WO2022022491A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2022022491A1
WO2022022491A1 PCT/CN2021/108591 CN2021108591W WO2022022491A1 WO 2022022491 A1 WO2022022491 A1 WO 2022022491A1 CN 2021108591 W CN2021108591 W CN 2021108591W WO 2022022491 A1 WO2022022491 A1 WO 2022022491A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
information
network device
uplink
terminal device
Prior art date
Application number
PCT/CN2021/108591
Other languages
English (en)
French (fr)
Inventor
张莉莉
戴喜增
刘江华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21850018.9A priority Critical patent/EP4184991A4/en
Publication of WO2022022491A1 publication Critical patent/WO2022022491A1/zh
Priority to US18/157,984 priority patent/US20230164723A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a communication method and apparatus.
  • the uplink transmission of terminal equipment is usually limited in power, so that the received signal strength of the uplink transmission signal when it reaches the base station may not be enough to guarantee. its coverage performance.
  • the upstream spectrum may also be insufficient, so it is impossible to rely on the retransmission of data to ensure its upstream coverage performance.
  • Supplementary uplink (SUL) is currently introduced into the NR communication system as an alternative when the uplink coverage is insufficient in the NR communication system, that is, the NR communication system supports configuring multiple uplink carriers in one cell.
  • the low frequency band of the long term evolution (LTE) communication system usually has better coverage performance.
  • the terminal device when implementing SUL, it is considered to use the lower frequency band of the LTE communication system (for example, 700MHz, 1.8GHz or 2.1GHz, etc. ) for NR uplink transmission.
  • the terminal device uses the frequency band of the LTE communication system to perform NR uplink transmission, it can be multiplexed with uplink time division duplex (TDD) or frequency division duplex (FDD) in the LTE communication system. this frequency band.
  • TDD time division duplex
  • FDD frequency division duplex
  • the use of higher frequency bands can be considered to achieve SUL.
  • the 4.9GHz frequency band can provide higher bandwidth spectrum resources, thus providing more sufficient uplink resources, so it can be considered to expand the uplink coverage in this frequency band.
  • the terminal device can detect the signal quality on the frequency band of the NR communication system, and when the signal quality on the frequency band is lower than a preset threshold, it is judged that the frequency band cannot meet its access requirements. Therefore, it can be transferred to the lower frequency band of the LTE communication system for access.
  • a higher frequency band such as the 4.9GHz frequency band
  • switching to a higher frequency band does not guarantee that the signal strength will be good. Therefore, the current SUL access
  • the rules do not apply to the use of higher frequency bands to achieve SUL, and a new access mechanism needs to be designed.
  • Embodiments of the present application provide a communication method and apparatus, so as to more accurately determine an activated carrier and improve the reliability of communication on the activated carrier.
  • a first aspect provides a communication method, the method comprising: a terminal device sending a first uplink signal to a first network device on at least one first carrier; and the terminal device receiving first feedback information; wherein the The first feedback information includes information of an activated carrier in the at least one first carrier.
  • the information of the active carrier in the at least one first carrier can be determined more accurately, which improves the performance of the active carrier on the active carrier. reliability of communication.
  • the first feedback information further includes a timing advance value corresponding to the activated carrier, where the timing advance value corresponds to at least one activated carrier, or the timing advance value is different from at least one of the activated carriers.
  • One activated carrier corresponds one-to-one, or the timing advance value corresponds to at least one activated carrier group.
  • the first uplink signal in addition to being used for uplink measurement, can also be used for random access at the same time, which saves signaling overhead and improves communication efficiency.
  • the first uplink signal may be a sounding reference signal, a preamble, a demodulation reference signal, a channel state information-reference signal or any defined sequence.
  • the first uplink signal is used for timing advance acquisition and uplink measurement.
  • the first feedback information is a random access response message or system information.
  • the first uplink signal is a first preamble sequence, and the first uplink signal is used for random access and uplink measurement.
  • the information on the activated carrier is further used to indicate that some or all of the unlicensed resources on the activated carrier are activated.
  • the terminal device while activating the carrier, the terminal device triggers the activation of the license-free resource, so that uplink transmission can be performed on the activated carrier and the license-free resource.
  • the terminal device receiving the first feedback information includes: the terminal device receiving the first feedback information from the second network device; or, the terminal device receiving the first feedback information the first feedback information from the first network device.
  • the first carrier is an all-uplink carrier
  • the first network device can send information about activating the carrier through the second network device; if the first carrier is an uplink-dominated carrier, the first network device can A small number of downlink time slots transmit the information of the active carrier.
  • the receiving, by the terminal device, the first feedback information from the first network device includes: receiving, by the terminal device, the first feedback information from the first time slot through the first time slot.
  • the first feedback information further includes first identification information and/or second identification information corresponding to the terminal device; wherein the first identification information includes the following At least one: the cell wireless network temporary identifier, the sequence identifier corresponding to the uplink signal; the second identifier information includes at least one of the following: the sequence identifier corresponding to the uplink signal, and the resource identifier corresponding to the uplink signal.
  • the sequence identifier corresponding to the uplink signal is the sequence identifier of the uplink signal itself.
  • the first carrier belongs to a carrier in a first carrier group, and the first carrier group has a common timing advance value.
  • the first carrier group has a common time advance value, and there is no need to determine the time advance value for each first carrier in the first carrier group one by one, which improves communication efficiency.
  • a communication method comprising: detecting a first uplink signal on at least one first carrier by a first network device; determining, by the first network device, a first uplink signal on the at least one first carrier a signal strength of an uplink signal; the first network device determines an active carrier in the at least one first carrier according to the signal strength of the first uplink signal on the at least one first carrier; and the first network The device sends first feedback information, where the first feedback information includes information of an activated carrier in the at least one first carrier.
  • the information of the active carrier in the at least one first carrier can be determined relatively accurately, which improves the performance of the active carrier on the active carrier. reliability of communication.
  • the first feedback information further includes a timing advance value corresponding to the activated carrier, where the timing advance value corresponds to at least one activated carrier, or the timing advance value is different from at least one of the activated carriers.
  • One activated carrier corresponds one-to-one, or the timing advance value corresponds to at least one activated carrier group.
  • the first feedback information is a random access response message or system information.
  • the first uplink signal is a first preamble sequence, and the first uplink signal is used for random access and uplink measurement.
  • the first uplink signal is used to obtain a timing advance value and uplink measurement.
  • the first uplink signal includes a sounding reference signal, a preamble, a demodulation reference signal, a channel state information-reference signal, or any defined sequence.
  • the information of the activated carrier is the first carrier determined by the first network device based on the measurement of the first uplink signal.
  • the sending, by the first network device, the first feedback information includes: the first network device sending first indication information to the second network device, where the first indication information Including the information of the activated carrier in the at least one first carrier; or, the first network device sends the first feedback information to the terminal device.
  • the sending, by the first network device, the first feedback information to the terminal device includes: the first network device sending the first feedback through a first time slot information, the first time slot is a downlink time slot configured between the first network device and the terminal device.
  • the first feedback information further includes first identification information and/or second identification information corresponding to the terminal device; wherein the first identification information includes the following At least one: the cell wireless network temporary identifier, the sequence identifier corresponding to the uplink signal; the second identifier information includes at least one of the following: the sequence identifier corresponding to the uplink signal, and the resource identifier corresponding to the uplink signal.
  • the sequence identifier corresponding to the uplink signal is the sequence identifier of the uplink signal itself.
  • the first carrier belongs to a carrier in a first carrier group, and the first carrier group has a common timing advance value.
  • a communication method comprising: a terminal device detects a downlink reference signal from a first network device on at least one first carrier; the terminal device determines a signal strength of the downlink reference signal; and when the signal strength of the downlink reference signal is greater than or equal to the first set value, the terminal device sends uplink information to the first network device on the license-free resource corresponding to the activated carrier.
  • the terminal device can send uplink information to the first network device on the license-free resource corresponding to the activated carrier, which improves the reliability of uplink transmission.
  • a communication method comprising: a first network device sends a downlink reference signal on at least one first carrier; and the first network device detects, on an unlicensed resource corresponding to an activated carrier, from Uplink information of terminal equipment.
  • a communication method comprising: a terminal device detects a downlink reference signal from a first network device on at least one first carrier; the terminal device determines a signal strength of the downlink reference signal; and when the signal strength of the downlink reference signal is greater than the second set value, the terminal device sends a first uplink signal to the first network device on the at least one first carrier.
  • the terminal device can send the uplink measurement signal to the first network device when the signal strength of the downlink reference signal is strong, thereby avoiding redundant transmission when far away from the first network device and reducing the power consumption of the terminal device.
  • the method further includes: receiving, by the terminal device, first feedback information; wherein the first feedback information includes an active carrier in the at least one first carrier. information.
  • the first feedback information includes information about the activated carrier, and the information about the activated carrier is determined by the first network device according to the signal strength of the first uplink signal, so that the terminal device can use the information about the activated carrier to perform reliable information transmission.
  • the first feedback information further includes second indication information, where the second indication information is used to indicate an activated license-free resource.
  • the first feedback information includes the information of the activated carrier and the second indication information, so that when the carrier is activated, information transmission on the unlicensed resource can be triggered.
  • the first feedback information further includes an offset value of uplink timing advance.
  • the first uplink signal in addition to being used for uplink measurement, can also be used for random access at the same time, which saves signaling overhead and improves communication efficiency.
  • the method further includes: determining an initial uplink timing advance according to the downlink reference signal.
  • the initial uplink timing advance can be determined according to the downlink reference signal, so as to avoid re-acquiring the uplink timing advance, and improve the communication efficiency.
  • the downlink reference signal is a physical broadcast channel, or a synchronization signal block, or a channel state information-reference signal.
  • the method further includes: receiving, by the terminal device, first downlink control information, where the first downlink control information includes at least one field, and each field includes the following At least one piece of information: trigger indication information, carrier identifier, license-exempt resource set identifier, the trigger indication information is used to activate the license-exempt resource corresponding to the activated carrier; or the terminal device receives the second downlink control information, the first The second downlink control information is used to trigger the transmission of the first uplink signal, and the second downlink control information includes the trigger indication information.
  • newly defined downlink control information or multiplexing of existing downlink control information may be used to indicate the transmission parameters of uplink measurement.
  • a communication method comprising: sending a downlink reference signal by a first network device on at least one first carrier; and detecting, by the first network device, that the terminal device is in the at least one first carrier The first uplink signal sent on a carrier.
  • the method further includes: the first network device determines the signal strength of the first uplink signal on the at least one first carrier; the first network device determines the signal strength of the first uplink signal on the at least one first carrier; The signal strength of the first uplink signal on the at least one first carrier determines the active carrier; and the first network device sends first feedback information, where the first feedback information includes the at least one first carrier. Information about the active carrier.
  • the sending, by the first network device, the first feedback information includes: the first network device sending first indication information to the second network device, where the first indication information Including information about an activated carrier in at least one first carrier; or, the first network device sends the first feedback information to the terminal device.
  • the first feedback information includes second indication information, where the second indication information is used to indicate an activated license-free resource.
  • the first feedback information includes an offset value of uplink timing advance.
  • the method further includes: sending, by the first network device, first downlink control information, where the first downlink control information includes at least one field, each field It includes at least one of the following information: trigger indication information, carrier identifier, and license-exempt resource set identifier, and the trigger indication information is used to activate the license-exempt resource corresponding to the activated carrier; or the first network device sends second downlink control information , the second downlink control information is used to trigger the transmission of the first uplink signal, and the second downlink control information includes the trigger indication information.
  • a communication apparatus for performing the first aspect or the method in any possible implementation of the first aspect.
  • the communication apparatus may be a terminal device in the first aspect or any possible implementation of the first aspect, or a module applied in the terminal device, such as a chip or a chip system.
  • the communication device includes corresponding modules, units, or means (means) for implementing the above method, and the modules, units, or means may be implemented by hardware, software, or by executing corresponding software in hardware.
  • the hardware or software includes at least one module or unit corresponding to the above-mentioned functions.
  • the communication apparatus includes: a transceiver unit; wherein the transceiver unit is configured to send a first uplink signal to a first network device on at least one first carrier; and The transceiver unit is further configured to receive first feedback information; wherein, the first feedback information includes information of an activated carrier in the at least one first carrier.
  • the transceiver unit is further configured to receive the first feedback information from a second network device; or, the transceiver unit is further configured to receive the first feedback from the first network device information.
  • the transceiver unit is further configured to receive the first feedback information from the first network device through a first time slot, where the first time slot is between the first network device and the terminal Downlink time slot configured between devices.
  • the communication apparatus includes: an input interface, an output interface, and a processing circuit; wherein, the output interface is used to send data to the first network device on at least one first carrier a first uplink signal; and the input interface for receiving first feedback information; wherein the first feedback information includes information of an activated carrier in the at least one first carrier.
  • the input interface is further configured to receive the first feedback information from a second network device; or, the input interface is further configured to receive the first feedback from the first network device information.
  • the input interface is further configured to receive the first feedback information from the first network device through a first time slot, where the first time slot is between the first network device and the terminal Downlink time slot configured between devices.
  • the communication device further includes a memory coupled to the at least one processor for executing program instructions stored in the memory to cause the communication device to perform the above-mentioned first aspect or the first aspect method in any possible implementation of .
  • the memory is used to store program instructions and data.
  • the memory is coupled to the at least one processor, and the at least one processor can invoke and execute program instructions stored in the memory to cause the communication device to perform the above-mentioned first aspect or any possible implementation of the first aspect. method.
  • the communication apparatus further includes a communication interface for the communication apparatus to communicate with other devices.
  • the communication interface is a transceiver, an input/output interface, a circuit, or the like.
  • the communication device includes: at least one processor and a communication interface for executing the method in the first aspect or any possible implementation of the first aspect, specifically including: the at least one processor
  • the communication device communicates with the outside using the communication interface; the at least one processor is configured to run a computer program, so that the communication device executes the method in the first aspect or any possible implementation of the first aspect.
  • the external may be an object other than the processor, or an object other than the communication device.
  • the communication device is a chip or a system of chips.
  • the communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit, etc. on the chip or the chip system.
  • the processor may also be embodied as processing circuitry or logic circuitry.
  • a communication apparatus for performing the second aspect or the method in any possible implementation of the second aspect.
  • the communication apparatus may be the first network device in the second aspect or any possible implementation of the second aspect, or a module applied in the first network device, such as a chip or a chip system.
  • the communication device includes corresponding modules, units, or means for implementing the above method, and the modules, units, or means may be implemented by hardware, software, or by executing corresponding software in hardware.
  • the hardware or software includes at least one module or unit corresponding to the above-mentioned functions.
  • the communication device includes: a transceiver unit and a processing unit; the processing unit is configured to detect the first uplink signal on at least one first carrier; the processing unit further is used to determine the signal strength of the first uplink signal on the at least one first carrier; the processing unit is further configured to determine the at least one first uplink signal according to the signal strength of the first uplink signal on the at least one first carrier an active carrier in one first carrier; and the transceiver unit, configured to send first feedback information, where the first feedback information includes information of an active carrier in the at least one first carrier.
  • the transceiver unit is further configured to send first indication information to the second network device, where the first indication information includes information about an activated carrier in the at least one first carrier; or, the transceiver unit , and is further configured to send the first feedback information to the terminal device.
  • the transceiver unit is further configured to send the first feedback information through a first time slot, where the first time slot is a downlink time slot configured between the first network device and the terminal device .
  • the communication device includes: an input interface, an output interface, and a processing circuit; the processing circuit is configured to detect the first uplink signal on at least one first carrier; the The processing circuit is further configured to determine the signal strength of the first uplink signal on the at least one first carrier; the processing circuit is further configured to, according to the signal strength of the first uplink signal on the at least one first carrier, determining an active carrier in the at least one first carrier; and the output interface for sending first feedback information, where the first feedback information includes information on an active carrier in the at least one first carrier.
  • the output interface is further configured to send first indication information to the second network device, where the first indication information includes information about an activated carrier in the at least one first carrier; or, the output interface , and is further configured to send the first feedback information to the terminal device.
  • the output interface is further configured to send the first feedback information through a first time slot, where the first time slot is a downlink time slot configured between the first network device and the terminal device .
  • the communication device further includes a memory coupled to the at least one processor for executing program instructions stored in the memory to cause the communication device to perform the above-mentioned second aspect or the second aspect method in any possible implementation of .
  • the memory is used to store program instructions and data.
  • the memory is coupled to the at least one processor, and the at least one processor can invoke and execute program instructions stored in the memory to cause the communication device to perform the above-mentioned second aspect or any possible implementation of the second aspect. method.
  • the communication apparatus further includes a communication interface for the communication apparatus to communicate with other devices.
  • the communication interface is a transceiver, an input/output interface, or a circuit or the like.
  • the communication device includes: at least one processor and a communication interface for executing the method in the second aspect or any possible implementation of the second aspect, specifically including: the at least one processor
  • the communication device communicates with the outside using the communication interface; the at least one processor is used for running a computer program, so that the communication device executes the method in the second aspect or any possible implementation of the second aspect.
  • the external may be an object other than the processor, or an object other than the communication device.
  • the communication device is a chip or a system of chips.
  • the communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit, etc. on the chip or the chip system.
  • the processor may also be embodied as processing circuitry or logic circuitry.
  • a communication apparatus for performing the third aspect or the method in any possible implementation of the third aspect.
  • the communication apparatus may be a terminal device in the third aspect or any possible implementation of the third aspect, or a module applied in the terminal device, such as a chip or a chip system.
  • the communication device includes corresponding modules, units, or means (means) for implementing the above method, and the modules, units, or means may be implemented by hardware, software, or by executing corresponding software in hardware.
  • the hardware or software includes at least one module or unit corresponding to the above-mentioned functions.
  • the communication apparatus includes: a processing unit and a transceiver unit; wherein the processing unit is configured to detect a downlink reference signal from a first network device on at least one first carrier ; the processing unit is also used for determining the signal strength of the downlink reference signal; and the transceiver unit is used for when the signal strength of the downlink reference signal is greater than or equal to the first set value, in the activation carrier corresponding to Send uplink information to the first network device on the license-free resources.
  • the communication device includes: an input interface, an output interface, and a processing circuit; wherein the processing circuit is configured to detect, on at least one first carrier, a device from a first network device the downlink reference signal; the processing circuit is further configured to determine the signal strength of the downlink reference signal; and the output interface is configured to: Send uplink information to the first network device on the license-free resource corresponding to the activated carrier.
  • the communication device further includes a memory coupled to the at least one processor, the at least one processor is configured to execute program instructions stored in the memory, so that the communication device performs the above-mentioned third aspect or the third aspect method in any possible implementation of .
  • the memory is used to store program instructions and data.
  • the memory is coupled to the at least one processor, and the at least one processor can invoke and execute program instructions stored in the memory to cause the communication device to perform the above third aspect or any possible implementation of the third aspect. method.
  • the communication apparatus further includes a communication interface for the communication apparatus to communicate with other devices.
  • the communication interface is a transceiver, an input/output interface, a circuit, or the like.
  • the communication device includes: at least one processor and a communication interface for executing the method in the third aspect or any possible implementation of the third aspect, specifically including: the at least one processor
  • the communication device communicates with the outside using the communication interface; the at least one processor is used for running a computer program, so that the communication device executes the method in the third aspect or any possible implementation of the third aspect.
  • the external may be an object other than the processor, or an object other than the communication device.
  • the communication device is a chip or a system of chips.
  • the communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit, etc. on the chip or the chip system.
  • the processor may also be embodied as processing circuitry or logic circuitry.
  • a communication apparatus for performing the above fourth aspect or the method in any possible implementation of the fourth aspect.
  • the communication apparatus may be the first network device in the fourth aspect or any possible implementation of the fourth aspect, or a module applied in the first network device, such as a chip or a chip system.
  • the communication device includes corresponding modules, units, or means for implementing the above method, and the modules, units, or means may be implemented by hardware, software, or by executing corresponding software in hardware.
  • the hardware or software includes at least one module or unit corresponding to the above-mentioned functions.
  • the communication device includes: a transceiver unit and a processing unit; wherein the transceiver unit is configured to send a downlink reference signal on at least one first carrier; and the processing unit , which is used to detect the uplink information from the terminal device on the license-free resource corresponding to the activated carrier.
  • the communication device includes: an input interface, an output interface, and a processing circuit; the output interface is used to send a downlink reference signal on at least one first carrier; and the The processing circuit is used for detecting the uplink information from the terminal equipment on the unlicensed resource corresponding to the activated carrier.
  • the communication device further includes a memory coupled to the at least one processor, and the at least one processor is configured to execute program instructions stored in the memory, so that the communication device performs the above-mentioned fourth aspect or the fourth aspect method in any possible implementation of .
  • the memory is used to store program instructions and data.
  • the memory is coupled to the at least one processor, and the at least one processor can invoke and execute program instructions stored in the memory to cause the communication device to perform the fourth aspect or any possible implementation of the fourth aspect. method.
  • the communication apparatus further includes a communication interface for the communication apparatus to communicate with other devices.
  • the communication interface is a transceiver, an input/output interface, or a circuit or the like.
  • the communication apparatus includes: at least one processor and a communication interface for executing the method in the fourth aspect or any possible implementation of the fourth aspect, specifically including: the at least one processor
  • the communication device communicates with the outside using the communication interface; the at least one processor is configured to run a computer program, so that the communication device executes the method in the fourth aspect or any possible implementation of the fourth aspect.
  • the external may be an object other than the processor, or an object other than the communication device.
  • the communication device is a chip or a system of chips.
  • the communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit, etc. on the chip or the chip system.
  • the processor may also be embodied as processing circuitry or logic circuitry.
  • a communication apparatus for performing the above fifth aspect or the method in any possible implementation of the fifth aspect.
  • the communication apparatus may be a terminal device in the fifth aspect or any possible implementation of the fifth aspect, or a module applied in the terminal device, such as a chip or a chip system.
  • the communication device includes corresponding modules, units, or means (means) for implementing the above method, and the modules, units, or means may be implemented by hardware, software, or by executing corresponding software in hardware.
  • the hardware or software includes at least one module or unit corresponding to the above-mentioned functions.
  • the communication apparatus includes: a processing unit and a transceiver unit; wherein the processing unit is configured to detect a downlink reference from a first network device on at least one first carrier signal; the processing unit is further configured to determine the signal strength of the downlink reference signal; and the transceiver unit is configured to, when the signal strength of the downlink reference signal is greater than a second set value, The first uplink signal is sent to the first network device on the first carrier.
  • the transceiver unit is further configured to receive first feedback information; wherein the first feedback information includes information of an activated carrier in the at least one first carrier.
  • the processing unit is further configured to determine the initial uplink timing advance according to the downlink reference signal.
  • the transceiver unit is further configured to receive first downlink control information, where the first downlink control information includes at least one field, and each field includes at least one of the following information: trigger indication information, carrier identifier, free an identifier of a set of authorized resources, where the trigger indication information is used to activate the license-free resource corresponding to the activated carrier; or the transceiver unit is further configured to receive second downlink control information, where the second downlink control information is used to trigger all the transmission of the first uplink signal, and the second downlink control information includes the trigger indication information.
  • the communication device includes: an input interface, an output interface, and a processing circuit; wherein the processing circuit is configured to detect, on at least one first carrier, a signal from the first network the downlink reference signal of the device; the processing circuit is further configured to determine the signal strength of the downlink reference signal; and the output interface is configured to, when the signal strength of the downlink reference signal is greater than the second set value, Send a first uplink signal to the first network device on the at least one first carrier.
  • the input interface is further configured to receive first feedback information; wherein the first feedback information includes information of an activated carrier in the at least one first carrier.
  • the processing circuit is further configured to determine the initial uplink timing advance according to the downlink reference signal.
  • the input interface is further configured to receive first downlink control information, the first downlink control information includes at least one field, and each field includes at least one of the following information: trigger indication information, carrier identifier, free An identifier of a set of authorized resources, where the trigger indication information is used to activate the license-free resource corresponding to the activated carrier; or the input interface is further used to receive second downlink control information, where the second downlink control information is used to trigger all the transmission of the first uplink signal, and the second downlink control information includes the trigger indication information.
  • first downlink control information includes at least one field, and each field includes at least one of the following information: trigger indication information, carrier identifier, free An identifier of a set of authorized resources, where the trigger indication information is used to activate the license-free resource corresponding to the activated carrier; or the input interface is further used to receive second downlink control information, where the second downlink control information is used to trigger all the transmission of the first uplink signal, and the second downlink control information includes the trigger indication information.
  • the communication device further includes a memory coupled to the at least one processor, the at least one processor is configured to execute program instructions stored in the memory, so that the communication device performs the above-mentioned fifth aspect or the fifth aspect method in any possible implementation of .
  • the memory is used to store program instructions and data.
  • the memory is coupled to the at least one processor, and the at least one processor can invoke and execute program instructions stored in the memory to cause the communication device to perform the above fifth aspect or any possible implementation of the fifth aspect. method.
  • the communication apparatus further includes a communication interface for the communication apparatus to communicate with other devices.
  • the communication interface is a transceiver, an input/output interface, a circuit, or the like.
