WO2022048131A1 - 空调*** - Google Patents

空调*** Download PDF

Info

Publication number
WO2022048131A1
WO2022048131A1 PCT/CN2021/081678 CN2021081678W WO2022048131A1 WO 2022048131 A1 WO2022048131 A1 WO 2022048131A1 CN 2021081678 W CN2021081678 W CN 2021081678W WO 2022048131 A1 WO2022048131 A1 WO 2022048131A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
inverter
efficiency
torque
conditioning system
Prior art date
Application number
PCT/CN2021/081678
Other languages
English (en)
French (fr)
Inventor
石靖峰
曹法立
陈强
石磊
路海滨
Original Assignee
青岛海信日立空调***有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信日立空调***有限公司 filed Critical 青岛海信日立空调***有限公司
Priority to CN202180032698.3A priority Critical patent/CN115485511A/zh
Publication of WO2022048131A1 publication Critical patent/WO2022048131A1/zh
Priority to US18/116,089 priority patent/US20230261600A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/50Load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/60Energy consumption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present application relates to the technical field of household appliances, and in particular, to an air conditioning system with an online power consumption detection function.
  • the basis of the application of intelligent control technology and Internet technology in the air conditioning system is the online real-time monitoring of its performance.
  • the deficiencies in the actual operation process of the product are found, the main factors leading to the poor performance of the unit are identified, and the direction for the optimal design of product structure and control strategy is pointed out, and the actual operation of the product can be realized. .
  • Embodiments of the present application provide an air conditioning system, including:
  • a processor module which is configured to:
  • the efficiency ⁇ 0 of the inverter is calculated according to the current operating frequency and the current torque.
  • Figure 1 is a schematic diagram of the power consumption circuit of the air-conditioning system
  • FIG. 2 is a schematic block diagram of an air conditioning system provided by some embodiments of the present application.
  • FIG. 3 is a flowchart of the configuration of a processor module of an air conditioning system provided by some embodiments of the present application;
  • Fig. 4 is the corresponding relation function curve of the torque of the compressor and the efficiency of the frequency converter fitted when the compressor is operated at 115 Hz according to the embodiment of the present application;
  • Fig. 5 is the corresponding relation function curve of the torque of the compressor and the efficiency of the frequency converter fitted when the compressor is operated at 110z provided by the embodiment of the present application;
  • FIG. 6 is a configuration flowchart of a processor module of another air conditioning system provided by an embodiment of the present application.
  • I all is the effective current
  • I' is the current of the outdoor measuring point
  • I r is the current of the measuring point
  • PF is the corresponding power factor
  • C 1 to C 5 are fitting coefficients.
  • the air conditioning system of the present embodiment executes the refrigeration cycle of the air conditioner by controlling the compressor, the condenser, the expansion valve and the evaporator through the processor module.
  • the refrigeration cycle includes a series of processes involving compression, condensation, expansion, and evaporation, and supplies refrigerant to air that has been conditioned and heat-exchanged.
  • the compressor compresses the refrigerant gas in a high temperature and high pressure state and discharges the compressed refrigerant gas.
  • the discharged refrigerant gas flows into the condenser.
  • the condenser condenses the compressed refrigerant into a liquid phase, and heat is released to the surrounding environment through the condensation process.
  • the expansion valve expands the high-temperature and high-pressure liquid-phase refrigerant condensed in the condenser into a low-pressure liquid-phase refrigerant.
  • the evaporator evaporates the refrigerant expanded in the expansion valve and returns the refrigerant gas in a low temperature and low pressure state to the compressor.
  • the evaporator can achieve the cooling effect by using the latent heat of evaporation of the refrigerant to exchange heat with the material to be cooled.
  • the air conditioner regulates the temperature of the indoor space.
  • the outdoor unit of the air conditioner refers to the part of the refrigeration cycle including the compressor and the outdoor heat exchanger
  • the indoor unit of the air conditioner includes the indoor heat exchanger
  • the expansion valve may be provided in the indoor unit or the outdoor unit.
  • Indoor heat exchangers and outdoor heat exchangers are used as condensers or evaporators.
  • the air conditioner is used as a heater in a heating mode
  • the indoor heat exchanger is used as an evaporator
  • the air conditioner is used as a cooler in a cooling mode.
  • the air conditioning system of this embodiment further includes a frequency converter, which controls and adjusts the rotational speed of the compressor in the air conditioner, so that the compressor is always in an optimal rotational speed state, thereby saving the energy consumption of the air conditioner .
  • the basis is the ability to monitor the performance of air-conditioning systems in real time online.
  • the deficiencies in the actual operation process of the product are found, the main factors leading to the poor performance of the unit are identified, and the direction for the optimal design of product structure and control strategy is pointed out, and the actual operation of the product can be realized. .
  • the efficiency of the inverter is calculated according to the torque of the compressor and the operating frequency.
  • the operating frequency is a control output parameter, which is easy to obtain. There is no need to set up additional detection devices, which simplifies the test complexity.
  • the external detection device introduces test error, which improves the detection accuracy of the frequency converter's efficiency.
  • the input power Pr of the inverter can be calculated according to the efficiency ⁇ 0 of the inverter.
  • the input power P r of the inverter can be obtained by calculating the active power or by calculating the apparent power
  • the calculation of the input power P r of the inverter by using the active power is taken as an example for description, including:
  • the input power Pr of the frequency converter is the energy consumption of the compressor and its frequency converter.
