如下公式确定所述第一变换关系:
Figure PCTCN2022090083-appb-000013
其中,(R 0,t 0)为所述第一变换关系,w i为各个骨面标记点的权重值,n为所述多个骨面标记点的数量,所述多个骨面标记点包括股骨标记点或胫骨标记点。
在本申请实施例中,当所述计算机程序产品在终端设备上运行,使得所述终端设备执行股骨配准时,所述股骨标记点包括外上髁标记点、内上髁标记点、股骨远端外侧标记点、股骨远端内侧标记点、股骨后髁外侧标记点、股骨后髁内侧标记点、股骨远端中心标记点和所述骨面中心点,所述骨面中心点为股骨头中心点。
在本申请实施例中,当所述计算机程序产品在终端设备上运行,使得所述终端设备执行胫骨配准时,所述胫骨标记点包括胫骨平台中心标记点、胫骨结节标记点、后交叉韧带止点中心标记点、胫骨平台外侧标记点、胫骨平台内侧标记点和所述骨面中心点,所述骨面中心点为根据外踝标记点和内踝标记点确定的胫骨踝关节中心点。
在本申请实施例中,所述胫骨踝关节中心点的位置为位于所述外踝标记点和所述内踝标记点连线上且距离内踝侧预设比例长度处的位置。
在本申请实施例的一种可能的实现方式中,当所述计算机程序产品在终端设备上运行时,使得所述终端设备执行如下步骤:
采用如下公式确定所述平移向量:t 0′=(R 0b m+t 0)-a m,其中,a m为所述模型中心点的模型坐标、b m为所述骨面中心点的骨面坐标;
将所述多个粗配准标记点沿所述平移向量t 0′进行平移,得到多个拟合标记点{c 1、c 2、……、c n},其中,c i=R 0b i+t 0+t 0′,i=1、2、……、n;
将所述第一变换关系(R 0,t 0)更新为第二变换关系(R 0,T 0),其中,T 0=t 0+t 0′
在本申请实施例的一种可能的实现方式中,当所述计算机程序产品在终端设备上运行时,使得所述终端设备执行如下步骤:
S1、获取所述获取患者骨面上多个预设区域的多个骨面区域标记点,采用所述第二变换关系对所述多个骨面区域标记点和所述骨面中心点进行转换,得到第一骨面精配准点集;
S2、采用计算点到面的最短距离方法确定所述三维模型上与所述第一骨面精配准点集中的多个骨面区域标记点一一对应的多个模型区域标记点,令所述骨面中心点在所述三维模型中的对应点与所述三维模型中的模型中心点重合,根据所述多个模型区域标记点和所述模型中心点得到第一模型精配准点集;
S3、根据所述第一骨面精配准点集和所述第一模型精配准点集,确定第三变换关系,其中,所述第一骨面精配准点集中各个标记点的坐标在经所述第三变换关系转换后,与对应的所述第一模型精配准点集中各个标记点的坐标之间的平均欧氏距离最短;
S4、重复执行上述S2和S3步骤,直到所述平均欧氏距离小于预设阈值。
在本申请实施例中,当所述计算机程序产品在终端设备上运行,使得所述终端设备执行股骨配准时,所述多个预设区域包括股骨前髁区域、股骨前斜面区域、股骨远端区域和股骨后斜面区域;当所述计算机程序产品在终端设备上运行,使得所述终端设备执行胫骨配准时,所述多个预设区域包括胫骨平台外侧区域、胫骨平台内侧区域、前内侧区域和前外侧区域。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制。尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种骨科手术配准装置,其特征在于,包括:
    粗配准模块,用于获取患者骨面上的多个骨面标记点的骨面坐标,以及获取三维模型上与所述多个骨面标记点一一对应的多个模型标记点的模型坐标,根据所述骨面坐标和所述模型坐标确定第一变换关系,采用所述第一变换关系对所述多个骨面标记点进行转换,得到多个粗配准标记点;其中,所述多个粗配准标记点的粗配准坐标与对应的所述多个模型标记点之间的平均欧氏距离最短;