  • the communication device includes: at least one processor and a communication interface for executing the method in the fifth aspect or any possible implementation of the fifth aspect, specifically including: the at least one processor
  • the communication device communicates with the outside using the communication interface; the at least one processor is used for running a computer program, so that the communication device executes the method in the fifth aspect or any possible implementation of the fifth aspect.
  • the external may be an object other than the processor, or an object other than the communication device.
  • the communication device is a chip or a system of chips.
  • the communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit, etc. on the chip or the chip system.
  • the processor may also be embodied as processing circuitry or logic circuitry.
  • a communication apparatus for performing the above sixth aspect or the method in any possible implementation of the sixth aspect.
  • the communication apparatus may be the first network device in the sixth aspect or any possible implementation of the sixth aspect, or a module applied in the first network device, such as a chip or a chip system.
  • the communication device includes corresponding modules, units, or means for implementing the above method, and the modules, units, or means may be implemented by hardware, software, or by executing corresponding software in hardware.
  • the hardware or software includes at least one module or unit corresponding to the above-mentioned functions.
  • the communication device includes: a transceiver unit and a processing unit; the transceiver unit is configured to send a downlink reference signal on at least one first carrier; and the processing unit, for detecting the first uplink signal sent by the terminal device on the at least one first carrier.
  • the processing unit is further configured to determine the signal strength of the first uplink signal on the at least one first carrier; the processing unit is further configured to determine the signal strength of the first uplink signal on the at least one first carrier; The signal strength of the uplink signal determines the activated carrier; and the transceiver unit is further configured to send first feedback information, where the first feedback information includes information of the activated carrier in the at least one first carrier.
  • the transceiver unit is configured to send first indication information to the second network device, where the first indication information includes information about an activated carrier in at least one first carrier; or, the transceiver unit is further configured to use for sending the first feedback information to the terminal device.
  • the transceiver unit is configured to send first downlink control information, the first downlink control information includes at least one field, and each field includes at least one of the following information: trigger indication information, carrier identifier, license-free Resource set identifier, the trigger indication information is used to activate the license-free resource corresponding to the activated carrier; or the transceiver unit is used to send second downlink control information, and the second downlink control information is used to trigger the first For transmission of an uplink signal, the second downlink control information includes the trigger indication information.
  • the communication device includes: an input interface, an output interface, and a processing circuit; wherein, the output interface is used to send a downlink reference signal on at least one first carrier; and the processing circuit, configured to detect the first uplink signal sent by the terminal device on the at least one first carrier.
  • the processing circuit is further configured to determine the signal strength of the first uplink signal on the at least one first carrier; the processing circuit is further configured to determine the signal strength of the first uplink signal on the at least one first carrier; The signal strength of the uplink signal determines the active carrier; and the output interface is further configured to send first feedback information, where the first feedback information includes information of the active carrier in the at least one first carrier.
  • the output interface is configured to send first indication information to the second network device, where the first indication information includes information about an activated carrier in at least one first carrier; or, the output interface is further configured with for sending the first feedback information to the terminal device.
  • the output interface is configured to send first downlink control information, the first downlink control information includes at least one field, and each field includes at least one of the following information: trigger indication information, carrier identifier, license-free Resource set identifier, the trigger indication information is used to activate the license-free resource corresponding to the activated carrier; or the output interface is used to send second downlink control information, and the second downlink control information is used to trigger the first For transmission of an uplink signal, the second downlink control information includes the trigger indication information.
  • the communication device further includes a memory coupled to the at least one processor, and the at least one processor is configured to execute program instructions stored in the memory, so that the communication device performs the above-mentioned sixth aspect or the sixth aspect method in any possible implementation of .
  • the memory is used to store program instructions and data.
  • the memory is coupled to the at least one processor, and the at least one processor can invoke and execute program instructions stored in the memory, so as to cause the communication device to perform the above sixth aspect or any possible implementation of the sixth aspect. method.
  • the communication apparatus further includes a communication interface for the communication apparatus to communicate with other devices.
  • the communication interface is a transceiver, an input/output interface, or a circuit or the like.
  • the communication device includes: at least one processor and a communication interface for executing the method in the sixth aspect or any possible implementation of the sixth aspect, specifically including: the at least one processor
  • the communication device communicates with the outside using the communication interface; the at least one processor is used for running a computer program, so that the communication device executes the method in the sixth aspect or any possible implementation of the sixth aspect.
  • the external may be an object other than the processor, or an object other than the communication device.
  • the communication device is a chip or a system of chips.
  • the communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit, etc. on the chip or the chip system.
  • the processor may also be embodied as processing circuitry or logic circuitry.
  • a communication system including the communication device in the seventh aspect or any implementation of the seventh aspect, and the communication device in the eighth aspect or any implementation of the eighth aspect.
  • a communication system including the communication apparatus in any of the implementations of the ninth aspect or the ninth aspect, and the communication apparatus in any implementation of the tenth aspect or the tenth aspect.
  • a fifteenth aspect provides a communication system, including the communication device in any implementation of the eleventh aspect or the eleventh aspect, and the twelfth aspect or any implementation of the twelfth aspect. communication device.
  • a sixteenth aspect provides a computer-readable storage medium storing a computer program, and when it is executed on a computer, the above-mentioned aspects or any one of the above-mentioned aspects to implement the described method is executed.
  • a seventeenth aspect provides a computer program product that, when run on a computer, causes the method described in the implementation of any of the above aspects or aspects to be performed.
  • a computer program which, when run on a computer, causes the above-mentioned aspects or any one of the above-mentioned aspects to be executed.
  • FIG. 1 is a schematic diagram of a network structure involved in an embodiment of the application
  • FIG. 2 is a schematic diagram of a communication system involved in an embodiment of the application
  • FIG. 3 is a schematic structural diagram of a communication apparatus 300 according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 5 is another schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 6 is another schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 7 is another schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 8 is another schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 9 is another schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 10 is another schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication apparatus 110 according to an embodiment of the present application.
  • FIG. 1 is a schematic diagram of a network structure involved in an embodiment of the present application.
  • the terminal device may be located within the coverage of both the macro base station (Cell#A as shown in FIG. 1 ) and the micro base station (Cell#B as shown in FIG. 1 ), and the terminal device may communicate with the macro base station and The micro base station establishes a communication connection.
  • Cell#A occupies a lower frequency band, for example, the 700MHz frequency band, the 800MHz frequency band, the 2GHz frequency band, the 1.9GHz frequency band, the 2.1GHz frequency band, or the 2.5GHz frequency band.
  • Cell#B occupies a higher frequency band, for example, the 3.5GHz frequency band or the 4.9GHz frequency band.
  • the higher frequency band can be understood as any frequency band higher than 3.5GHz, and the arbitrary frequency band mentioned here also includes the millimeter wave frequency band.
  • a higher frequency band of 4.9 GHz may include at least one carrier, which may be an all-uplink carrier or an uplink-dominant (UL dominant) carrier.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, for example, a long term evolution (long term evolution, LTE) system, an LTE frequency division duplex (frequency division duplex, FDD) system, an LTE time division duplex (time division duplex) system , TDD) system, 5th generation (5G) system or new radio (NR).
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • 5G mobile communication system involved in the embodiments of this application includes a non-standalone (NSA) 5G mobile communication system or an independent (standalone, SA) 5G mobile communication system.
  • SA standalone
  • the technical solutions provided in the embodiments of the present application can also be applied to future communication systems, such as a sixth generation (6th generation, 6G) mobile communication system.
  • the communication system involved in the embodiments of the present application may also be a public land mobile network (PLMN) network, a device-to-device (D2D) communication system, a machine to machine (machine to machine) , M2M) communication system, Internet of things (Internet of things, IoT), vehicle networking communication system or other communication systems.
  • PLMN public land mobile network
  • D2D device-to-device
  • M2M machine to machine
  • IoT Internet of things
  • vehicle networking communication system or other communication systems.
  • FIG. 2 is a schematic diagram of a communication system involved in an embodiment of the present application.
  • the communication system may include a first network device 201 , a second network device 202 , and a terminal device 203 connected to the first network device 201 and the second network device 202 .
  • the first network device 201 may be the micro base station described in FIG. 1 , which occupies a higher frequency band, such as the 4.9 GHz frequency band;
  • the second network device 202 may be the macro base station described in FIG. 1 , which occupies a lower frequency band, for example, 2.5GHz band.
  • the terminal device 203 in this embodiment of the present application may refer to an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a relay station, a remote station, a remote terminal, a mobile device, a user terminal (user terminal), and a user equipment (user equipment).
  • UE terminal
  • terminal wireless communication equipment
  • user agent user equipment
  • cellular phone cordless phone
  • session initiation protocol SIP
  • wireless local loop wireless local loop
  • WLL wireless local loop
  • PDA Personal digital assistants
  • handheld devices with wireless communication capabilities computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in future 5G networks or in future evolved PLMNs This is not limited in this embodiment of the present application.
  • the terminal device 203 may be a mobile phone, a tablet computer, a computer with a wireless transceiver function, a virtual reality terminal, an augmented reality terminal, a wireless terminal in industrial control, a wireless terminal in unmanned driving Wireless terminals, wireless terminals in remote surgery, wireless terminals in smart grids, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • a wearable device may also be referred to as a wearable smart device, which is a general term for intelligently designing daily wearable devices and developing wearable devices using wearable technology, such as glasses, Gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • Wearable smart devices in a broad sense include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones. Use, such as all kinds of smart bracelets, smart jewelry, etc. for physical sign monitoring.
  • the terminal device 203 may also be a terminal in an Internet of Things (IoT) system.
  • IoT Internet of Things
  • the IoT technology can achieve massive connections, deep coverage, and power saving of terminals through, for example, a narrow band (narrow band, NB) technology.
  • NB narrow band
  • the terminal device 203 may also include sensors such as smart printers, train detectors, gas stations, etc., and the main functions include collecting data (part of terminals), receiving control information and downlink data of access network devices, and Send electromagnetic waves to transmit uplink data to access network equipment.
  • sensors such as smart printers, train detectors, gas stations, etc.
  • the main functions include collecting data (part of terminals), receiving control information and downlink data of access network devices, and Send electromagnetic waves to transmit uplink data to access network equipment.
  • the first network device 201/second network device 202 in this embodiment of the present application may be any communication device having a wireless transceiver function for communicating with the terminal device 203 .
  • the first network device 201/second network device 202 includes but is not limited to: evolved node B (evolved node B, eNB), baseband unit (baseband unit, BBU), wireless fidelity (wireless fidelity, WIFI) system in Access point (AP), wireless relay node, wireless backhaul node, transmission point (TP) or transmission reception point (TRP), etc.
  • the first network device 201/second network device 202 may also be a gNB or TRP or TP in a 5G system, or one or a group (including multiple antenna panels) antenna panels of a base station in a 5G system.
  • the first network device 201/second network device 202 may also be a network node that constitutes a gNB or TP, such as a BBU, or a distributed unit (distributed unit, DU).
  • the first network device 201/second network device 202 may also be network devices in a 5.5G or 6G system.
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (active antenna unit, AAU).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and implementing functions of radio resource control (RRC) and packet data convergence protocol (PDCP) layers.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the radio link control (RLC) layer, the media access control (MAC) layer, and the physical layer (PHY).
  • RLC radio link control
  • MAC media access control
  • PHY physical layer
  • AAU implements some physical layer processing functions, radio frequency processing and related functions of active antennas.
  • the access network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the first network device 201/second network device 202 and the terminal device 203 in this embodiment of the present application may communicate through licensed spectrum, may also communicate through unlicensed spectrum, or may communicate through licensed spectrum and Unlicensed spectrum for communications.
  • the first network device 201 and the terminal device 203 can communicate through a higher frequency spectrum (eg, 4.9GHz), and the second network device 202 and the terminal device 203 can communicate through a lower frequency spectrum (eg, 2.5GHz).
  • the first network device 201, the second network device 202, and the terminal device 203 in this embodiment of the present application may be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; may also be deployed on water; may also be deployed On planes, balloons and satellites in the air.
  • the embodiments of the embodiments of the present application do not limit the application scenarios of the first network device 201 , the second network device 202 , and the terminal device 203 .
  • the first network device 201, the second network device 202, and the terminal device 203 include a hardware layer, an operating system layer running on the hardware layer, and an application running on the operating system layer.
  • This hardware layer includes hardware such as central processing unit (CPU), memory management unit (MMU), and memory (also called main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a Windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the present application do not specifically limit the specific structure of the execution body of the methods provided by the embodiments of the present application, as long as the program that records the codes of the methods provided by the embodiments of the present application can be executed to provide the methods provided by the embodiments of the present application.
  • the execution subject of the method provided by this embodiment of the present application may be the first network device 201, the second network device 202, and the terminal device 203, or the first network device 201, the second network device 202 and the terminal device 203 can call the program and execute the function module of the program.
  • the related functions of the first network device 201 , the second network device 202 , and the terminal device 203 in this embodiment of the present application may be implemented by one device, or jointly implemented by multiple devices, or by at least one device in one device.
  • a functional module is implemented, which is not specifically limited in this embodiment of the present application. It is to be understood that the above-mentioned functions can be either network elements in hardware devices, or software functions running on dedicated hardware, or a combination of hardware and software, or instantiated on a platform (eg, a cloud platform). Virtualization capabilities.
  • FIG. 3 is a schematic structural diagram of a communication apparatus 300 according to an embodiment of the present application.
  • the communication device 300 includes at least one processor 301, a communication line 302, and at least one communication interface (in FIG. 3, the communication interface 304 and one processor 301 are used as an example for illustration), and optionally Memory 303 may be included.
  • the processor 301 may be a central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (application-specific integrated circuit, ASIC), or at least one processor for controlling the execution of the solution programs of the embodiments of the present application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communication line 302 may include a path for connecting the various components.
  • the communication interface 304 can be a transceiver module for communicating with other devices or communication networks, such as Ethernet, RAN, wireless local area networks (wireless local area networks, WLAN) and the like.
  • the transceiver module may be a device such as a transceiver or a transceiver.
  • the communication interface 304 may also be a transceiver circuit located in the processor 301 to implement signal input and signal output of the processor.
  • the memory 303 may be a device having a storage function. For example, it may be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM) or other types of storage devices that can store information and instructions
  • the dynamic storage device can also be electrically erasable programmable read-only memory (electrically erasable programmable read-only memory, EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, optical disk storage (including compact discs, laser discs, compact discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or capable of carrying or storing desired program code in the form of instructions or data structures and capable of being stored by a computer any other medium taken, but not limited to this.
  • the memory may exist independently and be connected to the processor through communication line 302 .
  • the memory can also be integrated with the processor.
  • the memory 303 is used for storing computer-executed instructions for executing the solutions of the embodiments of the present application, and the execution is controlled by the processor 301 .
  • the processor 301 is configured to execute the computer-executed instructions stored in the memory 303, thereby implementing the communication method provided in the embodiments of the present application.
  • the processor 301 may also perform processing-related functions in the communication method provided in the embodiment of the present application, and the communication interface 304 is responsible for communicating with other devices or communication networks, which is not specifically limited in the embodiment of the present application.
  • the computer-executed instructions in the embodiments of the present application may also be referred to as application program codes, which are not specifically limited in the embodiments of the present application.
  • the processor 301 may include at least one CPU, such as CPU0 and CPU1 in FIG. 3 .
  • the communication apparatus 300 may include multiple processors, such as the processor 301 and the processor 303 in FIG. 3 .
  • processors can be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • a processor herein may refer to at least one device, circuit, and/or processing core for processing data (eg, computer program instructions).
  • the communication apparatus 300 may further include an output device 305 and an input device 303 .
  • the output device 305 is in communication with the processor 301 and can display information in a variety of ways.
  • the above-mentioned communication device 300 may be a general-purpose device or a dedicated device.
  • the communication device 300 may be a desktop computer, a portable computer, a network server, a personal digital assistant (PDA), a mobile phone, a tablet computer, a wireless terminal, an embedded device, or a device with a similar structure in FIG. 3 .
  • PDA personal digital assistant
  • This embodiment of the present application does not limit the type of the communication apparatus 300 .
  • a higher frequency band/lower frequency band is used as an example.
  • the higher frequency band can be replaced by the second frequency band.
  • the lower frequency band can be replaced with the first frequency band.
  • the first frequency band may be a licensed frequency band
  • the second frequency band may be an unlicensed frequency band, or the first frequency band may be a low frequency spectrum
  • the second frequency band may be a high frequency spectrum.
  • a carrier may also be replaced by a "beam".
  • the first carrier may be the first beam
  • the Xth carrier may be the Xth beam.
  • the activated carrier may be an activated beam
  • the carrier identification may be a beam identification.
  • the beam identifier may be the second identifier information.
  • For uplink measurement refers to judging whether the carrier is activated, or whether the carrier is selected for data transmission. It can be: for uplink measurement refers to determining whether the beam is activated, or whether the beam is selected for data transmission. This is applicable when the second frequency band is a high frequency, for example, the second frequency spectrum is a millimeter wave.
  • the second network device when configuring the resource of the uplink measurement signal to the first network device/terminal device, may simultaneously indicate that the resource is used for random access, or may indicate that the resource is used for random access.
  • the resource is used for random access at the same time; or, when configuring the resource for random access to the first network device/terminal device, the second network device may simultaneously indicate that the resource is used for uplink measurement, or may indicate that the resource is simultaneously used for Upstream measurement.
  • the second network device when configuring the resource of the uplink measurement signal to the first network device/terminal device, the second network device indicates that the resource is not only used to obtain a timing advance (TA), but also Used for uplink measurement.
  • TA timing advance
  • the timing advance may also be referred to as a timing advance, a timing advance value, or a timing advance.
  • the terminal device periodically or is triggered to send the uplink measurement signal
  • the first network device can perform corresponding execution.
  • the resource of the uplink measurement signal may also be determined by the first network device and communicated to the second network device.
  • the second network device when configuring the resource identifier of the uplink measurement signal to the first network device/terminal device, the second network device indicates that the resource is used for both TA acquisition and uplink measurement.
  • the second network device when configuring the resource of the uplink measurement signal to the first network device/terminal device, the second network device adds a piece of indication information, which is used to identify that the resource of the uplink measurement signal is not only used for acquiring the TA, It is also used for uplink measurement; or, an indication information is added to identify whether the resource of the uplink measurement signal is used for both acquiring TA and uplink measurement.
  • the indication information is 1 bit.
  • the resources of the uplink measurement signal may be configured separately for different carrier identifiers to which the second frequency band belongs, or may indicate TDD transmission patterns on different carriers for the same configuration.
  • the symbol position of the uplink measurement signal can be a continuous symbol in a time slot or a non-consecutive symbol. Can occupy any OFDM position in a slot.
  • the second network device when configuring the resource for performing random access to the first network device/terminal device, may indicate that the resource is used for uplink measurement.
  • the second network device when configuring the resource of the uplink measurement signal to the first network device/terminal device, the second network device indicates that the resource is used for uplink measurement.
  • the first network device/terminal device can be identified.
  • the terminal device when the terminal device periodically or is triggered to send the uplink measurement signal, the first network device can perform corresponding execution.
  • the resource of the uplink measurement signal may be determined by the second network device, or may be determined by the first network device and communicated to the second network device.
  • the second network device when configuring the resource identifier of the uplink measurement signal to the first network device/terminal device, the second network device indicates that the resource is used for uplink measurement. As another embodiment, when configuring the resource of the uplink measurement signal to the first network device/terminal device, the second network device adds an indication information for identifying the resource of the uplink measurement signal as being used for uplink measurement; or , and add an indication information for identifying whether the resource of the uplink measurement signal is used for uplink measurement. Optionally, the indication information is 1 bit (bit).
  • the resources of the uplink measurement signal may be configured separately for different carrier identifiers to which the second frequency band belongs, or may be configured to indicate TDD transmission patterns on different carriers for the same configuration.
  • the symbol position of the uplink measurement signal can be a continuous symbol in a time slot or a non-consecutive symbol. Can occupy any OFDM position in a slot.
  • the first feedback information may also be referred to as first response information or first information. It is only used as a name and does not constitute a limitation.
  • the system information is a remaining system information block (remaining SIB, RMSB), or the system information is an on demand based SIB (on demand based SIB).
  • FIG. 4 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • the method may include:
  • a terminal device sends a first uplink signal to a first network device on at least one first carrier.
  • the first network device receives the first uplink signal on the at least one first carrier.
  • Receiving in the embodiments of the present application may also be understood as detection, detection, measurement, or monitoring.
  • receiving the first uplink signal may be understood as detecting or measuring the first uplink signal.
  • higher frequency bands such as the 4.9 GHz band include at least one carrier, which is generally an all uplink carrier or an uplink dominant carrier, which needs to be taken into account when designing new access mechanisms.
  • the carriers of all uplinks are carriers of which all the time slots are uplink time slots in the allocation of uplink and downlink time slots (slots).
  • the upstream-dominated carrier is the carrier in which the upstream and downstream time slots account for the majority and the downstream time slot accounts for the minority in the upstream and downstream time slot allocation.
  • the uplink and downlink time slot allocation ratio of the carrier dominated by the uplink is as follows: every X time slot is regarded as a time slot configuration period, there are Y downlink slots in this period, and the remaining XY time slots are all uplink time slots gap. Wherein, X can be a large positive integer relative to Y, for example, 20, 30, 40 or 60.
  • Y is a small positive integer relative to X, for example, 1, 2, or 3.
  • the uplink and downlink time slots can be configured as 1 downlink time slot and X-1 uplink time slots to cycle in turn, or configured as X-1 uplink time slots and 1 downlink time slot The gaps cycle in turn.
  • the time slot can be called a downlink time slot. That is, a downlink time slot can be understood as a time slot in which downlink symbols are included. Downlink symbols can be consecutive or non-consecutive.
  • the frequency band or partial frequency band (band width partial, BWP) or physical resource block (physical resource block, PRB) in which the downlink symbol is located is configurable.
  • any “configurable” or “configurable” can be understood as being configured by the first network device or the second network device through RRC signaling, and can also be understood as being configured by the first network device or the second network device through MAC Layer signaling or physical layer signaling configuration.
  • the first network device or the second network device may configure the number of downlink symbols included in the downlink time slot through RRC signaling.
  • the terminal device sends the first uplink signal to the first network device on at least one carrier of the above-mentioned higher frequency band.
  • the first network device may be a micro base station as shown in FIG. 1 , and the micro base station is located in the above-mentioned higher frequency band.
  • the first uplink signal is used for uplink measurement, and the first uplink signal may be a sounding reference signal (SRS), a preamble code (preamble code), a demodulation reference signal (DMRS), channel state information - channel state information-reference signal (CSI-RS) or any defined sequence.
  • any defined sequence may be a ZC sequence or a C sequence.
  • the SRS is not used for scheduling but for uplink measurement, and the SRS may also be called an access sounding reference signal (access-SRS) or a radio resource management sounding reference signal (radio resource management-sounding reference signal, RRM-SRS).
  • access-SRS access sounding reference signal
  • RRM-SRS radio resource management-sounding reference signal
  • for scheduling refers to the existing use for uplink channel measurement or channel state acquisition.
  • For uplink measurement refers to judging whether the carrier is activated, or whether the carrier is selected for data transmission. Uplink measurement can also be understood as uplink detection.
  • the preamble can also be called a preamble sequence, or a preamble signal.
  • the terminal device sends the first uplink signal to the first network device on at least one carrier, which may be that the terminal device sends the first uplink signal to the first network device on each carrier within a set time.
  • the first network device receives the first uplink signal sent by the terminal device on each carrier.
  • the setting may be understood as a preset. Presets are predefined, or preconfigured. The pre-configuration is configured by the first network device/the second network device through RRC signaling or MAC signaling.
  • any of the above configurations configured by the second network device may implement configuration information indication to the terminal device on the premise that there is only an uplink time slot between the first network device and the terminal device.
  • Any of the above-mentioned configurations by the first network device can implement the configuration information indication to the terminal device on the premise that there is a downlink time slot or downlink symbol transmission between the first network device and the terminal device.
  • At least one carrier satisfying the set condition may belong to one carrier group.
  • the setting condition may be, for example, that the positions of the carriers are adjacent, or the carriers have common attribute information, and the like.
  • a carrier group may also be referred to as a carrier set.
  • the first network device determines the signal strength of the first uplink signal on at least one first carrier.
  • the first network device determines the signal strength of the first uplink signal on the at least one first carrier, and can measure the first uplink signal received on the at least one first carrier for the first network device to obtain the first uplink signal on the at least one first carrier.
  • the signal strength of an uplink signal; or, the first network device acquires the signal strength of the first uplink signal on the at least one first carrier according to the first uplink signal received on the at least one first carrier.
  • "obtain” or “acquire” can be understood as direct determination, or as derived.
  • the signal strength of the first uplink signal may be the signal strength of layer 1 (layer 1), or the signal strength obtained by filtering at layer 3 (layer 3).
  • the first network device after receiving the first uplink signal on multiple carriers, the first network device respectively measures the first uplink signal received on the corresponding carrier to obtain the signal strength of the first uplink signal on the carrier.
  • the signal strength of the first uplink signal can be measured by using an existing technology.
