WO2021225168A1 - 成形機用洗浄剤 - Google Patents

成形機用洗浄剤 Download PDF

Info

Publication number
WO2021225168A1
WO2021225168A1 PCT/JP2021/017561 JP2021017561W WO2021225168A1 WO 2021225168 A1 WO2021225168 A1 WO 2021225168A1 JP 2021017561 W JP2021017561 W JP 2021017561W WO 2021225168 A1 WO2021225168 A1 WO 2021225168A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning agent
resin
molding
viscosity
copolymer
Prior art date
Application number
PCT/JP2021/017561
Other languages
English (en)
French (fr)
Inventor
大典 政木
貴史 山口
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to CN202180031628.6A priority Critical patent/CN115485359A/zh
Priority to EP21799635.4A priority patent/EP4147840A4/en
Priority to JP2022519635A priority patent/JPWO2021225168A1/ja
Priority to KR1020227029338A priority patent/KR20220134580A/ko
Publication of WO2021225168A1 publication Critical patent/WO2021225168A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/726Measuring properties of mixture, e.g. temperature or density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/802Constructions or methods for cleaning the mixing or kneading device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/27Cleaning; Purging; Avoiding contamination
    • B29C48/2715Cleaning; Purging; Avoiding contamination of plasticising units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/27Cleaning; Purging; Avoiding contamination
    • B29C48/272Cleaning; Purging; Avoiding contamination of dies
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3749Polyolefins; Halogenated polyolefins; Natural or synthetic rubber; Polyarylolefins or halogenated polyarylolefins
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3757(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions
    • C11D3/3761(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions in solid compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/14Hard surfaces
    • C11D2111/20Industrial or commercial equipment, e.g. reactors, tubes or engines

Definitions

  • the present invention relates to a cleaning agent for a resin molding machine.
  • a resin molding machine such as an extrusion molding machine or an injection molding machine is used for operations such as coloring, mixing, and molding of a resin.
  • the resin itself is obtained at the end of a predetermined operation.
  • additives such as dyes and pigments contained in the molding material, deteriorated products (thermal decomposition products, charred products, charcoal products, etc.) generated from resins and the like may remain in the molding machine. If this residue is left unattended, the residue may be mixed into the molded product during the subsequent molding process of the resin, which may cause a poor appearance of the product.
  • Patent Document 1 describes a method of increasing detergency by blending a nonionic surfactant with an olefin-based resin
  • Patent Document 2 describes a method of enhancing detergency by blending an anionic surfactant with an olefin-based resin.
  • Patent Document 3 describes a method of enhancing the detergency by blending an acid-modified product (styrene-maleic acid copolymer) with a thermoplastic resin.
  • Patent Document 4 describes a method of enhancing the detergency by blending a methyl methacrylate-styrene copolymer with a thermoplastic resin.
  • Patent Document 5 describes a method of enhancing the detergency by blending an inorganic filler with a thermoplastic resin.
  • Patent Document 6 describes a method of enhancing the detergency by blending an alkali metal salt and / or an alkaline earth metal salt with a hydrocarbon-based resin.
  • Patent Document 7 describes a method of enhancing the detergency by blending an inorganic filler with a thermoplastic resin.
  • Patent Document 8 describes a method in which a concentrated sprayable composition containing a surfactant and an antimist component does not generate an aerosol of small particles.
  • Patent Document 9 describes a method of enhancing the detergency by blending a surfactant and an inorganic filler with a thermoplastic resin.
  • Patent Document 10 describes a method of improving detergency and replaceability by blending an inorganic foaming agent with a thermoplastic resin.
  • the cleaning agent described in Patent Document 8 relates to a sprayable aqueous composition, and has a problem that it is unsuitable for resin replacement of a resin molding processing machine.
  • the cleaning agent described in Patent Document 9 has been confirmed to have an effect of improving cleaning performance by blending an inorganic salt or metal hydroxide and an inorganic filler, the amount and time of resin for replacing the cleaning agent with a molding material There was a problem that it took. Even when the inorganic foaming agent described in Patent Document 10 is blended, the cleaning performance is insufficient, and there is a problem that the amount of resin and the time required for replacing the cleaning agent with the molding material are long.
  • the cleaning agent is required to have high detergency for the molding material used in the previous molding and easy replacement with the molding material used for the next molding.
  • an object of the present invention is to provide a cleaning agent for a resin molding machine having an improved balance between cleaning performance and ease of replacement by a molding material after cleaning.
  • the present inventors have focused on the rheological properties of the thermoplastic resin so that the cleaning agent can be easily replaced in the molding machine, and have a specific branching index.
  • the present invention has been developed by finding that the cleaning agent can be easily replaced without staying in the molding machine even when the flow path inside the mold or die for extrusion molding or injection molding is complicated. ..
  • a cleaning agent for a molding machine which comprises a thermoplastic resin having a long-chain branched structure and has a branching index of more than 0.30 and less than 1.00 at an absolute molecular weight of 1,000,000.
  • the extensional viscosity of 190 ° C. at a shear rate of 100 sec -1, proportion of shear viscosity of 190 ° C. at a shear rate of 100 sec -1 (elongational viscosity / shear viscosity) is 30 or more, the molding machine cleaning agent according to [1] .. [3] [1] or [2], wherein the extensional viscosity at 190 ° C.
  • the cleaning agent for molding machines [4] The cleaning agent for a molding machine according to any one of [1] to [3], which contains 5% by mass or more and 70% by mass or less of the thermoplastic resin having the long-chain branched structure. [5] The cleaning agent for a molding machine according to any one of [1] to [4], wherein the storage elastic modulus at 190 ° C. at an angular velocity of 100 rad / sec is 80 kPa or more.
  • the present embodiment a mode for carrying out the present invention (hereinafter, referred to as “the present embodiment”) will be described in detail.
  • the present invention is not limited to the following embodiment, and can be modified in various ways within the scope of the gist thereof.
  • the detergent for molding machines of the present embodiment (in this specification, may be simply referred to as “detergent” or “detergent composition”) contains a thermoplastic resin having a long-chain branched structure and has an absolute molecular weight.
  • the branch index at 1 million is greater than 0.30 and less than 1.00.
  • the cleaning agent may further contain additives such as lubricants and surfactants.
  • the thermoplastic resin contained in the cleaning agent for a molding machine of the present embodiment includes a thermoplastic resin having a long-chain branched structure. It may be composed of only a thermoplastic resin having a long-chain branched structure, or may be a mixture of a thermoplastic resin having a long-chain branched structure and a thermoplastic resin having no long-chain branched structure.
  • the long chain branch structure is a branch having a length comparable to that of the main chain, while the short chain branch means a branch having a length of up to several carbon atoms.
  • thermoplastic resin having a long-chain branched structure In order to achieve high detergency and easy replacement in the cleaning agent for molding machines of the present embodiment, it is important to include a thermoplastic resin having a long-chain branched structure, and by having a long-chain branched structure, The molding material used in the previous molding can be easily switched to the cleaning agent.
