WO2021248502A1 - 侧行通信方法和终端设备 - Google Patents

侧行通信方法和终端设备 Download PDF

Info

Publication number
WO2021248502A1
WO2021248502A1 PCT/CN2020/095977 CN2020095977W WO2021248502A1 WO 2021248502 A1 WO2021248502 A1 WO 2021248502A1 CN 2020095977 W CN2020095977 W CN 2020095977W WO 2021248502 A1 WO2021248502 A1 WO 2021248502A1
Authority
WO
WIPO (PCT)
Prior art keywords
pscch
pssch
resource
terminal device
resources
Prior art date
Application number
PCT/CN2020/095977
Other languages
English (en)
French (fr)
Inventor
赵振山
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP20940395.5A priority Critical patent/EP4156814A4/en
Priority to CN202080101552.5A priority patent/CN115669130A/zh
Priority to PCT/CN2020/095977 priority patent/WO2021248502A1/zh
Publication of WO2021248502A1 publication Critical patent/WO2021248502A1/zh
Priority to US18/076,246 priority patent/US20230105567A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/40Resource management for direct mode communication, e.g. D2D or sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2646Arrangements specific to the transmitter only using feedback from receiver for adjusting OFDM transmission parameters, e.g. transmission timing or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • This application relates to the field of communications, and more specifically, to a side-travel communication method and terminal equipment.
  • the side-line communication is different from the way in which communication data is received or sent through the base station in the traditional cellular system, and has higher spectrum efficiency and lower transmission delay.
  • side-line communication works in an unlicensed frequency band
  • the side-line signal sent by the terminal needs to occupy a certain channel bandwidth in the frequency domain. Otherwise, devices working on the same unlicensed frequency band may perform channel monitoring on the current time-frequency resources, and consider that the next time-frequency resources meet the resource selection conditions. Therefore, multiple devices may send signals on the same time-frequency resource, causing serious mutual interference.
  • the embodiments of the present application provide a side-line communication method and terminal equipment, which can reduce the interference of the side-line communication.
  • An embodiment of the present application provides a side-line communication method, including: a side-line signal sent by a transmitting end TX occupies interleaving resources, where one interleaving resource includes multiple physical resource blocks PRBs with specific intervals in the frequency domain, and one interleaving The frequency domain bandwidth occupied by the resource is not less than a specific proportion of the channel bandwidth.
  • the embodiment of the application provides a side-line communication method, including: PSCCH and PSSCH sent by TX at the transmitting end are multiplexed in a time slot in a time division manner, and the PSCCH occupies at least one PRB, and one or more TXs control the location of the PSCCH
  • the frequency domain bandwidth occupied by the OFDM symbol is not less than a specific proportion of the channel bandwidth.
  • the embodiment of the present application provides a terminal device, the terminal device is a transmitting end TX, and the terminal device includes: a sending module for sending a sideline signal, the sideline signal occupies interleaving resources, where one interleaving resource is included in the frequency domain There are multiple physical resource blocks PRBs with specific intervals, and the frequency domain bandwidth occupied by one interleaving resource is not less than a specific proportion of the channel bandwidth.
  • the embodiment of the application provides a terminal device, the terminal device is a transmitting end TX, and the terminal device includes: a transmitting module for transmitting PSCCH and PSSCH.
  • PSCCH and PSSCH are multiplexed in one time slot in a time division manner, and the PSCCH Occupy at least one PRB, and one or more TX controls that the frequency domain bandwidth occupied in the OFDM symbol where the PSCCH is located is not less than a specific proportion of the channel bandwidth.
  • the embodiment of the present application provides a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, so that the terminal device executes the aforementioned side-line communication method.
  • the embodiment of the present application provides a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, so that the network device executes the aforementioned side-line communication method.
  • the embodiment of the present application provides a chip for implementing the above-mentioned lateral communication method.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes the above-mentioned lateral communication method.
  • the embodiment of the present application provides a computer-readable storage medium for storing a computer program, and when the computer program is executed by a device, the device executes the above-mentioned lateral communication method.
  • the embodiment of the present application provides a computer program product, including computer program instructions, and the computer program instructions cause a computer to execute the above-mentioned lateral communication method.
  • the embodiment of the present application provides a computer program, which when running on a computer, causes the computer to execute the above-mentioned lateral communication method.
  • the sideline signal sent by the sender occupies a certain channel bandwidth in the frequency domain to prevent devices working on the same unlicensed frequency band from performing channel monitoring on the current time-frequency resources, thereby preventing multiple devices from monitoring the channel on the current time-frequency resources.
  • the side-line signal is sent on the same time-frequency resource to reduce the interference of the side-line communication.
  • Fig. 1 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • Figure 2 is a schematic diagram of the PSCCH and PSSCH multiplexing mode in NR V2X.
  • Fig. 3 is a schematic diagram of an NR-V2X frame structure including multiple OFDM symbols in one slot.
  • Figure 4 is a schematic diagram of side-line communication without a central control node.
  • Figure 5 is a schematic diagram of side-line communication with a central control node.
  • Fig. 6 is a schematic flowchart of a lateral communication method according to an embodiment of the present application.
  • Fig. 7 is a schematic flow chart of a side communication method according to another embodiment of the present application.
  • Figure 8 is a schematic diagram of interleaving resources.
  • Figure 9 is a schematic diagram of PSCCH and PSSCH time division multiplexing.
  • Fig. 10 is a schematic diagram of multiple PRBs where PSCCH occupies one interleaving resource.
  • Figure 11 is a schematic diagram of the first PRB where the PSCCH occupies two consecutive interleaving resources.
  • Figure 12 is a schematic diagram of a PSCCH resource set and a PSSCH resource set.
  • Figure 13 is a schematic diagram of PSCCH and PSSCH occupying different interleaving resources.
  • Fig. 14 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • Fig. 15 is a schematic block diagram of a network device according to an embodiment of the present application.
  • Fig. 16 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • Fig. 17 is a schematic block diagram of a chip according to an embodiment of the present application.
  • Fig. 18 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • evolution system of NR system LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum) unlicensed spectrum, NR-U) system, non-terrestrial communication network (Non-Terrestrial Networks, NTN) system, Universal Mobile Telecommunication System (UMTS), wireless local area network (Wireless Local Area Networks, WLAN), wireless fidelity (Wireless Fidelity, WiFi), the fifth-generation communication (5th-Generation, 5G) system or other communication systems, etc.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • V2X vehicle to everything
  • the communication system in the embodiments of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, can also be applied to a dual connectivity (Dual Connectivity, DC) scenario, and can also be applied to a standalone (SA) deployment.
  • CA Carrier Aggregation
  • DC Dual Connectivity
  • SA standalone
  • the communication system in the embodiment of this application can be applied to unlicensed spectrum, where the unlicensed spectrum can also be considered as a shared spectrum; or the communication system in the embodiment of this application can also be applied to licensed spectrum, where: Licensed spectrum can also be considered non-shared spectrum.
  • the embodiments of this application describe various embodiments in combination with network equipment and terminal equipment.
  • the terminal equipment may also be referred to as User Equipment (UE), access terminal, subscriber unit, user station, mobile station, mobile station, and remote station. Station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • UE User Equipment
  • the terminal device can be a station (STAION, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, and personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, or in the future Terminal equipment in the evolved Public Land Mobile Network (PLMN) network.
  • STAION, ST station
  • WLAN Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on the water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, and satellites).
  • land including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on the water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, and satellites).
  • First class can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on the water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, and satellites).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, and an augmented reality (Augmented Reality, AR) terminal.
  • Equipment wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical, and wireless terminal equipment in smart grid , Wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home, etc.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be implemented without relying on smartphones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • the network device may be a device used to communicate with mobile devices, the network device may be an access point (AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA It can also be a base station (NodeB, NB) in WCDMA, or an evolved base station (Evolutional Node B, eNB, or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, wearable device, and NR network
  • gNB network equipment in the PLMN network or the network equipment in the PLMN network that will evolve in the future, or the network equipment in the NTN network, etc.
  • the network device may have mobile characteristics, for example, the network device may be a mobile device.
  • the network equipment can be a satellite or a balloon station.
  • the satellite may be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geostationary earth orbit (GEO) satellite, or a high elliptical orbit (High Elliptical Orbit, HEO). ) Satellite etc.
  • the network device may also be a base station installed in a location such as land or water.
  • the network equipment may provide services for the cell, and the terminal equipment communicates with the network equipment through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network equipment ( For example, the cell corresponding to the base station.
  • the cell can belong to a macro base station or a base station corresponding to a small cell.
  • the small cell here can include: Metro cell, Micro cell, and Pico cell ( Pico cells, femto cells, etc. These small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-rate data transmission services.
  • Fig. 1 exemplarily shows a communication system 100.
  • the communication system includes a network device 110 and two terminal devices 120.
  • the communication system 100 may include multiple network devices 110, and the coverage of each network device 110 may include other numbers of terminal devices 120, which is not limited in the embodiment of the present application.
  • the communication system 100 may also include other network entities such as mobility management entities (Mobility Management Entity, MME), access and mobility management functions (Access and Mobility Management Function, AMF), which are described in this embodiment of the application. Not limited.
  • MME Mobility Management Entity
  • AMF Access and Mobility Management Function
  • the network equipment may include access network equipment and core network equipment. That is, the wireless communication system also includes multiple core networks for communicating with the access network equipment.
  • the access network equipment can be a long-term evolution (LTE) system, a next-generation (mobile communication system) (next radio, NR) system, or an authorized auxiliary access long-term evolution (LAA-) system.
  • a device with a communication function in the network/system in the embodiment of the present application may be referred to as a communication device.
  • the communication equipment may include network equipment and terminal equipment with communication functions, and the network equipment and terminal equipment may be the specific equipment described in the embodiments of the application, which will not be repeated here; communication
  • the device may also include other devices in the communication system, such as other network entities such as network controllers and mobility management entities, which are not limited in the embodiment of the present application.
  • the "indication" mentioned in the embodiments of the present application may be a direct indication, an indirect indication, or an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B relation.
  • correlate can mean that there is a direct correspondence or an indirect correspondence between the two, or that there is an association relationship between the two, or indicating and being instructed, configuring and being Configuration and other relationships.
  • PSCCH and PSSCH occupy non-overlapping orthogonal frequency division multiplexing (OFDM) symbols in the time domain, and occupy the same physical resource block (PRB) in the frequency domain, namely The two are completely reused in a time-division manner.
  • This method helps to reduce the decoding delay of the PSSCH, because the PSCCH can be decoded before the PSSCH starts.
  • the PSCCH and PSSCH occupy the same number of PRBs in the frequency domain, the number of PRBs occupied by the PSCCH in the frequency domain will vary with the number of PRBs occupied by the PSSCH.
  • both the service load and the code rate may change in a large range
  • the dynamic range of the number of PRBs occupied by the PSSCH may be large.
  • the PSSCH can start from any subchannel, so the receiving UE needs to blindly detect the PSCCH at the beginning of each subchannel.
  • Option 1B and Option 1A have the same performance.
  • the number of PRBs occupied by the PSCCH in Option 1B does not vary with the size of the PSSCH frequency domain, so it can prevent the receiving UE from performing PSCCH blind detection.
  • the number of PRBs occupied by the PSSCH is often more than that of the PSCCH, in this case, the resources on the OFDM symbol where the PSCCH is located will be wasted.
  • Option 2 is the same as the multiplexing mode of PSCCH and PSSCH adopted in LTE-V2X, that is, PSCCH and PSSCH occupy non-overlapping frequency domain resources, but occupy the same OFDM symbols.
  • the PSCCH occupies all OFDM symbols in the entire time slot, so a way similar to that in LTE-V2X can be used to increase the power spectral density of the PSCCH relative to the PSSCH by 3dB, thereby increasing the reliability of the PSCCH.
  • the receiving UE needs to start decoding the PSCCH after a time slot ends, which eventually causes the decoding delay of the PSSCH to be higher than Option 1A and Option 1B.
  • Option 3 has the advantages of Option 1 and Option 1A with low latency.
  • the size of the frequency domain of the PSCCH is constant, the blind detection of the PSCCH can be avoided.
  • the remaining PRBs can still be used for PSSCH transmission, so the problem of resource waste in Option 1A can be avoided.
  • FIG. 3 it is a schematic diagram of the time slot structure used in NR-V2X.
  • all OFDM symbols in a time slot can be used for side-line transmission, and the time slot includes a physical sidelink feedback channel (PSFCH) resource.
  • PSFCH physical sidelink feedback channel
  • the first OFDM symbol is fixed for automatic gain control (Automatic Gain Control, AGC).
  • AGC Automatic Gain Control
  • the UE copies the information sent on the second OFDM symbol.
  • the last OFDM symbol is left with a guard interval of one symbol, which is used for the UE to switch from the transmitting/receiving state to the receiving/transmitting state.
  • the PSCCH and the PSSCH are multiplexed by the aforementioned Option 3, and the PSCCH can occupy two or three OFDM symbols.
  • the PSCCH can be frequency division multiplexed with the PSSCH on the OFDM symbol where the PSCCH is located.
  • PSFCH resources are configured periodically. If there are PSFCH resources in a slot, the PSFCH is located at the penultimate OFDM symbol in the slot. Since the received power of the UE may change on the OFDM symbol where the PSFCH is located, the third symbol from the bottom in the time slot will also be used for PSFCH transmission to assist the receiving UE in AGC adjustment (AGC for PSFCH). In addition, the UE that transmits the PSSCH and the UE that transmits the PSFCH may be different. Therefore, before the two PSFCH symbols, an additional symbol (Gap as shown in FIG. 3, which may be referred to as a guard interval) needs to be added for the UE's transmit and receive conversion.
  • an additional symbol Gap as shown in FIG. 3, which may be referred to as a guard interval
  • the vehicle network belongs to a scene of side-by-side communication.
  • the Internet of Vehicles system adopts terminal-to-terminal direct communication.
  • 3GPP Third Generation Partnership Project, the third-generation mobile communication standardization organization
  • two transmission modes are defined: the first mode and the second mode.
  • the first mode the transmission resources of the terminal are allocated by the base station, and the terminal transmits data on the side link according to the resources allocated by the base station; the base station can allocate resources for a single transmission to the terminal, or it can allocate a semi-static transmission for the terminal Resources.
  • the second mode The terminal selects a resource in the resource pool for data transmission.
  • the second mode can be further divided into scenarios without central control nodes and scenarios with central control nodes according to whether there are non-base station type central control nodes.
  • the side-line communication resources between the transmitting end (Transmit, TX) and the receiving end (receive, RX) are independently selected by the TX in a specific resource pool.
  • TX transmitting end
  • RX receiving end
  • multiple terminals form a communication group with a central control node in the communication group, which can also be called a cluster header (CH), and other terminals are called It is a member terminal (Cluster Member, CM).
  • CH cluster header
  • CM member terminal
  • the central control node has at least one of the following functions: responsible for the establishment of a communication group; joining and leaving group members; performing resource coordination, allocating sideline transmission resources to other terminals, receiving sideline feedback information from other terminals; communicating with other terminals
  • the group performs functions such as resource coordination.
  • the transmission between the CH and the CM is referred to as the downlink
  • the transmission between the CM and the CH is referred to as the uplink.