  • the signal strength can be expressed as one of reference signal receiving power (RSRP), reference signal receiving quality (RSRQ), and reference signal strength indicator (RSSI), etc. or multiple.
  • the first network device separately measures the first uplink signal received on each carrier to obtain the signal strength of the first uplink signal on each carrier.
  • the signal strength of the first uplink signal can be measured by using an existing technology.
  • the signal strength can be expressed as one of reference signal receiving power (RSRP), reference signal receiving quality (RSRQ), and reference signal strength indicator (RSSI), etc. or multiple.
  • the first network device determines an active carrier (active carrier) in the at least one first carrier according to the signal strength of the first uplink signal on the at least one first carrier.
  • the first network device may determine whether the signal strength of the first uplink signal on the corresponding carrier is greater than or equal to the set value according to the measured signal strength of the first uplink signal on at least one carrier. If the signal strength of the first uplink signal on the first carrier is greater than or equal to the set value, the first carrier is determined to be an active carrier.
  • An activated carrier may also be called a serving carrier or a working carrier, which means that the carrier can be activated for terminal equipment to access or perform uplink information transmission.
  • the active carrier may also be referred to as the second carrier.
  • the activated carrier is at least one carrier whose signal strength is greater than or equal to the set value in the at least one first carrier.
  • the activated carrier is only used as an example, not as a name limitation.
  • access may be understood as access used for uplink capacity expansion, or access used for super uplink.
  • the serving carrier refers to a carrier that can serve the terminal device
  • the working carrier refers to a carrier that the terminal device can perform data transmission on on the carrier.
  • the data transmission is uplink data transmission, or mainly uplink data transmission.
  • the first network device compares whether the signal strength of the first uplink signal on each carrier is greater than or equal to the set value according to the measured signal strength of the first uplink signal on each carrier. If the signal strength of the first uplink signal is greater than or equal to the set value, the first carrier may be determined as the active carrier.
  • the following steps S104 and S105 may be performed.
  • the first network device sends first indication information to the second network device, where the first indication information includes information about an activated carrier in at least one first carrier.
  • the second network device receives the first indication information.
  • the first indication information may also include second identification information corresponding to the terminal device.
  • the second identification information includes at least one of the following: a sequence identifier (sequence identifier) corresponding to the uplink signal, and a resource identifier corresponding to the uplink signal.
  • sequence identifier is an SRS sequence, a preamble sequence or any newly defined sequence (such as a ZC sequence, an m sequence, etc.) used to identify the UE.
  • the resource identifier corresponding to the uplink signal is the resource index of the uplink signal or the resource index of the set where the uplink signal is located.
  • the information of the active carrier in the first carrier may be the information of the active beam in the first beam.
  • the information of the activated beam is the second identification information.
  • the first network device After determining the activated carrier, the first network device sends first indication information to the second network device, where the first indication information includes the information of the activated carrier in the at least one first carrier .
  • the second network device may be the macro base station shown in FIG. 1 . There is a downlink time slot between the second network device and the terminal device, and downlink information can be sent to the terminal device. Therefore, the second network device may send the above-mentioned first feedback information to the terminal device according to the above-mentioned first indication information.
  • the second network device sends the first feedback information to the terminal device.
  • the terminal device receives the first feedback information.
  • the first feedback information includes information of an activated carrier in the at least one first carrier.
  • the information of the activated carrier can be understood as the information used to indicate the activated carrier in at least one first carrier.
  • the indication here can be a direct indication or an implicit indication, which enables the terminal device to know at least the activated carrier in the first carrier. Any information of , can be understood as the information of the active carrier.
  • the second network device after receiving the first indication information sent by the first network device, the second network device sends the first feedback information to the terminal device. After receiving the first feedback information, the terminal device can learn the information of the activated carrier that can be used for access or uplink data transmission.
  • the first indication information is information transmitted on an interface between network devices, and the first feedback information is information sent by the network device to the terminal device.
  • the first feedback information is determined according to the first indication information.
  • the first indication information and the first feedback information may be the same information, or may be different information.
  • the content contained in the first indication information and the first feedback information may be completely the same, or may be partially the same.
  • sending the first feedback information by the second network device may be understood as forwarding the first indication information.
  • step S106 may be performed (indicated by a dotted line in the figure).
  • the terminal device sends a preamble to the first network device on at least one activated carrier.
  • the following steps S107 and S08 may be performed (indicated by dotted lines in the figure).
  • the first network device sends third indication information to the second network device, where the third indication information includes a TA corresponding to at least one activated carrier.
  • the second network device sends the second feedback information to the terminal device.
  • the terminal device receives the second feedback information corresponding to the at least one activated carrier.
  • the second feedback information includes the TA corresponding to at least one active carrier.
  • the second feedback information may be a random access response (random access response, RAR) message.
  • the information of the activated carrier in the at least one first carrier can be determined relatively accurately, The reliability of communication on the active carrier is improved.
  • the TA value corresponding to the activated carrier may be obtained through random access.
  • the above-mentioned at least one first carrier may not be a full uplink situation.
  • FIG. 5 another schematic flowchart of a communication method provided by an embodiment of the present application is provided. Exemplarily, the method may include:
  • the terminal device sends a first uplink signal to a first network device on at least one first carrier.
  • step S101 of the embodiment shown in FIG. 4 For the specific implementation of this step, reference may be made to step S101 of the embodiment shown in FIG. 4 .
  • the first network device determines the signal strength of the first uplink signal on at least one first carrier.
  • step S102 in the embodiment shown in FIG. 4 .
  • the first network device determines an activated carrier in the at least one first carrier according to the signal strength of the first uplink signal on the at least one first carrier.
  • step S103 for the specific implementation of this step, reference may be made to step S103 in the embodiment shown in FIG. 4 .
  • the first network device sends the first feedback information to the terminal device.
  • the terminal device receives the first feedback information.
  • the first feedback information includes information of an activated carrier in the at least one first carrier.
  • the first network device can The above-mentioned first feedback information is sent to the terminal device on the time slot.
  • the first time slot is a downlink time slot configured by the first network device to the terminal device.
  • step S105' may be performed (indicated by a dotted line in the figure).
  • the terminal device sends a preamble to the first network device on at least one activated carrier.
  • step S106' may be performed (indicated by a dotted line in the figure).
  • the first network device sends the second feedback information to the terminal device.
  • the terminal device receives the second feedback information corresponding to the at least one activated carrier.
  • the first network device may send the second feedback information through a small number of downlink time slots.
  • the second feedback information includes the TA corresponding to at least one activated carrier.
  • the second feedback information may be a random access response message.
  • the first network device can use a small number of downlink time slots to send the second feedback information, so that the terminal device can acquire the TA value corresponding to the activated carrier through random access according to the second feedback information.
  • the terminal equipment can obtain the corresponding TA value through random access, or on the carrier with downlink transmission, the terminal equipment in a time advance group (TAG) can use the radio resource control (radio resource control, RRC) signaling to obtain the corresponding TA value.
  • RRC radio resource control
  • the random access process is performed by the terminal device sending a preamble on a physical random access channel (PRACH).
  • PRACH physical random access channel
  • the following embodiments consider that the uplink signal obtained from the TA is sent jointly with the signal used for uplink measurement, so as to achieve effective utilization of resources and save uplink signaling overhead.
  • FIG. 6 is another schematic flowchart of the communication method provided by the embodiment of the present application.
  • the terminal device sends a first uplink signal to the first network device on at least one first carrier, where the first uplink signal is used for acquiring TA and uplink measurement.
  • the first uplink signal includes a sounding reference signal (sounding reference signal, SRS), a preamble (preamble code), a demodulation reference signal (demodulation reference signal, DMRS), CSI-RS or any defined sequence (sequence).
  • SRS sounding reference signal
  • preamble preamble code
  • demodulation reference signal demodulation reference signal
  • CSI-RS any defined sequence (sequence).
  • the first uplink signal for acquiring TA, it can be understood as being used for initiating random access.
  • the following takes the first uplink signal as the preamble as an example.
  • the method may include:
  • a terminal device sends a first preamble sequence to a first network device on at least one first carrier.
  • the first network device receives the first preamble sequence on the at least one first carrier.
  • the terminal device sends a first preamble sequence to the first network device on at least one first carrier, where the first preamble sequence is used for acquiring TA and uplink measurement.
  • the second network device when configuring the resource of the uplink measurement signal to the first network device/terminal device, may also indicate that the resource is used for random access, that is, it may indicate that the resource can be used for uplink measurement in addition to In addition, it can also be used for random access; or, when configuring the resource for random access to the first network device/terminal device, the second network device can also indicate that the resource is used for uplink measurement, that is, can indicate that the resource is used for uplink measurement. In addition to random access, the resource can also be used for uplink measurement.
  • the second network device when configuring the resource of the uplink measurement signal to the first network device/terminal device, the second network device indicates that the resource is used for both TA acquisition and uplink measurement.
  • the first network device/terminal device can be identified.
  • the terminal device when the terminal device periodically or is triggered to send the uplink measurement signal, the first network device can perform corresponding execution.
  • the resource of the uplink measurement signal may also be determined by the first network device and communicated to the second network device.
  • the second network device when configuring the resource identifier of the uplink measurement signal to the first network device/terminal device, the second network device indicates that the resource is used for both TA acquisition and uplink measurement.
  • the second network device when configuring the resource of the uplink measurement signal to the first network device/terminal device, the second network device adds a piece of indication information, which is used to identify that the resource of the uplink measurement signal is not only used for acquiring the TA, It is also used for uplink measurement; or, an indication information is added to identify whether the resource of the uplink measurement signal is used for both acquiring TA and uplink measurement.
  • the indication information is 1 bit.
  • the resources of the uplink measurement signal may be configured separately for different carrier identifiers to which the second frequency band belongs, or may be configured to indicate TDD transmission patterns on different carriers for the same configuration.
  • the symbol position of the uplink measurement signal can be a continuous symbol in a time slot or a non-consecutive symbol. Can occupy any OFDM position in a slot.
  • the first network device determines the signal strength of the first preamble sequence on at least one first carrier.
  • the first network device measures the first preamble sequence received on at least one first carrier to obtain the signal strength of the first preamble sequence on at least one first carrier.
  • the first network device determines an activated carrier in the at least one first carrier according to the signal strength of the first preamble sequence on the at least one first carrier.
  • the first network device determines the time advance value corresponding to the activated carrier.
  • the above-mentioned determination of the active carrier and determination of the time advance value are not in any order.
  • the TA may be determined first, and then the active carrier is determined; the active carrier may be determined first, and then the TA may be determined; or the active carrier and the TA may be determined at the same time.
  • the first network device determines the active carrier according to the signal strength of the first preamble sequence on at least one first carrier.
  • the first network device may also determine the TA value corresponding to the activated carrier.
  • one active carrier corresponds to one TA value, that is, the active carrier corresponds to the TA value one-to-one; it may also be that at least one active carrier corresponds to one TA value; or at least one active carrier is divided into one carrier group, and one carrier group corresponds to one TA value.
  • TA value that is, the active carriers in the carrier group have a common TA value.
  • the correspondence between the carrier group and the activated carrier may be pre-configured by RRC signaling, or pre-defined, and may also be determined according to the correlation in TA acquisition. That is, when the TAs of multiple activated carriers are correlated, similar or can be approximated, the multiple activated carriers are determined as a carrier group.
  • the first network device sends fourth indication information to the second network device, where the fourth indication information includes information about an activated carrier in at least one first carrier and a time advance value corresponding to the activated carrier.
  • the second network device receives the fourth indication information.
  • the first network device sends fourth indication information to the second network device, where the fourth indication information is used to respond to the above-initiated random access and uplink measurement.
  • the fourth indication information includes the information of the activated carrier in the at least one first carrier and the TA value corresponding to the activated carrier.
  • the first network device sends the first feedback message to the terminal device on the first time slot.
  • the first time slot is a downlink time slot configured by the first network device to the terminal device.
  • the first feedback information is a random access response (random access response, RAR) message.
  • the fourth indication information may further include the corresponding first identification information and/or second identification information of the terminal device.
  • the first identification information includes at least one of the following: a cell-radio network temporary identifier (cell-radio network temporary identifier, C-RNTI), and a sequence identifier (sequence identifier) corresponding to an uplink signal.
  • C-RNTI is an identifier allocated to the terminal device by the second network device.
  • the second identification information includes at least one of the following: a sequence identifier (sequence identifier) corresponding to the uplink signal, and a resource identifier corresponding to the uplink signal.
  • sequence identifier is an SRS sequence, a preamble sequence or any newly defined sequence (such as a ZC sequence, an m sequence, etc.) used to identify the UE.
  • the resource identifier corresponding to the uplink signal is the resource index of the uplink signal or the resource index of the set where the uplink signal is located.
  • the sequence includes ZC sequence, or m sequence, or any combination of ZC and m sequence.
  • any newly defined sequence can also be understood as any newly defined ZC sequence, or m sequence, or any combination of ZC and m sequences.
  • the second network device sends the first feedback information to the terminal device.
  • the terminal device receives the first feedback information.
  • the first feedback information includes information about an active carrier in the at least one first carrier and a timing advance value corresponding to the active carrier.
  • the first feedback information may also include corresponding first identification information and/or second identification information of the terminal device.
  • the first identifier may be used for cyclic redundancy check (cyclic redundancy check, CRC) scrambling of uplink transmission performed by the terminal device on any acquired active carrier.
  • CRC cyclic redundancy check
  • the information contained in the first feedback information may be sent to the first network by the second network device through the X2 interface or the backhaul link between network devices after the first network device determines the active carrier for the terminal device. equipment. That is, the above-mentioned first feedback information is determined according to the fourth indication information.
  • the first network device may also send fourth indication information to the second network device, and then the second network device broadcasts system information (system information, SI) , the terminal device receives the SI.
  • SI includes a master information block (master information block, MIB) and a plurality of system information blocks (system information blocks, SIBs).
  • the information of the activated carrier in the at least one first carrier and the TA value corresponding to the activated carrier are mainly carried by SIBs.
  • the SIBs may also include the corresponding first identification information and/or second identification information of the terminal device.
  • the first network device may broadcast the SIBs, and the terminal device receives the SIBs.
  • the C-RNTI may be indicated by the second network device to the first network device through an inter-network interface.
  • the C-RNTI indicated to the first network device may be used by the first network device to perform data transmission scheduling of the terminal device in a small number of downlink time slots.
  • the data transmission is uplink data transmission.
  • the following description takes the first feedback information as the RAR message.
  • the second network device sends an RAR message to the terminal device after receiving the fourth indication information from the first network device.
  • the terminal device After the terminal device receives the RAR message, it can obtain the information of the activated carrier in it, so as to determine the activated carrier used for access and uplink information transmission; and can obtain the TA value corresponding to the activated carrier, so that according to the TA value,
  • the corresponding activated carrier is synchronized with the first network device, so as to perform uplink communication with the first network device on the activated carrier.
  • the terminal device receives the RAR message from the first network device.
  • a time advance value for terminal equipment synchronization can be obtained, and can be determined more accurately according to the signal strength of the first preamble sequence
  • the information of the activated carrier in the at least one first carrier improves the reliability of communication on the activated carrier, and saves the signaling overhead in the random access process and the uplink signal measurement process.
  • random access and uplink measurement may not be performed jointly, but random access is performed only when the first uplink signal is detected by the first network device and a corresponding activated carrier is determined.
  • FIG. 7 is another schematic flowchart of the communication method provided by the embodiment of the present application.
  • the terminal device sends a first uplink signal to the first network device on at least one first carrier, where the first uplink signal is used for uplink measurement.
  • the first uplink signal includes a sounding reference signal (sounding reference signal, SRS), a preamble (preamble code), a demodulation reference signal (demodulation reference signal, DMRS), CSI-RS or any defined sequence (sequence).
  • SRS sounding reference signal
  • preamble preamble code
  • demodulation reference signal demodulation reference signal
  • CSI-RS any defined sequence (sequence).
  • the first uplink signal is taken as an SRS as an example.
  • the method may include:
  • a terminal device sends an SRS to a first network device on at least one first carrier.
  • the first network device receives the SRS on the at least one first carrier.
  • the SRS is only used for uplink measurement.
  • the terminal device may also send other uplink measurement signals, such as a preamble, a DMRS, or a newly defined sequence.
  • the first network device determines the signal strength of the SRS on at least one first carrier.
  • step S102 in the embodiment shown in FIG. 4
  • step S202 in the embodiment shown in FIG. 6 .
  • the first network device determines an active carrier in the at least one first carrier according to the signal strength of the SRS on the at least one first carrier.
  • the activated carrier is determined only according to the signal strength of the SRS on the at least one first carrier.
  • the activated carrier is determined only according to the signal strength of the SRS on the at least one first carrier.
  • the first network device sends fifth indication information to the second network device, where the fifth indication information includes information about an activated carrier in at least one first carrier.
  • the second network device detects the fifth indication information.
  • the fifth indication information includes the information of the activated carrier in the at least one first carrier.
  • the fifth indication information does not include TA.
  • the fifth indication information further includes the corresponding second identification information of the terminal device.
  • the specific information of the first identification information and/or the second identification information is as described above and will not be repeated here. For specific implementation, reference may be made to step S104 in the embodiment shown in FIG. 4 .
  • the second network device sends the first feedback information to the terminal device.
  • the terminal device receives the first feedback information.
  • the first feedback information includes information of an activated carrier in at least one of the first carriers.
  • the first feedback information is determined according to the fifth indication information.
  • the fifth indication information is information transmitted on an interface between network devices, and the first feedback information is information sent by the network device to the terminal device.
  • the first feedback information is determined according to the fifth indication information.
  • the fifth indication information and the first feedback information may be the same information, or may be different information.
  • the content contained in the fifth indication information and the first feedback information may be completely the same, or may be partially the same.
  • the second network device sends the first feedback information, which may be understood as forwarding the fifth indication information.
  • step S105 in the embodiment shown in FIG. 4 .
  • the terminal device sends the first preamble sequence to the first network device on the activated carrier.
  • the first network device detects the first preamble sequence.
  • the terminal device After the terminal device acquires the activated carrier determined by the first network device, the terminal device sends the first preamble sequence to the first network device on the activated carrier.
  • the first preamble sequence is used to initiate random access and obtain the TA value corresponding to the activated carrier.
  • the terminal device may respectively send the first preamble sequence on the multiple activated carriers to obtain the TA value corresponding to each activated carrier.
  • the first network device sends sixth indication information to the second network device, where the sixth indication information includes the TA value corresponding to the activated carrier.
  • the second network device detects the sixth indication information.
  • the first network device After receiving the first preamble sequence on the activated carrier, the first network device determines the TA value corresponding to the activated carrier.
  • the first network device sends sixth indication information to the second network device, where the sixth indication information is used to indicate information for responding to the above-initiated random access.
  • the sixth indication information includes the TA value corresponding to each activated carrier, that is, the TA value is for For the activated carrier, the terminal device uses the TA value to communicate on the activated carrier, which can achieve precise synchronization with the first network device.
  • the sixth indication information further includes first identification information.
  • the specific content and beneficial effects of the first identification information can be found in the above description, and will not be repeated here.
  • the second network device sends the second feedback information to the terminal device.
  • the terminal device receives the second feedback information.
  • the second feedback information is determined according to the sixth indication information.
  • the second feedback information is RAR.
  • the second feedback information includes a TA value corresponding to at least one activated carrier.
  • the second feedback information also includes first identification information.
  • the second network device sends an RAR message to the terminal device after receiving the sixth indication information from the first network device.
  • the terminal device can obtain the TA value corresponding to the activated carrier, so that it can synchronize with the first network device on the corresponding activated carrier according to the TA value, so as to communicate with the first network device on the activated carrier. Uplink communication.
  • the active carrier of at least one first carrier can be determined more accurately, which improves The reliability of the communication on the activated carrier; then random access is performed on the determined activated carrier, and the TA value for the activated carrier can be obtained, so that the terminal device uses the TA value to communicate on the activated carrier, and can realize the communication with the first Accurate synchronization of a network device improves communication reliability.
  • random access may also be performed on one carrier first, and then uplink measurement may be performed on another carrier based on the approximate TA value obtained by random access.
  • FIG. 8 is another schematic flowchart of the communication method provided by the embodiment of the present application.
  • the method may include:
  • the terminal device sends the first preamble sequence to the first network device on the second carrier.
  • the first network device receives the first preamble sequence.
  • the first preamble sequence is used for random access.
  • the second carrier is different from the first carrier on which the uplink measurement signal is sent.
  • the first network device sends seventh indication information to the second network device, where the seventh indication information includes TA1 corresponding to the second carrier.
  • the first network device After receiving the first preamble sequence, the first network device determines TA1, where the TA1 corresponds to the second carrier.
  • the first network device after determining TA1, the first network device sends seventh indication information to the second network device, where the seventh indication information includes TA1 corresponding to the second carrier.
  • the second network device sends third feedback information to the terminal device.
  • the third feedback information includes TA1 corresponding to the second carrier.
  • the second network device After receiving the seventh indication information sent by the first network device, the second network device sends third feedback information to the terminal device.
  • the third feedback information is RAR.
  • the third feedback information is determined according to the seventh indication information.
  • the seventh indication information and the third feedback information may be the same information, or may be different information.
  • the content contained in the seventh indication information and the third feedback information may be completely the same, or may be partially the same.
  • the second network device sends the third feedback information, which may be understood as forwarding the seventh indication information.
  • the terminal device sends the first uplink signal to the first network device on at least one first carrier according to TA1.
  • the first network device detects the first uplink signal.
  • the terminal device After receiving the third feedback information, the terminal device obtains TA1, which can be used as the initial TA value for uplink transmission. Therefore, the terminal device sends the first uplink signal to the first network device on at least one first carrier according to the TA1, and the first uplink signal is used for performing uplink measurement.
  • the terminal device may send other uplink measurement signals, such as SRS, DMRS or any newly defined sequence, to the first network device on at least one first carrier.
  • the first network device determines the signal strength of the first uplink signal on at least one first carrier.
  • step S103 in the embodiment shown in FIG. 4
  • step S202 in the embodiment shown in FIG. 6
  • step S302 in the embodiment shown in FIG. 7 .
  • the first network device determines an activated carrier in the at least one first carrier according to the signal strength of the first uplink signal of the at least one first carrier.
  • the first network device may further determine the TA2 corresponding to the activated carrier.
  • step S203 the first network device re-determines the TA2 corresponding to the activated carrier according to the received first uplink signal.
  • the accuracy of the terminal device synchronizing with the first network device using TA2 on the active carrier is higher than the accuracy of synchronizing with the first network device using TA1 on the active carrier.
  • the TA2 may be an offset relative to TA1.
  • the first network device sends eighth indication information to the second network device, where the eighth indication information includes information about an activated carrier in at least one first carrier.
  • the eighth indication information further includes TA2 corresponding to the activated carrier.
  • the second network device receives the eighth indication information.
  • step S204 in the embodiment shown in FIG. 5 .
  • the second network device sends the first feedback information to the terminal device.
  • the first feedback information includes information of an activated carrier in the at least one first carrier.
  • the terminal device receives the first feedback information.
  • the first feedback information is an RAR message.
  • the first feedback information includes information of an activated carrier in at least one of the first carriers.
  • the first feedback information further includes TA2 corresponding to the activated carrier.
  • the first feedback information is determined according to the eighth indication information.
  • the eighth indication information and the first feedback information may be the same information or different information.
  • the content contained in the eighth indication information and the first feedback information may be completely the same, or may be partially the same.
  • the eighth indication information is exactly the same as the first feedback information
  • the second network device sends the first feedback information, which may be understood as forwarding the eighth indication information.
  • step S205 in the embodiment shown in FIG. 5 .
  • a terminal device can send an uplink measurement signal according to an initial TA value, and after receiving the uplink measurement signal, the first access network device can determine an active carrier and determine that the active carrier corresponds to TA value or TA offset value, thereby improving synchronization accuracy and communication reliability.
  • FIG. 9 is another schematic flowchart of the communication method provided by the embodiment of the present application.
  • the method may include:
  • a first network device sends a downlink reference signal on at least one first carrier.
  • the terminal device detects the downlink reference signal from the first network device on the at least one first carrier.
  • the first network device sends the downlink reference signal to the terminal device to periodically send the downlink reference signal to the terminal device.
  • the first network device may periodically send the downlink reference signal to the terminal device through the small number of downlink time slots.
  • the downlink reference signal may be a physical broadcast channel/synchronous signal block (physical broadcast channel/synchronous signal block, PBCH/SS block) or a channel state information-reference signal (channel state information-reference signal, CSI-RS), etc.
  • the density of downlink reference signals can be high density.
  • the density of the downlink reference signals may be configured by the second network device to the terminal device.
  • a small number of downlink time slots may mean that every X time slot is regarded as a time slot configuration period, in which there are Y downlink slots, and the remaining X-Y time slots are all uplink time slots.
  • X can be a large positive integer relative to Y, for example, 20, 30, 40 or 60.
  • Y is a small positive integer relative to X, eg, 1, 2, or 3.
