WO2022067507A1 - 一种包含共聚物的粘结剂及包含该粘结剂的电化学装置 - Google Patents

一种包含共聚物的粘结剂及包含该粘结剂的电化学装置 Download PDF

Info

Publication number
WO2022067507A1
WO2022067507A1 PCT/CN2020/118828 CN2020118828W WO2022067507A1 WO 2022067507 A1 WO2022067507 A1 WO 2022067507A1 CN 2020118828 W CN2020118828 W CN 2020118828W WO 2022067507 A1 WO2022067507 A1 WO 2022067507A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
binder
monomer
active material
emulsifier
Prior art date
Application number
PCT/CN2020/118828
Other languages
English (en)
French (fr)
Inventor
李嘉文
石长川
张青文
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to EP20866934.1A priority Critical patent/EP4016675A4/en
Priority to US17/281,549 priority patent/US20240010769A1/en
Priority to CN202080005187.8A priority patent/CN112740443B/zh
Priority to PCT/CN2020/118828 priority patent/WO2022067507A1/zh
Publication of WO2022067507A1 publication Critical patent/WO2022067507A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/10Copolymer characterised by the proportions of the comonomers expressed as molar percentages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of electrochemistry, in particular to a binder comprising a copolymer and an electrochemical device comprising the binder.
  • Lithium-ion batteries have the characteristics of large specific energy, high operating voltage, low self-discharge rate, small size and light weight, and have a wide range of applications in the field of consumer electronics. With the rapid development of electric vehicles and mobile electronic devices, people have higher and higher performance requirements for lithium-ion batteries, for example, lithium-ion batteries are required to have higher energy density, safety, and cycle performance.
  • adhesive is often used in the pole piece, separator coating, packaging bag (Pocket bag) and tab packaging place of lithium ion battery.
  • Existing adhesives usually include water-soluble adhesives and solvent-based adhesives, but the existing adhesives generally have the problem of hard and brittleness, which leads to a decrease in bonding performance. It is easy to cause chip opening and powder drop during the solid and winding process, which affects the quality of the pole piece. In addition, the resistance to electrolyte of the existing binder is poor, and the adhesion performance drops significantly after being soaked in the electrolyte, which affects the performance of the lithium ion battery.
  • the purpose of the present application is to provide a binder containing a copolymer and an electrochemical device containing the binder, so as to improve the binding performance of the binder.
  • the specific technical solutions are as follows:
  • a first aspect of the present application provides a binder comprising a copolymer, the copolymer comprising a polymer formed by copolymerizing a first monomer and a second monomer, the first monomer being a propylene monomer, wherein , the crystallinity of the copolymer is 10% to 40%, the first monomer accounts for 30mol% to 95mol% of the total monomer amount of the copolymer, and the second monomer accounts for the total monomer amount of the copolymer. 5 mol% to 70 mol% of the volume.
  • the second monomer is selected from the group consisting of ethylene, butadiene, isoprene, styrene, acrylonitrile, ethylene oxide, propylene oxide, acrylate, vinyl acetate At least one of caprolactone and maleic anhydride.
  • the copolymer has at least one of the following characteristics:
  • the softening point of the copolymer is 70°C to 90°C;
  • the weight average molecular weight of the copolymer is 500 to 1,000,000;
  • the D50 of the copolymer is 0.5 ⁇ m to 5 ⁇ m.
  • the binder further comprises an emulsifier, a defoaming agent and water, wherein the mass percentage of the copolymer in the total mass of the binder ranges from 10% to 50%, The mass percentage of the emulsifier in the total mass of the binder is 0.1% to 5%, the mass percentage of the defoamer in the total mass of the binder is 0.0001% to 0.1%, and the balance is water.
  • the emulsifier includes at least one of anionic emulsifier, cationic emulsifier or non-ionic emulsifier;
  • the anionic emulsifier includes fatty acid soap, alkyl sulfate , at least one of alkylbenzene sulfonates or phosphates
  • the cationic emulsifier includes at least one of N-dodecyldimethylamine, amine derivatives or quaternary ammonium salts
  • the type emulsifier includes at least one of polyoxyethylene ether, polyoxypropylene ether, ethylene oxide, propylene oxide block copolymer, polyol fatty acid ester, and polyvinyl alcohol.
  • the defoaming agent comprises alcohol, fatty acid, fatty acid ester, phosphate ester, mineral oil, amide, ethylene oxide, copolymer of propylene oxide, polydimethylsiloxane At least one of alkane, polyether segment or polysiloxane segment modified grafted silyl ether copolymer.
  • the binder has a viscosity of 10 mPa ⁇ S to 5000 mPa ⁇ S.
  • the swelling degree of the binder in the electrolyte is 0 to 55%.
  • a second aspect of the present application provides an electrochemical device comprising an electrode pad, wherein the electrode pad comprises the binder according to the first aspect above.
  • the electrode electrode sheet includes an electrode active material layer and a current collector, and the adhesive force between the electrode active material layer and the current collector is 500 N/m to 1000 N/m.
  • a third aspect of the present application provides an electronic device, including the electrochemical device described in the second aspect.
  • the present application provides a binder comprising a copolymer and an electrochemical device comprising the same.
  • the binder of the present application comprises a first monomer and a second monomer
  • the softening point of the binder containing the above-mentioned copolymer is appropriate and the crystallinity is good, so that the binder of the present application has more High cohesive force is more conducive to material processing, so the electrode pole piece containing the binder of the present application is less likely to drop powder after hot pressing or winding, which improves the quality of the electrode pole piece;
  • the binder has good electrolyte resistance, thereby improving the performance of the electrochemical device.
  • D50 refers to the particle size at which the cumulative distribution of particles is 50%, that is, the volume content of particles smaller than this particle size accounts for 50% of all particles.
  • softening point refers to the temperature at which a substance softens.
  • swelling degree refers to the ratio of the volume after swelling to the volume before swelling when polymer molecules adsorb solvent molecules to reach swelling equilibrium.
  • the present application provides a binder comprising a copolymer, the copolymer comprising a polymer formed by copolymerizing a first monomer and a second monomer, the first monomer being a propylene monomer, wherein the copolymer is The crystallinity is 10% to 40%, the first monomer accounts for 30mol% to 95mol% of the total monomer amount of the copolymer, and the second monomer accounts for 5mol% of the total monomer amount of the copolymer to 70 mol%.
  • the binder of the present application can be used for non-aqueous lithium ion batteries, especially for preparing electrode slurry compositions for lithium ion batteries.
  • Using the binder of the present application to prepare the electrode slurry composition of the lithium ion battery can improve the bonding force between the electrode active material layer and the current collector, thereby improving the performance of the electrode such as cycle stability.
  • the binder of the present application includes a copolymer, and the monomers forming the copolymer include two monomers, wherein the first monomer is selected from propylene monomer, and the first monomer accounts for 30mol of the total monomer amount of the copolymer % to 95 mol%, not limited to any theory, when the content of the first monomer is too low, it is not conducive to the improvement of the binding performance of the binder; when the content of the first monomer is too high, the swelling performance of the electrolyte solution of the binder is affected.
  • the binder of the present application can have good binding performance, electrolyte swellability and good electrolyte stability.
  • the first monomer accounts for 50 mol % to 90 mol % of the total monomer amount of the copolymer, more preferably, 60 mol % to 80 mol %.
  • the crystallinity of the copolymer of the present application is 10% to 40%, which is not limited to any theory.
  • the crystallinity of the copolymer is too high, the softening point of the material will be too high, which is not conducive to the improvement of the bonding performance of the binder and the electrode pole piece.
  • the crystallinity of the copolymer is too low, it will affect the electrolyte swelling performance and bonding performance of the binder.
  • the second monomer is selected from the group consisting of ethylene, butadiene, isoprene, styrene, acrylonitrile, ethylene oxide, propylene oxide, (meth)acrylates, vinyl acetate, caprolactone and at least one of maleic anhydride, the second monomer accounts for 5 mol % to 70 mol % of the total monomer amount of the copolymer, preferably 10 mol % to 50 mol %, more preferably 20 mol % to 40 mol %.
  • the binder of the present application can have good binding performance and electrolyte swellability, thereby improving the cycle performance of the lithium ion battery.
  • the second monomer may be selected from a combination of one or more of the aforementioned monomers. When a combination of multiple monomers is selected to provide the second monomer, the ratio between the monomers is not specifically limited, and can be any ratio as long as the requirements of the present application are met.
  • the softening point of the copolymer of the present application is 70°C to 90°C, which is not limited to any theory.
  • the softening point of the copolymer is too high, it is not conducive to processing and the improvement of the bonding performance of the binder; the softening point of the copolymer When it is too low, the copolymer is soft, which affects the cycle performance of the lithium ion battery and reduces the cycle retention performance of the lithium ion battery.
  • the adhesive of the present application can be made to have better adhesion.
  • the binder of the present application when used in an electrode sheet of a lithium ion battery, it can improve the adhesion between the electrode active material and the current collector and the adhesion between the electrode active material particles, and improve the adhesion between the electrode active material and the electrode active material particles. Cycling stability of the battery.
  • the weight average molecular weight of the copolymer of the present application is 500 to 1,000,000, preferably 1,000 to 100,000, and more preferably 5,000 to 50,000.
  • the weight-average molecular weight of the copolymer when the weight-average molecular weight of the copolymer is too low, the copolymer will be soft, resulting in a decrease in the softening point of the copolymer, which is not conducive to the improvement of the binding performance of the binder; when the weight-average molecular weight of the copolymer is too high, As a result, the softening point of the copolymer is too high, which is not conducive to processing and the improvement of the bonding performance of the adhesive.
  • the weight average molecular weight of the copolymer of the present application By controlling the weight average molecular weight of the copolymer of the present application to be within the above range, a binder with good adhesion can be obtained, thereby improving the cycle stability of the lithium ion battery.
  • the copolymer of the present application is in the form of particles, and its particle D50 is 0.5 ⁇ m to 5 ⁇ m, preferably 1 ⁇ m to 3.5 ⁇ m.
  • the D50 of the copolymer is too large, that is, when the particle size is too large, the cohesiveness of the binder will be uneven, which will affect the cohesive performance of the binder; if the D50 of the copolymer is too small, the The increase in specific surface area affects the kinetic performance of lithium-ion batteries.
  • the particle size of the copolymer of the present application within the above-mentioned range, the binding effect in the electrode active material can be better played.
  • the preparation method of the copolymer of the present application is not particularly limited, and a preparation method known to those skilled in the art can be adopted, which can be selected according to different types of monomers used, such as solution method, slurry method, gas phase method and the like.
  • the second monomer is selected from vinyl monomers
  • the following methods can be used:
  • the main catalyst and the co-catalyst are respectively dissolved in hexane to obtain the hexane solution of the main catalyst and the hexane solution of the co-catalyst, then the hexane is added to the reaction kettle, and then the main catalyst slurry and the co-catalyst slurry are added under the protection of nitrogen.
  • the reaction kettle was then fed with propylene and ethylene, and the temperature was raised to 50°C to 60°C. During the reaction, the pressure in the reaction kettle was maintained at 0.3MPa to 0.5MPa. After the reaction for 0.5h to 2h, acidified ethanol was used to terminate the reaction. Wash with absolute ethanol for 3 to 5 times, filter, and dry in a vacuum drying oven at 50°C to 70°C for 3h to 5h.
  • the main catalyst and co-catalyst there is no particular limitation on the main catalyst and co-catalyst in this application, as long as the purpose of the invention can be achieved.
  • a metallocene catalyst system is used, wherein the main catalyst includes a metallocene complex (such as ferrocene or its derivatives), The catalyst includes methylaluminoxane; and the addition amount of the main catalyst and the co-catalyst is not particularly limited in the present application, as long as the purpose of the present invention can be achieved.
  • the reaction kettle can be evacuated first before the reaction, and then the reaction kettle is replaced with nitrogen for 3 to 5 times to make the reaction kettle clean.
  • the second monomer is selected from butadiene
  • it is the same as the above-mentioned preparation method of propylene-ethylene copolymer except that ethylene in the above-mentioned preparation method of propylene-ethylene copolymer is replaced by butadiene.
  • the second monomer is selected from acrylate, except that ethylene in the above-mentioned propylene-ethylene copolymer preparation method is replaced with acrylate, hexane, main catalyst slurry and co-catalyst slurry are added to the reaction kettle under nitrogen protection, and the Except that the acrylate is passed into propylene again, the rest is the same as the preparation method of the above-mentioned propylene-ethylene copolymer.
  • the methacrylate monomer can be selected from any one of methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, isooctyl acrylate, and hydroxyethyl acrylate.
  • copolymerization of other monomers is not listed one by one in this application, and preparation methods known in the art can be used.
  • the binder of the present application can be directly used to prepare the non-aqueous lithium ion battery electrode slurry composition.
  • the binder is used in combination, and is added to the electrode paste composition as a binder.
  • the binder of the present application further includes an emulsifier, a defoaming agent and water, wherein the copolymer accounts for 10% to 50% of the total mass of the binder, so The mass percentage of the emulsifier in the total mass of the binder is 0.1% to 5%, the mass percentage of the defoamer in the total mass of the binder is 0.0001% to 0.1%, and the balance is water.