  • the side-line signal sent by the terminal needs to occupy a specific ratio, for example, more than 80% of the channel bandwidth in the frequency domain. Otherwise, devices working on the same unlicensed frequency band may perform channel monitoring on the current time-frequency resource, and may consider that the next time-frequency resource meets the resource selection conditions. Eventually, multiple devices will send signals on the same time-frequency resource, causing serious mutual interference.
  • PSCCH and PSSCH occupies multiple consecutive PRBs in the frequency domain, it cannot be guaranteed that the occupied frequency domain bandwidth is always greater than a specific ratio of the channel bandwidth, such as 80%, and therefore may not be applied to sideline communication on unlicensed frequency bands.
  • FIG. 6 is a schematic flowchart of a lateral communication method 200 according to an embodiment of the present application. This method can optionally be applied to the system shown in FIG. 1, but is not limited to this. The method includes at least part of the following content.
  • the side row signal sent by the transmitting end (TX) occupies interleaving resources, where one interleaving resource includes multiple physical resource blocks (PRBs) with specific intervals in the frequency domain, and the frequency domain bandwidth occupied by one interleaving resource is not less than A specific ratio of channel bandwidth.
  • the specific ratio may be a ratio that guarantees that other devices cannot perform channel monitoring, for example, a certain value from 80% to 100%.
  • the sideline signal in the embodiment of the present application occupies interleaving resources, so that the sideline signal sent by the sender occupies a certain channel bandwidth in the frequency domain, and prevents devices working on the same unlicensed frequency band from performing channel monitoring on the current time-frequency resources. This prevents multiple devices from sending sideline signals on the same time-frequency resource, and reduces the interference of sideline communications.
  • one interleaving resource includes F PRBs with a starting point of f and an interval of k PRBs, where 0 ⁇ f ⁇ k, and F is such that f+F*k is not greater than the channel bandwidth W The largest integer.
  • the starting point is f, which means that the index of the PRB is f.
  • F is 4, and one interleaving resource includes 4 PRBs.
  • the value of F, the frequency domain positions of F PRBs, and the value of k can be defined by base station configuration, CH configuration, pre-configuration or standard definition.
  • the value of k corresponds to the sub-carrier space (Sub-Carrier Space, SCS), that is, the value of k may be different under different sub-carrier spaces.
  • SCS Sub-Carrier Space
  • the sideline signal includes a physical sideline control channel (PSCCH) and a physical sideline shared channel (PSSCH).
  • PSCCH physical sideline control channel
  • PSSCH physical sideline shared channel
  • the PSCCH sent by the TX and the PSSCH scheduled by the PSCCH occupy at least one interleaving resource or at least one PRB of the interleaving resource.
  • the value of N can be defined by base station configuration, CH configuration, pre-configuration or standard definition.
  • the number of OFDM symbols included in the above one slot is only an example and not a limitation.
  • the number of OFDM symbols available for sideline transmission in a slot can be defined by base station configuration, CH configuration, pre-configuration or standard definition.
  • the OFDM symbol with index 0 is used to transmit the PSSCH, or used to repeatedly transmit the same as the OFDM symbol with index 1.
  • the PSCCH is transmitted starting from the OFDM symbol with index 1.
  • redundant information can be sent on the OFDM symbol with index 0, for example, the PSCCH or its scheduled PSSCH can be sent on the OFDM symbol with index 0.
  • the PSCCH and the PSSCH are multiplexed in the same time slot in a time division manner.
  • Time division multiplexing can transmit multiple signals at different times.
  • it may include at least one of the following methods:
  • the PSCCH occupies at least one interleaving resource.
  • the PSCCH occupies M1 interlaced resources. If the PSSCH scheduled by the PSCCH is located in the current time slot, the number of interlaced resources occupied by the M1 and the PSSCH scheduled by the PSCCH is the same, and the current time slot is the The time slot where the PSCCH is located, M1 is a positive integer. For example, in the current time slot, the interleaving resources occupied by the PSSCH scheduled by the PSCCH are all 2, and both are interleaving resource 0 and interleaving resource 1.
  • the PSCCH occupies M2 interlaced resources. If the PSCCH does not schedule a PSSCH or the PSSCH scheduled by the PSCCH is located in a different time slot from the PSCCH, then the M2 has an allowable value in the resource pool or Multiple optional values, M2 is a positive integer.
  • M1 and/or M2 can be defined by base station configuration, CH configuration, pre-configuration or standard definition. For example, if M2 includes multiple optional values, the sender can select the value of M2 according to the current channel conditions.
  • the PSCCH occupies at least one PRB of one interleaving resource.
  • the PSSCH scheduled by the PSCCH occupies other PRBs in the interleaving resources except the PRB occupied by the PSCCH.
  • the PSCCH and the PSSCH are multiplexed in a frequency division manner.
  • the frequency division multiplexing method can transmit multiple signals through different frequency domain resources in the same time period and in the same channel.
  • it may include at least one of the following methods:
  • the PSCCH occupies at least one interleaving resource in one time slot.
  • the PSCCH occupies M3 interlaced resources in one time slot, the M3 has an allowable value or multiple optional values in the resource pool, and the M3 is a positive integer.
  • M3 can be defined by base station configuration, CH configuration, pre-configuration or standard.
  • the PSCCH occupies at least one PRB of one interleaving resource in one time slot.
  • the frequency domain start points of the multiple interlaced resources occupied by the PSSCH are adjacent.
  • the PSCCH is sent on a specific number of PRBs starting from the first interleaving resource occupied by the PSSCH.
  • the specific number can be defined by base station configuration, CH configuration, pre-configuration or standard.
  • the PSCCH occupies the first a PRBs of the first A interleaving resources occupied by the PSSCH, and A and a are positive integers.
  • the value of A and/or a can be defined by base station configuration, CH configuration, pre-configuration or standard definition. For example, assuming that A is 3 and a is 2, the resource pool includes 10 interleaving resources, and the first three interleaving resources occupied by the PSSCH invoked by the PSCCH are interleaving resource 0, interleaving resource 1, and interleaving resource 2, respectively.
  • the PSCCH can occupy the first two PRBs of interlaced resource 0, interlaced resource 1, and interlaced resource 2, and other PRBs of interlaced resource 0, interlaced resource 1 and interlaced resource 2 can be used to transmit the PSSCH.
  • the PSCCH occupies at least one PRB in a resource pool, and the resource pool includes at least one interlaced resource.
  • the resource pool includes a PSCCH resource set and a PSSCH resource set.
  • the PSCCH resource set includes at least one PSCCH resource, and one PSCCH resource is composed of one PRB or multiple consecutive PRBs.
  • the PSCCH resources included in the PSCCH resource set may not be interlaced resources, and the PSSCH resource set may include multiple interlaced resources.
  • the number of interleaving resources in the PSSCH resource set is the same as the number of PSCCH resources in the PSCCH resource set. For example, if the PSCCH resource set includes 3 PSCCH resources, then the PSSCH resource set includes 3 interlaced resources.
  • the frequency domain start point of the PSSCH scheduled by the PSCCH sent on the i-th PSCCH resource in the PSCCH resource set is the start point of the i-th interleaving resource in the PSCCH resource set, and i is 0 or a positive integer .
  • the position of the PSSCH can be determined by the position of the PSCCH, and no additional bits are required to indicate.
  • the PSCCH is multiplexed with the PSSCH in a frequency division manner on part of the OFDM symbols that can be used for side-line communication in a time slot.
  • the PSCCH occupies at least one interleaving resource on the part of OFDM symbols.
  • the PSCCH occupies at least one PRB of one interleaving resource on the part of OFDM symbols.
  • the PSCCH symbol includes a plurality of consecutive OFDM symbols used to transmit the PSCCH.
  • the frequency domain resources occupied by the TX may include the sum of the frequency domain resources occupied by the PSCCH transmitted by the TX and the PSSCH.
  • the S4 interlaced resources are the M4 interlaced resources used by the TX to transmit the PSCCH in the frequency domain.
  • M4 interlaced resources used to transmit PSCCH include interlaced resource 1 and interlaced resource 2, and PRB0 and PRB1 of interlaced resource 1 are used to transmit PSCCH, and PRB0 and PRB1 of interlaced resource 2 are used to transmit PSCCH.
  • the S4 interleaving resources occupied by one TX on the symbols where only the PSSCH exists include interleaving resource 1 and interleaving resource 2, as well as interleaving resources 3 to 10.
  • interleaving resource 1 except PRB0 and PRB1, other PRBs are used to transmit PSSCH; in interleaving resource 2, except PRB0 and PRB1, other PRBs are used to transmit PSSCH.
  • Other frequency domain resources are used to transmit PSSCH.
  • the aforementioned S4 interlaced resources include M4 interlaced resources, so the S4 interlaced resources are a superset of the M4 interlaced resources.
  • the TX transmits the PSSCH scheduled by the PSCCH.
  • PRB0 and PRB1 of interlaced resource 1 are used to transmit PSCCH
  • PRB0 and PRB1 of interlaced resource 2 are used to transmit PSCCH.
  • Other PRBs are used to transmit the PSSCH scheduled by the PSCCH.
  • the M4 has an allowable value or multiple optional values in the resource pool.
  • the value of M4 may be defined by base station configuration, CH configuration, pre-configuration or standard.
  • FIG. 7 is a schematic flowchart of a side-line communication method 300 according to an embodiment of the present application. This method can optionally be applied to the system shown in FIG. 1, but is not limited to this. The method includes at least part of the following content.
  • the content in this embodiment that is the same as the description of the foregoing embodiment has the same meaning, and reference may be made to the relevant description of the foregoing embodiment, which will not be repeated here.
  • the PSCCH and PSSCH sent by the TX at the transmitting end are multiplexed in one time slot in a time division manner, and the PSCCH occupies at least one PRB, and one or more TX controls the frequency domain bandwidth occupied in the OFDM symbol where the PSCCH is located not less than the channel A specific ratio of bandwidth.
  • the embodiment of this application uses one or more TX control sideline signals to occupy a certain channel bandwidth in the frequency domain, preventing devices working on the same unlicensed frequency band from performing channel monitoring on the current time-frequency resources, thereby preventing multiple devices from monitoring the channel on the current time-frequency resources.
  • the side-line signal is sent on the same time-frequency resource to reduce the interference of the side-line communication.
  • the value of N can be defined by base station configuration, CH configuration, pre-configuration or standard definition.
  • one PSCCH occupies M5 PRBs, and the M5 is a positive integer.
  • the M5 has an allowable value or multiple optional values in the resource pool.
  • the allowable value or multiple optional values of the M5 may be defined by base station configuration, group head terminal (CH) configuration, pre-configuration or standard definition.
  • the value of M5 used by the TX may be dynamically indicated by the base station or CH.
  • the M5 is selected by the CH.
  • the CH sends padding information to control the frequency domain bandwidth occupied in the OFDM symbol where the PSCCH is located not less than a specific ratio of the channel bandwidth.
  • the specific ratio is 80%.
  • the M5 PRBs are continuous or discrete in the frequency domain.
  • the number of OFDM symbols available for side-line transmission in a time slot can be defined by the base station configuration, CH configuration, pre-configuration or standard, and can be equal to or less than one
  • the total number of OFDM symbols in the slot is N.
  • all OFDM symbols in a slot can be used for sideline transmission, and there are only PSCCH and PSSCH and demodulation reference signals for both in the slot.
  • the solution proposed in this application can still be used when the number of OFDM symbols available for sideline transmission in a time slot is less than N, or when there are other channels or signals in the time slot, such as PSFCH.
  • PSCCH and PSSCH are multiplexed in the same time slot in a time division manner.
  • the PSCCH occupies at least one interleaving resource and is located in one or more OFDM symbols that can be used for side-line communication at the beginning of a time slot.
  • the PSCCH and the PSSCH are multiplexed in a frequency division manner.
  • the PSCCH occupies a specific interleaving resource in a time slot, or a specific PRB of an interleaving resource, or a specific PRB in a resource pool.
  • PSCCH and PSSCH can be multiplexed with PSSCH by frequency division on the part of OFDM symbols in a time slot that can be used for side-line communication.
  • PSCCH can occupy specific interleaving resources, specific PRBs or resources of interleaving resources Specific PRB in the pool.
  • PSCCH and PSSCH are multiplexed in the same time slot in a time division manner, and PSCCH occupies one or more PRBs.
  • One or more TXs ensure that the channel bandwidth occupied in the OFDM symbol where the PSCCH is located is not less than a specific proportion of the channel bandwidth.
  • the PSCCH and the PSSCH are multiplexed in the same time slot in a time division manner.
  • the PSCCH is located in one or more OFDM symbols that can be used for sideline communication at the beginning of a time slot, and occupies at least one interleaving resource.
  • one interleaving resource is composed of F PRBs, and the value of F and the frequency domain positions of the F PRBs may be defined by base station configuration, CH configuration, pre-configuration or standard definition.
  • F PRBs in an interleaving resource may include F PRBs starting at f and an interval of k, where 0 ⁇ f ⁇ k, F is the largest integer that ensures that f+F*k is not greater than W, and W is the channel bandwidth .
  • the value of k can be defined by base station configuration, CH configuration, pre-configuration or standard, and the value of k can be related to the subcarrier spacing (SCS), that is, different subcarrier spacings correspond to different values of k.
  • SCS subcarrier spacing
  • the value of k can be floor (W/3), ceil (W*0.8), 5, 10, or other values.
  • floor( ⁇ ) means rounding down
  • ceil( ⁇ ) means rounding up.
  • the value of k may be 5
  • the value of k may be 10.
  • An example of interleaving resources is given in Figure 8, where the value of k is equal to 2. If f is 1, the channel bandwidth W includes 10 PRBs, and the interleaving resource includes PRBs with indexes 1, 3, 5, 7, and 9.
  • N1 consecutive OFDM symbols starting from OFDM symbol n1 in one slot are used for PSCCH.
  • n1 can be equal to 0 or 1
  • N1 ⁇ N the total number of OFDM symbols in a slot
  • the specific value of N1 can be configured by the base station, and CH Configuration, pre-configuration or standard definition.
  • one PSCCH occupies M1 or M2 interleaving resources.
  • M1 or M2 can be determined in the following manner:
  • Manner 1-1 The value of M1 is the same as the number of interleaving resources occupied by the PSSCH scheduled by the PSCCH.
  • the optional value of M2 in the resource pool can be defined by base station configuration, CH configuration, pre-configuration or standard definition.
  • the method 1-1 is used to determine the value of M1.
  • the starting point of the M1 interlaced resources is the same as the starting point of the interlaced resources occupied by the PSSCH scheduled by the PSCCH.
  • the value of M2 is determined according to the method 1-2 or the method 1-3. The above-mentioned values of M1 and M2 may be the same or different.
  • the OFDM symbol with an index of 0 is used to transmit the PSSCH, or used to repeatedly transmit the PSCCH on the OFDM symbol with an index of 1.
  • the channel sent on the OFDM symbol with an index of 0 can be regarded as redundant information. Whether the RX successfully receives the redundant information has no effect on the transmission of the sideline signal.
  • TX has the same transmit power on the OFDM symbols used for PSCCH transmission in one time slot and the OFDM symbols used for PSSCH transmission in one time slot.
  • Figure 9 shows an example of the PSCCH and PSSCH time division multiplexing method.
  • the horizontal axis represents time, and the vertical axis represents frequency.
  • the PRB with the same number indicates an interleaving resource, and there are 3 interleaving resources in the bandwidth range.
  • PSCCH is located in the first OFDM symbol, and other OFDM symbols are used for PSSCH.
  • the PSCCH occupies two consecutive interleaving resources 0 and 1, while the PSSCH scheduled by the PSCCH is located in the same time slot and occupies the same interleaving resources.
  • This time division multiplexing method allows the PSCCH to be sent earlier than the PSSCH, which is beneficial to the receiving end to decode the PSCCH in advance, and to demodulate the PSSCH according to the PSCCH decoding result, which is beneficial to reducing the demodulation delay of the PSSCH.
  • the PSCCH and the PSSCH are multiplexed in a frequency division manner.
  • the PSCCH occupies a specific interleaving resource in a time slot, or a specific PRB of an interleaving resource, or a specific PRB in a resource pool.
  • the aforementioned resource pool may include multiple interleaved resources.
  • one PSCCH occupies M3 interleaving resources.
  • M3 can be determined in the following two ways:
  • the optional value of M3 in the resource pool can be defined by base station configuration, CH configuration, pre-configuration or standard definition.
  • the PSCCH occupies M3_PRB PRBs starting from one interleaving resource, and the value of M3_PRB may be configured by the base station, CH configuration, pre-configuration or standard definition.
  • the PSSCH occupies multiple interleaving resources, the frequency domain start points of the multiple interleaving resources should be adjacent.
  • the PSCCH is only at the beginning of the first interleaving resource occupied by the PSSCH Send on the M3_PRB PRB. As shown in FIG. 10, the PSCCH occupies the first 2 PRBs of interleaving resource 0, and the PSSCH scheduled by the PSCCH occupies all other PRBs in interleaving resource 0 and interleaving resource 1.
  • the PSCCH occupies the first a PRBs of the first A interlaced resources occupied by the PSSCH.
  • the minimum resource granularity of the PSSCH should be A interleaved resources.
  • the values of A and a can be defined by base station configuration, CH configuration, pre-configuration or standard definition.
  • this scheme is conducive to reducing in-band leakage (IBE, In-band Emission) interference caused by other terminals in that the PSCCH is concentrated in the continuous PRB.
  • IBE interference comes from signals sent by other terminals on adjacent PRBs, and discontinuous PRBs may suffer from IBE interference.
  • Figure 11 shows an example.
