WO2021254468A1 - 车辆检测***及车辆检测方法 - Google Patents

车辆检测***及车辆检测方法 Download PDF

Info

Publication number
WO2021254468A1
WO2021254468A1 PCT/CN2021/100795 CN2021100795W WO2021254468A1 WO 2021254468 A1 WO2021254468 A1 WO 2021254468A1 CN 2021100795 W CN2021100795 W CN 2021100795W WO 2021254468 A1 WO2021254468 A1 WO 2021254468A1
Authority
WO
WIPO (PCT)
Prior art keywords
image acquisition
vehicle detection
sensor
detection system
controller
Prior art date
Application number
PCT/CN2021/100795
Other languages
English (en)
French (fr)
Inventor
罗文荟
刘连军
Original Assignee
深圳市道通科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通科技股份有限公司 filed Critical 深圳市道通科技股份有限公司
Priority to EP21826059.4A priority Critical patent/EP4170313A4/en
Publication of WO2021254468A1 publication Critical patent/WO2021254468A1/zh
Priority to US18/067,716 priority patent/US20230124731A1/en

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0841Registering performance data
    • G07C5/085Registering performance data using electronic data carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/002Diagnosis, testing or measuring for television systems or their details for television cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/043Allowing translations
    • F16M11/046Allowing translations adapted to upward-downward translation movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/18Heads with mechanism for moving the apparatus relatively to the stand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/42Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters with arrangement for propelling the support stands on wheels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/275Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing wheel alignment
    • G01B11/2755Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing wheel alignment using photoelectric detection means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/695Control of camera direction for changing a field of view, e.g. pan, tilt or based on tracking of objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/10Wheel alignment
    • G01B2210/12Method or fixture for calibrating the wheel aligner
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/10Wheel alignment
    • G01B2210/14One or more cameras or other optical devices capable of acquiring a two-dimensional image
    • G01B2210/143One or more cameras on each side of a vehicle in the main embodiment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • G06T2207/30252Vehicle exterior; Vicinity of vehicle