  • the emulsifier is selected from at least one of anionic emulsifier, cationic emulsifier or non-ionic emulsifier;
  • the anionic emulsifier includes fatty acid soap, alkyl sulfate, alkylbenzene sulfonic acid At least one of salts or phosphates
  • the cationic emulsifier includes at least one of N-dodecyldimethylamine, amine derivatives or quaternary ammonium salts
  • the nonionic emulsifier includes polyoxygen At least one of vinyl ether, polyoxypropylene ether, ethylene oxide, propylene oxide block copolymer, polyhydric alcohol fatty acid ester, and polyvinyl alcohol.
  • the antifoaming agent comprises alcohol, fatty acid, fatty acid ester, phosphate ester, mineral oil, amide, ethylene oxide, copolymer of propylene oxide, polydimethylsiloxane, polyether segment or At least one of the polysiloxane segment-modified grafted silicone ether copolymers.
  • the viscosity of the binder of the present application is preferably 10 mPa ⁇ S to 5000 mPa ⁇ S, more preferably 200 mPa ⁇ S to 2000 mPa ⁇ S.
  • the swelling degree of the binder in the electrolyte will affect the performance of the battery.
  • the swelling degree of the binder in the electrolyte refers to the swelling performance of the binder after it is dried and formed into a film by immersing in the electrolyte to absorb the solvent in the electrolyte or the electrolyte, which specifically means that the polymer molecules in the binder adsorb When the solvent molecules reach the swelling equilibrium, the ratio of the volume after swelling to the volume before swelling. Excessive swelling of the binder may lead to a decrease in the cohesiveness of the electrode active material and reduce the cycle performance of the lithium-ion battery.
  • the swelling degree of the binder of the present application in the electrolyte is 0 to 55%.
  • the present application also provides an electrochemical device, which includes an electrode pad, wherein the electrode pad includes the binder described in any one of the above embodiments.
  • the electrode sheet includes an electrode active material layer and a current collector, and the electrode active material layer is usually obtained by coating the electrode slurry composition on the current collector.
  • the bonding force between the electrode active material layer and the current collector is 500 N/m to 1000 N/m, so that the electrode active material layer and the current collector have high bonding performance, and the electrode The pole piece is less likely to drop powder after hot pressing or winding, which improves the quality of the electrode pole piece.
  • the electrode slurry composition of the present application includes a positive electrode slurry composition and a negative electrode slurry composition.
  • the positive electrode slurry composition and the negative electrode slurry composition respectively contain a positive electrode active material and a negative electrode active material.
  • the present application is not particularly limited, and positive electrode active materials used in this technical field can be used.
  • lithium iron phosphate (LiFePO 4 ), lithium manganese phosphate (LiMnPO 4 ), lithium cobalt phosphate (LiCoPO 4 ), iron pyrophosphate (Li 2 FeP 2 O 7 ), lithium cobalt oxide composite oxide (LiCoO 2 ) can be appropriately used
  • spinel-type lithium manganate composite oxide LiMn 2 O 4
  • lithium magnesium oxide composite oxide (LiMgO 2 ) lithium calcium oxide composite oxide (LiCaO 2 ), lithium cuprate composite oxide (LiCuO 2 ), lithium zincate composite oxide oxide (LiZnO 2 ),
  • the present application is not particularly limited, and a material capable of absorbing and releasing lithium ions can be used.
  • a material capable of absorbing and releasing lithium ions can be used.
  • carbon is preferred.
  • Examples of carbon include carbon materials such as graphite, hard carbon, and soft carbon.
  • a material obtained by mixing or compounding these carbon materials with other materials capable of reversibly absorbing and releasing lithium can also be used.
  • a composite active material including a silicon-containing material composed of graphite and Si composited, a tin-containing material composed of a composite of hard carbon and Sn, or the like is used, the effects of the present embodiment can be more ideally exhibited. .
  • silicon-based materials or composite materials of silicon-based materials and other materials such as negative electrode active materials such as silicon, silicon-oxygen compounds, and silicon-carbon composite materials, are preferably used.
  • the electrode slurry composition of the present application may further contain a conductive auxiliary agent, and the conductive auxiliary agent is not particularly limited as long as it has electronic conductivity, and carbon powder is preferable.
  • the carbon powder include acetylene black (AB), ketjen black (KB), graphite, carbon fiber, carbon tube, graphene, amorphous carbon, hard carbon, soft carbon, glassy carbon, carbon nanofiber, carbon nanofiber Tubes (CNTs) and other carbon materials. These may be used individually by 1 type, or may be used in combination of 2 or more types. Among them, from the viewpoint of improving electrical conductivity, carbon nanofibers and carbon nanotubes are preferable, and carbon nanotubes are more preferable.
  • carbon nanotubes When carbon nanotubes are used as the conduction aid, the content thereof is not particularly limited, for example, it is preferably 30% to 100% of the total mass of the whole conduction aid, and more preferably 40% to 100%. When the content of carbon nanotubes is less than 30%, a sufficient conductive path may not be secured between the electrode active material and the current collector, and a sufficient conductive path may not be formed especially during high-speed charge and discharge, which is not preferable.
  • carbon nanofiber refers to a fibrous material with a thickness of several nanometers to several hundreds of nanometers. Carbon nanofibers having a hollow structure are particularly referred to as carbon nanotubes, and there are types such as single-walled carbon nanotubes and multi-layered carbon nanotubes. They are produced by various methods such as vapor deposition method, arc discharge method, and laser evaporation method, and the method is not limited.
  • the electrode paste composition of the present application may further contain a dispersing aid as needed.
  • a dispersing aid is preferably an organic acid having a molecular weight of 100,000 or less, which is soluble in an aqueous solution of pH 7 or more and 13 or less.
  • organic acids it is preferable to contain a carboxyl group and at least one selected from a hydroxyl group, an amino group, and an imino group.
  • lactic acid tartaric acid, citric acid, malic acid, glycolic acid, tartaric acid, glucuronic acid, humic acid, and other compounds having a carboxyl group and a hydroxyl group; glycine, alanine, etc.
  • Acid phenylalanine, 4-aminobutyric acid, leucine, isoleucine, lysine and other compounds with carboxyl and amino groups; glutamic acid, aspartic acid and other compounds with multiple carboxyl and amino groups Compounds; compounds with carboxyl and imino groups such as proline, 3-hydroxyproline, 4-hydroxyproline, pipecolic acid; glutamine, asparagine, cysteine, histidine , tryptophan and other compounds with carboxyl groups and functional groups other than hydroxyl and amino groups.
  • glucuronic acid, humic acid, glycine, aspartic acid, and glutamic acid are preferable from the viewpoint of easy availability.
  • the molecular weight of the dispersing aid from the viewpoint of water solubility, the molecular weight is preferably 100,000 or less. When the molecular weight exceeds 100,000, there is a possibility that the hydrophobicity of the molecules becomes stronger and the uniformity of the slurry is impaired.
  • the present application also provides an electrode pad, which can be prepared using a method used in the technical field.
  • it can be prepared by disposing an electrode active material layer on the current collector (for the convenience of description, the material layer obtained after drying the electrode slurry composition coated on the current collector is referred to as the electrode active material layer in this application) . More specifically, it can be prepared, for example, by applying the electrode slurry composition on a current collector (and drying if necessary).
  • the electrode active material layer may be closely bonded to the current collector using a pressing machine such as a roll pressing machine.
  • Electrode The pole piece is a member used to convert chemical energy into electrical energy. Oxidation reaction and reduction reaction of the active material in the electrode sheet occur along with charge and discharge.
  • the negative pole piece is an electrode pole piece that undergoes a reaction of absorbing or lithiating lithium ions during charging and releasing or delithiating lithium during discharge.
  • the positive pole piece is an electrode pole piece that undergoes a reaction of releasing or delithiating lithium ions during charging, and absorbing or lithiating lithium during discharge.
  • the current collector of the negative electrode sheet is not particularly limited as long as it is a material that has electron conductivity and can conduct electricity in the negative electrode active material held.
  • conductive substances such as C, Cu, Ni, Fe, V, Nb, Ti, Cr, Mo, Ru, Rh, Ta, W, Os, Ir, Pt, Au, and AI can be used, and the conductive substances containing these conductive substances can be used.
  • Two or more alloys eg stainless steel).
  • the conductive material may be a material obtained by plating a different conductive material (for example, a material obtained by plating Cu on Fe). From the viewpoints of high electrical conductivity and good stability in the electrolytic solution and good oxidation resistance, Cu, Ni, stainless steel, etc. are preferable as the current collector, and Cu and Ni are more preferable from the viewpoint of material cost.
  • the current collector of the positive electrode sheet is not particularly limited as long as it has electron conductivity and can conduct electricity in the held positive electrode material.
  • conductive substances such as C, Ti, Cr, Mo, Ru, Rh, Ta, W, Os, Ir, Pt, Au, and Al, and alloys containing two or more of these conductive substances (eg, stainless steel) can be used.
  • C, Al, stainless steel, etc. are preferable as the current collector, and Al is more preferable from the viewpoint of material cost.
  • the shape of the current collector is preferably a plate shape or a foil shape, and a plate or foil made of the above-mentioned materials can be preferably exemplified.
  • the negative electrode sheet can be obtained, for example, by the following method: coating a negative electrode active material, a binder, water, and a conductive auxiliary agent and a dispersing auxiliary agent added as needed, mixed with After pre-drying, heat treatment is performed.
  • the binder used in preparing the slurry may be dispersed in water beforehand, or the powders of the active material, the conductive aid, the binder, and the dispersion aid may be mixed in advance, and then water may be added and mixed.
  • Water is used as a medium for dispersing the binder and dispersing the active material and the conductive aid.
  • a dispersion aid in order to improve the dispersibility of the active material and the conductive aid, it is preferable to add a dispersion aid.
  • the concentration of the solid content of the slurry is not particularly limited.
  • the concentration is preferably 20%. % or more and 80% or less, more preferably 30% or more and 70% or less.
  • the electrode sheet drying is not particularly limited as long as it is a method that can volatilize and remove the solvent in the slurry.
  • a method of heat-treating in the atmosphere at a temperature of 50° C. to 300° C. is mentioned.
  • the drying method includes natural drying, warm air drying, heating drying, far-infrared radiation drying, and the like, and any method can be used.
  • the negative electrode active material layer is preferably formed in a thickness ranging from 20 ⁇ m to 300 ⁇ m.
  • the thickness is 20 ⁇ m or more, in addition to an increase in the electrode capacity density, there is a tendency that the temperature rise of the battery at the time of short circuit is particularly suppressed.
  • the thickness is 300 ⁇ m or less, the resistivity is not high, the charging and discharging does not take time, and the volume change is less likely to increase, so life characteristics are ideal, and sufficient battery performance can be ideally exhibited.
  • the content of the conductive auxiliary agent relative to the total mass of the active material, the conductive auxiliary agent and the binder, it is preferably 5% or less (ie, more than 0% and 5% or less), preferably about 0.01% to about 5%, and more It is preferably about 0.1% to about 4%, more preferably 0.5% to 3%. That is, the conductive auxiliary agent is contained as necessary, and the amount thereof is preferably 5% or less. When the content of the conductive auxiliary agent exceeds 5%, the temperature rise of the battery at the time of the battery short circuit tends to increase.
  • the proportion of the active material is relatively reduced, so it is difficult to obtain high capacity during charging and discharging of the battery; carbon is hydrophobic and thus difficult to uniformly disperse, thereby causing aggregation of the active material; compared with the active material, the size of the conductive aid Therefore, when the content of the conductive aid increases, the surface area of the active material and the conductive aid as a whole increases, so the amount of the binder to be used increases, and the like.
  • the content of the binder is also not particularly limited. For example, it is preferably 0.5% or more and 15% or less, more preferably 1% or more and 10%, relative to the total mass of the negative electrode active material, the conductive aid and the binder. Below, it is more preferable that it is 1.5% or more and 5% or less.
  • the impedance of an electrode becomes too large, and there exists a tendency for an input-output characteristic to be inferior.
  • the ratio of the active material is relatively reduced, it tends to be difficult to obtain a high capacity during charge and discharge of the battery.
  • the amount of the binder is too small, the electron conductivity of the electrode is improved, but it tends to generate heat rapidly during a short circuit. In addition, there is a tendency that cycle life characteristics due to insufficient adhesive force and aggregation due to insufficient viscosity of the slurry tend to occur.
  • the content of the dispersing aid is 0.01% or more with respect to the total mass of the negative electrode active material, the binder, and the conductive aid, the active material and the like can be efficiently and effectively finely dispersed when the active material dispersion liquid is prepared.
  • the content of 5.0% or less is sufficient.
  • the positive electrode sheet can be obtained, for example, by the following method: coating a current collector with a positive electrode active material, a binder, a solvent, and a conductive auxiliary agent and a dispersing auxiliary agent added as needed, and mixed, After pre-drying, heat treatment is performed.
  • the binder of this application may be used, and a well-known thing may be used as a binder of the positive electrode of a lithium ion battery.
