WO2022199517A1 - 衍射光波导及电子设备 - Google Patents

衍射光波导及电子设备 Download PDF

Info

Publication number
WO2022199517A1
WO2022199517A1 PCT/CN2022/081956 CN2022081956W WO2022199517A1 WO 2022199517 A1 WO2022199517 A1 WO 2022199517A1 CN 2022081956 W CN2022081956 W CN 2022081956W WO 2022199517 A1 WO2022199517 A1 WO 2022199517A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
coupling
film
reflective
diffractive optical
Prior art date
Application number
PCT/CN2022/081956
Other languages
English (en)
French (fr)
Inventor
鲁云开
闫冠屹
丁武文
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022199517A1 publication Critical patent/WO2022199517A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type

Definitions

  • the present application relates to the field of optical technology, and in particular, to a diffractive optical waveguide and an electronic device.
  • the light enters the waveguide matrix through the coupling element and is totally reflected, and is reflected to the coupling out element to obtain the required order diffracted light.
  • the diffraction efficiency of the diffracted light needs to be high, and it is coupled out through the coupling element for many times. Since the luminous efficiency of the 0th-order diffracted light is much higher than that of the out-coupled light, the 0th-order diffracted light continues to propagate forward through the outcoupling element and is likely to leak from the waveguide matrix, causing more light to be wasted.
  • the embodiments of the present application provide a diffractive optical waveguide and an electronic device, aiming at improving the utilization rate of light, and at the same time obtaining a diffractive optical waveguide and an electronic device with a clear output image.
  • a diffractive optical waveguide in a first aspect, includes a waveguide base, an in-coupling element, an out-coupling element, an optical element and a reflective element, the coupling-in element and the coupling-out element are spaced apart from the waveguide base, and the optical element is provided in the between the coupling-in element and the coupling-out element, the reflective element is arranged on the side of the coupling-out element away from the coupling-in element;
  • External light enters the waveguide substrate through the coupling element, and passes through the optical element to form a first light, the first light enters the coupling-out element and is diffracted to form a second light and a third light.
  • the second light exits the waveguide base, the third light propagates in the waveguide base, the third light is reflected by the reflective element to form a fourth light, and the fourth light is reflected by the outcoupling element and the optical element is reflected to form a fifth ray;
  • the coupling-out element has out-coupling selectivity, for example, has angle selectivity, that is, the coupling-out element is used to couple out the light of a specific angle and reflect the light of other angles, and the propagation direction of the fifth light is the same as that of the first light.
  • the polarization selectivity the coupling-out element is used to couple out the light of a specific polarization state and reflect the light of other polarization states, and the polarization state of the fifth light ray is the same as that of the first light ray.
  • the optical element and the reflective element are respectively disposed on two sides of the outcoupling element, and the outcoupling element is limited to have outcoupling selectivity, such as angle selectivity and polarization selectivity, so that the second light can be coupled out from the outcoupling element , the third light is reflected by the reflective element to form a fourth light, and the direction (propagation direction) or polarization state of the fourth light incident on the outcoupling element is different from the direction (propagation direction) or polarization state of the first light incident on the outcoupling element , is reflected by the out-coupling element but not out-coupled, and then is reflected by the optical element to form a fifth ray, the fifth ray is incident on the out-coupling element again, and its incident direction or polarization state is the same as the direction in which the first ray is incident on the out-coupling element or The polarization states are the same, and the fifth light part is coupled out through the coupling-out element.
  • outcoupling selectivity such as angle selectivity
  • the present application does not couple out the light reflected by the reflective element that is inconsistent with the incident direction or polarization state of the fourth light, and only after being reflected by the optical element again is consistent with the incident direction or polarization state of the first light, That is, the fifth light ray and the first light ray exit from the coupling-out element at the same angle, so that they are coupled out. It not only effectively prevents the third light from leaking out of the diffractive optical waveguide, improves the utilization rate of light, but also avoids the superposition of symmetrical images caused by different light coupling and outgoing directions in the same field of view to form ghost images, and users can observe clear images.
  • the diffractive optical waveguide includes a waveguide base, an in-coupling element, an out-coupling element, an optical element and a reflective element.
  • the coupling-in element and the coupling-out element are spaced apart from the waveguide base, the optical element is provided between the coupling-in element and the coupling-out element, and the reflective element is provided in the coupling-out element the side away from the coupling element.
  • the coupling element is used for coupling external light into the waveguide substrate; the optical element is used for passing the light to form the first light, and the coupling-out element is used for diffracting the first light to form the first light.
  • two light rays and a third light ray and allow the second light ray to be coupled out of the waveguide base to reflect the third light ray, the reflecting element is used to reflect the third light ray to form a fourth light ray, and the coupling-out element and the optical element is used to reflect the fourth light in turn to form the fifth light;
  • the coupling-out element is used to couple out the light of a specific angle and reflect the light of other angles, and the propagation direction of the fifth light is the same as that of the fifth light.
  • the first light rays are the same; or, the coupling-out element is used to couple out the light rays of a specific polarization state and reflect the light rays of other polarization states, and the polarization state of the fifth light rays is the same as the first light rays.
  • the coupling-out element is used to couple out light of a specific angle and reflect light of other angles
  • the propagation direction of the fifth light is the same as that of the first light
  • the optical element includes a first light.
  • An optical film, the reflective element includes a first reflective film. The first optical film and the first reflective film are reflectively matched, so that the propagation direction (incident angle) of the fifth light ray and the first light ray are the same.
  • the first optical film is a first polarized reflective film
  • the light passes through the first polarized reflective film to form the first light
  • the reflective element further includes a first 1/ 4-wave plate
  • the first reflective film is a high-reflection film
  • the first 1/4-wave plate is located on the side of the high-reflection film facing the outcoupling element.
  • the first optical film is a first polarized reflective film, and the light passes through the first polarized reflective film to form the first light;
  • the reflective element further includes a first 1/ 4-wave plate, the first reflective film is a second polarized reflective film, and the first 1/4-wave plate is located on the side of the second polarized reflective film facing the coupling element.
  • the first optical film is a high-reflection film
  • the first optical film includes a gap
  • the light passes through the gap to form the first light
  • the first reflective film is a high-reflection film.
  • Reverse film The propagation direction (incidence angle) of the fifth light ray and the first light ray is the same as realized by the cooperation of the high-reflection film and the high-reflection film.
  • the first optical film is a high-reflection film
  • the first optical film includes a gap
  • the light passes through the gap to form the first light
  • the reflective element further includes 1/ 2 wave plates
  • the first reflection film is a second polarization reflection film
  • the 1/2 wave plate is located on the side of the second polarization reflection film facing the coupling element.
  • the fifth light ray and the first light ray have the same propagation direction (incident angle) through the cooperation of the high reflective film, the 1/2 wave plate and the second polarized reflective film.
  • the out-coupling element is used to couple out light of a specific polarization state and reflect light of other polarization states, and the polarization state of the fifth light ray is the same as that of the first light ray;
  • the optical element It includes a second optical film and a second 1/4 wave plate, the second 1/4 wave plate is arranged on the side of the second optical film close to the coupling element, and the second 1/4 wave plate includes a first through hole, the light passes through the second optical film and forms the first light through the first through hole,
  • the reflective element includes a second reflective film and a third 1/4 wave plate, the The third quarter wave plate is disposed on the side of the second reflective film facing the outcoupling element.
  • the second optical film is a second highly reflective film
  • the second highly reflective film includes a second through hole, and the light passes through the second through hole and the first through hole in sequence to form the
  • the second reflective film is a first highly reflective film.
  • the second reflective film is a fourth polarized reflective film.
  • the optical element and the reflection element are respectively disposed on two sides of the coupling-out element and both are in contact with the coupling-out element.
  • the optical element and the reflective element are respectively disposed on two sides of the coupling-out element and both are in contact with the coupling-out element.
  • the coupling-out element is a grating or a metasurface device.
  • the grating is a one-dimensional grating or a two-dimensional grating.
  • the diffractive optical waveguide further includes a first reflection member, and the first reflection member is located on a side of the coupling-in element away from the coupling-out element.
  • the first reflector utilizes the diffracted light coupled back to the out-coupling element through the reflection of the high-reflection film, thereby effectively improving the light efficiency.
  • the first reflection member may also be a polarized reflection film.
  • an electronic device in a second aspect, includes an image transmitter and the above-mentioned diffractive optical waveguide, the image transmitter emits light, and the light enters the diffractive optical waveguide through the coupling element.
  • the electronic device with the above diffractive optical waveguide has clear imaging and high light efficiency.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of an augmented reality component of the electronic device shown in FIG. 1;
  • FIG. 3 is a schematic structural diagram of the diffractive optical waveguide shown in FIG. 2;
  • FIG. 4 is a schematic diagram of the coupling-out principle of the coupling-out element shown in FIG. 3;
  • Fig. 5 is the structural representation of related art
  • FIG. 6 is a schematic structural diagram of another embodiment of the diffractive optical waveguide shown in FIG. 3;
  • Fig. 7 is the structural representation of grating
  • FIG. 8 is a schematic structural diagram of a metasurface device
  • FIG. 9 is a schematic diagram of the preparation process of the diffractive optical waveguide shown in FIG. 3;
  • FIG. 10 is a schematic structural diagram of another embodiment of the diffractive optical waveguide shown in FIG. 3;
  • FIG. 11 is a schematic structural diagram of another embodiment of the diffractive optical waveguide shown in FIG. 3;
  • FIG. 12 is a schematic structural diagram of another embodiment of the diffractive optical waveguide shown in FIG. 3;
  • FIG. 13 is a schematic structural diagram of another embodiment of the diffractive optical waveguide shown in FIG. 3;
  • FIG. 14 is a schematic diagram of the coupling-out principle of the coupling-out element shown in FIG. 13;
  • FIG. 15 is a schematic structural diagram of another embodiment of the diffractive optical waveguide shown in FIG. 3;
  • FIG. 16 is a schematic structural diagram of another embodiment of the diffractive optical waveguide shown in FIG. 15;
  • FIG. 17 is a schematic structural diagram of another embodiment of the diffractive optical waveguide shown in FIG. 3 .
  • connection may be detachable connection, or It is a non-removable connection; it can be a direct connection or an indirect connection through an intermediate medium.
  • fixed connection refers to connection with each other and the relative positional relationship after connection remains unchanged.
  • Rotationally connected means connected to each other and capable of relative rotation after connection.
  • Slideingly connected means connected to each other and capable of sliding relative to each other after connection.
  • Embodiments of the present application provide an electronic device for wearing on a user's head.
  • the electronic device may be a head-mounted display device, for example, the electronic device may be an augmented reality device, such as augmented reality (AR) glasses, AR helmet, mixed reality (MR) glasses or MR helmet, etc. to combine digital content with reality. Electronic products that combine scenes together.
  • the electronic device may also not be worn on the head. Or the electronic device may not be an augmented reality device.
  • the electronic device is an example of AR glasses for specific description.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the electronic device 100 includes a frame 10 and an augmented reality component 20 mounted on the frame 10 .
  • an augmented reality component 20 mounted on the frame 10 .
  • there are two augmented reality components 20 and the two augmented reality components 20 are installed on the glasses frame 10 at intervals.
  • the number of enhanced display components may also be one or more, which is not specifically limited in this application.
  • the structures of the two augmented reality components 20 are the same.
  • one augmented reality component 20 corresponds to the user's left eye
  • the other augmented reality component 20 corresponds to the user's right eye.
