WO2022144472A1 - Equipo divisor espectral - Google Patents

Equipo divisor espectral Download PDF

Info

Publication number
WO2022144472A1
WO2022144472A1 PCT/ES2020/070827 ES2020070827W WO2022144472A1 WO 2022144472 A1 WO2022144472 A1 WO 2022144472A1 ES 2020070827 W ES2020070827 W ES 2020070827W WO 2022144472 A1 WO2022144472 A1 WO 2022144472A1
Authority
WO
WIPO (PCT)
Prior art keywords
beams
equipment
spectral
splitter
light
Prior art date
Application number
PCT/ES2020/070827
Other languages
English (en)
French (fr)
Inventor
Carles ORIACH FONT
Original Assignee
Monocrom, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Monocrom, S.L. filed Critical Monocrom, S.L.
Priority to AU2020483730A priority Critical patent/AU2020483730A1/en
Priority to IL301816A priority patent/IL301816A/en
Priority to CA3181132A priority patent/CA3181132A1/en
Priority to EP20967949.7A priority patent/EP4155812A4/en
Priority to MX2022014961A priority patent/MX2022014961A/es
Priority to JP2022564134A priority patent/JP2023533892A/ja
Priority to CN202080104894.2A priority patent/CN116249927A/zh
Priority to KR1020237000329A priority patent/KR20230018524A/ko
Priority to PCT/ES2020/070827 priority patent/WO2022144472A1/es
Priority to US18/001,134 priority patent/US20230213778A1/en
Publication of WO2022144472A1 publication Critical patent/WO2022144472A1/es