  • a binder of the positive electrode of a lithium ion battery From the viewpoint of oxidation resistance, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), and the like can be preferably exemplified.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • the preparation of the slurry can be performed, for example, in the same manner as the preparation of the slurry in the negative electrode.
  • the solid content of the slurry is not particularly limited, but, for example, when the total mass of the slurry is 100%, it is preferably 20% or more and 80% or less, more preferably 30% or more and 70% or less.
  • the slurry having the above-mentioned solid content concentration is used, handling is easy, and cracks can hardly be generated in the electrode active material layer when the electrode is dried.
  • Electrode drying is not particularly limited as long as it is a method that can volatilize and remove the solvent in the slurry.
  • a method of performing heat treatment in an atmosphere with a temperature of 50° C. to 300° C. in the air is exemplified.
  • the drying method includes natural drying, warm air drying, far-infrared radiation drying, and the like, and is not particularly limited.
  • the content of the conduction aid with respect to the total mass of the positive electrode active material, the conduction aid and the binder, it is preferably about 0.1% to about 30%, more preferably about 0.5% to about 20%, further preferably 1% to 10%. That is, the conductive auxiliary agent is preferably contained in an amount of 30% or less and at least 0.1% or more.
  • the content of the conductive auxiliary agent exceeds 30%, the proportion of the active material is relatively reduced, so it is difficult to obtain a high capacity during the charging and discharging of the battery; carbon is hydrophobic, so it is difficult to uniformly disperse, resulting in agglomeration of the active material; and the active material
  • the conductive aid is small, the surface area increases, the amount of the binder to be used increases, and the like, which is not preferable from these points of view. By containing 0.1% or more, the input-output characteristics of the battery are improved.
  • the content of the binder is not particularly limited. For example, it is preferably 0.5% or more and 30% or less, more preferably 1% or more and 20% or less, based on the total mass of the positive electrode active material, the conductive aid and the binder. It is preferably 1.5% or more and 10% or less.
  • the impedance of an electrode becomes too large, and there exists a tendency for an input-output characteristic to be inferior.
  • the ratio of the active material is relatively reduced, and therefore, it is difficult to obtain a high capacity during charging and discharging of the battery. Conversely, when the amount is too small, cycle life characteristics due to insufficient adhesive force and aggregation due to insufficient viscosity of the slurry are likely to occur.
  • the content of the dispersing aid is 0.01% or more with respect to the total mass of the active material, the binder, and the conductive aid, the active material and the like can be efficiently and effectively dispersed when the active material dispersion liquid is prepared.
  • the content is usually 5.0% or less.
  • the electrode pole piece (positive pole piece or negative pole piece) obtained above is overlapped with the counter electrode pole piece (negative pole piece or positive pole piece) through the separator, and sealed in the state of being immersed in the electrolyte to form lithium Ion cells, in particular, can be manufactured as laminated cells or as wound cells.
  • the separator is not particularly limited, and various separators known in the art can be used.
  • the shape of the separator includes, for example, a microporous membrane, a woven fabric, a nonwoven fabric, and a powder compact. Among them, a microporous membrane and a nonwoven fabric are preferred from the viewpoint of high output characteristics and high strength of the separator.
  • the base material of the separator is not particularly limited as long as it has resistance to the electrolytic solution, but it is preferable to include a heat-resistant polymer base material that does not melt due to local heat generation during a short circuit.
  • polyethylene polyethylene
  • PP polypropylene
  • PET polyamide
  • PE polyamide
  • PA polyamide
  • PA polyamide
  • PA polyamide
  • PET polyamide
  • PE polyamide
  • PE polyamide
  • PET polyamide
  • PE polyamide
  • PE polyamide
  • PET polyamide
  • PE polyamide
  • PET polyamide
  • PE polyamide
  • PET polyamide
  • PE polyamide
  • PET polyamide
  • PE polyamide
  • PET polyamideimide
  • PET polyethylene terephthalate
  • Resins such as ethylene-propylene copolymer
  • the separator is composed of a polymer having a melting point or glass transition temperature of 140°C or higher (preferably higher than 140°C, more preferably 145°C or higher, further preferably 150°C or higher). isolation film.
  • a separator composed of a polymer having a melting point of 140°C or higher preferably higher than 140°C, more preferably 145°C or higher, further preferably 150°C or higher is preferable.
  • polymers having a melting point or glass transition temperature of 140° C. or higher include, for example, aramid, polyimide, and polyamide amide.
  • aramid polyimide
  • polyamide amide examples include, for example, aramid, polyimide, and polyamide amide.
  • the electrolyte of the lithium ion battery of the present application may be a solid electrolyte or an ionic liquid, and is preferably an electrolyte solution obtained by mixing an electrolyte and a solvent.
  • the electrolyte salt thereof is not particularly limited as long as it is an electrolyte salt used in a lithium ion battery, but a lithium salt is preferable.
  • a lithium salt is preferable.
  • the lithium salt specifically, at least one selected from the group consisting of lithium hexafluorophosphate, lithium perchlorate, lithium tetrafluoroborate, lithium trifluoromethanesulfonate, and lithium trifluoromethanesulfonate imide can be used.
  • diethyl ether, sulfolane, methyl sulfolane, nitromethane, N,N-dimethylformamide, dimethyl sulfoxide particularly preferably a mixture of ethylene carbonate and diethyl carbonate, Propylene carbonate or gamma-butyrolactone.
  • the mixing ratio of the mixture of the said ethylene carbonate and diethyl carbonate can be adjusted arbitrarily in the range of 10-90
  • VC vinylene carbonate
  • the mass content of VC in the electrolytic solution is preferably 0.1% to 5%, more preferably 0.5% to 2%, and further preferably 0.75% to 1.5%.
  • the lithium ion battery of the present invention Since the lithium ion battery of the present invention has good safety, it can be used as a power source of various electronic devices (including vehicles using electricity).
  • the electronic device a home electronic device, an electric vehicle, a personal computer, and the like can be cited.
  • the present application is explained by taking a lithium ion battery as an example of an electrochemical device, but the electrochemical device of the present application is not limited to a lithium ion battery.
  • FTIR Fast Fourier transform infrared spectroscopy
  • a general-purpose instrument such as Fourier transform infrared spectrometer
  • the molar mass ratio of the monomer is the propylene/second monomer characteristic peak area ratio, wherein A1165 represents the propylene characteristic peak area.
  • a certain amount of binder sample for example, 5 mg was heated to 180 °C at a certain speed (for example, 5 °C/min), kept at a constant temperature for 2 minutes, and then at a certain speed (for example, 5 °C/min). °C/min) to lower the temperature to 80 °C, and obtain the crystallinity obtained by the DSC method from the following formula:
  • ⁇ H m and ⁇ H m 0 are the heat of fusion of the sample and the heat of fusion of the fully crystalline sample, respectively.
  • the particle size D50 of the copolymer was measured by a laser particle sizer.
  • Adopt DSC method take 5 mg of binder sample, heat it up to 150 °C at a certain speed (for example, 5 °C/min), collect DSC curve, and determine the softening point of the copolymer from the obtained DSC curve.
  • the dispersion liquid containing the binder at 80°C to form an adhesive film with a thickness of about 2 mm to 3 mm, then cut the adhesive film to obtain an adhesive film sample with a mass of 1 g to 2 g, and weigh the adhesive before infiltrating the electrolyte.
  • the mass of the film sample is recorded as W1, and the film sample is immersed in the electrolyte for 7 days at 60 ° C (wherein the mass ratio of the electrolyte mass to the film sample is 50:1, and the mass ratio of each component of the electrolyte is carbonic acid.
  • W1 represents the quality of the adhesive film sample before immersion in the electrolyte
  • W2 represents the quality of the adhesive film sample after immersion in the electrolyte
  • the test temperature is 25°C, charge at 0.5C constant current to 4.45V, and charge at constant voltage to 0.025C, after standing for 5 minutes, discharge at 0.5C to 3.0V, the capacity obtained in this step is the initial capacity, and then use 0.5C After 50 cycles of charging/discharging at 0.5C, the ratio of the capacity of the lithium-ion battery to the initial capacity was calculated.
  • the prepared propylene-ethylene copolymer is mixed with emulsifier, defoamer and deionized water according to 40%: 0.2%: 0.009%: 59.791% to obtain a binder.
  • the positive active material lithium cobalt oxide (LiCoO 2 ), conductive carbon black (Super P), and a binder are mixed so that the mass ratio of lithium cobalt oxide, conductive carbon black, and binder is 97.5:1.0:1.5, and then NMP is added.
  • As a solvent it was prepared into a slurry with a solid content of 75%, and stirred uniformly. The slurry was evenly coated on one surface of an aluminum foil with a thickness of 12 ⁇ m, and dried at 90° C. to obtain a positive pole piece with a coating thickness of 100 ⁇ m, and then the above steps were repeated on the other surface of the positive pole piece, A positive electrode sheet coated with a positive electrode active material layer on both sides was obtained. Cut the positive pole piece into a sheet with a size of 74mm ⁇ 867mm for use.
  • the negative electrode active material graphite, silicon oxycarbon ceramic material (SiOC), conductive carbon black, and binder were mixed so that the mass ratio of graphite, SiOC, and binder was 70:15:5:10, and then deionized water was added as a
  • the solvent is prepared into a slurry with a solid content of 70%, stirred evenly, and the slurry is evenly coated on one surface of a copper foil with a thickness of 10 ⁇ m, and dried at 110 ° C to obtain a single sheet with a coating thickness of 150 ⁇ m.
  • a negative electrode piece with a negative electrode active material layer is coated on its surface, and then the above coating steps are repeated on the other surface of the negative electrode piece to obtain a negative electrode piece coated with a negative electrode active material layer on both sides. Cut the negative pole piece into a sheet with a size of 74mm ⁇ 867mm for use.
  • ethylene carbonate (EC), ethyl methyl carbonate (EMC) and diethyl carbonate (DEC) were mixed in a mass ratio of 30:50:20, and then lithium hexafluorophosphate ( LiPF 6 ) was dissolved and mixed uniformly to obtain an electrolyte solution, wherein the molar concentration of LiPF 6 in the electrolyte solution was 1.15 mol/L.
  • Electrode assembly is placed in the outer package, the prepared electrolyte is injected and packaged, and the lithium ion battery is obtained through the process of formation, degassing, and trimming.
  • (1-1) copolymer As shown in Table 1, the types of monomers were changed to propylene and butadiene, the molar ratio of monomers was 30:70, and the copolymer and emulsifier in the binder were changed. , the mass ratio of the defoaming agent and deionized water was 40%: 2%: 0.05%: 57.95%, except that it was carried out in the same manner as in Example 1.
  • (1-1) copolymer As shown in Table 1, the types of monomers were changed to propylene and butadiene, the molar ratio of monomers was 60:40, and the copolymer and emulsifier in the binder were changed. , the mass ratio of the defoaming agent and deionized water was 40%: 2%: 0.05%: 57.95%, except that it was carried out in the same manner as in Example 1.
  • the types of monomers were changed to propylene and butadiene, the molar ratio of the monomers was 90:10, and the copolymer and emulsifier in the binder were changed.
  • the mass ratio of the defoaming agent and deionized water was 40%: 2%: 0.05%: 57.95%, except that it was carried out in the same manner as in Example 1.
  • the prepared propylene-ethyl acrylate copolymer is mixed with an emulsifier, a defoaming agent and deionized water in a mass ratio of 40%: 0.2%: 0.009%: 59.791% to obtain a binder.
  • the positive active material lithium cobalt oxide, conductive carbon black, and a binder are mixed so that the mass ratio of lithium cobalt oxide, conductive carbon black, and binder is 97.5:1.0:1.5, and then NMP is added as a solvent to prepare a solid content of 97.5:1.0:1.5. 75% slurry and stir well.
  • the slurry was evenly coated on one surface of an aluminum foil with a thickness of 12 ⁇ m, and dried at 90° C. to obtain a positive pole piece with a coating thickness of 100 ⁇ m, and then the above steps were repeated on the other surface of the positive pole piece, A positive electrode sheet coated with positive electrode active material layers on both sides was obtained. Cut the positive pole piece into a sheet with a size of 74mm ⁇ 867mm for use.
  • the prepared propylene-ethylene-ethyl acrylate copolymer is mixed with an emulsifier, a defoaming agent and deionized water in a mass ratio of 40%: 2%: 0.05%: 57.95% to obtain a binder.
  • Example 2 The same as in Example 2 except that the softening point of the copolymer was 73°C.
  • Example 2 The same procedure as in Example 2 was performed except that the D50 of the copolymer was 0.5 ⁇ m.
  • Example 2 It was the same as Example 2 except that the D50 of the copolymer was 3.5 ⁇ m.
  • Example 2 It was the same as Example 2 except that the D50 of the copolymer was 5 ⁇ m.
  • a PE porous polymer film with a thickness of 15 ⁇ m was selected as the separator, and the adhesive of Example 1 was respectively coated on both sides of the separator, and the thickness of the coating on each side was 3 ⁇ m.
  • the membrane and the negative pole piece are stacked in sequence, so that the separator is in the middle of the positive and negative electrodes to play a role of isolation, and the electrode assembly is obtained by winding.
  • the electrode assembly is placed in the outer package, the prepared electrolyte is injected and packaged, and the lithium ion battery is obtained through the process of formation, degassing, and trimming.
  • the softening point of the copolymer usually affects its heat resistance; the weight average molecular weight usually affects its bonding performance and electrolyte resistance; the crystallinity usually affects the regularity of its molecular structure; D50 usually affects its specific surface area; The content in the binder usually affects the content of the active ingredients in the binder. As can be seen from Examples 13-27, as long as the above conditions are within the scope of the application, the binder of the application has low swelling degree and high cohesive force, Further, the lithium ion battery has high cycle performance, and the object of the invention of the present application can be achieved.
  • Example 28 and Example 2 it can be seen from Example 28 and Example 2 that after the adhesive is applied on both sides of the separator, the adhesive force after hot pressing and the adhesive force after soaking in the electrolyte are further improved, and the cycle performance of the lithium ion battery is basically unchanged.

