WO2022077568A1 - 一种用于超导电缆的单端顺流制冷*** - Google Patents

一种用于超导电缆的单端顺流制冷*** Download PDF

Info

Publication number
WO2022077568A1
WO2022077568A1 PCT/CN2020/124508 CN2020124508W WO2022077568A1 WO 2022077568 A1 WO2022077568 A1 WO 2022077568A1 CN 2020124508 W CN2020124508 W CN 2020124508W WO 2022077568 A1 WO2022077568 A1 WO 2022077568A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid nitrogen
refrigeration system
liquid
cooling pipe
channel
Prior art date
Application number
PCT/CN2020/124508
Other languages
English (en)
French (fr)
Inventor
吴小辰
胡子珩
章彬
汪桢子
汪伟
王哲
巩俊强
李健伟
Original Assignee
深圳供电局有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳供电局有限公司 filed Critical 深圳供电局有限公司
Publication of WO2022077568A1 publication Critical patent/WO2022077568A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/16Superconductive or hyperconductive conductors, cables, or transmission lines characterised by cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the invention relates to the technical field of superconducting cables, in particular to a single-ended downstream refrigeration system for superconducting cables.
  • High-temperature superconducting cable system is a kind of power facility that uses unimpeded superconducting material that can transmit high current density as conductor and can transmit large current. It has the advantages of small size, light weight, low loss and large transmission capacity. Realize low-loss, high-efficiency, large-capacity power transmission.
  • the high temperature superconducting cable system will first be applied to the occasions of short-distance transmission of power (such as generators to transformers, substations to substations, underground substations to urban power grid ports) and short-distance transmission of large currents such as electroplating plants, power plants and substations. occasions, as well as occasions for power transmission in large or very large cities. Since the critical temperature of superconductors is generally below 20K, superconducting cables generally run in liquid helium at 4.2K.
  • the technical problem to be solved by the present invention is that the present invention aims to provide a single-ended downstream refrigeration system for superconducting cables, which has a simple structure and can make the superconducting cables operate in a suitable liquid helium temperature region. .
  • an embodiment of the present invention provides a single-ended downstream refrigeration system for a superconducting cable, where the superconducting cable includes a low-temperature Dewar tube and a current-carrying conductor disposed in an inner cavity of the low-temperature Dewar tube ;include:
  • the first liquid nitrogen channel is arranged in the inner cavity of the current-carrying conductor
  • the second liquid nitrogen channel is arranged between the low-temperature Dewar tube and the current-carrying conductor; wherein, the first liquid nitrogen channel and the second liquid nitrogen channel are in communication with a position close to one end of the superconducting cable ;
  • the refrigeration system arranged at one end of the superconducting cable is connected to the end of the first liquid nitrogen channel close to the refrigeration system through a first cooling pipe, and is connected to the end of the second liquid nitrogen channel close to the refrigeration system through a second cooling pipe.
  • cooling pipes are connected, one end of the first liquid nitrogen channel away from the refrigeration system is connected by a third cooling pipe, and one end of the second liquid nitrogen channel away from the refrigeration system is connected by a fourth cooling pipe;
  • the refrigeration system is used to provide liquid nitrogen, and send the liquid nitrogen into the first liquid nitrogen channel through the first cooling pipeline, and the liquid nitrogen flows through the first liquid nitrogen channel, the
  • the third cooling pipe flows back to the refrigeration system for refrigeration; and the liquid nitrogen is sent into the second liquid nitrogen channel through the second cooling pipe, and the liquid nitrogen flows through the second liquid nitrogen in sequence
  • the passage and the fourth cooling pipe flow back to the refrigeration system for refrigeration.
  • the current-carrying conductor is a hollow cylindrical structure, which is wound with a flexible skeleton, a first insulating layer, a phase A superconducting layer, a second insulating layer, a phase B superconducting layer, and a third insulating layer in turn from the inside out. layer, C-phase superconducting layer, fourth insulating layer, shielding layer, fifth insulating layer, protective layer;
  • the system further includes: a third liquid nitrogen channel disposed between the B-phase superconducting layer and the second insulating layer, and a fourth liquid nitrogen channel disposed between the B-phase superconducting layer and the third insulating layer nitrogen channel;
  • the refrigeration system is connected to the end of the third liquid nitrogen channel close to the refrigeration system through a fifth cooling pipe, and is connected to the end of the fourth liquid nitrogen passage close to the refrigeration system through a sixth cooling pipe, and is connected to the first cooling system.
  • One end of the three liquid nitrogen passages away from the refrigeration system is connected through a seventh cooling pipe, and one end of the fourth liquid nitrogen passage away from the refrigeration system is connected through an eighth cooling pipe;
  • the refrigeration system is used to provide liquid nitrogen, and the liquid nitrogen is sent into the third liquid nitrogen channel through the fifth cooling pipeline, and the liquid nitrogen flows through the third liquid nitrogen channel, the The seventh cooling pipe flows back to the refrigeration system for refrigeration; and the liquid nitrogen is sent into the fourth liquid nitrogen channel through the sixth cooling pipe, and the liquid nitrogen flows through the fourth liquid nitrogen in sequence
  • the passage and the eighth cooling pipe flow back to the refrigeration system for refrigeration.
  • the third liquid nitrogen channel and the fourth liquid nitrogen channel are both microfluidic channels, between the B-phase superconducting layer and the second insulating layer, and between the B-phase superconducting layer and the second insulating layer.
  • a fiber mesh is arranged between the three insulating layers, and the fiber mesh is used to maintain micro-circulation between the B-phase superconducting layer and the second insulating layer, and between the B-phase superconducting layer and the third insulating layer road.
  • the fiber web is wound on the outer wall surface of the second insulating layer and the outer wall surface of the B-phase superconducting layer by spiral winding, respectively.
  • the refrigeration system includes a liquid nitrogen tank, a subcooler, a low temperature refrigerator, a first liquid nitrogen pump, a second liquid nitrogen pump, a first pressurizer, and a second pressurizer, and the subcooler includes a shell and A coil tube assembly arranged in the casing, the coil tube assembly includes a first coil tube and a second coil tube; liquid nitrogen is stored in the liquid nitrogen tank; the liquid nitrogen tank passes through the subcooler
  • the first connecting pipe is connected to send the liquid nitrogen to the shell of the subcooler;
  • the first coil includes a first liquid inlet and a first liquid outlet, and the first liquid outlet is connected to the
  • the first cooling pipe is connected, and the first liquid inlet is connected with the third cooling pipe;
  • the second coil includes a second liquid inlet and a second liquid outlet, and the second liquid outlet is connected to the third cooling pipe.
  • the second cooling pipe is connected, the second liquid inlet is connected with the fourth cooling pipe;
  • the low temperature refrigerator is used for cooling the liquid nitrogen in the shell of the subcooler to a subcooled state, The liquid nitrogen in the supercooled state is used to exchange heat with the liquid nitrogen in the coil to realize the cooling of the liquid nitrogen in the coil;