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements

Definitions

  • the invention refers to a spectral divider equipment that provides advantages and characteristics, which are described in detail later, which represent an improvement of the current state of the art within its field of app.
  • the object of the invention focuses on a spectral divider device that, based on the principle of a Lyot filter, allows to increase the density of the power of a beam of a light source, for example a laser, from of the linear superposition of two pairs of beams combined by orthogonal polarization, through the use of birefringent and/or dispersive optical elements, for example calcite crystal with the necessary thickness to modify the wavelength in a controlled manner, causing them to return to present both beams with the same polarization allowing their linear superposition, which, in turn, allows the cascade process to be repeated, recombining the linearly superimposed beams with each other with other beams subjected to the same effect, and where the equipment comprises an assembly plate optical to be able to carry out said effect through the inclusion of additional elements, such as an external resonator that provides a greater c avity and a specific resonance condition, depending on each need, on the output beam obtained.
  • additional elements such as an external resonator that provides a
  • the field of application of the present invention falls within the industry sector dedicated to the manufacture of devices and components for light-emitting equipment, for example laser, LED or other technology.
  • the beam when light passes through a birefringent medium, the beam can be broken down into two polarization components with respect to the optical axis of the medium, each of which experiences different refractive indices, resulting in a relative phase change between the two. two and thus can induce a change in the polarization state of light. Because all media are dispersive, thus having different indices of refraction for different wavelengths, birefringence is generally also dispersive. Therefore, the change in polarization state depends on the wavelength. Therefore, it is possible to distinguish, filter, separate or combine different spectral components of light by suitable configurations of birefringent materials and polarizing beamsplitters.
  • a birefringent crystal is placed between two polarizers.
  • This filter is known as the Lyot filter. Due to the fact that a phase delay between polarization states of light is periodic by multiples of ⁇ , so is the periodic transmission of the filter with respect to wavelength.
  • laser technology is widely used in industry, normally for use in industrial laser processes, mainly for cutting or welding. Most are done with fiber optic lasers or disk lasers.
  • the important thing in this type of applications is to have an energy density that can be concentrated in very small points.
  • the energy density is achieved by scaling power or decreasing the size of the laser spot (spot size)
  • the two diodes are combined, which are the same and are placed perpendicularly and focused, with different polarization of their light (one vertical and the other with the polarization rotated clockwise).
  • a wave retarder interposed for this purpose
  • polarization beam splitter or polarization beam splitter, so that they arrive at it and leave it together in the same direction, since one crosses it and the other is reflected , but maintaining their different polarization, which means that the combination of both beams cannot be combined again to increase the power of the output laser, which would be desirable.
  • Each laser consists of a laser active region, also called a gain region, in which the supplied energy is converted by stimulated emission into coherent radiation.
  • a laser resonator is needed for this purpose, to ensure that a part of the emerging radiation is returned to the gain region. Therefore, it contains at least one feedback element, typically a semi-transparent mirror. This resonator determines, by its geometry and physical properties, the feedback characteristics of the laser light, in particular the spatial profile, the wavelength, the bandwidth and the polarization.
  • the resonator is integrated in tandem by reflective layers that are applied to the end faces and/or refractive index gratings that are epitaxially incorporated.
  • the achievable power output or power density is still too low for many interesting applications. This is because light is generated in volumes that are significantly smaller than 1 mm 3 , and thus lead to power densities that would destroy the component when increased further. Increasing the volume is not a solution because the modal selectivity decreases and as a result the quality of the beam deteriorates, keeping the power density roughly constant.
  • a long-practiced approach to at least double the output power is to superpose two orthogonal laser polarizations using a polarization beamsplitter, as explained above, so that the resulting light contains cross polarizations and only can be increased in said double power.
  • the objective of the present invention is, therefore, the development of a spectral divider equipment to increase the power, and therefore, the efficiency of the use of light beams in multiple industrial applications, for example in laser equipment to achieve a significant increase said power by combining pairs of laser beams, allowing it to reach an exponential increase, depending on the number of pairs that are combined.
  • the spectral distance of the wavelengths to be multiplexed is defined by the dispersion and the geometry of the resonator.
  • the scattering in terms of "wavelength per angle” must be multiplied by the angle "emitter spacing divided by the distance to the scattering element”.
  • a spectral step size typically greater than 1 nm results in neighboring emitters.
  • most highly dispersive gratings only have low diffraction efficiency and/or spectral acceptance and/or low damage thresholds, which makes practical realization quite difficult.
  • the spectral splitter equipment that the invention proposes is therefore configured as the optimal solution to achieve the aforementioned objectives, the characterizing details that distinguish it being collected in the final claims that accompany this description.
  • what the invention proposes refers to a spectral divider equipment that, based on the principle of a Lyot filter, allows to increase the density of the power of a beam of a light source, for example a laser, from the linear superposition of path pairs of beams combined by orthogonal polarization, through the use of birefringent and dispersive optical elements, for example crystal of the calcite with the necessary thickness to modify the wavelength in a controlled manner, causing both beams to present the same linear polarization again, allowing their linear superposition, which, in turn, allows the cascading process to be repeated, combining the beams again linearly superimposed on each other with other beams subjected to the same effect, and where the equipment comprises an optical assembly plate to be able to carry out said effect by including additional elements, such as an external resonator that provides a larger cavity and a resonance condition specific, depending on each need, on the output beam obtained.
  • additional elements such as an external resonator that provides a larger cavity and a resonance condition
  • the equipment proposed by the invention is a spectral divider for an initial light beam into more than two light rays, essentially comprising:
  • the light of the obtained output light beams mutually have at least one of the orthogonal polarization states or different wavelengths.