  • the reason why the above effect is achieved is not always clear, but it is considered as follows. That is, the flow of the conventional cleaning agent is controlled by the shear flow, and the molding material and the cleaning agent tend to stay in the dead space inside the die. It is considered that material replacement can be promoted by expressing a circulating flow like a vortex by the flow.
  • the cleaning agent for a molding machine of the present embodiment is preliminarily containing a thermoplastic resin having a long-chain branched structure, or is long in a thermoplastic resin having no long-chain branched structure.
  • the thermoplastic resin having the long chain branching structure is contained.
  • the method for introducing the long-chain branched structure into the thermoplastic resin is not particularly limited, and a conventionally known method can be used for each thermoplastic resin.
  • the branching index can be mentioned as a direct index that the thermoplastic resin has a long chain branching.
  • a polymer molecular chain having a branched structure introduced has an inertia as compared with a linear polymer molecular chain. Since the radius becomes smaller and the ultimate viscosity becomes smaller accordingly, the ratio of the ultimate viscosity ([ ⁇ ] br) of the branched polymer to the ultimate viscosity ([ ⁇ ] lin) of the linear polymer as the branched structure is introduced. It is known that the branching index represented by ([ ⁇ ] br / [ ⁇ ] lin) becomes smaller.
  • the branching index represented by the ratio of the ultimate viscosity [ ⁇ ] br of the polymer to the ultimate viscosity [ ⁇ ] lin of the linear polymer at an absolute molecular weight of 1 million ([ ⁇ ] br / [ ⁇ ] lin) is less than 1.
  • it means that it has a branched structure.
  • Mark-Houwink-lot that the logarithm of [ ⁇ ] lin of a linear polymer has a linear relationship with the logarithm of molecular weight.
  • thermoplastic resin examples include a branched polymer, a comb-shaped polymer, a star-shaped polymer, a network polymer structure, and the like in addition to the long-chain branching.
  • a plastic resin can also be preferably used.
  • thermoplastic resin contained in the cleaning agent for a molding machine of the present embodiment a thermoplastic resin used for general injection molding, extrusion molding, etc. can be widely used, and one type may be used alone or two or more types may be used. It can also be used in combination.
  • thermoplastic resin include a polyolefin resin, an ethylene-vinyl acetate copolymer resin, an ethylene-aliphatic unsaturated carboxylic acid copolymer resin such as an ethylene-acrylic acid copolymer, an ethylene-acrylic acid ester copolymer, and the like.
  • Ethylene-aliphatic carboxylic acid ester copolymer resin ionomer resin, styrene resin such as polystyrene, polycarbonate resin, polyamide resin, polyester resin, polyvinyl chloride resin and the like are preferable.
  • the content of the thermoplastic resin is preferably 50.0 to 99.9% by mass, preferably 60.0 to 99% by mass, based on 100% by mass of the cleaning agent composition, from the viewpoint of detergency and easy replacement. It is more preferably 9% by mass, and even more preferably 70.0 to 99.9% by mass.
  • the polyolefin-based resin a polyethylene-based resin, a polypropylene-based resin, and a polybutene-based resin are preferable.
  • the polyethylene-based resin refers to a homopolymer of ethylene or a copolymer of ethylene and one or more other types of monomers and having an ethylene content of 50% by mass or more. ..
  • the polypropylene-based resin is a homopolymer of propylene or a copolymer of propylene and one or more other monomers, and has a propylene content of 50% by mass or more.
  • the polybutene-based resin is a homopolymer of butene or a copolymer of butene and one or more other monomers, and has a butene content of 50% by mass or more.
  • polyethylene-based resin examples include polyethylene and an ethylene- ⁇ -olefin copolymer. Specifically, high-density polyethylene (HDPE), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), and the like. Examples thereof include linear ultra-low density polyethylene (VLDPE, ULDPE) and ultra-high molecular weight polyethylene (UHMWPE).
  • HDPE high-density polyethylene
  • LDPE low-density polyethylene
  • LLDPE linear low-density polyethylene
  • VLDPE linear ultra-low density polyethylene
  • ULDPE ultra-high molecular weight polyethylene
  • the ethylene- ⁇ -olefin copolymer is preferably a copolymer composed of ethylene and at least one selected from ⁇ -olefins having 3 to 20 carbon atoms, and has ethylene and 3 to 12 carbon atoms. More preferably, it is a copolymer composed of at least one selected from ⁇ -olefins.
  • the ⁇ -olefin include propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-decene, 1-decene.
  • Dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosane and the like can be mentioned, and one or more of these can be used in combination.
  • ethylene- ⁇ -olefin copolymer a copolymer of ethylene and at least one comonomer selected from a propylene comonomer, a butenko monomer, a hexenko monomer and an octene comonomer is generally easily available. Can be suitably used.
  • the polyethylene-based resin can be polymerized using a known catalyst such as a chromium-based catalyst, a Ziegler-based catalyst, or a metallocene-based catalyst, and from the viewpoint of cleaning performance, a chromium-based catalyst or a Ziegler-based catalyst having a wide molecular weight distribution can be used.
  • a chromium-based catalyst having a long-chain branch of a molecular chain having 6 or more carbon atoms or a metallocene catalyst is more preferable.
  • the polyethylene-based resin may be used alone or in combination of two or more. From the viewpoint of cleaning performance, a polyethylene-based resin having a long-chain branched structure is more preferable.
  • the polyethylene resin preferably has an MFR (190 ° C., load 2.16 kg) of 0.01 to 30 g / 10 min, and more preferably 0.05 to 25 g / 10 min. It is preferably 0.1 to 20 g / 10 min, and more preferably 0.1 to 20 g / 10 min.
  • polypropylene-based resin examples include polypropylene, a propylene- ⁇ -olefin copolymer, and a ternary copolymer of propylene, ethylene, and ⁇ -olefin.
  • the propylene- ⁇ -olefin copolymer is a copolymer composed of at least one selected from propylene and ⁇ -olefin.
  • the propylene- ⁇ -olefin copolymer is preferably a copolymer composed of propylene and at least one selected from ethylene and an ⁇ -olefin having 4 to 20 carbon atoms, and is preferably propylene, ethylene and 4 to 8 carbon atoms.
  • a copolymer composed of at least one selected from the ⁇ -olefins of the above is more preferable.
  • examples of the ⁇ -olefin having 4 to 20 carbon atoms include 1-butene, 1-pentene, 1-hexene, 1-octene, 4-methyl-1-pentene, 3-methyl-1-pentene, and the like.
  • examples thereof include 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-icosane, etc., and one or more of these can be used in combination.
  • These copolymers may be in any form such as a block copolymer and a random copolymer, and are preferably a random copolymer of propylene and ethylene.
  • propylene- ⁇ -olefin copolymer a copolymer of propylene and at least one comonomer selected from ethylene comonomer, butenko monomer, hexenko monomer and octene comonomer is generally easily available and is preferable. Can be used.