Definitions

  • This application relates to the technical field of automobile detection, and in particular to a vehicle detection system and a vehicle detection method.
  • the wheels or the hardware on the Advanced Driver Assistant System may be offset or performance degradation relative to the factory.
  • the four-wheel aligner is generally used. Realize the detection of wheel alignment parameters, and calibrate the hardware in ADAS through the vehicle calibration equipment to properly calibrate the wheels and the hardware in the ADAS, so as to ensure that the owner can drive safely.
  • the inventors of the present invention discovered in the process of implementing the present invention that when the current four-wheel alignment or calibration equipment is interfered by relatively severe external forces such as vibration, impact or impact, its measurement accuracy will decrease, or even fail when the user Or maintenance personnel cannot obtain information on the decrease or failure of the measurement accuracy in time, which will cause the wheels or the hardware in the ADAS to perform incorrect corrections, which may lead to severe traffic accidents in severe cases.
  • the embodiment of the present invention aims to provide a vehicle detection system and a vehicle detection method, so as to solve the technical problem of incorrect correction of the vehicle after the current four-wheel alignment or calibration device is interfered.
  • a vehicle detection system includes:
  • the machine vision module is installed on the bracket, the machine vision module includes at least one image acquisition device, the position of the image acquisition device is fixed relative to the bracket, the image acquisition device includes an image acquisition sensor, and the image acquisition The sensor is used to obtain images with relevant parameters of the hardware to be tested on the vehicle;
  • the invalid sensor is used to collect position change information of the image acquisition sensor, and output a motion parameter signal including the position change information;
  • the controller is electrically connected with the failure sensor, and is used for judging whether the position of the image acquisition sensor needs to be calibrated according to the motion parameter signal.
  • the failure sensor is fixed to the image acquisition sensor.
  • the failure sensor is integrated inside the image acquisition device.
  • the failure sensor includes at least one of an acceleration sensor, a pressure sensor, and a gyroscope.
  • the support includes:
  • a base, the bottom of the base includes a driving wheel
  • a stand assembly installed on the base and extending in a vertical direction;
  • Cross beam assembly installed on the vertical frame assembly, the cross beam assembly and the vertical frame assembly are slidably fitted in a vertical direction, and the image capture device is installed on the cross beam assembly.
  • the bracket includes a stand assembly and a beam assembly
  • the cross beam assembly is installed on the vertical frame assembly, the cross beam assembly and the vertical frame assembly are slidably fitted in a vertical direction, and the image capture device is installed on the cross beam assembly.
  • the machine vision module includes two image acquisition devices, and the two image acquisition devices are arranged at intervals on the beam assembly;
  • the controller is accommodated in the vertical frame assembly or the beam assembly.
  • the machine vision module includes two image acquisition devices, the associated image acquisition device is fixed to one of the two image acquisition devices, and is electrically connected to the controller, and the associated target is fixed to the two image acquisition devices. Another one of the image acquisition devices, the associated image acquisition device is used to acquire position information of the associated target relative to the associated image acquisition device, and the associated target is a plane target.
  • one said image acquisition device includes at least two image acquisition sensors, said invalid sensor is fixed to said image acquisition sensor, and one said image acquisition sensor corresponds to one invalid sensor.
  • the machine vision module further includes an image processor, the image processor is electrically connected to the image acquisition sensor and the controller, and the image processor is connected to the controller.
  • One integrated setting the image processor is electrically connected to the image acquisition sensor and the controller, and the image processor is connected to the controller.
  • the output module is electrically connected to the controller, and the output module is configured to output the judgment result of the controller;
  • the output module includes a display device and/or a sound output device.
  • the target to be tested is used to be mounted on a wheel, and the image acquisition device is used to obtain an image of the target to be tested.
  • the controller configured to determine whether the position of the image acquisition sensor needs to be calibrated according to the motion parameter signal includes:
  • the controller is configured to execute a first intervention process when the motion parameter signal is greater than a first preset threshold.
  • the first intervention processing includes: locking the detection function of the vehicle detection system;
  • the first intervention processing includes: controlling the output module to output a first warning signal.
  • the controller configured to determine whether the position of the image acquisition sensor needs to be calibrated according to the motion parameter signal includes:
  • the controller is configured to perform a second intervention process when the motion parameter signal is greater than a second preset threshold and less than or equal to the first preset threshold.
  • the second intervention processing includes: controlling the output module to output a second warning signal.
  • the number of the controllers is the same as the number of the failure sensors, one of the controllers is electrically connected to the failure sensor, and the controller and the failure sensor are integrated in The corresponding image acquisition device.
  • the output module corresponds to the image acquisition device one-to-one, the output module is integrated in the corresponding image acquisition device and is electrically connected to the controller, so The output module is used to output the judgment result of the controller.
  • a vehicle detection method is applied to the above-mentioned vehicle detection system, and the method includes the following steps:
  • the motion parameter signal it is determined whether the position of the image acquisition sensor needs to be calibrated, and if so, an intervention process is performed.
  • the judging whether the position of the image acquisition sensor needs to be calibrated, and if so, performing intervention processing includes:
  • the first intervention process is performed.
  • the vehicle detection system further includes an output module electrically connected to the controller;
  • the first intervention processing includes: locking the detection function of the vehicle detection system;
  • the first intervention processing includes: controlling the output module to output a first warning signal.
  • the judging whether the position of the image acquisition sensor needs to be calibrated, and if so, performing intervention processing further includes:
  • the second intervention processing includes: controlling the output module to output a second warning signal.
  • the vehicle detection system includes a bracket, a machine vision module, a failure sensor, and a controller.
  • the machine vision module includes at least one image acquisition device
  • the image acquisition device includes an image acquisition sensor
  • the image acquisition sensor is used to acquire relevant parameters of the hardware to be tested on the vehicle.
  • the invalid sensor is used to collect the position change information of the image acquisition sensor and output a motion parameter signal including the position change information.
  • the controller is used for judging whether the position of the image acquisition sensor needs to be calibrated according to the above motion parameter signal.
  • the controller can determine whether the position of the image sensor needs to be calibrated in real time, so as to prevent the vehicle detection system from detecting and correcting the vehicle without pre-calibration after the measurement accuracy is reduced. Correction of errors can avoid dangerous accidents.
  • FIG. 1 is a three-dimensional schematic diagram of a vehicle detection system provided by one of the embodiments of the present invention
  • Fig. 2 is a partial enlarged schematic diagram of A in Fig. 1;
  • Fig. 3 is a partial enlarged schematic diagram of B in Fig. 1;
  • Figure 4 is a schematic diagram of the electrical connection principle between the machine vision module, the failure sensor, the output module and the controller;
  • FIG. 5 is a three-dimensional schematic diagram of a vehicle detection system provided by another embodiment of the present invention.
  • FIG. 6 is a three-dimensional schematic diagram of a vehicle detection method provided by one of the embodiments of the present invention.
  • the "installation” includes welding, screwing, clamping, bonding, etc. to fix or restrict an element or device to a specific position or place, and the element or device can be held in a specific position or place. It can also move within a limited range without moving, and the element or device can be disassembled or cannot be disassembled after being fixed or restricted to a specific position or place, which is not limited in the embodiment of the present invention.
  • FIGS. 1 to 3 respectively show a three-dimensional schematic diagram of a vehicle detection system provided by an embodiment of the present invention, a partial enlarged schematic diagram at A, and a partial enlarged schematic diagram at B.
  • the vehicle detection system includes a bracket 100.
  • the bracket 100 is used to install and support the aforementioned machine vision module 200, failure sensor 300, controller 400 and other structures.
  • the machine vision module 200 is installed on the support 100, and includes at least one image acquisition device 210, which is fixed in position relative to the support 100; the image acquisition device 210 includes an image acquisition sensor 212, which is used to acquire An image with relevant parameters of the hardware to be tested on the vehicle to be tested (not shown).
  • the failure sensor 300 is used to collect the position change information of the image acquisition sensor 212 described above, and output a motion parameter signal including the position change information.
  • the controller 400 is electrically connected to the failure sensor 300, and is used to determine whether the position of the image acquisition sensor 212 needs to be calibrated according to the motion parameter signal output by the failure sensor 300.
  • the "electrical connection" in this embodiment means: the communication of electrical signals can be realized between the two structures, which can be a wired electrical connection through a cable, or through a Bluetooth or WiFi module. Wait for the realization of the radio connection.
  • FIG. 1 specifically, which includes a base 110, a stand assembly 120, and a beam assembly 130.
  • the base 110 includes a main body 112 with an overall "I" shape and a plurality of driving wheels 113 mounted on the bottom of the main body 112.
  • the stand assembly 120 is installed on the top of the main body of the base 110 and extends along the vertical direction shown in the figure.
  • the beam assembly 130 is installed on the stand assembly 120 and extends in the horizontal direction as shown in the figure.
  • the beam assembly 130 and the stand assembly 120 are slidably fitted in the vertical direction as shown in the figure.
  • the beam assembly 130 can be moved or stopped in the vertical direction as shown in the figure under the drive of an external corresponding driving assembly.
  • the number of image acquisition devices 210 is two, and the two image acquisition devices 210 are arranged on the beam assembly 130 at intervals; it can be understood that, in other embodiments of the present invention, the number of image acquisition devices 210 is still lower. It can be other numbers, such as one or more than three.
  • the image capture device 210 is fixed to the beam assembly 130 by a detachable connection, which can be switched between a locked state and an unlocked state; wherein, in the locked state, the image capture device 210 is fixed relative to the bracket 100, In the unlocked state, the position of the image acquisition device 210 can be adjusted manually by the user or maintenance personnel, or adjusted under the action of an external driving mechanism, so as to meet the detection requirements of different vehicle types.
  • the image acquisition device 210 includes a housing 211 and an image acquisition sensor 212 installed in the housing 211.
  • the housing 211 is fixed to the beam assembly 130 by a detachable connection, and the image acquisition sensor 212 is installed in the housing 211, which has the function of acquiring external images.
  • the image acquisition sensor 212 is specifically used to acquire The images of the wheels on the vehicle to be tested or the target installed on the vehicle waiting for the relevant parameters of the hardware to be tested.
  • the position of the invalid sensor 300 and the image acquisition sensor 212 in the image acquisition device 210 is relatively fixed, and it is used to detect the position change information of the image acquisition sensor 212 , And output the motion parameter signal with the position change information to the controller 400.
  • the failure sensor 300 includes at least one of an acceleration sensor, a pressure sensor, and a gyroscope; it is understandable that the failure sensor 300 is not limited to the selection of the above sensors, and it can also be other sensors, as long as it can It is sufficient to detect the position transformation information of the image acquisition sensor and output the motion parameter signal with the position change information.
  • the failure sensor 300 is fixed to the housing 211. Specifically, in the same image acquisition device 210, the image acquisition sensor 212 is fixed in position relative to the housing 211, and the failure sensor 300 indirectly acquires the position change information of the image acquisition sensor 212 by detecting the position change information of the housing 211.
  • the failure sensor 300 may be fixed on the outer surface of the housing 211, or integrated into the image acquisition device 210, such as the inner surface of the housing 211 or the internal circuit board of the image acquisition device 210.
  • the failure sensor 300 is fixed to the image acquisition sensor 212 and directly detects the position change information of the image acquisition sensor 212.
  • the number of image acquisition sensors 212 in the same image acquisition device 210 may be one or more than two, and each image acquisition sensor 212 is fixed relative to the housing 211; or, the number of image acquisition sensors 212 in the same image acquisition device 210 If the number is one or more than two, the position of each image acquisition sensor 212 relative to the housing 211 may undergo positional changes such as angular displacement. At this time, the invalid sensor 300 corresponds to the image acquisition sensor 212 one-to-one; or, the same image acquisition device The number of image acquisition sensors 212 in 210 is more than two.
  • Some of the image acquisition sensors 212 are fixed in position relative to the housing 211, and the position of some image acquisition sensors 212 relative to the housing 211 can undergo angular displacement and other positional changes. Each image acquisition sensor whose displacement changes corresponds to a failed sensor 300.
  • the controller 400 is electrically connected to the image acquisition device 210 and the failure sensor 300, respectively.
  • the controller 400 is an independent structure, which is installed on the base 110 and is electrically connected to the failure sensor 300 through a cable 410. It can be understood that, in some other embodiments of the present invention, the controller 400 may also be housed in the stand assembly 120 or the beam assembly 130, or integrated in the image acquisition device 210.
  • the controller 400 is configured to receive and analyze the image with the relevant parameters of the hardware to be tested collected by the image acquisition device 210 to obtain the detection result.
  • the controller 400 is also used to receive the motion parameter signal output by the failed sensor 300, and determine whether the position of the image acquisition sensor 212 needs to be calibrated according to the motion parameter signal.
  • the controller 400 is configured to perform a first intervention process when the motion parameter signal is greater than a first preset threshold; wherein, the first preset threshold is a reference value preset by the controller 400 itself, when the motion parameter When the signal is higher than the first threshold, the detection accuracy of the vehicle detection system is severely disturbed, and the detection result is obviously abnormal.