  • the first liquid nitrogen pump is arranged on the first cooling pipe, so The second liquid nitrogen pump is arranged on the second cooling pipe, and the first liquid nitrogen pump and the second liquid nitrogen pump are used to provide power for the circulating flow of liquid nitrogen;
  • the first connecting pipe is connected to the second cooling pipe.
  • a second connection pipe is connected between a cooling pipe; the first pressurizer is arranged on the second connection pipe, and a third connection pipe is connected between the first connection pipe and the second cooling pipe ;
  • the second pressurizer is arranged on the third connecting pipe, and the first pressurizer and the second pressurizer are used to carry out secondary pressure when the power provided by the liquid nitrogen pump is insufficient. Pressurized to meet the power requirements of liquid nitrogen circulating flow.
  • the refrigeration system further includes the third liquid nitrogen pump and the fourth liquid nitrogen pump
  • the coil assembly further includes a third coil and a fourth coil
  • the third coil includes a third coil.
  • the liquid inlet and the third liquid outlet, the third liquid outlet is connected with the fifth cooling pipe, the third liquid inlet is connected with the seventh cooling pipe;
  • the fourth coil includes the first cooling pipe.
  • Four liquid inlets and fourth liquid outlets, the fourth liquid outlet is connected with the sixth cooling pipe, the fourth liquid inlet is connected with the eighth cooling pipe;
  • the third liquid nitrogen pump Set on the third cooling pipeline, the fourth liquid nitrogen pump is set on the fourth cooling pipeline, and the third liquid nitrogen pump and the fourth liquid nitrogen pump are used to provide power for the circulating flow of liquid nitrogen .
  • the low-temperature refrigerator includes at least a heater and a vacuum pump; the subcooler, the heater, and the vacuum pump are connected in sequence through a pipeline; the vacuum pump is used to evacuate the nitrogen in the subcooler, and the vacuum pump is used for evacuation.
  • the liquid nitrogen in the shell is refrigerated by a decompression refrigeration method; the heater is used for heating the nitrogen gas before entering the vacuum pump.
  • An embodiment of the present invention provides a single-ended downstream refrigeration system for superconducting cables, which includes a first liquid nitrogen channel disposed in an inner cavity of an energized conductor, a first liquid nitrogen channel disposed in the low-temperature Dewar tube and the energized conductor a second liquid nitrogen channel between conductors and a refrigeration system arranged at one end of the superconducting cable; wherein the first liquid nitrogen channel is in communication with the second liquid nitrogen channel near one end of the superconducting cable ;
  • the refrigeration system is connected with the first liquid nitrogen channel through the first cooling pipeline, and is connected with the second liquid nitrogen channel through the second cooling pipeline for providing liquid nitrogen and passing the liquid nitrogen through the first cooling pipeline.
  • the cooling pipe is sent into the first liquid nitrogen channel, and the liquid nitrogen flows through the first liquid nitrogen channel and the second liquid nitrogen channel in sequence, and then flows back to the refrigeration system for refrigeration.
  • the refrigeration system of the embodiment of the present invention has a simple structure and can make the superconducting cable operate in a suitable liquid helium temperature region.
  • FIG. 1 is a schematic structural diagram of a single-ended downstream refrigeration system for a superconducting cable according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of an energized conductor of a superconducting cable according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a fiber web structure according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a refrigeration system according to an embodiment of the present invention.
  • 1-low temperature Dewar tube 11-first liquid nitrogen channel, 12-second liquid nitrogen channel, 13-third liquid nitrogen channel, 14-fourth liquid nitrogen channel, 2-current conductor, 21- Flexible skeleton, 22-first insulating layer, 23-A-phase superconducting layer, 24-second insulating layer, 25-B-phase superconducting layer, 26-third insulating layer, 27-C-phase superconducting layer, 28- Fourth insulating layer, 29-copper shielding layer, 210-fifth insulating layer, 211-protective layer, 3-refrigeration system, 31-liquid nitrogen tank, 321-shell, 322-first coil, 323-second Coil, 324-third coil, 325-fourth coil, 331-heater, 332-vacuum pump, 341-first liquid nitrogen pump, 342-second liquid nitrogen pump, 343-third liquid nitrogen pump, 344-the fourth liquid nitrogen pump, 351-the first pressurizer, 352-the second pressurizer, 301-the
  • an embodiment of the present invention proposes a single-ended downstream refrigeration system for a superconducting cable.
  • the superconducting cable includes a low-temperature Dewar tube 1 and is disposed in the inner cavity of the low-temperature Dewar tube 1 2 of energized conductors; including:
  • the first liquid nitrogen channel 11 is arranged in the inner cavity of the current-carrying conductor 2;
  • the second liquid nitrogen channel 12 is arranged between the low-temperature Dewar tube 1 and the current-carrying conductor 2; wherein, the first liquid nitrogen channel 11 and the second liquid nitrogen channel 12 are close to the superconducting cable The position of one end is connected;
  • the refrigeration system 3 arranged at one end of the superconducting cable is connected to the end of the first liquid nitrogen channel 11 close to the refrigeration system 3 through a first cooling pipe 301, and is connected to the second liquid nitrogen channel 12 close to the refrigeration system
  • One end of the system 3 is connected by a second cooling pipe 302
  • the end of the first liquid nitrogen channel 11 away from the refrigeration system 3 is connected by a third cooling pipe 303
  • the refrigeration system 3 is used to provide liquid nitrogen, and the liquid nitrogen is sent into the first liquid nitrogen channel 11 through the first cooling pipe 301, and the liquid nitrogen flows through the first liquid nitrogen channel in sequence 11.
  • the third cooling pipe 303 flows back to the refrigeration system 3 for refrigeration; and the liquid nitrogen is sent into the second liquid nitrogen channel 12 through the second cooling pipe 302, and the liquid nitrogen is sequentially After flowing through the second liquid nitrogen channel 12 and the fourth cooling pipe 304, it flows back to the refrigeration system 3 for refrigeration.
  • the current-carrying conductor 2 is a hollow cylindrical structure, which is wound with a flexible skeleton 21, a first insulating layer 22, a phase A superconducting layer 23, a second insulating layer 24, and a B phase superconducting layer in turn from the inside out.
  • layer 25 third insulating layer 26, C-phase superconducting layer 27, fourth insulating layer 28, shielding layer 29, fifth insulating layer 210, protective layer 211;
  • the system further includes: a third liquid nitrogen channel 13 disposed between the B-phase superconducting layer 25 and the second insulating layer 24 , and a third liquid nitrogen channel 13 disposed between the B-phase superconducting layer 25 and the third insulating layer 26 .
  • the fourth liquid nitrogen channel 14 between;
  • the refrigeration system 3 is connected to the third liquid nitrogen channel 13 near the refrigeration system 3 through a fifth cooling pipe 305, and the fourth liquid nitrogen passage 14 is connected to the refrigeration system 3 through a sixth cooling pipe 306 is connected to the end of the third liquid nitrogen channel 13 away from the refrigeration system 3 through the seventh cooling pipe 307, and is connected to the end of the fourth liquid nitrogen channel 14 away from the refrigeration system 3 through the eighth cooling pipe 308 ;