  • the initial light beam passes through a previous birefringent and dispersive optical element before entering the first polarization beam splitter and, optionally, also passes through a polarization beam splitter. prior to entering the first polarizing beamsplitter.
  • the initial light beam passes through a mirror partially reflective prior to respectively entering said prior polarizing beam splitter or said birefringent prior optical element.
  • At least one of the four output beams passes through a third optical element that is birefringent and/or dispersive.
  • the spectral splitter equipment is capable of acting as a beam combiner when used as described above with an inverse path of the beams.
  • the equipment comprises more than one individual light source, preferably lasers or laser gain means, as light beams to be combined, said individual light sources being able to obtain feedback from the partially reflecting mirror.
  • the spectral splitter equipment of the invention is configured as a board comprising means for individual mutual control of the optical delay and/or dispersion of the first and second optical elements and, where appropriate, of the previous optical element.
  • each individual optical element comprises dispersive birefringent crystals of integer multiples of a basic thickness and additional phase retardation comprising any one or a combination of:
  • liquid crystal element with a delay controlled by its manufacturing process or an electric field.
  • each individual optical element comprises at least two parts with a slight wedge, so that the effective thickness can be adjusted by moving the two parts relative to each other.
  • the relative optical delay is performed using fewer physical elements than are conceptually necessary and where at least one is traversed more than once.
  • the light source(s) can be a laser, semiconductor laser with or without low reflectivity, LED, laser bar, stack of bars.
  • the light sources are a matrix and some of the polarizers are shifters.
  • Figure number 1 Shows a schematic representation of an implementation example of the spectral splitter equipment, showing the main parts and elements that it comprises, as well as its layout.
  • Figure number 2. Shows a schematic representation of the spectral splitter equipment, in this case implemented as a beam combiner, showing the arrangement of its parts.
  • Figure number 3. Shows a plan view of an example of embodiment of the equipment as a beam combiner on an optical plate, showing the main parts and elements that it comprises, as well as their arrangement, the different light beams having been represented by lines. of points.
  • Figures number 4 and 5. Show respective perspective views of an example of embodiment of the assembly of a laser diode, with passive cooling and active cooling respectively, as an example of the light source that comprises the spectral divider equipment object of the invention. , appreciating its general configuration.
  • FIGS 6 and 7.- Show respective perspective views of the laser diodes with passive and active cooling shown in figures 1 and 2, in this case represented on a water-cooled basis.
  • FIGS 8 and 9. Show respective perspective views of the passively and actively cooled laser diodes mounted on their water-cooled base, shown in the preceding figures, in this case including their respective circular lens adjustments.
  • figure number 10.- Shows a perspective view of an example of mounting the optical element on an inclined support.
  • the spectral divider equipment (1) of the invention applicable to transform an initial light beam (R0), coming from a light source (F), into more than two beams of light, essentially comprises:
  • a second and a third polarization beam splitter P21 and P22, which, in turn, split the two orthogonally polarized light beams (R1 and R2) into respective four output beams (R11 and R12) and (R21 and R22), each of said optical elements (01 and 02) being birefringent and the birefringence of both elements depending on the wavelength.
  • the initial light beam (R0) passes through a previous birefringent and dispersive optical element (O0) before entering the first polarization beam splitter (P1).
  • the initial light beam (R0) passes through a previous polarization beamsplitter (P0) before entering the first polarization beamsplitter (P1).
  • the initial light beam (R0) passes through a partially reflecting mirror (M) before entering the aforementioned prior polarization beamsplitter (P0) or birefringent prior optical element (O0).
  • At least one of the four output beams (R11 and R12) and (R21 and R22) passes through a third optical element (03) that is birefringent and/or dispersive.
  • the described spectral splitter equipment can be applied as a beam combiner when used as described above with an inverse path of the beams, that is, obtaining the sum of the two pairs of beams (R11 and R12) and (R21 and R22) generated by more than one individual light source (F) to be combined into a single beam (R0).
  • the equipment comprises more than one individual light source (F), preferably lasers or laser gain means, which generate the light beams to be combined, said light sources being able Individuals get feedback from the partially reflective mirror (M).
  • F individual light source
  • M lasers or laser gain means
  • the spectral splitter equipment (1) of the invention is implemented with at least one phase delay plate for individual mutual control of the optical delay and/or dispersion of the first and second optical elements (01, 02). ) and, if applicable, the previous optical element (O0).
  • said plate is a special type of phase plate called a "quarter waveplate”.
  • each individual optical element (01, 02, O0) comprises dispersive birefringent crystals of integer multiples of a basic thickness and an additional phase retardation comprising any one or a combination of:
  • liquid crystal element with a delay controlled by its manufacturing process or an electric field.
  • each individual optical element comprises at least two parts with a slight wedge, so that the effective thickness can be adjusted by moving the two parts relative to each other.
  • the relative optical delay is performed using fewer physical elements than are conceptually necessary and where at least one is traversed more than once.
  • the light source(s) (F) may be a laser, semiconductor laser with or without low reflectivity, LED, laser bar, stack of bars.
  • the light sources (F) can be either point or matrix, and some of the polarizers are displacers.
  • FIG 3 an example of implementation of the equipment of the invention on a plate (3) is observed, specifically an example in which four beams are combined in an output lens (L), where it is observed how, in addition, include heat sinks (D).
  • an example of the light source (F) is observed, specifically a semiconductor laser diode that is either passively cooled (figure 4) without water inside the assembly on a base ( 2) which is the one with the cooling system, or with active cooling (figure 5) with two water channels that cool the diode.
  • Said base (2) is used for assembling the diode or light source (F) to the final plate (3), being provided with water connections (4) to adjust the tubes and cool the system.
  • the actively cooled mount, shown in Figure 7, has more robust connections to allow higher currents, although the height of both options is the same.
  • figures 8 and 9 show the assembly of both options of the light source (F), with a passive and active cooling system, respectively, once the circular lenses (5) have been attached, whose adjustment does not vary between one and the other, because it is identical.
  • the optical element (O) which is preferably a birefringent and/or dispersing glass, for example calcite, is mounted on a support (6) inclined at 45 °.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Lasers (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