  • the first intervention processing includes: locking the detection function of the vehicle detection system. Then, the user can know that the vehicle detection system is in an unstable state through the first intervention process, and then correct the vehicle detection system by reasonable means, and then unlock the detection function of the vehicle detection system to avoid vehicle detection errors. Safety accidents caused by calibration under accuracy.
  • the vehicle detection system also includes an output module 500.
  • the output module 500 and the controller 400 are electrically connected through another cable 410, which is used to output whether the position of the image acquisition sensor 212 needs to be calibrated by the controller 400 The result of the judgment.
  • the first intervention process performed by the controller 400 further includes: controlling the output module 500 to output the first warning signal.
  • the output module 500 includes a display device, and the above-mentioned first warning signal includes visual information such as images, text, numbers, and symbols output by the display device; for example, in some embodiments, the first warning signal includes the following text content: "The function of the detection system is abnormal, please calibrate the position of the image acquisition sensor in time”. Further optionally, the output module 500 further includes a sound output device, and the above-mentioned first warning signal also includes a sound signal output by the sound output device; for example, in some embodiments, the first warning signal includes the following sound content: "This detection The system function is abnormal, please calibrate the position of the image acquisition sensor in time".
  • the output module 500 is a display, and the display includes both a display device and a sound output device. It can be understood that, in other embodiments of the present invention, the output module may also include only any one of the display device and the sound output device.
  • the above-mentioned controller is used for judging whether the position of the image acquisition sensor needs to be calibrated according to the motion parameter signal, and further includes: the controller 400 is used for when the above-mentioned motion parameter signal is greater than a second preset threshold value and less than or equal to the first preset threshold value When the motion parameter signal is less than or equal to the second parameter threshold, the second intervention process is performed; and when the motion parameter signal is less than or equal to the second parameter threshold, no intervention process is performed.
  • the second preset threshold is a value preset by the controller 400 itself, which is less than the first preset threshold.
  • the foregoing second intervention processing includes: controlling the output module 500 to output a second warning signal.
  • the second warning signal can be an image signal output by the display device, or a sound signal output by the sound output device, of course, it can also be a signal output by a combination of the display device and the sound output device.
  • the present invention is not limited to this; for example, in some other implementations of the present invention
  • the number of controllers 400 is the same as the number of failed sensors 300, a controller 400 is correspondingly electrically connected to a failed sensor 300, and both the controller 400 and the failed sensor 300 are integrated in the corresponding image acquisition device 210; for another example , The number of controllers 400, failure sensors 300, and output modules 500 are the same.
  • a controller 400 is correspondingly electrically connected to a failure sensor 300 and an output module 500, and the corresponding controller 400, failure sensor 300, and output module 500 are integrated in the corresponding The image capture device 210.
  • the controller 400 includes a processor 401 and a memory 402 as shown in FIG. 4.
  • the processor 401 and the memory 402 may be connected by a bus or other means.
  • the image acquisition device 210, the failure sensor 300, and the output module 500 in the machine vision module 200 are all connected to the bus.
  • the memory 402 as a non-volatile computer-readable storage medium, can be used to store non-volatile software programs, non-volatile computer-executable programs, and modules.
  • the processor 401 executes the steps executed by the controller described above by running non-volatile software programs, instructions, and modules stored in the memory 402.
  • the memory 402 may include a storage program area and a storage data area.
  • the storage program area may store an operating system and an application program required by at least one function; Data etc.
  • the memory 402 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the memory 402 may optionally include memories remotely provided with respect to the processor 401, and these remote memories may be connected to the processor 401 via a network.
  • Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the program instructions/modules are stored in the memory 402, and when executed by the one or more processors 401, the steps executed by the controller described above are executed.
  • the machine vision module 200 further includes an associated image acquisition device 220 and Associated target 230. Specifically, please refer to FIGS. 1 to 3 at the same time.
  • the associated image acquisition device 220 is fixed to one of the two image acquisition devices 210 and is electrically connected to the controller 400.
  • the associated target 230 is fixed to one of the two image acquisition devices.
  • the associated image acquisition device 220 is used to collect the position information of the associated target 230 relative to itself to establish the mutual positional relationship between the two image acquisition devices 210, and then obtain the left front wheel, left rear wheel, and rear wheel of the vehicle under test.
  • the associated target is a planar target.
  • the aforementioned failure sensor 300 is built in the associated image acquisition device 220 and the associated target 230. Specifically, a failure sensor 300 is built in the associated image acquisition device 220, and a failure sensor 300 is built in the associated target 230.
  • the vehicle inspection The system also includes a target to be tested (not shown). Specifically, the target to be measured is used to be installed on the wheels of the vehicle to be tested, and the image acquisition device 210 is used to acquire images of the target to be measured. Compared with directly identifying the wheel itself, the image acquisition device 210 can be more simple After identifying the target to be tested, the controller can calculate the relevant parameters of the wheel based on the position of the target to be tested in the image and analyze the detection result.
  • the machine vision module 200 further includes an image processor (not shown), which is electrically connected to the image acquisition device 210 and the controller 400, and is used to receive the hardware under test acquired by the two image acquisition devices 210.
  • the image of the relevant parameter and the image with the associated target 230 acquired by the associated image acquisition device 220 are subjected to optimization processing such as noise reduction, so as to improve the resolution rate and accuracy of the controller 400.
  • the image processor is integrated with the controller 400; it can be understood that, in other embodiments of the present invention, the image processor can also be provided independently of the controller 400, or integrated in the image acquisition device 210. .
  • the vehicle detection system includes a bracket 100, a machine vision module 200, a failure sensing module 300, and a controller 400.
  • the machine vision module 200 includes at least one image acquisition device 210, and the image acquisition device 210 includes an image acquisition sensor 212, and the image acquisition sensor 212 is used to acquire relevant parameters of the hardware to be tested on the vehicle.
  • the failure sensor 300 is used to collect the position change information of the image acquisition sensor 212 and output a motion parameter signal including the position change information to the controller 400.
  • the controller 400 is electrically connected to the failure sensor 300, and is used to determine whether the position of the image acquisition sensor needs to be calibrated according to the motion parameter signal, so as to avoid that the vehicle detection system does not undergo pre-calibration after the detection accuracy is significantly reduced. Error correction caused by vehicle detection and correction can avoid dangerous accidents.
  • the vehicle detection system also includes an output module 500.
  • the vehicle detection system can lock the detection function of the vehicle detection system according to the impact degree of the image acquisition sensor 212 and the degree of reduction in detection accuracy to alert the user to the vehicle in time.
  • the detection system can be calibrated; the output module 500 can also output different warning signals or no warning signal, so that the user can understand the degree of influence on the detection accuracy of the vehicle detection system in time, so as to prompt the user to correct the vehicle detection system in time.
  • the present invention also provides another vehicle detection system.
  • FIG. 5 shows a three-dimensional schematic diagram of the vehicle detection system in this embodiment.
  • the sensor (not shown), the controller 400', and the output module 500'.
  • the bracket 100' includes a stand assembly 120' and a beam assembly 130', and the beam assembly 130' is fixed to the stand assembly 120'.
  • the machine vision module 200' includes at least one image acquisition device 210', and the image acquisition device 210' is installed on the beam assembly 130'.
  • the failure sensor is built into the image acquisition device 210'.
  • the controller 400' is installed on the beam assembly 130'.
  • the output module 500 is a mobile terminal such as a mobile phone or a tablet, and is electrically connected to the controller 400 in a wireless communication manner.
  • the vehicle detection system in the first embodiment will be referred to as the first vehicle detection system.
  • the vehicle detection system in this embodiment will be referred to as the second vehicle detection system. system.
  • the structure of the second vehicle detection system is roughly the same as that of the first vehicle detection system. The main differences between the two are:
  • the bracket 100 in the first vehicle inspection system includes a base 110, a stand assembly 120, and a beam assembly 130.
  • the base 110 includes a driving wheel 111. Therefore, the first vehicle inspection system can move flexibly during the entire inspection process and is suitable for For the four-wheel alignment of the vehicle under test or the calibration of the hardware in ADAS; the output module 500 is connected to the controller 400 through a cable 410;
  • the bracket 100' in the second vehicle inspection system only includes the stand assembly 120' and the beam assembly 130', wherein the bottom of the stand assembly 120' is used to be fixed on the workbench or the ground during the inspection process, so the second vehicle
  • the detection system is suitable for the four-wheel positioning of the vehicle to be tested; the output module 500' and the controller 400' are wirelessly connected.
  • the scope of application of the first vehicle detection system is relatively wide, and the scope of application of the second vehicle detection system is relatively narrow. It has the advantages of convenience and safety.
  • the present invention also provides a vehicle detection method, which is applied to the vehicle detection system in any of the above embodiments, please refer to FIG. 6, which shows a schematic flow chart of the vehicle detection method, combined with FIG. To Figure 3, the vehicle detection method includes the following steps:
  • the motion parameter signal including the position change information of the image acquisition sensor 212 sent by the failure sensor 300 is received.
  • the controller 400 is respectively connected to the image acquisition device 210 and the failure sensor 300; in the process that the controller 400 controls the image acquisition device 210 to acquire relevant parameters of the vehicle, the failure sensor 300 collects the position change information of the image acquisition sensor 212, and The motion parameter signal including the position change information is output to the controller 400.
  • S2 According to the motion parameter signal, determine whether the position of the image acquisition sensor 212 needs to be calibrated, and if so, perform intervention processing. Specifically, the controller 400 obtains the motion parameter signal output by the failed sensor 300, and compares the motion parameter signal with its internal preset threshold to determine whether calibration is required; if calibration is required, the controller 400 performs intervention processing. If it is not needed, no intervention will be performed.
  • the controller 400 is preset with a first preset threshold and a second preset threshold; wherein, when the motion parameter signal is greater than the first preset threshold, the detection accuracy of the vehicle detection system is seriously affected, and the controller 400 Perform the first intervention process; when the motion parameter signal is greater than the second preset threshold and less than or equal to the first preset threshold, the detection accuracy of the vehicle detection system is slightly affected, and the controller performs the second intervention process; when the motion parameter signal When it is less than or equal to the second parameter threshold, the detection accuracy of the vehicle detection system is minimally or unaffected, and the controller 400 does not perform any intervention processing.
  • the aforementioned first intervention processing includes: locking the detection function of the vehicle detection system; then, the user may be warned to correct the vehicle detection system in time.
  • the first intervention processing further includes: controlling the output module to output a first warning signal; according to the actual structure of the output module 500, the first warning signal may be visual information such as images, text, symbols, etc., or sound, etc. Audible information; then, after the user obtains the first warning signal, the vehicle detection system can be calibrated in time to ensure accurate detection results.
  • the above-mentioned first intervention processing may also include only one of the above-mentioned two methods.
  • the aforementioned second intervention processing includes: the controller 400 controls the output module 500 to output a second warning signal; according to the actual structure of the output module 500, the second warning signal may be visualized information such as images, text, symbols, etc. It can be audible information such as sound; then, after the user obtains the second warning signal, the vehicle detection system can be calibrated in time to ensure more accurate detection results.
  • the vehicle detection method provided by the embodiment of the present invention is applied to the detection process of the vehicle under test by the vehicle detection system. Because the controller 400 can obtain the position change information of the image acquisition sensor 212 in the image acquisition device 210 in real time through the failure sensor 300, that is, control The device 400 can perform matching intervention processing or no intervention processing based on the real-time position change information of the image acquisition sensor 212, thereby ensuring that the vehicle detection system performs the detection process only when the detection accuracy is good, so as to obtain reasonable detection results , So as to avoid safety accidents caused by error correction of vehicle hardware on the basis of abnormal detection results.
  • embodiments of the present invention also provide a non-volatile computer storage medium.
  • the computer storage medium stores computer-executable instructions.
  • the computer-executable instructions are executed by one or more processors.
  • One processor 401 in 4 can enable the above-mentioned one or more processors to execute the steps performed by the above-described controller.
  • inventions of the present invention also provide a computer program product.
  • the computer program product includes a computer program stored on a non-volatile computer-readable storage medium.
  • the computer program includes program instructions. When the program instructions are executed by the electronic device, the electronic device executes the steps executed by the controller described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Traffic Control Systems (AREA)
  • Image Processing (AREA)
  • Studio Devices (AREA)