  • the user's eyes can view virtual reality through the two augmented reality components 20 . scene and real scene.
  • the structures of the two augmented reality components 20 may also be different, which is not specifically limited in this application.
  • the structure of the augmented reality component 20 is described in detail by taking the augmented reality component 20 corresponding to the left eye of the user as an example.
  • FIG. 2 is a schematic structural diagram of the augmented reality component 20 of the electronic device 100 shown in FIG. 1 .
  • the augmented reality assembly 20 includes a diffractive optical waveguide 21 , a projection system 22 and an image emitter 23 .
  • the diffractive optical waveguide 21 , the projection system 22 and the image transmitter 23 are all mounted on the mirror frame 10 .
  • the image emitter 23 emits light
  • the projection system 22 collimates the light emitted by the image emitter 23 into the diffracted optical waveguide 21.
  • the diffracted light propagates through total internal reflection in the diffracted optical waveguide 21, and finally the diffracted light is transmitted from the diffracted light.
  • the waveguide 21 is emitted into the human eye.
  • the diffractive optical waveguide 21 has various implementations.
  • FIG. 3 is a schematic structural diagram of the diffractive optical waveguide shown in FIG. 2 .
  • the diffractive optical waveguide 21 includes a waveguide base 211, an in-coupling element 212, an out-coupling element 213, an optical element 214 and a reflective element 215.
  • the coupling-in element 212 and the out-coupling element 213 are spaced apart from the waveguide base 211, and the optical element 214 is provided in the coupling-in element 214.
  • the reflective element 215 is provided on the side of the out-coupling element 213 away from the coupling-in element 212 .
  • the external light enters the waveguide base 211 through the coupling element 212, and passes through the optical element 214 to form the first light L1.
  • the first light L1 enters the coupling out element 213 and is diffracted to form the second light L2 and the third light L3.
  • the second light L1 L2 exits the waveguide base 211, the third light L3 propagates in the waveguide base 211, the third light L3 is reflected by the reflective element 215 to form a fourth light L4, and the fourth light L4 is reflected by the outcoupling element 213 and the optical element 214 to form a fifth light L5.
  • the out-coupling element 213 has out-coupling selectivity, such as angle selectivity, that is, the out-coupling element 213 is used to couple out light rays of a specific angle and reflect light rays of other angles.
  • the propagation direction of the fifth light ray L5 is the same as that of the first light ray L1.
  • the fifth light L5 is injected into the decoupling element 213 and coupled out of the waveguide base 211 by the diffractive part.
  • the fifth light ray L5 repeats the propagation path of the first light ray L1, and so on. After the third light L3 is reflected to the outcoupling element 213 during the continuous propagation, part of it is coupled out of the waveguide substrate 211 , and part of the light is reflected by the outcoupling element 213 and the part of the light is no longer named and labeled.
  • the coupling-out element 213 in this embodiment is set so that the light is incident in the first angle range A1 and the coupling-out efficiency is high, and the light is incident in the second angle range A2 and the coupling-out efficiency is high.
  • the low coupling-out efficiency here can be understood as basically no coupling-out.
  • the specific angle is within the first angle range A1 , other angles are within the second angle range A2 , and the incident angle of the first light L1 is within the first angle range A1 , so part of the first light L1 can be coupled out from the coupling-out element 213 .
  • the incident angle of the fourth light L4 reflected by the reflecting element 215 to the out-coupling element 213 is within the second angular range A2 and cannot be coupled out from the out-coupling element 213 , and then reflected to the optical element 214 , and then reflected by the optical element 214 to become
  • the fifth light ray L5 the propagation direction of the fifth light ray L5 is the same as that of the first light ray L1, that is, the incident angle of the fifth light ray L5 to the outcoupling element 213 is within the first angle range A1, so it can be coupled from the outcoupling element 213 out.
  • the reflection element 30 is placed at the exit end face of the diffractive optical waveguide, so that the light originally lost from the end face is reflected and continues to interact with the outcoupling grating 40 to effectively recycle the light leaked out of the waveguide.
  • the reflected light directly interacts and couples out with the outcoupling grating 40, which will cause the human eye to fail to observe a clear image.
  • the incident direction of the light v1 coupled out of the grating 40 is different, and the incident light in the same field of view has two different directions when it exits. At the human eye, two symmetrical images will eventually be superimposed. Since the reflected light energy is relatively small. Strong, the images formed by the light emitted from the two directions can be perceived by the human eye, forming ghost images, resulting in the inability to observe a clear image.
  • the optical element 214 and the reflective element 215 are disposed on two sides of the outcoupling element 213 respectively, and the outcoupling element 213 is limited to have angular selectivity, so that the second light L2 can be coupled out from the coupling out element 213, and the third light can be L3 is reflected by the reflective element 215 to form a fourth light L4.
  • the direction (propagation direction) of the fourth light L4 incident on the outcoupling element 213 is different from the direction in which the first light L1 is incident on the outcoupling element 213 (propagation direction), and is coupled
  • the output element 213 is reflected without being coupled out, and then the fifth light ray L5 is formed after being reflected by the optical element 214 .
  • the fifth light ray L5 is incident on the out-coupling element 213 again, and its incident direction is the same as the direction in which the first light ray L1 is incident on the out-coupling element 213 .
  • the fifth light L5 is partially coupled out through the coupling-out element 213 . That is to say, the present application does not couple out the light reflected by the reflective element 215 that is inconsistent with the incident direction of the fourth light L4, and only after being reflected by the optical element 214 again is consistent with the incident direction of the first light L1, that is, the first light L1
  • the five light rays L5 and the first light rays L1 exit the outcoupling element 213 at the same angle (propagation direction), so that they are coupled out.
  • the waveguide base 211 includes a first surface 2111 and a second surface 2112 arranged opposite to each other, the coupling element 212 is provided on the first surface 2111, the coupling element 213 is provided on the second surface 2112, The element 212 and the outcoupling element 213 are spaced apart in a direction perpendicular to the thickness of the waveguide base 211 .
  • the optical element 214 is connected between the first surface 2111 and the second surface 2112, and the reflective element 215 is also connected between the first surface 2111 and the second surface 2112.
  • the coupling-in element 212 and the coupling-out element 213 may both be located on the first surface 2111 or the second surface 2112 , and the coupling-in element 212 and the coupling-out element 213 are spaced apart.
  • Both the coupling-in element 212 and the coupling-out element 213 include, but are not limited to, the relief grating G1 , the holographic grating G2 and the metasurface device S1 as shown in FIGS. 7 and 8 .
  • the relief grating G1 may be a one-dimensional grating or a two-dimensional grating.
  • the out-coupling element 213 is angularly selective. The angular selectivity of the out-coupling element 213 can be set in the following manner.
  • the angular selectivity of the out-coupling element 213 can be set by optimizing the topography of the grating such as duty cycle, period, height, and inclination angle. parameters are obtained.
  • the coupling-out element 213 is the metasurface device S1
  • the angular selectivity is also obtained by optimizing the size of the pillars of the unit structure.
  • the out-coupling element 213 is also insensitive to polarization, that is, light of different polarization states can be coupled out from the out-coupling element 213 .
  • the out-coupling element 213 by defining the out-coupling element 213 to be both angle-selective and insensitive to polarization, it can ensure that light of different polarizations can be out-coupled from the out-coupling element 213, thereby effectively improving the utilization rate of light.
  • the decoupling element 213 may also be angularly selective and sensitive to polarization.
  • the outcoupling element 213 can also be polarization selective and angle insensitive.
  • the objective function MF sum((DE_s-Tar) 2 +(DE_p-Tar) 2 +(DE_s-DE_p) 2 ) can be used.
  • DE_s and DE_p represent the diffraction efficiency of s-polarized light and p-polarized light incident on the grating, respectively
  • Tar is the target value of the outcoupling efficiency we need. It is expected to obtain the same target value of outcoupling efficiency under s and p polarization, and optimize by global optimization algorithm such as simulated annealing algorithm or genetic algorithm to obtain specific grating structure parameter values.
  • the polarization insensitivity means that it is a unit of symmetric structure, and the nanostructure pillars only change in diameter, but keep the symmetric structure unchanged, which means they are polarization insensitive.
  • the optical element 214 includes a first optical film
  • the reflective element 215 includes a first reflective film and a first 1/4 wave plate 2152
  • the first 1/4 wave plate 2152 is located in the direction of the first reflective film.
  • the first optical film is a first polarized reflective film 2141
  • the first polarized reflective film 2141 transmits p-polarized light and reflects s-polarized light, and the light passes through the first polarized reflective film 2141 to form a first light L1.
  • the first reflective film is the second polarized reflective film 2151
  • the second polarized reflective film 2151 reflects the s-polarized light and transmits the p-polarized light
  • the third light L3 is transmitted through the first 1/4 wave plate 2152
  • the second polarized reflective film 2151 emits
  • the fourth light L4 is transmitted through the first quarter wave plate 2152 again to form the fourth light L4
  • the fourth light L4 is sequentially passed through the coupling-out element 213 and the first polarized reflection film 2141 to form the fifth light L5.
  • the optical element 214 and the reflective element 215 are respectively disposed on both sides of the coupling-out element 213 and both are in contact with the coupling-out element 213 .
  • the first polarizing reflective film 2141 is provided on the side of the out-coupling element 213 close to the in-coupling element 212 and is in contact with the out-coupling element 213, and the first 1/4 wave plate 2152 is provided on the out-coupling element 213 away from the coupling-in element 212 and in contact with the out-coupling element 213
  • the second polarized reflection film 2151 is arranged on the side of the first quarter wave plate 2152 facing away from the out-coupling element 213 .
  • the optical element 214 and the reflection element 215 in this embodiment are formed inside the waveguide base 211 by the following process.
  • the optical element 214 and the reflective element 215 are first coated on the edge of the block material of the coupling element of a certain size, and then the area block is glued to the size of the entire diffractive optical waveguide, and then the block is After the material is sliced into diffractive optical waveguides, desired structures are imprinted or etched on the coupling-in and out-coupling regions of the optical element 214 and the reflective element 215 to form the coupling-in and out-coupling elements to obtain the final diffracted light. waveguide.
  • the process of light propagating in the diffractive optical waveguide 21 is specifically and clearly described below.
  • the image transmitter 23 emits p-polarized light, and the p-polarized light is still p-polarized light through the projection system 22.
  • the p-polarized light enters the waveguide base 211 from the coupling element 212, passes through the first polarized reflection film 2141, and forms the first light L1,
  • the first light L1 is incident on the out-coupling element 213 to form a second light L2 and a third light L3, the second light L2 is coupled out from the out-coupling element 213, and the third light L3 passes through the second polarized reflective film 2151 and the first 1/
  • the 4-wave plate 2152 After the 4-wave plate 2152 is reflected, it becomes s-polarized light to form a fourth light ray L4.
  • the fourth light ray L4 is incident on the out-coupling element 213.
  • the fourth light L4 is reflected to the first polarized reflection film 2141. Since the first polarized reflection film 2141 reflects the s-polarized light, the fourth light L4 is reflected by the first polarized reflection film 2141 to form a fifth light L5, and the fifth light L5 Then it is incident on the coupling-out element 213. Since the angle at which the fifth light beam L5 formed by the reflection of the first polarized reflective film 2141 enters the coupling-out element 213 is within the first angle range A1, the fifth light beam L5 is partially coupled from the coupling-out element 213. out.
  • the out-coupling element 213 of the present application is insensitive to polarization and has angular selectivity, so that the s-polarized light and the p-polarized light can be coupled out from the out-coupling element 213 as long as the angles incident on the out-coupling element 213 are the same, which effectively improves energy utilization It also avoids the superposition of symmetrical images caused by the coupling of light from different directions to form ghost images, and users can observe clear images.
  • the image emitter 23 can also emit s-polarized light
  • the first polarized reflective film 2141 can also transmit s-polarized light and reflect p-polarized light
  • the second polarized reflective film 2151 faces the first 1/4 wave
  • the surface of the sheet 2152 is provided with a 1/2 wave plate
  • the second polarized reflection film 2151 can reflect p-polarized light and transmit s-polarized light.