EQUIPO DIVISOR ESPECTRAL, para transformar, al menos, un haz de luz inicial (R0), proveniente de una fuente de luz (F), en más de dos haces de luz o viceversa, que comprende un primer divisor de haz de polarización (P1), que divide dicho haz de luz inicial (R0) en dos haces polarizados ortogonalmente (R1 y R2); dos elementos ópticos (O1 y O2), atravesados respectivamente por los antedichos dos haces polarizados ortogonalmente (R1 y R2); y un segundo y un tercer divisor de haz de polarización (P21 y P22), que, a su vez, dividen los dos haces de luz polarizados ortogonalmente (R1 y R2) en respectivos cuatro haces de salida (R11 y R12) y (R21 y R22). En que cada uno de dichos elementos ópticos (O1 y O2) es birrefringente y la birrefringencia de ambos elementos depende de la longitud de onda.

Description

EQUIPO DIVISOR ESPECTRAL
DESCRIPCIÓN
OBJETO DE LA INVENCIÓN
La invención, tal como expresa el enunciado de la presente memoria descriptiva, se refiere a un equipo divisor espectral que aporta ventajas y características, que se describen en detalle más adelante, que suponen una mejora del estado actual de la técnica dentro de su campo de aplicación.
Más en particular, el objeto de la invención se centra en un equipo divisor espectral que, basado en el principio de un filtro Lyot, permite incrementar la densidad de la potencia de un haz de una fuente de luz, por ejemplo un láser, a partir de la superposición lineal de sendas parejas de haces combinados por polarización ortogonal, mediante la utilización de elementos ópticos birrefringentes y/o dispersivos, por ejemplo cristal de la calcita con el grosor necesario para modificar la longitud de onda de manera controlada, haciendo que vuelvan a presentar ambos haces la misma polarización permitiendo su superposición lineal, lo cual, a su vez, permite repetir el proceso en cascada, volviendo a combinar los haces superpuestos linealmente entre sí con otros haces sometidos al mismo efecto, y donde equipo comprende una placa de ensamblaje óptico para poder llevar a cabo dicho efecto mediante la inclusión de elementos adicionales, tales como un resonador externo que proporciona una mayor cavidad y una condición de resonancia concreta, en función de cada necesidad, sobre el haz de salida obtenido.
CAMPO DE APLICACIÓN DE LA INVENCIÓN
El campo de aplicación de la presente invención se enmarca dentro del sector de la industria dedicada a la fabricación de dispositivos y componentes para equipos de emisión de luz, por ejemplo de tecnología láser, led u otras. ANTECEDENTES DE LA INVENCIÓN
Como es sabido, cuando la luz atraviesa un medio birrefringente, el haz se puede descomponer en dos componentes de polarización respecto el eje óptico del medio cada una de las cuales experimenta diferentes índices de refracción, lo que resulta en un cambio de fase relativo entre las dos y, por lo tanto, puede inducir un cambio en el estado de polarización de la luz. Debido a que todos los medios son dispersivos, por lo que tienen diferentes índices de refracción para diferentes longitudes de onda, generalmente también lo es la birrefringencia. Por lo tanto, el cambio en el estado de polarización depende de la longitud de onda. Por lo tanto, es posible distinguir, filtrar, separar o combinar diferentes componentes espectrales de la luz mediante configuraciones adecuadas de materiales birrefringentes y divisores de haz de polarización. En el caso más simple, se coloca un cristal birrefringente entre dos polarizadores. Este filtro es conocido con el nombre de filtro de Lyot. Debido al hecho de que un retardo de fase entre los estados de polarización de la luz es periódico por múltiplos de π , también lo es la transmisión periódica del filtro con respecto a la longitud de onda.
Este efecto puede ser muy práctico para el aumento de potencia en determinados equipos.
Por ejemplo, la tecnología láser es ampliamente utilizada en la industria, normalmente para uso en procesos industriales laser, principalmente para corte o soldaduras. La mayoría se hacen con laser de fibra óptica o laser de disco.
En cualquier caso, lo importante en este tipo de aplicaciones es tener densidad de energía que pueda concentrarse en puntos muy pequeños. La densidad de energía se consigue escalando potencia o disminuyendo el tamaño del punto láser (spot size)
Sin embargo, en las aplicaciones con diodos, todo el aumento de densidad se basa en el aumento de potencia, porque el punto no se puede hace más pequeño debido a la baja calidad de haz en el eje lento, pero hasta ahora, el estado de la técnica de laser para aumentar su potencía/capacidad, solo permite sumar los haces de dos diodos mediante polarización o varios de ellos por longitud de onda. Por ello, sería deseable el desarrollo de una nueva técnica que permita aumentar dicha potencia sumando más de dichos dos únicos diodos, siendo el objetivo de la presente invención el desarrollo de dicha nueva técnica que permita ofrecer una densidad de energía dos o cuatro veces mayor de manera sencilla.
En la técnica actual, para combinar dos haces láser de dos diodos, se combinan los dos diodos, que son ¡guales y se colocan situados perpendicularmente y enfocados, con distinta polarización de su luz (uno en vertical y el otro con la polarización girada en horizontal mediante un retardador de onda interpuesto al efecto), frente a un “polarization beam splitter" o divisor de haz de polarización, de manera que llegan a éste y salen unidos en la misma dirección, ya que uno lo atraviesa y el otro se refleja, pero manteniendo su distinta polarización. Esto hace que la combinación de ambos haces no se pueda volver a combinar para aumentar la potencia del láser de salida, lo cual sería lo deseable.
Cada láser consiste en una región activa de láser, también llamada región de ganancia, en la cual la energía suministrada se convierte por emisión estimulada en radiación coherente. Para este propósito se necesita un resonador láser, para garantizar que una parte de la radiación emergente se devuelva a la región de ganancia. Por lo tanto, contiene al menos un elemento de retroalimentación, típicamente un espejo semitransparente. Este resonador determina, por su geometría y sus propiedades físicas, las características de realimentación de la luz láser, en particular el perfil espacial, la longitud de onda, el ancho de banda y la polarización.
Las características alcanzables estimadas dependen de la ganancia de material y los resonadores y, por lo general, están correlacionadas inversamente entre sí y con la potencia de salida alcanzable. Las mejoras de un parámetro elegido tienden así a deteriorar otros.
De particular importancia práctica son los láseres de semiconductores, ya que son muy pequeños, convierten directamente la energía eléctrica en luz, tienen una alta eficiencia y pueden fabricarse mediante técnicas establecidas de tecnología de producción de semiconductores y, por lo tanto, son baratos en grandes cantidades. El resonador está integrado en tándem por capas reflectantes que se aplican a las caras de los extremos y/o las rejillas de índice de refracción que se incorporan epitaxialmente. Actualmente, la potencia de salida o la densidad de potencia alcanzable aún es demasiado baja para muchas aplicaciones interesantes. Esto se debe a que la luz se genera en volúmenes que son significativamente más pequeños que 1 mm3, y por lo tanto conducen a densidades de potencia que destruirían el componente cuando se incrementara aún más. Aumentar el volumen no es una solución porque la selectividad modal disminuye y, como resultado, la calidad del haz se deteriora, lo que mantiene la densidad de potencia aproximadamente constante.
Un enfoque practicado por mucho tiempo para al menos duplicar la potencia de salida consiste en la superposición de dos polarizaciones de láser ortogonales utilizando un divisor de haz de polarización, tal como se ha explicado anteriormente, por lo que la luz resultante contiene polarizaciones cruzadas y solo se puede aumentar en dicha doble potencia.
El objetivo de la presente invención es, pues, el desarrollo de un equipo divisor espectral para incrementar la potencia, y por tanto, la eficacia del uso de haces de luz en múltiples aplicaciones industriales, por ejemplo en equipos laser para conseguir aumentar de manera significativa dicha potencia mediante la combinación de parejas de haces de laser, permitiendo poder llegar a un aumento exponencial de la misma, en función de número de pares que se combinen.