  • the uplink and downlink time slots are configured as 1 downlink time slot and X-1 uplink time slots to cycle in turn, or configured as X-1 uplink time slots and 1 downlink time slot to cycle in turn, there is a small amount of Downlink time slot.
  • the time slot can be called a downlink time slot. That is, a downlink time slot can be understood as a time slot in which downlink symbols are included. Downlink symbols can be consecutive or non-consecutive. Downlink symbols can be consecutive or non-consecutive.
  • the frequency band or partial frequency band (band width partial, BWP) or physical resource block (physical resource block, PRB) in which the downlink symbol is located is configurable.
  • any “configurable” or “configurable” may be understood as being configured by the first network device or the second network device through RRC signaling, and may also be understood as being configured by the first network device or the second network device Configured through MAC layer signaling or physical layer signaling.
  • the first network device or the second network device may configure the number of downlink symbols included in the downlink time slot through RRC signaling.
  • the terminal device determines the signal strength of the downlink reference signal on at least one first carrier.
  • the terminal device after detecting the downlink reference signal, performs signal measurement on the downlink reference signal to obtain the signal strength.
  • the signal strength may be one or more of the above-mentioned RSRP, RSRQ or RSSI.
  • the terminal device sends uplink information to the first network device on the unlicensed resource corresponding to the activated carrier, where the activated carrier is at least one of the first carriers. at least one.
  • the first network device detects the uplink information from the terminal device on the unlicensed resource corresponding to the activated carrier.
  • the uplink channel performance is relatively good. upstream transmission.
  • the active carrier may be a serving carrier or a working carrier determined according to the foregoing embodiments.
  • the activated carrier is at least one of the at least one first carrier.
  • FIG. 10 is another schematic flowchart of the communication method provided by the embodiment of the present application.
  • the method may include:
  • the first network device sends a downlink reference signal on at least one first carrier.
  • the terminal device detects the downlink reference signal on the at least one first carrier.
  • the first network device sends the downlink reference signal to the terminal device to periodically send the downlink reference signal to the terminal device.
  • the first network device may periodically send the downlink reference signal to the terminal device through the small number of downlink time slots.
  • the downlink reference signal may be a physical broadcast channel/synchronous signal block (physical broadcast channel/synchronous signal block, PBCH/SS block) or a channel state information-reference signal (channel state information-reference signal, CSI-RS), etc.
  • the density of downlink reference signals can be high density.
  • the density of the downlink reference signals may be configured by the second network device to the terminal device.
  • the time delay (time delay) obtained by the terminal device detecting the downlink reference signal may be used as the initial uplink TA reference value in the frequency band, so as to realize the initial alignment with the first network device.
  • the terminal device determines the signal strength of the downlink reference signal on at least one first carrier.
  • the terminal device after detecting the downlink reference signal, performs signal measurement on the downlink reference signal to obtain the signal strength.
  • the signal strength may be one or more of the above-mentioned RSRP, RSRQ or RSSI.
  • the terminal device sends the first uplink signal to the first network device on at least one first carrier.
  • the first network device receives the first uplink signal on the at least one first carrier.
  • the terminal device When the measured signal strength of the downlink reference signal is greater than or equal to the second set value, the terminal device is triggered to send the first uplink signal to the first network device on at least one first carrier. In this way, redundant transmission can be performed when the terminal device is far away from the first network device, and the power consumption of the terminal device can be reduced.
  • the second set value may be greater than or equal to the first set value of the embodiment shown in FIG. 9 , and may not be limited thereto.
  • step S101 in the embodiment shown in FIG. 4 or step S201 in the embodiment shown in FIG. 6 .
  • the time delay (time delay) obtained by the terminal device detecting the downlink reference signal can be used as the initial uplink TA reference value on the frequency band, so as to realize the initial alignment with the first network device. Therefore, in this step, it is not necessary to initiate a new random access on the frequency band (at least one first carrier), and the sending of the first uplink signal may be based on the initial TA reference value.
  • the TA value reference may be made to the embodiment shown in FIG. 8 . Therefore, the rough timing can be obtained with reference to the downlink synchronization, and the TA adjustment can also be obtained through the uplink signal, which can save random access signaling.
  • the first network device determines the signal strength of the first uplink signal on at least one first carrier.
  • step S102 in the embodiment shown in FIG. 4
  • step S202 in the embodiment shown in FIG. 6 .
  • the first network device determines an activated carrier in the at least one first carrier according to the signal strength of the first uplink signal on the at least one first carrier.
  • step S103 in the embodiment shown in FIG. 4
  • step S203 in the embodiment shown in FIG. 6 .
  • the first network device sends first feedback information to the terminal device, where the first feedback information includes information about an activated carrier in at least one first carrier.
  • the terminal device receives the first feedback information.
  • the first network device may send the first feedback information to the terminal device in a few downlink time slots.
  • the first feedback information includes information of an activated carrier in the at least one carrier.
  • the terminal device obtains the initial UL TA reference value according to the downlink reference signal, and the first feedback information may also include the offset value of the UL TA. This offset value is used to adjust the UL TA.
  • Uplink communication generally uses grant free resources, and grant free resources corresponding to different carriers are pre-configured.
  • Grant-free resources also known as configured grant resources, include two types: type 1 and type 2.
  • the license-free resources of type 1 are semi-statically configured and do not require dynamic indication information for activation issued by the network device;
  • the license-free resources of type 2 are semi-statically configured and require dynamic downlink control information (downlink control information, DCI) is activated.
  • DCI downlink control information
  • the license-free resource is activated based on the activated carrier in the first feedback information, and accordingly, the license-free resource corresponding to the activated carrier is activated, and the license-free resource can be effectively used.
  • the first feedback information may also include second indication information, where the second indication information is used to indicate that the license-free resource corresponding to the activated carrier is activated, so that the terminal device can report to the first user on the license-free resource corresponding to the activated carrier.
  • the network device sends uplink information.
  • this situation is to use type 1 license-free resources.
  • the first network device is required to activate the license-free resource.
  • this situation is to use type 2 license-free resources.
  • the first network device may adopt the newly defined DCI, that is, send the first DCI to the terminal device on the activated carrier, where the first DCI includes at least one segment (segment), or at least one information block (block) .
  • At least one field or information block includes at least one item of the following information: trigger indication information (trigger bit), activated carrier identity (carrier identity), and license-exempt resource set identity.
  • the trigger indication information is used to activate the license-free resource corresponding to the activated carrier.
  • the terminal device may send the first uplink signal by using the license-free resource corresponding to the activated carrier.
  • the first network device may multiplex the existing form of DCI, that is, send a second DCI to the terminal device on the activated carrier, where the second DCI is used to trigger the transmission of the first uplink signal, that is, the second DCI is used to trigger the transmission of the first uplink signal.
  • DCI is the trigger for upstream measurement.
  • the terminal device can send the first uplink signal by using the type 2 license-free resource corresponding to the activated carrier.
  • the second DCI may further include the above trigger indication information, where the trigger indication information is used to activate the license-free resource corresponding to the activated carrier.
  • the terminal device can send the uplink measurement signal to the first network device when the signal strength of the downlink reference signal is strong, so as to avoid redundant transmission when it is far away from the first network device and reduce the The power consumption of the end device.
  • the methods and/or steps implemented by the terminal device may also be implemented by components (such as chips or circuits) that can be used in the terminal device; the methods and/or steps implemented by the first network device The steps may also be implemented by components (eg, chips or circuits) available for the first network device.
  • an embodiment of the present application further provides a communication device, where the communication device is used to implement the above-mentioned various methods.
  • the communication device may be the terminal device in the foregoing method embodiment, or a device including the foregoing terminal device, or a component available for the terminal device; or, the communication device may be the first network device in the foregoing method embodiment, or An apparatus including the above-mentioned first network device, or a component that can be used for the first network device.
  • the communication apparatus includes corresponding hardware structures and/or software modules for executing each function.
  • the embodiments of the present application can be implemented in hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Experts may use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of the embodiments of the present application.
  • the communication device may be divided into functional modules according to the above method embodiments.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that, the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation.
  • FIG. 11 shows a schematic structural diagram of a communication device 110 .
  • the communication device 110 includes a transceiver unit 1101 and a processing unit 1102 .
  • the transceiver unit 1101 may also be referred to as a transceiver unit to implement a transceiver function, for example, a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • the transceiver unit 1101 is configured to send a first uplink signal to a first network device on at least one first carrier; and the transceiver unit 1101 is further configured to receive first feedback information; wherein the first feedback information Information about an active carrier in the at least one first carrier is included.
  • the transceiver unit 1101 is further configured to receive the first feedback information from the second network device; or the transceiver unit 1101 is further configured to receive the first feedback information from the first network device a feedback.
  • the transceiver unit 1101 is further configured to receive the first feedback information from the first network device through a first time slot, where the first time slot is between the first network device and the Downlink time slot configured between terminal devices.
  • the processing unit 1102 is configured to detect the first uplink signal on at least one first carrier; the processing unit 1102 is further configured to determine the signal strength of the first uplink signal on the at least one first carrier; the The processing unit 1102 is further configured to determine the active carrier in the at least one first carrier according to the signal strength of the first uplink signal on the at least one first carrier; and the transceiver unit 1101 is configured to send the first feedback information, where the first feedback information includes information of an activated carrier in the at least one first carrier.
  • the transceiving unit 1101 is further configured to send first indication information to a second network device, where the first indication information includes information about an activated carrier in the at least one first carrier; or, the transceiving Unit 1101 is further configured to send the first feedback information to the terminal device.
  • the transceiver unit 1101 is further configured to send the first feedback information through a first time slot, where the first time slot is the downlink time configured between the first network device and the terminal device gap.
  • the processing unit 1102 is configured to detect a downlink reference signal from a first network device on at least one first carrier; the processing unit is further configured to determine the signal strength of the downlink reference signal; and the transceiver unit 1101 is used to send uplink information to the first network device on the license-free resource corresponding to the activated carrier when the signal strength of the downlink reference signal is greater than or equal to the first set value.
  • the transceiver unit 1101 is configured to send a downlink reference signal on at least one first carrier; and the processing unit 1102 is configured to detect uplink information from the terminal device on the license-free resource corresponding to the activated carrier.
  • the processing unit 1102 is configured to detect a downlink reference signal from a first network device on at least one first carrier; the processing unit is further configured to determine the signal strength of the downlink reference signal; and the transceiver unit 1101 is used to send a first uplink signal to the first network device on the at least one first carrier when the signal strength of the downlink reference signal is greater than a second set value.