Abstract

本申请提供了一种包含共聚物的粘结剂及包含该粘结剂的电化学装置,其中共聚物包括第一单体和第二单体共聚形成的聚合物,第一单体为丙烯单体,其中,共聚物的结晶度为10%至40%,第一单体占共聚物总单体量的30mol%至95mol%,第二单体占共聚物总单体量的5mol%至70mol%。包含本申请粘结剂的电极极片在热压或卷绕后更不容易出现掉粉现象,提高了电极极片质量,并且本申请的粘结剂具有良好的耐电解液性能,从而提高电化学装置的性能。

Description

一种包含共聚物的粘结剂及包含该粘结剂的电化学装置 技术领域
本申请涉及电化学领域,具体涉及一种包含共聚物的粘结剂及包含该粘结剂的电化学装置。
背景技术
锂离子电池具有比能量大、工作电压高、自放电率低、体积小、重量轻等特点,在消费电子领域具有广泛的应用。随着电动汽车和可移动电子设备的高速发展,人们对锂离子电池的性能需求也越来越高,例如需要锂离子电池具有更高的能量密度、安全性、循环性能等。
粘结剂作为一种粘结材料,常用于锂离子电池的极片、隔离膜涂层、封装袋(Pocket袋)与极耳封装处等部位。现有的粘结剂通常包括水溶型粘结剂和溶剂型粘结剂,但是现有粘结剂普遍存在硬脆问题,导致粘结性能下降,例如当应用于极片时,在干燥后压实和卷绕过程中容易造成开片和掉粉,影响极片质量。并且,现有粘结剂的耐电解液性能较差,在浸泡电解液后粘结性能下降明显,影响锂离子电池的性能。
发明内容
本申请的目的在于提供一种包含共聚物的粘结剂及包含该粘结剂的电化学装置,以提高粘结剂的粘结性能。具体技术方案如下:
本申请的第一方面提供了一种包含共聚物的粘结剂,所述共聚物包括第一单体和第二单体共聚形成的聚合物,所述第一单体为丙烯单体,其中,所述共聚物的结晶度为10%至40%,所述第一单体占所述共聚物总单体量的30mol%至95mol%,所述第二单体占所述共聚物总单体量的5mol%至70mol%。
在本申请的一种实施方案中,所述第二单体选自乙烯、丁二烯、异戊二烯、苯乙烯、丙烯腈、环氧乙烷、环氧丙烷、丙烯酸酯、醋酸乙烯酯己内酯和马来酸酐中的至少一种。
在本申请的一种实施方案中,所述共聚物具有以下特征的至少一个:
所述共聚物的软化点为70℃至90℃;
所述共聚物的重均分子量为500至1000000;
所述共聚物的D50为0.5μm至5μm。
在本申请的一种实施方案中,所述粘结剂还包括乳化剂、消泡剂和水,其中,所述共 聚物占所述粘结剂总质量的质量百分比为10%至50%,所述乳化剂占所述粘结剂总质量的质量百分比为0.1%至5%,所述消泡剂占所述粘结剂总质量的质量百分比为0.0001%至0.1%,余量为水。
在本申请的一种实施方案中,所述乳化剂包括阴离子型乳化剂、阳离子型乳化剂或非离子型乳化剂中的至少一种;所述阴离子型乳化剂包括脂肪酸皂、烷基硫酸盐、烷基苯磺酸盐或磷酸盐中的至少一种,所述阳离子型乳化剂包括N-十二烷基二甲胺、胺衍生物或季铵盐中的至少一种,所述非离子型乳化剂包括聚氧乙烯醚、聚氧丙烯醚、环氧乙烷、环氧丙烷嵌段共聚物、多元醇脂肪酸酯、聚乙烯醇中的至少一种。
在本申请的一种实施方案中,所述消泡剂包括醇、脂肪酸、脂肪酸酯、磷酸酯、矿物油、酰胺、环氧乙烷、环氧丙烷的共聚物、聚二甲基硅氧烷、聚醚链段或聚硅氧烷链段改性接枝的硅醚共聚物中的至少一种。
在本申请的一种实施方案中,所述粘结剂的粘度为10mPa·S至5000mPa·S。
在本申请的一种实施方案中,所述粘结剂在电解液中的溶胀度为0至55%。
本申请的第二方面提供了一种电化学装置,包括电极极片,其中,所述电极极片包含如上述第一方面所述的粘结剂。
在本申请的一种实施方案中,所述电极极片包括电极活性材料层和集流体,所述电极活性材料层与所述集流体之间的粘结力为500N/m至1000N/m。
本申请的第三方面提供了一种电子装置,包括第二方面所述的电化学装置。
本申请提供的一种包含共聚物的粘结剂及包含该粘结剂的电化学装置,与现有的粘结剂相比,本申请的粘结剂包括第一单体和第二单体共聚形成的聚合物,由于该共聚物的结晶度为10%至40%,且第一单体占共聚物总单体量的30mol%至95mol%,第二单体占共聚物总单体量的5mol%至70mol%,通过控制共聚物的结晶度以及两种单体间的比例,使得包含上述共聚物的粘结剂软化点适当、结晶性良好,从而使本申请的粘结剂具有更高的粘结力,更有利于材料加工,因此包含本申请粘结剂的电极极片在热压或卷绕后更不容易出现掉粉现象,提高了电极极片质量;并且,本申请的粘结剂具有良好的耐电解液性能,从而提高电化学装置的性能。
本申请中,术语“D50”表示颗粒累积分布为50%的粒径,即小于此粒径的颗粒体积含量占全部颗粒的50%。
术语“软化点”表示物质软化的温度。
术语“溶胀度”表示聚合物分子吸附溶剂分子达到溶胀平衡时,溶胀后的体积与溶胀前的体积的比值。
具体实施方式
为使本申请的目的、技术方案、及优点更加清楚明白,以下参照附图和实施例,对本申请进一步详细说明。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他技术方案,都属于本申请保护的范围。
本申请提供一种包含共聚物的粘结剂,所述共聚物包括第一单体和第二单体共聚形成的聚合物,所述第一单体为丙烯单体,其中,所述共聚物的结晶度为10%至40%,所述第一单体占所述共聚物总单体量的30mol%至95mol%,所述第二单体占所述共聚物总单体量的5mol%至70mol%。
本申请的粘结剂可以用于非水系锂离子电池,特别是可以用于制备锂离子电池的电极浆料组合物。采用本申请的粘结剂制备锂离子电池的电极浆料组合物,可以提高电极活性材料层与集流体之间的粘结力,从而提高电极的循环稳定性等性能。
本申请粘结剂中包含共聚物,形成该共聚物的单体包括两种单体,其中,第一单体选自丙烯单体,第一单体占所述共聚物总单体量的30mol%至95mol%,不限于任何理论,第一单体含量过低时,不利于粘结剂粘结性能的提升;第一单体含量过高时,影响粘结剂的电解液溶胀性能。通过控制本申请第一单体在上述比例内,可以使本申请的粘结剂具有良好的粘结性能、电解液溶胀性和良好的电解液稳定性。优选地,第一单体占所述共聚物总单体量的50mol%至90mol%,更优选地,占60mol%至80mol%。
本申请的共聚物的结晶度为10%至40%,不限于任何理论,共聚物的结晶度过高时,使得材料软化点过高,不利于粘结剂粘结性能的提高及电极极片的加工;共聚物的结晶度过低时,影响粘结剂的电解液溶胀性能及粘结性能。通过控制本申请共聚物的结晶度在上述范围内,可以获得软化点适当、粘结性良好的粘结剂。
优选地,第二单体选自乙烯、丁二烯、异戊二烯、苯乙烯、丙烯腈、环氧乙烷、环氧丙烷、(甲基)丙烯酸酯、醋酸乙烯酯、己内酯中和马来酸酐中的至少一种,第二单体占所述共聚物总单体量的5mol%至70mol%,优选10mol%至50mol%,更优选20mol%至40mol%。不限于任何理论,第二单体含量过低时,不利于粘结剂电解液溶胀性能的提升;第二单体含量过高时,不利于粘结剂粘结性能的提升。通过控制本申请第二单体在上述比 例内,可以使本申请的粘结剂具有良好的粘结性能和电解液溶胀性,从而提高锂离子电池的循环性能。第二单体可以选自上述单体中的一种或多种单体的组合。在选择多种单体的组合提供第二单体时,各单体之间的比例没有具体限定,可以为任意比例,只要满足本申请的要求即可。
优选地,本申请的共聚物的软化点为70℃至90℃,不限于任何理论,共聚物的软化点过高时,不利于加工以及粘结剂粘结性能的提升;共聚物的软化点过低时,则共聚物偏软,影响锂离子电池的循环性能,使锂离子电池的循环保持性能下降。通过控制本申请共聚物的软化点在上述范围内,可以使本申请的粘结剂具有更好地粘结性。特别地,在本申请的粘结剂用于锂离子电池电极极片中时,可以提高电极活性材料与集流体之间的粘结性以及电极活性材料颗粒之间的粘结性,提高锂离子电池的循环稳定性。
优选地,本申请的共聚物的重均分子量为500至1000000,优选为1000至100000,更优选为5000至50000。不限于任何理论,共聚物的重均分子量过低时,使得共聚物偏软,导致共聚物的软化点下降,不利于粘结剂粘结性能的提升;共聚物的重均分子量过高时,导致共聚物的软化点过高,不利于加工以及粘结剂粘结性能的提升。通过控制本申请共聚物的重均分子量在上述范围内,可以获得粘结性良好的粘结剂,从而提高锂离子电池的循环稳定性。
优选地,本申请的共聚物为颗粒状,其颗粒D50为0.5μm至5μm,优选为1μm至3.5μm。不限于任何理论,共聚物的D50过大时,即颗粒度太大时,粘结剂的粘结性不均匀,影响粘结剂的粘结性能;共聚物的D50过小时,共聚物颗粒的比表面积增大,影响锂离子电池动力学性能。通过控制本申请共聚物颗粒尺寸在上述范围内,可以在电极活性材料中更好地起到粘结作用。
本申请的共聚物的制备方法没有特别限制,可以采用本领域技术人员公知的制备方法,根据所采用的单体种类不同进行选择,例如溶液法、浆液法、气相法等等。
例如,当第二单体选自乙烯单体时,可以采用以下方法:
将主催化剂和助催化剂分别溶解在己烷中,得到主催化剂的己烷溶液和助催化剂的己烷溶液,然后将己烷加入反应釜,再在氮气保护下将主催化剂浆液、助催化剂浆液加入反应釜,然后通入丙烯和乙烯,升温至50℃至60℃,反应过程中维持反应釜中的压力为0.3MPa至0.5MPa,反应0.5h至2h后,用酸化乙醇终止反应,所得产物用无水乙醇洗涤3次至5次,过滤后,在50℃至70℃真空干燥箱中干燥3h至5h。
本申请对主催化剂和助催化剂没有特别限制,只要能达到本申请发明目的即可,例如,使用茂金属催化体系,其中主催化剂包括茂金属配合物(例如二茂铁或其衍生物),助催化剂包括甲基铝氧烷;并且本申请对主催化剂和助催化剂的添加量没有特别限制,只要能达到本申请发明目的即可。另外,反应釜在反应前可以先真空抽排,再用氮气置换反应釜3次至5次,使反应釜洁净。
当第二单体选自丁二烯时,除将上述丙烯-乙烯共聚物制备方法中的乙烯替换为丁二烯以外,其余与上述丙烯-乙烯共聚物制备方法相同。
当第二单体选自丙烯酸酯时,除将上述丙烯-乙烯共聚物制备方法中的乙烯替换为丙烯酸酯,在氮气保护下将己烷、主催化剂浆液、助催化剂浆液加入反应釜,先加入丙烯酸酯再通入丙烯以外,其余与上述丙烯-乙烯共聚物制备方法相同。
其中,甲基丙烯酸酯单体可以选自丙烯酸甲酯、甲基丙烯酸甲酯、丙烯酸乙酯、甲基丙烯酸乙酯、丙烯酸丁酯、丙烯酸异辛酯、丙烯酸羟乙酯中的任一种。
对于其他单体的共聚,本申请中不一一列举,可以采用本领域公知的制备方法。
本申请的粘结剂可以直接用于制备非水系锂离子电池电极浆料组合物,例如将本申请的粘结剂直接加入电极浆料组合物组中作为粘结剂,或者与现有技术的粘结剂组合使用,加入电极浆料组合物中作为粘结剂使用。
在本申请的一种实施方式中,本申请的粘结剂还包括乳化剂、消泡剂和水,其中,所述共聚物占粘结剂总质量的质量百分比为10%至50%,所述乳化剂占粘结剂总质量的质量百分比为0.1%至5%,所述消泡剂占粘结剂总质量的质量百分比为0.0001%至0.1%,余量为水。
优选地,所述乳化剂选自阴离子型乳化剂、阳离子型乳化剂或非离子型乳化剂中的至少一种;所述阴离子型乳化剂包括脂肪酸皂、烷基硫酸盐、烷基苯磺酸盐或磷酸盐中的至少一种,所述阳离子型乳化剂包括N-十二烷基二甲胺、胺衍生物或季铵盐中的至少一种,所述非离子型乳化剂包括聚氧乙烯醚、聚氧丙烯醚、环氧乙烷、环氧丙烷嵌段共聚物、多元醇脂肪酸酯、聚乙烯醇中的至少一种。
优选地,所述消泡剂包括醇、脂肪酸、脂肪酸酯、磷酸酯、矿物油、酰胺、环氧乙烷、环氧丙烷的共聚物、聚二甲基硅氧烷、聚醚链段或聚硅氧烷链段改性接枝的硅醚共聚物中的至少一种。
从制备和储存和使用的方便角度出发,本申请的粘结剂的粘度优选为10mPa·S至 5000mPa·S,更优选为200mPa·S至2000mPa·S。
在非水系锂离子电池中,粘结剂在电解液中的溶胀度会影响到电池的性能。粘结剂在电解液中的溶胀度是指粘结剂在干燥成膜后浸渍在电解液中吸收电解液或电解液中的溶剂而膨胀的性能,具体表示粘结剂中的聚合物分子吸附溶剂分子达到溶胀平衡时,溶胀后的体积与溶胀前的体积的比值。粘结剂溶胀度过大,可能导致电极活性材料粘结性降低,降低锂离子电池的循环性能。优选地,本申请的粘结剂在电解液中的溶胀度为0至55%。
本申请还提供一种电化学装置,其包括电极极片,所述电极极片包含上述任一实施方式中所述的粘结剂。
电极极片包括电极活性材料层和集流体,电极活性材料层通常由电极浆料组合物涂覆到集流体上得到。本申请的一种实施方案中,电极活性材料层与集流体之间的粘结力为500N/m至1000N/m,使得电极活性材料层与集流体之间具有很高的粘结性能,电极极片在热压或卷绕后更不容易出现掉粉现象,提高了电极极片质量。
本申请的电极浆料组合物包括正极浆料组合物和负极浆料组合物。正极浆料组合物和负极浆料组合物分别包含正极活性材料和负极活性材料。
作为正极活性材料,本申请没有特别限制,可以使用在本技术领域中使用的正极活性材料。例如,可适当使用磷酸铁锂(LiFePO 4)、磷酸锰锂(LiMnPO 4)、磷酸钴锂(LiCoPO 4)、焦磷酸铁(Li 2FeP 2O 7)、钴酸锂复合氧化物(LiCoO 2)、尖晶石型锰酸锂复合氧化物(LiMn 2O 4)、锰酸锂复合氧化物(LiMnO 2)、镍酸锂复合氧化物(LiNiO 2)、铌酸锂复合氧化物(LiNbO 2)、铁酸锂复合氧化物(LiFeO 2)、镁酸锂复合氧化物(LiMgO 2)、钙酸锂复合氧化物(LiCaO 2)、铜酸锂复合氧化物(LiCuO 2)、锌酸锂复合氧化物(LiZnO 2)、钼酸锂复合氧化物(LiMoO 2)、钽酸锂复合氧化物(LiTaO 2)、钨酸锂复合氧化物(LiWO 2)、锂-镍-钴-铝复合氧化物(LiNi 0.8Co 0.15Al 0.05O 2)、锂-镍-钴-锰复合氧化物(LiNi xCo yMn 1-x-yO 2,其中0<x<1、0<y<1、x+y<1)、Li过量系镍-钴-锰复合氧化物、氧化锰镍(LiNi 0.5Mn 1.5O 4)、氧化锰(MnO 2)、钒类氧化物、硫类氧化物、硅酸盐类氧化物等。它们可以单独使用一种或组合使用两种以上。