  • the refrigeration system 3 is used to provide liquid nitrogen, and the liquid nitrogen is sent into the third liquid nitrogen channel 13 through the fifth cooling pipe 305, and the liquid nitrogen flows through the third liquid nitrogen channel in sequence 13.
  • the seventh cooling pipe 307 flows back to the refrigeration system 3 for refrigeration; and the liquid nitrogen is sent into the fourth liquid nitrogen passage 14 through the sixth cooling pipe 306, and the liquid nitrogen is sequentially After flowing through the fourth liquid nitrogen channel 14 and the eighth cooling pipe 308, it flows back to the refrigeration system 3 for refrigeration.
  • the cooling system includes four liquid nitrogen channels, and the hollow part of the flexible frame constitutes a first liquid nitrogen channel 11 ; between the inner wall surface of the low temperature Dewar tube 1 and the outer wall surface of the protective layer The gap constitutes the second liquid nitrogen channel 12; the gap between the B-phase superconducting layer and the second insulating layer constitutes the third liquid nitrogen channel 13; the gap between the B-phase superconducting layer and the third insulating layer constitutes the fourth liquid nitrogen channel Liquid nitrogen channel 14 ; the first liquid nitrogen channel 11 , the second liquid nitrogen channel 12 , the third liquid nitrogen channel 13 and the fourth liquid nitrogen channel 14 are used for the circulation of liquid nitrogen, so as to cool and cool the energized conductor 2 ;
  • the thermal conduction path of the intermediate B-phase superconducting layer of the superconducting cable is shortened, and its thermal stability can be improved.
  • the third liquid nitrogen channel 13 and the fourth liquid nitrogen channel 14 are both microfluidic channels, between the B-phase superconducting layer and the second insulating layer, and between the B-phase superconducting layer A fiber net is arranged between the third insulating layer and the fiber net is used to maintain the connection between the B-phase superconducting layer and the second insulating layer, and between the B-phase superconducting layer and the third insulating layer. microfluidic channel.
  • a "microfluidic channel” is introduced in the adjacent layer of the B-phase conductor. That is, a “microfluidic channel” is introduced in the middle of the functional layers such as the insulating layer between the A-B phase and the B-C phase through a micro-support structure.
  • the microfluidic channel will be filled with liquid nitrogen after being filled with liquid nitrogen, providing a good low-temperature environment for the B-phase conductor.
  • the surface viscous force is dominant, and the Reynolds number is large, which will not have a significant impact on the macroscopic refrigeration process.
  • the support structure of the microfluidic channel adopts a special fiber mesh, as shown in Figure 3, the mesh, the relative thickness of the warp and weft lines of this fiber mesh are selected based on the CFD calculation results of the microfluidic channel.
  • the fiber web is wound on the outer wall surface of the second insulating layer and the outer wall surface of the B-phase superconducting layer by spiral winding, for example, as shown in FIG. 3 .
  • the refrigeration system 3 includes a liquid nitrogen tank 31 , a subcooler, a low temperature refrigerator, a first liquid nitrogen pump 341 , a second liquid nitrogen pump 342 , a first pressurizer 351 , and a second pressurizer 352
  • the subcooler includes a casing 321 and a coil assembly arranged in the casing 321, the coil assembly includes a first coil 322 and a second coil 323
  • the liquid nitrogen tank 31 stores a liquid nitrogen
  • the liquid nitrogen tank 31 is connected to the subcooler through the first connecting pipe 309, and the liquid nitrogen is sent to the shell 321 of the subcooler
  • the first coil 322 includes a first inlet pipe 321.
  • the liquid port and the first liquid outlet, the first liquid outlet is connected with the first cooling pipe 301, the first liquid inlet is connected with the third cooling pipe 303;
  • the second coil 323 It includes a second liquid inlet and a second liquid outlet, the second liquid outlet is connected to the second cooling pipe 302, and the second liquid inlet is connected to the fourth cooling pipe 304; the low temperature
  • the refrigerator is used to cool the liquid nitrogen in the shell 321 of the subcooler to a subcooled state, wherein the liquid nitrogen in the subcooled state is used to exchange heat with the liquid nitrogen in the coil to realize the cooling of the disk.
  • the first liquid nitrogen pump 341 is arranged on the first cooling pipe 301
  • the second liquid nitrogen pump 342 is arranged on the second cooling pipe 302
  • the first liquid nitrogen pump 342 is arranged on the second cooling pipe 302.
  • the nitrogen pump 341 and the second liquid nitrogen pump 342 are used to provide power for the circulating flow of liquid nitrogen
  • a second connection pipe 3010 is connected between the first connection pipe 309 and the first cooling pipe 301
  • the pressurizer 351 is disposed on the second connecting pipe 3010
  • a third connecting pipe 3011 is connected between the first connecting pipe 309 and the second cooling pipe 302
  • the second pressurizer 352 is disposed on the On the third connecting pipe 3011, the first pressurizer 351 and the second pressurizer 352 are used for secondary pressurization to meet the requirements of liquid nitrogen when the power provided by the liquid nitrogen pump is insufficient. Circulation flow power requirements.
  • the refrigeration system 3 further includes the third liquid nitrogen pump 343 and the fourth liquid nitrogen pump 344
  • the coil assembly further includes a third coil 324 and a fourth coil 325
  • the third The coil 324 includes a third liquid inlet and a third liquid outlet, the third liquid outlet is connected to the fifth cooling pipe 305, and the third liquid inlet is connected to the seventh cooling pipe 307
  • the fourth coil 325 includes a fourth liquid inlet and a fourth liquid outlet, the fourth liquid outlet is connected to the sixth cooling pipe 306, and the fourth liquid inlet is connected to the eighth cooling pipe
  • the pipeline 308 is connected; the third liquid nitrogen pump 343 is arranged on the third cooling pipeline 303, the fourth liquid nitrogen pump 344 is arranged on the fourth cooling pipeline 304, and the third liquid nitrogen pump 343 And the fourth liquid nitrogen pump 344 is used to power the circulating flow of liquid nitrogen.
  • the arrows in FIG. 4 indicate the flow of liquid nitrogen or nitrogen gas.
  • the cryogenic refrigerator includes at least a heater 331 and a vacuum pump 332; the subcooler, the heater 331 and the vacuum pump 332 are connected in sequence through a pipeline; the vacuum pump 332 is used for the nitrogen in the subcooler
  • the liquid nitrogen in the shell 321 is refrigerated by means of evacuation and decompression refrigeration; the heater 331 is used to heat the nitrogen gas before entering the vacuum pump 332 .
  • evacuation and decompression refrigeration are adopted, and the physical principle is that the decrease in pressure leads to a decrease in the boiling point.
  • the nitrogen above the heat exchanger is continuously evacuated by the vacuum pump 332, so that the saturated vapor pressure of the gas-liquid surface is lowered, and the boiling point of the liquid nitrogen is lowered, that is, low-temperature and supercooled liquid nitrogen is obtained. Since the vacuum pump 332 is not resistant to low temperature, the heater 331 is used for heating in the front. Since nitrogen is continuously pumped away, liquid nitrogen needs to be replenished in time.
  • Several pressure relief valves can be arranged on the corresponding pipelines as safety measures.