  • the transceiver unit 1101 is further configured to receive first feedback information, wherein the first feedback information includes information of an activated carrier in the at least one first carrier.
  • processing unit 1101 is further configured to determine the initial uplink timing advance according to the downlink reference signal.
  • the transceiver unit 1101 is further configured to receive first downlink control information, where the first downlink control information includes at least one field, and each field includes at least one of the following information: trigger indication information, carrier identifier, The license-free resource set identifier, the trigger indication information is used to activate the license-free resource corresponding to the activated carrier; or the transceiver unit 1101 is further configured to receive second downlink control information, and the second downlink control information is used for Trigger the transmission of the first uplink signal, and the second downlink control information includes the trigger indication information.
  • first downlink control information includes at least one field, and each field includes at least one of the following information: trigger indication information, carrier identifier, The license-free resource set identifier, the trigger indication information is used to activate the license-free resource corresponding to the activated carrier; or the transceiver unit 1101 is further configured to receive second downlink control information, and the second downlink control information is used for Trigger the transmission of the first uplink signal, and the second downlink control information includes the trigger
  • the transceiver unit 1101 is configured to send a downlink reference signal on at least one first carrier; and the processing unit 1102 is configured to detect a first uplink signal sent by the terminal device on the at least one first carrier.
  • the processing unit 1102 is further configured to determine the signal strength of the first uplink signal on the at least one first carrier; the processing unit 1102 is further configured to determine the signal strength of the first uplink signal on the at least one first carrier; The signal strength of the first uplink signal determines the active carrier; and the transceiver unit 1101 is further configured to send first feedback information, where the first feedback information includes information of an active carrier in the at least one first carrier.
  • the transceiver unit 1101 is configured to send first indication information to the second network device, where the first indication information includes information about an activated carrier in at least one first carrier; or, the transceiver unit 1101, It is also used to send the first feedback information to the terminal device.
  • the transceiver unit 1101 is configured to send first downlink control information, the first downlink control information includes at least one field, and each field includes at least one of the following information: trigger indication information, carrier identifier, free An identifier of a set of authorized resources, the trigger indication information is used to activate the license-free resource corresponding to the activated carrier; or the transceiver unit 1101 is used to send second downlink control information, and the second downlink control information is used to trigger all the transmission of the first uplink signal, and the second downlink control information includes the trigger indication information.
  • the communication device 110 is presented in the form of dividing each functional unit in an integrated manner.
  • a "unit” here may refer to an application specific integrated circuit (ASIC), a circuit, a processor and memory executing at least one software or firmware program, an integrated logic circuit, and/or other devices that can provide the above functions.
  • ASIC application specific integrated circuit
  • the processor 301 in the communication apparatus 300 shown in FIG. 3 may invoke the computer execution instructions stored in the memory 303 to cause the communication apparatus 300 to execute the communication method in the above method embodiment.
  • the functions/implementation process of the transceiver unit 1101 and the processing unit 1102 in FIG. 11 can be implemented by the processor 301 in the communication apparatus 300 shown in FIG. 3 calling the computer execution instructions stored in the memory 303 .
  • the function/implementation process of the processing unit 1102 in FIG. 11 can be implemented by the processor 301 in the communication device 300 shown in FIG. 3 calling the computer-executed instructions stored in the memory 303, and the function of the transceiver unit 1101 in FIG.
  • the implementation process can be implemented through the communication interface 304 in the communication device 300 shown in FIG. 3 .
  • the communication apparatus 110 provided in this embodiment can execute the communication methods in the foregoing method embodiments, reference can be made to the foregoing method embodiments for technical effects that can be obtained, and details are not described herein again.
  • the above units or units may be implemented by software, hardware or a combination of the two.
  • the software exists in the form of computer program instructions and is stored in the memory, and the processor can be used to execute the program instructions and implement the above method flow.
  • the processor can be built into a system on chip (SoC) or ASIC, or it can be an independent semiconductor chip.
  • SoC system on chip
  • the internal processing of the processor may further include necessary hardware accelerators, such as field programmable gate arrays (FPGA), programmable logic devices (programmable logic devices). device, PLD), or a logic circuit that implements dedicated logic operations.
  • the hardware may be a central processing unit (CPU), a microprocessor, a digital signal processing (DSP) chip, a microcontroller unit (MCU) ), any one or any combination of artificial intelligence processors, ASICs, SoCs, FPGAs, PLDs, special-purpose digital circuits, hardware accelerators, or non-integrated discrete devices that may or may not run the necessary software to perform the above method flow.
  • CPU central processing unit
  • DSP digital signal processing
  • MCU microcontroller unit
  • an embodiment of the present application further provides a chip system, including: at least one processor and an interface, the at least one processor is coupled to the memory through the interface, and when the at least one processor executes the computer program or instruction in the memory , the method in any of the above method embodiments is executed.
  • the chip system may be composed of chips, or may include chips and other discrete devices, which are not specifically limited in this embodiment of the present application.
  • At least one item (a) of a, b, or c may represent: a, b, c, ab, ac, bc, or abc, where a, b, and c may be single or multiple .
  • words such as “first” and “second” are used to describe the same or similar items that have basically the same function and effect. distinguish. Those skilled in the art can understand that the words “first”, “second” and the like do not limit the quantity and execution order, and the words “first”, “second” and the like are not necessarily different.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations or illustrations. Any embodiments or designs described in the embodiments of the present application as “exemplary” or “such as” should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary” or “such as” is intended to present the related concepts in a specific manner to facilitate understanding.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • a software program it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes at least one computer instruction.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line, DSL) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device including at least one server, data center, etc. that can be integrated with the medium.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media (eg, solid state disks (SSDs)), and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种通信方法及装置。该方法包括:终端设备在至少一个第一载波上向第一网络设备发送第一上行信号,第一网络设备在至少一个第一载波上检测该第一上行信号,并根据确定的至少一个第一载波上的第一上行信号的信号强度,确定激活载波,并向终端设备发送第一反馈信息,该第一反馈信息包括至少一个第一载波中的激活载波的信息。还提供了相应的装置。采用本申请实施例的方案,通过确定终端设备在至少一个第一载波上发送的第一上行信号的信号强度,可以较为准确地确定至少一个第一载波中的激活载波的信息,提高了在该激活载波上通信的可靠性。

Description

通信方法及装置
本申请要求于2020年07月27日提交中国国家知识产权局、申请号为202010733726.1、发明名称为“通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
第五代(5 th generation,5G)新无线(new radio,NR)通信***中,终端设备的上行传输通常会功率受限,导致上行传输的信号在到达基站时的接收信号强度可能不足以保证其覆盖性能。此外,上行频谱(spectrum)也可能不够,因此不可能依赖对数据的重传来保证其上行覆盖性能。目前NR通信***引入增补上行(supplementary uplink,SUL)作为NR通信***中上行覆盖不足时的备选,即,NR通信***支持在一个小区中配置多个上行载波。长期演进(long term evolution,LTE)通信***的低频段通常具有更好的覆盖性能,因此,在实现SUL时,考虑了使用LTE通信***的较低频段(例如,700MHz、1.8GHz或2.1GHz等)进行NR上行传输。具体地,终端设备在使用LTE通信***的频段进行NR上行传输时,可与LTE通信***中的上行时分双工(time division duplex,TDD)或频分双工(frequency division duplex,FDD)复用该频段。
此外,可以考虑使用较高的频段实现SUL。例如,4.9GHz频段能够提供更高带宽的频谱资源,从而提供更为充分的上行资源,因此可以考虑在该频段上进行上行覆盖的拓展。
在使用LTE通信***的较低频段实现SUL时,终端设备可以在NR通信***的频段上检测信号质量,当该频段上的信号质量低于某预设门限时,判断该频段不能满足其接入要求,因此可以转到LTE通信***的较低频段上进行接入。然而,对于例如4.9GHz频段的较高频段,当NR通信***的频段上信号质量不理想时,转到一个较高频的频段上并不能保证信号强度一定会好,因此,目前的SUL接入规则不适用于利用较高频段实现SUL的情况,需要设计新的接入机制。比如,当例如4.9GHz的较高频段包括的载波为全上行的载波或上行占主导的载波时,如何进行有效测量从而完成该频段上的有效接入,并且在该频段上的多个载波中确定可用的激活载波(active carrier)是有待解决的。
发明内容
本申请实施例提供一种通信方法及装置,以较为准确地确定激活载波,提高该激活载波上通信的可靠性。
第一方面,提供了一种通信方法,所述方法包括:终端设备在至少一个第一载波上向第一网络设备发送第一上行信号;以及所述终端设备接收第一反馈信息;其中,所述第一反馈信息包括所述至少一个第一载波中的激活载波的信息。在该方面中,通过确定终端设备在至少一个第一载波上发送的第一上行信号的信号强度,可以较为准确地确定至少一个 第一载波中的激活载波的信息,提高了在该激活载波上通信的可靠性。
结合第一方面,在一种可能的实现中,所述第一反馈信息还包括所述激活载波对应的时间提前值,所述时间提前值对应至少一个激活载波,或者所述时间提前值与至少一个激活载波一一对应,或者所述时间提前值对应至少一个激活载波组。在该实现中,第一上行信号除了用于上行测量,还可以同时用于随机接入,节省了信令开销,提高了通信效率。
结合第一方面,在又一种可能的实现中,该第一上行信号可以是探测参考信号、前导码、解调参考信号、信道状态信息-参考信号或任何定义的序列。
结合第一方面,在又一种可能的实现中,所述第一上行信号用于定时提前获取和上行测量。
结合第一方面,在又一种可能的实现中,所述第一反馈信息为随机接入响应消息或者***信息。
结合第一方面,在又一种可能的实现中,所述第一上行信号为第一前导序列,所述第一上行信号用于进行随机接入和上行测量。
结合第一方面,在又一种可能的实现中,所述激活载波的信息还用于指示该激活载波上的部分或全部免授权资源被激活。在该实现中,终端设备在激活载波的同时,触发了免授权资源被激活,从而可以在该激活载波和免授权资源上进行上行传输。
结合第一方面,在又一种可能的实现中,所述终端设备接收第一反馈信息包括:所述终端设备接收来自第二网络设备的所述第一反馈信息;或者,所述终端设备接收来自所述第一网络设备的所述第一反馈信息。在该实现中,若第一载波为全上行的载波,则第一网络设备可以通过第二网络设备发送激活载波的信息;若第一载波为上行占主导的载波,则第一网络设备可以通过少数的下行时隙发送该激活载波的信息。
结合第一方面,在又一种可能的实现中,所述终端设备接收来自所述第一网络设备的所述第一反馈信息,包括:所述终端设备通过第一时隙接收来自所述第一网络设备的所述第一反馈信息,所述第一时隙为所述第一网络设备与所述终端设备之间配置的下行时隙。
结合第一方面,在又一种可能的实现中,所述第一反馈信息中还包含所述终端设备相应的第一标识信息和/或第二标识信息;其中,第一标识信息包括下述至少一种:小区无线网络临时标识,上行信号对应的序列标识;第二标识信息包括下述至少一种:上行信号对应的序列标识,上行信号对应的资源标识。
结合第一方面,在又一种可能的实现中,所述上行信号对应的序列标识为上行信号自身的序列标识。
结合第一方面,在又一种可能的实现中,所述第一载波属于第一载波组中的载波,所述第一载波组具有共同的时间提前值。在该实现中,第一载波组具有共同的时间提前值,无需对第一载波组中的每个第一载波一一确定时间提前值,提高了通信效率。
第二方面,提供了一种通信方法,所述方法包括:第一网络设备在至少一个第一载波上检测第一上行信号;所述第一网络设备确定所述至少一个第一载波上的第一上行信号的信号强度;所述第一网络设备根据所述至少一个第一载波上的第一上行信号的信号强度,确定所述至少一个第一载波中的激活载波;以及所述第一网络设备发送第一反馈信息,所述第一反馈信息包括所述至少一个第一载波中的激活载波的信息。在该方面中,通过确定 终端设备在至少一个第一载波上发送的第一上行信号的信号强度,可以较为准确地确定至少一个第一载波中的激活载波的信息,提高了在该激活载波上通信的可靠性。
结合第二方面,在一种可能的实现中,所述第一反馈信息还包括所述激活载波对应的时间提前值,所述时间提前值对应至少一个激活载波,或者所述时间提前值与至少一个激活载波一一对应,或者所述时间提前值对应至少一个激活载波组。
结合第二方面,在又一种可能的实现中,所述第一反馈信息为随机接入响应消息或者***信息。
结合第二方面,在又一种可能的实现中,所述第一上行信号为第一前导序列,所述第一上行信号用于进行随机接入和上行测量。
结合第二方面,在又一种可能的实现中,所述第一上行信号用于获取时间提前值和上行测量。所述第一上行信号包括探测参考信号、前导码、解调参考信号、信道状态信息-参考信号或任何定义的序列。
结合第二方面,在又一种可能的实现中,所述激活载波的信息为所述第一网络设备基于对所述第一上行信号的测量所确定的第一载波。
结合第二方面,在又一种可能的实现中,所述第一网络设备发送第一反馈信息包括:所述第一网络设备向第二网络设备发送第一指示信息,所述第一指示信息包括所述至少一个第一载波中的激活载波的信息;或者,所述第一网络设备向终端设备发送所述第一反馈信息。
结合第二方面,在又一种可能的实现中,所述第一网络设备向终端设备发送所述第一反馈信息,包括:所述第一网络设备通过第一时隙发送所述第一反馈信息,所述第一时隙为所述第一网络设备与所述终端设备之间配置的下行时隙。
结合第二方面,在又一种可能的实现中,所述第一反馈信息中还包含所述终端设备相应的第一标识信息和/或第二标识信息;其中,第一标识信息包括下述至少一种:小区无线网络临时标识,上行信号对应的序列标识;第二标识信息包括下述至少一种:上行信号对应的序列标识,上行信号对应的资源标识。
结合第二方面,在又一种可能的实现中,所述上行信号对应的序列标识为上行信号自身的序列标识。
结合第二方面,在又一种可能的实现中,所述第一载波属于第一载波组中的载波,所述第一载波组具有共同的时间提前值。
第三方面,提供了一种通信方法,所述方法包括:终端设备在至少一个第一载波上检测来自第一网络设备的下行参考信号;所述终端设备确定所述下行参考信号的信号强度;以及当所述下行参考信号的信号强度大于或等于第一设定值时,所述终端设备在激活载波对应的免授权资源上向所述第一网络设备发送上行信息。在该方面中,终端设备可以在下行参考信号的信号强度较强时,在激活载波对应的免授权资源上向所述第一网络设备发送上行信息,提高了上行传输的可靠性。
第四方面,提供了一种通信方法,所述方法包括:第一网络设备在至少一个第一载波上发送下行参考信号;以及所述第一网络设备在激活载波对应的免授权资源上检测来自终端设备的上行信息。
第五方面,提供了一种通信方法,所述方法包括:终端设备在至少一个第一载波上检测来自第一网络设备的下行参考信号;所述终端设备确定所述下行参考信号的信号强度;以及当所述下行参考信号的信号强度大于第二设定值时,所述终端设备在所述至少一个第一载波上向所述第一网络设备发送第一上行信号。在该方面中,终端设备可以在下行参考信号的信号强度较强时,向第一网络设备发送上行测量信号,从而避免远离第一网络设备时的冗余发送,减少终端设备的功耗。
结合第五方面,在一种可能的实现中,所述方法还包括:所述终端设备接收第一反馈信息;其中,所述第一反馈信息包括所述至少一个第一载波中的激活载波的信息。在该实现中,第一反馈信息包括激活载波的信息,该激活载波的信息是第一网络设备根据第一上行信号的信号强度确定的,从而终端设备可以利用该激活载波的信息进行可靠的信息传输。
结合第五方面,在又一种可能的实现中,所述第一反馈信息还包括第二指示信息,所述第二指示信息用于指示被激活的免授权资源。在该实现中,第一反馈信息包括激活载波的信息和第二指示信息,从而在激活载波的同时,可以触发在免授权资源上进行信息传输。
结合第五方面,在又一种可能的实现中,所述第一反馈信息还包括上行定时提前的偏移值。在该实现中,第一上行信号除了用于上行测量,还可以同时用于随机接入,节省了信令开销,提高了通信效率。
结合第五方面,在又一种可能的实现中,所述方法还包括:根据所述下行参考信号,确定初始上行定时提前。在该实现中,根据下行参考信号可以确定初始上行定时提前,避免重新获取上行定时提前,提高了通信效率。
结合第五方面,在又一种可能的实现中,所述下行参考信号为物理广播信道,或同步信号块,或信道状态信息-参考信号。
结合第五方面,在又一种可能的实现中,所述方法还包括:所述终端设备接收第一下行控制信息,所述第一下行控制信息包括至少一个字段,每个字段包括以下至少一个信息:触发指示信息,载波标识,免授权资源集合标识,所述触发指示信息用于激活所述激活载波对应的免授权资源;或所述终端设备接收第二下行控制信息,所述第二下行控制信息用于触发所述第一上行信号的传输,所述第二下行控制信息包括所述触发指示信息。在该实现中,可以采用新定义的下行控制信息或复用已有的下行控制信息指示上行测量的传输参数。
第六方面,提供了一种通信方法,所述方法包括:第一网络设备在至少一个第一载波上发送下行参考信号;以及所述第一网络设备检测所述终端设备在所述至少一个第一载波上发送的第一上行信号。
结合第六方面,在一种可能的实现中,所述方法还包括:所述第一网络设备确定所述至少一个第一载波上的第一上行信号的信号强度;所述第一网络设备根据所述至少一个第一载波上的第一上行信号的信号强度,确定激活载波;以及所述第一网络设备发送第一反馈信息,所述第一反馈信息包括所述至少一个第一载波中的激活载波的信息。
结合第六方面,在又一种可能的实现中,所述第一网络设备发送第一反馈信息包括:所述第一网络设备向第二网络设备发送第一指示信息,所述第一指示信息包括至少一个第一载波中的激活载波的信息;或者,所述第一网络设备向终端设备发送所述第一反馈信息。
结合第六方面,在又一种可能的实现中,所述第一反馈信息包括第二指示信息,所述第二指示信息用于指示被激活的免授权资源。
结合第六方面,在又一种可能的实现中,所述第一反馈信息包括上行定时提前的偏移值。
结合第六方面,在又一种可能的实现中,所述方法还包括:所述第一网络设备发送第一下行控制信息,所述第一下行控制信息包括至少一个字段,每个字段包括以下至少一个信息:触发指示信息,载波标识,免授权资源集合标识,所述触发指示信息用于激活所述激活载波对应的免授权资源;或所述第一网络设备发送第二下行控制信息,所述第二下行控制信息用于触发所述第一上行信号的传输,所述第二下行控制信息包括所述触发指示信息。
第七方面,提供了一种通信装置用于执行上述第一方面或第一方面的任一可能的实现中的方法。该通信装置可以为上述第一方面或第一方面的任一可能的实现中的终端设备,或者应用于终端设备中的模块,例如芯片或芯片***。其中,该通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括至少一个与上述功能相对应的模块或单元。
结合上述第七方面,在一种可能的实现中,通信装置包括:收发单元;其中,所述收发单元,用于在至少一个第一载波上向第一网络设备发送第一上行信号;以及所述收发单元,还用于接收第一反馈信息;其中,所述第一反馈信息包括所述至少一个第一载波中的激活载波的信息。
可选地,所述收发单元,还用于接收来自第二网络设备的所述第一反馈信息;或者,所述收发单元,还用于接收来自所述第一网络设备的所述第一反馈信息。
可选地,所述收发单元,还用于通过第一时隙接收来自所述第一网络设备的所述第一反馈信息,所述第一时隙为所述第一网络设备与所述终端设备之间配置的下行时隙。
结合上述第七方面,在又一种可能的实现中,通信装置包括:输入接口、输出接口和处理电路;其中,所述输出接口,用于在至少一个第一载波上向第一网络设备发送第一上行信号;以及所述输入接口,用于接收第一反馈信息;其中,所述第一反馈信息包括所述至少一个第一载波中的激活载波的信息。
可选地,所述输入接口,还用于接收来自第二网络设备的所述第一反馈信息;或者,所述输入接口,还用于接收来自所述第一网络设备的所述第一反馈信息。
可选地,所述输入接口,还用于通过第一时隙接收来自所述第一网络设备的所述第一反馈信息,所述第一时隙为所述第一网络设备与所述终端设备之间配置的下行时隙。
示例性地,该通信装置还包括存储器,该存储器与该至少一个处理器耦合,该至少一个处理器用于运行存储器中存储的程序指令,以使得所述通信装置执行上述第一方面或第一方面的任一可能的实现中的方法。
在一种可能的实现中,该存储器用于存储程序指令和数据。该存储器与该至少一个处理器耦合,该至少一个处理器可以调用并执行该存储器中存储的程序指令,以使得所述通信装置执行上述第一方面或第一方面的任一可能的实现中的方法。
示例性地,该通信装置还包括通信接口,该通信接口用于该通信装置与其它设备进行通信。当该通信装置为终端时,该通信接口为收发器、输入/输出接口、或电路等。