作为负极活性材料,本申请没有特别限定,可以使用能够吸纳和释放锂离子的材料。可以列举例如选自由Li、Na、C(例如石墨等)、Mg、Al、Si、P、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Y、Zr、Nb、Mo、Pd、Ag、Cd、In、Sn、Sb、W、Pb或Bi中的至少一种以上元素或这些元素的合金、氧化物、硫属化物或卤化物等。可以使用这些材料的单质、合金、化合物、固溶体中的任一种。需要说明的是,负极活性材料 可以单独使用一种或组合使用两种以上。
从循环寿命特性的观点出发,优选为碳。碳可以列举石墨、硬碳、软碳等碳材料。另外,也可以使用将这些碳材料与其它能够可逆地吸纳/释放锂的材料进行混合或复合化而成的材料。具体而言,如果使用包含将石墨与Si复合化而成的含硅材料、将硬碳与Sn复合化而成的含锡材料的复合活性材料等,则能够更理想地发挥本实施方式的效果。
此外,从提高电池能量密度的观点出发,优选使用硅基材料或硅基材料与其他材料的复合材料,例如硅、硅氧化合物、硅碳复合材料等负极活性材料。
本申请的电极浆料组合物还可以包含导电助剂,导电助剂只要具有电子导电性就没有特别限定,优选碳粉末。作为碳粉末,可以列举例如乙炔黑(AB)、科琴黑(KB)、石墨、碳纤维、碳管、石墨烯、非晶碳、硬碳、软碳、玻璃碳、碳纳米纤维、碳纳米管(CNT)等碳材料。它们可以单独使用一种,或者可以组合使用两种以上。其中,从提高导电性的观点出发,优选碳纳米纤维和碳纳米管,更优选碳纳米管。使用碳纳米管作为导电助剂时,关于其含量,没有特别限制,例如,优选为全部导电助剂总质量的30%至100%,更优选为40%至100%。碳纳米管的含量小于30%时,有时在电极活性材料与集流体之间不能确保充分的导电路径,特别是在高速充放电中不能形成充分的导电路径,因此不优选。需要说明的是,碳纳米纤维是指粗细为几nm至几百nm的纤维状材料。将具有中空结构的碳纳米纤维特别地称为碳纳米管,存在单层碳纳米管、多层碳纳米管等种类。它们通过气相沉积法、电弧放电法、激光蒸发法等多种方法来制造,其方法没有限制。
本申请的电极浆料组合物还可以根据需要包含分散助剂。通过含有分散助剂,可以提高电极浆料组合物中的活性材料、导电助剂的分散性。作为分散助剂,优选为可溶于pH7以上且13以下的水溶液中的、分子量为100000以下的有机酸。这些有机酸中,优选含有羧基和选自羟基、氨基或亚氨基中的至少一者。虽然没有特别限定,但作为具体例,可以列举乳酸、酒石酸、柠檬酸、苹果酸、乙醇酸、丙醇二酸、葡萄糖醛酸、腐殖酸等具有羧基和羟基的化合物类;甘氨酸、丙氨酸、苯丙氨酸、4-氨基丁酸、亮氨酸、异亮氨酸、赖氨酸等具有羧基和氨基的化合物类;谷氨酸、天冬氨酸等具有多个羧基和氨基的化合物类;脯氨酸、3-羟基脯氨酸、4-羟基脯氨酸、哌可酸等具有羧基和亚氨基的化合物类;谷氨酰胺、天冬酰胺、半胱氨酸、组氨酸、色氨酸等具有羧基和除羟基及氨基以外的官能团的化合物类。其中,从容易获得的观点出发,优选葡萄糖醛酸、腐殖酸、甘氨酸、天冬氨酸、谷氨酸。
作为该分散助剂的分子量,从为水溶性的观点出发,分子量优选为100000以下。分子量超过100000时,有可能分子的疏水性变强,使得浆料的均匀性受损。
本申请还提供一种电极极片,所述电极极片可以使用本技术领域中使用的方法来制备。例如可以通过在集流体上设置电极活性材料层(为了描述方便起见,本申请中将在集流体上涂覆的电极浆料组合物经干燥后所得的材料层称为电极活性材料层)来制备。更具体而言,例如可以通过将电极浆料组合物涂布于集流体上(以及根据需要进行干燥)来制备。此外,可以利用压制机(例如辊压机)使电极活性材料层紧密接合于集流体上。电极极片是用于将化学能转换为电能的构件。伴随充放电而发生电极极片中的活性材料的氧化反应、还原反应。负极极片是发生在充电时将锂离子吸纳或锂化、在放电时将锂释放或脱锂化的反应的电极极片。正极极片是发生在充电时将锂离子释放或脱锂化、在放电时将锂吸藏或锂化的反应的电极极片。
在本申请中,负极极片的集流体只要是具有电子传导性且在所保持的负极活性材料中可通电的材料就没有特别限定。例如可使用C、Cu、Ni、Fe、V、Nb、Ti、Cr、Mo、Ru、Rh、Ta、W、Os、Ir、Pt、Au、AI等导电性物质、含有这些导电性物质中的两种以上的合金(例如不锈钢)。或者,也可以为在导电性物质上镀覆不同导电性物质而成的材料(例如在Fe上镀覆Cu而成的材料)。从导电性高、电解液中的稳定性和抗氧化性良好的观点出发,作为集流体,优选Cu、Ni、不锈钢等,进一步从材料成本的观点出发,优选Cu、Ni。
正极极片的集流体只要是具有电子传导性且在所保持的正极材料中可通电的材料就没有特别限定。例如可使用C、Ti、Cr、Mo、Ru、Rh、Ta、W、Os、Ir、Pt、Au、Al等导电性物质、含有这些导电性物质中的两种以上的合金(例如不锈钢)。从导电性高、电解液中的稳定性和抗氧化性良好的观点出发,作为集流体,优选C、Al、不锈钢等,进一步从材料成本的观点出发,优选Al。
虽然没有特别限制,但集流体的形状优选为板状或箔状,可以优选例示出由上述材料构成的板或箔。
在本申请中,负极极片例如可以通过如下方法得到:在集流体上涂布将负极活性材料、粘结剂、水和根据需要添加的导电助剂、分散助剂混合而成的物质,进行预干燥后,进行热处理。
制作浆料时的粘结剂可以预先分散在水中使用,也可以预先将活性材料、导电助剂、粘结剂、分散助剂的粉末混合,然后添加水进行混合。
水被用作分散粘结剂并使活性材料、导电助剂分散的介质。浆料中,为了提高活性材料、导电助剂的分散性,优选添加分散助剂。
浆料的固体成分(负极活性材料、粘结剂和根据需要添加的导电助剂、分散助剂)的浓度没有特别限定,例如,将浆料总质量设为100%时,该浓度优选为20%以上且80%以下,更优选为30%以上且70%以下。采用上述固体成分浓度的浆料,则操作容易,电极极片干燥时不易在电极活性材料层中产生裂纹。
对于电极极片干燥而言,只要是能够使浆料内的溶剂挥发除去的方法就没有特别限定,例如可以列举在大气中50℃至300℃的温度气氛下进行热处理的方法。干燥方法有自然干燥、暖风干燥、加热干燥、远红外线辐射干燥等,可以使用任一种方法。
负极活性材料层优选在厚度为20μm至300μm的范围内形成。厚度为20μm以上时,除了电极容量密度增大以外,还具有短路时的电池的温度上升被特别抑制的倾向。厚度为300μm以下时,电阻率不高,充放电不耗费时间,并且,体积变化不易增大,因此,寿命特性变得理想,可理想地发挥充分的电池性能。
关于导电助剂的含量,相对于活性材料、导电助剂和粘结剂的总质量,优选为5%以下(即大于0%且5%以下),优选为约0.01%至约5%,更优选为约0.1%至约4%,进一步优选为0.5%至3%。即,导电助剂根据需要含有,其量优选为5%以下。导电助剂的含量超过5%时,具有电池短路时的电池的温度上升变高的倾向。另外,活性材料的比例相对减少,因此,在电池的充放电时难以得到高容量;碳是憎水的因此难以均匀分散,因而导致活性材料的凝集;与活性材料相比,导电助剂的尺寸较小,因此,导电助剂的含量增多时,作为活性材料和传导助剂整体的表面积增大,因此所使用的粘结剂的量增加等。
关于粘结剂的含量,也没有特别限定,例如,相对于负极活性材料、导电助剂和粘结剂的总质量,优选为0.5%以上且15%以下,更优选为1%以上且10%以下,进一步优选为1.5%以上且5%以下。粘结剂过多时,具有电极的阻抗变得过大而输入输出特性差的倾向。另外,活性材料的比例相对减少,因此,具有在电池的充放电时难以得到高容量的倾向。相反,粘结剂过少时,具有电极的电子导电性提高、但短路时容易急剧地发热的倾向。另外,具有如下倾向:容易产生因粘结力不充分引起的循环寿命特性、因浆料的粘性不足引起的凝集。
关于分散助剂的含量,相对于负极活性材料、粘结剂、导电助剂的总质量为0.01%以上时,在制备活性材料分散液时能够使活性材料等高效且有效地微分散。需要说明的是, 为了维持微分散性和分散稳定性,其含量为5.0%以下足以。
在本申请中,正极极片例如可以通过如下方法得到:在集流体上涂布将正极活性材料、粘结剂、溶剂和根据需要添加的导电助剂、分散助剂混合而成的物质,进行预干燥后,进行热处理。
粘结剂可以使用本申请的粘结剂,也可以使用作为锂离子电池正极的粘结剂公知的物质。从抗氧化性的观点出发,可以优选例示出聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)等。浆料的制备例如可以与负极中的浆料制作同样地进行。
浆料的固体成分(正极活性材料、粘结剂以及根据需要添加的导电助剂和分散助剂)没有特别限定,例如,将浆料的总质量设为100%时,优选为20%以上且80%以下,更优选为30%以上且70%以下。采用上述固体成分浓度的浆料,则操作容易,能够在电极干燥时不易在电极活性材料层中产生裂纹。
关于电极干燥,只要是能够使浆料内的溶剂挥发除去的方法就没有特别限定,例如可以列举在大气中50℃至300℃的温度气氛下进行热处理的方法。干燥方法有自然干燥、暖风干燥、远红外线辐射干燥等,没有特别限制。
通过利用远红外线辐射进行干燥,能够使正极活性材料层的截面中的粘结剂浓度不易产生不均匀。在正极中,也可以不存在粘结剂的浓度梯度。在正极中,没有观察到由于粘结剂的浓度梯度而对短路时的发热带来较大变化。
关于导电助剂的含量,相对于正极活性材料、导电助剂和粘结剂的总质量,优选为约0.1%至约30%,更优选为约0.5%至约20%,进一步优选为1%至10%。即,导电助剂优选以30%以下、至少0.1%以上来含有。导电助剂的含量超过30%时,活性材料的比例相对减少,因此,在电池的充放电时难以得到高容量;碳是憎水的因此难以均匀分散,因而导致活性材料的凝集;与活性材料相比,导电助剂较小,因此,表面积增大,所使用的粘结剂的量增加等,从这些方面考虑是不优选的。通过含有0.1%以上,电池的输入输出特性得到改善。
粘结剂的含量没有特别限定,例如,相对于正极活性材料、导电助剂和粘结剂的总质量,优选为0.5%以上且30%以下,更优选为1%以上且20%以下,进一步优选为1.5%以上且10%以下。粘结剂过多时,具有电极的阻抗变得过大而输入输出特性差的倾向。另外,活性材料的比例相对减少,因此,在电池的充放电时难以得到高容量。相反,过少时,容易产生因粘结力不充分引起的循环寿命特性、因浆料的粘性不足引起的凝集。
关于分散助剂的含量,相对于活性材料、粘结剂、导电助剂的总质量为0.01%以上时,在制备活性材料分散液时能够使活性材料等高效且有效地分散。需要说明的是,为了维持分散性和分散稳定性,其含量通常为5.0%以下。
<锂离子电池>
将以上得到的电极极片(正极极片或负极极片)隔着隔离膜与对电极极片(负极极片或正极极片)重叠,在浸渍于电解液内的状态下密闭化,形成锂离子电池,具体地,可以制造为叠片电池或者卷绕电池。
以下,对电池构件要素进行详细说明。
<隔离膜>
在本申请中,对于隔离膜没有特别限制,可以使用本领域公知的各种隔离膜。
关于隔离膜的形状,可以列举例如微多孔膜、织布、无纺布、压粉体,其中,从输出特性和隔离膜的强度高的观点出发,优选微多孔膜、无纺布。
作为隔离膜的基材,只要对电解液具有耐性就没有特别限定,优选包含不因短路时的局部发热而熔毁的耐热性的高分子基材。
作为隔离膜的高分子基材,优选例如聚乙烯(PE)、聚丙烯(PP)、聚酰胺、聚酰胺酰亚胺、聚酰亚胺、聚对苯二甲酸乙二醇酯(PET)、乙烯-丙烯共聚物(PE/PP)等材料(树脂)。
此外,作为本申请中使用的隔离膜,还优选由熔点或玻璃化转变温度为140℃以上(优选高于140℃、更优选为145℃以上、进一步优选为150℃以上)的高分子构成的隔离膜。特别优选由熔点为140℃以上(优选高于140℃、更优选为145℃以上、进一步优选为150℃以上)的高分子构成的隔离膜。
作为熔点或玻璃化转变温度为140℃以上的高分子(具有它们两者的情况下优选熔点为140℃以上的高分子),可以列举例如芳族聚酰胺、聚酰亚胺、聚酰胺酰亚胺、聚砜、聚醚砜、聚醚酰亚胺、聚苯醚(Polyphenylene oxide)、聚苯并咪唑、聚芳酯、聚缩醛、聚苯硫醚、聚醚酮、聚酯、聚萘二甲酸乙二醇酯、乙烯-环烯烃共聚物等。它们可以单独使用一种或者组合使用两种以上。
<电解液>
本申请的锂离子电池的电解质可以为固体电解质、离子性液体,优选为使电解质和溶剂混合而成的电解液。
电解质需要含有锂离子,因此,作为其电解质盐,只要是锂离子电池中使用的电解质 盐就没有特别限定,优选锂盐。作为该锂盐,具体而言,可以使用选自由六氟磷酸锂、高氯酸锂、四氟硼酸锂、三氟甲磺酸锂和三氟甲磺酸酰亚胺锂组成的组中的至少一种。
作为上述电解质的溶剂,可以使用选自由碳酸亚丙酯(PC)、碳酸亚乙酯(EC)、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、γ-丁内酯、2-甲基四氢呋喃、1,3-二氧戊环、4-甲基-1,3-二氧戊环、1,2-二甲氧基乙烷、1,2-二乙氧基乙烷、二***、环丁砜、甲基环丁砜、硝基甲烷、N,N-二甲基甲酰胺、二甲基亚砜组成的组中的至少一种,特别优选碳酸亚乙酯与碳酸二乙酯的混合物、碳酸亚丙酯或者γ-丁内酯。需要说明的是,上述碳酸亚乙酯与碳酸二乙酯的混合物的混合比可以在碳酸亚乙酯和碳酸二乙酯均为10~90体积%的范围内任意地进行调整。
作为电解液的添加剂,优选含有碳酸亚乙烯酯(VC)。通过添加VC,能够降低短路时的发热量。作为电解液中的VC的质量含量,优选为0.1%至5%,更优选为0.5%至2%,进一步优选为0.75%至1.5%。
本申请发明的锂离子电池的安全性良好,因此,能够用作各种电子装置(包括使用电的交通工具)的电源。
作为电子装置,可以列举家用电子装置、电动交通工具、个人计算机等等。
需要说明的是,本申请的具体实施方式中,以锂离子电池作为电化学装置的例子来解释本申请,但是本申请的电化学装置并不仅限于锂离子电池。
实施例
以下,列举制备例、实施例和比较例来说明本申请,但本申请并不限定于此。需要说明的是,只要没有特别说明,本实施例中的“份”和“%”为质量基准。
测试方法和设备:
共聚物中丙烯单体摩尔比测试方法:
采用FTIR(傅里叶变换红外光谱)分析,使用通用型仪器(如傅里叶变换红外光谱仪),取一定质量(例如0.2mg)的共聚物进行红外分析,共聚物中丙烯单体与第二单体的摩尔质量比值即为丙烯/第二单体特征峰面积比值,其中,A1165表示丙烯特征峰面积。