Abstract

一种车辆检测***及车辆检测方法。该车辆检测***包括支架(100)、机器视觉模块(200)、失效传感器(300)与控制器(400)。机器视觉模块(200)包括至少一个图像采集装置(210),图像采集装置(210)包括图像采集传感器(212),图像采集传感器(212)用于获取车辆的待测硬件的相关参数。失效传感器(300)用于采集图像采集传感器(212)的位置变化信息,并输出包括该位置变化信息的运动参数信号。控制器(400)用于根据运动参数信号判断图像采集传感器(212)的位置是否需要被校准。在该车辆检测***的使用过程中,控制器(400)可实时判断图像采集传感器(212)的位置是否需要校准,以避免车辆检测***在测算精度降低之后,不经前置校准即对车辆进行检测、校正而导致的错误校正,进而可避免危险事故的发生。

Description

车辆检测***及车辆检测方法
本申请要求于2020年6月19日提交中国专利局、申请号为202010567583.1、申请名称为“车辆检测***及车辆检测方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及汽车检测技术领域,尤其涉及一种车辆检测***及车辆检测方法。
背景技术
伴随着科技的发展及生活水平的提高,居民汽车的保有量迅速增长,汽车已经成为居民最受青睐的代步工具。汽车在长时间、长里程行驶后,车轮或先进辅助驾驶***(Advanced Driver Assistant System,以下简称ADAS)上的硬件都可能相对出厂是发生位置偏移或性能发生下降,目前一般通过四轮定位仪实现对车轮定位参数的检测,通过汽车标定设备对ADAS中的硬件进行标定检测,以合理地校准车轮及上述ADAS中的硬件,从而确保车主能够安全地驾驶。
本发明的发明人在实现本发明的过程中发现:目前的四轮定位仪或标定设备在受到较为严重的振动、冲击或撞击等外力干扰时,其测算精度将下降,甚至失效时,而用户或维修人员无法及时获取测算精度下降或失效的信息,这将导致车轮或ADAS中的硬件进行错误的校正,严重时可能引发恶劣的交通事故。
发明内容
本发明实施例旨在提供一种车辆检测***及车辆检测方法,以解决目前四轮定位仪或标定设备在受到干扰后,对车辆进行错误的校正的技术问题。
本发明实施例解决其技术问题采用以下技术方案:
一种车辆检测***,包括:
支架;
机器视觉模块,安装于所述支架,所述机器视觉模块包括至少一个图像采集装置,所述图像采集装置相对于所述支架的位置固定,所述图像采集装置包括图像采集传感器,所述图像采集传感器用于获取具有车辆上的待测硬件的相关参数的图像;
失效传感器,用于采集所述图像采集传感器的位置变化信息,并输出包括所述位置变化信息的运动参数信号;
控制器,与所述失效传感器电连接,用于根据所述运动参数信号判断所述图像采集传感器的位置是否需要被校准。
作为上述技术方案的进一步改进方案,所述失效传感器与所述图像采集传感器固定。
作为上述技术方案的进一步改进方案,所述失效传感器集成于所述图像采集装置的内部。
作为上述技术方案的进一步改进方案,所述失效传感器包括加速度传感器、压力传感器与陀螺仪中的至少一种。
作为上述技术方案的进一步改进方案,所述支架包括:
底座,所述底座的底部包括有驱动轮;
立架组件,安装于所述底座且沿竖直方向延伸;以及
横梁组件;安装于所述立架组件,所述横梁组件与所述立架组件之间沿竖直方向滑动配合,所述图像采集装置安装于所述横梁组件。
作为上述技术方案的进一步改进方案,所述支架包括立架组件与横梁组件;
所述横梁组件安装于所述立架组件,所述横梁组件与所述立架组件之间沿竖直方向滑动配合,所述图像采集装置安装于所述横梁组件。
作为上述技术方案的进一步改进方案,所述机器视觉模块包括两所述图像采集装置,两所述图像采集装置间隔设置于所述横梁组件;
所述控制器收容于所述立架组件或所述横梁组件的内部。
作为上述技术方案的进一步改进方案,还包括关联图像获取装置与关联标靶;
所述机器视觉模块包括两所述图像采集装置,所述关联图像获取装置固定于两所述图像采集装置中的一个,并与所述控制器电连接,所述关联标靶固定于两所述图像采集装置中的另一个,所述关联图像获取装置用于采集所述关联标靶相对所述关联图像获取装置的位置信息,所述关联标靶为平面标靶。
作为上述技术方案的进一步改进方案,一所述图像采集装置包括有至少两个图像采集传感器,所述失效传感器固定于所述图像采集传感器,一所述图像采集传感器对应一失效传感器。
作为上述技术方案的进一步改进方案,所述机器视觉模块还包括图像处理器,所述图像处理器分别与所述图像采集传感器及所述控制器电连接,所述图 像处理器与所述控制器一体集成设置。
作为上述技术方案的进一步改进方案,还包括输出模块,所述输出模块与所述控制器电连接,所述输出模块用于输出所述控制器的判断结果;
所述输出模块包括显示装置和/或声音输出装置。
作为上述技术方案的进一步改进方案,还包括待测标靶,所述待测标靶用于安装于车轮上,所述图像采集装置用于获取所述待测标靶的图像。
作为上述技术方案的进一步改进方案,所述控制器用于根据所述运动参数信号判断所述图像采集传感器的位置是否需要被校准包括:
所述控制器用于在所述运动参数信号大于第一预设阈值时,执行第一干预处理。
作为上述技术方案的进一步改进方案,所述第一干预处理包括:锁死所述车辆检测***的检测功能;
和/或,所述第一干预处理包括:控制所述输出模块输出第一警示信号。
作为上述技术方案的进一步改进方案,所述控制器用于根据所述运动参数信号判断所述图像采集传感器的位置是否需要被校准包括:
所述控制器用于在所述运动参数信号大于第二预设阈值,且小于或等于所述第一预设阈值时,执行第二干预处理。
作为上述技术方案的进一步改进方案,所述第二干预处理包括:控制所述输出模块输出第二警示信号。
作为上述技术方案的进一步改进方案,所述控制器的数量与所述失效传感器的数量相同,一所述控制器对应电连接一所述失效传感器,所述控制器与所述失效传感器均集成于对应的图像采集装置中。
作为上述技术方案的进一步改进方案,还包括输出模块,所述输出模块与所述图像采集装置一一对应,所述输出模块集成于对应的图像采集装置中并与所述控制器电连接,所述输出模块用于输出所述控制器的判断结果。
本发明实施例解决其技术问题还采用以下技术方案:
一种车辆检测方法,应用于上述的车辆检测***,所述方法包括以下步骤:
在控制所述图像采集装置对所述车辆进行检测的过程中,接收所述失效传感器发送的包括所述图像采集传感器的位置变化信息的运动参数信号;
根据所述运动参数信号,判断所述图像采集传感器的位置是否需要被校准,若是,则执行干预处理。
作为上述技术方案的进一步改进方案,所述判断所述图像采集传感器的位置是否需要被校准,若是,则执行干预处理包括:
在所述运动参数信号大于第一预设阈值时,执行第一干预处理。
作为上述技术方案的进一步改进方案,所述车辆检测***还包括与所述控制器电连接的输出模块;
所述第一干预处理包括:锁死所述车辆检测***的检测功能;
和/或,所述第一干预处理包括:控制所述输出模块输出第一警示信号。
作为上述技术方案的进一步改进方案,所述判断所述图像采集传感器的位置是否需要被校准,若是,则执行干预处理还包括:
在所述运动参数信号大于第二预设阈值,且小于或等于所述第一预设阈值时,执行第二干预处理。
作为上述技术方案的进一步改进方案,所述第二干预处理包括:控制所述输出模块输出第二警示信号。
本发明的有益效果是:
本发明实施例提供的车辆检测***包括支架、机器视觉模块、失效传感器与控制器。其中,机器视觉模块包括至少一个图像采集装置,该图像采集装置包括图像采集传感器,该图像采集传感器用于获取车辆上的待测硬件的相关参数。失效传感器用于采集图像采集传感器的位置变化信息,并输出包括该位置变化信息的运动参数信号。控制器用于根据上述运动参数信号判断所述图像采集传感器的位置是否需要被校准。
则,在该车辆检测***的使用过程中,控制器可实时判断图像传感器的位置是否需要校准,以避免车辆检测***在测算精度降低之后,不经前置校准即对车辆进行检测、校正而导致的错误校正,进而可避免危险事故的发生。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本发明其中一实施例提供的车辆检测***的立体示意图;
图2为图1中A处的局部放大示意图;
图3为图1中B处的局部放大示意图;
图4为机器视觉模块、失效传感器、输出模块与控制器之间的电气连接原 理示意图;
图5为本发明其中另一实施例提供的车辆检测***的立体示意图;
图6为本发明其中一实施例提供的车辆检测方法的立体示意图。
具体实施方式
为了便于理解本发明,下面结合附图和具体实施例,对本发明进行更详细的说明。需要说明的是,当元件被表述“固定于”/“固接于”/“安装于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”、“内”、“外”以及类似的表述只是为了说明的目的。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本发明。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本发明不同实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