在一种可能的设计中,该通信装置包括:至少一个处理器和通信接口,用于执行上述第一方面或第一方面的任一可能的实现中的方法,具体地包括:该至少一个处理器利用该通信接口与外部通信;该至少一个处理器用于运行计算机程序,使得该通信装置执行上述第一方面或第一方面的任一可能的实现中的方法。可以理解,该外部可以是处理器以外的对象,或者是该通信装置以外的对象。
在另一种可能的设计中,该通信装置为芯片或芯片***。该通信接口可以是该芯片或芯片***上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器也可以体现为处理电路或逻辑电路。
其中,第七方面中任一种设计方式所带来的技术效果可参见上述第一方面中不同设计方式所带来的技术效果,此处不再赘述。
第八方面,提供了一种通信装置用于执行上述第二方面或第二方面的任一可能的实现中的方法。该通信装置可以为上述第二方面或第二方面的任一可能的实现中的第一网络设备,或者应用于第一网络设备中的模块,例如芯片或芯片***。其中,该通信装置包括实现上述方法相应的模块、单元、或means,该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括至少一个与上述功能相对应的模块或单元。
结合上述第八方面,在一种可能的实现中,通信装置包括:收发单元和处理单元;所述处理单元,用于在至少一个第一载波上检测第一上行信号;所述处理单元,还用于确定所述至少一个第一载波上的第一上行信号的信号强度;所述处理单元,还用于根据所述至少一个第一载波上的第一上行信号的信号强度,确定所述至少一个第一载波中的激活载波;以及所述收发单元,用于发送第一反馈信息,所述第一反馈信息包括所述至少一个第一载波中的激活载波的信息。
可选地,所述收发单元,还用于向第二网络设备发送第一指示信息,所述第一指示信息包括所述至少一个第一载波中的激活载波的信息;或者,所述收发单元,还用于向终端设备发送所述第一反馈信息。
可选地,所述收发单元,还用于通过第一时隙发送所述第一反馈信息,所述第一时隙为所述第一网络设备与所述终端设备之间配置的下行时隙。
结合上述第八方面,在又一种可能的实现中,通信装置包括:输入接口、输出接口和处理电路;所述处理电路,用于在至少一个第一载波上检测第一上行信号;所述处理电路,还用于确定所述至少一个第一载波上的第一上行信号的信号强度;所述处理电路,还用于根据所述至少一个第一载波上的第一上行信号的信号强度,确定所述至少一个第一载波中的激活载波;以及所述输出接口,用于发送第一反馈信息,所述第一反馈信息包括所述至少一个第一载波中的激活载波的信息。
可选地,所述输出接口,还用于向第二网络设备发送第一指示信息,所述第一指示信息包括所述至少一个第一载波中的激活载波的信息;或者,所述输出接口,还用于向终端设备发送所述第一反馈信息。
可选地,所述输出接口,还用于通过第一时隙发送所述第一反馈信息,所述第一时隙为所述第一网络设备与所述终端设备之间配置的下行时隙。
示例性地,该通信装置还包括存储器,该存储器与该至少一个处理器耦合,该至少一个处理器用于运行存储器中存储的程序指令,以使得所述通信装置执行上述第二方面或第二方面的任一可能的实现中的方法。
在一种可能的实现中,该存储器用于存储程序指令和数据。该存储器与该至少一个处理器耦合,该至少一个处理器可以调用并执行该存储器中存储的程序指令,以使得所述通信装置执行上述第二方面或第二方面的任一可能的实现中的方法。
示例性地,该通信装置还包括通信接口,该通信接口用于该通信装置与其它设备进行通信。当该通信装置为接入网设备时,该通信接口为收发器、输入/输出接口、或电路等。
在一种可能的设计中,该通信装置包括:至少一个处理器和通信接口,用于执行上述第二方面或第二方面的任一可能的实现中的方法,具体地包括:该至少一个处理器利用该通信接口与外部通信;该至少一个处理器用于运行计算机程序,使得该通信装置执行上述第二方面或第二方面的任一可能的实现中的方法。可以理解,该外部可以是处理器以外的对象,或者是该通信装置以外的对象。
在另一种可能的设计中,该通信装置为芯片或芯片***。该通信接口可以是该芯片或芯片***上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器也可以体现为处理电路或逻辑电路。
其中,第八方面中任一种设计方式所带来的技术效果可参见上述第二方面中不同设计方式所带来的技术效果,此处不再赘述。
第九方面,提供了一种通信装置用于执行上述第三方面或第三方面的任一可能的实现中的方法。该通信装置可以为上述第三方面或第三方面的任一可能的实现中的终端设备,或者应用于终端设备中的模块,例如芯片或芯片***。其中,该通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括至少一个与上述功能相对应的模块或单元。
结合上述第九方面,在一种可能的实现中,通信装置包括:处理单元和收发单元;其中,所述处理单元,用于在至少一个第一载波上检测来自第一网络设备的下行参考信号;所述处理单元,还用于确定所述下行参考信号的信号强度;以及所述收发单元,用于当所述下行参考信号的信号强度大于或等于第一设定值时,在激活载波对应的免授权资源上向所述第一网络设备发送上行信息。
结合上述第九方面,在又一种可能的实现中,通信装置包括:输入接口、输出接口和处理电路;其中,所述处理电路,用于在至少一个第一载波上检测来自第一网络设备的下行参考信号;所述处理电路,还用于确定所述下行参考信号的信号强度;以及所述输出接口,用于当所述下行参考信号的信号强度大于或等于第一设定值时,在激活载波对应的免授权资源上向所述第一网络设备发送上行信息。
示例性地,该通信装置还包括存储器,该存储器与该至少一个处理器耦合,该至少一个处理器用于运行存储器中存储的程序指令,以使得所述通信装置执行上述第三方面或第 三方面的任一可能的实现中的方法。
在一种可能的实现中,该存储器用于存储程序指令和数据。该存储器与该至少一个处理器耦合,该至少一个处理器可以调用并执行该存储器中存储的程序指令,以使得所述通信装置执行上述第三方面或第三方面的任一可能的实现中的方法。
示例性地,该通信装置还包括通信接口,该通信接口用于该通信装置与其它设备进行通信。当该通信装置为终端时,该通信接口为收发器、输入/输出接口、或电路等。
在一种可能的设计中,该通信装置包括:至少一个处理器和通信接口,用于执行上述第三方面或第三方面的任一可能的实现中的方法,具体地包括:该至少一个处理器利用该通信接口与外部通信;该至少一个处理器用于运行计算机程序,使得该通信装置执行上述第三方面或第三方面的任一可能的实现中的方法。可以理解,该外部可以是处理器以外的对象,或者是该通信装置以外的对象。
在另一种可能的设计中,该通信装置为芯片或芯片***。该通信接口可以是该芯片或芯片***上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器也可以体现为处理电路或逻辑电路。
其中,第九方面中任一种设计方式所带来的技术效果可参见上述第三方面中不同设计方式所带来的技术效果,此处不再赘述。
第十方面,提供了一种通信装置用于执行上述第四方面或第四方面的任一可能的实现中的方法。该通信装置可以为上述第四方面或第四方面的任一可能的实现中的第一网络设备,或者应用于第一网络设备中的模块,例如芯片或芯片***。其中,该通信装置包括实现上述方法相应的模块、单元、或means,该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括至少一个与上述功能相对应的模块或单元。
结合上述第十方面,在一种可能的实现中,通信装置包括:收发单元和处理单元;其中,所述收发单元,用于在至少一个第一载波上发送下行参考信号;以及所述处理单元,用于在激活载波对应的免授权资源上检测来自终端设备的上行信息。
结合上述第十方面,在又一种可能的实现中,通信装置包括:输入接口、输出接口和处理电路;所述输出接口,用于在至少一个第一载波上发送下行参考信号;以及所述处理电路,用于在激活载波对应的免授权资源上检测来自终端设备的上行信息。
示例性地,该通信装置还包括存储器,该存储器与该至少一个处理器耦合,该至少一个处理器用于运行存储器中存储的程序指令,以使得所述通信装置执行上述第四方面或第四方面的任一可能的实现中的方法。
在一种可能的实现中,该存储器用于存储程序指令和数据。该存储器与该至少一个处理器耦合,该至少一个处理器可以调用并执行该存储器中存储的程序指令,以使得所述通信装置执行上述第四方面或第四方面的任一可能的实现中的方法。
示例性地,该通信装置还包括通信接口,该通信接口用于该通信装置与其它设备进行通信。当该通信装置为接入网设备时,该通信接口为收发器、输入/输出接口、或电路等。
在一种可能的设计中,该通信装置包括:至少一个处理器和通信接口,用于执行上述第四方面或第四方面的任一可能的实现中的方法,具体地包括:该至少一个处理器利用该 通信接口与外部通信;该至少一个处理器用于运行计算机程序,使得该通信装置执行上述第四方面或第四方面的任一可能的实现中的方法。可以理解,该外部可以是处理器以外的对象,或者是该通信装置以外的对象。
在另一种可能的设计中,该通信装置为芯片或芯片***。该通信接口可以是该芯片或芯片***上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器也可以体现为处理电路或逻辑电路。
其中,第十方面中任一种设计方式所带来的技术效果可参见上述第四方面中不同设计方式所带来的技术效果,此处不再赘述。
第十一方面,提供了一种通信装置用于执行上述第五方面或第五方面的任一可能的实现中的方法。该通信装置可以为上述第五方面或第五方面的任一可能的实现中的终端设备,或者应用于终端设备中的模块,例如芯片或芯片***。其中,该通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括至少一个与上述功能相对应的模块或单元。
结合上述第十一方面,在一种可能的实现中,通信装置包括:处理单元和收发单元;其中,所述处理单元,用于在至少一个第一载波上检测来自第一网络设备的下行参考信号;所述处理单元,还用于确定所述下行参考信号的信号强度;以及所述收发单元,用于当所述下行参考信号的信号强度大于第二设定值时,在所述至少一个第一载波上向所述第一网络设备发送第一上行信号。
可选地,所述收发单元,还用于接收第一反馈信息;其中,所述第一反馈信息包括所述至少一个第一载波中的激活载波的信息。
可选地,所述处理单元,还用于根据所述下行参考信号,确定初始上行定时提前。
可选地,所述收发单元,还用于接收第一下行控制信息,所述第一下行控制信息包括至少一个字段,每个字段包括以下至少一个信息:触发指示信息,载波标识,免授权资源集合标识,所述触发指示信息用于激活所述激活载波对应的免授权资源;或所述收发单元,还用于接收第二下行控制信息,所述第二下行控制信息用于触发所述第一上行信号的传输,所述第二下行控制信息包括所述触发指示信息。
结合上述第十一方面,在又一种可能的实现中,通信装置包括:输入接口、输出接口和处理电路;其中,所述处理电路,用于在至少一个第一载波上检测来自第一网络设备的下行参考信号;所述处理电路,还用于确定所述下行参考信号的信号强度;以及所述输出接口,用于当所述下行参考信号的信号强度大于第二设定值时,在所述至少一个第一载波上向所述第一网络设备发送第一上行信号。
可选地,所述输入接口,还用于接收第一反馈信息;其中,所述第一反馈信息包括所述至少一个第一载波中的激活载波的信息。
可选地,所述处理电路,还用于根据所述下行参考信号,确定初始上行定时提前。
可选地,所述输入接口,还用于接收第一下行控制信息,所述第一下行控制信息包括至少一个字段,每个字段包括以下至少一个信息:触发指示信息,载波标识,免授权资源集合标识,所述触发指示信息用于激活所述激活载波对应的免授权资源;或所述输入接口, 还用于接收第二下行控制信息,所述第二下行控制信息用于触发所述第一上行信号的传输,所述第二下行控制信息包括所述触发指示信息。
示例性地,该通信装置还包括存储器,该存储器与该至少一个处理器耦合,该至少一个处理器用于运行存储器中存储的程序指令,以使得所述通信装置执行上述第五方面或第五方面的任一可能的实现中的方法。
在一种可能的实现中,该存储器用于存储程序指令和数据。该存储器与该至少一个处理器耦合,该至少一个处理器可以调用并执行该存储器中存储的程序指令,以使得所述通信装置执行上述第五方面或第五方面的任一可能的实现中的方法。
示例性地,该通信装置还包括通信接口,该通信接口用于该通信装置与其它设备进行通信。当该通信装置为终端时,该通信接口为收发器、输入/输出接口、或电路等。
在一种可能的设计中,该通信装置包括:至少一个处理器和通信接口,用于执行上述第五方面或第五方面的任一可能的实现中的方法,具体地包括:该至少一个处理器利用该通信接口与外部通信;该至少一个处理器用于运行计算机程序,使得该通信装置执行上述第五方面或第五方面的任一可能的实现中的方法。可以理解,该外部可以是处理器以外的对象,或者是该通信装置以外的对象。
在另一种可能的设计中,该通信装置为芯片或芯片***。该通信接口可以是该芯片或芯片***上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器也可以体现为处理电路或逻辑电路。
其中,第十一方面中任一种设计方式所带来的技术效果可参见上述第五方面中不同设计方式所带来的技术效果,此处不再赘述。
第十二方面,提供了一种通信装置用于执行上述第六方面或第六方面的任一可能的实现中的方法。该通信装置可以为上述第六方面或第六方面的任一可能的实现中的第一网络设备,或者应用于第一网络设备中的模块,例如芯片或芯片***。其中,该通信装置包括实现上述方法相应的模块、单元、或means,该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括至少一个与上述功能相对应的模块或单元。
结合上述第十二方面,在一种可能的实现中,通信装置包括:收发单元和处理单元;所述收发单元,用于在至少一个第一载波上发送下行参考信号;以及所述处理单元,用于检测所述终端设备在所述至少一个第一载波上发送的第一上行信号。
可选地,所述处理单元,还用于确定所述至少一个第一载波上的第一上行信号的信号强度;所述处理单元,还用于根据所述至少一个第一载波上的第一上行信号的信号强度,确定激活载波;以及所述收发单元,还用于发送第一反馈信息,所述第一反馈信息包括所述至少一个第一载波中的激活载波的信息。
可选地,所述收发单元,用于向第二网络设备发送第一指示信息,所述第一指示信息包括至少一个第一载波中的激活载波的信息;或者,所述收发单元,还用于向终端设备发送所述第一反馈信息。
可选地,所述收发单元,用于发送第一下行控制信息,所述第一下行控制信息包括至少一个字段,每个字段包括以下至少一个信息:触发指示信息,载波标识,免授权资源集 合标识,所述触发指示信息用于激活所述激活载波对应的免授权资源;或所述收发单元,用于发送第二下行控制信息,所述第二下行控制信息用于触发所述第一上行信号的传输,所述第二下行控制信息包括所述触发指示信息。
结合上述第十二方面,在又一种可能的实现中,通信装置包括:输入接口、输出接口和处理电路;其中,所述输出接口,用于在至少一个第一载波上发送下行参考信号;以及所述处理电路,用于检测所述终端设备在所述至少一个第一载波上发送的第一上行信号。
可选地,所述处理电路,还用于确定所述至少一个第一载波上的第一上行信号的信号强度;所述处理电路,还用于根据所述至少一个第一载波上的第一上行信号的信号强度,确定激活载波;以及所述输出接口,还用于发送第一反馈信息,所述第一反馈信息包括所述至少一个第一载波中的激活载波的信息。
可选地,所述输出接口,用于向第二网络设备发送第一指示信息,所述第一指示信息包括至少一个第一载波中的激活载波的信息;或者,所述输出接口,还用于向终端设备发送所述第一反馈信息。
可选地,所述输出接口,用于发送第一下行控制信息,所述第一下行控制信息包括至少一个字段,每个字段包括以下至少一个信息:触发指示信息,载波标识,免授权资源集合标识,所述触发指示信息用于激活所述激活载波对应的免授权资源;或所述输出接口,用于发送第二下行控制信息,所述第二下行控制信息用于触发所述第一上行信号的传输,所述第二下行控制信息包括所述触发指示信息。
示例性地,该通信装置还包括存储器,该存储器与该至少一个处理器耦合,该至少一个处理器用于运行存储器中存储的程序指令,以使得所述通信装置执行上述第六方面或第六方面的任一可能的实现中的方法。
在一种可能的实现中,该存储器用于存储程序指令和数据。该存储器与该至少一个处理器耦合,该至少一个处理器可以调用并执行该存储器中存储的程序指令,以使得所述通信装置执行上述第六方面或第六方面的任一可能的实现中的方法。
示例性地,该通信装置还包括通信接口,该通信接口用于该通信装置与其它设备进行通信。当该通信装置为接入网设备时,该通信接口为收发器、输入/输出接口、或电路等。
在一种可能的设计中,该通信装置包括:至少一个处理器和通信接口,用于执行上述第六方面或第六方面的任一可能的实现中的方法,具体地包括:该至少一个处理器利用该通信接口与外部通信;该至少一个处理器用于运行计算机程序,使得该通信装置执行上述第六方面或第六方面的任一可能的实现中的方法。可以理解,该外部可以是处理器以外的对象,或者是该通信装置以外的对象。
在另一种可能的设计中,该通信装置为芯片或芯片***。该通信接口可以是该芯片或芯片***上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器也可以体现为处理电路或逻辑电路。
其中,第十二方面中任一种设计方式所带来的技术效果可参见上述第六方面中不同设计方式所带来的技术效果,此处不再赘述。
第十三方面,提供了一种通信***,包括上述第七方面或第七方面的任一种实现中的通信装置、以及第八方面或第八方面的任一种实现中的通信装置。
第十四方面,提供了一种通信***,包括上述第九方面或第九方面的任一种实现中的通信装置、以及第十方面或第十方面的任一种实现中的通信装置。
第十五方面,提供了一种通信***,包括上述第十一方面或第十一方面的任一种实现中的通信装置、以及第十二方面或第十二方面的任一种实现中的通信装置。
第十六方面,提供了一种计算机可读存储介质,存储有计算机程序,当其在计算机上运行时,上述各方面或各方面的任一种实现所述的方法被执行。
第十七方面,提供了一种计算机程序产品,当其在计算机上运行时,使得上述各方面或各方面的任一种实现所述的方法被执行。
第十八方面,提供了一种计算机程序,当其在计算机上运行时,使得上述各方面或各方面的任一种实现所述的方法被执行。
附图说明
图1为本申请实施例涉及的网络结构示意图;
图2为本申请实施例涉及的一种通信***的示意图;
图3为本申请实施例提供的通信装置300的结构示意图;
图4为本申请实施例提供的通信方法的流程示意图;
图5为本申请实施例提供的通信方法的又一流程示意图;
图6为本申请实施例提供的通信方法的又一流程示意图;
图7为本申请实施例提供的通信方法的又一流程示意图;
图8为本申请实施例提供的通信方法的又一流程示意图;
图9为本申请实施例提供的通信方法的又一流程示意图;
图10为本申请实施例提供的通信方法的又一流程示意图;
图11为本申请实施例提供的通信装置110的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
图1为本申请实施例涉及的网络结构示意图。本申请实施例中,终端设备可同时位于宏基站(如图1中示例的Cell#A)和微基站(如图1中示例的Cell#B)的覆盖范围内,终端设备可与宏基站和微基站建立通信连接。其中,Cell#A占用较低频段,例如,700MHz频段、800MHz频段、2GHz频段、1.9GHz频段、2.1GHz频段或2.5GHz频段等。Cell#B占用较高频段,例如,3.5GHz频段或4.9GHz频段。可以将较高频段理解为高于3.5GHz的任意频段,这里说的任意频段也包括毫米波频段。例如4.9GHz的较高频段可以包括至少一个载波(carrier),这些载波可以是全上行的载波或上行占主导(UL dominant)的载波。
本申请实施例的技术方案可以应用于各种通信***,例如,长期演进(long term evolution,LTE)***、LTE频分双工(frequency division duplex,FDD)***、LTE时分双工(time division duplex,TDD)***、第五代(5th generation,5G)***或新无线(new radio,NR)。本申请实施例中涉及的5G移动通信***包括非独立组网(non-standalone,NSA)的5G移动通信***或独立组网(standalone,SA)的5G移动通信***。本申请实 施例提供的技术方案还可以应用于未来的通信***,如第六代(6th generation,6G)移动通信***。本申请实施例中涉及的通信***还可以是陆上公用移动通信网(public land mobile network,PLMN)网络、设备到设备(device-to-device,D2D)通信***、机器到机器(machine to machine,M2M)通信***、物联网(internet of things,IoT)、车联网通信***或者其他通信***。
请参见图2,图2给出了本申请实施例涉及的一种通信***的示意图。该通信***可以包括第一网络设备201、第二网络设备202以及与第一网络设备201、第二网络设备202连接的终端设备203。该第一网络设备201可以是图1所述的微基站,其占用较高频段,例如4.9GHz频段;第二网络设备202可以是图1所述的宏基站,其占用较低频段,例如,2.5GHz频段。
本申请实施例中的终端设备203可以指接入终端、用户单元、用户站、移动站、移动台、中继站、远方站、远程终端、移动设备、用户终端(user terminal)、用户设备(user equipment,UE)、终端(terminal)、无线通信设备、用户代理、用户装置、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端或者未来演进的PLMN中的终端或者未来车联网中的终端等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,终端设备203可以是手机、平板电脑、带无线收发功能的电脑、虚拟现实终端、增强现实终端、工业控制中的无线终端、无人驾驶中的无线终端、远程手术中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、智慧家庭中的无线终端等。
作为示例而非限定,在本申请实施例中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如,智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,终端设备203还可以是物联网(internet of things,IoT)***中的终端,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。在本申请实施例中,IoT技术可以通过例如窄带(narrow band,NB)技术,做到海量连接,深度覆盖,终端省电。
此外,在本申请实施例中,终端设备203还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端)、接收接入网设备的控制信息与下行数据,并发送电磁波,向接入网设备传输上行数据。
可选的,本申请实施例中的第一网络设备201/第二网络设备202可以是用于与终端设备203通信的任意一种具有无线收发功能的通信设备。该第一网络设备201/第二网络设备 202包括但不限于:演进型节点B(evolved node B,eNB),基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)***中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者传输接收点(transmission reception point,TRP)等。该第一网络设备201/第二网络设备202还可以为5G***中的gNB或TRP或TP,或者5G***中的基站的一个或一组(包括多个天线面板)天线面板。此外,该第一网络设备201/第二网络设备202还可以为构成gNB或TP的网络节点,如BBU,或分布式单元(distributed unit,DU)等。该第一网络设备201/第二网络设备202还可以为5.5G或6G***中的网络设备。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。此外,gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理层(physical layer,PHY)的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU和AAU发送的。可以理解的是,接入网设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。
可选的,本申请实施例中的第一网络设备201/第二网络设备202和终端设备203之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信。第一网络设备201和终端设备203之间可以通过较高频谱(例如,4.9GHz)进行通信,第二网络设备202和终端设备203可以通过较低频谱(例如,2.5GHz)进行通信。
可选的,本申请实施例中的第一网络设备201、第二网络设备202和终端设备203可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请实施例的实施例对第一网络设备201、第二网络设备202和终端设备203的应用场景不做限定。
可选的,在本申请实施例中,第一网络设备201、第二网络设备202和终端设备203包括硬件层、运行在硬件层之上的操作***层,以及运行在操作***层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作***可以是任意一种或多种通过进程(process)实现业务处理的计算机操作***,例如,Linux操作***、Unix操作***、Android操作***、iOS操作***或windows操作***等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是第一网络设备201、第二网络设备202和终端设备203,或者,是第一网 络设备201、第二网络设备202和终端设备203中能够调用程序并执行程序的功能模块。
换言之,本申请实施例中的第一网络设备201、第二网络设备202和终端设备203的相关功能可以由一个设备实现,也可以由多个设备共同实现,还可以是由一个设备内的至少一个功能模块实现,本申请实施例对此不作具体限定。可以理解的是,上述功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是硬件与软件的结合,或者是平台(例如,云平台)上实例化的虚拟化功能。
例如,本申请实施例中的第一网络设备201、第二网络设备202和终端设备203的相关功能可以通过图3中的通信装置300来实现。图3所示为本申请实施例提供的通信装置300的结构示意图。该通信装置300包括至少一个处理器301,通信线路302,以及至少一个通信接口(图3中仅是示例性的以包括通信接口304,以及一个处理器301为例进行说明),可选的还可以包括存储器303。
处理器301可以是一个中央处理单元(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或至少一个用于控制本申请实施例的方案程序执行的集成电路。
通信线路302可包括一通路,用于连接不同组件之间。
通信接口304,可以是收发模块用于与其他设备或通信网络通信,如以太网,RAN,无线局域网(wireless local area networks,WLAN)等。例如,所述收发模块可以是收发器、收发机一类的装置。可选的,所述通信接口304也可以是位于处理器301内的收发电路,用以实现处理器的信号输入和信号输出。
存储器303可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路302与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器303用于存储执行本申请实施例的方案的计算机执行指令,并由处理器301来控制执行。处理器301用于执行存储器303中存储的计算机执行指令,从而实现本申请实施例中提供的通信方法。
或者,也可以是处理器301执行本申请实施例提供的通信方法中的处理相关的功能,通信接口304负责与其他设备或通信网络通信,本申请实施例对此不作具体限定。
本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器301可以包括至少一个CPU,例如图3中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置300可以包括多个处理器,例如图3中的 处理器301和处理器303。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指至少一个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,通信装置300还可以包括输出设备305和输入设备303。输出设备305和处理器301通信,可以以多种方式来显示信息。
上述的通信装置300可以是一个通用装置或者是一个专用装置。例如通信装置300可以是台式机、便携式电脑、网络服务器、掌上电脑(personal digital assistant,PDA)、移动手机、平板电脑、无线终端、嵌入式设备或具有图3中类似结构的设备。本申请实施例不限定通信装置300的类型。
下面将结合图1至图10对本申请实施例提供的通信方法进行具体阐述。
需要说明的是,本申请实施例中各个网元之间的消息名字或消息中各参数的名字等只是一个示例,具体实现中也可以是其他的名字,本申请实施例对此不做具体限定。
本申请实施例可以单独使用,也可以联合使用。
本申请实施例下述以较高频段/较低频段作为示例。较高频段可以替换为第二频段。较低频段可以替换为第一频段。其中,第一频段可以是授权频段;第二频段可以是非授权频段,或者,第一频段可以是低频谱;第二频段可以是高频谱。
本申请中,载波也可以替换为“波束”。相应的,第一载波可以为第一波束,第X载波可以为第X波束。同样,激活载波可以为激活波束,载波标识可以为波束标识。可选地,波束标识可以为第二标识信息。
用于上行测量指的是用于判断载波是否被激活,或者载波是否被选择用于数据传输。可以为:用于上行测量指的是用于判断波束是否被激活,或者波束是否被选择用于数据传输。这适用于第二频段为高频率,例如第二频谱为毫米波的情形。
本申请实施例中,在一些实施例中,第二网络设备在向第一网络设备/终端设备配置该上行测量信号的资源时,可以同时指示该资源用于随机接入,或者,可以指示该资源同时用于随机接入;或者,第二网络设备在向第一网络设备/终端设备配置进行随机接入的资源时,可以同时指示该资源用于上行测量,或者可以指示该资源同时用于上行测量。
本申请实施例中,可选的,第二网络设备在向第一网络设备/终端设备配置该上行测量信号的资源时,指示该资源是既用于获取定时提前(timing advance,TA),又用于上行测量。从而,第一网络设备/终端设备能进行识别。这里,定时提前也可以称为时间提前量、时间提前值或定时提前量。可选的,当终端设备周期性的或者被触发进行该上行测量信号的发送时,第一网络设备能够对应执行。当然,该上行测量信号的资源也可以是第一网络设备确定,并交互给第二网络设备。
作为一种实施例,第二网络设备在向第一网络设备/终端设备配置该上行测量信号的资源标识时,指示该资源是既用于获取TA,又用于上行测量。作为另一种实施例,第二网络设备在向第一网络设备/终端设备配置该上行测量信号的资源时,增加一个指示信息,用于标识该上行测量信号的资源为既用于获取TA,又用于上行测量;或者,增加一个指示信息,用于标识该上行测量信号的资源是否既用于获取TA,又用于上行测量。可选的,所述指示信息为1bit。
本申请实施例中,该上行测量信号的资源可以是针对第二频段所属的不同的载波标识分别配置,也可以是对于相同的配置,指示不同载波上的TDD传输图样(pattern)。上行测量信号的符号位置可以是一个时隙中连续的符号,也可以是非连续的符号。可以占据一个时隙中任何OFDM位置。
本申请实施例中,在另一些实施例中,第二网络设备在向第一网络设备/终端设备配置进行随机接入的资源时,可以指示该资源用于上行测量。
本申请实施例中,可选的,第二网络设备在向第一网络设备/终端设备配置该上行测量信号的资源时,指示该资源是用于上行测量。从而,第一网络设备/终端设备能进行识别。可选的,当终端设备周期性的或者被触发进行该上行测量信号的发送时,第一网络设备能够对应执行。当然,该上行测量信号的资源可以是第二网络设备确定;也可以是第一网络设备确定,并交互给第二网络设备。
作为一种实施例,第二网络设备在向第一网络设备/终端设备配置该上行测量信号的资源标识时,指示该资源是用于上行测量。作为另一种实施例,第二网络设备在向第一网络设备/终端设备配置该上行测量信号的资源时,增加一个指示信息,用于标识该上行测量信号的资源为用于上行测量;或者,增加一个指示信息,用于标识该上行测量信号的资源是否用于上行测量。可选的,所述指示信息为1比特(bit)。
本申请实施例中,该上行测量信号的资源可以是针对第二频段所属的不同的载波标识分别配置,也可以是对于相同的配置,指示不同载波上的TDD传输图样。上行测量信号的符号位置可以是一个时隙中连续的符号,也可以是非连续的符号。可以占据一个时隙中任何OFDM位置。
本申请实施例中,第一反馈信息,也可以称之为第一响应信息,或者第一信息。只作为命名,不构成限定。
本申请实施例中,***信息为剩余***信息块(remaining SIB,RMSB),或者说***信息为基于请求的***信息块(on demand based SIB)。
请参见图4,为本申请实施例提供的通信方法的流程示意图。示例性地,该方法可以包括:
S101、终端设备在至少一个第一载波上向第一网络设备发送第一上行信号。
相应地,第一网络设备在至少一个第一载波上接收第一上行信号。本申请实施例中的接收,也可以理解为检测、探测、测量或监测。例如,接收第一上行信号可以理解为检测或测量第一上行信号。
如前所述,在利用较高频段实现SUL时,通信的可靠性不能确定,需要设计新的接入机制。此外,例如4.9GHz频段的较高频段包括至少一个载波,这些载波一般是全上行的载波或上行占主导的载波,在设计新的接入机制时,需要考虑到这一点。