共聚物结晶度的测试:
使用通用型差示扫描量热仪(DSC),将一定量的粘结剂样品(例如5mg)以一定速度(例如5℃/min)升温至180℃,恒温2min,再以一定速度(例如5℃/min)降温至80℃, 由下式求出DSC法所得的结晶度:
结晶度=ΔH m/ΔH m 0
式中,ΔH m、ΔH m 0分别为样品的熔融热和完全结晶样品的熔融热。
共聚物粒径的测试:
通过激光粒度仪测试共聚物的粒径D50。
共聚物软化点的测试:
采用DSC法:取5mg粘结剂样品,以一定速度(例如5℃/min)升温至150℃,采集DSC曲线,由所得DSC曲线确定共聚物软化点。
粘结剂溶胀度的测试:
将包含粘结剂的分散液在80℃条件下烘干后形成厚度约2mm至3mm的胶膜,然后裁切胶膜得到质量为1g至2g的胶膜样品,称量浸润电解液前的胶膜样品的质量,记为W1,在60℃下将胶膜样品浸泡在电解液中7天(其中电解液质量与胶膜样品的质量比为50:1,电解液各成分的质量比为碳酸乙烯酯:碳酸丙烯酯:碳酸二乙酯:丙酸乙酯=30:10:30:30),然后擦干胶膜样品表面的溶剂,称量溶胀后的胶膜样品的质量,记为W2,按以下公式计算胶膜样品的溶胀度△W1:
△W1=(W2-W1)/W1×100%
式中,W1表示浸泡电解液前胶膜样品的质量,W2表示浸泡电解液后胶膜样品的质量。
为保证测试结果的可靠性,测试时可以选择多个厚度尽量一致的样品,每个样品多次测量,例如测量三次,然后求平均值。
粘结剂热压后粘结力的测试:
将热压后的电极极片裁切成一定长度和宽度的长条形(如1×2cm)极片样品,然后将极片样品的铜箔(即集流体)一侧用胶带固定在铝板上,涂布有浆料(即活性材料层)的一侧粘贴在3M胶带上,然后使用万能拉力机将3M胶带以180°角从极片样品表面缓慢撕下,使得活性材料层与集流体分离,记录上述界面分离时的稳定拉力,并以此为基础计算得到粘结剂热压后的粘结力。为保证测试结果的准确性,每个样品可以测试多次,例如3次,然后求平均值。
粘结剂浸泡电解液后粘结力的测试:
将浸泡电解液48h后的电极极片裁切成一定长度和宽度的长条形(如1×2cm)极片样品,然后将极片样品的铜箔(即集流体)一侧用胶带固定在铝板上,涂布有浆料(即活性 材料层)的一侧粘贴在3M胶带上,然后使用万能拉力机将3M胶带以180°角从极片样品表面缓慢撕下,使得活性材料层与集流体分离,记录上述界面分离时的稳定拉力,并以此为基础计算得到粘结剂热压后的粘结力。为保证测试结果的准确性,每个样品可以测试多次,例如3次,然后求平均值。
锂离子电池循环性能测试:
测试温度为25℃,以0.5C恒流充电到4.45V,恒压充电到0.025C,静置5分钟后以0.5C放电到3.0V,以此步得到的容量为初始容量,再以0.5C充电/0.5C放电循环测试50次后,计算锂离子电池的容量与初始容量的比值。
实施例1
<1-1.共聚物的制备>
在1L不锈钢反应釜中,氮气保护下加入己烷溶剂77份(体积分数)、主催化剂二茂铁的己烷溶液(二茂铁含量70mg/L)19份(体积分数)、助催化剂甲基铝氧烷的己烷溶液(甲基铝氧烷含量10mg/L)4份(体积分数),然后通入乙烯/丙烯混合气,升温至50℃,控制反应釜压力0.4MPa,通过调整乙烯/丙烯的加入量使第一、第二单体间的摩尔比为30:70,反应1h后,用酸化乙醇终止反应,所得产物用无水乙醇洗涤3次,过滤后,在60℃真空干燥箱中干燥4h。
<1-2.粘结剂的制备>
将制备的丙烯-乙烯共聚物与乳化剂、消泡剂、去离子水按照40%:0.2%:0.009%:59.791%混合,得到粘结剂。
<1-3.正极极片的制备>
将正极活性材料钴酸锂(LiCoO 2)、导电炭黑(Super P)、粘结剂混合,使得钴酸锂、导电炭黑、粘结剂的质量比为97.5:1.0:1.5,然后加入NMP作为溶剂,调配成固含量为75%的浆料,并搅拌均匀。将浆料均匀涂布在厚度为12μm的铝箔的一个表面上,90℃条件下烘干,得到涂层厚度为100μm的正极极片,然后在该正极极片的另一个表面上重复以上步骤,得到双面涂布有正极活性材料层的正极极片。将正极极片裁切成规格为74mm×867mm的片材待用。
<1-4.负极极片的制备>
将负极活性材料石墨、硅氧碳陶瓷材料(SiOC)、导电炭黑、粘结剂混合,使得石墨、 SiOC、粘结剂的质量比为70:15:5:10,然后加入去离子水作为溶剂,调配成固含量为70%的浆料,并搅拌均匀,将浆料均匀涂布在厚度为10μm的铜箔的一个表面上,110℃条件下烘干,得到涂层厚度为150μm的单面涂布负极活性材料层的负极极片,然后在该负极极片的另一个表面上重复以上涂布步骤,得到双面涂布有负极活性材料层的负极极片。将负极极片裁切成规格为74mm×867mm的片材待用。
<1-5.电解液的制备>
在干燥氩气气氛中,将有机溶剂碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)和碳酸二乙酯(DEC)按照质量比30:50:20混合,然后向有机溶剂中加入六氟磷酸锂(LiPF 6)溶解并混合均匀,得到电解液,其中,LiPF 6在电解液中的摩尔浓度为1.15mol/L。
<1-6.锂离子电池的制备>
以厚度为15μm的PE多孔聚合薄膜作为隔离膜,将上述制备的正极极片、隔离膜、负极极片按顺序叠好,使隔离膜处于正负极中间起到隔离的作用,并卷绕得到电极组件。将电极组件置于外包装中,注入配好的电解液并封装,经过化成,脱气,切边等工艺流程得到锂离子电池。
实施例2
在(1-1)共聚物的制备中,如表1所示改变单体的摩尔比例为60:40,并改变粘结剂中共聚物、乳化剂、消泡剂、去离子水的质量比例为40%:2%:0.05%:57.95%,除此之外,与实施例1同样地操作。
实施例3
在(1-1)共聚物的制备中,如表1所示改变单体的摩尔比例为95:5,并改变粘结剂中共聚物、乳化剂、消泡剂、去离子水的质量比例为40%:4.5%:0.08%:55.42%,除此之外,与实施例1同样地操作。
实施例4
在(1-1)共聚物的制备中,如表1所示改变单体的种类为丙烯和丁二烯,单体的摩尔比例为30:70,并改变粘结剂中共聚物、乳化剂、消泡剂、去离子水的质量比例为40%:2%:0.05%:57.95%,除此之外,与实施例1同样地操作。
实施例5
在(1-1)共聚物的制备中,如表1所示改变单体的种类为丙烯和丁二烯,单体的摩尔比例为60:40,并改变粘结剂中共聚物、乳化剂、消泡剂、去离子水的质量比例为40%: 2%:0.05%:57.95%,除此之外,与实施例1同样地操作。
实施例6
在(1-1)共聚物的制备中,如表1所示改变单体的种类为丙烯和丁二烯,单体的摩尔比例为90:10,并改变粘结剂中共聚物、乳化剂、消泡剂、去离子水的质量比例为40%:2%:0.05%:57.95%,除此之外,与实施例1同样地操作。
实施例7
<2-1.共聚物的制备>
在1L不锈钢反应釜中,氮气保护下加入己烷溶剂77份(体积分数)、主催化剂二茂铁的己烷溶液(二茂铁含量70mg/L)19份(体积分数)、助催化剂甲基铝氧烷的己烷溶液(甲基铝氧烷含量10mg/L)4份(体积分数),然后加入丙烯酸乙酯,再通入丙烯,升温至50℃,控制反应釜压力0.4MPa,通过调整丙烯酸乙酯/丙烯的加入量使第一、第二单体间的摩尔比为30:70,反应1h后,用酸化乙醇终止反应,所得产物用无水乙醇洗涤3次,过滤后,在60℃真空干燥箱中干燥4h。
<2-2.粘结剂的制备>
将制得的丙烯-丙烯酸乙酯共聚物与乳化剂、消泡剂、去离子水按照质量比40%:0.2%:0.009%:59.791%混合,得到粘结剂。
<2-3.正极极片的制备>
将正极活性材料钴酸锂、导电炭黑、粘结剂混合,使得钴酸锂、导电炭黑、粘结剂的质量比为97.5:1.0:1.5,然后加入NMP作为溶剂,调配成固含量为75%的浆料,并搅拌均匀。将浆料均匀涂布在厚度为12μm的铝箔的一个表面上,90℃条件下烘干,得到涂层厚度为100μm的正极极片,然后在该正极极片的另一个表面上重复以上步骤,得到双面涂布有正极活性材料层的正极极片。将正极极片裁切成规格为74mm×867mm的片材待用。
<2-4.负极极片的制备>
将负极活性材料石墨(Graphite)、导电炭黑(Super P)、粘结剂混合,使得石墨、导电炭黑、粘结剂的质量比为96:1.5:2.5,然后加入去离子水作为溶剂,调配成固含量为70%的浆料,并搅拌均匀,将浆料均匀涂布在厚度为10μm的铜箔的一个表面上,110℃条件下烘干,得到涂层厚度为150μm的单面涂布负极活性材料层的负极极片,然后在该负极极片的另一个表面上重复以上涂布步骤,得到双面涂布有负极活性材料层的负极极片。将负极极片裁切成规格为74mm×867mm的片材待用。
<2-5.电解液的制备>
与1-5相同。
<2-6.锂离子电池的制备>
与1-6相同。
实施例8
在(2-1)共聚物的制备中,如表1所示改变单体的摩尔比例为60:40,除此之外,与实施例7同样地操作。
实施例9
在(2-1)共聚物的制备中,如表1所示改变单体的摩尔比例为90:10,除此之外,与实施例7同样地操作。
实施例10
<3-1.共聚物的制备>
在1L不锈钢反应釜中,氮气保护下加入己烷溶剂77份(体积分数)、主催化剂二茂铁的己烷溶液(二茂铁含量70mg/L)19份(体积分数)、助催化剂甲基铝氧烷的己烷溶液(甲基铝氧烷含量10mg/L)4份(体积分数),然后加入丙烯酸乙酯,再通入乙烯和丙烯,升温至50℃,控制反应釜压力0.4MPa,通过调整丙烯酸乙酯/乙烯/丙烯的加入量使第一、第二单体的摩尔比为30:70(其中乙烯单体和丙烯酸乙酯单体等摩尔比),反应1h后,用酸化乙醇终止反应,所得产物用无水乙醇洗涤3次,过滤后,在60℃真空干燥箱中干燥4h。
<3-2.粘结剂的制备>
将制得的丙烯-乙烯-丙烯酸乙酯共聚物与乳化剂、消泡剂、去离子水按照质量比40%:2%:0.05%:57.95%混合,得到粘结剂。
<3-3.正极极片的制备>
与1-3相同。
<3-4.负极极片的制备>
与1-4相同。
<3-5.电解液的制备>
与1-5相同。
<3-6.锂离子电池的制备>
与1-6相同。
实施例11
在(3-1)共聚物的制备中,如表1所示改变单体的摩尔比例为60:40,除此之外,与实施例10同样地操作。
实施例12
在(3-1)共聚物的制备中,如表1所示改变单体的摩尔比例为90:10,除此之外,与实施例10同样地操作。
实施例13
除了共聚物的软化点为73℃以外,其余与实施例2相同。
实施例14
除了共聚物的软化点为82℃以外,其余与实施例2相同。
实施例15
除了共聚物的软化点为88℃以外,其余与实施例2相同。
实施例16
除了共聚物的重均分子量为500以外,其余与实施例2相同。
实施例17
除了共聚物的重均分子量为20000以外,其余与实施例2相同。
实施例18
除了共聚物的重均分子量为100000以外,其余与实施例2相同。
实施例19
除了共聚物的结晶度为10以外,其余与实施例2相同。
实施例20
除了共聚物的结晶度为40以外,其余与实施例2相同。
实施例21
除了共聚物的D50为0.5μm以外,其余与实施例2相同。
实施例22
除了共聚物的D50为3.5μm以外,其余与实施例2相同。
实施例23
除了共聚物的D50为5μm以外,其余与实施例2相同。
实施例24
除了共聚物在粘结剂中的质量含量为10%,水在粘结剂中的质量含量为87.95%以外,其余与实施例2相同。
实施例25
除了共聚物在粘结剂中的质量含量为35%,水在粘结剂中的质量含量为62.95%以外,其余与实施例2相同。
实施例26
除了共聚物在粘结剂中的质量含量为45%,水在粘结剂中的质量含量为52.95%以外,其余与实施例2相同。
实施例27
除了共聚物在粘结剂中的质量含量为55%,水在粘结剂中的质量含量为42.95%以外,其余与实施例2相同。
实施例28
除了<锂离子电池的制备>不同以外,其余与实施例2相同,锂离子电池的制备过程为:
选用厚度为15μm的PE多孔聚合薄膜作为隔离膜,在隔离膜两侧分别涂覆实施例1的粘结剂,每侧涂层厚度3μm,再将正极极片、涂覆有粘结剂的隔离膜、负极极片按顺序叠好,使隔离膜处于正负极中间起到隔离的作用,并卷绕得到电极组件。将电极组件置于外包装中,注入配好的电解液并封装,经过化成,脱气,切边等工艺流程得到锂离子电池。
对比例1
除了粘结剂为PVDF以外,其余与实施例2相同。
对比例2
除了粘结剂为聚丙烯酸酯以外,其余与实施例2相同。
对比例3
除了粘结剂为羧甲基纤维素钠以外,其余与实施例2相同。
对比例4
在(1-1)共聚物的制备中,如表1所示改变丙烯单体和乙烯单体的摩尔比例为25:75,共聚物的软化点、结晶度随之改变,除此之外,与实施例1同样地操作。
各实施例和对比例的制备参数及测试结果如下表1所示:
表1各实施例和对比例的制备参数及测试结果
Figure PCTCN2020118828-appb-000001
Figure PCTCN2020118828-appb-000002
从实施例1-28和对比例1-3可以看出,本申请粘结剂的溶胀度显著下降,热压后粘结力及浸泡电解液后粘结力均显著提高,并且,具有本申请粘结剂的锂离子电池,其循环容量保持率显著提升,表明其循环性能得到提高。
从实施例1-15、17-23、25-28与对比例4可以看出,具有本申请粘结剂的锂离子电池,其热压后粘结力及浸泡电解液后粘结力均显著提高,并且,具有本申请粘结剂的锂离子电池,其循环容量保持率显著提升;从实施例16、24和对比例4可以看出,锂离子电池的浸泡电解液后粘结力和循环容量保持率也得到明显提升,热压后粘结力基本不变。
共聚物的软化点通常影响其耐热性能;重均分子量通常影响其粘结性能和耐电解液性;结晶度通常影响其分子结构规整程度;D50通常影响其比表面积;共聚物在粘结剂中的含量通常影响粘结剂中有效成分的含量,从实施例13-27可以看出,只要使上述条件在本申请范围内,使得本申请粘结剂具有低溶胀度和高粘结力,进而使得锂离子电池具有高的循环性能,就能实现本申请的发明目的。
从实施例28和实施例2可以看出,隔离膜两侧涂粘结剂后,热压后粘结力、及浸泡电解液后粘结力进一步提高,锂离子电池的循环性能基本不变。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (11)