  • ternary copolymer of propylene, ethylene and ⁇ -olefin a ternary copolymer of propylene, ethylene and ⁇ -olefin such as butene, hexene and octene can be preferably used.
  • ternary copolymers may be in any form such as a block copolymer and a random copolymer, and are preferably a random copolymer of propylene, ethylene and butene.
  • the polypropylene-based resin may be not only a resin polymerized with a catalyst such as a Ziegler-Natta catalyst, but also a resin polymerized using a known catalyst such as a metallocene-based catalyst.
  • a catalyst such as a Ziegler-Natta catalyst
  • a metallocene-based catalyst for example, syndiotactic polypropylene or iso Tactic polypropylene and the like can also be used.
  • the polypropylene-based resin preferably has a long-chain branch from the viewpoint of cleaning performance, and for example, the branch can be introduced by grafting or polymerization by ionizing radiation irradiation.
  • the polypropylene resin preferably has an MFR (230 ° C., load of 2.16 kg) of 0.01 to 30.0 g / 10 min, and more preferably 0.05 to 25 g / 10 min. It is preferably 0.1 to 20 g / 10 min, and more preferably 0.1 to 20 g / 10 min.
  • the polybutene-based resin has particularly excellent compatibility with the polypropylene-based resin, it is preferable to use the polybutene-based resin in combination with the polypropylene-based resin for the purpose of adjusting the melt viscosity.
  • the polybutene-based resin a copolymer consisting of butene and at least one selected from ethylene, propylene and an olefin-based compound having 5 to 8 carbon atoms, which is crystalline, can be preferably used.
  • the ethylene-vinyl acetate copolymer resin refers to a copolymer obtained by copolymerizing an ethylene monomer and a vinyl acetate monomer.
  • the ethylene-aliphatic unsaturated carboxylic acid copolymer resin refers to a copolymer obtained by copolymerizing an ethylene monomer and at least one monomer selected from an aliphatic unsaturated carboxylic acid. Examples of the aliphatic unsaturated carboxylic acid include acrylic acid, methacrylic acid, fumaric acid, maleic acid and the like.
  • the ethylene-aliphatic unsaturated carboxylic acid ester copolymer resin refers to a copolymer obtained by copolymerizing an ethylene monomer and at least one monomer selected from an aliphatic unsaturated carboxylic acid ester.
  • the aliphatic unsaturated carboxylic acid ester include acrylic acid ester, methacrylic acid ester, fumaric acid ester, maleic acid ester and the like.
  • the copolymerization of the above-mentioned copolymer resin can be carried out by a known method such as a high pressure method or a melting method, and a multi-site catalyst, a single-site catalyst or the like can be used as a catalyst for the polymerization reaction.
  • the bond shape of each monomer is not particularly limited, and a polymer having a bond shape such as a random bond or a block bond can be used.
  • the ionomer resin is a resin having an ionic bond between its polymer structures, and an alkali metal or an alkaline earth metal is bonded to a copolymer of ethylene and acrylic acid or methacrylic acid to form a crosslinked structure. Resin can be preferably used.
  • the styrene-based resin refers to polystyrene or a copolymer of styrene and one or more other monomers having a styrene content of 50% by mass or more.
  • examples of other monomers copolymerized with styrene include acrylonitrile and butadiene.
  • Specific examples of the styrene-based resin include polystyrene, a styrene-acrylonitrile copolymer, a styrene-butadiene-acrylonitrile copolymer, and the like.
  • the styrene-based resin preferably has a long-chain branch from the viewpoint of cleaning performance, and for example, a resin having a branch can also be used.
  • the polycarbonate-based resin is a copolymer having a carbonate ester bond in the repeating unit of the main chain, and is a method for reacting an aromatic dihydroxy compound with a carbonate precursor, an aromatic dihydroxy compound and a carbonate precursor (for example,). , Phosgen) in the presence of an aqueous sodium hydroxide solution and a methylene chloride solvent (for example, the phosgen method), and an ester exchange method for reacting an aromatic dihydroxy compound with a carbonic acid diester (for example, diphenyl carbonate).
  • the polycarbonate-based resin preferably has a long-chain branch from the viewpoint of cleaning performance, and for example, a resin in which branching is introduced by grafting by ionizing irradiation or polymerization can also be used.
  • the above-mentioned polyamide-based resin is an aliphatic polyamide-based copolymer or an aromatic polyamide-based copolymer having an amide bond in the repeating unit of the main chain, and is nylon 6, nylon 6/66, or metaxylylene adipamide. (MYD6Ny) and the like can be preferably used.
  • the polyester resin is a copolymer having an ester bond in the repeating unit of the main chain, and polyethylene terephthalate or the like obtained by polycondensation of terephthalic acid and ethylene glycol can be preferably used.
  • the cleaning agent of the present embodiment may contain an additive.
  • the content of the additive is preferably 10% by mass or less with respect to 100% by mass of the detergent composition.
  • the additives will be described below.
  • the lubricant examples include organic acids, organic acid metal salts, organic acid amides, organic acid derivatives such as organic acid esters, various ester waxes, olefin waxes, fluororesins, mineral oils, etc., but are particularly limited thereto. It's not a thing. From the viewpoint of cleaning performance, the lubricant preferably has a surface tension of 32 mN / m or less, and more preferably a melting point or softening temperature of 70 ° C. or higher.
  • the surface tension of zinc stearate is 24 mN / m
  • the surface tension of aluminum stearate is 25 mN / m
  • the surface tension of polyolefin wax is 32 mN / m, and the like.
  • saturated fatty acids having 9 to 28 carbon atoms saturated fatty acids having 9 to 28 carbon atoms, unsaturated fatty acids having 9 to 28 carbon atoms, and benzoic acids are preferable. It may have a hydroxyl group in a part of the chain. In particular, stearic acid, 12-hydroxystearic acid, palmitic acid, myristic acid, and lauric acid are more preferable from the viewpoint of availability and heat resistance. Further, it may be a mixed fatty acid having a different alkyl chain. When the number of carbon atoms is in the above range, there is no problem of gas generation and odor, and it is preferable in that it is easy to obtain and the property as a lubricant at the interface functions well.
  • the organic acid may be a metal salt.
  • the metal salt in the organic acid metal salt is not particularly limited, and examples thereof include sodium, potassium, lithium, cesium, magnesium, calcium, aluminum, zinc, iron, cobalt, barium salt and the like.
  • metal salts of lithium, calcium, barium, zinc or aluminum which are most effective as lubricants, are preferable.
  • metal salts of aluminum and zinc have low polarity and easily develop external slipperiness by bleeding out from a thermoplastic resin, which is more preferable.
  • Particularly preferred is a zinc metal salt.
  • As the hydrocarbon moiety stearic acid or 12-hydroxystearic acid, palmitic acid, myristic acid, and lauric acid are preferable from the viewpoint of availability and heat resistance, as in the case of the chain length of the fatty acid described above.