  • the torque of the compressor is related to the discharge temperature, discharge pressure, suction temperature and suction pressure of the compressor, and the above parameters can be obtained through the air conditioning system without additional detection devices.
  • the efficiency curve of the inverter in the laboratory that is, the corresponding relationship function between the torque of the compressor and the efficiency of the inverter.
  • the method for obtaining the efficiency ⁇ 0 of the frequency converter in this embodiment is:
  • the compressor is controlled to run at different operating frequencies, and the corresponding relationship functions between the torque of the compressor and the efficiency of the inverter when running at each operating frequency are respectively fitted.
  • each operating frequency corresponds to a corresponding function between the torque of the compressor and the efficiency of the frequency converter.
  • the efficiency of the inverter at different torques and frequencies is experimentally measured, and the formula is fitted. Because the stator and rotor tooling test uses water cooling and air cooling for the inverter at the same time, the test efficiency will be higher than the actual efficiency, and the laboratory experiment will be checked later.
  • the current operating frequency can be obtained directly through the system.
  • the corresponding relationship function is to find out the corresponding relationship functions f 1 (n) and f 2 (n) between the torque of the two compressors adjacent to the current operating frequency and the efficiency of the inverter.
  • the current operating frequency of the compressor does not correspond to the corresponding function between the torque of the compressor and the efficiency of the inverter
  • the current operating frequency of the compressor if it is not located at both ends of the value, it must have two adjacent operating frequencies. frequencies n1 and n2, and the two operating frequencies are respectively fitted with the corresponding relationship functions f 1 (n) and f 2 (n) of the torque of the compressor and the efficiency of the inverter.
  • the current operating frequency of the compressor is at both ends of the value, it has an adjacent operating frequency, and the operating frequency is fitted with a function f 1 (n) corresponding to the torque of the compressor and the efficiency of the inverter.
  • the operation frequency adjacent to the current operation frequency is taken, and the operation frequency is also fitted with the corresponding relationship function between the torque of the compressor and the efficiency of the inverter, which is denoted as f 2 (n).
  • the interpolation calculation ⁇ 0 includes: calculating the efficiency ⁇ 0 of the frequency converter corresponding to the current operating frequency by using the interpolation method according to ⁇ 1 and ⁇ 2 .
  • the change of the efficiency of the inverter can be equivalent to a linear change. That is, in the step of calculating ⁇ 0 by interpolation, the efficiency ⁇ 0 of the frequency converter corresponding to the current operating frequency is calculated according to ⁇ 1 and ⁇ 2 by using a linear interpolation method.
  • Table 1 is the torque-efficiency correspondence table when the operating frequency is 115hz
  • Table 2 is the torque-efficiency correspondence table when the operating frequency is 110hz.
  • the corresponding function between the torque of the compressor and the efficiency of the frequency converter is a quadratic function.
  • the calculation is performed according to the functions of two operating frequencies adjacent to 112 Hz, 115 Hz and 110 Hz.
  • f 1 (n115) is the efficiency of the inverter whose operating frequency is 115Hz; f 2 (n110) is the efficiency of the inverter whose operating frequency is 110 Hz.
  • the value between the two collection points can be obtained by interpolation, which satisfies the following relationship:
  • the calculation method of the torque of the compressor is:
  • Torque of compressor a*(h 1 -h 2 )* ⁇ *Rpm* ⁇ /b/Rpm;
  • is the volumetric efficiency of the compressor, which is a fixed value
  • a and b are fitting parameters.
  • the outlet enthalpy value h 1 is calculated from the discharge temperature and discharge pressure of the compressor, and the enthalpy value h 2 is calculated from the suction temperature and suction pressure of the compressor.
  • the method of outputting active power P c of the inverter is:
  • F 2i is the output power factor of the inverter, which can be obtained directly from the inverter.
  • the circuit board of the inverter contains a current sensor, which can collect the output current I of the inverter, and the output voltage U is the output control value, which can be obtained directly.
  • the efficiency ⁇ 0 of the frequency converter is calculated according to the current operating frequency f of the compressor and the current torque n of the compressor.
  • ⁇ 0 a1*f+b1*n+c1*f*n+d1*f ⁇ 2+e1*n ⁇ 2.
  • a1, b1, c1, d1 and e1 are constants, which can be set according to the actual situation.
  • the air conditioning system of this embodiment can also calculate the input power of the inverter by outputting the apparent power S 2i .
  • the processor module of this embodiment is configured as:
  • S 2i is calculated and output by the frequency converter, and ⁇ 0 can be obtained by the solution described in the first embodiment, which will not be repeated here.
  • F 2i is the output power factor of the inverter, which can be obtained directly from the inverter.
  • the efficiency of the inverter is calculated according to the torque of the compressor and the operating frequency.
  • the operating frequency is a control output parameter, which is easy to obtain.
  • the output power factor of the inverter can be directly obtained from the inverter without additional settings.
  • the detection device simplifies the test complexity, and at the same time does not introduce test errors due to external detection devices, thus improving the efficiency and detection accuracy of the frequency converter.
  • This embodiment solves the technical problems that the on-line energy consumption monitoring of the compressor frequency converter needs to set multiple measurement points to collect parameters, resulting in the use of many test devices, complex test solutions, and the introduction of many errors, resulting in low accuracy.
  • the air conditioning system of the present application which calculates the efficiency of the inverter according to the torque and operating frequency of the compressor, without the need to set up external test devices, which simplifies the test complexity and improves the detection accuracy of the inverter's efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