  • the image emitter 23 can also emit natural light, which becomes p-polarized light after passing through the first polarized reflective film 2141, but compared to the image emitter 23 directly emitting p-polarized light, the image emitter 23 Part of the light effect of emitting natural light will be blocked by the first polarized reflective film 2141, reducing the light effect, while the image emitter 23 directly emits p-polarized light, and the p-polarized light will all pass through the first polarized reflective film 2141, not It will cause a waste of light.
  • FIG. 10 is a schematic structural diagram of another embodiment of the diffractive optical waveguide 21 shown in FIG. 3 .
  • This embodiment is substantially the same as the embodiment shown in FIG. 3 , except that the first reflective film is a high-reflection film 2153, the first quarter-wave plate 2152 is located on the side of the high-reflection film 2153 facing the outcoupling element 213, and the third
  • the light L3 passes through the first 1/4 wave plate 2152, is reflected by the high-reflection film 2153 and then transmits through the first 1/4 wave plate 2152 to form a fourth light L4, and the fourth light L4 passes through the coupling element 213 and the first light in sequence.
  • the polarized reflection film 2141 reflects the fifth light L5.
  • FIG. 11 is a schematic structural diagram of another embodiment of the diffractive optical waveguide 21 shown in FIG. 3 .
  • the optical element 214 includes a first optical film
  • the reflection element 215 includes a first reflection film.
  • the first optical film is a high-reflection film 2142
  • the first optical film includes a gap h1
  • the light passes through the gap h1 to form a first light L1
  • the first reflection film is a high-reflection film 2153
  • the third light L3 is reflected by the high-reflection film 2153 to form the first light beam L1.
  • Four light rays L4 the fourth light rays L4 are sequentially reflected by the coupling-out element 213 and the high-reflection film 2142 to form the fifth light rays L5.
  • the highly reflective film can reflect light of any polarization state.
  • the process of the light propagating in the diffractive optical waveguide 21 will be specifically and clearly described below.
  • the image transmitter 23 emits p-polarized light, and the p-polarized light is still p-polarized light through the projection system 22.
  • the p-polarized light enters the waveguide base 211 from the coupling element 212, and forms the first light L1 through the gap h1 of the high-reflection film 2142.
  • the fifth light L5 is formed by reflection, and then incident on the coupling-out element 213.
  • the fifth light L5 is partially emitted from the coupling-out element 213.
  • the output element 213 is coupled out.
  • the out-coupling element 213 in this embodiment can be sensitive to p-polarized light only and has angular selectivity, which effectively improves energy utilization, and also avoids the superposition of symmetrical images caused by the coupling of light from different directions to form ghost images. A clear image can be observed.
  • the distance between the optical element and the reflective element can be set, so that when the fourth light beam L4 is reflected to the reflective element, the gap can be avoided.
  • the image transmitter 23 may also emit s-polarized light or natural light, and both the first optical film and the first reflective film reflect the s-polarized light or natural light.
  • FIG. 12 is a schematic structural diagram of another embodiment of the diffractive optical waveguide 21 shown in FIG. 3 .
  • the reflective element 215 further includes a 1/2 wave plate 2156
  • the first reflective film is a second polarized reflective film 2151
  • the second polarized reflective film Film 2151 reflects s-polarized light and transmits p-polarized light.
  • the third light L3 passes through the 1/2 wave plate 2156, is reflected by the second polarizing reflection film 2151, and passes through the 1/2 wave plate 2156 again to form the fourth light L4, which passes through the coupling-out element 213 and the high-reflection element 215 in turn.
  • the film 2142 reflects the fifth light ray L5.
  • FIG. 13 is a schematic structural diagram of another embodiment of the diffractive optical waveguide 21 shown in FIG. 3 .
  • the diffractive optical waveguide 21 includes a waveguide base 211 , an in-coupling element 212 , an out-coupling element 213 , an optical element 214 and a reflection element 215 , and the relationship between the above elements is the same as that in the embodiment shown in FIG. 3 .
  • the external light enters the waveguide base 211 through the coupling element 212, and passes through the optical element 214 to form the first light L1.
  • the first light L1 enters the coupling out element 213 and is diffracted to form the second light L2 and
  • the third light L3, the second light L2 exit the waveguide base 211, the third light L3 propagates in the waveguide base 211, the third light L3 is reflected by the reflective element 215 to form a fourth light L4, and the fourth light L4 is driven by the outcoupling element 213 and
  • the optical element 214 reflects the fifth light ray L5.
  • the out-coupling element 213 has out-coupling selectivity, such as polarization selectivity, that is, the out-coupling element 213 is used to couple out light of a specific polarization state and reflect light of other polarization states, and the polarization state of the fifth light ray L5 is the same as that of the first light ray L1 same.
  • out-coupling selectivity such as polarization selectivity
  • the out-coupling element 213 in this embodiment is set to be sensitive to the first polarized light and insensitive to the second polarized light, and the first polarized light can be coupled out from the coupling-out element 213 ,
  • the second polarized light cannot be coupled out from the decoupling element 213 .
  • the specific polarization state is the first polarization state
  • the other polarization states are the second polarization state
  • the first polarization state is s-polarized light
  • the second polarization state is p-polarized light.
  • the first light L1 is s-polarized light, so the second light L2 can be coupled out from the decoupling element 213 .
  • the fourth light L4 reflected by the reflective element 215 to the out-coupling element 213 is p-polarized light and cannot be coupled out from the out-coupling element 213, and is then reflected to the optical element 214.
  • the fifth light L5 reflected by the optical element 214 becomes s Polarized light can therefore be coupled out from the decoupling element 213 .
  • the optical element 214 and the reflective element 215 are disposed on two sides of the outcoupling element 213 respectively, and the outcoupling element 213 is limited to have polarization selectivity, so that the second light L2 can be coupled out from the coupling out element 213, and the third light L3 is reflected by the reflective element 215 to form a fourth light L4.
  • the fourth light L4 is incident on the out-coupling element 213, the polarization state of the fourth light L4 incident on the out-coupling element 213 is due to the polarization state of the fourth light L4 incident on the out-coupling element 213.
  • Different polarization states are reflected by the out-coupling element 213 but not out-coupled, and then reflected by the optical element 214 to form a fifth light ray L5, and the polarization state of the fifth light ray L5 incident on the out-coupling element 213 again is the same as that of the first light ray L1 incident on the coupling-out element 213.
  • the polarization states of the output elements 213 are the same, and part of the fifth light L5 is coupled out through the coupling elements 213 .
  • the present application does not couple out the fourth light beam L4 whose polarization state is inconsistent with the first light beam L1 reflected by the reflective element 215 , only after being reflected by the optical element 214 again, the polarization state of the first light beam L1 is consistent with that of the first light beam L1. , that is, the polarization states of the first light L1 and the fifth light L5 exiting from the coupling element 213 are the same, so they are coupled out.
  • the angle of the incident coupling element 213 is the same as the first light L1 incident coupling the same angle.
  • the optical element 214 includes a second optical film and a second 1/4 wave plate 2144.
  • the second 1/4 wave plate 2144 is disposed on the side of the second optical film close to the coupling element 213, and the second 1/4 wave plate 2144
  • the wave plate 2144 includes a first through hole h2
  • the reflective element 215 includes a second reflective film and a third 1/4 wave plate 2155
  • the third 1/4 wave plate 2155 is provided on the side of the second reflective film facing the outcoupling element 213 .
  • the second optical film is the second high-reflection film 2143
  • the second 1/4 wave plate 2144 is disposed on the side of the second high-reflection film 2143 close to the out-coupling element 213
  • the second high-reflection film 2143 includes a second through hole h3
  • the first The second high-reflection film 2143 reflects light of any polarization state, and the light passes through the second through hole h3 and the first through-hole h2 to form the first light L1
  • the second reflective film is the first high-reflection film 2154
  • the sheet 2155 is disposed on the side of the first high-reflection film 2154 facing the outcoupling element 213, and the first high-reflection film 2154 reflects light of any polarization state.
  • the optical element 214 and the reflective element 215 are respectively disposed on both sides of the coupling-out element 213 and both are in contact with the coupling-out element 213 .
  • the second 1/4 wave plate 2144 is provided on the side of the coupling-out element 213 close to the coupling-in element 212 and is in contact with the coupling-out element 213, and the second high-reflection film 2143 is provided on the second 1/4 The wave plate 2144 is away from the side of the outcoupling element 213 .
  • the third 1/4 wave plate 2155 is arranged on the side of the out-coupling element 213 away from the in-coupling element 212 and is in contact with the out-coupling element 213.
  • the first high-reflection film 2154 is arranged on the third 1/4 wave plate 2155 to couple back. one side of the element 213. Compared with setting the optical element 214 and the reflective element 215 at positions far away from the out-coupling element 213, there is no distance between the optical element 214, the reflective element 215 and the out-coupling element 213, so that the light can be prevented from hitting the edge of the waveguide substrate, which greatly reduces the The stray light caused by the light hitting the edge of the waveguide substrate can effectively improve the light efficiency and the energy utilization rate of the light.
  • the image transmitter 23 emits s-polarized light, which is still s-polarized light through the projection system 22.
  • the s-polarized light enters the waveguide base 211 from the coupling element 212, and passes through the second through hole h3 of the second high-reflection film 2143 and the second 1/
  • the first through hole h2 of the 4-wave plate 2144 forms the first light L1, the first light L1 is incident on the out-coupling element 213 to form the second light L2 and the third light L3, and the second light L2 is coupled out from the out-coupling element 213 , the third light L3 becomes p-polarized light after being reflected by the first high-reflection film 2154 and the third 1/4 wave plate 2155 to form the fourth light L4, and the fourth light L4 is incident on the outcoupling element 213.
  • the distance between the optical element and the reflection element can be set, so that when the fourth light L4 is reflected to the reflection element, the first through hole and the second through hole are avoided.
  • the first polarized light is p-polarized light
  • the third light L3 becomes s-polarized light after being reflected by the first high-reflection film 2154 and the third 1/4 wave plate 2155 to form the fourth light L4
  • the fourth light L4 is incident on the outcoupling element 213
  • the fourth light L4 is reflected to the third 1/4 wave plate 2155 and the second high reflection film 2143
  • the second part L4 passes through the third 1/4 wave plate 2155 and the second high reflection film 2143.
  • the second high-reflection film 2143 becomes p-polarized light after reflection to form the fifth light beam L5 , and then enters the out-coupling element 213 and partially couples out from the out-coupling element 213 .
  • FIG. 15 is a schematic structural diagram of another embodiment of the diffractive optical waveguide 21 shown in FIG. 3 .
  • This embodiment is substantially the same as the embodiment shown in FIG. 3 , except that the coupling-out element 213 in this embodiment is a two-dimensional grating.
  • FIG. 16 is a schematic structural diagram of another embodiment of the diffractive optical waveguide 21 shown in FIG. 15 .
  • the diffractive optical waveguide 21 further includes a first reflector 216 , and the first reflector 216 is located on the side of the coupling-in element 212 away from the coupling-out element 213 .
  • the first reflector 216 is a high-reflection film, and the diffracted light that is coupled to the in-coupling element 212 and back to the out-coupling element 213 is reflected and utilized by the high-reflection film, thereby effectively improving the light efficiency.
  • the first reflection member may also be a polarized reflection film.
  • FIG. 17 is a schematic structural diagram of another embodiment of the diffractive optical waveguide 21 shown in FIG. 3 .
  • the diffractive optical waveguide 21 further includes a light converting element 217 and an optical element 218 respectively disposed on the light incident side and the light output side of the light converting element 217 . and the second reflector 219 , the light enters the waveguide base 211 from the coupling-in element 212 , and is turned by the light-reversing element 217 , so that the light propagates to the coupling-out element 213 and is coupled out from the coupling-out element 213 .
  • the optical element 218 and the second reflector 219 are used to prevent light leakage during the propagation process, and effectively improve the utilization rate of the light.
  • the optical element 218 and the second reflector 219 in this embodiment may both be high-reflection films.
  • the specific structure of the optical element 218 can also refer to the optical element 214, and the specific structure of the second reflecting member 219 can refer to the reflecting element 215, which will not be repeated.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本申请实施例提供一种衍射光波导及电子设备。衍射光波导包括波导基体、耦入元件、耦出元件、光学元件和反射元件。外部光线经耦入元件进入波导基体,并经过光学元件形成第一光线,第一光线射入耦出元件并被衍射形成第二光线和第三光线,第二光线射出波导基体,第三光线被反射元件反射形成第四光线,第四光线被耦出元件和光学元件反射形成第五光线;耦出元件用于耦出特定角度的光线并反射其他角度的光线,第五光线的传播方向与第一光线相同;或者,耦出元件用于耦出特定偏振态的光线并反射其他偏振态的光线,第五光线的偏振态与第一光线相同。旨在获得一种具有高光效、呈像清晰的衍射光波导。