  • the PSSCH occupies two consecutive interleaving resources 0 and 1, and the PSCCH occupies the first PRB of the interleaving resource 0 and the interleaving resource 1.
  • the frequency domain resources in the resource pool are divided into two parts. Part of it is a collection of PSCCH resources.
  • the PSCCH resource set includes at least one PSCCH resource.
  • the PSCCH resource is composed of a specific number of PRBs.
  • the PSCCH resource set is composed of one or more continuous PRBs, and one PSCCH resource is composed of one or more continuous PRBs.
  • Both the PSCCH resource set and the number of PRBs contained in the PSCCH resource can be defined by base station configuration, CH configuration, pre-configuration or standard definition.
  • the other part is a collection of PSSCH resources.
  • the PSSCH resource set consists of one or more interlaced resources.
  • the number of interleaved resources in the PSSCH resource set is the same as the number of PSCCH resources in the PSCCH resource set.
  • the frequency domain start point of the PSSCH scheduled by the PSCCH sent on the i-th PSCCH resource in the PSCCH resource set is the start point of the i-th interleaving resource in the PSCCH resource set, and i is 0 or a positive integer.
  • FIG. 12 is a schematic diagram of a PSCCH resource set and a PSSCH resource set.
  • each PSCCH resource contains 2 PRBs
  • the PSCCH resource set in the resource pool contains 3 PSCCH resources.
  • the PSSCH resource set in the resource pool contains 3 interleaved resources.
  • the PSCCH resource set does not include interlaced resources
  • the PSSCH resource set includes multiple interlaced resources.
  • the part of the PSCCH and the PSSCH in a time slot can be multiplexed with the PSSCH in a frequency division manner on the OFDM symbols used for side-line communication.
  • the PSCCH can occupy specific interleaving resources, specific PRBs of interleaving resources, or specific PRBs in the resource pool.
  • N4 consecutive OFDM symbols starting from OFDM symbol n4 in one slot are used for PSCCH, hereinafter referred to as PSCCH symbol.
  • PSCCH symbol For example, assuming that the OFDM symbol in a time slot starts from 0, n4 can be equal to 0 or 1, N4 ⁇ N, and the specific value of N1 can be defined by base station configuration, CH configuration, pre-configuration or standard definition.
  • the OFDM symbol with an index of 0 is used to transmit the PSSCH, or used to repeatedly transmit the PSCCH on the OFDM symbol with an index of 1.
  • the frequency domain resources occupied by one TX are the same. If there are only S4 interlaced resources occupied by the TX on the PSSCH symbol, the S4 interlaced resources should be a superset of the M4 interlaced resources used by the TX to transmit the PSCCH in the frequency domain. On the PSCCH symbol, the PSSCH is transmitted on the interlaced resources that are not used for PSCCH transmission among the S4 interlaced resources.
  • one PSCCH occupies M4 interleaving resources in the PSCCH symbol.
  • M4 can be determined in the following way:
  • the optional value of M4 in the resource pool can be configured by the base station, CH configuration, pre-configuration or standard definition.
  • FIG. 13 is a schematic diagram of PSCCH and PSSCH occupying different interleaving resources.
  • the horizontal axis represents time, and the vertical axis represents frequency.
  • the PSCCH symbols include symbol 0 and symbol 1.
  • the PSCCH occupies one interlaced resource, that is, interlaced resource 0; the PSSCH scheduled by the PSCCH occupies two interlaced resources, that is, interlaced resource 0 and interlaced resource 1.
  • interleaving resource 0 is used for PSCCH transmission, and interleaving resource 1 is used for PSSCH transmission.
  • interleaving resource 0 other PRBs except the first two PRBs used to transmit PSCCH
  • interleaving resource 1 all PRBs
  • the PSCCH occupies M4_PRB PRBs starting from one interleaving resource, and the value of M4_PRB can be defined by base station configuration, CH configuration, pre-configuration or standard definition.
  • the PSSCH occupies multiple interleaving resources, the frequency domain start points of the multiple interleaving resources should be adjacent.
  • the PSCCH is only sent on the first M3_PRB PRBs of the first interleaving resource occupied by the PSSCH.
  • the PSCCH occupies the first a PRBs of the first A interlaced resources occupied by the PSSCH.
  • the minimum resource granularity of the PSSCH should be A interleaved resources.
  • the values of A and a can be defined by base station configuration, CH configuration, pre-configuration or standard definition.
  • the frequency domain resources in the resource pool are divided into two parts. Part of it is the PSCCH resource set, which is only located in the PSCCH symbol.
  • the PSCCH resource set includes at least one PSCCH resource, and the PSCCH resource is composed of a specific number of PRBs.
  • the PSCCH resource set is composed of one or more continuous PRBs, and one PSCCH resource is composed of one or more continuous PRBs.
  • Both the PSCCH resource set and the number of PRBs contained in the PSCCH resource can be defined by base station configuration, CH configuration, pre-configuration or standard definition.
  • the other part is the PSSCH resource set.
  • the PSSCH resource set is composed of one or more interlaced resources, and the number of interlaced resources in the PSSCH resource set is the same as the number of PSCCH resources in the PSCCH resource set.
  • the frequency domain starting point of the PSSCH scheduled by the PSCCH sent on the i-th PSCCH resource in the PSCCH resource set is the i-th PSSCH.
  • the TX has the same transmit power on the OFDM symbols transmitted by the PSCCH in one time slot and the OFDM symbols transmitted by the PSSCH only in one time slot.
  • PSCCH and PSSCH are multiplexed in the same time slot in a time division manner.
  • PSCCH occupies one or more PRBs, and one or more TXs ensure that the channel bandwidth occupied in the OFDM symbol where the PSCCH is located is not less than a specific proportion of the channel bandwidth.
  • N2 consecutive OFDM symbols starting from OFDM symbol n2 in one slot are used for PSCCH.
  • n2 can be equal to 0 or 1
  • N2 ⁇ N and the specific value of N2 can be defined by base station configuration, CH configuration, pre-configuration or standard definition.
  • one PSCCH occupies M5 PRBs, and M5 can be determined in the following two ways:
  • the value of M5 used by the TX may be dynamically indicated by the base station or the CH. If TX is CH, the value of M5 can be selected by CH. If the channel bandwidth occupied by the PSCCH sent by the CH is less than a specific proportion of the total channel bandwidth, for example, 80%, the CH may send a part of the filling information to ensure that the condition of the above-mentioned specific proportion is met.
  • the M5 PRBs can be continuous or discrete in the frequency domain.
  • PSCCH and PSSCH can occupy different OFDM symbols, and occupy different interleaving resources on different OFDM symbols, or the TX terminal guarantees the bandwidth occupancy rate on different OFDM symbols (TX can flexibly determine how many PRBs to send, Where to send PRB, etc.).
  • PSCCH and PSSCH occupy the same OFDM symbol, but occupy different interleaving resources in the frequency domain, or occupy different PRBs of the same interleaving resource, or occupy different sets of frequency domain resources.
  • PSCCH and PSSCH are multiplexed by frequency division on part of OFDM symbols in one slot.
  • PSCCH and PSSCH can occupy different interleaving resources, or different PRBs of the same interleaving resources, or different A collection of frequency domain resources.
  • the frequency domain bandwidth occupied by the PSCCH and PSSCH sent by the same TX in the frequency domain can reach a certain proportion of the total channel bandwidth, so that sideline communication can operate normally on the unlicensed frequency band. , To reduce the interference between the side line signals.
  • FIG. 14 is a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 may be a transmitting end TX, and the terminal device 400 may include:
  • the sending module 410 is configured to send a sideline signal that occupies interleaving resources, where one interleaving resource includes multiple physical resource blocks PRBs with specific intervals in the frequency domain, and the frequency domain bandwidth occupied by one interleaving resource is not Less than a certain ratio of channel bandwidth.
  • one interleaving resource includes F PRBs with a starting point of f and an interval of k PRBs, where 0 ⁇ f ⁇ k, and F is such that f+F*k is not greater than the channel bandwidth W The largest integer.
  • the value of k corresponds to the subcarrier spacing SCS.
  • the sideline signal includes a physical sideline control channel PSCCH and a physical sideline shared channel PSSCH.
  • consecutive N OFDM symbols starting from the nth OFDM symbol in a slot are used for PSCCH;
  • the OFDM symbol with index 0 is used to transmit the PSSCH, or used to repeatedly transmit the same as the OFDM symbol with index 1.
  • the PSCCH and the PSSCH are multiplexed in the same time slot in a time division manner.
  • the PSCCH occupies at least one interleaving resource.
  • the PSCCH occupies M1 interlaced resources. If the PSSCH scheduled by the PSCCH is located in the current time slot, the number of interlaced resources occupied by the M1 and PSCCH scheduled PSSCH is the same, and the current time slot is The time slot where the PSCCH is located, M1 is a positive integer.
  • the PSCCH occupies M2 interlaced resources. If the PSCCH does not schedule a PSSCH or the PSSCH scheduled by the PSCCH is located in a different time slot from the PSCCH, then the M2 has an allowance in the resource pool Value or multiple optional values, M2 is a positive integer.
  • the PSCCH occupies at least one PRB of one interleaving resource.
  • the PSSCH scheduled by the PSCCH occupies other PRBs in the interleaving resources except the PRB occupied by the PSCCH.
  • the PSCCH and the PSSCH are multiplexed in a frequency division manner.
  • the PSCCH occupies at least one interleaving resource in one time slot.
  • the PSCCH occupies M3 interlaced resources in one time slot, the M3 has an allowable value or multiple optional values in the resource pool, and the M3 is a positive integer.
  • the PSCCH occupies at least one PRB of one interleaving resource in one time slot.
  • the frequency domain start points of the multiple interlaced resources occupied by the PSSCH are adjacent.
  • the PSCCH is sent on a specific number of PRBs starting from the first interlace resource occupied by the PSSCH.
  • the PSCCH occupies the first a PRBs of the first A interlaced resources occupied by the PSSCH, and A and a are positive integers.
  • the PSCCH occupies at least one PRB in a resource pool, and the resource pool includes at least one interlaced resource.
  • the resource pool includes a PSCCH resource set and a PSSCH resource set.
  • the PSCCH resource set includes at least one PSCCH resource, and one PSCCH resource is composed of one PRB or multiple consecutive PRBs.
  • the number of interleaving resources in the PSSCH resource set is the same as the number of PSCCH resources in the PSCCH resource set.
  • the frequency domain starting point of the PSSCH scheduled by the PSCCH sent on the i-th PSCCH resource in the PSCCH resource set is the starting point of the i-th interleaving resource in the PSCCH resource set, and i is 0 or Positive integer.
  • the PSCCH is multiplexed with the PSSCH in a frequency division manner on part of the OFDM symbols that can be used for side-line communication in a time slot.
  • the PSCCH occupies at least one interleaving resource on the part of OFDM symbols.
  • the PSCCH occupies at least one PRB of one interleaving resource on the part of OFDM symbols.
  • the PSCCH and its scheduled PSSCH are sent in the same time slot, then on the PSCCH symbol and on the symbol where only the PSSCH exists, the frequency domain resources occupied by one transmitter TX are the same, where ,
  • the PSCCH symbol includes a plurality of consecutive OFDM symbols used to transmit the PSCCH.
  • the S4 interlaced resources are the M4 interlaced resources used by the TX to transmit the PSCCH in the frequency domain. Superset.
  • the transmitting module 410 transmits the PSSCH scheduled by the PSCCH.
  • the M4 has an allowable value or multiple optional values in the resource pool.
  • the terminal device 400 of the embodiment of the present application can implement the corresponding functions of the terminal device in the foregoing method 200 embodiment and the foregoing example 1, example 2, and example 3.
  • the corresponding processes, functions, implementation modes, and beneficial effects of each module (sub-module, unit or component, etc.) in the terminal device 400 please refer to the corresponding description in the foregoing method embodiment, and will not be repeated here.
  • each module (sub-module, unit or component, etc.) in the terminal device 400 of the application embodiment can be implemented by different modules (sub-module, unit or component, etc.), or by the same one. Module (sub-module, unit or component, etc.) implementation.
  • FIG. 15 is a schematic block diagram of a terminal device 500 according to an embodiment of the present application.
  • the terminal device 500 may be a transmitting end TX, and the terminal device 500 may include:
  • the sending module 510 is used to send PSCCH and PSSCH.
  • the PSCCH and PSSCH are multiplexed in one time slot in a time division manner, and the PSCCH occupies at least one PRB, and one or more TXs control the frequency domain occupied in the OFDM symbol where the PSCCH is located
  • the bandwidth is not less than a certain proportion of the channel bandwidth.
  • the value of N can be defined by base station configuration, CH configuration, pre-configuration or standard definition.
  • one PSCCH occupies M5 PRBs, and the M5 is a positive integer.
  • the M5 has an allowable value or multiple optional values in the resource pool.
  • the allowable value or multiple optional values of the M5 may be defined by base station configuration, group head terminal (CH) configuration, pre-configuration or standard definition.
  • the value of M5 used by the TX may be dynamically indicated by the base station or CH.
  • TX is a CH
  • M5 is selected by the CH.
  • the sending module is also used to send redundant information to control the frequency domain bandwidth occupied in the OFDM symbol where the PSCCH is located not less than a specific proportion of the channel bandwidth.
  • the M5 PRBs are continuous or discrete in the frequency domain.
  • the terminal device 500 of the embodiment of the present application can implement the corresponding function of the sending end in the foregoing method 300 embodiment and the foregoing example four.
  • the corresponding processes, functions, implementation modes, and beneficial effects of each module (sub-module, unit or component, etc.) in the terminal device 500 please refer to the corresponding description in the foregoing method embodiment, and will not be repeated here.
  • each module (sub-module, unit or component, etc.) in the terminal device 500 of the application embodiment can be implemented by different modules (sub-module, unit or component, etc.), or by the same Module (sub-module, unit or component, etc.) implementation.
  • FIG. 16 is a schematic structural diagram of a communication device 600 according to an embodiment of the present application.
  • the communication device 600 includes a processor 610, and the processor 610 can call and run a computer program from the memory, so that the communication device 600 implements the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620.
  • the processor 610 may call and run a computer program from the memory 620, so that the communication device 600 implements the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 600 may be a network device of an embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the communication device 600 may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • details are not described herein again.
  • the communication device 600 may be a terminal device of an embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the communication device 600 may implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • details are not described herein again.
  • FIG. 17 is a schematic structural diagram of a chip 700 according to an embodiment of the present application.
  • the chip 700 includes a processor 710, and the processor 710 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720.
  • the processor 710 may call and run a computer program from the memory 720 to implement the method executed by the terminal device or the network device in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710, or may be integrated in the processor 710.
  • the chip 700 may further include an input interface 730.
  • the processor 710 can control the input interface 730 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 700 may further include an output interface 740.
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can be applied to the terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the chips applied to the network device and the terminal device can be the same chip or different chips.
  • the chip mentioned in the embodiment of the present application may also be called a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip, etc.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (digital signal processor, DSP), a ready-made programmable gate array (field programmable gate array, FPGA), an application specific integrated circuit (ASIC), or Other programmable logic devices, transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • the aforementioned general-purpose processor may be a microprocessor or any conventional processor.
  • the above-mentioned memory may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM).
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memory in the embodiments of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
  • FIG. 18 is a schematic block diagram of a communication system 800 according to an embodiment of the present application.
  • the communication system 800 includes a terminal device 810 and a terminal device 820.
  • the terminal device 810 may be a TX terminal at the transmitting end, and the terminal device 820 may be an RX terminal at the receiving end.
  • the side row signal sent by the terminal device 810 occupies interleaving resources, where one interleaving resource includes multiple PRBs with specific intervals in the frequency domain, and the frequency domain bandwidth occupied by one interleaving resource is not less than the channel bandwidth Specific ratio.
  • the PSCCH and PSSCH transmitted by the terminal device 810 are multiplexed in one time slot in a time division manner, and the PSCCH occupies at least one PRB, and one or more TXs control the frequency occupied in the OFDM symbol where the PSCCH is located.
  • the domain bandwidth is not less than a specific ratio of the channel bandwidth.
  • the terminal device 810 may be used to implement the corresponding functions implemented by the transmitting end TX in the foregoing method.
  • the content in this embodiment that is the same as the description in the foregoing embodiment has the same meaning, such as sideline signals, interleaving resources, etc., for which reference may be made to the relevant description of the foregoing embodiment. For the sake of brevity, I will not repeat them here.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instruction can be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instruction can be transmitted from a website, computer, server, or data center through a wired (Such as coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种侧行通信方法和终端设备。其中,该侧行通信方法包括:发送端TX发送的侧行信号占用交织资源,其中,一个交织资源包括在频域上具有特定间隔的多个物理资源块PRB,并且一个交织资源占用的频域带宽不小于信道带宽的特定比例。本申请实施例发送的侧行信号占用交织资源,使得发送端发送的侧行信号在频域上占据一定的信道带宽,防止工作在相同非授权频段上的设备在当前时频资源上进行信道监听,从而避免多个设备在相同的时频资源上发送侧行信号,减少侧行通信的干扰。