本申请公开一种空调***,包括压缩机以及变频器,还包括:处理器模块,其被配置为:分别获取压缩机当前的运行频率以及压缩机当前的扭矩;根据所述当前的运行频率和当前的扭矩计算变频器的效率α 0

Description

空调***
相关申请的交叉引用
本申请要求在2020年09月02日提交中国专利局、申请号为202010909922.X、发明名称为“空调***”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及家用电器技术领域,尤其涉及一种具有在线功耗检测功能的空调***。
背景技术
智能控制技术与互联网技术在空调***应用的基础是能够对其性能的在线实时监测。通过对实际运行性能测试数据的分析,发现产品在实际运行过程中存在的不足,探明导致机组性能不佳的主要因素,为产品结构优化设计和控制策略优化设计指明方向,实现产品实际运行节能。
发明内容
本申请的实施例提供了一种空调***,包括:
压缩机;
变频器
处理器模块,其被配置为:
分别获取压缩机当前的运行频率以及压缩机当前的扭矩;
根据当前的运行频率和当前的扭矩计算变频器的效率α 0
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为空调***耗电线路示意图;
图2是本申请一些实施例提供的空调***的原理方框图;
图3是本申请一些实施例提供的空调***的处理器模块配置流程图;
图4是本申请实施例提供的压缩机运行在115Hz时拟合的压缩机的扭矩与变频器的效率的对应关系函数曲线;
图5是本申请实施例提供的压缩机运行在110z时拟合的压缩机的扭矩与变频器的效率的对应关系函数曲线;
图6是本申请实施例提供的另一种空调***的处理器模块配置流程图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请中,在线性能监测其中一个重要的指标是能耗,而压缩机及其变频器的能耗占整个多联机***能耗的85%左右,因此压缩机及其变频器的能耗测试尤为重要。论文《基于有限测点的空调***性能在线监测方法》,杨怀毅等,在2018年提出基于有限测点应用数据拟合公式的推算方案。如图1所示,为电线路示意图,该论文根据①点之前的电流推算整个室内外机的功耗,推算方法如下:
Figure PCTCN2021081678-appb-000001
式中:I all为有效电流,I′为室外测点的电流,I r为测点电流,PF为对应的功率因数,C 1~C 5均为拟合系数。
这种方法并未区分室内风挡切换的差别,所以误差较大,最大误差是10.3%。
实施例一
本实施例的空调***通过处理器模块控制压缩机、冷凝器、膨胀阀和蒸发器来执行空调器的制冷循环。制冷循环包括一系列过程,涉及压缩、冷凝、膨胀和蒸发,并向已被调节和热交换的空气供应制冷剂。
压缩机压缩处于高温高压状态的制冷剂气体并排出压缩后的制冷剂气 体。所排出的制冷剂气体流入冷凝器。冷凝器将压缩后的制冷剂冷凝成液相,并且热量通过冷凝过程释放到周围环境。
膨胀阀使在冷凝器中冷凝的高温高压状态的液相制冷剂膨胀为低压的液相制冷剂。蒸发器蒸发在膨胀阀中膨胀的制冷剂,并使处于低温低压状态的制冷剂气体返回到压缩机。蒸发器可以通过利用制冷剂的蒸发的潜热与待冷却的材料进行热交换来实现制冷效果。在整个循环中,空调器可以调节室内空间的温度。
空调器的室外单元是指制冷循环的包括压缩机和室外热交换器的部分,空调器的室内单元包括室内热交换器,并且膨胀阀可以提供在室内单元或室外单元中。
室内热交换器和室外热交换器用作冷凝器或蒸发器。当室内热交换器用作冷凝器时,空调器用作制热模式的加热器,当室内热交换器用作蒸发器时,空调器用作制冷模式的冷却器。
本实施例的空调***,如图2所示,还包括变频器,由变频器来控制和调整空调中的压缩机的转速,使压缩机始终处于最佳的转速状态,从而节省空调的能耗。
随着智能控制技术与互联网技术在空调***应用,其基础是能够对空调***性能的在线实时监测。通过对实际运行性能测试数据的分析,发现产品在实际运行过程中存在的不足,探明导致机组性能不佳的主要因素,为产品结构优化设计和控制策略优化设计指明方向,实现产品实际运行节能。
此外,随着空调节能环保意识的增强以及家居智能化的不断提高,智能空调的概念更加普及。在空调温度设定方面,当室内温度在一定范围内时,人体的舒适度几乎没有差别,如果在该范围内,设定较低或较高温度,人体舒适度没有改变,反而增加了空调能耗,不利于提醒用户设定的温度所对应的空调的能耗,不利于空调的长时间使用,不利于环保节能。因此,对空调***能耗的在线监测需求十分迫切。
本实施例中的处理器模块被配置为:
分别获取压缩机当前的运行频率以及压缩机当前的扭矩;
根据所述当前的运行频率和当前的扭矩计算变频器的效率α 0;。
本实施例的空调***,其根据压缩机的扭矩和运行频率计算出变频器的效率,运行频率是控制输出参数,很容易获取,无需另外设置检测器件,简化了测试复杂程度,同时不会由于外部检测器件引入测试误差,提高了变频器的效率的检测精度。
获取变频器的效率α 0后,可根据变频器的效率α 0计算变频器的输入功率P r
变频器的输入功率P r可通过有功功率计算获取或者通过视在功率计算获取;
其中,如图3所示,本实施例中以通过有功功率计算变频器的输入功率P r为例进行说明,包括:
获取变频器的输出有功功率P c
计算变频器的输入功率P r:P r=P c0
变频器的输入功率P r也即压缩机及其变频器的能耗。
压缩机的扭矩与压缩机的排气温度、排气压力吸气温度和吸气压力有关,而上述参数可通过空调***即可获取,无需另外设置检测器件。
变频器的效率获取之前,首先在实验室获取变频器的效率曲线,也即压缩机的扭矩与变频器的效率的对应关系函数。
本实施例中变频器的效率α 0的获取方法为:
控制压缩机以不同的运行频率运行,分别拟合以各运行频率运行时压缩机的扭矩与变频器的效率的对应关系函数。
本实施例中选取有限的若干个运行频率,并在实验室拟合出以各运行频率运行时压缩机的扭矩与变频器的效率的对应关系函数。因此,所选取的有限的若干个运行频率中,每个运行频率都对应有一个压缩机的扭矩与变频器的效率的对应关系函数。
变频器在不同转矩,不同频率下的效率进行实验测量,并拟合出公式。因为定转子工装测试,同时对变频器使用水冷和风冷散热,测试效率比实际效率会高,后期实验室实验再校核。
查找当前的运行频率所对应的压缩机的扭矩与变频器的效率的对应关系函数f 0(n),其中n表示压缩机的扭矩。
当前的运行频率可通过***直接获取。
将压缩机当前的扭矩输入f 0(n),得到变频器的效率α 0
如果当前的运行频率刚好对应有拟合的压缩机的扭矩与变频器的效率的对应关系函数f 0(n),在获取压缩机的扭矩后,将其带入函数f 0(n)即可得到该运行频率下、该扭矩下的变频器的效率α 0
由于拟合有压缩机的扭矩与变频器的效率的对应关系函数的压缩机的运行频率数量是离散的且有限的,若压缩机当前的运行频率未对应有压缩机的扭矩与变频器的效率的对应关系函数,则查找出与当前的运行频率相邻近 的两个压缩机的扭矩与变频器的效率的对应关系函数f 1(n)和f 2(n)。
也即,虽然压缩机当前的运行频率未对应有压缩机的扭矩与变频器的效率的对应关系函数,如果压缩机当前的运行频率没有位于数值的两端,其必定具有两个相邻的运行频率n1和n2,且该两个运行频率分别拟合有压缩机的扭矩与变频器的效率的对应关系函数f 1(n)和f 2(n)。如果压缩机当前的运行频率位于数值的两端,则其具有一个相邻的运行频率,且该运行频率拟合有压缩机的扭矩与变频器的效率的对应关系函数f 1(n)。同时取与当前的运行频率次相邻的运行频率,且该运行频率同样拟合有压缩机的扭矩与变频器的效率的对应关系函数,记为f 2(n)。
将压缩机当前的扭矩分别输入f 1(n)和f 2(n),得到变频器的效率α 1和α 2
插值计算α 0,包括:根据α 1和α 2利用插值法计算出当前的运行频率所对应的变频器的效率α 0
为了简化计算,减小计算量,由于n1和n2的差值较小,也即运行频率变化不大,扭矩相同时,变频器的效率的变化可以等效成线性变化。也即,插值计算α 0的步骤中,根据α 1和α 2利用线性插值法计算出当前的运行频率所对应的变频器的效率α 0
压缩机的扭矩与变频器的效率的对应关系函数的拟合方法为:
控制压缩机保持以设定的运行频率运行;
计算不同时刻压缩机的扭矩以及测量出相对应的变频器的效率,可以得到若干组扭矩-效率数据;
根据不同时刻所述压缩机的扭矩及其相对应的变频器的效率,拟合出以所设定的运行频率运行时二者的对应关系函数。
如表1、表2所示,其中,表1是运行频率为115hz时的转矩-效率对应表,表2是运行频率为110hz时的转矩-效率对应表。
115转矩(N.m) 17.5 16.34 15.48 14.48 13.68 12.68 11.81 10.94 9.81 8.81
115效率 0.9402 0.9409 0.9422 0.9435 0.9444 0.9444 0.9448 0.9452 0.94441 0.94471
表1
110转矩(N.m) 17.6 16.66 15.67 14.6 13.66 12.74 11.67 10.77 9.64 8.58
110效率 0.9422 0.9434 0.9439 0.9455 0.9463 0.9461 0.9462 0.9471 0.94755 0.94759