Description

衍射光波导及电子设备
本申请要求于2021年3月24日提交中国国家知识产权局、申请号202110316351.3、申请名称为“衍射光波导及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光学技术领域,特别涉及一种衍射光波导及电子设备。
背景技术
在衍射光波导方案中,光线通过耦入元件进入波导基体发生全反射,反射至耦出元件,得到需要的级次衍射光的同时,由于扩瞳需要,还会得到0级衍射光,0级衍射光的衍射效率需要很高,多次经过耦出元件耦出。由于0级衍射光的光效远高于被耦出的光线的光效,0级衍射光经过耦出元件继续向前传播容易从波导基体中漏出,造成较多光线被浪费。
发明内容
本申请实施例提供一种衍射光波导及电子设备,旨在提高光线利用率的同时,获得一种具有出射清晰图像的衍射光波导及电子设备。
第一方面,提供了一种衍射光波导。所述衍射光波导包括波导基体、耦入元件、耦出元件、光学元件和反射元件,所述耦入元件和所述耦出元件间隔设于所述波导基体,所述光学元件设于所述耦入元件和所述耦出元件之间,所述反射元件设于所述耦出元件远离所述耦入元件的一侧;
外部光线经所述耦入元件进入所述波导基体,并经过所述光学元件形成第一光线,所述第一光线射入所述耦出元件并被衍射形成第二光线和第三光线,所述第二光线射出所述波导基体,所述第三光线在所述波导基体中传播,所述第三光线被所述反射元件反射形成第四光线,所述第四光线被所述耦出元件和所述光学元件反射形成第五光线;
耦出元件具有耦出选择性,例如具有角度选择性,即所述耦出元件用于耦出特定角度的光线并反射其他角度的光线,所述第五光线的传播方向与所述第一光线相同;或者,偏振选择性,所述耦出元件用于耦出特定偏振态的光线并反射其他偏振态的光线,所述第五光线的偏振态与所述第一光线相同。
本实施通过将光学元件和反射元件分别设于耦出元件的两侧,且限定耦出元件具有耦出选择性,例如角度选择性和偏振选择性,从而第二光线能够从耦出元件耦出,第三光线经反射元件反射形成第四光线,第四光线入射到耦出元件的方向(传播方向)或偏振态由于与第一光线入射到耦出元件的方向(传播方向)或偏振态不同,被耦出元件反射而不耦出,然后经过光学元件反射后形成第五光线,第五光线再次入射至耦出元件,其入射方向或偏振态与第一光线入射至耦出元件的方向或偏振态相同,第五光线部分经耦出元件耦出。也就是说, 本申请通过对经反射元件反射回的与第四光线入射的方向或偏振态不一致的光线不耦出,只有再次经光学元件反射后,与第一光线入射方向或偏振态一致,即第五光线和第一光线从耦出元件出射的角度相同,从而耦出。既有效避免第三光线从衍射光波导中漏出,提高了光线的利用率,又避免了同一视场的光线耦出方向不同引起的对称像的叠加形成鬼像,用户能够观察到清晰的图像。
所述衍射光波导包括波导基体、耦入元件、耦出元件、光学元件和反射元件。所述耦入元件和所述耦出元件间隔设于所述波导基体,所述光学元件设于所述耦入元件和所述耦出元件之间,所述反射元件设于所述耦出元件远离所述耦入元件的一侧。
所述耦入元件用于将外部光线耦入所述波导基体;所述光学元件用于使所述光线经过形成第一光线,所述耦出元件用于衍射所述第一光线,以形成第二光线和第三光线,并允许所述第二光线耦出所述波导基体,反射所述第三光线,所述反射元件用于反射所述第三光线形成第四光线,所述耦出元件和所述光学元件用于依次反射所述第四光线,以形成第五光线;所述耦出元件用于耦出特定角度的光线并反射其他角度的光线,所述第五光线的传播方向与所述第一光线相同;或者,所述耦出元件用于耦出特定偏振态的光线并反射其他偏振态的光线,所述第五光线的偏振态与所述第一光线相同。
一种可能的实现方式中,所述耦出元件用于耦出特定角度的光线并反射其他角度的光线,所述第五光线的传播方向与所述第一光线相同,所述光学元件包括第一光学膜,所述反射元件包括第一反射膜。通过第一光学膜和第一反射膜反射配合,以使第五光线与第一光线的传播方向(入射角度)相同。
一种可能的实现方式中,所述第一光学膜为第一偏振反射膜,所述光线透过所述第一偏振反射膜形成所述第一光线,所述反射元件还包括第一1/4波片,所述第一反射膜为高反膜,所述第一1/4波片位于所述高反膜朝向所述耦出元件的一侧。通过第一偏振反射膜、第一1/4波片和高反膜配合实现第五光线与第一光线的传播方向(入射角度)相同。
一种可能的实现方式中,所述第一光学膜为第一偏振反射膜,所述光线透过所述第一偏振反射膜形成所述第一光线;所述反射元件还包括第一1/4波片,所述第一反射膜为第二偏振反射膜,所述第一1/4波片位于所述第二偏振反射膜朝向所述耦出元件的一侧。通过第一偏振反射膜、第一1/4波片和第二偏振反射膜配合实现第五光线与第一光线的传播方向(入射角度)相同。
一种可能的实现方式中,所述第一光学膜为高反膜,所述第一光学膜包括缺口,所述光线通过所述缺口形成所述第一光线,所述第一反射膜为高反膜。通过高反膜和高反膜配合实现第五光线与第一光线的传播方向(入射角度)相同。
一种可能的实现方式中,所述第一光学膜为高反膜,所述第一光学膜包括缺口,所述光线通过所述缺口形成所述第一光线,所述反射元件还包括1/2波片,所述第一反射膜为第二偏振反射膜,所述1/2波片位于所述第二偏振反射膜朝向所述耦出元件的一侧。通过高反膜、1/2波片和第二偏振反射膜配合实现第五光线与第一光线的传播方向(入射角度)相同。
一种可能的实现方式中,所述耦出元件用于耦出特定偏振态的光线并反射其他偏振态的光线,所述第五光线的偏振态与所述第一光线相同;所述光学元件包括第二光学膜和第二1/4波片,所述第二1/4波片设于所述第二光学膜靠近所述耦出元件一侧,所述第二1/4波片包括 第一通孔,所述光线经过所述第二光学膜且通过所述第一通孔形成所述第一光线,所述反射元件包括第二反射膜和第三1/4波片,所述第三1/4波片设于所述第二反射膜朝向所述耦出元件的一侧。通过第二光学膜、第二1/4波片、第二反射膜和第三1/4波片配合实现第五光线与第一光线的传播方向(入射角度)相同。
一种可能的实现方式中,所述第二光学膜为第二高反膜所述第二高反膜包括第二通孔,所述光线依次通过第二通孔和第一通孔形成所述第一光线,所述第二反射膜为第一高反膜。所述第二反射膜为第四偏振反射膜。通过第二高反膜、第二1/4波片、第一高反膜和第三1/4波片配合实现第五光线与第一光线的传播方向(入射角度)相同。
一种可能的实现方式中,所述光学元件和所述反射元件分别设于所述耦出元件两侧并均与所述耦出元件接触。相比于将光学元件和反射元件分别设于远离耦出元件的位置,光学元件和反射元件与耦出元件之间没有距离,避免光线打到波导基体的边缘,大大减少由于光线打到波导基体的边缘导致的杂散光,有效提高光效及光线的能量利用率。
一种可能的实现方式中,所述耦出元件为光栅或超表面器件。
一种可能的实现方式中,所述光栅为一维光栅或二维光栅。
一种可能的实现方式中,所述衍射光波导还包括第一反射件,所述第一反射件位于所述耦入元件远离所述耦出元件的一侧。第一反射件将经耦入元件后的背向耦出元件的衍射光通过高反膜反射加以利用,有效提高光效。当然,在其他实施例中,第一反射件还可以为偏振反射膜。
第二方面,还提供了一种电子设备。所述电子设备包括图像发射器和上述的衍射光波导,所述图像发射器发射光线,所述光线经所述耦入元件进入所述衍射光波导。具有上述衍射光波导的电子设备成像清晰,光效高。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的一种电子设备的结构示意图;
图2是图1所示的电子设备的增强现实组件的结构示意图;
图3是图2所示的衍射光波导的结构示意图;
图4是图3所示的耦出元件的耦出原理示意图;
图5是相关技术的结构示意图;
图6是图3所示的衍射光波导的另一实施方式的结构示意图;
图7是光栅的结构示意图;
图8是超表面器件的结构示意图;
图9是图3所示的衍射光波导的制备工艺示意图;
图10是图3所示衍射光波导的另一实施方式的结构示意图;
图11是图3所示衍射光波导的另一实施方式的结构示意图;
图12是图3所示衍射光波导的另一实施方式的结构示意图;
图13是图3所示衍射光波导的另一实施方式的结构示意图;
图14是图13所示的耦出元件的耦出原理示意图;
图15是图3所示衍射光波导的另一实施方式的结构示意图;
图16是图15所示衍射光波导的另一实施方式的结构示意图;
图17是图3所示衍射光波导的另一实施方式的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“连接”应做广义理解,例如,“连接”可以是可拆卸地连接,也可以是不可拆卸地连接;可以是直接连接,也可以通过中间媒介间接连接。其中,“固定连接”是指彼此连接且连接后的相对位置关系不变。“转动连接”是指彼此连接且连接后能够相对转动。“滑动连接”是指彼此连接且连接后能够相对滑动。本申请实施例中所提到的方位用语,例如,“上”、“下”、“左”、“右”、“内”、“外”等,仅是参考附图的方向,因此,使用的方位用语是为了更好、更清楚地说明及理解本申请实施例,而不是指示或暗指所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。“多个”是指至少两个。
可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与发明相关的部分。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
本申请实施例提供一种电子设备,用于佩戴在用户的头部。电子设备可以为头戴显示设备,例如电子设备可以为增强现实设备,比如增强现实(augmented reality,AR)眼镜、AR头盔、混合现实(mixrtual reality,MR)眼镜或MR头盔等将数字内容和现实场景结合在一起的电子产品。电子设备还可以不佩戴在头部。或者电子设备还可以不是增强现实设备。本申请以电子设备是AR眼镜为例进行具体说明。
请参阅图1,图1是本申请实施例提供的一种电子设备的结构示意图。
本实施例中,电子设备100包括镜架10以及安装于镜架10的增强现实组件20。其中,增强现实组件20有两个,两个增强现实组件20间隔安装于镜架10。当然,在其他实施例中,增强显示组件的数量也可以是一个或多个,本申请对此不作具体限定。