Por otra parte, y como referencia el estado actual de la técnica, cabe señalar que, si bien se conocen documentos y literatura que divulgan conceptos de este ámbito, al menos por parte del solicitante, se considera que ninguno de ellos, tomados por separado o de manera combinada, divulga un equipo como el que aquí se describe o con unas características técnicas, estructurales y constitutivas ¡guales o semejantes a las que presenta el que aquí se reivindica.
En dicho sentido, cabe mencionar que (por ejemplo por el documento WO 03/055018) es conocido que los resonadores externos muy compactos pueden mejorar dramáticamente la calidad del haz de los láseres de diodo de alta potencia a potencias medias altas. Sin embargo, vahos de estos láseres deben ser operados simultáneamente para una potencia de haz aún mayor. Esto generalmente disminuye significativamente la calidad del haz y la posibilidad de generar focos pequeños. La densidad de potencia alcanzable se mantiene virtualmente constante.
Para superar este problema, Daneu et.al. (Opt. Lett., Vol. 25, No. 6, pp. 405-407) y Sánchez- Rubio (U.S. 6,192,062) propusieron la multiplexación espectral. Este es un enfoque que utiliza múltiples fuentes de láser que se operan cada una en una longitud de onda diferente, de modo que pueden superponerse espacialmente por un elemento adecuadamente elegido, generalmente una red de difracción. Sobre esta base, existen otras solicitudes de patente (por ejemplo, WO 03/036766, WO 20/02091077).
Todas estas patentes tienen un elemento dispersivo central (prisma o rejilla) que divide el resonador en dos. En un lado del elemento, las diversas emisiones de láser son colineales, es decir, la sección transversal del haz y la dirección de emisión son casi idénticas. En el segundo lado del elemento, los diferentes haces se dispersan espacialmente por la dispersión del medio o la difracción, de modo que bajo cada dirección se puede operar un láser separado de longitud de onda apropiada. En general, esto comprende los láseres, que tienen un espejo de retroalimentación en la ruta común, ya que esto garantiza que cada región de ganancia funcione exactamente en la longitud de onda adecuada, determinada por la dispersión.
Común para estas patentes es el hecho de que la distancia espectral de las longitudes de onda a multiplexar está definida por la dispersión y la geometría del resonador. La dispersión en términos de "longitud de onda por ángulo" debe ser multiplicada por el ángulo "espaciado del emisor dividido por la distancia al elemento de dispersión". Para un multiplexado espectral denso, se obtienen grandes configuraciones o para una huella y dispersión del resonador dado, un tamaño de paso espectral típicamente mayor a 1 nm da como resultado los emisores vecinos. Además, es bien sabido que la mayoría de las redes altamente dispersivas solo tienen una baja eficiencia de difracción y/o aceptación espectral y/o bajos umbrales de daño, lo que hace que la realización práctica sea bastante difícil.
EXPLICACIÓN DE LA INVENCIÓN
El equipo divisor espectral que la invención propone se configura, pues, como la solución óptima para alcanzar los objetivos anteriormente señalados, estando los detalles caracterizadores que lo distinguen, recogidos en las reivindicaciones finales que acompañan a la presente descripción.
En concreto, lo que la invención propone, como se ha apuntado anteriormente, se refiere a un equipo divisor espectral que, basado en el principio de un filtro Lyot, permite incrementar la densidad de la potencia de un haz de una fuente de luz, por ejemplo un láser, a partir de la superposición lineal de sendas parejas de haces combinados por polarización ortogonal, mediante la utilización de elementos ópticos birrefringentes y dispersivos, por ejemplo cristal de la calcita con el grosor necesario para modificar la longitud de onda de manera controlada, haciendo que vuelvan a presentar ambos haces la misma polarización lineal permitiendo su superposición lineal, lo cual, a su vez, permite repetir el proceso en cascada, volviendo a combinar los haces superpuestos linealmente entre sí con otros haces sometidos al mismo efecto, y donde equipo comprende una placa de ensamblaje óptico para poder llevar a cabo dicho efecto mediante la inclusión de elementos adicionales, tales como un resonador externo que proporciona una mayor cavidad y una condición de resonancia concreta, en función de cada necesidad, sobre el haz de salida obtenido.
Para ello, y más específicamente, el equipo que la invención propone es un divisor espectral para un haz de luz inicial en más de dos rayos de luz que comprende, esencialmente:
- un primer divisor de haz de polarización, que divide dicha luz en dos haces polarizados ortogonalmente;
- dos elementos ópticos, atravesados respectivamente por los antedichos dos haces polarizados; y
- un segundo y un tercer divisor de haz de polarización, que, a su vez, dividen los dos haces de luz polarizados en respectivos cuatro haces de salida, siendo cada uno de dichos elementos ópticos birrefringente y la birrefringencia de ambos elementos dependiente de la longitud de onda.
Además, en la realización preferida, la luz de los haces de luz de salida obtenidos tienen mutuamente al menos uno de los estados de polarización ortogonal o diferentes longitudes de onda.
Asimismo, en una forma de realización preferida del equipo de la invención, el haz de luz inicial atraviesa un elemento óptico previo birrefringente y dispersivo antes de entrar en el primer divisor de haz de polarización y, opcionalmente, atraviesa también un divisor de haz de polarización previo antes de entrar en el primer divisor de haz de polarización.
Además, en la forma de realización preferida, el haz de luz inicial atraviesa un espejo parcialmente reflectante antes de entrar respectivamente en dicho divisor de haz de polarización previo o en dicho elemento óptico previo birrefrigente.
Opcionalmente, también al menos uno de los cuatro haces de salida pasa a través de un tercer elemento óptico que es birrefringente y/o dispersivo.
Por otra parte, cabe señalar que, opcionalmente, el equipo divisor espectral es susceptible de actuar como combinador de haces al utilizarse según lo anteriormente descrito con un recorrido inverso de los haces.
En dicho caso, el equipo comprende más de una fuente de luz individual, preferiblemente láseres o medios de ganancia láser, como haces de luz a combinar, pudiendo dichas fuentes de luz individuales obtener retroal i mentación del espejo parcialmente reflectante.
En cualquier caso, el equipo divisor espectral de la invención se configura como una placa que comprende medios de control mutuo individual del retraso óptico y/o dispersión del primer y segundo elementos ópticos y, en su caso, del elemento óptico previo.
En la forma de realización preferida, cada elemento óptico individual comprende cristales birrefringentes dispersivos de múltiplos enteros de un espesor básico y un retardo de fase adicional que comprende cualquiera o una combinación de:
- una sola o una combinación de múltiples placas retardadoras
- soportes para inclinaciones individuales de los elementos ópticos para ajustar el retardo
- cuñas Babinet-Soleil
- un elemento de cristal líquido con un retardo controlado por su proceso de fabricación o un campo eléctrico.
Más concretamente, en la forma de realización preferida, cada elemento óptico individual comprende al menos dos partes con una ligera cuña, de modo que el espesor efectivo se puede ajustar desplazando las dos partes una respecto de la otra.
Además, preferentemente, el retardo óptico relativo se realiza utilizando menos elementos físicos que los conceptualmente necesarios y donde al menos uno se atraviesa más de una vez. Finalmente cabe señalar que, en la realización preferida, la o las fuentes de luz pueden ser un láser, láser semiconductor con o sin baja reflectividad, LED, barra láser, pila de barras.
En cualquier caso las fuentes de luz son una matriz y algunos de los polarizadores son desplazadores.