    中心点拟合模块,用于确定经所述第一变换关系转换后所述三维模型上的模型中心点到所述骨面上的骨面中心点的平移向量,将所述多个粗配准标记点沿所述平移向量进行平移,得到多个拟合标记点,根据所述多个拟合标记点将所述第一变换关系更新为第二变换关系;
    精配准模块,用于获取所述患者骨面上多个预设区域的多个骨面区域标记点,采用所述第二变换关系对所述多个骨面区域标记点和所述骨面中心点进行转换,得到第一骨面精配准点集,确定所述三维模型上与所述第一骨面精配准点集中的多个骨面区域标记点一一对应的多个模型区域标记点,根据所述多个模型区域标记点和所述模型中心点确定第三变换关系,根据所述第三变换关系对所述多个骨面标记点和所述多个模型标记点进行配准。
  2. 根据权利要求1所述的骨科手术配准装置,其特征在于,所述粗配准模块具体用于:针对所述三维模型构建第一坐标系,获取所述三维模型上的多个模型标记点在所述第一坐标系中的模型坐标{a 1、a 2、……、a n};针对所述患者骨面构建第二坐标系,获取所述多个骨面标记点在所述第二坐标系中的骨面坐标{b 1、b 2、……、b n},采用如下公式确定所述第一变换关系:
    Figure PCTCN2022090083-appb-100001
    其中,(R 0,t 0)为所述第一变换关系,w i为各个骨面标记点的权重值,n为所述多个骨面标记点的数量,所述多个骨面标记点包括股骨标记点或胫骨标记点。
  3. 根据权利要求2所述的骨科手术配准装置,其特征在于,当所述粗配准模块用于股骨配准时,所述股骨标记点包括外上髁标记点、内上髁标记点、股骨远端外侧标记点、股骨远端内侧标记点、股骨后髁外侧标记点、股骨后髁内侧标记点、股骨远端中心标记点和所述骨面中心点,所述骨面中心点为股骨头中心点。
  4. 根据权利要求2所述的骨科手术配准装置,其特征在于,当所述粗配准模块用于胫骨配准时,所述胫骨标记点包括胫骨平台中心标记点、胫骨结节标记点、后交叉韧带止点中心标记点、胫骨平台外侧标记点、胫骨平台内侧标记点和所述骨面中心点,所述骨面中心点为根据外踝标记点和内踝标记点确定的胫骨踝关节中心点。
  5. 根据权利要求4所述的骨科手术配准装置,其特征在于,所述胫骨踝关节中心点的位置为位于所述外踝标记点和所述内踝标记点连线上且距离内踝侧预设比例长度处的位置。
  6. 根据权利要求2-5任一项所述的骨科手术配准装置,其特征在于,所述中心点拟合模块具体用于:
    采用如下公式确定所述平移向量:t 0′=(R 0b m+t 0)-a m,其中,a m为所述模型中心 点的模型坐标、b m为所述骨面中心点的骨面坐标;
    将所述多个粗配准标记点沿所述平移向量t 0′进行平移,得到多个拟合标记点{c 1、c 2、……、c n},其中,c i=R 0b i+t 0+t 0′,i=1、2、……、n;
    将所述第一变换关系(R 0,t 0)更新为第二变换关系(R 0,T 0),其中,T 0=t 0+t 0′
  7. 根据权利要求1所述的骨科手术配准装置,其特征在于,所述三维模型的表面为多个三角形组成的mesh网格,所述精配准模块具体用于执行如下步骤:
    S1、获取所述获取患者骨面上多个预设区域的多个骨面区域标记点,采用所述第二变换关系对所述多个骨面区域标记点和所述骨面中心点进行转换,得到第一骨面精配准点集;
    S2、采用计算点到面的最短距离方法确定所述三维模型上与所述第一骨面精配准点集中的多个骨面区域标记点一一对应的多个模型区域标记点,令所述骨面中心点在所述三维模型中的对应点与所述三维模型中的模型中心点重合,根据所述多个模型区域标记点和所述模型中心点得到第一模型精配准点集;