本实施例中,两个增强现实组件20的结构相同。电子设备100穿戴于用户头部时,一个增强现实组件20对应于用户的左眼,另一个增强现实组件20对应于用户的右眼,此时用户的双眼可以通过两个增强现实组件20观看虚拟场景和真实场景。需要说明的是,在其他实施例中,两个增强现实组件20的结构也可以不同,本申请对此不作具体限定。
接下来,为了便于理解,以与用户的左眼相对应的增强现实组件20为例对增强现实组件20的结构进行具体描述。
请参阅图2,图2是图1所示的电子设备100的增强现实组件20的结构示意图。
增强现实组件20包括衍射光波导21、投影***22和图像发射器23。具体的,衍射光波导21、投影***22和图像发射器23均安装于镜架10。图像发射器23发出光,投影***22将图像发射器23发出的光进行准直入射到衍射光波导21,经耦入后衍射光在衍射光波导21 中通过全内反射传播,最后从衍射光波导21中射出进入人眼。本实施例中,衍射光波导21具有多种实施方式。
一种实施方式中,请参阅图3,图3是图2所示的衍射光波导的结构示意图。
衍射光波导21包括波导基体211、耦入元件212、耦出元件213、光学元件214和反射元件215,耦入元件212和耦出元件213间隔设于波导基体211,光学元件214设于耦入元件212和耦出元件213之间,反射元件215设于耦出元件213远离耦入元件212的一侧。
外部光线经耦入元件212进入波导基体211,并经过光学元件214形成第一光线L1,第一光线L1射入耦出元件213并被衍射形成第二光线L2和第三光线L3,第二光线L2射出波导基体211,第三光线L3在波导基体211中传播,第三光线L3被反射元件215反射形成第四光线L4,第四光线L4被耦出元件213和光学元件214反射形成第五光线L5。
耦出元件213具有耦出选择性,例如具有角度选择性,即耦出元件213用于耦出特定角度的光线并反射其他角度的光线,第五光线L5的传播方向与第一光线L1相同,第五光线L5被射入耦出元件213并被衍射部分耦出波导基体211。
可以理解的是,第五光线L5重复第一光线L1的传播路径,如此循环。第三光线L3继续传播过程中反射至耦出元件213后,一部分被耦出波导基体211,一部分经耦出元件213反射该部分光线不再命名和标号。
可以理解的是,如图4所示,本实施例中的耦出元件213被设定为光线在第一角度范围A1入射则耦出效率高,光线在第二角度范围A2入射则耦出效率低,此处耦出效率低可以理解为基本不耦出。特定角度在第一角度范围A1内,其他角度位于第二角度范围A2内,第一光线L1的入射角位于第一角度范围A1内,因此第一光线L1部分能够从耦出元件213耦出。经过反射元件215反射至耦出元件213的第四光线L4的入射角位于第二角度范围A2内,无法从耦出元件213耦出,继而反射至光学元件214,经光学元件214反射后变为第五光线L5,第五光线L5的传播方向与第一光线L1相同,也即第五光线L5入射至耦出元件213的入射角位于第一角度范围A1内,因此能从耦出元件213耦出。
如图5,传统方案通过在衍射光波导的出射端面处放置反射元件30,使得原本从端面损失的光反射,继续和耦出光栅40相互作用,将泄露出波导的光有效再循环利用。但是,反射回来的光线直接与耦出光栅40相互作用耦出,会导致人眼处无法观察到清晰的图像,可以理解的是,反射回来的光v2入射至耦出光栅40的入射方向与直接耦出光栅40的光v1的入射方向不同,同一视场的入射光线出射的时候有两个不同的方向,在人眼处最终会形成两个对称的像叠加,由于被反射回来的光能量较强,两个方向出射的光分别形成的图像都能被人眼所感知,形成鬼像,导致无法观测到清晰的图像。
本实施通过将光学元件214和反射元件215分别设于耦出元件213的两侧,且限定耦出元件213具有角度选择性,从而第二光线L2能够从耦出元件213耦出,第三光线L3经反射元件215反射形成第四光线L4,第四光线L4入射到耦出元件213的方向(传播方向)由于与第一光线L1入射到耦出元件213的方向(传播方向)不同,被耦出元件213反射而不耦出,然后经过光学元件214反射后形成第五光线L5,第五光线L5再次入射至耦出元件213,其入射方向与第一光线L1入射至耦出元件213的方向相同,第五光线L5部分经耦出元件213耦出。也就是说,本申请通过对经反射元件215反射回的与第四光线L4入射的方向不一致的 光线不耦出,只有再次经光学元件214反射后,与第一光线L1入射方向一致,即第五光线L5和第一光线L1从耦出元件213出射的角度(传播方向)相同,从而耦出。既有效避免第三光线L3从衍射光波导21中漏出,提高了光线的利用率,又避免了同一视场的光线耦出方向不同引起的对称像的叠加形成鬼像,用户能够观察到清晰的图像。
本实施例中,如图3,波导基体211包括相对设置的第一表面2111和第二表面2112,耦入元件212设于第一表面2111,耦出元件213设于第二表面2112,耦入元件212和耦出元件213在垂直于波导基体211的厚度的方向上间隔设置。光学元件214连接在第一表面2111和第二表面2112之间,反射元件215也连接在第一表面2111和第二表面2112之间。当然,在其他实施例中,如图6所示,耦入元件212和耦出元件213还可以均位于第一表面2111或第二表面2112,耦入元件212和耦出元件213间隔设置。
耦入元件212和耦出元件213均包括但不限于如图7和图8所示的浮雕光栅G1、全息光栅G2以及超表面器件S1。浮雕光栅G1可以是一维光栅也可以是二维光栅。不同于耦入元件212,耦出元件213具有角度选择性。耦出元件213的角度选择性可以通过如下方式设置,示例的,耦出元件213为光栅时,耦出元件213的角度选择性可以通过优化占空比、周期、高度、倾角等光栅的形貌参数得到。耦出元件213为超表面器件S1时,角度选择性同样是通过优化单元结构柱子的尺寸大小来得到。
本实施例中,耦出元件213还对偏振不敏感,也就是说,不同偏振态的光都能从耦出元件213中耦出。本申请通过限定耦出元件213既为角度选择性,又对偏振不敏感,能保证不同偏振光都能从耦出元件213耦出,有效提高光线的利用率。当然,在其他实施例中,耦出元件213还可以是具有角度选择性且对偏振敏感。或者耦出元件213还可以是具有偏振选择性对角度不敏感。
具体的,可通过目标函数MF=sum((DE_s-Tar) 2+(DE_p-Tar) 2+(DE_s-DE_p) 2)。式中DE_s和DE_p分别代表s偏振光和p偏振光入射到光栅后的衍射效率,Tar是我们需要的耦出效率目标值,将该目标函数最小作为优化光栅结构的目标,这个目标代表着我们期望得到s和p偏振下同样的耦出效率目标值,通过模拟退火算法或者是基因算法等全局优化算法进行优化,得到具体的光栅结构参数值。对于超表面器件S1来说,偏振不敏感意味着是对称结构的单元,纳米结构柱子只是直径大小发生改变,但保持对称结构不变,则是偏振不敏感的。
如图3,本实施方式中,光学元件214包括第一光学膜,反射元件215包括第一反射膜和第一1/4波片2152,第一1/4波片2152位于第一反射膜朝向耦出元件213的一侧。具体的,第一光学膜为第一偏振反射膜2141,第一偏振反射膜2141透p偏振光反射s偏振光,光线透过第一偏振反射膜2141形成第一光线L1。第一反射膜为第二偏振反射膜2151,第二偏振反射膜2151反射s偏振光透过p偏振光,第三光线L3经第一1/4波片2152透射,第二偏振反射膜2151发射,再次经第一1/4波片2152透射形成第四光线L4,第四光线L4依次经耦出元件213和第一偏振反射膜2141形成第五光线L5。
本实施例中,光学元件214和反射元件215分别设于耦出元件213两侧并均与耦出元件213接触。具体的,第一偏振反射膜2141设于耦出元件213靠近耦入元件212的一侧,并与耦出元件213接触,第一1/4波片2152设于耦出元件213远离耦入元件212的一侧,并与耦出元件213接触,第二偏振反射膜2151设于第一1/4波片2152背向耦出元件213的一侧。 相比于将光学元件214和反射元件215分别设于远离耦出元件213的位置,光学元件214和反射元件215与耦出元件213之间没有距离,避免光线打到波导基体的边缘,大大减少由于光线打到波导基体的边缘导致的杂散光,有效提高光效及光线的能量利用率。
具体的,本实施例中的光学元件214和反射元件215通过如下工艺形成于波导基体211内部。如图9的制备流程图所示,先在确定的大小的耦出元件的块状材料边上镀光学元件214和反射元件215,然后将区域块黏合成整个衍射光波导的大小,然后将块状材料切片成衍射光波导后,在光学元件214和反射元件215的耦入区域和耦出区域上压印或者刻蚀所需的结构,形成耦入元件和耦出元件,得到最终的衍射光波导。
如图2和图3,下面具体清晰地描述光线在衍射光波导21中传播的过程。图像发射器23发出p偏振光,p偏振光经过投影***22仍为p偏振光,p偏振光从耦入元件212进入波导基体211,透过第一偏振反射膜2141,形成第一光线L1,第一光线L1入射至耦出元件213后形成第二光线L2和第三光线L3,第二光线L2从耦出元件213耦出,第三光线L3经过第二偏振反射膜2151和第一1/4波片2152反射后变成s偏振光,形成第四光线L4,第四光线L4入射至耦出元件213,由于第四光线L4入射至耦出元件213的入射角在第二角度范围A2内,第四光线L4被反射至第一偏振反射膜2141,由于第一偏振反射膜2141反射s偏振光,第四光线L4经第一偏振反射膜2141反射后形成第五光线L5,第五光线L5随后入射至耦出元件213,由于经第一偏振反射膜2141反射形成的第五光线L5入射耦出元件213的角度在第一角度范围A1内,因此第五光线L5部分从耦出元件213耦出。
本申请的耦出元件213对偏振不敏感具有角度选择性,从而s偏振光和p偏振光只要入射到耦出元件213的角度相同,均能从耦出元件213耦出,有效提高了能量利用率,还避免了光线从不同方向耦出引起的对称像的叠加形成鬼像,用户能够观察到清晰的图像。
当然,在其他实施方式中,图像发射器23还可以发出s偏振光,第一偏振反射膜2141还可以是透s偏振光反射p偏振光,第二偏振反射膜2151朝向第一1/4波片2152的表面设有1/2波片,第二偏振反射膜2151可以是反射p偏振光透过s偏振光。或者,在其他实施方式中,图像发射器23还可以发射自然光,在经过第一偏振反射膜2141后变成p偏振光,但是相比于图像发射器23直接发出p偏振光,图像发射器23还可以发射自然光的光效有部分会被第一偏振反射膜2141阻挡,降低了光效,而图像发射器23直接发出p偏振光,p偏振光会全部透过第一偏振反射膜2141,不会造成光的浪费。