本申请实施例中,全上行的载波为在上下行时隙(slot)配比中,全部时隙均为上行时隙的载波。上行占主导的载波为在上下行时隙配比中,上行时隙占多数而下行时隙占少数的载波。作为示例,上行占主导的载波的上下行时隙配比如下:每X个时隙被看作一个时隙配置周期,在该周期中有Y个下行slot,其余X-Y个时隙均为上行时隙。其中,X可以是相对于Y而言较大的正整数,例如,20、30、40或者60。相应地,Y为相对于X而言 较小的正整数,例如,1、2或3。例如,在上行占主导的载波中,上下行时隙可以被配置为1个下行时隙和X-1个上行时隙依次循环,或者被配置为X-1个上行时隙和1个下行时隙依次循环。其中,只要一个时隙中包含下行符号,该时隙就可以被称为下行时隙。即,可以将下行时隙理解为其中包含下行符号的时隙。下行符号可以是连续的或者非连续的。可选的,下行符号所在的频带或部分频带(band width partial,BWP)或物理资源块(physical resource block,PRB)是可配置的。
本申请中,任何“可配”或“可配置”,可以理解由第一网络设备或第二网络设备通过RRC信令配置的,也可以理解为由第一网络设备或第二网络设备通过MAC层信令或物理层信令配置的。例如,第一网络设备或第二网络设备可以通过RRC信令配置下行时隙中包含的下行符号的数量。
因此,本实施例,终端设备在上述较高频段的至少一个载波上向第一网络设备发送第一上行信号。该第一网络设备可以是如图1所示的微基站,该微基站位于上述较高频段。该第一上行信号用于上行测量,该第一上行信号可以是探测参考信号(sounding reference signal,SRS)、前导码(preamble code)、解调参考信号(demodulation reference signal,DMRS)、信道状态信息-参考信号(channel state information-reference signal,CSI-RS)或任何定义的序列(sequence)。可选的,本申请实施例中,任何定义的序列可以是ZC序列或者C序列。以第一上行信号为SRS为例,该SRS不是用于调度,而是用于上行测量,则该SRS又可以称为接入探测参考信号(access-SRS)或者无线资源管理探测参考信号(radio resource management-sounding reference signal,RRM-SRS)。
本申请实施例中,用于调度,指的是现有用于上行信道测量或者信道状态获取。用于上行测量指的是用于判断载波是否被激活,或者载波是否被选择用于数据传输。上行测量也可以理解为上行检测。前导码也可以称之为前导序列,或者前导信号。
终端设备在至少一个载波上向第一网络设备发送第一上行信号,可以是在设定时间内,终端设备在每个载波上向第一网络设备发送第一上行信号。第一网络设备在每个载波上接收终端设备发送的第一上行信号。
本申请实施例中,设定可以理解为预设。预设为预定义的,或者预先配置的。预先配置为由第一网络设备/第二网络设备通过RRC信令或MAC信令进行配置。
本申请实施例中,上述任何由第二网络设备配置,可以在第一网络设备与终端设备之间只有上行时隙的前提下,实现对终端设备的配置信息指示。上述任何由第一网络设备配置,可以在第一网络设备与终端设备之间有下行时隙或下行符号传输的前提下,实现对终端设备的配置信息指示。
满足设定条件的至少一个载波可以属于一个载波组。该设定条件例如可以是载波位置相邻,或者载波具有共同的属性信息等。本申请实施例中,载波组也可以称之为载波集合。
S102、第一网络设备确定至少一个第一载波上的第一上行信号的信号强度。
第一网络设备确定至少一个第一载波上的第一上行信号的信号强度,可以为第一网络设备测量至少一个第一载波上接收到的第一上行信号,得到至少一个第一载波上的第一上行信号的信号强度;或者,第一网络设备根据至少一个第一载波上接收到的第一上行信号,获取至少一个第一载波上的第一上行信号的信号强度。其中,“得到”或者“获取”,可以理 解为直接确定,也可以理解为推导所得。
本申请实施例中,第一上行信号的信号强度可以层一(layer 1)的信号强度,或者层三(layer 3)过滤所得的信号强度。
具体地,第一网络设备在多个载波上接收到第一上行信号后,分别测量相应的载波上接收到的第一上行信号,得到该载波上的第一上行信号的信号强度。可以采用已有的技术测量第一上行信号的信号强度。该信号强度可以表示为参考信号接收功率(reference signal receiving power,RSRP)、参考信号接收质量(reference signal receiving quality,RSRQ)和参考信号强度指示(reference signal strength indicator,RSSI)等中的一项或多项。
可选的,第一网络设备在每个载波上接收到第一上行信号后,分别测量每个载波上接收到的第一上行信号,得到每个载波上的第一上行信号的信号强度。可以采用已有的技术测量第一上行信号的信号强度。该信号强度可以表示为参考信号接收功率(reference signal receiving power,RSRP)、参考信号接收质量(reference signal receiving quality,RSRQ)和参考信号强度指示(reference signal strength indicator,RSSI)等中的一项或多项。
S103、第一网络设备根据至少一个第一载波上的第一上行信号的信号强度,确定至少一个第一载波中的激活载波(active carrier)。
第一网络设备可以根据测量得到的至少一个载波上的第一上行信号的信号强度,确定相应载波上的第一上行信号的信号强度是否大于或等于设定值。对于第一载波上的第一上行信号的信号强度大于或等于设定值的,确定该第一载波为激活载波。激活载波又可以称为服务载波或工作载波,是指该载波可以被激活用于终端设备进行接入或进行上行信息传输。激活载波也可以称为第二载波。该激活载波为上述至少一个第一载波中信号强度大于或等于设定值的至少一个载波。本申请实施例中,激活载波仅被用作示例,不作为名称限定。本申请实施例中,接入可以理解为用于上行容量扩展的接入,或者用于超级上行的接入。本申请实施例中,服务载波指能服务于该终端设备的载波,工作载波指该终端设备能在该载波上进行数据传输的载波。其中,数据传输为上行数据传输,或者主要为上行数据传输。
可选的,第一网络设备根据测量得到的每个载波上的第一上行信号的信号强度,比较每个载波上的第一上行信号的信号强度是否大于或等于设定值,对于第一载波上的第一上行信号的信号强度大于或等于设定值的,该第一载波可以确定为激活载波。
可选的,当上述至少一个第一载波为全上行的情况时,可以有下述S104和S105步骤。
S104、第一网络设备向第二网络设备发送第一指示信息,该第一指示信息包括至少一个第一载波中的激活载波的信息。
相应地,第二网络设备接收该第一指示信息。
第一指示信息还可以包含该终端设备相应的第二标识信息。
本申请实施例中,第二标识信息包括下述至少一种:上行信号对应的序列标识(sequence identifier),上行信号对应的资源标识。其中,序列标识为用于标识该UE的SRS序列、前导序列或者任何新定义的序列(如ZC序列、m序列等)。上行信号对应的资源标识为上行信号的资源索引或上行信号所在集合(set)的资源索引。
第一载波中的激活载波的信息可以为第一波束中的激活波束的信息。可选的,激活波 束的信息为第二标识信息。
对于上述至少一个第一载波为全上行的情况,第一网络设备确定激活载波后,向第二网络设备发送第一指示信息,该第一指示信息包括至少一个第一载波中的激活载波的信息。该第二网络设备可以是图1所示的宏基站。第二网络设备与终端设备之间有下行时隙,可以向终端设备发送下行信息。因此,可以由第二网络设备根据上述第一指示信息,向终端设备发送上述第一反馈信息。
S105、第二网络设备向终端设备发送第一反馈信息。
相应地,终端设备接收第一反馈信息。
该第一反馈信息包括至少一个第一载波中的激活载波的信息。激活载波的信息可以理解为用于指示至少一个第一载波中的激活载波的信息,这里的指示可以是直接指示,也可以是隐含指示,能够使终端设备获知至少第一载波中的激活载波的任何信息都可以被理解为激活载波的信息。
对于上述至少一个第一载波为全上行的情况,第二网络设备接收到第一网络设备发送的第一指示信息后,向终端设备发送第一反馈信息。终端设备接收该第一反馈信息后,可以了解到可以用于接入或上行数据传输的激活载波的信息。
本申请实施例中,第一指示信息为网络设备间接口上传输的信息,第一反馈信息为网络设备发送给终端设备的信息。第一反馈信息为根据第一指示信息所确定的。第一指示信息与第一反馈信息可以为相同的信息,也可以为不同的信息。第一指示信息与第一反馈信息所包含的内容可以完全相同,也可以部分相同。当第一指示信息与第一反馈信息完全相同时,第二网络设备发送第一反馈信息,可以理解为转发第一指示信息。
可选的,当终端设备收到第一反馈信息后,可以有下述S106步骤(图中以虚线表示)。
S106、终端设备在至少一个激活载波上向第一网络设备发送前导码。
可选的,当上述至少一个第一载波为全上行的情况时,可以有下述S107和S08步骤(图中以虚线表示)。
S107、第一网络设备向第二网络设备发送第三指示信息,该第三指示信息包括至少一个激活载波所对应的TA。
S108、第二网络设备向终端设备发送第二反馈信息。
相应地,终端设备接收对应至少一个激活载波的第二反馈信息。
所述第二反馈信息包含至少一个激活载波所对应的TA。可选的,第二反馈信息可以为随机接入响应(random access response,RAR)消息。
根据本申请实施例提供的一种通信方法,通过确定终端设备在至少一个第一载波上发送的第一上行信号的信号强度,可以较为准确地确定至少一个第一载波中的激活载波的信息,提高了在该激活载波上通信的可靠性。额外的,可以在确定激活载波后,通过随机接入获取激活载波对应的TA值。
在又一个实施例中,上述至少一个第一载波也可以不为全上行的情况。如图5所示,为本申请实施例提供的通信方法的又一流程示意图,示例性地,该方法可以包括:
S101’、终端设备在至少一个第一载波上向第一网络设备发送第一上行信号。
该步骤的具体实现可参考图4所示实施例的步骤S101。
S102’、第一网络设备确定至少一个第一载波上的第一上行信号的信号强度。
该步骤的具体实现可参考图4所示实施例的步骤S102。
S103’、第一网络设备根据至少一个第一载波上的第一上行信号的信号强度,确定至少一个第一载波中的激活载波。
该步骤的具体实现可参考图4所示实施例的步骤S103。
S104’、第一网络设备向终端设备发送第一反馈信息。
相应地,终端设备接收第一反馈信息。
该第一反馈信息包括至少一个第一载波中的激活载波的信息。
与图4所示实施例不同的是,本实施例中,上述至少一个第一载波为上行占主导的情况,即至少一个第一载波包括少数的下行时隙,第一网络设备可以在第一时隙上向终端设备发送上述第一反馈信息。该第一时隙为第一网络设备配置给终端设备的下行时隙。
可选的,当终端设备收到第一反馈信息后,可以有下述S105’步骤(图中以虚线表示)。
S105’、终端设备在至少一个激活载波上向第一网络设备发送前导码。
可选的,当上述至少一个第一载波不为全上行的情况时,可以有下述S106’步骤(图中以虚线表示)。
S106’、第一网络设备向终端设备发送第二反馈信息。
相应地,终端设备接收对应至少一个激活载波的第二反馈信息。
与图4所示实施例不同的是,第一网络设备可以通过少数的下行时隙发送该第二反馈信息。该第二反馈信息包含至少一个激活载波所对应的TA。可选的,第二反馈信息可以为随机接入响应消息。
在本实施例中,第一网络设备可以利用少数的下行时隙发送第二反馈信息,从而终端设备可以根据该第二反馈信息,通过随机接入获取激活载波对应的TA值。
在LTE通信过程中,终端设备可以通过随机接入获得相应的TA值,或者在有下行传输的载波上,一个时间提前组(time advance group,TAG)内的终端设备可以通过无线资源控制(radio resource control,RRC)信令来获得相应的TA值。随机接入过程是由终端设备在物理随机接入信道(physical random access channel,PRACH)上发送preamble来执行。
下面的实施例考虑获取TA的上行信号与用于上行测量的信号联合发送,以实现资源的有效利用,节省上行信令开销。
具体请参见图6,为本申请实施例提供的通信方法的又一流程示意图。
终端设备在至少一个第一载波上向第一网络设备发送第一上行信号,该第一上行信号用于获取TA和上行测量。第一上行信号包括探测参考信号(sounding reference signal,SRS)、前导码(preamble code)、解调参考信号(demodulation reference signal,DMRS)、CSI-RS或任何定义的序列(sequence)。可选的,用于获取TA,可以理解为用于发起随机接入。下述以第一上行信号为前导码为例。
示例性地,该方法可以包括:
S201、终端设备在至少一个第一载波上向第一网络设备发送第一前导序列。
相应地,第一网络设备在至少一个第一载波上接收第一前导序列。
终端设备在至少一个第一载波上向第一网络设备发送第一前导序列,该第一前导序列 用于获取TA和上行测量。
具体地,第二网络设备在向第一网络设备/终端设备配置该上行测量信号的资源时,还可以指示该资源用于随机接入,也就是说,可以指示该资源除了可以用于上行测量以外,还可以用于随机接入;或者,第二网络设备在向第一网络设备/终端设备配置进行随机接入的资源时,还可以指示该资源用于上行测量,也就是说,可以指示该资源除了可以用于随机接入以外,还可以用于上行测量。
本申请实施例中,可选的,第二网络设备在向第一网络设备/终端设备配置该上行测量信号的资源时,指示该资源是既用于获取TA,又用于上行测量。从而,第一网络设备/终端设备能进行识别。可选的,当终端设备周期性的或者被触发进行该上行测量信号的发送时,第一网络设备能够对应执行。当然,该上行测量信号的资源也可以是第一网络设备确定,并交互给第二网络设备。
作为一种实施例,第二网络设备在向第一网络设备/终端设备配置该上行测量信号的资源标识时,指示该资源是既用于获取TA,又用于上行测量。作为另一种实施例,第二网络设备在向第一网络设备/终端设备配置该上行测量信号的资源时,增加一个指示信息,用于标识该上行测量信号的资源为既用于获取TA,又用于上行测量;或者,增加一个指示信息,用于标识该上行测量信号的资源是否既用于获取TA,又用于上行测量。可选的,所述指示信息为1bit。
本申请实施例中,该上行测量信号的资源可以是针对第二频段所属的不同的载波标识分别配置,也可以是对于相同的配置,指示不同载波上的TDD传输图样。上行测量信号的符号位置可以是一个时隙中连续的符号,也可以是非连续的符号。可以占据一个时隙中任何OFDM位置。
S202、第一网络设备确定至少一个第一载波上的第一前导序列的信号强度。
与图4所示的步骤S102相同,第一网络设备测量至少一个第一载波上接收到的第一前导序列,得到至少一个第一载波上的第一前导序列的信号强度。
S203、第一网络设备根据至少一个第一载波上的第一前导序列的信号强度,确定至少一个第一载波中的激活载波。第一网络设备确定激活载波对应的时间提前值。
上述确定激活载波,和确定时间提前值不分前后顺序。可以是先确定TA,再确定激活载波;也可以是先确定激活载波,再确定TA;还可以是同时确定激活载波和TA。
与图4所示的步骤S103相同,第一网络设备根据至少一个第一载波上的第一前导序列的信号强度,确定激活载波。另外,第一网络设备还可以确定激活载波对应的TA值。其中,可以是一个激活载波对应一个TA值,即激活载波与TA值一一对应;也可以是至少一个激活载波对应一个TA值;或者至少一个激活载波划分为一个载波组,一个载波组对应一个TA值,即该载波组中的激活载波具有共同的TA值。该载波组与激活载波的对应关系可以是RRC信令预先配置的,或者预定义的,还可以是根据TA获取中的相关性所确定的。即,当多个激活载波的TA有相关性,相似或者能近似时,将该多个激活载波确定为一个载波组。
S204、第一网络设备向第二网络设备发送第四指示信息,该第四指示信息包括至少一个第一载波中的激活载波的信息和激活载波对应的时间提前值。
相应地,第二网络设备接收该第四指示信息。
对于上述至少一个第一载波为全上行的情况,第一网络设备向第二网络设备发送第四指示信息,该第四指示信息用于对上述发起的随机接入和上行测量进行响应。该第四指示信息包括至少一个第一载波中的激活载波的信息和激活载波对应的TA值。
对于上述至少一个第一载波为上行占主导的情况,也可以是第一网络设备在第一时隙上向终端设备发送第一反馈消息。该第一时隙为第一网络设备配置给终端设备的下行时隙。作为一种示例,该第一反馈信息为随机接入响应(random access response,RAR)消息。
此外,该第四指示信息还可以包含该终端设备相应的第一标识信息和/或第二标识信息。
本申请实施例中,第一标识信息包括下述至少一种:小区无线网络临时标识(cell-radio network temporary identifier,C-RNTI),上行信号对应的序列标识(sequence identifier)。其中,C-RNTI为第二网络设备分配给该终端设备的标识。
本申请实施例中,第二标识信息包括下述至少一种:上行信号对应的序列标识(sequence identifier),上行信号对应的资源标识。其中,序列标识为用于标识该UE的SRS序列、前导序列或者任何新定义的序列(如ZC序列、m序列等)。上行信号对应的资源标识为上行信号的资源索引或上行信号所在set的资源索引。
本申请实施例中,序列包含ZC序列、或m序列,或任何ZC和m序列的组合序列。同样,任何新定义的序列也可以理解为任何新定义的ZC序列、或m序列,或任何ZC和m序列的组合序列。
S205、第二网络设备向终端设备发送第一反馈信息。
相应地,终端设备接收该第一反馈信息。
该第一反馈信息包括至少一个第一载波中的激活载波的信息和激活载波对应的时间提前值。
该第一反馈信息还可以包含该终端设备相应的第一标识信息和/或第二标识信息。
终端设备在获取到的任何激活载波上进行的上行传输的循环冗余校验(cyclic redundancy check,CRC)加扰可以采用该第一标识。可选地,上述第一反馈信息所包含的信息可以在第一网络设备确定针对该终端设备的激活载波后,由第二网络设备通过X2接口或网络设备间的backhaul链路发送给第一网络设备。即,上述第一反馈信息为根据第四指示信息所确定的。
可选地,对于上述至少一个第一载波为全上行的情况,也可以是第一网络设备向第二网络设备发送第四指示信息,然后由第二网络设备广播***信息(system information,SI),终端设备接收该SI。其中,SI包括主信息块(master information block,MIB)和多个***信息块(system information blocks,SIBs)。本申请实施例中,主要通过SIBs携带至少一个第一载波中的激活载波的信息和激活载波对应的TA值。此外,该SIBs还可以包含该终端设备相应的第一标识信息和/或第二标识信息。可选的,对于上述至少一个第一载波为上行占主导的情况,也可以是第一网络设备广播该SIBs,终端设备接收该SIBs。
本申请实施例中,可选的,C-RNTI可以由第二网络设备通过网络间接口指示给第一网络设备。所述指示給第一网络设备的C-RNTI可以被用于第一网络设备在少量的下行时隙 中进行终端设备的数据传输调度。所述数据传输为上行数据传输。
下述以该第一反馈信息为RAR消息进行说明。
对于上述至少一个第一载波为全上行的情况,第二网络设备接收到来自第一网络设备的第四指示信息后,向终端设备发送RAR消息。终端设备接收到该RAR消息后,可以获得其中的激活载波的信息,从而确定用于接入和上行信息传输的激活载波;以及可以获得激活载波对应的TA值,从而可以根据该TA值,在对应的激活载波上与第一网络设备实现同步,从而在该激活载波上与第一网络设备进行上行通信。
对于上述至少一个第一载波为上行占主导的情况,终端设备接收来自第一网络设备的RAR消息。
可以理解的是,上行测量与随机接入联合过程只需发送上述第一前导序列,及接收RAR消息,不需要额外地发送消息3和接收消息4。
根据本申请实施例提供的一种通信方法,通过联合随机接入过程和上行信号测量过程,可以获得用于终端设备同步的时间提前值,且根据第一前导序列的信号强度可以较为准确地确定至少一个第一载波中的激活载波的信息,提高了在该激活载波上通信的可靠性,节省了随机接入过程和上行信号测量过程中的信令开销。
与图6所示实施例不同的是,也可以不联合进行随机接入和上行测量,而是在第一上行信号被第一网络设备检测到,并确定相应激活载波时才进行随机接入。
本申请实施例中,任意一个实施例中的概念解释也可以适用于别的实施例。
具体地,请参见图7,为本申请实施例提供的通信方法的又一流程示意图。
终端设备在至少一个第一载波上向第一网络设备发送第一上行信号,该第一上行信号用于上行测量。第一上行信号包括探测参考信号(sounding reference signal,SRS)、前导码(preamble code)、解调参考信号(demodulation reference signal,DMRS)、CSI-RS或任何定义的序列(sequence)。下述以第一上行信号为SRS为例。
示例性地,该方法可以包括:
S301、终端设备在至少一个第一载波上向第一网络设备发送SRS。
相应地,第一网络设备在至少一个第一载波上接收SRS。
在本实施例中,该SRS仅用于上行测量。当然,终端设备也可以是发送其它上行测量信号,例如前导、DMRS或新定义的序列等。
S302、第一网络设备确定至少一个第一载波上的SRS的信号强度。
该步骤的具体实现可参考图4所示实施例的步骤S102、及图6所示实施例的步骤S202。
S303、第一网络设备根据至少一个第一载波上的SRS的信号强度,确定至少一个第一载波中的激活载波。
在本步骤中,仅根据至少一个第一载波上的SRS的信号强度,确定激活载波,具体实现可参考图4所示实施例的步骤S103。
S304、第一网络设备向第二网络设备发送第五指示信息,该第五指示信息包括至少一个第一载波中的激活载波的信息。
相应地,第二网络设备检测该第五指示信息。
在本步骤中,第五指示信息包括至少一个第一载波中的激活载波的信息。第五指示信 息不包括TA。第五指示信息还包括该终端设备相应的第二标识信息。具体第一标识信息和/或第二标识信息的信息如之前所述,不再赘述。具体实现可参考图4所示实施例的步骤S104。
S305、第二网络设备向终端设备发送第一反馈信息。
相应地,终端设备接收第一反馈信息。第一反馈信息包含至少一个第一载波中的激活载波的信息。第一反馈信息为根据第五指示信息所确定的。其中,第五指示信息为网络设备间接口上传输的信息,第一反馈信息为网络设备发送给终端设备的信息。第一反馈信息为根据第五指示信息所确定的。第五指示信息与第一反馈信息可以为相同的信息,也可以为不同的信息。第五指示信息与第一反馈信息所包含的内容可以完全相同,也可以部分相同。当第五指示信息与第一反馈信息完全相同时,第二网络设备发送第一反馈信息,可以理解为转发第五指示信息。
该步骤的具体实现可参考图4所示实施例的步骤S105。
S306、终端设备在激活载波上向第一网络设备发送第一前导序列。
相应地,第一网络设备检测该第一前导序列。
终端设备在获取到第一网络设备确定的激活载波后,终端设备在激活载波上向第一网络设备发送第一前导序列。该第一前导序列用于发起随机接入,获取该激活载波对应的TA值。
若第一网络设备确定的激活载波有多个,则终端设备可以分别在所述多个激活载波上分别发送第一前导序列,以获得各个激活载波对应的TA值。
S307、第一网络设备向第二网络设备发送第六指示信息,该第六指示信息包括激活载波对应的TA值。
相应地,该第二网络设备检测该第六指示信息。
第一网络设备在激活载波上接收到第一前导序列后,确定该激活载波对应的TA值。
对于上述至少一个第一载波为全上行的情况,第一网络设备向第二网络设备发送第六指示信息,该第六指示信息用于指示对上述发起的随机接入进行响应的信息。与图6所示实施例中第四指示信息包括的是至少一个激活载波的TA值不同,在本实施例中,第六指示信息包括每个激活载波对应的TA值,即该TA值是针对该激活载波的,终端设备采用该TA值在该激活载波上进行通信,可以实现与第一网络设备的精确的同步。
第六指示信息还包括第一标识信息。第一标识信息的具体内容以及有益效果见上述,不再赘述。
S308、第二网络设备向终端设备发送第二反馈信息。
相应地,终端设备接收该第二反馈信息。该第二反馈信息为根据第六指示信息所确定的。示例的,第二反馈信息为RAR。
该第二反馈信息包括至少一个激活载波对应的TA值。
该第二反馈信息还包括第一标识信息。
对于上述至少一个第一载波为全上行的情况,第二网络设备接收到来自第一网络设备的第六指示信息后,向终端设备发送RAR消息。终端设备接收到该RAR消息后,可以获得激活载波对应的TA值,从而可以根据该TA值,在对应的激活载波上与第一网络设备实 现同步,从而在该激活载波上与第一网络设备进行上行通信。
根据本申请实施例提供的一种通信方法,通过确定终端设备在至少一个第一载波上发送的第一上行信号的信号强度,可以较为准确地确定至少一个第一载波的激活载波,提高了在该激活载波上通信的可靠性;然后在确定的激活载波上进行随机接入,可以获得针对该激活载波的TA值,从而终端设备采用该TA值在该激活载波上进行通信,可以实现与第一网络设备的精确地同步,提高通信的可靠性。
与图6、图7不同的是,也可以先一个载波上进行随机接入,然后再基于随机接入获得的大致的TA值,在另一个载波上进行上行测量。
具体请参见图8,为本申请实施例提供的通信方法的又一流程示意图。示例性地,该方法可以包括:
S401、终端设备在第二载波上向第一网络设备发送第一前导序列。
相应地,第一网络设备接收该第一前导序列。
在本实施例中,该第一前导序列用于进行随机接入。该第二载波与发送上行测量信号的第一载波不同。
S402、第一网络设备向第二网络设备发送第七指示信息,该第七指示信息包括第二载波对应的TA1。
第一网络设备接收到第一前导序列后,确定TA1,该TA1对应该第二载波。
对于上述至少一个第一载波为全上行的情况,第一网络设备确定TA1后,向第二网络设备发送第七指示信息,该第七指示信息包括第二载波对应的TA1。
S403、第二网络设备向终端设备发送第三反馈信息。
该第三反馈信息包括第二载波对应的TA1。
第二网络设备接收到第一网络设备发送的第七指示信息后,向终端设备发送第三反馈信息。示例的,该第三反馈信息为RAR。该第三反馈信息是根据第七指示信息确定的。第七指示信息与第三反馈信息可以为相同的信息,也可以为不同的信息。第七指示信息与第三反馈信息所包含的内容可以完全相同,也可以部分相同。当第七指示信息与第三反馈信息完全相同时,第二网络设备发送第三反馈信息,可以理解为转发第七指示信息。
S404、终端设备根据TA1,在至少一个第一载波上向第一网络设备发送第一上行信号。
相应地,第一网络设备检测该第一上行信号。
终端设备在接收到第三反馈信息后,获取到TA1,可以作为上行传输的初始TA值。因此,终端设备根据该TA1,在至少一个第一载波上向第一网络设备发送第一上行信号,该第一上行信号用于进行上行测量。当然,终端设备可以在至少一个第一载波上向第一网络设备发送其它上行测量信号,例如SRS、DMRS或新定义的任意序列。
S405、第一网络设备确定至少一个第一载波上的第一上行信号的信号强度。
该步骤的具体实现可参考图4所示实施例的步骤S103、或图6所示实施例的步骤S202、或图7所示实施例的步骤S302。
S406、第一网络设备根据至少一个第一载波的第一上行信号的信号强度,确定至少一个第一载波中的激活载波。可选的,第一网络设备还可以确定激活载波对应的TA2。
该步骤的具体实现可参考图5所示实施例的步骤S203,这里,第一网络设备根据接收 到的第一上行信号,重新确定激活载波对应的TA2。终端设备在该激活载波上使用TA2与第一网络设备同步的精度高于在该激活载波使用TA1与第一网络设备同步的精度。
所述TA2可以是相对于TA1的偏移量。
S407、第一网络设备向第二网络设备发送第八指示信息,该第八指示信息包括至少一个第一载波中的激活载波的信息。可选的,该第八指示信息还包括激活载波对应的TA2。
相应地,第二网络设备接收该第八指示信息。
该步骤的具体实现可参考图5所示实施例的步骤S204。
S408、第二网络设备向终端设备发送第一反馈信息。
该第一反馈信息包括至少一个第一载波中的激活载波的信息。
相应地,终端设备接收该第一反馈信息。可选的,第一反馈信息为RAR消息。第一反馈信息包含至少一个第一载波中的激活载波的信息。可选的,该第一反馈信息还包括激活载波对应的TA2。第一反馈信息为根据第八指示信息所确定的。第八指示信息与第一反馈信息可以为相同的信息,也可以为不同的信息。第八指示信息与第一反馈信息所包含的内容可以完全相同,也可以部分相同。当第八指示信息与第一反馈信息完全相同时,第二网络设备发送第一反馈信息,可以理解为转发第八指示信息。
该步骤的具体实现可参考图5所示实施例的步骤S205。
根据本申请实施例提供的一种通信方法,终端设备可以根据初始TA值,发送上行测量信号,第一接入网设备接收到该上行测量信号后,可以确定激活载波,并确定该激活载波对应的TA值或TA偏移量值,从而提高同步精度,提高通信可靠性。
请参见图9,为本申请实施例提供的通信方法的又一流程示意图。示例性地,该方法可以包括:
S501、第一网络设备在至少一个第一载波上发送下行参考信号。
相应地,终端设备在至少一个第一载波上检测来自第一网络设备的下行参考信号。
示例性地,第一网络设备向终端设备发送下行参考信号,为周期性地向终端设备发送下行参考信号。
在本实施例中,第一网络设备与终端设备之间有少量的下行时隙。第一网络设备可以通过这少量的下行时隙周期性地向终端设备发送下行参考信号。该下行参考信号可以是物理广播信道/同步信号块(physical broadcast channel/synchronous signal block,PBCH/SS block)或信道状态信息-参考信号(channel state information-reference signal,CSI-RS)等。并且下行参考信号的密度可以是高密度的。下行参考信号的密度可以是第二网络设备配置给终端设备的。
本申请实施例中,少量的下行时隙可以是指每X个时隙被看作一个时隙配置周期中,在该周期中有Y个下行slot,其余X-Y个时隙均为上行时隙。其中,X可以是相对于Y而言较大的正整数,例如,20、30、40或者60。相应地,Y为相对于X而言较小的正整数,例如,1、2或3。例如,当上下行时隙被配置为1个下行时隙和X-1个上行时隙依次循环,或者被配置为X-1个上行时隙和1个下行时隙依次循环时,具有少量的下行时隙。其中,只要一个时隙中包含下行符号,该时隙就可以被称为下行时隙。即,可以将下行时隙理解为其中包含下行符号的时隙。下行符号可以是连续的或者非连续的。下行符号可以是连续 的或者非连续的。可选的,下行符号所在的频带或部分频带(band width partial,BWP)或物理资源块(physical resource block,PRB)是可配置的。
本申请实施例中,任何“可配”或“可配置”,可以理解由第一网络设备或第二网络设备通过RRC信令配置的,也可以理解为由第一网络设备或第二网络设备通过MAC层信令或物理层信令配置的。例如,第一网络设备或第二网络设备可以通过RRC信令配置下行时隙中包含的下行符号的数量。
S502、终端设备确定至少一个第一载波上的下行参考信号的信号强度。
具体地,终端设备检测到该下行参考信号后,对下行参考信号进行信号测量,得到信号强度。该信号强度可以为上述RSRP、RSRQ或RSSI中的一项或多项。
S503、当下行参考信号的信号强度大于或等于第一设定值时,终端设备在激活载波对应的免授权资源上向第一网络设备发送上行信息,该激活载波为至少一个第一载波中的至少一个。
相应地,当下行参考信号的信号强度大于或等于第一设定值时,第一网络设备在激活载波对应的免授权资源上检测来自终端设备的上行信息。
当下行参考信号的信号强度大于或等于第一设定值时,根据上下行一致性,相应地,上行信道性能也相对较好,此时,终端设备可以在激活载波对应的免授权资源上进行上行传输。该激活载波可以是根据前述实施例确定的服务载波或工作载波。该激活载波为至少一个第一载波中的至少一个。在上行信道性能较好的情况下,进行上行传输,可以提高通信的可靠性。
根据本申请实施例提供的一种通信方法,利用少数的下行时隙上检测到的下行参考信号,在下行参考信号的信号强度较大时,激活免授权资源进行上行传输,提高了通信的可靠性。
请参见图10,为本申请实施例提供的通信方法的又一流程示意图。示例性地,该方法可以包括:
S601、第一网络设备在至少一个第一载波上发送下行参考信号。
相应地,终端设备检测上述至少一个第一载波上的下行参考信号。示例性地,第一网络设备向终端设备发送下行参考信号,为周期性地向终端设备发送下行参考信号。
在本实施例中,第一网络设备与终端设备之间有少量的下行时隙。关于如何理解少量的下行时隙已在前文进行描述,不再赘述。第一网络设备可以通过这少量的下行时隙周期性地向终端设备发送下行参考信号。该下行参考信号可以是物理广播信道/同步信号块(physical broadcast channel/synchronous signal block,PBCH/SS block)或信道状态信息-参考信号(channel state information-reference signal,CSI-RS)等。并且下行参考信号的密度可以是高密度的。下行参考信号的密度可以是第二网络设备配置给终端设备的。
可选地,终端设备检测下行参考信号获得的时延(time delay)可以作为该频段上的初始上行TA参考值,从而实现与第一网络设备的初始对齐。
S602、终端设备确定至少一个第一载波上的下行参考信号的信号强度。
具体地,终端设备检测到该下行参考信号后,对下行参考信号进行信号测量,得到信号强度。该信号强度可以为上述RSRP、RSRQ或RSSI中的一项或多项。
S603、当下行参考信号的信号强度大于或等于第二设定值时,终端设备在至少一个第一载波上向第一网络设备发送第一上行信号。
相应地,第一网络设备在至少一个第一载波上接收第一上行信号。
当测量得到的下行参考信号的信号强度大于或等于第二设定值时,触发终端设备在至少一个第一载波上向第一网络设备发送第一上行信号。这样可以终端设备远离第一网络设备时的冗余发送,减少终端设备的功耗。可选地,该第二设定值可以大于或等于图9所示实施例的第一设定值,也可以不限于此。
终端设备发送第一上行信号的具体实现可参考图4所示实施例的步骤S101、或图6所示实施例的步骤S201等。
此外,终端设备检测下行参考信号获得的时延(time delay)可以作为该频段上的初始上行TA参考值,从而实现与第一网络设备的初始对齐。因而,在本步骤中,在该频段(至少一个第一载波)上不需要发起新的随机接入,第一上行信号的发送可以基于该初始TA参考值。该TA值的进一步校准可以参考图8所示实施例。因此,参考下行同步获取粗略的定时,还可以通过上行信号获取TA调整,可以节省随机接入信令。
S604、第一网络设备确定至少一个第一载波上的第一上行信号的信号强度。
该步骤的具体实现可参考图4所示实施例的步骤S102、或图6所示实施例的步骤S202等。