Description

侧行通信方法和终端设备 技术领域
本申请涉及通信领域,更具体地,涉及一种侧行通信方法和终端设备。
背景技术
侧行通信与传统的蜂窝***中通信数据通过基站接收或者发送的方式不同,具有更高的频谱效率以及更低的传输时延。当侧行通信工作在非授权频段时,终端发送的侧行信号在频域上需要占据一定的信道带宽。否则,工作在相同非授权频段上的设备将有可能在当前时频资源上进行信道监听,并认为接下来的时频资源符合资源选择条件。因此,可能导致多个设备在相同的时频资源上发送信号,造成严重的相互干扰。
发明内容
本申请实施例提供一种侧行通信方法和终端设备,可以减少侧行通信的干扰。
本申请实施例提供一种侧行通信方法,包括:发送端TX发送的侧行信号占用交织资源,其中,一个交织资源包括在频域上具有特定间隔的多个物理资源块PRB,并且一个交织资源占用的频域带宽不小于信道带宽的特定比例。
本申请实施例提供一种侧行通信方法,包括:发送端TX发送的PSCCH和PSSCH通过时分的方式在一个时隙内复用,并且PSCCH占用至少一个PRB,一个或多个TX控制该PSCCH所在的OFDM符号内占用的频域带宽不小于信道带宽的特定比例。
本申请实施例提供一种终端设备,该终端设备为发送端TX,该终端设备包括:发送模块,用于发送侧行信号,该侧行信号占用交织资源,其中,一个交织资源包括在频域上具有特定间隔的多个物理资源块PRB,并且一个交织资源占用的频域带宽不小于信道带宽的特定比例。
本申请实施例提供一种终端设备,该终端设备为发送端TX,该终端设备包括:发送模块,用于发送PSCCH和PSSCH,PSCCH和PSSCH通过时分的方式在一个时隙内复用,并且PSCCH占用至少一个PRB,一个或多个TX控制该PSCCH所在的OFDM符号内占用的频域带宽不小于信道带宽的特定比例。
本申请实施例提供一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,以使该终端设备执行上述的侧行通信方法。
本申请实施例提供一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,以使该网络设备执行上述的侧行通信方法。
本申请实施例提供一种芯片,用于实现上述的侧行通信方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的侧行通信方法。
本申请实施例提供一种计算机可读存储介质,用于存储计算机程序,当该计算机程序被设备运行时使得该设备执行上述的侧行通信方法。
本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的侧行通信方法。
本申请实施例提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述的侧行通信方法。
本申请实施例,通过使得发送端发送的侧行信号在频域上占据一定的信道带宽,防止工作在相同非授权频段上的设备在当前时频资源上进行信道监听,从而避免多个设备在相同的时频资源上发送侧行信号,减少侧行通信的干扰。
附图说明
图1是根据本申请实施例的应用场景的示意图。
图2是NR V2X中PSCCH和PSSCH复用方式的示意图。
图3是一个时隙包括多个OFDM符号的NR-V2X帧结构的示意图。
图4是无中央控制节点侧行通信的示意图。
图5是有中央控制节点的侧行通信的示意图。
图6是根据本申请一实施例侧行通信方法的示意性流程图。
图7是根据本申请另一实施例侧行通信方法的示意性流程图。
图8是交织资源的示意图。
图9是PSCCH和PSSCH时分复用方式的示意图。
图10是PSCCH占用一个交织资源的多个PRB的示意图。
图11是PSCCH占用两个连续交织资源的第一个PRB的示意图。
图12是PSCCH资源集合和PSSCH资源集合的示意图。
图13是PSCCH和PSSCH占用不同的交织资源的示意图。
图14是根据本申请一实施例的终端设备的示意性框图。
图15是根据本申请一实施例的网络设备的示意性框图。
图16是根据本申请实施例的通信设备示意性框图。
图17是根据本申请实施例的芯片的示意性框图。
图18是根据本申请实施例的通信***的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通讯(Global System of Mobile communication,GSM)***、码分多址(Code Division Multiple Access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)***、先进的长期演进(Advanced long term evolution,LTE-A)***、新无线(New Radio,NR)***、NR***的演进***、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)***、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)***、非地面通信网络(Non-Terrestrial Networks,NTN)***、通用移动通信***(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)***或其他通信***等。
通常来说,传统的通信***支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信***将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信***。
可选地,本申请实施例中的通信***可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
可选地,本申请实施例中的通信***可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信***也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议 (Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其他处理设备、车载设备、可穿戴设备、下一代通信***例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其他设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
图1示例性地示出了一种通信***100。该通信***包括一个网络设备110和两个终端设备120。可选地,该通信***100可以包括多个网络设备110,并且每个网络设备110的覆盖范围内可以包括其他数量的终端设备120,本申请实施例对此不做限定。
可选地,该通信***100还可以包括移动性管理实体(Mobility Management Entity,MME)、接入与移动性管理功能(Access and Mobility Management Function,AMF)等其他网络实体,本申请实施例对此不作限定。
其中,网络设备又可以包括接入网设备和核心网设备。即无线通信***还包括用于与接入网设备进行通信的多个核心网。接入网设备可以是长期演进(long-term evolution,LTE)***、下一代(移动通 信***)(next radio,NR)***或者授权辅助接入长期演进(authorized auxiliary access long-term evolution,LAA-LTE)***中的演进型基站(evolutional node B,简称可以为eNB或e-NodeB)宏基站、微基站(也称为“小基站”)、微微基站、接入站点(access point,AP)、传输站点(transmission point,TP)或新一代基站(new generation Node B,gNodeB)等。
应理解,本申请实施例中网络/***中具有通信功能的设备可称为通信设备。以图1示出的通信***为例,通信设备可包括具有通信功能的网络设备和终端设备,网络设备和终端设备可以为本申请实施例中所述的具体设备,此处不再赘述;通信设备还可包括通信***中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“***”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
首先介绍NR车辆网(Vehicle To Everything,V2X)中物理侧行控制信道(Pysical Sidelink Control Channel,PSCCH)和物理侧行共享信道(Pysical Sidelink Share Channel,PSSCH)复用方式。
如图2所示,NR V2X中曾考虑过以下几种PSCCH和PSSCH的复用方式。
方式1A(Option 1A):
这种方式中PSCCH和PSSCH在时域上占用不重叠的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,在频域上占用相同的物理资源块(Physical Resource Block,PRB),即两者之间完全通过时分的方式复用。这种方式有利于降低PSSCH的解码时延,因为PSCCH可以在PSSCH开始之前开始解码。然而,由于PSCCH和PSSCH在频域上占用的PRB数目相同,PSCCH在频域占用的PRB数目将随着PSSCH占用的PRB数目而改变。由于在NR-V2X中,业务负载和码率均可能在很大的范围内发生变化,从而导致PSSCH占用PRB数目的动态范围可能很大。而且PSSCH可以从任何一个子信道开始,所以,接收UE需要在每一个子信道起点盲检PSCCH。
方式1B(Option 1B):
和Option 1A相同,这种方式中PSCCH和PSSCH依然占用不重叠的OFDM符号,所以在时延方面,Option 1B和Option 1A的性能相同。但不同于Option 1A的是,Option 1B中PSCCH占用的PRB数目不随PSSCH的频域大小而变化,所以可以避免接收UE进行PSCCH盲检。但是,由于PSSCH占用的PRB数目往往多于PSCCH,在这种情况下将导致PSCCH所在OFDM符号上资源的浪费。
方式2(Option 2):
Option 2和LTE-V2X中采用的PSCCH和PSSCH的复用方式相同,即PSCCH和PSSCH占用不重叠的频域资源,但占用相同的OFDM符号。这种方式下,PSCCH占用整个时隙内的所有OFDM符号,所以可以采用类似于LTE-V2X中的方式,将PSCCH的功率谱密度相对于PSSCH增加3dB,从而增加PSCCH的可靠性。然而,在这种方式中接收UE需要在一个时隙结束后才能开始解码PSCCH,最终导致PSSCH的解码时延高于Option 1A和Option 1B。
方式3(Option 3):
在这种方式中,PSCCH和一部分PSSCH在相同的OFDM符号上不重叠的频域资源上发送,而和 其他部分PSSCH在不重叠的OFDM符号。Option 3具备Option 1和Option 1A低时延的优点。但由于PSCCH的频域大小恒定,所以可以避免PSCCH盲检。此外,在PSCCH所在的OFDM符号上,如果PSCCH占用的PRB数目小于PSSCH,则剩余的PRB依然可以用于PSSCH发送,所以可以避免Option1A中资源浪费的问题。
如图3所示,为NR-V2X中采用的时隙结构的示意图。图3中,一个时隙内的所有OFDM符号均可以用于侧行发送,而且在该时隙内包含物理侧行反馈信道(Physical Sidelink Feedback Channel,PSFCH)资源。
例如,图3中,在一个时隙内,第一个OFDM符号固定用于自动增益控制(Automatic Gain Control,AGC)。在AGC符号上,UE复制第二个OFDM符号上发送的信息。而最后一个OFDM符号留有一个符号的保护间隔,用于UE从发送/接收状态转换到接收/发送状态。PSCCH和PSSCH通过上述Option 3的方式复用,PSCCH可以占用两个或三个OFDM符号。在频域上,如果PSCCH占用的PRB数目小于PSSCH,则在PSCCH所在的OFDM符号上,PSCCH可以和PSSCH频分复用。
在NR-V2X中,PSFCH资源是周期性配置的。如果在一个时隙内存在PSFCH资源,则PSFCH位于时隙内的倒数第二个OFDM符号。由于在PSFCH所在的OFDM符号上UE的接收功率可能发生变化,所在时隙内的倒数第三个符号也将用于PSFCH发送,以辅助接收UE进行AGC调整(AGC for PSFCH)。此外,发送PSSCH的UE和发送PSFCH的UE可能不同。因此,在两个PSFCH符号之前,需要额外增加一个符号(如图3所示的Gap,可以称为保护间隔)用于UE的收发转换。
车辆网(V2X)属于一种侧行通信的场景。车联网***采用终端到终端直接通信的方式,在3GPP(Third Generation Partnership Project,第三代移动通信标准化组织)定义了两种传输模式:第一模式和第二模式。
第一模式:终端的传输资源是由基站分配的,终端根据基站分配的资源在侧行链路上进行数据的发送;基站可以为终端分配单次传输的资源,也可以为终端分配半静态传输的资源。第二模式:终端在资源池中选取一个资源进行数据的传输。第二模式又可以根据是否存在非基站类型的中央控制节点,进一步划分为无中央控制节点的场景和有中央控制节点场景。
中央控制节点的场景如图4所示,发送端(Transmit,TX)和接收端(receive,RX)之间的侧行通信资源,由TX在特定的资源池内自主选择。对于由中央控制节点的侧行通信,如图5所示,多个终端构成一个通信组,该通信组内具有中央控制节点,又可以称为组头终端(Cluster Header,CH),其他终端称为成员终端(Cluster Member,CM)。该中央控制节点具有以下功能的至少之一:负责通信组的建立;组成员的加入、离开;进行资源协调,为其他终端分配侧行传输资源,接收其他终端的侧行反馈信息;与其他通信组进行资源协调等功能。本申请中将CH到CM之间的传输称为下行链路,将CM到CH之间的传输称为上行链路。
当侧行通信工作在非授权频段时,终端发送的侧行信号在频域上需要占据特定比例如80%以上的信道带宽。否则,工作在相同非授权频段上的设备将有可能在当前时频资源上进行信道监听,并且可能认为接下来的时频资源符合资源选择条件。最终将导致多个设备在相同的时频资源上发送信号,造成严重的相互干扰。但是,如果PSCCH和PSSCH在频域上占用连续多个PRB,无法保证占用的频域带宽总是大于信道带宽的特定比例如80%,所以可能无法应用于非授权频段上的侧行通信。
图6是根据本申请一实施例侧行通信方法200的示意性流程图。该方法可选地可以应用于图1所示的***,但并不仅限于此。该方法包括以下内容的至少部分内容。
S210、发送端(TX)发送的侧行信号占用交织资源,其中,一个交织资源包括在频域上具有特定间隔的多个物理资源块(PRB),并且一个交织资源占用的频域带宽不小于信道带宽的特定比例。该特定比例可以是保证其他设备不能进行信道监听的比例,例如从80%到100%中的某个值。本申请实施例侧行信号占用交织资源,可以使得发送端发送的侧行信号在频域上占据一定的信道带宽,防止工作在相 同非授权频段上的设备在当前时频资源上进行信道监听,从而避免多个设备在相同的时频资源上发送侧行信号,减少侧行通信的干扰。
可选地,在本申请实施例中,一个交织资源包括起点为f且间隔为k个PRB的F个PRB,其中,0≤f<k,F为使得f+F*k不大于信道带宽W的最大整数。其中,起点为f,表示该PRB的索引为f。例如,如果起点为0,k为2,W为10,则F为4,一个交织资源包括4个PRB。F的值、F个PRB的频域位置、k的值可以通过基站配置、CH配置、预配置或者标准定义。
可选地,在本申请实施例中,k的值与子载波间隔(Sub-Carrier Space,SCS)对应,即不同的子载波间隔下,k的值可以不同。
可选地,在本申请实施例中,该侧行信号包括物理侧行控制信道(PSCCH)和物理侧行共享信道(PSSCH)。例如,TX发送的PSCCH和该PSCCH调度的PSSCH占用至少一个交织资源或交织资源的至少一个PRB。
可选地,在本申请实施例中,在一个时隙内从第n个OFDM符号开始的连续N个OFDM符号用于PSCCH;其中,如果接收端(RX)不需要进行自动增益控制(AGC),该n=0,否则n=1,N为正整数。N的值可以通过基站配置、CH配置、预配置或者标准定义。
例如,参见图3,假设一个时隙包括14个OFDM符号,即索引为0到13的符号。如果RX需要进行AGC,则索引为0的符号用于AGC,n=1。假设N=3,则索引为1、2和3的OFDM符号用于PSCCH。索引为4到12的OFDM符号用于PSSCH(假设索引为13的符号为保护间隔)。如果RX不需要进行AGC,则n=0。假设N=3,则索引为0、1和2的OFDM符号用于PSCCH。索引为3到12的OFDM符号用于PSSCH(假设索引为13的符号为保护间隔)。