另一种实施方式中,请参阅图10,图10是图3所示衍射光波导21的另一实施方式的结构示意图。
本实施方式与图3所示的实施方式大致相同,不同在于第一反射膜为高反膜2153,第一1/4波片2152位于高反膜2153朝向耦出元件213的一侧,第三光线L3透过第一1/4波片2152,被高反膜2153反射后从第一1/4波片2152透射,形成第四光线L4,第四光线L4依次经耦出元件213和第一偏振反射膜2141反射形成第五光线L5。
另一种实施方式中,请参阅图11,图11是图3所示衍射光波导21的另一实施方式的结构示意图。
本实施方式与图10所示的实施方式大致相同,不同在于,本实施方式中,光学元件214包括第一光学膜,反射元件215包括第一反射膜。第一光学膜为高反膜2142,第一光学膜包 括缺口h1,光线通过缺口h1形成第一光线L1,第一反射膜为高反膜2153,第三光线L3经高反膜2153反射形成第四光线L4,第四光线L4依次经耦出元件213和高反膜2142反射形成第五光线L5。高反膜可以反射任意偏振态的光线。
下面具体清晰地描述光线在衍射光波导21中传播的过程。图像发射器23发出p偏振光,p偏振光经过投影***22仍为p偏振光,p偏振光从耦入元件212进入波导基体211,通过高反膜2142的缺口h1形成第一光线L1,第一光线L1入射耦出元件213形成第二光线L2和第三光线L3,第二光线L2从耦出元件213耦出,第三部分经过高反膜2153反射后形成第四光线L4,第四光线L4入射至耦出元件213,由于第四光线L4入射至耦出元件213的入射角在第二角度范围A2内,第四光线L4被反射至高反膜2142,第四光线L4经高反膜2142反射形成第五光线L5,随后入射至耦出元件213,由于经高反膜2142反射形成的第五光入射耦出元件213的角度在第一角度范围A1内,因此第五光线L5部分从耦出元件213耦出。
本实施方式中的耦出元件213可以是仅对p偏振光敏感且具有角度选择性,有效提高了能量利用率,还避免了光线从不同方向耦出引起的对称像的叠加形成鬼像,用户能够观察到清晰的图像。本实施方式可以通过设置光学元件和反射元件的距离,以使第四光线L4反射至反射元件时,避让缺口。
当然,在其他实施方式中,图像发射器23还可以发出s偏振光或自然光,第一光学膜和第一反射膜均反射s偏振光或自然光。
另一种实施方式中,请参阅图12,图12是图3所示衍射光波导21的另一实施方式的结构示意图。
本实施方式与图11所示的实施方式大致相同,不同在于,本实施方式中,反射元件215还包括1/2波片2156,第一反射膜为第二偏振反射膜2151,第二偏振反射膜2151反射s偏振光透过p偏振光。第三光线L3透过1/2波片2156,经第二偏振反射膜2151反射,再次透过1/2波片2156形成第四光线L4,第四光线L4依次经耦出元件213和高反膜2142反射形成第五光线L5。
另一种实施方式中,请参阅图13,图13是图3所示衍射光波导21的另一实施方式的结构示意图。
本实施方式中,衍射光波导21包括波导基体211、耦入元件212、耦出元件213、光学元件214和反射元件215,上述元件之间的关系和图3所示实施方式相同。不同在于,本实施方式中,外部光线经耦入元件212进入波导基体211,并经过光学元件214形成第一光线L1,第一光线L1射入耦出元件213并被衍射形成第二光线L2和第三光线L3,第二光线L2射出波导基体211,第三光线L3在波导基体211中传播,第三光线L3被反射元件215反射形成第四光线L4,第四光线L4被耦出元件213和光学元件214反射形成第五光线L5。
耦出元件213具有耦出选择性,例如具有偏振选择性,即耦出元件213用于耦出特定偏振态的光线并反射其他偏振态的光线,第五光线L5的偏振态与第一光线L1相同。
可以理解的是,如图14所示,本实施例中的耦出元件213被设定为第一偏振光敏感,第二偏振光不敏感,第一偏振光能够从耦出元件213耦出,第二偏振光不能从耦出元件213耦出。特定偏振态为第一偏振态,其他偏振态为第二偏振态,第一偏振光为s偏振光,第二偏振光为p偏振光。第一光线L1为s偏振光,因此第二光线L2能够从耦出元件213耦出。经 过反射元件215反射至耦出元件213的第四光线L4为p偏振光,无法从耦出元件213耦出,继而反射至光学元件214,经光学元件214反射后的第五光线L5变为s偏振光,因此能从耦出元件213耦出。
本实施通过将光学元件214和反射元件215分别设于耦出元件213的两侧,且限定耦出元件213具有偏振选择性,从而第二光线L2能够从耦出元件213耦出,第三光线L3经反射元件215反射形成第四光线L4,第四光线L4入射至耦出元件213时,第四光线L4入射到耦出元件213的偏振态由于与第一光线L1入射到耦出元件213的偏振态不同,被耦出元件213反射而不耦出,然后经过光学元件214反射后形成第五光线L5,第五光线L5再次入射至耦出元件213的偏振态与第一光线L1入射至耦出元件213的偏振态相同,第五光线L5部分经耦出元件213耦出。也就是说,本申请通过对经反射元件215反射回的与第一光线L1不一致偏振态的第四光线L4不耦出,只有再次经光学元件214反射后,与第一光线L1的偏振态一致,即第一光线L1和第五光线L5从耦出元件213出射的偏振态相同,从而耦出,第五光线L5耦出时入射耦出元件213的角度与第一光线L1入射耦出元件213的角度相同。既有效避免第三部分从衍射光波导21中漏出,提高了光线的利用率,又避免了同一视场的光线耦出方向不同引起的对称像的叠加形成鬼像,用户能够观察到清晰的图像。
本实施方式中,光学元件214包括第二光学膜和第二1/4波片2144,第二1/4波片2144设于第二光学膜靠近耦出元件213一侧,第二1/4波片2144包括第一通孔h2,反射元件215包括第二反射膜和第三1/4波片2155,第三1/4波片2155设于第二反射膜朝向耦出元件213的一侧。第二光学膜为第二高反膜2143,第二1/4波片2144设于第二高反膜2143靠近耦出元件213一侧,第二高反膜2143包括第二通孔h3,第二高反膜2143反射任意偏振态的光线,光线依次通过第二通孔h3和第一通孔h2形成第一光线L1,第二反射膜为第一高反膜2154,第三1/4波片2155设于第一高反膜2154朝向耦出元件213的一侧,第一高反膜2154反射任意偏振态的光线。
本实施例中,光学元件214和反射元件215分别设于耦出元件213两侧并均与耦出元件213接触。具体的,具体的,第二1/4波片2144设于耦出元件213靠近耦入元件212的一侧,并与耦出元件213接触,第二高反膜2143设于第二1/4波片2144远离耦出元件213的一侧。第三1/4波片2155设于耦出元件213远离耦入元件212的一侧,并与耦出元件213接触,第一高反膜2154设于第三1/4波片2155背向耦出元件213的一侧。相比于将光学元件214和反射元件215分别设于远离耦出元件213的位置,光学元件214和反射元件215与耦出元件213之间没有距离,避免光线打到波导基体的边缘,大大减少由于光线打到波导基体的边缘导致的杂散光,有效提高光效及光线的能量利用率。
如图13,下面具体清晰地描述光线在衍射光波导21中传播的过程。图像发射器23发出s偏振光,经过投影***22仍为s偏振光,s偏振光从耦入元件212进入波导基体211,通过第二高反膜2143的第二通孔h3和第二1/4波片2144的第一通孔h2,形成第一光线L1,第一光线L1入射至耦出元件213后形成第二光线L2和第三光线L3,第二光线L2从耦出元件213耦出,第三光线L3经过第一高反膜2154和第三1/4波片2155反射后变成p偏振光,形成第四光线L4,第四光线L4入射至耦出元件213,由于第四光线L4入射至耦出元件213时为p偏振光,第四光线L4被反射至第三1/4波片2155和第二高反膜2143,第四光线L4经 过第三1/4波片2155和第二高反膜2143反射后变为s偏振光,形成第五光线L5,随后入射至耦出元件213部分从耦出元件213耦出。
本实施方式可以通过设置光学元件和反射元件的距离,以使第四光线L4反射至反射元件时,避让第一通孔和第二通孔。
当然,在其他实施例中,第一偏振光为p偏振光,第三光线L3经过第一高反膜2154和第三1/4波片2155反射后变成s偏振光,形成第四光线L4,第四光线L4入射至耦出元件213,第四光线L4被反射至第三1/4波片2155和第二高反膜2143,第二部分L4经过第三1/4波片2155和第二高反膜2143反射后变为p偏振光,形成第五光线L5,随后入射至耦出元件213部分从耦出元件213耦出。
另一种实施方式中,请参阅图15,图15是图3所示衍射光波导21的另一实施方式的结构示意图。本实施方式与图3所示的实施方式大致相同,不同在于,本实施方式中的耦出元件213为二维光栅。
另一种实施方式中,请参阅图16,图16是图15所示衍射光波导21的另一实施方式的结构示意图。
本实施方式与图15所示的实施方式大致相同,不同在于,衍射光波导21还包括第一反射件216,第一反射件216位于耦入元件212远离耦出元件213的一侧。具体的,第一反射件216为高反膜,将经耦入元件212后的背向耦出元件213的衍射光通过高反膜反射加以利用,有效提高光效。当然,在其他实施例中,第一反射件还可以为偏振反射膜。
另一种实施方式中,请参阅图17,图17是图3所示衍射光波导21的另一实施方式的结构示意图。
本实施方式与图3所示的实施方式大致相同,不同在于,本实施例中,衍射光波导21还包括转光元件217及分别设于转光元件217入光侧和出光侧的光学元件218和第二反射件219,光线从耦入元件212进入波导基体211,通过转光元件217转向,以使光线传播至耦出元件213,并从耦出元件213耦出。光学元件218和第二反射件219用于防止光线在传播过程中漏光,有效提高光线的利用率。
本实施例中的光学元件218和第二反射件219可以均为高反膜。光学元件218的具体结构还可以参考光学元件214,第二反射件219的具体结构可以参考反射元件215,不在赘述。
以上,仅为本申请的部分实施例和实施方式,本申请的保护范围不局限于此,任何熟知本领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (13)