DESCRIPCIÓN DE LOS DIBUJOS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, se acompaña a la presente memoria descriptiva, como parte integrante de la misma, de un plano, en que con carácter ilustrativo y no limitativo se ha representado lo siguiente:
La figura número 1.- Muestra una representación esquemática de un ejemplo de implementación del equipo divisor espectral, apreciándose las principales partes y elementos que comprende, así como su disposición.
La figura número 2.- Muestra una representación esquemática del equipo divisor espectral, en este caso implementado como combinador de haces, apreciándose la disposición de sus partes.
La figura número 3.- Muestra una vista en planta de un ejemplo de realización del equipo como combinador de haces sobre una placa óptica, apreciándose las principales partes y elementos que comprende, así como su disposición, habiéndose representado los diferentes haces de luz mediante líneas de puntos.
Las figuras número 4 y 5.- Muestran sendas vistas en perspectiva de un ejemplo de realización del montaje de un diodo láser, con refrigeración pasiva y refrigeración activa respectivamente, como ejemplo de la fuente de luz que comprende el equipo divisor espectral objeto de la invención, apreciándose su configuración general.
Las figuras número 6 y 7.- Muestran sendas vistas en perspectiva de los diodos láser con refrigeración pasiva y activa mostrados en las figuras 1 y 2, en este caso representados sobre base refrigeradora por agua.
Las figuras número 8 y 9.- Muestran sendas vistas en perspectiva de los diodos láser con refrigeración pasiva y activa montados sobre su base refrigeradora por agua, mostrados en las figuras precedentes, en este caso incluyendo sus respectivos ajustes de lente circular.
Y la figura número 10.- Muestra una vista en perspectiva de un ejemplo del montaje del elemento óptico sobre un soporte inclinado.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
A la vista de las mencionadas figuras, y de acuerdo con la numeración adoptada, se puede apreciar en ellas un ejemplo de realización no limitativo del equipo divisor espectral de la invención, en concreto un ejemplo como equipo óptico láser, el cual comprende lo que se indica y describe en detalle a continuación.
Así, tal como se observa en la figura 1, el equipo (1) divisor espectral de la invención, aplicable para transformar un haz de luz inicial (R0), proveniente de una fuente de luz (F), en más de dos haces de luz, comprende, esencialmente:
- un primer divisor de haz de polarización (P1), que divide dicho haz de luz inicial (R0) en dos haces polarizados ortogonalmente (R1 y R2);
- dos elementos ópticos (01 y 02), atravesados respectivamente por los antedichos dos haces polarizados ortogonalmente (R1 y R2); y
- un segundo y un tercer divisor de haz de polarización (P21 y P22), que, a su vez, dividen los dos haces de luz polarizados ortogonalmente (R1 y R2) en respectivos cuatro haces de salida (R11 y R12) y (R21 y R22), siendo cada uno de dichos elementos ópticos (01 y 02) birrefringente y la birrefringencia de ambos elementos dependiente de la longitud de onda.
Preferentemente, la luz de los cuatro haces de luz de salida (R11 y R12) y (R21 y R22) obtenidos tienen mutuamente al menos uno de los estados de polarización ortogonal o diferentes longitudes de onda. Preferentemente, el haz de luz inicial (R0) atraviesa un elemento óptico previo (O0) birrefringente y dispersivo antes de entrar en el primer divisor de haz de polarización (P1).
Alternativamente, el haz de luz inicial (R0) atraviesa un divisor de haz de polarización previo (P0) antes de entrar en el primer divisor de haz de polarización (P1).
Y, opcionalmente, el haz de luz inicial (R0) atraviesa un espejo (M) parcialmente reflectante antes de entrar en el antedicho divisor de haz de polarización previo (P0) o en el elemento óptico previo (O0) birrefringente.
En cualquier caso, preferentemente, al menos uno de los cuatro haces de salida (R11 y R12) y (R21 y R22) pasa a través de un tercer elemento óptico (03) que es birrefringente y/o dispersivo.
Cabe señalar que, opcionalmente, en una forma de realización, el equipo divisor espectral descrito es susceptible de aplicarse como combinador de haces al utilizarse según lo anteriormente descrito con un recorrido inverso de los haces, es decir, obteniendo la suma de los dos pares de haces (R11 y R12) y (R21 y R22) generados por más de una fuente de luz (F) individual para combinarse en un único haz (R0).
En tal caso, para la obtención de los haces (R), el equipo comprende más de una fuente de luz individual (F), preferiblemente láseres o medios de ganancia láser, que generen los haces de luz a combinar, pudiendo dichas fuentes de luz individuales obtener retroalimentación del espejo (M) parcialmente reflectante.
En la realización preferida, el equipo divisor espectral (1) de la invención se implementa con, al menos, una placa de retraso de fase para el control mutuo individual del retraso óptico y/o dispersión del primer y segundo elementos ópticos (01, 02) y, en su caso, del elemento óptico previo (O0).
Preferentemente, dicha placa es un tipo especial de placa de fase llamada "placa de cuarto de longitud de onda" (quarter waveplate).
En la forma de realización preferida, cada elemento óptico individual (01, 02, O0) comprende cristales birrefringentes dispersivos de múltiplos enteros de un espesor básico y un retardo de fase adicional que comprende cualquiera o una combinación de:
- una sola o una combinación de múltiples placas retardadoras
- soportes para inclinaciones individuales de los elementos ópticos para ajustar el retardo
- cuñas Babinet-Soleil
- un elemento de cristal líquido con un retardo controlado por su proceso de fabricación o un campo eléctrico.
Más concretamente, en la forma de realización preferida, cada elemento óptico individual comprende al menos dos partes con una ligera cuña, de modo que el espesor efectivo se puede ajustar desplazando las dos partes una respecto de la otra.
Además, preferentemente, el retardo óptico relativo se realiza utilizando menos elementos físicos que los conceptualmente necesarios y donde al menos uno se atraviesa más de una vez.
Cabe señalar que la o las fuentes de luz (F) pueden ser un láser, láser semiconductor con o sin baja reflectividad, LED, barra láser, pila de barras.
Además, las fuentes de luz (F) pueden ser tanto puntuales como matriciales y algunos de los polarizadores son desplazadores.
Atendiendo a la figura 3 se observa un ejemplo de implementación del equipo de la invención sobre una placa (3), en concreto un ejemplo en que se combinan cuatro haces en una lente (L) de salida, donde se observa cómo, además, se incluyen disipadores de calor (D).
Atendiendo a las figuras 3 a 9, se observa un ejemplo de la fuente de luz (F), en concreto un diodo láser semiconductor que, o bien es con refrigeración pasiva (figura 4) sin agua en el interior del montaje sobre una base (2) que es la que tiene el sistema de refrigerado, o bien con refrigeración activa (figura 5) contando con dos canales de agua que enfrían el diodo.
En las figuras 6 y 7, se aprecian ambas opciones del diodo como fuente de luz (F) en sus dos versiones, con refrigerado pasivo y activo, respectivamente, una vez montado sobre la base (2) refrigeradora por agua.
Dicha base (2) se utiliza para el ensamblaje del diodo o fuente de luz (F) a la placa (3) final, estando dotada de conexiones de agua (4) para ajustar los tubos y enfriar el sistema. La montura refrigerada activamente, mostrada en la figura 7 tiene conexiones más robustas para permitir corrientes más altas, si bien la altura de ambas opciones es la misma.
Por su parte, en las figuras 8 y 9 se aprecia el montaje de ambas opciones de la fuente de luz (F), con sistema de refrigeración pasiva y activa respectivamente, una vez acopladas las lentes circulares (5), cuyo ajuste no varía entre uno y otro, pues es idéntico.
Y, por último, atendiendo a la figura 10 se observa cómo, preferentemente, el elemento óptico (O), que preferentemente es un cristal birrefringente y/o dispersante, por ejemplo de calcita, se monta sobre un soporte (6) inclinado a 45°.
Descrita suficientemente la naturaleza de la presente invención, así como la manera de ponerla en práctica, no se considera necesario hacer más extensa su explicación para que cualquier experto en la materia comprenda su alcance y las ventajas que de ella se derivan.