上述一个时隙内包括的OFDM符号数仅是示例而非限制,一个时隙内可用于侧行发送的OFDM符号数可以通过基站配置、CH配置、预配置或者标准定义。
可选地,在本申请实施例中,如果从索引为1的OFDM符号开始发送该PSCCH,则索引为0的OFDM符号用于发送PSSCH,或者用于重复发送与索引为1的OFDM符号上相同的PSCCH。
例如,在上述的RX需要进行AGC的情况下,从索引为1的OFDM符号开始发送PSCCH。这种情况下,在索引为0的OFDM符号可以发送冗余信息,例如在索引为0的OFDM符号可以发送该PSCCH或其调度的PSSCH。
可选地,在本申请实施例中,该PSCCH和该PSSCH通过时分的方式在同一个时隙内复用。时分复用的方式可以在不同时间传输多路信号。在时分复用的情况下,可以包括以下方式的至少之一:
方式一:该PSCCH占用至少一个交织资源。
可选地,在该方式中,该PSCCH占用M1个交织资源,如果PSCCH调度的PSSCH位于当前时隙内,则该M1和该PSCCH调度的PSSCH占用的交织资源数目相同,该当前时隙为该PSCCH所在的时隙,M1为正整数。例如在当前时隙中,该PSCCH调度的PSSCH占用的交织资源均为2个,并且均为交织资源0和交织资源1。
可选地,在该方式中,该PSCCH占用M2个交织资源,如果该PSCCH未调度PSSCH或该PSCCH调度的PSSCH位于与该PSCCH不同的时隙内,则该M2在资源池内有一个允许值或者多个可选值,M2为正整数。
M1和/或M2的值可以通过基站配置、CH配置、预配置或者标准定义。例如,如果M2包括多个可选值,则发送端可以根据当前的信道状况选择M2的值。
可选地,在该方式中,在该时隙内用于PSCCH以外的其他OFDM符号用于该PSCCH调度的PSSCH。
方式二:该PSCCH占用一个交织资源的至少一个PRB。
可选地,在该方式中,该PSCCH调度的PSSCH占用该交织资源中除了该PSCCH占用的PRB之 外的其他PRB。
可选地,在本申请实施例中,该PSCCH和该PSSCH通过频分的方式复用。频分复用的方式可以在同一时间段和同一信道中,通过不同的频域资源传输多路信号。在频分复用的情况下,可以包括以下方式的至少之一:
方式一:该PSCCH占用一个时隙内的至少一个交织资源。
可选地,在该方式中,该PSCCH占用一个时隙内的M3个交织资源,该M3在资源池内有一个允许值或者多个可选值,该M3为正整数。M3可以通过基站配置、CH配置、预配置或者标准定义。
方式二:该PSCCH占用一个时隙内的一个交织资源的至少一个PRB。
可选地,在本申请实施例中,如果该PSCCH调度的PSSCH占用多个交织资源,则该PSSCH占用的多个交织资源的频域起点相邻。
可选地,在该方式中,并且该PSCCH在该PSSCH占用的第一个交织资源开始的特定数目个PRB上发送。该特定数目可以通过基站配置、CH配置、预配置或者标准定义。
可选地,在该方式中,该PSCCH占用该PSSCH占用的前A个交织资源的前a个PRB,A和a为正整数。A和/或a的值可以通过基站配置、CH配置、预配置或者标准定义。例如,假设A为3,a为2,资源池中包括10个交织资源,PSCCH调用的PSSCH占用的前3个交织资源,分别为交织资源0、交织资源1和交织资源2。该PSCCH可以占用交织资源0、交织资源1和交织资源2的前2个PRB,交织资源0、交织资源1和交织资源2的其他PRB可以用于发送该PSSCH。
方式三:该PSCCH占用资源池内的至少一个PRB,该资源池内包括至少一个交织资源。
可选地,在该方式中,该资源池内包括PSCCH资源集合和PSSCH资源集合。
可选地,在该方式中,该PSCCH资源集合内包括至少一个PSCCH资源,一个PSCCH资源由一个PRB或多个连续的PRB组成。示例性地,PSCCH资源集合包括的PSCCH资源可以不是交织资源,PSSCH资源集合可以包括多个交织资源。
可选地,在该方式中,该PSSCH资源集合内交织资源的数目和该PSCCH资源集合内PSCCH资源的数目相同。例如,PSCCH资源集合内包括3个PSCCH资源,则PSSCH资源集合内包括3个交织资源。
可选地,在该方式中,在PSCCH资源集合内第i个PSCCH资源上发送的该PSCCH调度的PSSCH的频域起点为PSCCH资源集合内第i个交织资源的起点,i为0或正整数。这样,可以通过PSCCH的位置确定PSSCH的位置,不需要通过额外的比特来指示。
可选地,在本申请实施例中,该PSCCH在一个时隙内的能够用于侧行通信的部分OFDM符号上,通过频分的方式和PSSCH复用。
可选地,在本申请实施例中,该PSCCH在该部分OFDM符号上占用至少一个交织资源。
可选地,在本申请实施例中,该PSCCH在该部分OFDM符号上占用一个交织资源的至少一个PRB。
可选地,在本申请实施例中,如果PSCCH及其调度的PSSCH在同一时隙内发送,则在PSCCH符号上和仅存在PSSCH的符号上,一个TX占用的频域资源相同,以避免终端在不同的OFDM符号间转换频域资源或改变发送功率谱密度,增加终端射频复杂度。其中,该PSCCH符号包括多个连续的用于发送PSCCH的OFDM符号。在该时隙中,该TX占用的频域资源可以包括该TX发送的PSCCH与PSSCH占用的频域资源之和。
可选地,在本申请实施例中,如果在仅存在PSSCH的符号上一个TX占用S4个交织资源,则该S4个交织资源在频域上为该TX用于发送PSCCH的M4个交织资源的超集。例如,用于发送PSCCH的M4个交织资源包括交织资源1和交织资源2,并且,交织资源1的PRB0和PRB1用于发送PSCCH,交织资源2的PRB0和PRB1用于发送PSCCH。在仅存在PSSCH的符号上一个TX占用的S4个交织资源包括交织资源1和交织资源2,还包括交织资源3到10。在交织资源1上除了PRB0和PRB1,其 他PRB用于发送PSSCH;在交织资源2上除了PRB0和PRB1,其他PRB用于发送PSSCH。其他频域资源均用于发送PSSCH。上述的S4个交织资源包括M4个交织资源,因此S4个交织资源是M4个交织资源的超集。
可选地,在本申请实施例中,在该PSCCH符号上、该S4个交织资源中未用于发送PSCCH的交织资源上,该TX发送该PSCCH调度的PSSCH。例如,在该S4个交织资源中,交织资源1的PRB0和PRB1用于发送PSCCH,交织资源2的PRB0和PRB1用于发送PSCCH。其他PRB用于发送该PSCCH调度的PSSCH。
可选地,在本申请实施例中,该M4在资源池内有一个允许值或者多个可选值。
可选地,M4的值可以通过基站配置、CH配置、预配置或者标准定义。
图7是根据本申请一实施例侧行通信方法300的示意性流程图。该方法可选地可以应用于图1所示的***,但并不仅限于此。该方法包括以下内容的至少部分内容。本实施例中与上述实施例描述相同的内容具有相同的含义,可以参见上述实施例的相关描述,在此不赘述。
S310、发送端TX发送的PSCCH和PSSCH通过时分的方式在一个时隙内复用,并且PSCCH占用至少一个PRB,一个或多个TX控制该PSCCH所在的OFDM符号内占用的频域带宽不小于信道带宽的特定比例。本申请实施例通过一个或多个TX控制侧行信号在频域上占据一定的信道带宽,防止工作在相同非授权频段上的设备在当前时频资源上进行信道监听,从而避免多个设备在相同的时频资源上发送侧行信号,减少侧行通信的干扰。
可选地,在本申请实施例中,在一个时隙内从第n个OFDM符号开始的连续N个OFDM符号用于PSCCH;其中,如果接收端(RX)不需要进行自动增益控制(AGC),该n=0,否则n=1,N为正整数。N的值可以通过基站配置、CH配置、预配置或者标准定义。
可选地,在本申请实施例中,一个PSCCH占用M5个PRB,该M5为正整数。
可选地,在本申请实施例中,该M5在资源池内有一个允许值或者多个可选值。可选地,该M5的允许值或者多个可选值可以通过基站配置、组头终端(CH)配置、预配置或者标准定义。
可选地,在本申请实施例中,如果一个TX由基站或CH调度,则该TX采用的M5的值可以由基站或者CH动态指示。
可选地,在本申请实施例中,如果该TX为组头终端(CH),则该M5由该CH选择。
可选地,在本申请实施例中,如果TX为CH,该CH发送填充信息,以控制该PSCCH所在的OFDM符号内占用的频域带宽不小于信道带宽的特定比例。例如特定比例为80%。
可选地,在本申请实施例中,如果该M5大于1,则M5个PRB在频域上是连续的或离散的。
在一种应用场景中,如果侧行通信工作在非授权频段上,一个时隙内可用于侧行发送的OFDM符号数可以由基站配置、CH配置、预配置或者标准定义,可以等于或小于一个时隙内的OFDM符号总数N。不失一般性,在接下来的描述中,假设一个时隙内所有的OFDM符号均可以用于侧行发送,而且时隙内仅存在PSCCH和PSSCH以及两者的解调参考信号。本申请中提出的方案依然可以用于一个时隙内可用于侧行发送的OFDM符号数小于N的情况,或时隙内存在其他信道或信号,例如PSFCH的情况。根据前述分析,在非授权频段上,TX在发送PSCCH和PSSCH时,需要保证占用的带宽超过信道带宽的特定比例例如80%,为此本申请提出了以下几种PSCCH和PSSCH的发送方法:
PSCCH和PSSCH通过时分的方式在同一个时隙内复用,PSCCH占用至少一个交织资源,位于一个时隙开始的一个或多个可用于侧行通信的OFDM符号内。
PSCCH和PSSCH通过频分的方式复用,PSCCH占用一个时隙内的特定交织资源,或者占用一个交织资源的特定PRB,或者占用资源池内的特定PRB。
PSCCH和PSSCH在一个时隙内的部分可用于侧行通信的OFDM符号上通过频分的方式和PSSCH复用,在该部分OFDM符号上,PSCCH可以占用特定交织资源,交织资源的特定PRB或者资源池内 的特定PRB。
PSCCH和PSSCH通过时分的方式在同一个时隙内复用,PSCCH占用一个或多个PRB。一个或多个TX保证PSCCH所在的OFDM符号内占用的信道带宽不小于信道带宽的特定比例。
下面采用几个示例对以上几种PSCCH和PSSCH的发送方法分别进行介绍:
示例一:
PSCCH和PSSCH通过时分的方式在同一个时隙内复用,PSCCH位于一个时隙开始的一个或多个可用于侧行通信的OFDM符号内,占用至少一个交织资源。
可选地,一个交织资源由F个PRB组成,F的值以及F个PRB的频域位置,可以由基站配置、CH配置、预配置或者标准定义。例如,一个交织资源中的F个PRB可以包括起点为f间隔为k的F个PRB,其中,0≤f<k,F为保证f+F*k不大于W的最大整数,W为信道带宽。其中k的值可以由基站配置、CH配置、预配置或者标准定义,而且k的值可以和子载波间隔(SCS)有关,即不同的子载波间隔对应不同的k值。例如,k的值可以为floor(W/3)、ceil(W*0.8)、5、10,或者其他值。其中,floor(·)表示向下取整,ceil(·)表示向上取整。在信道带宽W大于5的情况下,k的取值可以为5,在信道带宽W大于10的情况下,k的取值可以为10。在图8中给出了一个交织资源的示例,其中k的值等于2。如果f为1,信道带宽W包括10个PRB,则该交织资源包括索引为1、3、5、7、9的PRB。
可选地,在一个时隙内从OFDM符号n1开始的连续N1个OFDM符号用于PSCCH。例如,假设一个时隙内OFDM符号从0(即索引为0)开始,n1可以等于0或1,N1<N(一个时隙内的OFDM符号总数),N1的具体值可以由基站配置、CH配置、预配置或者标准定义。可选的,如果RX接收当前时隙时不需要进行AGC调整,例如当前时隙仅允许CH发送PSCCH和/或PSSCH时,这种情况下n1=0,否则n1=1。
可选地,在频域上,一个PSCCH占用M1或M2个交织资源,在本示例中,M1或M2可以采用以下方式确定:
方式1-1:M1的值和PSCCH调度的PSSCH占用的交织资源数目相同。
方式1-2:M2在资源池内仅有一个允许的值,例如,M2=1,或者M2的值可以由基站配置、CH配置、预配置或者标准定义。
方式1-3:M2在资源池内有多个可选值,例如,M2=1或2,资源池内M2的可选值可以由基站配置、CH配置、预配置或者标准定义。
可选地,当PSCCH调度的PSSCH位于当前时隙内,则采用方式1-1确定M1的值。此时,M1个交织资源的起点和PSCCH调度的PSSCH占用的交织资源起点相同。如果PSCCH未调度PSSCH或PSCCH调度的PSSCH位于不同的时隙内,则根据方式1-2或方式1-3确定M2的值。上述的M1与M2的值可以相同也可以不同。
可选地,如果PSCCH从索引为1的OFDM符号开始,则索引为0的OFDM符号用于发送PSSCH,或者用于重复发送索引为1的OFDM符号上的PSCCH。这种情况下,索引为0的OFDM符号上发送的信道可以看做是冗余信息,RX是否成功接收该冗余信息,对侧行信号的传输没有影响。
可选地,TX在一个时隙内用于PSCCH发送的OFDM符号和一个时隙内用于PSSCH发送的OFDM符号上的发送功率相同。
图9给出了PSCCH和PSSCH的时分复用方法的一个示例。其中,横轴表示时间,纵轴表示频率。相同数字标识的PRB表示一个交织资源,在带宽范围内共3个交织资源。PSCCH位于第一个OFDM符号,其他OFDM符号用于PSSCH。在本示例中,PSCCH占用两个连续的交织资源0和1,而PSCCH调度的PSSCH位于相同的时隙内而且占用相同的交织资源。
这种时分复用的方式允许PSCCH早于PSSCH发送,有利于接收端提前进行PSCCH解码,并根据PSCCH解码结果进行PSSCH解调,有利于降低PSSCH的解调时延。
示例二:
PSCCH和PSSCH通过频分的方式复用,PSCCH占用一个时隙内的特定交织资源,或者占用一个交织资源的特定PRB,或者占用资源池内的特定PRB。
在本示例中,交织资源的含义可以参见示例一的相关描述,在此不赘述。上述的资源池内可以包括多个交织资源。
可选地,在一个时隙内从OFDM符号n3开始的连续N3个OFDM符号用于PSCCH。例如,假设一个时隙内OFDM符号从0开始,则n3=0,假设第N-1个OFDM符号用于保护间隔(Gap),则N3=N-2,否则N3=N-1。
在一种可能的实现方式中,在频域上,一个PSCCH占用M3个交织资源。例如,M3可以采用以下两种方式确定:
方式2-1:M3在资源池内仅有一个允许的值,例如,M3=1,或者M3的值可以由基站配置、CH配置、预配置或者标准定义。
方式2-2:M3在资源池内有多个可选值,例如,M3=1或2,资源池内M3的可选值可以由基站配置、CH配置、预配置或者标准定义。
在另一种可能实现方式,PSCCH占用一个交织资源开始的M3_PRB个PRB,M3_PRB的值可以由基站配置、CH配置、预配置或者标准定义。在本实现方式中,如果PSSCH占用多个交织资源,则多个交织资源的频域起点应该相邻,在这种情况下,可选地,PSCCH仅在PSSCH占用的第一个交织资源的开始的M3_PRB个PRB上发送。如图10所示,PSCCH占用交织资源0的开始2个PRB,被PSCCH调度的PSSCH占用交织资源0中的其他PRB和交织资源1的全部。
在上述实现方式中,可选地,PSCCH占用PSSCH占用的前A个交织资源的前a个PRB。在这种情况下,当前资源池内,PSSCH的最小资源粒度应该A个交织资源。其中A和a的值均可以由基站配置、CH配置、预配置或者标准定义。和采用不连续的PRB发送PSCCH的方案相比,这种方案在PSCCH集中在连续的PRB中,有利于降低其他终端带来的带内泄漏(IBE,In-band Emission)干扰。其中,IBE干扰是来自于相邻的PRB上其他终端发送的信号,在不连续的PRB可能会受到IBE干扰。图11给出了一个示例,PSSCH占用两个起点连续的交织资源0和1,PSCCH占用交织资源0和交织资源1的第一个PRB。
在另一种可能的实现方式,资源池内的频域资源分为两部分。其中一部分为PSCCH资源集合。PSCCH资源集合内包含至少一个PSCCH资源。PSCCH资源由特定数目的PRB组成,可选地,PSCCH资源集合由连续的一个或多个PRB组成,一个PSCCH资源由一个或多个连续的PRB组成。PSCCH资源集合和PSCCH资源内包含的PRB数目均可以由基站配置、CH配置、预配置或者标准定义。另外一部分为PSSCH资源集合。可选地,PSSCH资源集合由一个或多个交织资源组成。PSSCH资源集合内交织资源的数目和PSCCH资源集合内PSCCH资源数目相同。可选地,在PSCCH资源集合内第i个PSCCH资源上发送的该PSCCH调度的PSSCH的频域起点,为PSCCH资源集合内第i个交织资源的起点,i为0或正整数。