表2
根据表1拟合的压缩机的扭矩与变频器的效率的对应关系函数曲线如图4所示,根据表2拟合的压缩机的扭矩与变频器的效率的对应关系函数曲线如图5所示。
本实施例中压缩机的扭矩与变频器的效率的对应关系函数为二次函数。
以450机制冷举例说明,在扭矩为16.28N·m,压缩机的运行频率为112Hz,变频器输出功率为11950W时,变频器的输入功率的计算方法如下:
由于运行频率为112Hz未对应有压缩机的扭矩与变频器的效率的对应关系函数,因此,根据与112Hz相邻近的两个运行频率115Hz和110Hz的函数进行计算。
f 1(n115)=0.9320+0.002420*n115-0.000113*n115^2(公式由表1拟合获得)
=0.9320+0.002420*16.28-0.000113 115*16.28^2=0.9414
f 2(n110)=0.9463+0.000504*n110-0.000040*n110^2(公式由表2拟合获得)
=0.9463+0.000504*16.28-0.000040*16.28^2=0.9439
f 1(n115)为运行频率为115Hz的变频器的效率;f 2(n110)为运行频率为110Hz的变频器的效率。
n115为运行频率为115Hz的压缩机的转矩;n110为运行频率为110Hz的压缩机的转矩。
两个采集点之间的值可以由插值法获得,满足如下关系式:
(f 1(n115)-α 0)/(α 0-f 2(n110))=(115-112)/(112-110)
可以得出α 0=(2*0.9414+3*0.9439)/5=0.9429;
所以变频器输入功率推算为11950/0.9429*α=12673.7*αW
经测量计算得到的变频器输入功率和实际功率有5%左右的偏差,与现有算法的精度相比,得到大幅提高。
在一种可能的实施方式中,压缩机的扭矩的计算方法为:
分别获取压缩机的出口焓值h 1和入口焓值h 2
获取压缩机吸入冷媒的密度ρ以及压缩机的转速Rpm;
压缩机的扭矩=a*(h 1-h 2)*ρ*Rpm*η/b/Rpm;
其中,η为压缩机的容积效率,为固定值,a、b为拟合参数。
出口焓值h 1根据压缩机的排气温度和排气压力计算得到,焓值h 2根据压缩机的吸气温度和吸气压力计算得到。
压缩机的扭矩与变频器的效率的对应关系函数的拟合过程中,相邻两设定的运行频率之间的差值为Δf,如每间隔5Hz拟合一个压缩机的扭矩与变频器的效率的对应关系函数。
变频器的输出有功功率P c的方法为:
采集变频器的输出电流I,获取变频器的输出电压U;
计算P c=I·U·F 2i
其中,F 2i为变频器的输出功率因数,可以从变频器直接获取。
变频器的电路板内包含电流传感器,可以采集变频器的输出电流I,输出电压U为输出控制量,可以直接获取。
变频器的效率α 0的再一种计算方法为:
获取压缩机当前的运行频率f;
根据压缩机当前的运行频率f和压缩机当前的扭矩n计算得到变频器的效率α 0
在一种可能的实施方式中,α 0=a1*f+b1*n+c1*f*n+d1*f^2+e1*n^2。
其中,a1、b1、c1、d1以及e1为常数,可以根据实际情况设置。
本方案中通过将变频器的效率α 0拟合成了频率和扭矩这两个因子的曲面,使得计算更加简洁。
实施例二
本实施例的空调***还可以通过输出视在功率S 2i的方式计算变频器的输入功率,如图6所示,本实施例的处理器模块被配置为:
分别获取压缩机当前的运行频率以及压缩机当前的扭矩;
根据当前的运行频率和当前的扭矩计算变频器的效率α 0
获取变频器的输出侧视在功率S 2i
获取变频器的输出侧功率因数F 2i
计算变频器的输入功率P r:
P r=S 2i*F 2i0
S 2i由变频器计算输出,α 0可由实施例一中记载的方案获取,在此不做赘述。F 2i为变频器的输出功率因数,可以从变频器直接获取。
本实施例的空调***,其根据压缩机的扭矩和运行频率计算出变频器的效率,运行频率是控制输出参数,很容易获取,变频器的输出功率因数可直接从变频器获取,无需另外设置检测器件,简化了测试复杂程度,同时不会由于外部检测器件引入测试误差,提高了变频器的效率的检测精度。
本实施例解决了压缩机变频器的在线能耗监测需要设置多个测点采集参数,导致使用测试器件繁多,测试方案复杂,以及引入较多误差导致精度低的技术问题,本申请的空调***,其根据压缩机的扭矩和运行频率计算出变频器的效率,无需设置外部测试器件,简化了测试复杂程度,同时提高了变频器的效率的检测精度。
以上仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (14)