Claims

R E I V I N D I C A C I O N E S
1.- EQUIPO DIVISOR ESPECTRAL que, aplicable para transformar, al menos, un haz de luz inicial (R0), proveniente de una fuente de luz (F), en más de dos haces de luz o viceversa, está caracterizado por comprender:
- un primer divisor de haz de polarización (P1), que divide dicho haz de luz inicial (R0) en dos haces polarizados ortogonalmente (R1 y R2);
- dos elementos ópticos (01 y 02), atravesados respectivamente por los antedichos dos haces polarizados ortogonalmente (R1 y R2); y
- un segundo y un tercer divisor de haz de polarización (P21 y P22), que, a su vez, dividen los dos haces de luz polarizados ortogonalmente (R1 y R2) en respectivos cuatro haces de salida (R11 y R12) y (R21 y R22), donde cada uno de dichos elementos ópticos (01 y 02) es birrefringente y la birrefringencia de ambos elementos depende de la longitud de onda.
2.- EQUIPO DIVISOR ESPECTRAL, según la reivindicación 1 , caracterizado porque la luz de los cuatro haces de luz de salida (R11 y R12) y (R21 y R22) obtenidos tienen mutuamente al menos uno de los estados de polarización ortogonal o diferentes longitudes de onda.
3.- EQUIPO DIVISOR ESPECTRAL, según la reivindicación 2, caracterizado porque el haz de luz inicial (R0) atraviesa un elemento óptico previo (O0) birrefringente y dispersivo antes de entrar en el primer divisor de haz de polarización (P1).
4.- EQUIPO DIVISOR ESPECTRAL, según la reivindicación 2, caracterizado porque el haz de luz inicial (R0) atraviesa un divisor de haz de polarización previo (P0) antes de entrar en el primer divisor de haz de polarización (P1).
5.- EQUIPO DIVISOR ESPECTRAL, según la reivindicación 2 ó 3, caracterizado porque el haz de luz inicial (R0) atraviesa un espejo (M) parcialmente reflectante antes de entrar en el divisor de haz de polarización previo (P0) o en el elemento óptico previo (O0) birrefringente.
6.- EQUIPO DIVISOR ESPECTRAL, según cualquiera de las reivindicaciones anteriores, caracterizado porque al menos uno de los cuatro haces de salida (R11 y R12) y (R21 y R22) pasa a través de un tercer elemento óptico (03) que es birrefringente y/o dispersivo.
7.- EQUIPO DIVISOR ESPECTRAL, según cualquiera de las reivindicaciones anteriores, caracterizado por comprender más de una fuente de luz (F) individual que generan haces (R11 y R12) y (R21 y R22) actuando como combinador en un único haz (R0) cuando se aplica un recorrido inverso a dichos haces.
8.- EQUIPO DIVISOR ESPECTRAL, según la reivindicación 7, caracterizado porque dichas fuentes de luz individuales obtienen retroalimentación del espejo (M) parcialmente reflectante.
9.- EQUIPO DIVISOR ESPECTRAL, según cualquiera de las reivindicaciones anteriores, caracterizado porque comprende medios de control mutuo individual del retraso óptico y/o dispersión del primer y segundo elementos ópticos (01, 02) y, en su caso, del elemento óptico previo (O0).
10.- EQUIPO DIVISOR ESPECTRAL, según la reivindicación 9, caracterizado porque cada elemento óptico individual (01 , 02, O0) comprende cristales birrefringentes dispersivos de múltiplos enteros de un espesor básico y un retardo de fase adicional que comprende cualquiera o una combinación de:
- una sola o una combinación de múltiples placas retardadoras,
- soportes para inclinaciones individuales de los elementos ópticos para ajustar el retardo,
- cuñas Babinet-Soleil,
- un elemento de cristal líquido con un retardo controlado por su proceso de fabricación o un campo eléctrico.
11.- EQUIPO DIVISOR ESPECTRAL, según la reivindicación 9, caracterizado porque cada elemento óptico individual (01 , 02, O0) comprende al menos dos partes con una ligera cuña, de modo que el espesor efectivo se puede ajustar desplazando las dos partes una respecto de la otra.
12.- EQUIPO DIVISOR ESPECTRAL, según cualquiera de las reivindicaciones anteriores, caracterizado porque la o las fuentes de luz son un diodo láser, láser semiconductor con o sin baja reflectividad, LED, barra láser, pila de barras.
13.- EQUIPO DIVISOR ESPECTRAL, según la reivindicación 9, caracterizado porque las fuentes de luz son una matriz y algunos de los polarizadores son desplazadores.
PCT/ES2020/070827 2020-12-29 2020-12-29 Equipo divisor espectral WO2022144472A1 (es)

Priority Applications (10)

Application Number Priority Date Filing Date Title
AU2020483730A AU2020483730A1 (en) 2020-12-29 2020-12-29 Spectral splitter device
IL301816A IL301816A (en) 2020-12-29 2020-12-29 A spectral splitter device
CA3181132A CA3181132A1 (en) 2020-12-29 2020-12-29 Spectral splitter device
EP20967949.7A EP4155812A4 (en) 2020-12-29 2020-12-29 SPECTRUM SPLITTER DEVICE
MX2022014961A MX2022014961A (es) 2020-12-29 2020-12-29 Equipo divisor espectral.
JP2022564134A JP2023533892A (ja) 2020-12-29 2020-12-29 スペクトル分割装置
CN202080104894.2A CN116249927A (zh) 2020-12-29 2020-12-29 光谱分光器装置
KR1020237000329A KR20230018524A (ko) 2020-12-29 2020-12-29 스펙트럼 스플리터 장치
PCT/ES2020/070827 WO2022144472A1 (es) 2020-12-29 2020-12-29 Equipo divisor espectral
US18/001,134 US20230213778A1 (en) 2020-12-29 2020-12-29 Spectral splitter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2020/070827 WO2022144472A1 (es) 2020-12-29 2020-12-29 Equipo divisor espectral

Publications (1)

Publication Number Publication Date
WO2022144472A1 true WO2022144472A1 (es) 2022-07-07

Family

ID=82259123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2020/070827 WO2022144472A1 (es) 2020-12-29 2020-12-29 Equipo divisor espectral

Country Status (10)