例如,图12为PSCCH资源集合和PSSCH资源集合示意图。其中,每个PSCCH资源包含2个PRB,资源池内PSCCH资源集合中包含3个PSCCH资源。与之对应,在资源池内的PSSCH资源集合内包含3个交织资源。这种情况下,PSCCH资源集合包括的不是交织资源,PSSCH资源集合包括多个交织资源。
示例三:
PSCCH和PSSCH在一个时隙内的部分可用于侧行通信的OFDM符号上通过频分的方式和PSSCH复用。在该部分OFDM符号上,PSCCH可以占用特定交织资源,交织资源的特定PRB或者资源池内的特定PRB。
在本示例中,交织资源的含义可以参见示例一的相关描述,在此不赘述。
可选地,在一个时隙内从OFDM符号n4开始的连续N4个OFDM符号用于PSCCH,下文简称PSCCH符号。例如,假设一个时隙内OFDM符号从0开始,n4可以等于0或1,N4<N,N1的具体值可以由基站配置、CH配置、预配置或者标准定义。可选地,如果RX接收当前时隙时不需要进行AGC调整,例如当前时隙仅允许CH发送PSCCH和/或PSSCH,这种情况下n4=0,否则n4=1。
可选地,如果PSCCH从索引为1的OFDM符号开始,则索引为0的OFDM符号用于发送PSSCH,或者用于重复发送索引为1的OFDM符号上的PSCCH。
可选地,如果PSCCH和被调度的PSSCH在同一个时隙内发送,则在PSCCH符号上和仅存在PSSCH的符号上,一个TX占用的频域资源相同。如果仅存在PSSCH的符号上TX占用S4个交织资源,则该S4个交织资源在频域上应为该TX用于发送PSCCH的M4个交织资源的超集。在PSCCH符号上,该S4个交织资源中未用于PSCCH发送的交织资源上TX发送PSSCH。
在一种可能的实现方式中,在频域上,一个PSCCH占用PSCCH符号内的M4个交织资源。例如,M4可以采用以下方式确定:
方式3-1:M4在资源池内仅有一个允许的值,例如,M4=1,或者M4的值可以由基站配置、CH配置、预配置或者标准定义。
方式3-2:M4在资源池内有多个可选值,例如,M4=1或2,资源池内M4的可选值可以由基站配置、CH配置、预配置或者标准定义。
例如,图13是PSCCH和PSSCH占用不同的交织资源的示意图。其中,横轴表示时间,纵轴表示频率。PSCCH符号包括符号0和符号1,PSCCH占用一个交织资源,即交织资源0;PSCCH调度的PSSCH占用两个交织资源,即交织资源0和交织资源1。在PSCCH符号上,交织资源0用于PSCCH发送,交织资源1用于PSSCH发送。在仅存在PSSCH的符号上,交织资源0(除了前两个用于发送PSCCH的PRB之外的其他PRB)和交织资源1(所有PRB)均用于PSSCH发送。
在另一种可能的实现方式中,在频域上,PSCCH占用一个交织资源开始的M4_PRB个PRB,M4_PRB的值可以由基站配置、CH配置、预配置或者标准定义。在本实现方式中,如果PSSCH占用多个交织资源,则多个交织资源的频域起点应该相邻。在这种情况下,可选地,PSCCH仅在PSSCH占用的第一个交织资源的开始的M3_PRB个PRB上发送。可选地,PSCCH占用PSSCH占用的前A个交织资源的前a个PRB。在这种情况下,当前资源池内,PSSCH的最小资源粒度应该A个交织资源。其中A和a的值均可以由基站配置、CH配置、预配置或者标准定义。
在一种可能的实现方式中,资源池内频域资源分为两部分。其中一部分为PSCCH资源集合,仅位于PSCCH符号内。PSCCH资源集合内包含至少一个PSCCH资源,PSCCH资源由特定数目的PRB组成。可选地,PSCCH资源集合由连续的一个或多个PRB组成,一个PSCCH资源由一个或多个连续的PRB组成。PSCCH资源集合和PSCCH资源内包含的PRB数目均可以由基站配置、CH配置、预配置或者标准定义。另外一部分为PSSCH资源集合,可选地,PSSCH资源集合由一个或多个交织资源组成,PSSCH资源集合内交织资源的数目和PSCCH资源集合内PSCCH资源数目相同。可选地,在PSCCH资源集合内第i个PSCCH资源上发送的PSCCH调度的PSSCH的频域起点为第i个PSSCH。
可选地,TX在一个时隙内存在PSCCH发送的OFDM符号和一个时隙内仅存在PSSCH发送的OFDM符号上的发送功率相同。
示例四:
PSCCH和PSSCH通过时分的方式在同一个时隙内复用,PSCCH占用一个或多个PRB,一个或多个TX保证PSCCH所在的OFDM符号内占用的信道带宽不小于信道带宽的特定比例。
可选地,在一个时隙内从OFDM符号n2开始的连续N2个OFDM符号用于PSCCH。例如,假设一个时隙内OFDM符号从0开始,n2可以等于0或1,N2<N,N2的具体值可以由基站配置、CH配置、 预配置或者标准定义。可选地,如果RX接收当前时隙时不需要进行AGC调整,例如当前时隙仅允许CH发送PSCCH和/或PSSCH,这种情况下n2=0,否则n2=1。
可选地,在频域上,一个PSCCH占用M5个PRB,M5可以采用以下两种方式确定:
方式4-1:M5在资源池内仅有一个允许的值,例如,M5=1,或者M5的值可以由基站配置、CH配置、预配置或者标准定义。
方式4-2:M5在资源池内有多个可选值,例如,M5=1或2,资源池内M5的可选值可以由基站配置、CH配置、预配置或者标准定义。
可选地,在上述两种方式中,如果一个TX由基站或CH调度,则该TX采用的M5的值可以由基站或者CH动态指示。如果TX为CH,则M5的值可以由CH选择。如果CH发送的PSCCH占用的信道带宽小于信道总带宽的特定比例,例如80%,CH可以发送一部分填充信息以保证满足上述特定比例的条件。
在上述两种方式中,如果M5的值大于1,则M5个PRB在频域上可以是连续的或者离散的。
本申请上述各示例包括多种PSCCH和PSSCH的复用方法:
例如,PSCCH和PSSCH可以占用不同的OFDM符号,而且在不同的OFDM符号上占用不同的交织资源,或者,由TX终端保证不同OFDM符号上的带宽占用率(TX可以灵活度决定发送多少个PRB,在哪里发送PRB等)。
再如,PSCCH和PSSCH占用相同的OFDM符号,但是在频域上占用不同的交织资源,或占用相同交织资源的不同PRB,或者占用不同的频域资源集合。
再如,PSCCH和PSSCH在一个时隙的部分OFDM符号上通过频分的方式复用,在上述部分OFDM符号上,PSCCH和PSSCH可以占用不同的交织资源,或者相同交织资源的不同PRB,或者不同的频域资源集合。
通过以上方法,可以保证在非授权频段上,同一个TX发送的PSCCH和PSSCH在频域上占用的频域带宽可以达到信道总带宽的一定比例,使得侧行通信可以在非授权频段上正常运行,减少侧行信号之间的干扰。
图14是根据本申请一实施例的终端设备400的示意性框图。该终端设备400可以为发送端TX,该终端设备400可以包括:
发送模块410,用于发送侧行信号,该侧行信号占用交织资源,其中,一个交织资源包括在频域上具有特定间隔的多个物理资源块PRB,并且一个交织资源占用的频域带宽不小于信道带宽的特定比例。
可选地,在本申请实施例中,一个交织资源包括起点为f且间隔为k个PRB的F个PRB,其中,0≤f<k,F为使得f+F*k不大于信道带宽W的最大整数。
可选地,在本申请实施例中,k的值与子载波间隔SCS对应。
可选地,在本申请实施例中,该侧行信号包括物理侧行控制信道PSCCH和物理侧行共享信道PSSCH。
可选地,在本申请实施例中,在一个时隙内从第n个OFDM符号开始的连续N个OFDM符号用于PSCCH;
其中,如果接收端RX不需要进行AGC,该n=0,否则n=1,N为正整数。
可选地,在本申请实施例中,如果从索引为1的OFDM符号开始发送该PSCCH,则索引为0的OFDM符号用于发送PSSCH,或者用于重复发送与索引为1的OFDM符号上相同的PSCCH。
可选地,在本申请实施例中,该PSCCH和该PSSCH通过时分的方式在同一个时隙内复用。
可选地,在本申请实施例中,该PSCCH占用至少一个交织资源。
可选地,在本申请实施例中,该PSCCH占用M1个交织资源,如果PSCCH调度的PSSCH位于当前时隙内,则该M1和PSCCH调度的PSSCH占用的交织资源数目相同,该当前时隙为该PSCCH所在 的时隙,M1为正整数。
可选地,在本申请实施例中,该PSCCH占用M2个交织资源,如果该PSCCH未调度PSSCH或该PSCCH调度的PSSCH位于与该PSCCH不同的时隙内,则该M2在资源池内有一个允许值或者多个可选值,M2为正整数。
可选地,在本申请实施例中,在该时隙内的除了用于PSCCH的其他OFDM符号用于该PSCCH调度的PSSCH。
可选地,在本申请实施例中,该PSCCH占用一个交织资源的至少一个PRB。
可选地,在本申请实施例中,该PSCCH调度的PSSCH占用该交织资源中除了该PSCCH占用的PRB之外的其他PRB。
可选地,在本申请实施例中,该PSCCH和该PSSCH通过频分的方式复用。
可选地,在本申请实施例中,该PSCCH占用一个时隙内的至少一个交织资源。
可选地,在本申请实施例中,该PSCCH占用一个时隙内的M3个交织资源,该M3在资源池内有一个允许值或者多个可选值,该M3为正整数。
可选地,在本申请实施例中,该PSCCH占用一个时隙内的一个交织资源的至少一个PRB。
可选地,在本申请实施例中,如果该PSCCH调度的PSSCH占用多个交织资源,则该PSSCH占用的多个交织资源的频域起点相邻。
可选地,在本申请实施例中,该PSCCH在该PSSCH占用的第一个交织资源开始的特定数目个PRB上发送。
可选地,在本申请实施例中,该PSCCH占用该PSSCH占用的前A个交织资源的前a个PRB,A和a为正整数。
可选地,在本申请实施例中,该PSCCH占用资源池内的至少一个PRB,该资源池内包括至少一个交织资源。
可选地,在本申请实施例中,该资源池内包括PSCCH资源集合和PSSCH资源集合。
可选地,在本申请实施例中,该PSCCH资源集合内包括至少一个PSCCH资源,一个PSCCH资源由一个PRB或多个连续的PRB组成。
可选地,在本申请实施例中,该PSSCH资源集合内交织资源的数目和该PSCCH资源集合内PSCCH资源的数目相同。
可选地,在本申请实施例中,在PSCCH资源集合内第i个PSCCH资源上发送的该PSCCH调度的PSSCH的频域起点为PSCCH资源集合内第i个交织资源的起点,i为0或正整数。
可选地,在本申请实施例中,该PSCCH在一个时隙内的能够用于侧行通信的部分OFDM符号上,通过频分的方式和PSSCH复用。
可选地,在本申请实施例中,该PSCCH在该部分OFDM符号上占用至少一个交织资源。
可选地,在本申请实施例中,该PSCCH在该部分OFDM符号上占用一个交织资源的至少一个PRB。
可选地,在本申请实施例中,如果PSCCH及其调度的PSSCH在同一时隙内发送,则在PSCCH符号上和仅存在PSSCH的符号上,一个发送端TX占用的频域资源相同,其中,该PSCCH符号包括多个连续的用于发送PSCCH的OFDM符号。
可选地,在本申请实施例中,如果在仅存在PSSCH的符号上一个TX占用S4个交织资源,则该S4个交织资源在频域上为该TX用于发送PSCCH的M4个交织资源的超集。
可选地,在本申请实施例中,在该PSCCH符号上、该S4个交织资源中未用于发送PSCCH的交织资源上,该发送模块410发送该PSCCH调度的PSSCH。
可选地,在本申请实施例中,该M4在资源池内有一个允许值或者多个可选值。
本申请实施例的终端设备400能够实现前述的方法200实施例中的终端设备的对应功能以及上述的 示例一、示例二和示例三。该终端设备400中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。
需要说明,关于申请实施例的终端设备400中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
图15是根据本申请一实施例的终端设备500的示意性框图。该终端设备500可以为发送端TX,该终端设备500可以包括:
发送模块510,用于发送PSCCH和PSSCH,PSCCH和PSSCH通过时分的方式在一个时隙内复用,并且PSCCH占用至少一个PRB,一个或多个TX控制该PSCCH所在的OFDM符号内占用的频域带宽不小于信道带宽的特定比例。
可选地,在本申请实施例中,在一个时隙内从第n个OFDM符号开始的连续N个OFDM符号用于PSCCH;其中,如果接收端(RX)不需要进行自动增益控制(AGC),该n=0,否则n=1,N为正整数。N的值可以通过基站配置、CH配置、预配置或者标准定义。
可选地,在本申请实施例中,一个PSCCH占用M5个PRB,该M5为正整数。
可选地,在本申请实施例中,该M5在资源池内有一个允许值或者多个可选值。
可选地,该M5的允许值或者多个可选值可以通过基站配置、组头终端(CH)配置、预配置或者标准定义。
可选地,在本申请实施例中,如果一个TX由基站或CH调度,则该TX采用的M5的值可以由基站或者CH动态指示。
可选地,在本申请实施例中,如果TX为CH,则该M5由该CH选择。
可选地,在本申请实施例中,如果TX为CH,该发送模块还用于发送冗余信息,以控制该PSCCH所在的OFDM符号内占用的频域带宽不小于信道带宽的特定比例。
可选地,在本申请实施例中,如果该M5大于1,则M5个PRB在频域上是连续的或离散的。
本申请实施例的终端设备500能够实现前述的方法300实施例中的发送端的对应功能以及上述的示例四。该终端设备500中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。
需要说明,关于申请实施例的终端设备500中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
图16是根据本申请实施例的通信设备600示意性结构图。该通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以使通信设备600实现本申请实施例中的方法。
可选地,如图16所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以使通信设备600实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图16所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600可为本申请实施例的终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图17是根据本申请实施例的芯片700的示意性结构图。该芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图17所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中由终端设备或者网络设备执行的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应用于网络设备和终端设备的芯片可以是相同的芯片或不同的芯片。
应理解,本申请实施例提到的芯片还可以称为***级芯片,***芯片,芯片***或片上***芯片等。
上述提及的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、现成可编程门阵列(field programmable gate array,FPGA)、专用集成电路(application specific integrated circuit,ASIC)或者其他可编程逻辑器件、晶体管逻辑器件、分立硬件组件等。其中,上述提到的通用处理器可以是微处理器或者也可以是任何常规的处理器等。
上述提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其他适合类型的存储器。
图18是根据本申请实施例的通信***800的示意性框图。该通信***800包括终端设备810和终端设备820。终端设备810可以为发送端TX终端,终端设备820可以为接收端RX终端。
在一种实现方式中,终端设备810发送的侧行信号占用交织资源,其中,一个交织资源包括在频域上具有特定间隔的多个PRB,并且一个交织资源占用的频域带宽不小于信道带宽的特定比例。
在一种实现方式中,终端设备810发送的PSCCH和PSSCH通过时分的方式在一个时隙内复用,并且PSCCH占用至少一个PRB,一个或多个TX控制该PSCCH所在的OFDM符号内占用的频域带宽不小于信道带宽的特定比例。
其中,该终端设备810可以用于实现上述方法中由发送端TX实现的相应的功能。本实施例中与上述实施例描述相同的内容具有相同的含义,例如侧行信号、交织资源等,可以参见上述实施例的相关描述。为了简洁,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实 现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以该权利要求的保护范围为准。