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

本发明提供一种用于超导电缆的单端顺流制冷***,所述超导电缆包括低温杜瓦管以及设置于所述低温杜瓦管的内腔体中的通电导体;包括:第一液氮通道,设置于通电导体的内腔体;第二液氮通道,设置于低温杜瓦管与通电导体之间;其中,第一液氮通道与第二液氮通道靠近超导电缆一端部的位置连通;设置于超导电缆一端的制冷***,制冷***用于提供液氮,并将液氮通过第一冷却管道送入第一液氮通道,液氮依次流经第一液氮通道、第三冷却管道后流回制冷***进行制冷;以及将液氮通过第二冷却管道送入第二液氮通道,液氮依次流经第二液氮通道、第四冷却管道后流回制冷***进行制冷。本发明的制冷***结构简单,能够使得超导电缆在合适的液氦温区中运行。

Description

一种用于超导电缆的单端顺流制冷***
本申请要求于2020年10月14日提交中国专利局、申请号为202011096597.6、发明名称为“一种用于超导电缆的单端顺流制冷***”的中国专利申请的优先权,上述专利的全部内容通过引用结合在本申请中。
技术领域
本发明涉及超导电缆技术领域,具体涉及一种用于超导电缆的单端顺流制冷***。
背景技术
高温超导电缆***是采用无阻的、能传输高电流密度的超导材料作为导电体并能传输大电流的一种电力设施,具有体积小、重量轻、损耗低和传输容量大的优点,可以实现低损耗、高效率、大容量输电。高温超导电缆***将首先应用于短距离传输电力的场合(如发电机到变压器、变电中心到变电站、地下变电站到城市电网端口)及电镀厂、发电厂和变电站等短距离传输大电流的场合,以及大型或超大型城市电力传输的场合。由于超导体的临界温度一般在20K以下,故超导电缆一般在4.2K的液氦中运行。
发明内容
本发明所要解决的技术问题在于,提供本发明旨在提出一种用于超导电缆的单端顺流制冷***,该制冷***结构简单,能够使得超导电缆在合适的液氦温区中运行。
为此,本发明实施例提出一种用于超导电缆的单端顺流制冷***,所述超导电缆包括低温杜瓦管以及设置于所述低温杜瓦管的内腔体中的通电导体;包括:
第一液氮通道,设置于所述通电导体的内腔体;
第二液氮通道,设置于所述低温杜瓦管与所述通电导体之间;其中,所述第一液氮通道与所述第二液氮通道靠近所述超导电缆一端部的位置连通;
设置于所述超导电缆一端的制冷***,与所述第一液氮通道靠近所述制冷***一端通过第一冷却管道连接,与所述第二液氮通道靠近所述制冷***一端通过第二冷却管道连接,所述第一液氮通道远离所述制冷***一端通过第三冷却管道连接,与所述第二液氮通道远离所述制冷***一端通过第四冷却管道连接;
所述制冷***用于提供液氮,并将所述液氮通过所述第一冷却管道送入所述第一液氮通道,所述液氮依次流经所述第一液氮通道、所述第三冷却管道后流回所述制冷***进行制冷;以及将所述液氮通过所述第二冷却管道送入所述第二液氮通道,所述液氮依次流经所述第二液氮通道、所述第四冷却管道后流回所述制冷***进行制冷。
可选地,所述通电导体为空心圆柱结构,其由内之外依次绕制有柔性骨架、第一绝缘层、A相超导层、第二绝缘层、B相超导层、第三绝缘层、C相超导层、第四绝缘层、屏蔽层、第五绝缘层、保护层;
所述***还包括:设置于所述B相超导层与第二绝缘层之间的第三液氮通道,以及设置于所述B相超导层与第三绝缘层之间的第四液氮通道;
所述制冷***与所述第三液氮通道靠近所述制冷***一端通过第五冷却管道连接,与所述第四液氮通道靠近所述制冷***一端通过第六冷却管道连接,与所述第三液氮通道远离所述制冷***一端通过第七冷却管道连接,与所述第四液氮通道远离所述制冷***一端通过第八冷却管道连接;
所述制冷***用于提供液氮,并将所述液氮通过所述第五冷却管道送入所述第三液氮通道,所述液氮依次流经所述第三液氮通道、所述第七冷却管 道后流回所述制冷***进行制冷;以及将所述液氮通过所述第六冷却管道送入所述第四液氮通道,所述液氮依次流经所述第四液氮通道、所述第八冷却管道后流回所述制冷***进行制冷。
可选地,所述第三液氮通道和所述第四液氮通道均为微流通道,所述B相超导层与第二绝缘层之间、以及所述B相超导层与第三绝缘层之间设置有纤维网,所述纤维网用于维持所述B相超导层与第二绝缘层之间、以及所述B相超导层与第三绝缘层之间的微流通道。
可选地,所述纤维网分别通过螺旋绕制的方式绕制在所述第二绝缘层的外壁面以及所述B相超导层的外壁面上。
所述制冷***包括液氮罐、过冷器、低温制冷机、第一液氮泵、第二液氮泵、第一加压器、第二加压器,所述过冷器包括壳体以及设置于所述壳体中的盘管组件,所述盘管组件包括第一盘管、第二盘管;所液氮罐内存储有液氮;所述液氮罐与所述过冷器通过第一连接管道连接,将液氮送至所述过冷器的壳体中;所述第一盘管包括第一进液口与第一出液口,所述第一出液口与所述第一冷却管道连接,所述第一进液口与所述第三冷却管道连接;所述第二盘管包括第二进液口与第二出液口,所述第二出液口与所述第二冷却管道连接,所述第二进液口与所述第四冷却管道连接;所述低温制冷机用于对所述过冷器的壳体中的液氮进行冷却至过冷状态,其中过冷状态的液氮用于对盘管中的液氮进行热量交互以实现对所述盘管内的液氮的冷却;所述第一液氮泵设置于所述第一冷却管道上,所述第二液氮泵设置于所述第二冷却管道上,所述第一液氮泵和第二液氮泵用于为液氮的循环流动提供动力;所述第一连接管道与所述第一冷却管道之间连接有第二连接管道;所述第一加压器设置于所述第二连接管道上,所述第一连接管道与所述第二冷却管道之 间连接有第三连接管道;所述第二加压器设置于所述第三连接管道上,所述第一加压器和所述第二加压器用于在所述液氮泵所提供的动力不足时,进行二次加压以满足液氮循环流动的动力需求。