  1. 一种包含共聚物的粘结剂,所述共聚物包括第一单体和第二单体共聚形成的聚合物,所述第一单体为丙烯单体,其中,所述共聚物的结晶度为10%至40%,所述第一单体占所述共聚物总单体量的30mol%至95mol%,所述第二单体占所述共聚物总单体量的5mol%至70mol%。
  2. 根据权利要求1所述的粘结剂,其中,所述第二单体选自乙烯、丁二烯、异戊二烯、苯乙烯、丙烯腈、环氧乙烷、环氧丙烷、丙烯酸酯、醋酸乙烯酯、己内酯和马来酸酐中的至少一种。
  3. 根据权利要求1所述的粘结剂,其中,所述共聚物具有以下特征的至少一个:
    所述共聚物的软化点为70℃至90℃;
    所述共聚物的重均分子量为500至1000000;
    所述共聚物的D50为0.5μm至5μm。
  4. 根据权利要求1所述的粘结剂,其中,所述粘结剂还包括乳化剂、消泡剂和水,其中,所述共聚物占所述粘结剂总质量的质量百分比为10%至50%,所述乳化剂占所述粘结剂总质量的质量百分比为0.1%至5%,所述消泡剂占所述粘结剂总质量的质量百分比为0.0001%至0.1%,余量为水。
  5. 根据权利要求4所述的粘结剂,其中,所述乳化剂包括阴离子型乳化剂、阳离子型乳化剂或非离子型乳化剂中的至少一种;所述阴离子型乳化剂包括脂肪酸皂、烷基硫酸盐、烷基苯磺酸盐或磷酸盐中的至少一种,所述阳离子型乳化剂包括N-十二烷基二甲胺、胺衍生物或季铵盐中的至少一种,所述非离子型乳化剂包括聚氧乙烯醚、聚氧丙烯醚、环氧乙烷、环氧丙烷嵌段共聚物、多元醇脂肪酸酯、聚乙烯醇中的至少一种。
  6. 根据权利要求4所述的粘结剂,其中,所述消泡剂包括醇、脂肪酸、脂肪酸酯、磷酸酯、矿物油、酰胺、环氧乙烷、环氧丙烷的共聚物、聚二甲基硅氧烷、聚醚链段或聚硅氧烷链段改性接枝的硅醚共聚物中的至少一种。
  7. 根据权利要求4所述的粘结剂,其中,所述粘结剂的粘度为10mPa·S至5000mPa·S。
  8. 根据权利要求4所述的粘结剂,其中,所述粘结剂在电解液中的溶胀度为0至55%。
  9. 一种电化学装置,包括电极极片,其中,所述电极极片包含如权利要求1至8任一项所述的粘结剂。
  10. 根据权利要求9所述的电化学装置,其中,所述电极极片包括电极活性材料层和集流体,所述电极活性材料层与所述集流体之间的粘结力为500N/m至1000N/m。
  11. 一种电子装置,包括权利要求9至10任一项所述的电化学装置。
PCT/CN2020/118828 2020-09-29 2020-09-29 一种包含共聚物的粘结剂及包含该粘结剂的电化学装置 WO2022067507A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20866934.1A EP4016675A4 (en) 2020-09-29 2020-09-29 COPOLYMER-CONTAINING BINDER AND ELECTROCHEMICAL DEVICE CONTAINING THEM
US17/281,549 US20240010769A1 (en) 2020-09-29 2020-09-29 Copolymer-containing binder and electrochemical device containing same
CN202080005187.8A CN112740443B (zh) 2020-09-29 2020-09-29 一种包含共聚物的粘结剂及包含该粘结剂的电化学装置
PCT/CN2020/118828 WO2022067507A1 (zh) 2020-09-29 2020-09-29 一种包含共聚物的粘结剂及包含该粘结剂的电化学装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/118828 WO2022067507A1 (zh) 2020-09-29 2020-09-29 一种包含共聚物的粘结剂及包含该粘结剂的电化学装置