  1. 一种空调***,包括压缩机以及变频器,其特征在于,还包括:
    处理器模块,其被配置为:
    分别获取压缩机当前的运行频率以及压缩机当前的扭矩;
    根据当前的运行频率和当前的扭矩计算变频器的效率α 0
  2. 根据权利要求1所述的空调***,其特征在于,所述变频器的效率α 0的获取方法为:
    控制压缩机以不同的运行频率运行,分别拟合以各运行频率运行时压缩机的扭矩与变频器的效率的对应关系函数;
    查找当前的运行频率所对应的压缩机的扭矩与变频器的效率的对应关系函数f 0(n),其中n表示压缩机的扭矩;
    将压缩机当前的扭矩输入f 0(n),得到变频器的效率α 0
    或者,
    获取压缩机当前的运行频率;
    根据压缩机当前的运行频率和压缩机当前的扭矩计算得到变频器的效率α 0
  3. 根据权利要求2所述的空调***,其特征在于,若当前的运行频率未对应有压缩机的扭矩与变频器的效率的对应关系函数,则查找出与当前的运行频率相邻近的两个压缩机的扭矩与变频器的效率的对应关系函数f 1(n)和f 2(n);
    将压缩机当前的扭矩分别输入f 1(n)和f 2(n),得到变频器的效率α 1和α 2
    插值计算α 0,包括:根据α 1和α 2利用插值法计算出当前的运行频率所对应的变频器的效率α 0
  4. 根据权利要求3所述的空调***,其特征在于,插值计算α 0的步骤中,根据α 1和α 2利用线性插值法计算出当前的运行频率所对应的变频器的效率α 0
  5. 根据权利要求2所述的空调***,其特征在于,压缩机的扭矩与变频器的效率的对应关系函数的拟合方法为:
    控制压缩机保持以设定的运行频率运行;
    计算不同时刻压缩机的扭矩以及测量出相对应的变频器的效率;
    根据不同时刻所述压缩机的扭矩及其相对应的变频器的效率,拟合出以所设定的运行频率运行时二者的对应关系函数。
  6. 根据权利要求5所述的空调***,其特征在于,压缩机的扭矩的计算方法为:
    分别获取压缩机的出口焓值h 1和入口焓值h 2
    获取压缩机吸入冷媒的密度ρ以及压缩机的转速Rpm;
    压缩机的扭矩=a*(h 1-h 2)*ρ*Rpm*η/b/Rpm;
    其中,η为压缩机的容积效率,为固定值,a、b为拟合参数。
  7. 根据权利要求6所述的空调***,其特征在于,所述出口焓值h 1根据压缩机的排气温度和排气压力计算得到,所述入口焓值h 2根据压缩机的吸气温度和吸气压力计算得到。
  8. 根据权利要求5所述的空调***,其特征在于,压缩机的扭矩与变频器的效率的对应关系函数的拟合过程中,相邻两设定的运行频率之间的差值为Δf。
  9. 根据权利要求2所述的空调***,其特征在于,压缩机的扭矩与变频器的效率的对应关系函数为二次函数。
  10. 根据权利要求1-9任一项所述的空调***,其特征在于,
    根据所述变频器的效率α 0计算变频器的输入功率P r
  11. 根据权利要求10所述的空调***,其特征在于,
    通过有功功率计算变频器的输入功率P r或者通过视在功率计算变频器的输入功率P r
  12. 根据权利要求11所述的空调***,其特征在于,
    其中,通过有功功率计算变频器的输入功率P r包括:
    获取变频器的输出有功功率P c
    计算变频器的输入功率P r:P r=P c0
  13. 根据权利要求11所述的空调***,其特征在于,
    通过视在功率计算变频器的输入功率P r包括:
    获取变频器的输出视在功率S 2i
    获取变频器的输出功率因数F 2i
    计算变频器的输入功率P r:
    P r=S 2i*F 2i0
  14. 根据权利要求12所述的空调***,其特征在于,
    变频器的输出有功功率P c的方法为:
    采集变频器的输出电流I,获取变频器的输出电压U;
    计算P c=I·U·F 2i
    其中,F 2i为变频器的输出功率因数。
PCT/CN2021/081678 2020-09-02 2021-03-19 空调*** WO2022048131A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180032698.3A CN115485511A (zh) 2020-09-02 2021-03-19 空调***
US18/116,089 US20230261600A1 (en) 2020-09-02 2023-03-01 Air conditioner and method for determining energy consumption of air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010909922.X 2020-09-02
CN202010909922.XA CN112032938B (zh) 2020-09-02 2020-09-02 空调***