S605、第一网络设备根据至少一个第一载波上的第一上行信号的信号强度,确定至少一个第一载波中的激活载波。
该步骤的具体实现可参考图4所示实施例的步骤S103、或图6所示实施例的步骤S203等。
S606、第一网络设备向终端设备发送第一反馈信息,该第一反馈信息包括至少一个第一载波中的激活载波的信息。
相应地,终端设备接收该第一反馈信息。
第一网络设备可以在少数的下行时隙向终端设备发送第一反馈信息。该第一反馈信息包括至少一个载波中的激活载波的信息。
可选地,在步骤S601中,终端设备根据下行参考信号,获取了初始UL TA参考值,则该第一反馈信息还可以包括UL TA的偏移值。该偏移值用于对UL TA进行调整。
上行通信一般采用免授权资源(grant free resource),且预先配置了不同的载波对应的免授权资源。免授权资源,也称为配置的授权资源(configured grant resource),包括两种类型:类型1(type 1)和类型2(type 2)。其中,类型1的免授权资源是半静态配置的,不需要网络设备下发激活的动态指示信息;类型2的免授权资源是半静态配置的,且需要动态的下行控制信息(downlink control information,DCI)激活。
在一种实施例中,免授权资源基于第一反馈信息中的激活载波被激活,相应地,该激活载波对应的免授权资源被激活,该免授权资源可以被有效使用。可选地,第一反馈信息也可以包括第二指示信息,该第二指示信息用于指示激活载波对应的免授权资源被激活,从而终端设备可以在激活载波对应的免授权资源上向第一网络设备发送上行信息。可选的,这种情形是采用类型1的免授权资源。
在一种实施例中,需要第一网络设备激活免授权资源。可选的,这种情形是采用类型2的免授权资源。
在一个实现中,第一网络设备可以采用新定义的DCI,即在激活载波上向终端设备发送第一DCI,该第一DCI包括至少一个字段(segment),或者称至少一个信息块(block)。至少一个字段或信息块包括以下信息中的至少一项:触发指示信息(trigger bit)、激活载波标识(carrier identity)、免授权资源集合标识。该触发指示信息用于激活该激活载波对应的免授权资源。终端设备在接收到该第一DCI后,可以利用被激活的该激活载波对应的免授权资源发送第一上行信号。
在又一个实现中,第一网络设备可以复用现有形式的DCI,即在激活载波上向终端设备发送第二DCI,该第二DCI用于触发第一上行信号的传输,即该第二DCI是触发上行测量。则终端设备在接收到该第二DCI后,可以利用被激活的该激活载波对应的类型2的免授权资源发送第一上行信号。可选地,该第二DCI还可以包括上述触发指示信息,该触发指示信息用于激活该激活载波对应的免授权资源。
根据本申请实施例提供的一种通信方法,终端设备可以在下行参考信号的信号强度较强时,向第一网络设备发送上行测量信号,从而避免远离第一网络设备时的冗余发送,减少终端设备的功耗。
可以理解的是,以上各个实施例中,由终端设备实现的方法和/或步骤,也可以由可用于终端设备的部件(例如芯片或者电路)实现;由第一网络设备实现的方法和/或步骤,也可以由可用于第一网络设备的部件(例如芯片或者电路)实现。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。相应的,本申请实施例还提供了通信装置,该通信装置用于实现上述各种方法。该通信装置可以为上述方法实施例中的终端设备,或者包含上述终端设备的装置,或者为可用于终端设备的部件;或者,该通信装置可以为上述方法实施例中的第一网络设备,或者包含上述第一网络设备的装置,或者为可用于第一网络设备的部件。可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
本申请实施例可以根据上述方法实施例中对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图11示出了一种通信装置110的结构示意图。该通信装置110包括收发单元1101和处理单元1102。所述收发单元1101,也可以称为收发单元用以实现收发功能,例如可以是收发电路,收发机,收发器或者通信接口。
其中,以通信装置110为图4~图8所示方法实施例中的终端设备为例,则:
所述收发单元1101,用于在至少一个第一载波上向第一网络设备发送第一上行信号;以及所述收发单元1101,还用于接收第一反馈信息;其中,所述第一反馈信息包括所述至少一个第一载波中的激活载波的信息。
可选地,所述收发单元1101,还用于接收来自第二网络设备的所述第一反馈信息;或者,所述收发单元1101,还用于接收来自所述第一网络设备的所述第一反馈信息。
可选地,所述收发单元1101,还用于通过第一时隙接收来自所述第一网络设备的所述第一反馈信息,所述第一时隙为所述第一网络设备与所述终端设备之间配置的下行时隙。
其中,以通信装置110为图4~图8所示方法实施例中的第一网络设备或第二网络设备为例,则:
所述处理单元1102,用于在至少一个第一载波上检测第一上行信号;所述处理单元1102,还用于确定所述至少一个第一载波上的第一上行信号的信号强度;所述处理单元1102,还用于根据所述至少一个第一载波上的第一上行信号的信号强度,确定所述至少一个第一载波中的激活载波;以及所述收发单元1101,用于发送第一反馈信息,所述第一反馈信息包括所述至少一个第一载波中的激活载波的信息。
可选地,所述收发单元1101,还用于向第二网络设备发送第一指示信息,所述第一指示信息包括所述至少一个第一载波中的激活载波的信息;或者,所述收发单元1101,还用于向终端设备发送所述第一反馈信息。
可选地,所述收发单元1101,还用于通过第一时隙发送所述第一反馈信息,所述第一时隙为所述第一网络设备与所述终端设备之间配置的下行时隙。
其中,以通信装置110为图9所示方法实施例中的终端设备为例,则:
所述处理单元1102,用于在至少一个第一载波上检测来自第一网络设备的下行参考信号;所述处理单元,还用于确定所述下行参考信号的信号强度;以及所述收发单元1101,用于当所述下行参考信号的信号强度大于或等于第一设定值时,在激活载波对应的免授权资源上向所述第一网络设备发送上行信息。
其中,以通信装置110为图9所示方法实施例中的第一网络设备为例,则:
所述收发单元1101,用于在至少一个第一载波上发送下行参考信号;以及所述处理单元1102,用于在激活载波对应的免授权资源上检测来自终端设备的上行信息。
其中,以通信装置110为图10所示方法实施例中的终端设备为例,则:
所述处理单元1102,用于在至少一个第一载波上检测来自第一网络设备的下行参考信号;所述处理单元,还用于确定所述下行参考信号的信号强度;以及所述收发单元1101,用于当所述下行参考信号的信号强度大于第二设定值时,在所述至少一个第一载波上向所述第一网络设备发送第一上行信号。
可选地,所述收发单元1101,还用于接收第一反馈信息;其中,所述第一反馈信息包括所述至少一个第一载波中的激活载波的信息。
可选地,所述处理单元1101,还用于根据所述下行参考信号,确定初始上行定时提前。
可选地,所述收发单元1101,还用于接收第一下行控制信息,所述第一下行控制信息包括至少一个字段,每个字段包括以下至少一个信息:触发指示信息,载波标识,免授权 资源集合标识,所述触发指示信息用于激活所述激活载波对应的免授权资源;或所述收发单元1101,还用于接收第二下行控制信息,所述第二下行控制信息用于触发所述第一上行信号的传输,所述第二下行控制信息包括所述触发指示信息。
其中,以通信装置110为图10所示方法实施例中的第一网络设备为例,则:
所述收发单元1101,用于在至少一个第一载波上发送下行参考信号;以及所述处理单元1102,用于检测所述终端设备在所述至少一个第一载波上发送的第一上行信号。
可选地,所述处理单元1102,还用于确定所述至少一个第一载波上的第一上行信号的信号强度;所述处理单元1102,还用于根据所述至少一个第一载波上的第一上行信号的信号强度,确定激活载波;以及所述收发单元1101,还用于发送第一反馈信息,所述第一反馈信息包括所述至少一个第一载波中的激活载波的信息。
可选地,所述收发单元1101,用于向第二网络设备发送第一指示信息,所述第一指示信息包括至少一个第一载波中的激活载波的信息;或者,所述收发单元1101,还用于向终端设备发送所述第一反馈信息。
可选地,所述收发单元1101,用于发送第一下行控制信息,所述第一下行控制信息包括至少一个字段,每个字段包括以下至少一个信息:触发指示信息,载波标识,免授权资源集合标识,所述触发指示信息用于激活所述激活载波对应的免授权资源;或所述收发单元1101,用于发送第二下行控制信息,所述第二下行控制信息用于触发所述第一上行信号的传输,所述第二下行控制信息包括所述触发指示信息。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能单元的功能描述,在此不再赘述。
在本实施例中,该通信装置110以采用集成的方式划分各个功能单元的形式来呈现。这里的“单元”可以指专用集成电路(application specific integrated circuit,ASIC),电路,执行至少一个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
比如,图3所示的通信装置300中的处理器301可以通过调用存储器303中存储的计算机执行指令,使得通信装置300执行上述方法实施例中的通信方法。
具体的,图11中的收发单元1101和处理单元1102的功能/实现过程可以通过图3所示的通信装置300中的处理器301调用存储器303中存储的计算机执行指令来实现。或者,图11中的处理单元1102的功能/实现过程可以通过图3所示的通信装置300中的处理器301调用存储器303中存储的计算机执行指令来实现,图11中的收发单元1101的功能/实现过程可以通过图3中所示的通信装置300中的通信接口304来实现。
由于本实施例提供的通信装置110可执行上述方法实施例中的通信方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
需要说明的是,以上单元或单元的至少一个可以软件、硬件或二者结合来实现。当以上任一单元或单元以软件实现的时候,所述软件以计算机程序指令的方式存在,并被存储在存储器中,处理器可以用于执行所述程序指令并实现以上方法流程。该处理器可以内置于片上***(system on chip,SoC)或ASIC,也可是一个独立的半导体芯片。该处理器内处理用于执行软件指令以进行运算或处理的核外,还可进一步包括必要的硬件加速器,如 现场可编程门阵列(field programmable gate array,FPGA)、可编程逻辑器件(programmable logic device,PLD)、或者实现专用逻辑运算的逻辑电路。
当以上单元或单元以硬件实现的时候,该硬件可以是中央处理单元(central processing unit,CPU)、微处理器、数字信号处理(digital signal processing,DSP)芯片、微控制单元(microcontroller unit,MCU)、人工智能处理器、ASIC、SoC、FPGA、PLD、专用数字电路、硬件加速器或非集成的分立器件中的任一个或任一组合,其可以运行必要的软件或不依赖于软件以执行以上方法流程。
可选的,本申请实施例还提供了一种芯片***,包括:至少一个处理器和接口,该至少一个处理器通过接口与存储器耦合,当该至少一个处理器执行存储器中的计算机程序或指令时,使得上述任一方法实施例中的方法被执行。可选的,该芯片***可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
应理解,在本申请实施例的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;其中A,B可以是单数或者复数。并且,在本申请实施例的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请实施例的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括至少一个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含至少一个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
尽管在此结合各实施例对本申请实施例进行了描述,然而,在实施所要求保护的本申请实施例过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书, 可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请实施例进行了描述,显而易见的,在不脱离本申请实施例的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请实施例的示例性说明,且视为已覆盖本申请实施例范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请实施例权利要求及其等同技术的范围之内,则本申请实施例也意图包含这些改动和变型在内。

Claims (43)

  1. 一种通信方法,其特征在于,所述方法包括:
    终端设备在至少一个第一载波上向第一网络设备发送第一上行信号;
    所述终端设备接收第一反馈信息;
    其中,所述第一反馈信息包括所述至少一个第一载波中的激活载波的信息。
  2. 根据权利要求1所述的方法,其特征在于,所述第一反馈信息还包括所述激活载波对应的时间提前值,所述时间提前值对应至少一个激活载波,或者所述时间提前值与至少一个激活载波一一对应,或者所述时间提前值对应至少一个激活载波组。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一反馈信息为随机接入响应消息或者***信息。
  4. 根据权利要求1~3任一项所述的方法,其特征在于,所述第一上行信号为第一前导序列,所述第一上行信号用于进行随机接入和上行测量。
  5. 根据权利要求1~4任一项所述的方法,其特征在于,所述终端设备接收第一反馈信息包括:
    所述终端设备接收来自第二网络设备的所述第一反馈信息;
    或者,所述终端设备接收来自所述第一网络设备的所述第一反馈信息。
  6. 根据权利要求1~5任一项所述的方法,其特征在于,所述第一反馈信息中还包含所述终端设备相应的第一标识信息和/或第二标识信息;其中,第一标识信息包括下述至少一种:小区无线网络临时标识,上行信号对应的序列标识;第二标识信息包括下述至少一种:上行信号对应的序列标识,上行信号对应的资源标识。
  7. 一种通信方法,其特征在于,所述方法包括:
    第一网络设备在至少一个第一载波上检测第一上行信号;
    所述第一网络设备确定所述至少一个第一载波上的第一上行信号的信号强度;
    所述第一网络设备根据所述至少一个第一载波上的第一上行信号的信号强度,确定所述至少一个第一载波中的激活载波;
    所述第一网络设备发送第一反馈信息,所述第一反馈信息包括所述至少一个第一载波中的激活载波的信息。
  8. 根据权利要求7所述的方法,其特征在于,所述第一反馈信息还包括所述激活载波对应的时间提前值,所述时间提前值对应至少一个激活载波,或者所述时间提前值与至少一个激活载波一一对应,或者所述时间提前值对应至少一个激活载波组。
  9. 根据权利要求7或8所述的方法,其特征在于,所述第一反馈信息为随机接入响应消息或者***信息。
  10. 根据权利要求7~9任一项所述的方法,其特征在于,所述第一上行信号为第一前导序列,所述第一上行信号用于进行随机接入和上行测量。
  11. 根据权利要求7~10任一项所述的方法,其特征在于,所述第一网络设备发送第一反馈信息包括:
    所述第一网络设备向第二网络设备发送第一指示信息,所述第一指示信息包括所述至少一个第一载波中的激活载波的信息;
    或者,所述第一网络设备向终端设备发送所述第一反馈信息。
  12. 根据权利要求7~11任一项所述的方法,其特征在于,所述第一反馈信息中还包含所述终端设备相应的第一标识信息和/或第二标识信息;其中,第一标识信息包括下述至少一种:小区无线网络临时标识,上行信号对应的序列标识;第二标识信息包括下述至少一种:上行信号对应的序列标识,上行信号对应的资源标识。
  13. 一种通信方法,其特征在于,所述方法包括:
    终端设备在至少一个第一载波上检测来自第一网络设备的下行参考信号;
    所述终端设备确定所述下行参考信号的信号强度;
    当所述下行参考信号的信号强度大于或等于第一设定值时,所述终端设备在激活载波对应的免授权资源上向所述第一网络设备发送上行信息。
  14. 一种通信方法,其特征在于,所述方法包括:
    第一网络设备在至少一个第一载波上发送下行参考信号;
    所述第一网络设备在激活载波对应的免授权资源上检测来自终端设备的上行信息。
  15. 一种通信方法,其特征在于,所述方法包括:
    终端设备在至少一个第一载波上检测来自第一网络设备的下行参考信号;
    所述终端设备确定所述下行参考信号的信号强度;
    当所述下行参考信号的信号强度大于第二设定值时,所述终端设备在所述至少一个第一载波上向所述第一网络设备发送第一上行信号。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第一反馈信息;其中,所述第一反馈信息包括所述至少一个第一载波中的激活载波的信息。
  17. 根据权利要求16所述的方法,其特征在于,所述第一反馈信息包括第二指示信息,所述第二指示信息用于指示被激活的免授权资源。
  18. 根据权利要求16或17所述的方法,其特征在于,所述第一反馈信息还包括上行定时提前的偏移值。
  19. 根据权利要求15~18任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第一下行控制信息,所述第一下行控制信息包括至少一个字段,每个字段包括以下至少一个信息:触发指示信息,载波标识,免授权资源集合标识,所述触发指示信息用于激活所述激活载波对应的免授权资源;或
    所述终端设备接收第二下行控制信息,所述第二下行控制信息用于触发所述第一上行信号的传输,所述第二下行控制信息包括所述触发指示信息。
  20. 一种通信方法,其特征在于,所述方法包括:
    第一网络设备在至少一个第一载波上发送下行参考信号;
    所述第一网络设备检测所述终端设备在所述至少一个第一载波上发送的第一上行信号。
  21. 一种通信装置,其特征在于,包括:
    收发单元,用于在至少一个第一载波上向第一网络设备发送第一上行信号;
    所述收发单元,还用于接收第一反馈信息;
    其中,所述第一反馈信息包括所述至少一个第一载波中的激活载波的信息。
  22. 根据权利要求21所述的装置,其特征在于,所述第一反馈信息还包括所述激活载波对应的时间提前值,所述时间提前值对应至少一个激活载波,或者所述时间提前值与至少一个激活载波一一对应,或者所述时间提前值对应至少一个激活载波组。
  23. 根据权利要求21或22所述的装置,其特征在于,所述第一反馈信息为随机接入响应消息或者***信息。
  24. 根据权利要求21~23任一项所述的装置,其特征在于,所述第一上行信号为第一前导序列,所述第一上行信号用于进行随机接入和上行测量。
  25. 根据权利要求21~24任一项所述的装置,其特征在于:
    所述收发单元,还用于接收来自第二网络设备的所述第一反馈信息;
    或者,所述收发单元,还用于接收来自所述第一网络设备的所述第一反馈信息。
  26. 根据权利要求21~25任一项所述的装置,其特征在于,所述第一反馈信息中还包含所述终端设备相应的第一标识信息和/或第二标识信息;其中,第一标识信息包括下述至少一种:小区无线网络临时标识,上行信号对应的序列标识;第二标识信息包括下述至少一种:上行信号对应的序列标识,上行信号对应的资源标识。
  27. 一种通信装置,其特征在于,包括:
    处理单元,用于在至少一个第一载波上检测第一上行信号;
    所述处理单元,还用于确定所述至少一个第一载波上的第一上行信号的信号强度;
    所述处理单元,还用于根据所述至少一个第一载波上的第一上行信号的信号强度,确定所述至少一个第一载波中的激活载波;
    收发单元,用于发送第一反馈信息,所述第一反馈信息包括所述至少一个第一载波中的激活载波的信息。
  28. 根据权利要求27所述的装置,其特征在于,所述第一反馈信息还包括所述激活载波对应的时间提前值,所述时间提前值对应至少一个激活载波,或者所述时间提前值与至少一个激活载波一一对应,或者所述时间提前值对应至少一个激活载波组。
  29. 根据权利要求27或28所述的装置,其特征在于,所述第一反馈信息为随机接入响应消息或者***信息。
  30. 根据权利要求27~29任一项所述的装置,其特征在于,所述第一上行信号为第一前导序列,所述第一上行信号用于进行随机接入和上行测量。
  31. 根据权利要求27~30任一项所述的装置,其特征在于:
    所述收发单元,还用于向第二网络设备发送第一指示信息,所述第一指示信息包括所述至少一个第一载波中的激活载波的信息;
    或者,所述收发单元,还用于向终端设备发送所述第一反馈信息。
  32. 根据权利要求27~31任一项所述的装置,其特征在于,所述第一反馈信息中还包含所述终端设备相应的第一标识信息和/或第二标识信息;其中,第一标识信息包括下述至少一种:小区无线网络临时标识,上行信号对应的序列标识;第二标识信息包括下述至少一 种:上行信号对应的序列标识,上行信号对应的资源标识。
  33. 一种通信装置,其特征在于,包括:
    处理单元,用于在至少一个第一载波上检测来自第一网络设备的下行参考信号;
    所述处理单元,还用于确定所述下行参考信号的信号强度;
    收发单元,用于当所述下行参考信号的信号强度大于或等于第一设定值时,在激活载波对应的免授权资源上向所述第一网络设备发送上行信息。
  34. 一种通信装置,其特征在于,包括:
    收发单元,用于在至少一个第一载波上发送下行参考信号;
    处理单元,用于在激活载波对应的免授权资源上检测来自终端设备的上行信息。
  35. 一种通信装置,其特征在于,包括:
    处理单元,用于在至少一个第一载波上检测来自第一网络设备的下行参考信号;
    所述处理单元,还用于确定所述下行参考信号的信号强度;
    收发单元,用于当所述下行参考信号的信号强度大于第二设定值时,在所述至少一个第一载波上向所述第一网络设备发送第一上行信号。
  36. 根据权利要求35所述的装置,其特征在于,所述装置还包括:
    所述终端设备接收第一反馈信息;其中,所述第一反馈信息包括所述至少一个第一载波中的激活载波的信息。
  37. 根据权利要求36所述的装置,其特征在于,所述第一反馈信息包括第二指示信息,所述第二指示信息用于指示被激活的免授权资源。
  38. 根据权利要求36或37所述的装置,其特征在于,所述第一反馈信息还包括上行定时提前的偏移值。
  39. 根据权利要求35~38任一项所述的装置,其特征在于,所述装置还包括:
    所述终端设备接收第一下行控制信息,所述第一下行控制信息包括至少一个字段,每个字段包括以下至少一个信息:触发指示信息,载波标识,免授权资源集合标识,所述触发指示信息用于激活所述激活载波对应的免授权资源;或
    所述终端设备接收第二下行控制信息,所述第二下行控制信息用于触发所述第一上行信号的传输,所述第二下行控制信息包括所述触发指示信息。
  40. 一种通信装置,其特征在于,包括:
    收发单元,用于在至少一个第一载波上发送下行参考信号;
    处理单元,用于检测所述终端设备在所述至少一个第一载波上发送的第一上行信号。
  41. 一种通信装置,其特征在于,所述通信装置包括处理器和存储介质,所述存储介质存储有指令,所述指令被所述处理器运行时,使得根据权利要求1~6任一项所述的方法,或根据权利要求7~12任一项所述的方法,或根据权利要求13所述的方法,或根据权利要求14所述的方法,或根据权利要求15~19任一项所述的方法,或根据权利要求20所述的方法被实现。
  42. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括指令,当所述指令被处理器运行时,使得根据权利要求1~6任一项所述的方法,或根据权利要求7~12任一项所述的方法,或根据权利要求13所述的方法,或根据权利要求14所述的方法,或 根据权利要求15~19任一项所述的方法,或根据权利要求20所述的方法被实现。
  43. 一种计算机程序产品,其特征在于,所述计算机程序产品包括指令,当所述指令被处理器运行时,使得根据权利要求1~6任一项所述的方法,或根据权利要求7~12任一项所述的方法,或根据权利要求13所述的方法,或根据权利要求14所述的方法,或根据权利要求15~19任一项所述的方法,或根据权利要求20所述的方法被实现。
PCT/CN2021/108591 2020-07-27 2021-07-27 通信方法及装置 WO2022022491A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21850018.9A EP4184991A4 (en) 2020-07-27 2021-07-27 COMMUNICATION METHOD AND APPARATUS
US18/157,984 US20230164723A1 (en) 2020-07-27 2023-01-23 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010733726.1 2020-07-27
CN202010733726.1A CN113993142A (zh) 2020-07-27 2020-07-27 通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/157,984 Continuation US20230164723A1 (en) 2020-07-27 2023-01-23 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2022022491A1 true WO2022022491A1 (zh) 2022-02-03

Family

ID=79731553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108591 WO2022022491A1 (zh) 2020-07-27 2021-07-27 通信方法及装置

Country Status (4)

Country Link
US (1) US20230164723A1 (zh)
EP (1) EP4184991A4 (zh)
CN (1) CN113993142A (zh)
WO (1) WO2022022491A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024082107A1 (en) * 2022-10-17 2024-04-25 Nokia Shanghai Bell Co., Ltd. User activity detection

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117278996A (zh) * 2022-06-14 2023-12-22 华为技术有限公司 一种通信方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101925082A (zh) * 2009-06-09 2010-12-22 大唐移动通信设备有限公司 确定、监听主载波并指示激活载波的方法、***及设备
CN101965018A (zh) * 2009-07-21 2011-02-02 鼎桥通信技术有限公司 一种多载波高速上行分组接入的控制方法
CN102264139A (zh) * 2010-05-24 2011-11-30 ***通信集团公司 Lte-a载波聚合***上行参考信号传输方法以及基站和终端
CN103856311A (zh) * 2012-12-07 2014-06-11 电信科学技术研究院 载波激活方法和设备
CN109451864A (zh) * 2018-02-13 2019-03-08 北京小米移动软件有限公司 传输信息的方法和装置、基站及用户设备
CN109451868A (zh) * 2018-02-13 2019-03-08 北京小米移动软件有限公司 传输信息的方法和装置、基站及用户设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102149208B (zh) * 2010-02-05 2013-11-06 华为技术有限公司 载波激活相关信息的处理方法、基站及ue
US9585083B2 (en) * 2011-06-17 2017-02-28 Samsung Electronics Co., Ltd. Apparatus and method for supporting network entry in a millimeter-wave mobile broadband communication system
CN104010359A (zh) * 2013-02-27 2014-08-27 普天信息技术研究院有限公司 一种载波聚合场景下用户设备载波激活的方法
CN107852199B (zh) * 2015-08-10 2021-03-26 苹果公司 用于上行链路波束跟踪的增强型探测参考信令
CN109314956B (zh) * 2016-09-30 2021-03-02 Oppo广东移动通信有限公司 传输信息的方法、网络设备、终端设备和计算机可读介质
US11184077B2 (en) * 2018-08-03 2021-11-23 Qualcomm Incorporated Facilitating uplink beam selection for a user equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101925082A (zh) * 2009-06-09 2010-12-22 大唐移动通信设备有限公司 确定、监听主载波并指示激活载波的方法、***及设备
CN101965018A (zh) * 2009-07-21 2011-02-02 鼎桥通信技术有限公司 一种多载波高速上行分组接入的控制方法
CN102264139A (zh) * 2010-05-24 2011-11-30 ***通信集团公司 Lte-a载波聚合***上行参考信号传输方法以及基站和终端
CN103856311A (zh) * 2012-12-07 2014-06-11 电信科学技术研究院 载波激活方法和设备
CN109451864A (zh) * 2018-02-13 2019-03-08 北京小米移动软件有限公司 传输信息的方法和装置、基站及用户设备
CN109451868A (zh) * 2018-02-13 2019-03-08 北京小米移动软件有限公司 传输信息的方法和装置、基站及用户设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4184991A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024082107A1 (en) * 2022-10-17 2024-04-25 Nokia Shanghai Bell Co., Ltd. User activity detection

Also Published As

Publication number Publication date
EP4184991A4 (en) 2023-12-27
US20230164723A1 (en) 2023-05-25
EP4184991A1 (en) 2023-05-24
CN113993142A (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
JP7241070B2 (ja) 通信方法及び通信装置
WO2018059339A1 (zh) 通信方法、装置及***
CN113810924B (zh) 一种小区测量方法及装置
WO2022022517A1 (zh) 确定传输功率的方法及装置
WO2021196099A1 (zh) 终端定位方法及装置
WO2021163896A1 (zh) 通信方法及装置
US20230164723A1 (en) Communication method and apparatus
WO2019101018A1 (zh) 一种链路恢复方法、终端设备及网络设备
JP6872634B2 (ja) 協調セル決定方法及びネットワークデバイス
WO2018171666A1 (zh) 信息收发方法和设备
WO2021051364A1 (zh) 一种通信方法、装置及设备
WO2022077387A1 (zh) 一种通信方法及通信装置
US20220385428A1 (en) Signal quality information obtaining method, device, and system
WO2023125223A1 (zh) 下行传输的方法及装置
WO2021027739A1 (zh) 波束失败恢复方法及装置
WO2022022673A1 (zh) 一种通信方法及装置
WO2021239113A1 (zh) 数据传输方法及装置
WO2022022340A1 (zh) 一种通信方法及装置
CN114071667A (zh) 通信的方法、通信装置及***
WO2023077961A1 (zh) 通信方法和装置
CN113225846B (zh) 一种通信方法及装置
WO2024032208A1 (zh) 一种通信的方法和装置
WO2023024704A1 (zh) 通信方法以及通信装置
WO2024120176A1 (zh) 一种通信方法、装置及***
US20230129834A1 (en) Method for determining antenna panel for transmission, and terminal device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21850018

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021850018

Country of ref document: EP

Effective date: 20230214