Country Link
US (1) US20230213778A1 (es)
EP (1) EP4155812A4 (es)
JP (1) JP2023533892A (es)
KR (1) KR20230018524A (es)
CN (1) CN116249927A (es)
AU (1) AU2020483730A1 (es)
CA (1) CA3181132A1 (es)
IL (1) IL301816A (es)
MX (1) MX2022014961A (es)
WO (1) WO2022144472A1 (es)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6192062B1 (en) 1998-09-08 2001-02-20 Massachusetts Institute Of Technology Beam combining of diode laser array elements for high brightness and power
CA2359604A1 (en) * 2001-01-19 2002-07-19 Jds Uniphase Corporation Optical interleavers/deinterleavers
US20020163691A1 (en) * 1996-10-29 2002-11-07 Charles Wong Compact wavelength filter using optical birefringence and reflective elements
WO2002091077A1 (en) 2001-05-09 2002-11-14 Aculight Corporation Spectrally beam combined display system
WO2003036766A2 (en) 2001-10-23 2003-05-01 Torsana Laser Technologies A/S Laser apparatus
WO2003055018A1 (de) 2001-12-12 2003-07-03 Universität Potsdam Verfahren und vorrichtung zur erzeugung von laserstrahlung auf basis von halbleitern
WO2003091765A1 (en) * 2002-04-26 2003-11-06 International Business Machines Corporation Polarizing beamsplitter
US20110299162A1 (en) * 2010-04-14 2011-12-08 Bin Chen Free-Space Optical Hybrid
CN105005151B (zh) * 2015-09-02 2018-06-26 长春理工大学 平铺型90度空间光混频器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6498680B1 (en) * 1996-10-29 2002-12-24 Chorum Technologies Lp Compact tunable optical wavelength interleaver
US6529326B2 (en) * 2001-06-13 2003-03-04 Jds Uniphase Corporation Tunable optical filter
US7234816B2 (en) * 2004-02-03 2007-06-26 3M Innovative Properties Company Polarizing beam splitter assembly adhesive
DE102005020545A1 (de) * 2005-05-03 2006-11-09 Carl Zeiss Jena Gmbh Vorrichtung zur Steuerung von Lichtstrahlung
WO2007027759A2 (en) * 2005-09-02 2007-03-08 Colorlink, Inc. Polarization beam splitter and combiner
CN105940635B (zh) * 2014-02-06 2019-03-12 诺基亚技术有限公司 光的接收和生成
US10439737B2 (en) * 2017-02-22 2019-10-08 The United States Of America As Represented By The Secretary Of The Air Force Hyper-entangled photon server system and associated methods
CN110824719B (zh) * 2019-11-20 2022-03-29 长春理工大学 具有偏振参数优化配置的90°空间光混频器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020163691A1 (en) * 1996-10-29 2002-11-07 Charles Wong Compact wavelength filter using optical birefringence and reflective elements
US6192062B1 (en) 1998-09-08 2001-02-20 Massachusetts Institute Of Technology Beam combining of diode laser array elements for high brightness and power
CA2359604A1 (en) * 2001-01-19 2002-07-19 Jds Uniphase Corporation Optical interleavers/deinterleavers
WO2002091077A1 (en) 2001-05-09 2002-11-14 Aculight Corporation Spectrally beam combined display system
WO2003036766A2 (en) 2001-10-23 2003-05-01 Torsana Laser Technologies A/S Laser apparatus
WO2003055018A1 (de) 2001-12-12 2003-07-03 Universität Potsdam Verfahren und vorrichtung zur erzeugung von laserstrahlung auf basis von halbleitern
WO2003091765A1 (en) * 2002-04-26 2003-11-06 International Business Machines Corporation Polarizing beamsplitter
US20110299162A1 (en) * 2010-04-14 2011-12-08 Bin Chen Free-Space Optical Hybrid
CN105005151B (zh) * 2015-09-02 2018-06-26 长春理工大学 平铺型90度空间光混频器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DANEU, OPT. LETT., vol. 25, no. 6, pages 405 - 407
See also references of EP4155812A4

Also Published As

Publication number Publication date
MX2022014961A (es) 2023-01-11
EP4155812A1 (en) 2023-03-29
US20230213778A1 (en) 2023-07-06
IL301816A (en) 2023-06-01
AU2020483730A1 (en) 2022-11-24
KR20230018524A (ko) 2023-02-07
CN116249927A (zh) 2023-06-09
CA3181132A1 (en) 2022-07-07
JP2023533892A (ja) 2023-08-07
EP4155812A4 (en) 2024-03-13

Similar Documents

Publication Publication Date Title
US11949206B2 (en) Two-dimensional multi-beam stabilizer and combining systems and methods
US9596034B2 (en) High brightness dense wavelength multiplexing laser
JP5900934B2 (ja) 高輝度ダイオード出力の方法及びデバイス
US6404542B1 (en) Multiple emitter semiconductor laser pump source for scaling of pump power and generation of unpolarized light for light signal amplification
US20110261456A1 (en) Polarization coupler
US8488245B1 (en) Kilowatt-class diode laser system
ES2913532T3 (es) Láseres de fibra despolarizados de banda estrecha
JP2011520292A5 (es)
JP2018518048A (ja) 可変フィードバック制御をともなう稠密波長ビーム結合
US20140240831A1 (en) Stabilization of High-Power WBC Systems
JP2013546201A5 (es)
US20180205197A1 (en) Open-loop wavelength selective external resonator and beam combining system
US9069135B2 (en) Optical depolarizer
US20170222401A1 (en) Dense wavelength beam combining with variable feedback control
WO2022144472A1 (es) Equipo divisor espectral
Khajavikhan et al. Experimental measurements of supermodes in superposition architectures for coherent laser beam combining
RU2823079C1 (ru) Спектральное разделительное устройство
Jain et al. Coherent and spectral beam combining of fiber lasers using volume Bragg gratings
JP4964876B2 (ja) アルカリ原子の偏極のための光照射装置および希ガスの超偏極のための装置
Jain et al. Passive coherent locking of fiber lasers using volume Bragg gratings
JP4715171B2 (ja) 半導体レーザモジュール及びラマン増幅器
JP2012185357A (ja) チューナブルフィルタ、任意スペクトラム光源装置および分波部
EP3929652A1 (en) Optical converter, optical coupler, optical device, and method for generating polarized radiation
Ronen et al. Phase clusters induced by degeneracy in a phase locked fiber laser array
JP2023088438A (ja) 波長ビーム結合装置、ダイレクトダイオードレーザ装置、およびレーザ加工機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967949

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022564134

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020483730

Country of ref document: AU

Date of ref document: 20201229

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3181132

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20237000329

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020967949

Country of ref document: EP

Effective date: 20221219

NENP Non-entry into the national phase

Ref country code: DE