在本说明书中,所述“安装”包括焊接、螺接、卡接、粘合等方式将某一元件或装置固定或限制于特定位置或地方,所述元件或装置可在特定位置或地方保持不动也可在限定范围内活动,所述元件或装置固定或限制于特定位置或地方后可进行拆卸也可不能进行拆卸,在本发明实施例中不作限制。
请一并参阅图1至图3,其分别示出了本发明其中一实施例提供的车辆检测***的立体示意图、A处的局部放大示意图以及B处的局部放大示意图,该车辆检测***包括支架100、机器视觉模块200、失效传感器300与控制器400。其中,支架100用于安装支撑上述机器视觉模块200、失效传感器300与控制器400等各结构。机器视觉模块200安装于支架100,其包括至少一个图像采集装置210,该述图像采集装置210相对于支架100的位置固定;图像采集装置210包括图像采集传感器212,该图像采集传感器212用于获取具有待测车辆(未示出)上的待测硬件的相关参数的图像。失效传感器300用于采集上述图像采集传感器212的位置变化信息,并输出包括所述位置变化信息的运动参数信号。控制器400与失效传感器300电连接,其用于根据失效传感器300输出的运动参数信号判断图像采集传感器212的位置是否需要被校准。值得注意的是,本实施例中所述的“电连接”意为:两结构之间能够实现电信号的通信,其可以是通过缆线实现的有线电连接,亦可以是通过蓝牙、WiFi模块等实现的无线电连接。
对于上述支架100,请具体参阅图1,其包括底座110、立架组件120和横梁组件130。其中,底座110包括一整体呈“工”字形的主体112和安装于 该主体112的底部的若干个驱动轮113。立架组件120安装于底座110主体的顶部且沿图示竖直方向延伸。横梁组件130安装于立架组件120且沿图示水平方向延伸,该横梁组件130与立架组件120之间沿图示竖直方向滑动配合。横梁组件130可在外部相应驱动组件的驱动下适时地沿图示竖直方向运动或停止。
对于上述机器视觉模块200,请具体参阅图2与图3,同时结合图1,其包括至少两个图像采集装置210,该两个图像采集装置210安装于横梁组件130,且相对支架100的位置固定。本实施例中,图像采集装置210的数量为两个,该两个图像采集装置210间隔设置于横梁组件130;可以理解的是,在本发明的其他实施例中,图像采集装置210的数量还可以是其他数量,如一个或三个以上。可选地,图像采集装置210通过可拆卸连接的方式固定于横梁组件130,其可在锁止状态与解锁状态之间切换;其中,于锁止状态,图像采集装置210相对支架100固定,于解锁状态,图像采集装置210可由用户或维修人员手动调节位置,或在外部驱动机构的作用下调节位置,以适应对不同车型的检测需求。
图像采集装置210包括壳体211以及安装于该壳体211的图像采集传感器212。其中,壳体211通过可拆卸连接的方式固定于横梁组件130,图像采集传感器212安装于壳体211,其具有获取外界图像的功能,本实施例中,该图像采集传感器212具体用于获取具有待测车辆上的车轮或安装于车辆上的标靶等待测硬件的相关参数的图像。
对于上述失效传感器300,请继续参阅图2与图3,同时结合图1,失效传感器300与图像采集装置210中的图像采集传感器212位置相对固定,其用于检测图像采集传感器212的位置变化信息,并输出具有该位置变化信息的运动参数信号给控制器400。可选地,失效传感器300包括加速度传感器、压力传感器与陀螺仪中的至少一种;可以理解的是,失效传感器300并不局限于在上述传感器中选择,其还可以为其他传感器,只要其能够实现检测图像采集传感器的位置变换信息,并输出具有该位置变化信息的运动参数信号即可。
在一些实施例中,失效传感器300固定于壳体211。具体地,同一图像采集装置210内,图像采集传感器212相对壳体211位置固定,失效传感器300通过检测壳体211的位置变化信息间接获取图像采集传感器212的位置变化信息。其中,失效传感器300可以是固定于壳体211的外表面,亦可以集成于图像采集装置210的内部,如壳体211的内表面或者图像采集装置210的内部电路板。
在一些实施例中,失效传感器300固定于图像采集传感器212,其直接检测图像采集传感器212的位置变化信息。其中,同一图像采集装置210内的图像采集传感器212的数量可以是一个或两个以上,各图像采集传感器212相对壳体211固定;亦或是,同一图像采集装置210内的图像采集传感器212的数量为一个或两个以上,各图像采集传感器212相对壳体211的位置可以发生角 位移等位置变化,此时,失效传感器300与图像采集传感器212一一对应;还或是,同一图像采集装置210内的图像采集传感器212的数量为两个以上,其中部分图像采集传感器212相对壳体211位置固定,部分图像采集传感器212相对壳体211的位置可以发生角位移等位置变化,则,可发生位移变化的各图像采集传感器各自对应一失效传感器300。
对于上述控制器400,请具体参阅图1,同时结合图2与图3,控制器400分别与图像采集装置210及失效传感器300电连接。本实施例中,控制器400为一独立结构,其安装于底座110且通过缆线410与上述失效传感器300电连接。可以理解的是,在本发明其他的一些实施例中,控制器400还可以收容于立架组件120或横梁组件130的内部,亦或是集成于图像采集装置210内部。控制器400用于接收图像采集装置210采集的具有待测硬件的相关参数的图像并解析,以获得检测结果。控制器400还用于接收失效传感器300输出的运动参数信号,并根据所述运动参数信号判断图像采集传感器212的位置是否需要被校准。具体地,控制器400用于在所述运动参数信号大于第一预设阈值时,执行第一干预处理;其中,第一预设阈值为控制器400本身预设的一个参考值,当运动参数信号高于该第一阈值时,车辆检测***的检测精度受到严重干扰,检测结果明显异常。可选地,第一干预处理包括:锁死该车辆检测***的检测功能。则,用户可通过该第一干预处理,知晓该车辆检测***处于一不稳定状态,然后通过合理的手段校正该车辆检测***,之后解锁该车辆检测***的检测功能,以避免车辆在错误的检测精度下进行校正而引发的安全事故。
为使用户能够在该车辆检测***的检测精度受到干扰而影响检测功能时,通过视觉、听觉即可快捷、清晰地知晓该车辆检测***处于异常干扰程度,从而及时对该车辆检测***作出校正,该车辆检测***还包括输出模块500。具体地,请参照图1,同时结合图2与图3,输出模块500与控制器400通过另一缆线410电连接,其用于输出控制器400对图像采集传感器212的位置是否需要被校准的判断结果。本实施例中,控制器400执行的第一干预处理还包括:控制输出模块500输出第一警示信号。可选地,输出模块500包括显示装置,上述第一警示信号包括该显示装置输出的图像、文字、数字、符号等可视化信息;例如,在一些实施方式中,第一警示信号包括以下文字内容:“该检测***功能异常,请及时校准图像采集传感器的位置”。进一步可选地,输出模块500还包括声音输出装置,上述第一警示信号还包括该声音输出装置输出的声音信号;例如,在一些实施方式中,第一警示信号包括以下声音内容:“该检测***功能异常,请及时校准图像采集传感器的位置”。再进一步可选地,输出模块500为显示器,该显示器同时包括显示装置与声音输出装置。可以理解是是,在本发明的其他实施例中,输出模块还可以仅包括显示装置与声音输出装置中的任意一个。
进一步地,上述控制器用于根据运动参数信号判断图像采集传感器的位置是否需要被校准还包括:控制器400用于在上述运动参数信号大于第二预设阈 值,且小于或等于第一预设阈值时,执行第二干预处理;以及用于在上述运动参数信号小于或等于第二参数阈值时,不执行任何干预处理。其中,第二预设阈值为控制器400本身预设的一个值,其小于第一预设阈值,当上述运动参数信号大于第二预设阈值,且小于或等于第一预设阈值时,该车辆检测***的检测精度受到轻微影响,检测结果较实际情况差异不大,可以使用;当上述运动参数信号小于或等于第二预设阈值时,该车辆检测***的检测精度未受影响或影响极小而不影响具体检测功能。可选地,上述第二干预处理包括:控制输出模块500输出第二警示信号。与第一警示信号相似,第二警示信号可以是由显示装置输出的图像信号,亦或是由声音输出装置输出的声音信号,当然,还可以是由显示装置与声音输出装置组合输出的信号。当输出模块500输出第二警示信号时,用户可以清晰地知道该车辆检测***因受到冲击而导致检测检测被影响的程度,从而根据实际需要决定是否校准该车辆检测***。
应当理解,即使本实施例中,图像采集装置210、失效传感器300、控制器400与输出模块500为分别独立设置的结构,但本发明却不局限于此;例如,在本发明其他的一些实施例中,控制器400的数量与失效传感器300的数量相同,一控制器400对应电连接一失效传感器300,且该控制器400与失效传感器300均集成于对应的图像采集装置210中;又例如,控制器400、失效传感器300与输出模块500的数量相同,一控制器400对应电连接一失效传感器300与一输出模块500,对应的控制器400、失效传感器300与输出模块500均集成于对应的图像采集装置210中。
值得说明的是:控制器400作为车辆检测***的中心控制设备,如图4所示,其包括处理器401与存储器402,该处理器401与存储器402之间可以通过总线或者其他方式连接。机器视觉模块200中的图像采集装置210、失效传感器300和输出模块500均与总线连接。