  • organic acid amide examples include saturated fatty acid amides, unsaturated fatty acid amides, saturated fatty acid bisamides, and unsaturated fatty acid bisamides having 9 to 28 carbon atoms.
  • fatty acids having 12 to 18 carbon atoms such as lauric acid, myristic acid, palmitic acid, and stearic acid
  • amides of unsaturated fatty acids such as erucic acid
  • saturated fatty acid bisamides such as ethylene bisstearic acid amide
  • organic acid ester and ester wax examples include saturated fatty acid esters having 9 to 28 carbon atoms, unsaturated fatty acid esters, medium-chain fatty acid triglycerides, and polyol esters such as cured oils.
  • saturated fatty acid esters having 9 to 28 carbon atoms unsaturated fatty acid esters, medium-chain fatty acid triglycerides, and polyol esters such as cured oils.
  • Stearate stearate, glycerin fatty acid ester monoglyceride, and the like are preferable because of their availability and the effect of the lubricant.
  • the olefin wax examples include low-molecular-weight polyolefins, and the types are not particularly limited, but general low-density or high-density polyethylene, polypropylene and the like are used.
  • the molecular weight has a weight average molecular weight of about 1,000 to 50,000, and a dropping point of 80 to 180 ° C. is most likely to obtain the effect as a lubricant. It is assumed that the thermoplastic resin does not contain the olefin wax of the lubricant.
  • the fluorine-based resin examples include PTFE, PFA, PVDF, PVDF-based copolymer, ETFE, PFE, and the like, and the effect of suppressing the resin adhesion to the metal surface can be expected.
  • PTFE poly(ethylene glycol)
  • PFA poly(ethylene glycol)
  • PVDF poly(ethylene glycol)
  • PVDF-based copolymer poly(ethylene glycol)
  • ETFE terephthalate
  • PFE polystylene-based polystyrenephthalate
  • the average particle size is not largely limited, but is preferably 1,000 ⁇ m or less. It is assumed that the thermoplastic resin does not contain the fluorine-based resin of the lubricant.
  • the above-mentioned mineral oil is an oil obtained by refining petroleum, and is a saturated hydrocarbon-based oil containing naphthene, isoparaffin and the like, which are also called mineral oil, lubricating oil and liquid paraffin.
  • Mineral oils with a wide viscosity range can be used.
  • the kinematic viscosity measured by JIS K2283 is 50 to 500 mm 2 / s, and the Redwood method (Japan Oil Chemicals Association standard oil and fat analysis test method). Those having a viscosity in the range of 30 to 2000 (seconds) measured according to 2.2.10.4-1996) may be used.
  • the above-mentioned lubricants may be used alone or in combination of two or more.
  • surfactant examples include anionic surfactants, cationic surfactants, nonionic surfactants, amphoteric surfactants and the like.
  • anion activator examples include higher fatty acid alkali salts, alkyl sulfates, alkyl sulfonates, alkylaryl sulfonates, and sulfosuccinic acid ester salts.
  • cation activator examples include higher amine halides, alkylpyridinium halides, and quaternary ammonium salts.
  • non-ionic activator examples include polyethylene glycol alkyl ester, polyethylene glycol fatty acid ester, sorbitan fatty acid ester, and fatty acid monoglyceride.
  • amphoteric surfactant examples include amino acids and the like. The above-mentioned surfactants may be used alone or in combination of two or more.
  • the content of additives having a scrubbing effect such as an inorganic filler, an inorganic foaming agent, and an ultra-high molecular weight resin is preferably 9% by mass or less, preferably 7% by mass. It is more preferably% or less, and further preferably 5% by mass or less.
  • the effect of the additive having a scrubbing effect on the replaceability is not always clear, but it is considered as follows. That is, the inorganic filler, the inorganic foaming agent, and the ultra-high molecular weight resin improve the detergency by the scraping effect on dirt, while molding when the flow path inside the mold or die such as extrusion molding or injection molding is complicated. Since it easily stays in the machine, it is difficult to discharge it, and it is considered that the replaceability is hindered.
  • the inorganic filler means an inorganic compound other than an inorganic foaming agent, and indicates both a natural product and an artificial synthetic product.
  • specific examples of such inorganic compounds include talc, mica, wallastonite, zonotrite, kaolin clay, montmorillonite, bentonite, sepiolite, imogolite, cericite, rosonite, smectite, calcium sulfate fiber, calcium carbonate, magnesium carbonate, and oxidation.
  • examples thereof include titanium, aluminum hydroxide, magnesium hydroxide, zeolite, calcium clay, glass powder, glass balls, glass fibers, and silas balloons.
  • the inorganic foaming agent refers to an inorganic compound that decomposes by heating to generate foam, that is, a gas.
  • examples include inorganic physical foaming agents such as water, sodium hydrogen carbonate (hereinafter also referred to as "baking soda"), hydrogen carbonates such as ammonium hydrogen carbonate, carbonates such as sodium carbonate and ammonium carbonate, and nitrites such as ammonium nitrite.
  • Hydrogenide such as sodium borohydride, azide compound such as calcium azide, light metal such as magnesium and aluminum, combination of sodium hydrogen carbonate and acid, combination of hydrogen carbonate and yeast, combination of aluminum powder and acid
  • Examples thereof include known inorganic chemical foaming agents such as.
  • the ultrahigh molecular weight resin is a polymer having a molecular weight of 1 million or more, and examples thereof include ethylene-based superpolymers, styrene-acrylonitrile-based superpolymers, and methyl methacrylate-based superpolymers. Of these, ethylene-based superpolymers are preferable.
  • the upper limit of the molecular weight is not particularly limited, but it is generally preferable that the molecular weight is 10 million or less.
  • the ultrahigh molecular weight resin may be a homopolymer or a copolymer, and in the case of the copolymer, the content of the main component (for example, ethylene, styrene-acrylonitrile copolymer, methyl methacrylate, etc.) must be 50% by mass or more. ..
  • the ultra-high molecular weight resin preferably has a long chain branch from the viewpoint of cleaning performance, and for example, a resin having a branch can also be used. From the viewpoint of detergency and easy replacement, the content of the ultrahigh molecular weight resin is preferably 0.1% by mass or more and 9% by mass or less, preferably 0.2% by mass, based on 100% by mass of the cleaning agent composition.
  • Such a cleaning agent composition can achieve both detergency and easy replacement.
  • the reason why the above effect is achieved is not always clear, but it is considered as follows. That is, it is considered that the detergency is improved by the effect of scraping off dirt by containing the ultra-high molecular weight resin, but on the other hand, when the content is large, the shear viscosity becomes excessively large and the easy replacement property is hindered. Be done. It is assumed that the thermoplastic resin does not contain the ultra-high molecular weight resin of the additive having the scrubbing effect.
  • the cleaning agent for a molding machine of the present embodiment has a branching index of more than 0.30 and less than 1.00 and more than 0.35 and less than 0.97 when the absolute molecular weight determined by light scattering is 1 million. It is preferably more than 0.40 and less than 0.95.