可选地,所述制冷***还包括所述第三液氮泵和第四液氮泵,所述盘管组件还包括第三盘管和第四盘管,所述第三盘管包括第三进液口与第三出液口,所述第三出液口与所述第五冷却管道连接,所述第三进液口与所述第七冷却管道连接;所述第四盘管包括第四进液口与第四出液口,所述第四出液口与所述第六冷却管道连接,所述第四进液口与所述第八冷却管道连接;所述第三液氮泵设置于所述第三冷却管道上,所述第四液氮泵设置于所述第四冷却管道上,所述第三液氮泵和第四液氮泵用于为液氮的循环流动提供动力。
可选地,所述低温制冷机至少包括加热器、真空泵;所述过冷器、加热器以及真空泵依次通过管道连接;所述真空泵用于将所述过冷器中的氮气抽走,利用抽空减压制冷方式对所述壳体中的液氮进行制冷;所述加热器用于对进入所述真空泵之前的氮气进行加热。
本发明的实施例提出一种用于超导电缆的单端顺流制冷***,包括设置于通电导体的内腔体中的第一液氮通道、设置于所述低温杜瓦管与所述通电导体之间的第二液氮通道以及设置于所述超导电缆一端的制冷***;其中,所述第一液氮通道与所述第二液氮通道靠近所述超导电缆一端部的位置连通;制冷***与所述第一液氮通道通过第一冷却管道连接,与所述第二液氮通道通过第二冷却管道连接,用于提供液氮,并将所述液氮通过所述第一冷却管道送入所述第一液氮通道,所述液氮依次流经所述第一液氮通道、所述第二液氮通道后流回所述制冷***进行制冷。本发明实施例的制冷***结构 简单,能够使得超导电缆在合适的液氦温区中运行。
本发明的其它特征和优点将在随后的具体实施方式中阐述。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例的用于超导电缆的单端顺流制冷***结构示意图。
图2为本发明实施例的超导电缆通电导体剖视图。
图3为本发明实施例的纤维网结构示意图。
图4为本发明实施例的制冷***结构示意图。
图中标记:1-低温杜瓦管,11-第一液氮通道,12-第二液氮通道,13-第三液氮通道,14-第四液氮通道,2-通电导体,21-柔性骨架,22-第一绝缘层,23-A相超导层,24-第二绝缘层,25-B相超导层,26-第三绝缘层,27-C相超导层,28-第四绝缘层,29-铜屏蔽层,210-第五绝缘层,211-保护层,3-制冷***,31-液氮罐,321-壳体,322-第一盘管,323-第二盘管,324-第三盘管,325-第四盘管,331-加热器,332-真空泵,341-第一液氮泵,342-第二液氮泵,343-第三液氮泵,344-第四液氮泵,351-第一加压器,352-第二加压器,301-第一冷却管道,302-第一冷却管道,303-第一冷却管道,304-第一冷却管道,305-第一冷却管道,306-第一冷却管道,307-第一冷却管道,308-第一冷却管道,309-第一连接管道,3010-第二连接管道,3011-第三连接管道。
具体实施方式
以下将参考附图详细说明本公开的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
另外,为了更好的说明本发明,在下文的具体实施例中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本发明同样可以实施。在一些实例中,对于本领域技术人员熟知的手段未作详细描述,以便于凸显本发明的主旨。
参阅图1,本发明实施例提出一种用于超导电缆的单端顺流制冷***,所述超导电缆包括低温杜瓦管1以及设置于所述低温杜瓦管1的内腔体中的通电导体2;包括:
第一液氮通道11,设置于所述通电导体2的内腔体;
第二液氮通道12,设置于所述低温杜瓦管1与所述通电导体2之间;其中,所述第一液氮通道11与所述第二液氮通道12靠近所述超导电缆一端部的位置连通;
设置于所述超导电缆一端的制冷***3,与所述第一液氮通道11靠近所述制冷***3一端通过第一冷却管道301连接,与所述第二液氮通道12靠近所述制冷***3一端通过第二冷却管道302连接,所述第一液氮通道11远离所述制冷***3一端通过第三冷却管道303连接,与所述第二液氮通道12远离所述制冷***3一端通过第四冷却管道304连接;
所述制冷***3用于提供液氮,并将所述液氮通过所述第一冷却管道301送入所述第一液氮通道11,所述液氮依次流经所述第一液氮通道11、所 述第三冷却管道303后流回所述制冷***3进行制冷;以及将所述液氮通过所述第二冷却管道302送入所述第二液氮通道12,所述液氮依次流经所述第二液氮通道12、所述第四冷却管道304后流回所述制冷***3进行制冷。
可选地,所述通电导体2为空心圆柱结构,其由内之外依次绕制有柔性骨架21、第一绝缘层22、A相超导层23、第二绝缘层24、B相超导层25、第三绝缘层26、C相超导层27、第四绝缘层28、屏蔽层29、第五绝缘层210、保护层211;
所述***还包括:设置于所述B相超导层25与第二绝缘层24之间的第三液氮通道13,以及设置于所述B相超导层25与第三绝缘层26之间的第四液氮通道14;