Publications (1)

Publication Number Publication Date
WO2022067507A1 true WO2022067507A1 (zh) 2022-04-07

Family

ID=75609549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118828 WO2022067507A1 (zh) 2020-09-29 2020-09-29 一种包含共聚物的粘结剂及包含该粘结剂的电化学装置

Country Status (4)

Country Link
US (1) US20240010769A1 (zh)
EP (1) EP4016675A4 (zh)
CN (1) CN112740443B (zh)
WO (1) WO2022067507A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113880976B (zh) * 2021-11-18 2023-06-23 中山大学 乙烯马来酸酐交替共聚物及其水解产物在制备硅负极电极材料中的应用
CN114824276A (zh) * 2022-04-29 2022-07-29 多氟多新能源科技有限公司 一种锂电池用胶膜制作及评测方法
CN115975550B (zh) * 2023-02-14 2023-06-20 宁德新能源科技有限公司 粘结剂组合物、电化学装置及用电装置
CN117327460A (zh) * 2023-12-01 2024-01-02 四川新能源汽车创新中心有限公司 锂离子电池用粘结剂、极片、电解质膜及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102668198A (zh) * 2009-11-18 2012-09-12 三井化学株式会社 电化学电池用水性糊剂、涂布该水性糊剂而形成的电化学电池用极板、及包括该极板的电池
CN105330778A (zh) * 2014-08-14 2016-02-17 中国石化扬子石油化工有限公司 一种用于薄膜热封层的聚丙烯树脂
CN109642066A (zh) * 2016-08-24 2019-04-16 伊士曼化工公司 无定形丙烯-乙烯共聚物
JP2019091793A (ja) * 2017-11-14 2019-06-13 旭化成株式会社 負極

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3219306B2 (ja) * 1992-06-04 2001-10-15 東燃化学株式会社 塗装性に優れたポリオレフィン組成物
US6753381B2 (en) * 2002-03-15 2004-06-22 Ethyl Corporation Polymer blends and their application as viscosity index improvers
US10723824B2 (en) * 2014-02-07 2020-07-28 Eastman Chemical Company Adhesives comprising amorphous propylene-ethylene copolymers
KR102339491B1 (ko) * 2016-03-28 2021-12-14 니폰 제온 가부시키가이샤 전기 화학 소자 전극용 바인더 조성물, 전기 화학 소자 전극용 슬러리 조성물, 전기 화학 소자용 전극, 및 전기 화학 소자
CN109216659B (zh) * 2017-07-06 2022-01-11 宁德时代新能源科技股份有限公司 一种粘结剂,使用该粘结剂的电极极片及二次电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102668198A (zh) * 2009-11-18 2012-09-12 三井化学株式会社 电化学电池用水性糊剂、涂布该水性糊剂而形成的电化学电池用极板、及包括该极板的电池
CN105330778A (zh) * 2014-08-14 2016-02-17 中国石化扬子石油化工有限公司 一种用于薄膜热封层的聚丙烯树脂
CN109642066A (zh) * 2016-08-24 2019-04-16 伊士曼化工公司 无定形丙烯-乙烯共聚物
JP2019091793A (ja) * 2017-11-14 2019-06-13 旭化成株式会社 負極

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4016675A4 *

Also Published As

Publication number Publication date
EP4016675A4 (en) 2022-10-19
US20240010769A1 (en) 2024-01-11
CN112740443A (zh) 2021-04-30
EP4016675A1 (en) 2022-06-22
CN112740443B (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
CN112740443B (zh) 一种包含共聚物的粘结剂及包含该粘结剂的电化学装置
CN102217121B (zh) 二次电池电极用粘合剂组合物及其制造方法
KR101460930B1 (ko) 축전 디바이스용 전극, 전극용 슬러리, 전극용 바인더 조성물 및 축전 디바이스
KR102393257B1 (ko) 이차 전지 전극용 도전재 페이스트, 이차 전지 정극용 슬러리의 제조 방법, 이차 전지용 정극의 제조 방법 및 이차 전지
KR20150068371A (ko) 리튬이온 이차전지 양극용 바인더, 이 바인더를 포함하는 리튬이온 이차전지용 양극, 이 양극을 이용한 리튬이온 이차전지 및 전기기기
CN110383546B (zh) 电化学元件电极用导电材料分散液、浆料组合物及其制造方法、电极以及电化学元件
Sun et al. Effect of poly (acrylic acid)/poly (vinyl alcohol) blending binder on electrochemical performance for lithium iron phosphate cathodes
WO2021108984A1 (zh) 二次电池、包括该二次电池的装置、二次电池的制备方法及粘结剂组合物
WO2022141508A1 (zh) 一种电化学装置和电子装置
KR102366059B1 (ko) 리튬 이온 2차 전지 및 이를 이용한 전기 기기
WO2024045505A1 (zh) 粘结剂组合物、正极浆料、二次电池、电池模块、电池包和用电装置
WO2024045554A1 (zh) 粘结剂、制备方法、正极极片、二次电池及用电装置
WO2024045553A1 (zh) 粘结剂、制备方法、正极极片、二次电池及用电装置
WO2024045472A1 (zh) 分散剂、粘结剂组合物、正极浆料、二次电池、电池模块、电池包及用电装置
JP2020064824A (ja) 全固体電池
WO2022120826A1 (zh) 一种电化学装置和电子设备
WO2022120833A1 (zh) 一种电化学装置和电子装置
KR20230058612A (ko) 전기 화학 소자용 전극 및 전기 화학 소자
JP2023530373A (ja) バインダー、負極スラリー、負極及びリチウムイオン電池
JP6212305B2 (ja) 複合集電体、およびそれを用いた電極と二次電池
WO2024045504A1 (zh) 粘结剂、制备方法、正极极片、二次电池及用电装置
KR20220015380A (ko) 이차 전지 정극용 바인더 조성물, 이차 전지 정극용 도전재 페이스트 조성물, 이차 전지 정극용 슬러리 조성물, 이차 전지용 정극 및 그 제조 방법, 그리고 이차 전지
WO2024040572A1 (zh) 用于正极极片的水性粘接剂以及由其制备的正极极片
KR102554243B1 (ko) 전기 화학 소자용 도전재 분산액, 전기 화학 소자 전극용 슬러리, 전기 화학 소자용 전극 및 전기 화학 소자
WO2023184127A1 (zh) 负极极片、电化学装置及电子设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020866934

Country of ref document: EP

Effective date: 20210330

NENP Non-entry into the national phase

Ref country code: DE