Claims (81)

  1. 一种侧行通信方法,包括:
    发送端TX发送的侧行信号占用交织资源,其中,一个交织资源包括在频域上具有特定间隔的多个物理资源块PRB,并且一个交织资源占用的频域带宽不小于信道带宽的特定比例。
  2. 根据权利要求1所述的方法,其中,一个交织资源包括起点为f且间隔为k个PRB的F个PRB,其中,0≤f<k,F为使得f+F*k不大于信道带宽W的最大整数。
  3. 根据权利要求2所述的方法,其中,k的值与子载波间隔SCS对应。
  4. 根据权利要求1至3中任一项所述的方法,其中,所述侧行信号包括物理侧行控制信道PSCCH和物理侧行共享信道PSSCH。
  5. 根据权利要求4所述的方法,其中,在一个时隙内从第n个OFDM符号开始的连续N个OFDM符号用于PSCCH;
    其中,如果接收端RX不需要进行自动增益控制AGC,所述n=0,否则n=1,N为正整数。
  6. 根据权利要求4或5所述的方法,其中,如果从索引为1的OFDM符号开始发送所述PSCCH,则索引为0的OFDM符号用于发送PSSCH,或者用于重复发送与索引为1的OFDM符号上相同的PSCCH。
  7. 根据权利要求4至6中任一项所述的方法,其中,所述PSCCH和所述PSSCH通过时分的方式在同一个时隙内复用。
  8. 根据权利要求7所述的方法,其中,所述PSCCH占用至少一个交织资源。
  9. 根据权利要求8所述的方法,其中,所述PSCCH占用M1个交织资源,如果PSCCH调度的PSSCH位于当前时隙内,则所述M1和PSCCH调度的PSSCH占用的交织资源数目相同,所述当前时隙为所述PSCCH所在的时隙,M1为正整数。
  10. 根据权利要求8所述的方法,其中,所述PSCCH占用M2个交织资源,如果所述PSCCH未调度PSSCH或所述PSCCH调度的PSSCH位于与所述PSCCH不同的时隙内,则所述M2在资源池内有一个允许值或者多个可选值,M2为正整数。
  11. 根据权利要求8至10所述的方法,其中,在所述时隙内的除了用于PSCCH的其他OFDM符号用于所述PSCCH调度的PSSCH。
  12. 根据权利要求7所述的方法,其中,所述PSCCH占用一个交织资源的至少一个PRB。
  13. 根据权利要求12所述的方法,其中,所述PSCCH调度的PSSCH占用所述交织资源中除了所述PSCCH占用的PRB之外的其他PRB。
  14. 根据权利要求4至7中任一项所述的方法,其中,所述PSCCH和所述PSSCH通过频分的方式复用。
  15. 根据权利要求14所述的方法,其中,所述PSCCH占用一个时隙内的至少一个交织资源。
  16. 根据权利要求15所述的方法,其中,所述PSCCH占用一个时隙内的M3个交织资源,所述M3在资源池内有一个允许值或者多个可选值,所述M3为正整数。
  17. 根据权利要求16所述的方法,其中,所述PSCCH占用一个时隙内的一个交织资源的至少一个PRB。
  18. 根据权利要求17所述的方法,其中,如果所述PSCCH调度的PSSCH占用多个交织资源,则所述PSSCH占用的多个交织资源的频域起点相邻。
  19. 根据权利要求18所述的方法,其中,所述PSCCH在所述PSSCH占用的第一个交织资源开始的特定数目个PRB上发送。
  20. 根据权利要求17至19中任一项所述的方法,其中,所述PSCCH占用所述PSSCH占用的前A 个交织资源的前a个PRB,A和a为正整数。
  21. 根据权利要求14所述的方法,其中,所述PSCCH占用资源池内的至少一个PRB,所述资源池内包括至少一个交织资源。
  22. 根据权利要求21所述的方法,其中,所述资源池内包括PSCCH资源集合和PSSCH资源集合。
  23. 根据权利要求22所述的方法,其中,所述PSCCH资源集合内包括至少一个PSCCH资源,一个PSCCH资源由一个PRB或多个连续的PRB组成。
  24. 根据权利要求22或23所述的方法,其中,所述PSSCH资源集合内交织资源的数目和所述PSCCH资源集合内PSCCH资源的数目相同。
  25. 根据权利要求24中任一项所述的方法,其中,在PSCCH资源集合内第i个PSCCH资源上发送的所述PSCCH调度的PSSCH的频域起点为PSCCH资源集合内第i个交织资源的起点,i为0或正整数。
  26. 根据权利要求14所述的方法,其中,所述PSCCH在一个时隙内的能够用于侧行通信的部分OFDM符号上,通过频分的方式和PSSCH复用。
  27. 根据权利要求26所述的方法,其中,所述PSCCH在所述部分OFDM符号上占用至少一个交织资源。
  28. 根据权利要求26所述的方法,其中,所述PSCCH在所述部分OFDM符号上占用一个交织资源的至少一个PRB。
  29. 根据权利要求26至28中任一项所述的方法,其中,如果PSCCH及其调度的PSSCH在同一时隙内发送,则在PSCCH符号上和仅存在PSSCH的符号上,一个TX占用的频域资源相同,其中,所述PSCCH符号包括多个连续的用于发送PSCCH的OFDM符号。
  30. 根据权利要求29所述的方法,其中,如果在仅存在PSSCH的符号上一个TX占用S4个交织资源,则所述S4个交织资源在频域上为所述TX用于发送PSCCH的M4个交织资源的超集。
  31. 根据权利要求30所述的方法,其中,在所述PSCCH符号上、所述S4个交织资源中未用于发送PSCCH的交织资源上,所述TX发送所述PSCCH调度的PSSCH。
  32. 根据权利要求30所述的方法,其中,所述M4在资源池内有一个允许值或者多个可选值。
  33. 一种侧行通信方法,包括:
    发送端TX发送的PSCCH和PSSCH通过时分的方式在一个时隙内复用,并且PSCCH占用至少一个PRB,一个或多个TX控制所述PSCCH所在的OFDM符号内占用的频域带宽不小于信道带宽的特定比例。
  34. 根据权利要求33所述的方法,其中,一个PSCCH占用M5个PRB,所述M5为正整数。
  35. 根据权利要求34所述的方法,其中,所述M5在资源池内有一个允许值或者多个可选值。
  36. 根据权利要求34或35所述的方法,其中,如果所述TX为组头终端CH,则所述M5由所述CH选择。
  37. 根据权利要求34至36中任一项所述的方法,其中,如果TX为CH,所述CH发送冗余信息,以控制所述PSCCH所在的OFDM符号内占用的频域带宽不小于信道带宽的特定比例。
  38. 根据权利要求34至37中任一项所述的方法,其中,如果所述M5大于1,则M5个PRB在频域上是连续的或离散的。
  39. 一种终端设备,所述终端设备为发送端TX,所述终端设备包括:
    发送模块,用于发送侧行信号,所述侧行信号占用交织资源,其中,一个交织资源包括在频域上具有特定间隔的多个物理资源块PRB,并且一个交织资源占用的频域带宽不小于信道带宽的特定比例。
  40. 根据权利要求39所述的终端设备,其中,一个交织资源包括起点为f且间隔为k个PRB的F个PRB,其中,0≤f<k,F为使得f+F*k不大于信道带宽W的最大整数。
  41. 根据权利要求40所述的终端设备,其中,k的值与子载波间隔SCS对应。
  42. 根据权利要求39至41中任一项所述的终端设备,其中,所述侧行信号包括物理侧行控制信道PSCCH和物理侧行共享信道PSSCH。
  43. 根据权利要求42所述的终端设备,其中,在一个时隙内从第n个OFDM符号开始的连续N个OFDM符号用于PSCCH;
    其中,如果接收端RX不需要进行自动增益控制AGC,所述n=0,否则n=1,N为正整数。
  44. 根据权利要求42或43所述的终端设备,其中,如果从索引为1的OFDM符号开始发送所述PSCCH,则索引为0的OFDM符号用于发送PSSCH,或者用于重复发送与索引为1的OFDM符号上相同的PSCCH。
  45. 根据权利要求42至44中任一项所述的终端设备,其中,所述PSCCH和所述PSSCH通过时分的方式在同一个时隙内复用。
  46. 根据权利要求45所述的终端设备,其中,所述PSCCH占用至少一个交织资源。
  47. 根据权利要求46所述的终端设备,其中,所述PSCCH占用M1个交织资源,如果PSCCH调度的PSSCH位于当前时隙内,则所述M1和PSCCH调度的PSSCH占用的交织资源数目相同,所述当前时隙为所述PSCCH所在的时隙,M1为正整数。
  48. 根据权利要求46所述的终端设备,其中,所述PSCCH占用M2个交织资源,如果所述PSCCH未调度PSSCH或所述PSCCH调度的PSSCH位于与所述PSCCH不同的时隙内,则所述M2在资源池内有一个允许值或者多个可选值,M2为正整数。
  49. 根据权利要求46至48所述的终端设备,其中,在所述时隙内的除了用于PSCCH的其他OFDM符号用于所述PSCCH调度的PSSCH。
  50. 根据权利要求45所述的终端设备,其中,所述PSCCH占用一个交织资源的至少一个PRB。
  51. 根据权利要求50所述的终端设备,其中,所述PSCCH调度的PSSCH占用所述交织资源中除了所述PSCCH占用的PRB之外的其他PRB。
  52. 根据权利要求42至45中任一项所述的终端设备,其中,所述PSCCH和所述PSSCH通过频分的方式复用。
  53. 根据权利要求52所述的终端设备,其中,所述PSCCH占用一个时隙内的至少一个交织资源。
  54. 根据权利要求53所述的终端设备,其中,所述PSCCH占用一个时隙内的M3个交织资源,所述M3在资源池内有一个允许值或者多个可选值,所述M3为正整数。
  55. 根据权利要求54所述的终端设备,其中,所述PSCCH占用一个时隙内的一个交织资源的至少一个PRB。
  56. 根据权利要求55所述的终端设备,其中,如果所述PSCCH调度的PSSCH占用多个交织资源,则所述PSSCH占用的多个交织资源的频域起点相邻。
  57. 根据权利要求56所述的终端设备,其中,所述PSCCH在所述PSSCH占用的第一个交织资源开始的特定数目个PRB上发送。
  58. 根据权利要求55至57中任一项所述的终端设备,其中,所述PSCCH占用所述PSSCH占用的前A个交织资源的前a个PRB,A和a为正整数。
  59. 根据权利要求52所述的终端设备,其中,所述PSCCH占用资源池内的至少一个PRB,所述资源池内包括至少一个交织资源。
  60. 根据权利要求59所述的终端设备,其中,所述资源池内包括PSCCH资源集合和PSSCH资源集合。
  61. 根据权利要求60所述的终端设备,其中,所述PSCCH资源集合内包括至少一个PSCCH资源,一个PSCCH资源由一个PRB或多个连续的PRB组成。
  62. 根据权利要求60或61所述的终端设备,其中,所述PSSCH资源集合内交织资源的数目和所述PSCCH资源集合内PSCCH资源的数目相同。
  63. 根据权利要求62中任一项所述的终端设备,其中,在PSCCH资源集合内第i个PSCCH资源上发送的所述PSCCH调度的PSSCH的频域起点为PSCCH资源集合内第i个交织资源的起点,i为0或正整数。
  64. 根据权利要求52所述的终端设备,其中,所述PSCCH在一个时隙内的能够用于侧行通信的部分OFDM符号上,通过频分的方式和PSSCH复用。
  65. 根据权利要求64所述的终端设备,其中,所述PSCCH在所述部分OFDM符号上占用至少一个交织资源。
  66. 根据权利要求64所述的终端设备,其中,所述PSCCH在所述部分OFDM符号上占用一个交织资源的至少一个PRB。
  67. 根据权利要求64至66中任一项所述的终端设备,其中,如果PSCCH及其调度的PSSCH在同一时隙内发送,则在PSCCH符号上和仅存在PSSCH的符号上,一个发送端TX占用的频域资源相同,其中,所述PSCCH符号包括多个连续的用于发送PSCCH的OFDM符号。
  68. 根据权利要求67所述的终端设备,其中,如果在仅存在PSSCH的符号上一个TX占用S4个交织资源,则所述S4个交织资源在频域上为所述TX用于发送PSCCH的M4个交织资源的超集。
  69. 根据权利要求68所述的终端设备,其中,在所述PSCCH符号上、所述S4个交织资源中未用于发送PSCCH的交织资源上,所述发送模块发送所述PSCCH调度的PSSCH。
  70. 根据权利要求68所述的终端设备,其中,所述M4在资源池内有一个允许值或者多个可选值。
  71. 一种终端设备,所述终端设备为发送端TX,所述终端设备包括:
    发送模块,用于发送PSCCH和PSSCH,PSCCH和PSSCH通过时分的方式在一个时隙内复用,并且PSCCH占用至少一个PRB,一个或多个TX控制所述PSCCH所在的OFDM符号内占用的频域带宽不小于信道带宽的特定比例。
  72. 根据权利要求71所述的终端设备,其中,一个PSCCH占用M5个PRB,所述M5为正整数。
  73. 根据权利要求72所述的终端设备,其中,所述M5在资源池内有一个允许值或者多个可选值。
  74. 根据权利要求72或73所述的终端设备,其中,如果TX为组头终端CH,则所述M5由所述CH选择。
  75. 根据权利要求72至74中任一项所述的终端设备,其中,如果TX为CH,所述发送模块还用于发送冗余信息,以控制所述PSCCH所在的OFDM符号内占用的频域带宽不小于信道带宽的特定比例。
  76. 根据权利要求72至75中任一项所述的终端设备,其中,如果所述M5大于1,则M5个PRB在频域上是连续的或离散的。
  77. 一种终端设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以使所述终端设备执行如权利要求1至38中任一项所述的方法。
  78. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至38中任一项所述的方法。
  79. 一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被设备运行时使得所述设备执行如权利要求1至38中任一项所述的方法。
  80. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至38中任一项所述的方法。
  81. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至38中任一项所述的方法。
PCT/CN2020/095977 2020-06-12 2020-06-12 侧行通信方法和终端设备 WO2021248502A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20940395.5A EP4156814A4 (en) 2020-06-12 2020-06-12 SIDE LINK COMMUNICATION METHOD AND TERMINAL DEVICE
CN202080101552.5A CN115669130A (zh) 2020-06-12 2020-06-12 侧行通信方法和终端设备
PCT/CN2020/095977 WO2021248502A1 (zh) 2020-06-12 2020-06-12 侧行通信方法和终端设备
US18/076,246 US20230105567A1 (en) 2020-06-12 2022-12-06 Sidelink communication method and terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/095977 WO2021248502A1 (zh) 2020-06-12 2020-06-12 侧行通信方法和终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/076,246 Continuation US20230105567A1 (en) 2020-06-12 2022-12-06 Sidelink communication method and terminal device