  • branching index at an absolute molecular weight of 1,000,000 is in the above range, elongation flow is promoted, and high detergency and easy replacement can be achieved. If the branching index is less than 0.3, there is a risk of gelation and the proportion of side chains is extremely large, so that elongation flow may be suppressed.
  • the branching index is 1.00 or more, it means that there is no branching, and the shear flow is the main flow, so that the cleaning effect cannot be expected.
  • the branching index at an absolute molecular weight of 1 million can be calculated from the absolute molecular weight and the ultimate viscosity measured by a gel permeation chromatograph (GPC) (for example, PL-GPC220 type high temperature gel permeation chromatograph manufactured by Polymer Laboratories). Specifically, it can be obtained by the method described in Examples described later.
  • GPC gel permeation chromatograph
  • the cleaning performance of the cleaning agent is determined by the elongation viscosity and shear viscosity measured by a twin capillary rheometer (narrowing viscometer) (for example, Malvern RH10), and the rheometer (for example, TA Instruments). Since it depends on the storage elastic modulus measured by ARES-G2), it is necessary to adjust both the viscosity and elasticity at the temperature range during molding, the shear rate, and the angular velocity. Further, in the present embodiment, in order to achieve high detergency and easy replacement, viscoelasticity at the time of melting is important, and particularly in cleaning of a molding machine, if the extensional viscosity of the entire cleaning agent composition is high. The extensional flow is promoted, and the molding material used in the previous molding can be easily switched to the cleaning agent.
  • viscosity is evaluated by shear viscosity and elasticity is evaluated by extensional viscosity.
  • the shear rate range of the cleaning agent of the present embodiment is several tens to several hundreds of sec -1 , and the shear rate having a high correlation with the cleaning performance of extrusion processing is 100 sec -1 .
  • the extensional viscosity of the entire cleaning agent composition is high in order to achieve high detergency with respect to the molding material used in the previous molding.
  • the extensional viscosity of the detergent composition is preferably 42 to 150 kPa ⁇ s, more preferably 50 to 140 kPa ⁇ s, and 55 to 55 to 140 kPa ⁇ s. It is more preferably 130 kPa ⁇ s.
  • thermoplastic resin having a long-chain branched structure is preferably contained in an amount of 5% by mass or more and 70% by mass or less, more preferably 10% by mass or more and 60% by mass or less, and 15% by mass or less. It is more preferable to contain more than 50% by mass or less.
  • Such a cleaning agent composition can have the above-mentioned extensional viscosity and can easily switch from the molding material used in the previous molding to the cleaning agent.
  • the reason why the above effect is exerted is not always clear, but it is considered that the material substitution can be promoted by expressing a circulating flow like a vortex by the extensional flow due to the extensional viscosity.
  • the content of the resin having a long-chain branched structure is less than 5% by mass, it is difficult to sufficiently improve the extensional viscosity, and when it is 75% by mass or more, the storage elastic modulus of the entire detergent composition tends to decrease. In all cases, sufficient cleaning performance tends not to be obtained.
  • FIG. 1 shows a conceptual diagram of the twin capillary rheometer.
  • the twin capillary rheometer has two barrels 2 and two pistons 1, and has different L (length) / d (diameter) dies (long die 4 and short die 5) on the left and right sides.
  • the pressure change accompanying the change in the shear rate is measured with the pressure gauge 3 on the barrel side closest to the die, and the extensional viscosity is determined by the following Cogswell theoretical formula (Polymer Engineering Science, 12, 64 (1972)).
  • the storage elastic modulus of the cleaning agent composition is preferably 80 to 250 kPa, more preferably 90 to 240 kPa at a temperature of 190 ° C. and an angular velocity of 100 rad / sec, 100. It is more preferably about 230 kPa.
  • Such a cleaning agent composition can have high cleaning performance. The reason why the above effect is obtained is not always clear, but the cleaning agent composition having a high storage elastic modulus easily discharges the molding material used in the previous molding, which is affected by the hardness of the cleaning agent at the time of melting. It was found that the storage elastic modulus at an angular velocity of 100 rad / sec has a good correlation with the cleaning performance.
  • the storage elastic modulus of the detergent composition can be measured by the method described in Examples described later.
  • the cleaning agent is also required to be easily replaceable with respect to replacement of the cleaning agent with a molding material used for the next molding. Therefore, in order to improve the ease of substitution, the shear viscosity of the detergent composition is preferably 500 to 1400 Pa ⁇ s at a temperature of 190 ° C. and a shear rate of 100 sec -1, preferably 550 to 1350 Pa ⁇ s. More preferably, it is 600 to 1300 Pa ⁇ s.
  • the detergent composition having such a shear viscosity has high replaceability and can be easily switched from the detergent to the next molding material.
  • thermoplastic resin having a low molecular weight or a wide molecular weight distribution, and these may be achieved by combining two or more kinds of thermoplastic resins. Since such a detergent composition has high fluidity, it is considered that it is easy to switch to the next molding material.
  • the shear viscosity at a shear rate of 100 sec -1 and a temperature of 190 ° C. can be measured by the method described in Examples described later.
  • extensional viscosity is relative to the shear viscosity at a temperature of 190 ° C. and a shear rate of 100 sec -1.
  • the ratio (extensional viscosity (Pa ⁇ s) / shear viscosity (Pa ⁇ s)) is preferably 30 or more, the extensional viscosity / shear viscosity is more preferably 35 or more, and the extensional viscosity / shear viscosity is 40 or more. Is more preferable.
  • Such a cleaning agent composition has high cleaning performance, and the cleaning agent can be easily switched to the molding material to be molded next.
  • thermoplastic resin it is preferable to reduce the molecular weight of the thermoplastic resin and increase the entanglement of the molecular chains such as introducing a long chain branched structure into the thermoplastic resin.
  • the cleaning agent composition of the present embodiment is suitable for cleaning applications of injection molding and extrusion molding having a complicated flow path, and above all, it is more suitable for cleaning after processing of a molded product containing polyolefin.
  • the method for producing the detergent composition of the present embodiment is not particularly limited, and for example, it can be produced by a method such as premixing each of the above components with a mixer, kneading and extruding with an extruder, and pelletizing.
  • the shape of the cleaning agent of the present embodiment is not particularly limited as long as the effect of the present invention is not impaired, and examples thereof include a columnar shape, a spherical shape, a flake shape, and a powder shape.
  • the cleaning method of the resin molding processing machine As the cleaning method of the resin molding processing machine according to the present embodiment, the above-mentioned detergent composition is used. Further, the cleaning method of the resin molding processing machine according to the present embodiment may include a step of retaining the above-mentioned cleaning agent composition in the resin molding processing machine. Specific examples of the resin molding machine include an injection molding machine, an extrusion molding machine, and the like.
  • the cleaning method of the resin molding processing machine according to the present embodiment can not only efficiently discharge the material formed before cleaning, but also when the resin molding processing machine is stopped after cleaning, the cleaning agent composition is made of resin. By staying filled in the molding machine, even if the material molded before cleaning remains in the resin molding machine due to insufficient cleaning, there is an advantage that the remaining material can be prevented from thermal deterioration. be.