    S3、根据所述第一骨面精配准点集和所述第一模型精配准点集,确定第三变换关系,其中,所述第一骨面精配准点集中各个标记点的坐标在经所述第三变换关系转换后,与对应的所述第一模型精配准点集中各个标记点的坐标之间的平均欧氏距离最短;
    S4、重复执行上述S2和S3步骤,直到所述平均欧氏距离小于预设阈值。
  8. 根据权利要求1-5或7任一项所述的骨科手术配准装置,其特征在于,当所述精配准模块用于股骨配准时,所述多个预设区域包括股骨前髁区域、股骨前斜面区域、股骨远端区域和股骨后斜面区域;当所述精配准模块用于胫骨配准时,所述多个预设区域包括胫骨平台外侧区域、胫骨平台内侧区域、前内侧区域和前外侧区域。
  9. 一种终端设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如下步骤:
    获取患者骨面上的多个骨面标记点的骨面坐标,以及获取三维模型上与所述多个骨面标记点一一对应的多个模型标记点的模型坐标,根据所述骨面坐标和所述模型坐标确定第一变换关系,采用所述第一变换关系对所述多个骨面标记点进行转换,得到多个粗配准标记点;其中,所述多个粗配准标记点的粗配准坐标与对应的所述多个模型标记点之间的平均欧氏距离最短;
    确定经所述第一变换关系转换后所述三维模型上的模型中心点到所述骨面上的骨面中心点的平移向量,将所述多个粗配准标记点沿所述平移向量进行平移,得到多个拟合标记点,根据所述多个拟合标记点将所述第一变换关系更新为第二变换关系;
    获取所述患者骨面上多个预设区域的多个骨面区域标记点,采用所述第二变换关系对所述多个骨面区域标记点和所述骨面中心点进行转换,得到第一骨面精配准点集,确定所述三维模型上与所述第一骨面精配准点集中的多个骨面区域标记点一一对应的多个模型区域标记点,根据所述多个模型区域标记点和所述模型中心点确定第三变换关系,根据所述第三变换关系对所述多个骨面标记点和所述多个模型标记点进行配准。
  10. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征 在于,所述计算机程序被处理器执行时实现如下步骤:
    获取患者骨面上的多个骨面标记点的骨面坐标,以及获取三维模型上与所述多个骨面标记点一一对应的多个模型标记点的模型坐标,根据所述骨面坐标和所述模型坐标确定第一变换关系,采用所述第一变换关系对所述多个骨面标记点进行转换,得到多个粗配准标记点;其中,所述多个粗配准标记点的粗配准坐标与对应的所述多个模型标记点之间的平均欧氏距离最短;
    确定经所述第一变换关系转换后所述三维模型上的模型中心点到所述骨面上的骨面中心点的平移向量,将所述多个粗配准标记点沿所述平移向量进行平移,得到多个拟合标记点,根据所述多个拟合标记点将所述第一变换关系更新为第二变换关系;
    获取所述患者骨面上多个预设区域的多个骨面区域标记点,采用所述第二变换关系对所述多个骨面区域标记点和所述骨面中心点进行转换,得到第一骨面精配准点集,确定所述三维模型上与所述第一骨面精配准点集中的多个骨面区域标记点一一对应的多个模型区域标记点,根据所述多个模型区域标记点和所述模型中心点确定第三变换关系,根据所述第三变换关系对所述多个骨面标记点和所述多个模型标记点进行配准。
PCT/CN2022/090083 2021-04-09 2022-04-28 骨科手术配准装置、终端设备和存储介质 WO2022214105A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110380859.X 2021-04-09
CN202110380859.XA CN113116523B (zh) 2021-04-09 2021-04-09 骨科手术配准装置、终端设备和存储介质