所述制冷***3与所述第三液氮通道13靠近所述制冷***3一端通过第五冷却管道305连接,与所述第四液氮通道14靠近所述制冷***3一端通过第六冷却管道306连接,与所述第三液氮通道13远离所述制冷***3一端通过第七冷却管道307连接,与所述第四液氮通道14远离所述制冷***3一端通过第八冷却管道308连接;
所述制冷***3用于提供液氮,并将所述液氮通过所述第五冷却管道305送入所述第三液氮通道13,所述液氮依次流经所述第三液氮通道13、所述第七冷却管道307后流回所述制冷***3进行制冷;以及将所述液氮通过所述第六冷却管道306送入所述第四液氮通道14,所述液氮依次流经所述第四液氮通道14、所述第八冷却管道308后流回所述制冷***3进行制冷。
具体而言,所述冷却***包括四个液氮通道,所述柔性骨架的中空部分构成第一液氮通道11;所述低温杜瓦管1的内壁面与所述保护层的外壁面之间间隙构成第二液氮通道12;所述B相超导层与第二绝缘层之间间隙构成 第三液氮通道13;所述B相超导层与第三绝缘层之间间隙构成第四液氮通道14;所述第一液氮通道11、第二液氮通道12、第三液氮通道13以及第四液氮通道14用于液氮的流通,以为所述通电导体2进行降温冷却;通过以上设置,使得超导电缆的中间B相超导层的热传导路径缩短,能够提高其热稳定性。
可选地,所述第三液氮通道13和所述第四液氮通道14均为微流通道,所述B相超导层与第二绝缘层之间、以及所述B相超导层与第三绝缘层之间设置有纤维网,所述纤维网用于维持所述B相超导层与第二绝缘层之间、以及所述B相超导层与第三绝缘层之间的微流通道。
具体而言,本实施例为了改进超导电缆的B相超导层的冷却效果,在B相导体相邻层引入“微流通道”。即在A-B相和B-C相之间的绝缘层等功能层中间通过微支撑结构引入“微流通道”,微流通道在充入液氮后会充满液氮,为B相导体提供良好的低温环境。不过由于微流通道的空间狭小,表面粘性力占优,雷诺数很大,不会对宏观制冷流程产生明显影响。
其中,微流通道的支撑结构采用一种特制的纤维网,如图3所示,这种纤维网的网孔、经纬线相对粗细是以微流通道CFD计算结果为基准选定的。
可选地,所述纤维网分别通过螺旋绕制的方式绕制在所述第二绝缘层的外壁面以及所述B相超导层的外壁面上,例如图3所示。
可选地,所述制冷***3包括液氮罐31、过冷器、低温制冷机、第一液氮泵341、第二液氮泵342、第一加压器351、第二加压器352,所述过冷器包括壳体321以及设置于所述壳体321中的盘管组件,所述盘管组件包括第一盘管322、第二盘管323;所液氮罐31内存储有液氮;所述液氮罐31与所述过冷器通过第一连接管道309连接,将液氮送至所述过冷器的壳体321 中;所述第一盘管322包括第一进液口与第一出液口,所述第一出液口与所述第一冷却管道301连接,所述第一进液口与所述第三冷却管道303连接;所述第二盘管323包括第二进液口与第二出液口,所述第二出液口与所述第二冷却管道302连接,所述第二进液口与所述第四冷却管道304连接;所述低温制冷机用于对所述过冷器的壳体321中的液氮进行冷却至过冷状态,其中过冷状态的液氮用于对盘管中的液氮进行热量交互以实现对所述盘管内的液氮的冷却;所述第一液氮泵341设置于所述第一冷却管道301上,所述第二液氮泵342设置于所述第二冷却管道302上,所述第一液氮泵341和第二液氮泵342用于为液氮的循环流动提供动力;所述第一连接管道309与所述第一冷却管道301之间连接有第二连接管道3010;所述第一加压器351设置于所述第二连接管道3010上,所述第一连接管道309与所述第二冷却管道302之间连接有第三连接管道3011;所述第二加压器352设置于所述第三连接管道3011上,所述第一加压器351和所述第二加压器352用于在所述液氮泵所提供的动力不足时,进行二次加压以满足液氮循环流动的动力需求。
可选地,所述制冷***3还包括所述第三液氮泵343和第四液氮泵344,所述盘管组件还包括第三盘管324和第四盘管325,所述第三盘管324包括第三进液口与第三出液口,所述第三出液口与所述第五冷却管道305连接,所述第三进液口与所述第七冷却管道307连接;所述第四盘管325包括第四进液口与第四出液口,所述第四出液口与所述第六冷却管道306连接,所述第四进液口与所述第八冷却管道308连接;所述第三液氮泵343设置于所述第三冷却管道303上,所述第四液氮泵344设置于所述第四冷却管道304上,所述第三液氮泵343和第四液氮泵344用于为液氮的循环流动提供动力。
具体而言,图4中的箭头表示液氮或氮气的流向。
可选地,所述低温制冷机至少包括加热器331、真空泵332;所述过冷器、加热器331以及真空泵332依次通过管道连接;所述真空泵332用于将所述过冷器中的氮气抽走,利用抽空减压制冷方式对所述壳体321中的液氮进行制冷;所述加热器331用于对进入所述真空泵332之前的氮气进行加热。
具体而言,本实施例采用抽空减压制冷,其物理原理是压力降低导致沸点降低。通过真空泵332不断的将换热器上方的氮气抽走,从而气液面的饱和蒸气压降低,液氮的沸点降低,也即获得了低温过冷的液氮。由于真空泵332不耐低温,所以前面用加热器331加热。由于氮气被源源不断的抽走,所以需要及时补充液氮。可以设置在相应管道上设置若干泄压阀作为安全措施。
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (7)