Related Child Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081677 Continuation-In-Part WO2022083055A1 (zh) 2020-09-02 2021-03-19 变频***

Publications (1)

Publication Number Publication Date
WO2022048131A1 true WO2022048131A1 (zh) 2022-03-10

Family

ID=73591202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081678 WO2022048131A1 (zh) 2020-09-02 2021-03-19 空调***

Country Status (2)

Country Link
CN (2) CN112032938B (zh)
WO (1) WO2022048131A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112367003B (zh) * 2020-10-22 2022-06-28 青岛海信日立空调***有限公司 变频***
CN112032938B (zh) * 2020-09-02 2022-07-08 青岛海信日立空调***有限公司 空调***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004129357A (ja) * 2002-10-01 2004-04-22 Matsushita Electric Ind Co Ltd インバ−タエアコン
CN101509694A (zh) * 2009-03-16 2009-08-19 宁波德斯科电子科技有限公司 一种直流变频空调压缩机智能控制器及其控制方法
CN106556112A (zh) * 2016-11-28 2017-04-05 珠海格力电器股份有限公司 压缩机频率调节方法及装置
CN106871391A (zh) * 2017-04-26 2017-06-20 上海科凌能源科技有限公司 基于有限测点的空调***性能在线检测方法
CN107423477A (zh) * 2017-05-11 2017-12-01 珠海格力电器股份有限公司 空调压缩机仿真方法和***
CN109140678A (zh) * 2018-08-28 2019-01-04 四川长虹空调有限公司 变频空调***空调数据及制冷剂参数的回归分析方法
CN112032938A (zh) * 2020-09-02 2020-12-04 青岛海信日立空调***有限公司 空调***