存储器402作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块。处理器401通过运行存储在存储器402中的非易失性软件程序、指令以及模块,从而执行上述描述的控制器所执行的步骤。存储器402可以包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需要的应用程序;存储数据区可存储图像采集装置210、图像处理器及失效传感器300输出的数据等。此外,存储器402可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
在一些实施例中,存储器402可选包括相对于处理器401远程设置的存储器,这些远程存储器可以通过网络连接至处理器401。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述程序指令/模块存储在所述存储器402中,当被所述一个或者多个处理器401执行时,执行上述描述的控制器所执行的步骤。
进一步地,当该车辆检测***应用于对车辆四轮定位时,其中一图像采集 装置210用于获取具有待测车辆左前轮及左后轮的相关参数的图像,另一图像采集装置210用于获取具有待测车辆右前轮及右后轮的相关参数的图像,为便于建立两图像采集装置210分别获取的相关参数之间的联系,该机器视觉模块200还包括关联图像获取装置220和关联标靶230。具体地,请同时结合图1至图3,该关联图像获取装置220固定于两图像采集装置210中的一个,并与控制器400电连接,该关联标靶230固定于两图像采集装置中的另一个。其中,关联图像获取装置220用于采集关联标靶230相对其自身的位置信息,以建立两图像采集装置210之间的相互位置关系,进而得出待测车辆左前轮、左后轮、后前轮及右后轮之间的位置关系与其他相关参数之间的联系。可选地,关联标靶为平面标靶。
可选地,上述失效传感器300内置于关联图像获取装置220和关联标靶230。具体地,一失效传感器300内置于关联图像获取装置220,一失效传感器300内置于关联标靶230。
进一步地,考虑到图像采集装置210直接通过获取带有车轮的图像,来获取车轮的相关参数的方式需要较为严苛精密的算法才能实现对车轮参数的解析,为克服这一缺陷,该车辆检测***还包括待测标靶(未示出)。具体地,该待测标靶用于安装在待测车辆的车轮上,图像采集装置210用于获取待测标靶的图像,相较于直接识别车轮本身,图像采集装置210能够更为简单地识别出待测标靶,控制器则可通过该待测标靶在图像中的位置计算出车轮的相关参数并分析出检测结果。
进一步地,机器视觉模块200还包括图像处理器(未示出),该图像处理器分别与图像采集装置210及控制器400电连接,其用于接收两图像采集装置210获取的具有待测硬件相关参数的图像以及关联图像获取装置220获取的具有关联标靶230的图像并进行降噪等优化处理,以便于提升控制器400解析的速率及精度。可选地,图像处理器与控制器400一体集成设置;可以理解的是,在本发明的其他实施例中,图像处理器还可以相对控制器400独立设置,或者是集成于图像采集装置210内部。
本发明实施例提供的车辆检测***包括支架100、机器视觉模块200、失效传感模块300与控制器400。其中,机器视觉模块200包括至少一个图像采集装置210,该图像采集装置210包括图像采集传感器212,该图像采集传感器212用于获取车辆上待测硬件的相关参数。失效传感器300用于采集图像采集传感器212的位置变化信息,并输出包括该位置变化信息的运动参数信号给控制器400。控制器400与失效传感器300电连接,其用于根据所述运动参数信号判断图像采集传感器的位置是否需要被校准,以避免该车辆检测***在检测精度明显降低之后,不经前置校准即对车辆进行检测、校正而导致的错误校正,进而可避免危险事故的发生。
此外,本车辆检测***还包括输出模块500,该车辆检测***可根据图像采集传感器212受冲击的程度、检测精度降低的程度,锁死该车辆检测***的 检测功能,以警示用户及时对该车辆检测***进行校正;还可通过输出模块500输出不同的警示信号或不输出警示信号,以便用户及时了解该车辆检测***检测精度的受影响程度,从而提示用户及时对该车辆检测***进行校正。
基于同一发明构思,本发明还提供另一种车辆检测***,具体请参阅图5,其示出了本实施例中车辆检测***的立体示意图,其包括支架100'、机器视觉模块200'、失效传感器(未示出)、控制器400'以及输出模块500'。其中,支架100'包括立架组件120'与横梁组件130',该横梁组件130'固定于立架组件120'。机器视觉模块200'包括至少一个图像采集装置210',该图像采集装置210'安装于横梁组件130'。失效传感器内置于图像采集装置210'。控制器400'安装于横梁组件130'。输出模块500为手机、平板等移动终端,其与控制器400之间以无线通信的方式电连接。
为便于与第一实施例中的车辆检测***作出区分,以下将第一实施例中的车辆检测***成为第一车辆检测***,同理,将本实施例中的车辆检测***成为第二车辆检测***。同时结合图1至图5,第二车辆检测***与第一车辆检测***的结构组成大体相同,两者的主要不同在于:
第一车辆检测***中的支架100包括底座110、立架组件120及横梁组件130,其中,底座110包括有驱动轮111,故该第一车辆检测***在整个检测过程中可灵活移动,其适用于对待测车辆的四轮定位或ADAS中硬件的标定;输出模块500通过缆线410与控制器400连接;
第二车辆检测***中的支架100'仅包括立架组件120'与横梁组件130',其中,立架组件120'的底部用于在检测过程中固定于工作台或地面,故该第二车辆检测***适用于对待测车辆的四轮定位;输出模块500'与控制器400'之间无线连接。
由此可知,第一车辆检测***的适用范围较广,第二车辆检测***的适用范围较窄,但由于输出模块500'为移动终端,用户在使用过程中可远离支架100'等结构,其具有方便、安全的优点。
基于同一发明构思,本发明还提供一种车辆检测方法,其应用于上述任一实施例中的车辆检测***,请参阅图6,其示出了该车辆检测方法的流程示意图,同时结合图1至图3,该车辆检测方法包括以下步骤:
S1:在控制图像采集装置210对待测车辆进行检测的过程中,接收失效传感器300发送的包括图像采集传感器212的位置变化信息的运动参数信号。具体地,控制器400分别与图像采集装置210、失效传感器300连接;在控制器400控制图像采集装置210获取车辆的相关参数的过程中,失效传感器300采集图像采集传感器212的位置变化信息,并输出包括该位置变化信息的运动参数信号给控制器400。
S2:根据所述运动参数信号,判断图像采集传感器212的位置是否需要被 校准,若是,则执行干预处理。具体地,控制器400获取失效传感器300输出的运动参数信号,并将该运动参数信号与其内部预设的阈值进行比较,以判断是否需要进行校准;若需要校准,控制器400则进行干预处理,若不需要,则不进行干预处理。更具体地,控制器400预设有第一预设阈值与第二预设阈值;其中,当上述运动参数信号大于第一预设阈值时,车辆检测***的检测精度受到严重影响,控制器400执行第一干预处理;当上述运动参数信号大于第二预设阈值且小于或等于第一预设阈值时,车辆检测***的检测精度受到轻微影响,控制器进行第二干预处理;当运动参数信号小于或等于第二参数阈值时,车辆检测***的检测精度受到极小轻微影响或不受影响,控制器400不进行任何干预处理。
可选地,上述第一干预处理包括:锁死该车辆检测***的的检测功能;则,可警示用户及时校正该车辆检测***。可选地,第一干预处理还包括:控制输出模块输出第一警示信号;根据输出模块500实际结构的不同,第一警示信号可以是图像、文字、符号等可视化的信息,亦可以是声音等可听化的信息;则,用户在获取到第一警示信号后,可及时校正该车辆检测***,以保证精确的检测结果。可以理解的是,在一些实施例中,上述第一干预处理还可以仅包括上述两种方式中的一种。
可选地,上述第二干预处理包括:控制器400控制输出模块500输出第二警示信号;根据输出模块500实际结构的不同,第二警示信号可以是图像、文字、符号等可视化的信息,亦可以是声音等可听化的信息;则,用户在获取到第二警示信号后,可及时校正该车辆检测***,以保证更精确的检测结果。
本发明实施例提供的车辆检测方法运用于车辆检测***对待测车辆的检测过程中,由于控制器400可通过失效传感器300实时获取到图像采集装置210中图像采集传感器212的位置变化信息,即控制器400可根据图像采集传感器212实时的位置变化信息,作出匹配的干预处理或不作出干预处理,进而确保该车辆检测***在检测精度较佳的情况下才进行检测过程,以获得合理的检测结果,从而避免在检测结果异常的基础上对车辆硬件进行错误校正而引发的安全事故。
基于同一发明构思,本发明实施例还提供了一种非易失性计算机存储介质,所述计算机存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个处理器执行,例如图4中的一个处理器401,可使得上述一个或多个处理器可执行上述描述的控制器所执行的步骤。
基于同一发明构思,本发明实施例还提供了一种计算机程序产品,所述计算机程序产品包括存储在非易失性计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被所述电子设备执行时,使所述电子设备执行上述描述的控制器所执行的步骤。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (23)