  • the mobile phase solvent was 1,2,4-trichlorobenzene (with antioxidant BHT added), the flow rate was 1 mL / min, and the column was TSKgel GMHR- manufactured by Toso. Two H (S) and one TSKgel GHHR-M (S) were used.
  • the temperature of the column, the sample injection part and each detector was 140 ° C., the sample concentration was 1 mg / mL, and the injection amount was 0.5 mL.
  • a sintered filter having a pore size of 1 ⁇ m was used for sample filtration.
  • the absolute molecular weight and the ultimate viscosity of each cleaning agent composition were calculated using polystyrene having a molecular weight of 190,000 manufactured by Tosoh for equipment calibration.
  • the branching index is the ultimate viscosity ([ ⁇ ] br) obtained by measuring the linear polymer of the limit viscosity ([ ⁇ ] br) obtained by measuring with the above viscometer when the absolute molecular weight obtained by light scattering is 1 million. It was calculated as a ratio ([ ⁇ ] br / [ ⁇ ] lin) to [ ⁇ ] lin).
  • the linear polymer is Nist's linear low-density polyethylene 1475a for polyethylene resin, American Polymer Standards PP210K for polypropylene resin, and Tosoh monodisperse polystyrene (molecular weight 190,000) for polystyrene resin. ) was used.
  • a mixture in which the corresponding linear polymers were mixed at the same component ratio was used. Since it is known as Mark-Houwink-lot that the logarithm of [ ⁇ ] lin of a linear polymer has a linear relationship with the logarithm of molecular weight, [ ⁇ ] lin is on the low molecular weight side or the high molecular weight side. Numerical values can be obtained by extrapolating as appropriate.
  • the branching index becomes smaller as the molecular weight becomes larger, it is judged that the long chain branching exists.
  • composition analyzer manufactured by Polymer Char
  • IR5 MCT infrared detector manufactured by Polymer
  • the moving solvent is 1,2-dichlorobenzene (addition of antioxidant BHT)
  • the column is a CEF column (manufactured by Polymer Char, length 150 mm, capacity 2.3 mL
  • detection wavelength is methylene sensor CH 2 3.42 ⁇ m (2920 cm -1).
  • Methyl sensor CH 3 3.38 ⁇ m (2960 cm -1 ) was used.
  • the sample concentration was 16 mg / 8 mL
  • the dissolution conditions were 150 ° C., 60 min, N 2 atmosphere
  • the sample was filtered using a 1.0 ⁇ m in-line filter.
  • the injection volume is 0.2 mL
  • the temperature lowering condition is 95 ° C ⁇ -20 ° C, 1.0 ° C / min
  • the flow rate is 0.012 mL / min
  • the temperature raising condition is -20 ° C ⁇ 160 ° C, 4.0 ° C / min.
  • the component ratio (mass%) of the thermoplastic resin having a long-chain branched structure in the cleaning agent composition was determined from the peak area of the elution curve at a flow rate of 1.0 mL / min.
  • a blue-colored low-density polyethylene (Suntech M1920 manufactured by Asahi Kasei Co., Ltd.) was used as a colored masterbatch, and 10 parts by mass of the colored masterbatch and 90 parts by mass of high-density polyethylene (Suntech B871 manufactured by Asahi Kasei Co., Ltd.) were mixed. 3 kg was put into a blow molding machine (JEB-7 manufactured by Nippon Steel Works), the screw was rotated to discharge the resin mixture from the die, and pseudo stains were attached to the inside of the molding machine.
  • JEB-7 blow molding machine
  • the raw materials used in the examples and comparative examples are as follows.
  • HD1 High-density polyethylene (Suntech B770 manufactured by Asahi Kasei Co., Ltd.), no long-chain branch HD2: High-density polyethylene (Novatec HB420R manufactured by Nippon Polyethylene Co., Ltd.), with long-chain branch HD3: High-density polyethylene (manufactured by Toso Co., Ltd.) Nipolon Hard 6900B), no long-chain branch HD4: high-density polyethylene (Hi-Zex 5000SR manufactured by Mitsui Kagaku Co., Ltd.), no long-chain branch HD5: high-density polyethylene (Hi-Zex 6200B manufactured by Mitsui Kagaku Co., Ltd.), no long-chain branch LD1: Low density polyethylene (Suntech M2102 manufactured by Asahi Kasei Co., Ltd.), with long chain branch LD2: Low density polyethylene (Petrosen 219 manufactured by Toso Co., Ltd.),
  • Inorganic foaming agent 1 Sodium bicarbonate Cal: Calcium carbonate (TW-300s manufactured by Okutama Kogyo Co., Ltd.) GF: Glass fiber (ECS-03-T-120 manufactured by Nippon Electric Glass Co., Ltd.) Talc: Talc (PHSH talc manufactured by Takehara Chemical Industry Co., Ltd.) AL (OH) 3 : (Heidi Light H-32 manufactured by Showa Light Metal Co., Ltd.) PEO: Polyethylene oxide (Alcox R-1000 manufactured by Meisei Kagaku Co., Ltd.) AB1: Lubricants (Alflow H-50F manufactured by NOF CORPORATION) AB2: Lubricants (Magnesium stearate SM-PG manufactured by Sakai Chemical Co., Ltd.) AB3: Lubricating agent (calcium borate ester calcium salt of monoglyceride stearate) AB4: Lubricants (basic magnesium carbonate manufactured by Sakai Chemical Co.,
  • Example 1 A composition containing LD1 as a thermoplastic resin, AB1 as a lubricant, and SU1 as a surfactant in the proportions shown in Table 1 was premixed in advance using a tumbler blender for 5 minutes, and the obtained mixture was mixed by a twin-screw extruder. Smelted. A twin-screw extruder (TEM26SS manufactured by Toshiba Machine Co., Ltd.) was used for kneading, and the kneading was carried out under the conditions of an extrusion temperature of 240 ° C. and an extrusion rate of 20 kg / hour. The melt-kneaded product thus obtained was extruded into a strand shape, cooled with water, and then cut with a strand cutter to obtain a pellet-shaped detergent composition. The evaluation results of the obtained detergent composition are shown in Table 1.
  • Examples 2 to 12 A pellet-shaped detergent composition was obtained in the same manner as in Example 1 except that the composition was changed as shown in Table 1. The evaluation results of the obtained detergent composition are shown in Table 1.
  • Example 1 A pellet-shaped detergent composition was obtained in the same manner as in Example 1 except that the composition was changed as shown in Table 2. The evaluation results of the obtained detergent composition are shown in Table 2.