  1. 一种衍射光波导,其特征在于,所述衍射光波导包括波导基体、耦入元件、耦出元件、光学元件和反射元件,所述耦入元件和所述耦出元件间隔设于所述波导基体,所述光学元件设于所述耦入元件和所述耦出元件之间,所述反射元件设于所述耦出元件远离所述耦入元件的一侧;
    外部光线经所述耦入元件进入所述波导基体,并经过所述光学元件形成第一光线,所述第一光线射入所述耦出元件并被衍射形成第二光线和第三光线,所述第二光线射出所述波导基体,所述第三光线在所述波导基体中传播,所述第三光线被所述反射元件反射形成第四光线,所述第四光线被所述耦出元件和所述光学元件反射形成第五光线;
    所述耦出元件用于耦出特定角度的光线并反射其他角度的光线,所述第五光线的传播方向与所述第一光线相同;或者,所述耦出元件用于耦出特定偏振态的光线并反射其他偏振态的光线,所述第五光线的偏振态与所述第一光线相同。
  2. 根据权利要求1所述的衍射光波导,其特征在于,所述耦出元件用于耦出特定角度的光线并反射其他角度的光线,所述第五光线的传播方向与所述第一光线相同,所述光学元件包括第一光学膜,所述反射元件包括第一反射膜。
  3. 根据权利要求2所述的衍射光波导,其特征在于,所述第一光学膜为第一偏振反射膜,所述光线透过所述第一偏振反射膜形成所述第一光线,所述反射元件还包括第一1/4波片,所述第一反射膜为高反膜,所述第一1/4波片位于所述高反膜朝向所述耦出元件的一侧。
  4. 根据权利要求2所述的衍射光波导,其特征在于,所述第一光学膜为第一偏振反射膜,所述光线透过所述第一偏振反射膜形成所述第一光线;所述反射元件还包括第一1/4波片,所述第一反射膜为第二偏振反射膜,所述第一1/4波片位于所述第二偏振反射膜朝向所述耦出元件的一侧。
  5. 根据权利要求2所述的衍射光波导,其特征在于,所述第一光学膜为高反膜,所述第一光学膜包括缺口,所述光线通过所述缺口形成所述第一光线,所述第一反射膜为高反膜。
  6. 根据权利要求2所述的衍射光波导,其特征在于,所述第一光学膜为高反膜,所述第一光学膜包括缺口,所述光线通过所述缺口形成所述第一光线,所述反射元件还包括1/2波片,所述第一反射膜为第二偏振反射膜,所述1/2波片位于所述第二偏振反射膜朝向所述耦出元件的一侧。
  7. 根据权利要求1所述的衍射光波导,其特征在于,所述耦出元件用于耦出特定偏振态的光线并反射其他偏振态的光线,所述第五光线的偏振态与所述第一光线相同;所述光学元件包括第二光学膜和第二1/4波片,所述第二1/4波片设于所述第二光学膜靠近所述耦出元件一侧,所述第二1/4波片包括第一通孔,所述光线经过所述第二光学膜且通过所述第一通孔形成所述第一光线,所述反射元件包括第二反射膜和第三1/4波片,所述第三1/4波片设于所述第二反射膜朝向所述耦出元件的一侧。
  8. 根据权利要求7所述的衍射光波导,其特征在于,所述第二光学膜为第二高反膜所述第二高反膜包括第二通孔,所述光线依次通过第二通孔和第一通孔形成所述第一光线,所述第二反射膜为第一高反膜。
  9. 根据权利要求1至8中任一项所述的衍射光波导,其特征在于,所述光学元件和所述 反射元件分别设于所述耦出元件两侧并均与所述耦出元件接触。
  10. 根据权利要求1至9中任一项所述的衍射光波导,其特征在于,所述耦出元件为光栅或超表面器件。
  11. 根据权利要求10所述的衍射光波导,其特征在于,所述光栅为一维光栅或二维光栅。
  12. 根据权利要求1至11中任一项所述的衍射光波导,其特征在于,所述衍射光波导还包括第一反射件,所述第一反射件位于所述耦入元件远离所述耦出元件的一侧。
  13. 一种电子设备,其特征在于,所述电子设备包括图像发射器和权利要求1至12中任一项所述的衍射光波导,所述图像发射器发射光线,所述光线经所述耦入元件进入所述衍射光波导。
PCT/CN2022/081956 2021-03-24 2022-03-21 衍射光波导及电子设备 WO2022199517A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110316351.3A CN115128737B (zh) 2021-03-24 2021-03-24 衍射光波导及电子设备
CN202110316351.3 2021-03-24