  1. 一种车辆检测***,其特征在于,包括:
    支架;
    机器视觉模块,安装于所述支架,所述机器视觉模块包括至少一个图像采集装置,所述图像采集装置相对于所述支架的位置固定,所述图像采集装置包括图像采集传感器,所述图像采集传感器用于获取具有车辆上的待测硬件的相关参数的图像;
    失效传感器,用于采集所述图像采集传感器的位置变化信息,并输出包括所述位置变化信息的运动参数信号;
    控制器,与所述失效传感器电连接,用于根据所述运动参数信号判断所述图像采集传感器的位置是否需要被校准。
  2. 根据权利要求1所述的车辆检测***,其特征在于,所述失效传感器与所述图像采集传感器固定。
  3. 根据权利要求2所述的车辆检测***,其特征在于,所述失效传感器集成于所述图像采集装置的内部。
  4. 根据权利要求1所述的车辆检测***,其特征在于,所述失效传感器包括加速度传感器、压力传感器与陀螺仪中的至少一种。
  5. 根据权利要求1所述的车辆检测***,其特征在于,所述支架包括:
    底座,所述底座的底部包括有驱动轮;
    立架组件,安装于所述底座且沿竖直方向延伸;以及
    横梁组件;安装于所述立架组件,所述横梁组件与所述立架组件之间沿竖直方向滑动配合,所述图像采集装置安装于所述横梁组件。
  6. 根据权利要求1所述的车辆检测***,其特征在于,所述支架包括立架组件与横梁组件;
    所述横梁组件安装于所述立架组件,所述横梁组件与所述立架组件之间沿竖直方向滑动配合,所述图像采集装置安装于所述横梁组件。
  7. 根据权利要求5或6所述的车辆检测***,其特征在于,所述机器视觉模块包括两所述图像采集装置,两所述图像采集装置间隔设置于所述横梁组件;
    所述控制器收容于所述立架组件或所述横梁组件的内部。
  8. 根据权利要求1所述的车辆检测***,其特征在于,还包括关联图像获取装置与关联标靶;
    所述机器视觉模块包括两所述图像采集装置,所述关联图像获取装置固定于两所述图像采集装置中的一个,并与所述控制器电连接,所述关联标靶固定于两所述图像采集装置中的另一个,所述关联图像获取装置用于采集所述关联标靶相对所述关联图像获取装置的位置信息,所述关联标靶为平面标靶。
  9. 根据权利要求1所述的车辆检测***,其特征在于,一所述图像采集装置包括有至少两个图像采集传感器,所述失效传感器固定于所述图像采集传感器,一所述图像采集传感器对应一失效传感器。
  10. 根据权利要求1所述的车辆检测***,其特征在于,所述机器视觉模块还包括图像处理器,所述图像处理器分别与所述图像采集传感器及所述控制器电连接,所述图像处理器用于对所述图像采集传感器采集的图像进行优化处理,所述图像处理器与所述控制器一体集成设置。
  11. 根据权利要求1所述的车辆检测***,其特征在于,还包括输出模块,所述输出模块与所述控制器电连接,所述输出模块用于输出所述控制器的判断结果;
    所述输出模块包括显示装置和/或声音输出装置。
  12. 根据权利要求1所述的车辆检测***,其特征在于,还包括待测标靶,所述待测标靶用于安装于车轮上,所述图像采集装置用于获取所述待测标靶的图像。
  13. 根据权利要求11所述的车辆检测***,其特征在于,所述控制器用于根据所述运动参数信号判断所述图像采集传感器的位置是否需要被校准包括:
    所述控制器用于在所述运动参数信号大于第一预设阈值时,执行第一干预处理。
  14. 根据权利要求13所述的车辆检测***,其特征在于,所述第一干预处理包括:锁死所述车辆检测***的检测功能;
    和/或,所述第一干预处理包括:控制所述输出模块输出第一警示信号。
  15. 根据权利要求13所述的车辆检测***,其特征在于,所述控制器用于根据所述运动参数信号判断所述图像采集传感器的位置是否需要被校准包括:
    所述控制器用于在所述运动参数信号大于第二预设阈值,且小于或等于所述第一预设阈值时,执行第二干预处理。
  16. 根据权利要求15所述的车辆检测***,其特征在于,所述第二干预处理包括:控制所述输出模块输出第二警示信号。
  17. 根据权利要求11所述的车辆检测***,其特征在于,所述控制器的数量与所述失效传感器的数量相同,一所述控制器对应电连接一所述失效传感器,所述控制器与所述失效传感器均集成于对应的图像采集装置中。
  18. 根据权利要求17所述的车辆检测***,其特征在于,还包括输出模块,所述输出模块与所述图像采集装置一一对应,所述输出模块集成于对应的图像采集装置中并与所述控制器电连接,所述输出模块用于输出所述控制器的判断结果。
  19. 一种车辆检测方法,应用于如权利要求1至18中任一项所述的车辆检测***,其特征在于,所述方法包括以下步骤:
    在控制所述图像采集装置对所述车辆进行检测的过程中,接收所述失效传感器发送的包括所述图像采集传感器的位置变化信息的运动参数信号;
    根据所述运动参数信号,判断所述图像采集传感器的位置是否需要被校准,若是,则执行干预处理。
  20. 根据权利要求19所述的车辆检测方法,其特征在于,所述判断所述图像采集传感器的位置是否需要被校准,若是,则执行干预处理包括:
    在所述运动参数信号大于第一预设阈值时,执行第一干预处理。
  21. 根据权利要求20所述的车辆检测方法,其特征在于,所述车辆检测***还包括与所述控制器电连接的输出模块;
    所述第一干预处理包括:锁死所述车辆检测***的检测功能;
    和/或,所述第一干预处理包括:控制所述输出模块输出第一警示信号。
  22. 根据权利要21所述的车辆检测方法,其特征在于,所述判断所述图像采集传感器的位置是否需要被校准,若是,则执行干预处理还包括:
    在所述运动参数信号大于第二预设阈值,且小于或等于所述第一预设阈值时,执行第二干预处理。
  23. 根据权利要求22所述的车辆检测方法,其特征在于,所述第二干预处理包括:控制所述输出模块输出第二警示信号。
PCT/CN2021/100795 2020-06-19 2021-06-18 车辆检测***及车辆检测方法 WO2021254468A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21826059.4A EP4170313A4 (en) 2020-06-19 2021-06-18 VEHICLE DETECTION SYSTEM AND VEHICLE DETECTION METHOD
US18/067,716 US20230124731A1 (en) 2020-06-19 2022-12-18 Vehicle detection system and vehicle detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010567583.1A CN111599036B (zh) 2020-06-19 2020-06-19 车辆检测***及车辆检测方法
CN202010567583.1 2020-06-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/067,716 Continuation US20230124731A1 (en) 2020-06-19 2022-12-18 Vehicle detection system and vehicle detection method