  • the cleaning agent composition for a resin molding machine of the present invention exhibits excellent cleaning performance and also has excellent replaceability, and is used for cleaning thermoplastic resins, particularly, a cleaning agent composition for injection molding and extrusion molding machines. It is useful as a thing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Detergent Compositions (AREA)

Abstract

少なくとも長鎖分岐構造を有する熱可塑性樹脂を含み、絶対分子量100万における分岐指数が0.30より大きく、1.00未満であることを特徴とする、成形機用洗浄剤。

Description

成形機用洗浄剤
 本発明は、樹脂成形加工機用洗浄剤に関する。
 一般に、樹脂の着色、混合、成形等の作業のために押出成形機、射出成形機等の樹脂成形加工機械が用いられるが、この種の加工機械においては、所定の作業終了時に、当該樹脂そのものや成形材料中に含まれている染顔料等の添加剤のほか、樹脂等から生成される劣化物(熱分解生成物、焼け焦げ、炭化物等)が成形加工機械内に残留する場合がある。この残留物を放置すると、以降に行われる樹脂の成形加工時に残留物が成形品中に混入し、製品外観不良の原因となり得る。特に、透明樹脂の成形を行う場合、微小の炭化物等の混入でも容易に視認されるため、成形品の外観不良となり、成形品不良の発生率を増大させるという問題を生じる。そのため、残留物を成形機内から完全に除去することが望まれている。
 従来、残留物を成形加工機械内から除去するため、(1)人手により成形加工機械の分解掃除をする方法、(2)成形加工機械を停止せずにそのまま次の成形に使用する成形材料を成形加工機械に充填し、これにより残留物を徐々に排出して行く方法、(3)洗浄剤を用いる方法、等が採られている。
 上記(1)の方法は、成形加工機械を停止する必要があるため効率的でなく、且つ人手により物理的に除去作業をするため、成形加工機械を傷つけやすいという問題がある。上記(2)の方法は、残留物を除去するために多量の成形材料を必要とする場合が多く、作業が完了するまでに時間を要し、更に廃棄物が多量に発生するという問題がある。そこで近年では、上記(3)の洗浄剤を用いる方法が、成形加工機械内の残留物を除去する洗浄力に優れることから、好まれて用いられるようになっている。
 洗浄剤の効果を高めることを目的として、洗浄剤の洗浄力を高める手法が提案されている。例えば、特許文献1ではオレフィン系樹脂にノニオン系界面活性剤を配合することで洗浄力を高める方法が記載され、特許文献2ではオレフィン系樹脂にアニオン系界面活性剤を配合することで、洗浄力と置換性を高める方法が記載されている。特許文献3では熱可塑性樹脂に酸変性物(スチレン-マレイン酸共重合体)を配合することで洗浄力を高める方法が記載されている。特許文献4では熱可塑性樹脂にメタクリル酸メチル-スチレン共重合体を配合することで洗浄力を高める方法が記載されている。特許文献5では熱可塑性樹脂に無機フィラーを配合することで洗浄力を高める方法が記載されている。特許文献6では炭化水素系樹脂にアルカリ金属塩及び/又はアルカリ土類金属塩を配合することで洗浄力を高める方法が記載されている。特許文献7では熱可塑性樹脂に無機フィラーを配合することで洗浄力を高める方法が記載されている。特許文献8では、界面活性剤及びミスト防止成分を含む濃縮吹付可能組成物について、小粒子のエアロゾルが生じない方法が記載されている。特許文献9では、熱可塑性樹脂に界面活性剤と無機フィラーを配合することで、洗浄力を高める方法が記載されている。特許文献10では熱可塑性樹脂に無機系発泡剤を配合することで、洗浄力と置換性を高める方法が記載されている。
国際公開第2018/159752号公報 特開2007-021765号公報 特開平10-120917号公報 特開平11-106667号公報 特開2009-134141号公報 国際公開第2015/080103号公報 特開2006-335913号公報 特開2014-530271号公報 特開平5-124046号公報 特開平10-081898号公報
 しかしながら、本発明者らが検討したところ、特許文献1に記載されているノニオン系界面活性剤を使用した場合、洗浄性能が不十分であり、成形材料から洗浄剤へ置換するための樹脂量及び時間がかかってしまう課題があった。また、特許文献2に記載されているアニオン系界面活性剤を使用した場合、洗浄性能が不十分であり、洗浄剤へ置換するための樹脂量及び時間がかかってしまう課題があった。特許文献3に記載されている酸変性物や特許文献4に記載されているメタクリル酸メチル-スチレン共重合体を配合した場合も洗浄性能が不十分であった。特許文献5に記載されている無機フィラーを配合した場合、洗浄性能の向上効果は確認されたが、洗浄剤から成形材料へ置換するための樹脂量及び時間がかかってしまう課題があった。特に押出成形は、成形機やダイ内部の樹脂流路が非常に複雑であり、上記課題が顕著に表れる。特許文献6に記載されている洗浄剤も洗浄性能が不十分であった。特許文献7に記載されている洗浄剤は界面活性剤と無機フィラーの配合によって洗浄性能の向上効果は確認されたが、洗浄剤から成形材料へ置換するための樹脂量及び時間がかかってしまう課題があった。特許文献8に記載されている洗浄剤は吹付可能な水性組成物に関するものであり、樹脂成形加工機の樹脂置換には不適である課題があった。特許文献9に記載されている洗浄剤は無機塩又は金属水酸化物と無機充填剤の配合によって洗浄性能の向上効果は確認されたが、洗浄剤から成形材料へ置換するための樹脂量及び時間がかかってしまう課題があった。特許文献10に記載されている無機系発泡剤を配合した場合も洗浄性能が不十分であり、洗浄剤から成形材料へ置換するための樹脂量及び時間もかかってしまう課題があった。
 従って、洗浄剤には、前の成形で使用した成形材料に対する高い洗浄力と、次の成形に使用する成形材料への易置換性とが要求される。
 そこで、本発明は、洗浄性能と洗浄後の成形材料による易置換性とのバランスを改善した樹脂成形加工機械用洗浄剤を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意検討した結果、洗浄剤が成形機内で容易に置換できるよう熱可塑性樹脂のレオロジー特性に着目し、特定の分岐指数を有するものとすることにより、押出成形や射出成形等の金型やダイ内部の流路が複雑な場合であっても、洗浄剤が成形機内に滞留せずに容易に置換できることを見出し、本発明を開発するに至った。
 すなわち、本発明は、以下のとおりである。
[1]
 長鎖分岐構造を有する熱可塑性樹脂を含み、絶対分子量100万における分岐指数が0.30超1.00未満であることを特徴とする、成形機用洗浄剤。
[2]
 せん断速度100sec-1における190℃の伸長粘度の、せん断速度100sec-1における190℃のせん断粘度に対する割合(伸長粘度/せん断粘度)が30以上である、[1]に記載の成形機用洗浄剤。