Publications (1)

Publication Number Publication Date
WO2021248502A1 true WO2021248502A1 (zh) 2021-12-16

Family

ID=78846808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095977 WO2021248502A1 (zh) 2020-06-12 2020-06-12 侧行通信方法和终端设备

Country Status (4)

Country Link
US (1) US20230105567A1 (zh)
EP (1) EP4156814A4 (zh)
CN (1) CN115669130A (zh)
WO (1) WO2021248502A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023130437A1 (zh) * 2022-01-10 2023-07-13 北京小米移动软件有限公司 信道传输方法及装置、存储介质
WO2023201669A1 (zh) * 2022-04-21 2023-10-26 北京小米移动软件有限公司 一种pscch的发送/接收方法及其装置
WO2024026863A1 (en) * 2022-08-05 2024-02-08 Nokia Shanghai Bell Co., Ltd. Methods, devices, apparatuses and computer readable storage medium for communications
WO2024027603A1 (zh) * 2022-08-05 2024-02-08 大唐移动通信设备有限公司 非授权频谱中直通链路资源分配方法、装置及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11968646B2 (en) * 2021-06-25 2024-04-23 Qualcomm Incorporated Frequency floating sidelink control information for new radio

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108605330A (zh) * 2016-02-05 2018-09-28 联发科技股份有限公司 eLAA中的峰值平均功率比降低
CN110166198A (zh) * 2018-02-12 2019-08-23 北京三星通信技术研究有限公司 旁路信号发送方法和设备
WO2020067342A1 (en) * 2018-09-27 2020-04-02 Sharp Kabushiki Kaisha Bandwidth part configurations for v2x communication
CN110958098A (zh) * 2018-09-27 2020-04-03 华为技术有限公司 配置旁链路资源的方法和装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10750462B2 (en) * 2017-06-07 2020-08-18 Samsung Electronics Co., Ltd. Methods and systems for D2D operation in unlicensed spectrum
WO2020033704A1 (en) * 2018-08-08 2020-02-13 Idac Holdings, Inc. Enhanced sidelink control transmission

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108605330A (zh) * 2016-02-05 2018-09-28 联发科技股份有限公司 eLAA中的峰值平均功率比降低
CN110166198A (zh) * 2018-02-12 2019-08-23 北京三星通信技术研究有限公司 旁路信号发送方法和设备
WO2020067342A1 (en) * 2018-09-27 2020-04-02 Sharp Kabushiki Kaisha Bandwidth part configurations for v2x communication
CN110958098A (zh) * 2018-09-27 2020-04-03 华为技术有限公司 配置旁链路资源的方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Considerations on Physical Layer aspects of NR V2X", 3GPP DRAFT; R1-1912944, vol. RAN WG1, 9 November 2019 (2019-11-09), Reno, USA, pages 1 - 13, XP051823707 *
See also references of EP4156814A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023130437A1 (zh) * 2022-01-10 2023-07-13 北京小米移动软件有限公司 信道传输方法及装置、存储介质
WO2023201669A1 (zh) * 2022-04-21 2023-10-26 北京小米移动软件有限公司 一种pscch的发送/接收方法及其装置
WO2024026863A1 (en) * 2022-08-05 2024-02-08 Nokia Shanghai Bell Co., Ltd. Methods, devices, apparatuses and computer readable storage medium for communications
WO2024027603A1 (zh) * 2022-08-05 2024-02-08 大唐移动通信设备有限公司 非授权频谱中直通链路资源分配方法、装置及存储介质

Also Published As

Publication number Publication date
US20230105567A1 (en) 2023-04-06
CN115669130A (zh) 2023-01-31
EP4156814A1 (en) 2023-03-29
EP4156814A4 (en) 2023-07-19

Similar Documents

Publication Publication Date Title
WO2021248502A1 (zh) 侧行通信方法和终端设备
CN115553005A (zh) 侧行反馈资源配置方法、终端设备和网络设备
US20230063901A1 (en) Sidelink feedback method and terminal device
US20230247557A1 (en) Sidelink transmission method and terminal
US20240049264A1 (en) Physical sidelink feedback channel (psfch) transmission method and terminal device
US20230354415A1 (en) Channel access method and device
US20230345426A1 (en) Resource determination method, first terminal device, and second terminal device
US20230007682A1 (en) Data transmission method, terminal device and network device
WO2023004725A1 (zh) 无线通信方法、第一设备和第二设备
WO2023023903A1 (zh) 无线通信方法、第一设备和第二设备
WO2024021056A1 (zh) 侧行传输方法和终端
WO2024055243A1 (zh) 侧行通信方法和终端设备
WO2023070375A1 (zh) 资源指示的方法、终端设备和网络设备
WO2023092264A1 (zh) 无线通信方法、终端设备及网络设备
WO2023092265A1 (zh) 无线通信方法、第一终端设备及第二终端设备
WO2023279403A1 (zh) 无线通信方法、终端设备和网络设备
WO2023123080A1 (zh) 侧行通信方法和设备
WO2023279399A1 (zh) 侧行传输资源的确定方法、发送方法、装置、设备及介质
WO2023206102A1 (zh) 传输方法、终端设备和网络设备
WO2023097629A1 (zh) 信息配置方法、终端设备和网络设备
WO2023019463A1 (zh) 无线通信的方法和设备
WO2022061790A1 (zh) 资源集合的传输方法和终端
WO2022021448A1 (zh) 检测控制信息的方法、传输控制信息的方法、终端设备和网络设备
WO2022077191A1 (zh) 资源调度方法、终端设备和网络设备
WO2023019465A1 (zh) 无线通信的方法和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940395

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020940395

Country of ref document: EP

Effective date: 20221221

NENP Non-entry into the national phase

Ref country code: DE