Publications (1)

Publication Number Publication Date
WO2022214105A1 true WO2022214105A1 (zh) 2022-10-13

Family

ID=76775513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090083 WO2022214105A1 (zh) 2021-04-09 2022-04-28 骨科手术配准装置、终端设备和存储介质

Country Status (2)

Country Link
CN (1) CN113116523B (zh)
WO (1) WO2022214105A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113116523B (zh) * 2021-04-09 2022-02-11 骨圣元化机器人(深圳)有限公司 骨科手术配准装置、终端设备和存储介质
CN113907889A (zh) * 2021-09-03 2022-01-11 北京长木谷医疗科技有限公司 机器人机械臂的控制方法及***
CN113729943B (zh) * 2021-11-05 2023-07-14 北京壹点灵动科技有限公司 虚拟骨面的处理方法、装置及翻修手术机器人
CN115381553B (zh) * 2022-09-21 2023-04-07 北京长木谷医疗科技有限公司 复杂性骨性融合膝关节的智能定位装置设计方法及***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050281385A1 (en) * 2004-06-02 2005-12-22 Johnson Douglas K Method and system for improved correction of registration error in a fluoroscopic image
CN203953815U (zh) * 2014-04-24 2014-11-26 薛青 辅助外科手术的术中导航***
CN110215281A (zh) * 2019-06-11 2019-09-10 北京和华瑞博科技有限公司 一种基于全膝置换手术的股骨或胫骨配准方法及装置
CN111640143A (zh) * 2020-04-12 2020-09-08 复旦大学 一种基于PointNet的神经导航快速面配准方法及***
CN113116523A (zh) * 2021-04-09 2021-07-16 元化智能科技(深圳)有限公司 骨科手术配准装置、终端设备和存储介质
CN113616350A (zh) * 2021-07-16 2021-11-09 元化智能科技(深圳)有限公司 标记点选取位置的验证方法、装置、终端设备和存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101862220A (zh) * 2009-04-15 2010-10-20 中国医学科学院北京协和医院 基于结构光图像的椎弓根内固定导航手术***和方法
CN107133637B (zh) * 2017-03-31 2020-09-15 精劢医疗科技南通有限公司 一种手术导航图像自动注册设备以及方法
US10980509B2 (en) * 2017-05-11 2021-04-20 Siemens Medical Solutions Usa, Inc. Deformable registration of preoperative volumes and intraoperative ultrasound images from a tracked transducer
KR20210137500A (ko) * 2019-03-05 2021-11-17 마코 서지컬 코포레이션 수술용 레지스트레이션을 위한 시스템 및 방법
CN110353806B (zh) * 2019-06-18 2021-03-12 北京航空航天大学 用于微创全膝关节置换手术的增强现实导航方法及***
CN111134840B (zh) * 2019-12-28 2020-11-20 元化智能科技(深圳)有限公司 膝关节置换手术方案的生成装置和终端

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050281385A1 (en) * 2004-06-02 2005-12-22 Johnson Douglas K Method and system for improved correction of registration error in a fluoroscopic image
CN203953815U (zh) * 2014-04-24 2014-11-26 薛青 辅助外科手术的术中导航***
CN110215281A (zh) * 2019-06-11 2019-09-10 北京和华瑞博科技有限公司 一种基于全膝置换手术的股骨或胫骨配准方法及装置
CN111640143A (zh) * 2020-04-12 2020-09-08 复旦大学 一种基于PointNet的神经导航快速面配准方法及***
CN113116523A (zh) * 2021-04-09 2021-07-16 元化智能科技(深圳)有限公司 骨科手术配准装置、终端设备和存储介质
CN113616350A (zh) * 2021-07-16 2021-11-09 元化智能科技(深圳)有限公司 标记点选取位置的验证方法、装置、终端设备和存储介质

Also Published As

Publication number Publication date
CN113116523A (zh) 2021-07-16
CN113116523B (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
WO2022214105A1 (zh) 骨科手术配准装置、终端设备和存储介质
CN112842529B (zh) 全膝关节图像处理方法及装置
CN112991409B (zh) 骨骼注册方法及***及存储介质
CN113616350B (zh) 标记点选取位置的验证方法、装置、终端设备和存储介质
US10350089B2 (en) Digital tool and method for planning knee replacement
JP2016512973A (ja) 身体に対して対象を追跡するための追跡装置
US9033997B2 (en) Express-registering regions of the body
US20180199996A1 (en) Configuring a surgical tool
CN113855233B (zh) 手术范围确定方法、装置、电子设备及存储介质
CN113633377B (zh) 一种面向胫骨高位截骨手术的胫骨优化配准***与方法
CN112515763B (zh) 目标物的定位显示方法、***、装置和电子设备
Shao et al. Augmented reality calibration using feature triangulation iteration-based registration for surgical navigation
CN116058965A (zh) 用于关节置换手术的骨骼注册方法及手术导航***
CN111568456A (zh) 基于特征点三维重建的膝关节姿态测量方法
WO2016173626A1 (en) Method and device for determining geometric parameters for total knee replacement surgery
US20150105780A1 (en) Method and system for determining the alignment of two bones
CN114938995B (zh) 应用于髋关节置换手术的骨盆配准***和医疗设备
Gomes et al. Patient-specific modelling in orthopedics: from image to surgery
CN115245384A (zh) 骨骼注册方法及***、机器人***及存储介质
Bou-Sleiman et al. Minimization of intra-operative shaping of orthopaedic fixation plates: a population-based design
CN115024741B (zh) 结节定位装置和辅助测量工具
Liu et al. Accurate and robust registration method for computer-assisted high tibial osteotomy surgery
CN116439691A (zh) 基于人工智能的关节活动度检测方法及相关设备
CN116327362A (zh) 磁探头辅助支气管术中导航方法、装置、介质及电子设备
CN116363093A (zh) 一种用于寻找髋臼的旋转中心的方法与装置、手术规划***及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784171

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22784171

Country of ref document: EP

Kind code of ref document: A1