Publications (1)

Publication Number Publication Date
WO2022199517A1 true WO2022199517A1 (zh) 2022-09-29

Family

ID=83374367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081956 WO2022199517A1 (zh) 2021-03-24 2022-03-21 衍射光波导及电子设备

Country Status (2)

Country Link
CN (1) CN115128737B (zh)
WO (1) WO2022199517A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024088055A1 (zh) * 2022-10-28 2024-05-02 深圳迈塔兰斯科技有限公司 耦入超构光栅、耦出超构光栅、图像组合器及ar光学***
CN118112812A (zh) * 2024-04-23 2024-05-31 北京灵犀微光科技有限公司 一种阵列光波导组及近眼显示设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117930424B (zh) * 2024-03-22 2024-06-11 宁波舜宇光电信息有限公司 一种ar衍射波导片及设计方法及ar装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105934902A (zh) * 2013-11-27 2016-09-07 奇跃公司 虚拟和增强现实***与方法
CN108107576A (zh) * 2017-11-27 2018-06-01 北京灵犀微光科技有限公司 波导显示装置
CN110989172A (zh) * 2019-12-24 2020-04-10 平行现实(杭州)科技有限公司 一种超大视场角的波导显示装置
CN111836993A (zh) * 2018-02-28 2020-10-27 苹果公司 扫描镜显示设备
US20200371388A1 (en) * 2019-05-20 2020-11-26 Facebook Technologies, Llc Optical waveguide beam splitter with extraction features for display

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4518193B2 (ja) * 2008-06-10 2010-08-04 ソニー株式会社 光学装置および虚像表示装置
US10241332B2 (en) * 2015-10-08 2019-03-26 Microsoft Technology Licensing, Llc Reducing stray light transmission in near eye display using resonant grating filter
US9766464B2 (en) * 2015-12-17 2017-09-19 Microsoft Technology Licensing, Llc Reducing ghost images
CN107632406A (zh) * 2016-07-18 2018-01-26 北京灵犀微光科技有限公司 全息波导、增强现实显示***及显示方法
US11698492B2 (en) * 2017-08-18 2023-07-11 A9.Com, Inc. Waveguide image combiners for augmented reality displays
US10845596B2 (en) * 2018-01-23 2020-11-24 Facebook Technologies, Llc Slanted surface relief grating for rainbow reduction in waveguide display
US10598938B1 (en) * 2018-11-09 2020-03-24 Facebook Technologies, Llc Angular selective grating coupler for waveguide display

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105934902A (zh) * 2013-11-27 2016-09-07 奇跃公司 虚拟和增强现实***与方法
CN108107576A (zh) * 2017-11-27 2018-06-01 北京灵犀微光科技有限公司 波导显示装置
CN111836993A (zh) * 2018-02-28 2020-10-27 苹果公司 扫描镜显示设备
US20200371388A1 (en) * 2019-05-20 2020-11-26 Facebook Technologies, Llc Optical waveguide beam splitter with extraction features for display
CN110989172A (zh) * 2019-12-24 2020-04-10 平行现实(杭州)科技有限公司 一种超大视场角的波导显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024088055A1 (zh) * 2022-10-28 2024-05-02 深圳迈塔兰斯科技有限公司 耦入超构光栅、耦出超构光栅、图像组合器及ar光学***
CN118112812A (zh) * 2024-04-23 2024-05-31 北京灵犀微光科技有限公司 一种阵列光波导组及近眼显示设备

Also Published As

Publication number Publication date
CN115128737A (zh) 2022-09-30
CN115128737B (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
WO2022199517A1 (zh) 衍射光波导及电子设备
JP3226588U (ja) コンパクトなコリメーティング画像プロジェクターを備える光学システム
JP5545076B2 (ja) 画像表示装置及び光学装置
KR100951213B1 (ko) 화상 표시 장치
US20140192418A1 (en) Optical Element and Optical Mechanism
TWM642752U (zh) 用於將圖像顯示到觀察者的眼睛中的顯示器
TW202016595A (zh) 近眼顯示器
US20070070859A1 (en) Optical elements and combiner optical systems and image-display units comprising same
US20090122414A1 (en) Substrate-Guided Optical Device Utilzing Thin Transparent Layer
CA2628871A1 (en) Polarizing optical system
CN113985519B (zh) 一种光波导器件、显示装置和显示设备
US11269189B2 (en) Image display device
US20230145899A1 (en) Optical apparatus and near-eye display device
WO2022193880A1 (zh) 近眼显示光学***、滤光件及近眼显示设备
CN112462519A (zh) 一种出光均匀的光栅波导显示装置
JP2006091489A (ja) 表示装置
JP2005148655A (ja) 画像表示装置
WO2018195983A1 (zh) 一种光波导结构及光学***
CN112433368B (zh) 影像显示装置和使用其的头戴式显示器
CN219302777U (zh) 用于制造胆甾相液晶器件的装置和近眼显示设备
CN217718285U (zh) 用于制造全息光学元件的装置和近眼显示设备
CN112882229A (zh) 一种增强现实显示***
JP6600742B2 (ja) 表示装置及び車両用ヘッドアップディスプレイ装置
KR20160022855A (ko) 착용형 디스플레이장치
JP3213629U (ja) バックライトモジュール及びディスプレイモジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22774176

Country of ref document: EP

Kind code of ref document: A1