  1. 一种用于超导电缆的单端顺流制冷***,所述超导电缆包括低温杜瓦管以及设置于所述低温杜瓦管的内腔体中的通电导体;其特征在于,包括:
    第一液氮通道,设置于所述通电导体的内腔体;
    第二液氮通道,设置于所述低温杜瓦管与所述通电导体之间;其中,所述第一液氮通道与所述第二液氮通道靠近所述超导电缆一端部的位置连通;
    设置于所述超导电缆一端的制冷***,与所述第一液氮通道靠近所述制冷***一端通过第一冷却管道连接,与所述第二液氮通道靠近所述制冷***一端通过第二冷却管道连接,所述第一液氮通道远离所述制冷***一端通过第三冷却管道连接,与所述第二液氮通道远离所述制冷***一端通过第四冷却管道连接;
    所述制冷***用于提供液氮,并将所述液氮通过所述第一冷却管道送入所述第一液氮通道,所述液氮依次流经所述第一液氮通道、所述第三冷却管道后流回所述制冷***进行制冷;以及将所述液氮通过所述第二冷却管道送入所述第二液氮通道,所述液氮依次流经所述第二液氮通道、所述第四冷却管道后流回所述制冷***进行制冷。
  2. 根据权利要求1所述的用于超导电缆的单端顺流制冷***,其特征在于,所述通电导体为空心圆柱结构,其由内之外依次绕制有柔性骨架、第一绝缘层、A相超导层、第二绝缘层、B相超导层、第三绝缘层、C相超导层、第四绝缘层、屏蔽层、第五绝缘层、保护层;
    所述***还包括:设置于所述B相超导层与第二绝缘层之间的第三液氮通道,以及设置于所述B相超导层与第三绝缘层之间的第四液氮通道;
    所述制冷***与所述第三液氮通道靠近所述制冷***一端通过第五冷却管道连接,与所述第四液氮通道靠近所述制冷***一端通过第六冷却管道连接,与所述第三液氮通道远离所述制冷***一端通过第七冷却管道连接,与所述第四液氮通道远离所述制冷***一端通过第八冷却管道连接;
    所述制冷***用于提供液氮,并将所述液氮通过所述第五冷却管道送入所述第三液氮通道,所述液氮依次流经所述第三液氮通道、所述第七冷却管道后流回所述制冷***进行制冷;以及将所述液氮通过所述第六冷却管道送入所述第四液氮通道,所述液氮依次流经所述第四液氮通道、所述第八冷却管道后流回所述制冷***进行制冷。
  3. 根据权利要求2所述的用于超导电缆的单端顺流制冷***,其特征在于,所述第三液氮通道和所述第四液氮通道均为微流通道,所述B相超导层与第二绝缘层之间、以及所述B相超导层与第三绝缘层之间设置有纤维网,所述纤维网用于维持所述B相超导层与第二绝缘层之间、以及所述B相超导层与第三绝缘层之间的微流通道。
  4. 根据权利要求3所述的用于超导电缆的单端顺流制冷***,其特征在于,所述纤维网分别通过螺旋绕制的方式绕制在所述第二绝缘层的外壁面以及所述B相超导层的外壁面上。
  5. 根据权利要求1所述的用于超导电缆的单端顺流制冷***,其特征在于,所述制冷***包括液氮罐、过冷器、低温制冷机、第一液氮泵、第二液氮泵、第一加压器、第二加压器,所述过冷器包括壳体以及设置于所述壳体 中的盘管组件,所述盘管组件包括第一盘管、第二盘管;所液氮罐内存储有液氮;所述液氮罐与所述过冷器通过第一连接管道连接,将液氮送至所述过冷器的壳体中;所述第一盘管包括第一进液口与第一出液口,所述第一出液口与所述第一冷却管道连接,所述第一进液口与所述第三冷却管道连接;所述第二盘管包括第二进液口与第二出液口,所述第二出液口与所述第二冷却管道连接,所述第二进液口与所述第四冷却管道连接;所述低温制冷机用于对所述过冷器的壳体中的液氮进行冷却至过冷状态,其中过冷状态的液氮用于对盘管中的液氮进行热量交互以实现对所述盘管内的液氮的冷却;所述第一液氮泵设置于所述第一冷却管道上,所述第二液氮泵设置于所述第二冷却管道上,所述第一液氮泵和第二液氮泵用于为液氮的循环流动提供动力;所述第一连接管道与所述第一冷却管道之间连接有第二连接管道;所述第一加压器设置于所述第二连接管道上,所述第一连接管道与所述第二冷却管道之间连接有第三连接管道;所述第二加压器设置于所述第三连接管道上,所述第一加压器和所述第二加压器用于在所述液氮泵所提供的动力不足时,进行二次加压以满足液氮循环流动的动力需求。
  6. 根据权利要求5所述的用于超导电缆的单端顺流制冷***,其特征在于,所述制冷***还包括所述第三液氮泵和第四液氮泵,所述盘管组件还包括第三盘管和第四盘管,所述第三盘管包括第三进液口与第三出液口,所述第三出液口与所述第五冷却管道连接,所述第三进液口与所述第七冷却管道连接;所述第四盘管包括第四进液口与第四出液口,所述第四出液口与所述第六冷却管道连接,所述第四进液口与所述第八冷却管道连接;所述第三液氮泵设置于所述第三冷却管道上,所述第四液氮泵设置于所述第四冷却管道 上,所述第三液氮泵和第四液氮泵用于为液氮的循环流动提供动力。
  7. 根据权利要求6所述的用于超导电缆的单端顺流制冷***,其特征在于,所述低温制冷机至少包括加热器、真空泵;所述过冷器、加热器以及真空泵依次通过管道连接;所述真空泵用于将所述过冷器中的氮气抽走,利用抽空减压制冷方式对所述壳体中的液氮进行制冷;所述加热器用于对进入所述真空泵之前的氮气进行加热。
PCT/CN2020/124508 2020-10-14 2020-10-28 一种用于超导电缆的单端顺流制冷*** WO2022077568A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011096597.6 2020-10-14
CN202011096597.6A CN112271027A (zh) 2020-10-14 2020-10-14 一种用于超导电缆的单端顺流制冷***