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001277906A (ja) * 2000-04-03 2001-10-10 Nissan Motor Co Ltd 車両用駆動力制御装置
DE102014211625A1 (de) * 2014-06-17 2015-12-17 Robert Bosch Gmbh Leistungssteuervorrichtung für eine Motorsteuervorrichtung, Motorsteuervorrichtung und Motorsystem
CN106123251B (zh) * 2016-08-19 2019-09-17 青岛海尔空调电子有限公司 一种变频空调消耗功率计算方法
CN107472078B (zh) * 2016-11-30 2020-01-10 北汽福田汽车股份有限公司 车辆的控制方法、***及车辆
CN108799125A (zh) * 2018-05-31 2018-11-13 江苏雪梅制冷设备有限公司 一种双螺杆制冷压缩机用智能变频器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004129357A (ja) * 2002-10-01 2004-04-22 Matsushita Electric Ind Co Ltd インバ−タエアコン
CN101509694A (zh) * 2009-03-16 2009-08-19 宁波德斯科电子科技有限公司 一种直流变频空调压缩机智能控制器及其控制方法
CN106556112A (zh) * 2016-11-28 2017-04-05 珠海格力电器股份有限公司 压缩机频率调节方法及装置
CN106871391A (zh) * 2017-04-26 2017-06-20 上海科凌能源科技有限公司 基于有限测点的空调***性能在线检测方法
CN107423477A (zh) * 2017-05-11 2017-12-01 珠海格力电器股份有限公司 空调压缩机仿真方法和***
CN110489884A (zh) * 2017-05-11 2019-11-22 珠海格力电器股份有限公司 空调压缩机仿真方法和***
CN109140678A (zh) * 2018-08-28 2019-01-04 四川长虹空调有限公司 变频空调***空调数据及制冷剂参数的回归分析方法
CN112032938A (zh) * 2020-09-02 2020-12-04 青岛海信日立空调***有限公司 空调***

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAIYI YANG, TAO REN, GUOLIANG DING, SHAOKAI CHEN, ZHONGMIN LIU: "Performance Monitoring Method of Air-conditioning System based on Limited Measuring Points", JOURNAL OF REFRIGERATION, vol. 39, no. 06, 1 December 2018 (2018-12-01), XP055909989 *
ZHONGMIN LIU, HUAIYI YANG: "A High - Accuracy Semi - Empirical Compressor Model For Air - Conditioning System Simulation", REFRIGERATION, vol. 37, no. 02, 1 January 2018 (2018-01-01), pages 1 - 6, XP055910035, ISSN: 1005-9180 *

Also Published As

Publication number Publication date
CN112032938B (zh) 2022-07-08
CN115485511A (zh) 2022-12-16
CN112032938A (zh) 2020-12-04

Similar Documents

Publication Publication Date Title
CN103884140B (zh) 空调压缩机排气过热度的控制方法及***
CN101881498B (zh) 多联式空调***的控制方法和***
CN102901293B (zh) 精密调节电子膨胀阀的空调器及其控制方法
CN108444159B (zh) 空调控制方法和装置、空调
WO2022048131A1 (zh) 空调***
CN103216909B (zh) 变频多联式空调机组制热时室外风机的控制方法
WO2019192210A1 (zh) 恒温恒湿内机、恒温恒湿***及其控制方法
CN108105919B (zh) 一种干工况制冷的变频空调***及其控制方法
KR20130069805A (ko) 열원 시스템 및 열원 시스템의 대수 제어 방법
CN102878615A (zh) 变频空调机组
CN106871293A (zh) 采用vrv***的机房热管空调
CN113175733B (zh) 计算空调器能力能效的方法、空调器和存储介质
CN216048446U (zh) 一种带部分热回收器的蒸发冷凝式冷水机组
CN102353403B (zh) 中央空调主机冷冻水流量及冷却介质流量测量方法
CN110595123A (zh) 一种空气源变频热泵***中的电子膨胀阀的控制方法
CN106482295A (zh) 室内风机控制方法及装置
CN109855255B (zh) 一种空调器的控制方法、***及空调器
CN113175735B (zh) 计算空调器能力能效的方法、计算机存储介质和空调器
WO2022083055A1 (zh) 变频***
CN112944618B (zh) 一种空调能力估算方法及空调器
CN111059735B (zh) 空气处理设备及其控制方法、装置和控制器
CN208075149U (zh) 恒温恒湿内机及恒温恒湿***
WO2023144927A1 (ja) 制御装置および制御方法
CN113203191B (zh) 室内机功率在线获取模块及空调***
CN113175734B (zh) 计算空调器能力能效的方法、计算机存储介质和空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21863202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21863202

Country of ref document: EP

Kind code of ref document: A1