Publications (1)

Publication Number Publication Date
WO2021254468A1 true WO2021254468A1 (zh) 2021-12-23

Family

ID=72188090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100795 WO2021254468A1 (zh) 2020-06-19 2021-06-18 车辆检测***及车辆检测方法

Country Status (4)

Country Link
US (1) US20230124731A1 (zh)
EP (1) EP4170313A4 (zh)
CN (1) CN111599036B (zh)
WO (1) WO2021254468A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111599036B (zh) * 2020-06-19 2023-06-23 深圳市道通科技股份有限公司 车辆检测***及车辆检测方法
CN114930797B (zh) * 2020-12-28 2024-06-25 深圳市卓驭科技有限公司 自动驾驶视觉标定装置
CN112945571B (zh) * 2021-01-26 2023-07-07 深圳市道通科技股份有限公司 同屏显示方法、装置及车辆测量***
USD1000969S1 (en) * 2021-06-10 2023-10-10 Autel Intelligent Technology Corp., Ltd. Calibration device
USD1000988S1 (en) * 2021-06-10 2023-10-10 Autel Intelligent Technology Corp., Ltd. Calibration device
CN215338924U (zh) * 2021-07-07 2021-12-28 深圳市道通科技股份有限公司 一种标定支架
USD1000970S1 (en) * 2022-01-24 2023-10-10 Autel Intelligent Technology Corp., Ltd. Calibration device
USD1000972S1 (en) * 2022-03-10 2023-10-10 Autel Intelligent Technology Corp., Ltd. Calibration device
USD1000971S1 (en) * 2022-03-10 2023-10-10 Autel Intelligent Technology Corp., Ltd. Calibration device
CN115589534B (zh) * 2022-09-09 2023-09-08 广州市斯睿特智能科技有限公司 跟随式车辆检测项图片采集装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101367778B1 (ko) * 2012-11-29 2014-03-28 위드로봇 주식회사 카메라 상대위치 보정을 수행하는 차량 얼라인먼트 시스템 및 그 제공방법
CN207095542U (zh) * 2017-08-14 2018-03-13 山东团尚网络科技股份有限公司 一种车辆四轮定位仪校准装置
CN207991830U (zh) * 2018-03-21 2018-10-19 上海邦田交通科技有限公司 一种汽车四轮定位***
CN109827784A (zh) * 2018-11-29 2019-05-31 深圳市元征科技股份有限公司 一种四轮定位仪的工作状态监测方法及装置
US10347006B2 (en) * 2016-08-16 2019-07-09 Snap-On Incorporated Vehicle wheel alignment methods and systems
CN111599036A (zh) * 2020-06-19 2020-08-28 深圳市道通科技股份有限公司 车辆检测***及车辆检测方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1309832B1 (en) * 2000-08-14 2008-10-22 Snap-on Incorporated Self-calibrating 3D machine measuring system useful in motor vehicle wheel alignment
US7855783B2 (en) * 2007-09-18 2010-12-21 Snap-On Incorporated Integrated circuit image sensor for wheel alignment systems
CN202994480U (zh) * 2012-12-10 2013-06-12 上海一成汽车检测设备科技有限公司 具有大型led屏幕的3d四轮定位仪
CN203176673U (zh) * 2013-04-07 2013-09-04 深圳市三杰宜科技有限公司 自动升降装置及带有该自动升降装置的四轮定位仪
US9644782B2 (en) * 2013-10-23 2017-05-09 Hunter Engineering Company Wheel alignment system cabinet structure
CN113280763B (zh) * 2015-10-06 2023-04-28 实耐宝公司 具有高级诊断和不停止定位的车轮对准器
CN107124532A (zh) * 2016-02-25 2017-09-01 实耐宝公司 四轮定位仪及其电子***、中央处理板和相机板
CN205579077U (zh) * 2016-03-04 2016-09-14 赵东 四轮定位仪的升降装置
US10788400B2 (en) * 2016-10-11 2020-09-29 Hunter Engineering Company Method and apparatus for vehicle inspection and safety system calibration using projected images
US11145084B2 (en) * 2018-08-30 2021-10-12 Hunter Engineering Company Method and apparatus for guiding placement of ADAS fixtures during vehicle inspection and service
CN210221507U (zh) * 2019-07-01 2020-03-31 深圳嘉车科技有限公司 一种二柱四轮定位仪
CN210462329U (zh) * 2019-07-01 2020-05-05 深圳嘉车科技有限公司 一种四轮定位仪的升降装置
CN210689549U (zh) * 2019-12-06 2020-06-05 安徽省爱夫卡电子科技有限公司 一种3d四轮定位装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101367778B1 (ko) * 2012-11-29 2014-03-28 위드로봇 주식회사 카메라 상대위치 보정을 수행하는 차량 얼라인먼트 시스템 및 그 제공방법
US10347006B2 (en) * 2016-08-16 2019-07-09 Snap-On Incorporated Vehicle wheel alignment methods and systems
CN207095542U (zh) * 2017-08-14 2018-03-13 山东团尚网络科技股份有限公司 一种车辆四轮定位仪校准装置
CN207991830U (zh) * 2018-03-21 2018-10-19 上海邦田交通科技有限公司 一种汽车四轮定位***
CN109827784A (zh) * 2018-11-29 2019-05-31 深圳市元征科技股份有限公司 一种四轮定位仪的工作状态监测方法及装置
CN111599036A (zh) * 2020-06-19 2020-08-28 深圳市道通科技股份有限公司 车辆检测***及车辆检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4170313A4 *

Also Published As

Publication number Publication date
US20230124731A1 (en) 2023-04-20
EP4170313A1 (en) 2023-04-26
CN111599036B (zh) 2023-06-23
CN111599036A (zh) 2020-08-28
EP4170313A4 (en) 2023-12-06

Similar Documents

Publication Publication Date Title
WO2021254468A1 (zh) 车辆检测***及车辆检测方法
US10072926B2 (en) Wheel aligner with advanced diagnostics and no-stop positioning
US20120042031A1 (en) Wireless network and methodology for automotive service systems
US20120314073A1 (en) Apparatus and Method for Detecting Posture of Camera Mounted on Vehicle
JP7096053B2 (ja) 車両の車両カメラを較正するための方法および装置
JP2010239409A (ja) 車載カメラの校正装置
JP2009503532A (ja) ジャイロを搭載するロボット、ジャイロ較正装置、プログラム及び方法
EP3336488B9 (en) Method of verification of the installation of an apparatus mounted on board a vehicle, and related system
KR20150012384A (ko) 도로 표면상의 포트홀 측정 시스템 및 방법
CN112363130A (zh) 车载传感器标定方法、存储介质及***
CN112066915A (zh) 一种轮定位***以及车辆测量***
CN110174059A (zh) 一种基于单目图像的受电弓导高及拉出值测量方法
JPH08276787A (ja) 車載用画像処理装置及び画像表示システム
EP3505863B1 (en) Scanned image correction apparatus, method and mobile scanning device
US8825303B1 (en) Wheel alignment apparatus and method for vehicles having electro-mechanical power steering
KR20100129871A (ko) 타이어 및 현가장치 측정 및 진단 장치를 구비한 3차원 측정방식 차량용 휠 얼라인먼트 장치
JPH04203921A (ja) 距離検出装置
KR101402667B1 (ko) 굴삭기 선회각 계측 시스템
WO2021197050A1 (zh) 三维目标、车轮定位***和车轮定位方法
JP2016225719A (ja) ステレオカメラ装置、車両、および較正方法
CN110864920B (zh) 一种基于视觉的角度关系自动测定方法及其***
CN108168909A (zh) 一种汽车四轮定位***
WO2018130605A1 (en) Method for calibrating a camera for a motor vehicle considering a calibration error, camera as well as motor vehicle
CN212692812U (zh) 一种轮定位***以及车辆测量***
WO2016042951A1 (ja) 位置検出システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21826059

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021826059

Country of ref document: EP

Effective date: 20230119

NENP Non-entry into the national phase

Ref country code: DE