Publications (1)

Publication Number Publication Date
WO2022077568A1 true WO2022077568A1 (zh) 2022-04-21

Family

ID=74337380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124508 WO2022077568A1 (zh) 2020-10-14 2020-10-28 一种用于超导电缆的单端顺流制冷***

Country Status (2)

Country Link
CN (1) CN112271027A (zh)
WO (1) WO2022077568A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114336102B (zh) * 2021-11-18 2023-07-25 深圳供电局有限公司 超导电缆接头及装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040138066A1 (en) * 2001-08-01 2004-07-15 Sinha Uday K Triaxial hts cable
JP2012174405A (ja) * 2011-02-18 2012-09-10 Sumitomo Electric Ind Ltd 超電導送電システム
CN103165246A (zh) * 2011-12-19 2013-06-19 尼克桑斯公司 冷却用于超导电缆的设备的方法
CN104064279A (zh) * 2014-06-13 2014-09-24 苏州华徕光电仪器有限公司 一种冷绝缘超导电缆的冷却***
CN104064280A (zh) * 2014-06-13 2014-09-24 苏州华徕光电仪器有限公司 一种超导电缆循环冷却***
JP2016025059A (ja) * 2014-07-24 2016-02-08 住友電気工業株式会社 超電導ケーブルの運転方法、及び超電導ケーブルの冷却システム
CN109559850A (zh) * 2018-12-07 2019-04-02 深圳供电局有限公司 一种直流双极超导电缆通电导体
CN109637738A (zh) * 2018-12-07 2019-04-16 深圳供电局有限公司 一种三相同轴式超导电缆通电导体
CN110853832A (zh) * 2019-11-14 2020-02-28 深圳市开迩文科技有限公司 一种超导电缆冷却***

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102759231B (zh) * 2012-07-25 2014-11-12 北京卫星环境工程研究所 常压/负压液氮过冷器***
JP5972156B2 (ja) * 2012-11-26 2016-08-17 株式会社前川製作所 超電導送電システム及び該システムを備える構造物
CN209487218U (zh) * 2018-12-07 2019-10-11 深圳供电局有限公司 一种三相同轴式超导电缆通电导体
CN211125168U (zh) * 2020-01-09 2020-07-28 上海电缆研究所有限公司 带回流通道的超导电缆

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040138066A1 (en) * 2001-08-01 2004-07-15 Sinha Uday K Triaxial hts cable
JP2012174405A (ja) * 2011-02-18 2012-09-10 Sumitomo Electric Ind Ltd 超電導送電システム
CN103165246A (zh) * 2011-12-19 2013-06-19 尼克桑斯公司 冷却用于超导电缆的设备的方法
CN104064279A (zh) * 2014-06-13 2014-09-24 苏州华徕光电仪器有限公司 一种冷绝缘超导电缆的冷却***
CN104064280A (zh) * 2014-06-13 2014-09-24 苏州华徕光电仪器有限公司 一种超导电缆循环冷却***
JP2016025059A (ja) * 2014-07-24 2016-02-08 住友電気工業株式会社 超電導ケーブルの運転方法、及び超電導ケーブルの冷却システム
CN109559850A (zh) * 2018-12-07 2019-04-02 深圳供电局有限公司 一种直流双极超导电缆通电导体
CN109637738A (zh) * 2018-12-07 2019-04-16 深圳供电局有限公司 一种三相同轴式超导电缆通电导体
CN110853832A (zh) * 2019-11-14 2020-02-28 深圳市开迩文科技有限公司 一种超导电缆冷却***

Also Published As

Publication number Publication date
CN112271027A (zh) 2021-01-26

Similar Documents

Publication Publication Date Title
CN107646134B (zh) 用于直流电传输的设备和冷却方法
CN101109583A (zh) 用于电气设备的包括电流引线的低温保持器
CN109140064B (zh) 一种低温燃料传导冷却的超导能源管道
CN103968878A (zh) 低温脉动热管实验装置
Kostyuk et al. Experimental hybrid power transmission line with liquid hydrogen and MgB 2-based superconducting cable
CN103307380A (zh) 一种具备电位隔离功能的低温流体输送管接头
AU2004285058A1 (en) Conduit component for a power supply network, use thereof, method for transporting cryogenic energy carriers in conduits and devices suitable therefor
US11363741B2 (en) Systems and methods for cooling of superconducting power transmission lines
CN110021460A (zh) 一种耐冲击耐烧蚀的超导能源管道
WO2022077568A1 (zh) 一种用于超导电缆的单端顺流制冷***
CN107300129A (zh) 低温燃料冷却阻燃气体保护的超导能源管道
WO2022077570A1 (zh) 一种用于超导电缆的单端逆流制冷***
WO2022077569A1 (zh) 一种用于超导电缆的双端逆流制冷***
Demko et al. Thermal management of long-length HTS cable systems
CN110912069A (zh) 超导直流输电/液化天然气一体化能源管道终端
CN114512295A (zh) 一种高均匀磁场传导冷却超导磁体***
CN217784864U (zh) 一种带液氮冷屏的直流超导液氢能源管道***
JP2002056729A (ja) 超電導ケーブル線路
Bruzek et al. Using superconducting DC cables to improve the efficiency of electricity transmission and distribution (T&D) networks: An overview
CN107004486A (zh) 具有线圈装置和冷却装置的超导技术的装置以及配备有其的车辆
CN107610835B (zh) 液化天然气冷却cf4保护的超导能源管道
Ivanov et al. A proposal of the hybrid energy transfer pipe
Yeom et al. Design of cryogenic systems for 154 kV HTS power cable
Li et al. Comparative study of superconducting dc energy pipelines with different bipolar structural layouts
CN216964941U (zh) 一种超导除铁器磁体导冷结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957346

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 07/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20957346

Country of ref document: EP

Kind code of ref document: A1