[3]
 せん断速度100sec-1における190℃の伸長粘度が42~150kPa・sであり、且つせん断速度100sec-1における190℃のせん断粘度が500~1400Pa・sである、[1]又は[2]に記載の成形機用洗浄剤。
[4]
 前記長鎖分岐構造を有する熱可塑性樹脂を5質量%以上70質量%以下含む、[1]~[3]のいずれかに記載の 成形機用洗浄剤。
[5]
 角速度100rad/secにおける190℃の貯蔵弾性率が80kPa以上である、[1]~[4]のいずれかに記載の成形機用洗浄剤。
[6]
 スクラブ効果を有する添加剤の含有量が9質量%以下である、[1]~[5]のいずれかに記載の成形機用洗浄剤。
[7]
 融点が130℃以上の熱可塑性樹脂を含む、[1]~[6]のいずれかに記載の成形機用洗浄剤。
 本発明によれば、洗浄性能と洗浄後の成形材料による易置換性とのバランスを改善した樹脂成形加工機用洗浄剤を提供することができる。
洗浄剤の伸長粘度の測定に用いるツインキャピラリーレオメータの概念図である。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。なお、本発明は、下記の本実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
(成形機用洗浄剤)
 本実施形態の成形機用洗浄剤(本明細書において、単に「洗浄剤」又は「洗浄剤組成物」と称する場合がある。)は、長鎖分岐構造を有する熱可塑性樹脂を含み、絶対分子量100万における分岐指数が0.30超1.00未満である。該洗浄剤は、滑剤、界面活性剤等の添加剤を更に含んでよい。
 以下、本実施形態の洗浄剤の各成分等について詳細に説明する。
(熱可塑性樹脂)
 本実施形態の成形機用洗浄剤に含まれる熱可塑性樹脂は、長鎖分岐構造を有する熱可塑性樹脂を含む。長鎖分岐構造を有する熱可塑性樹脂のみからなるものであっても、長鎖分岐構造を有する熱可塑性樹脂と長鎖分岐構造を有しない熱可塑性樹脂との混合物であってもよい。
 なお、長鎖分岐構造とは主鎖と比肩しうる長さの分岐であり、一方で短鎖分岐とは炭素数が数個までの長さの分岐を意味するものとする。
 本実施形態の成形機用洗浄剤において、高洗浄力及び易置換性を達成するためには、長鎖分岐構造を有する熱可塑性樹脂を含むことが重要であり、長鎖分岐構造を有することで前の成形で使用した成形材料から洗浄剤に容易に切り替えることができる。
 上記効果が奏される理由は必ずしも明らかではないが、以下のように考えられる。すなわち、従来の洗浄剤の流動は、せん断流動に支配され、ダイ内部のデッドスペース等で成形材料や洗浄剤が滞留しやすいが、本実施形態の洗浄剤では、分子鎖の絡まりに起因する伸長流動によって渦のような循環流を発現させることで材料置換を促すことができると考えられる。そのため、伸長流動を促すことを目的に、本実施形態の成形機用洗浄剤は、予め長鎖分岐構造を有する熱可塑性樹脂を含むものとする、或いは、長鎖分岐構造を有しない熱可塑性樹脂に長鎖分岐構造を導入することにより、長鎖分岐構造を有する熱可塑性樹脂を含むものとする。また、さらに、熱可塑性樹脂の分子量を増加させた熱可塑性樹脂、架橋点又は疑似架橋点を有する熱可塑性樹脂を含むことが好ましく、これら2種以上の熱可塑性樹脂を組み合わせてもよい。このような洗浄剤組成物は、分子鎖の絡まりが増加することで伸長流動が促されると考えられる。
 熱可塑性樹脂に長鎖分岐構造を導入する方法としては、特に限定されず、個々の熱可塑性樹脂において従来公知の方法を用いることができる。
 熱可塑性樹脂が長鎖分岐を有することの直接的な指標として、分岐指数を挙げることができる。例えば、Developments in Polymer Characterization-4(J.V.Dawkins ed.Applied Science Publishers,1983)で示されるように、分岐構造が導入されたポリマー分子鎖は、線状のポリマー分子鎖と比較して慣性半径が小さくなり、それに伴い極限粘度が小さくなることから、分岐構造が導入されるに従い、線状ポリマーの極限粘度([η]lin)に対する分岐状ポリマーの極限粘度([η]br)の比率([η]br/[η]lin)で表される分岐指数は、小さくなっていくことが知られている。したがって、絶対分子量100万におけるポリマーの極限粘度[η]brの線状ポリマーの極限粘度[η]linに対する比率([η]br/[η]lin)によって表される分岐指数が1より小さい値になる場合には、分岐構造を有することを意味する。一方で、線状ポリマーの[η]linの対数は分子量の対数と線形の関係があることは、Mark-Houwink-plotとして公知である。また、分子量が大きくなるほど分岐指数が小さくなる場合、長鎖分岐が存在することを意味している。
 熱可塑性樹脂の分岐構造としては、長鎖分岐の他に多分枝高分子や櫛形高分子、星形高分子、又は網目高分子構造等が挙げられ、本実施形態においてはいずれの構造を含む熱可塑性樹脂も好適に用いることができる。
 本実施形態の成形機用洗浄剤に含まれる熱可塑性樹脂としては、一般の射出成形や押出成形等に用いられる熱可塑性樹脂を広く用いることができ、1種を単独で、又は2種以上を組み合わせて使用することもできる。上記熱可塑性樹脂として、例えば、ポリオレフィン系樹脂、エチレン-酢酸ビニル共重合樹脂、エチレン-アクリル酸共重合体等のエチレン-脂肪族不飽和カルボン酸共重合樹脂、エチレン-アクリル酸エステル共重合体等のエチレン-脂肪族カルボン酸エステル共重合樹脂、アイオノマー樹脂、ポリスチレン等のスチレン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリ塩化ビニル樹脂等が好ましい。
 熱可塑性樹脂の含有量は、洗浄力と易置換性の観点から、洗浄剤組成物100質量%に対して、50.0~99.9質量%であることが好ましく、60.0~99.9質量%であることがより好ましく、70.0~99.9質量%であることが更に好ましい。
 上記ポリオレフィン系樹脂としては、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリブテン系樹脂が好ましい。ここで、ポリエチレン系樹脂とは、エチレンの単独重合体、又はエチレンと他の1種若しくは2種以上のモノマーとの共重合体であって、エチレンの含有量が50質量%以上のものを示す。また、ポリプロピレン系樹脂とは、プロピレンの単独重合体、又はプロピレンと他の1種若しくは2種以上のモノマーとの共重合体であって、プロピレンの含有量が50質量%以上のものを示す。更に、ポリブテン系樹脂とは、ブテンの単独重合体又はブテンと他の1種若しくは2種以上のモノマーとの共重合体であって、ブテンの含有量が50質量%以上のものを示す。
 上記ポリエチレン系樹脂としては、ポリエチレン、エチレン-α-オレフィン共重合体等が挙げられ、具体的には、高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)、線状低密度ポリエチレン(LLDPE)、線状超低密度ポリエチレン(VLDPE、ULDPE)、超高分子量ポリエチレン(UHMWPE)等が挙げられる。
 上記エチレン-α-オレフィン共重合体は、エチレンと、炭素数3~20のα-オレフィンから選ばれる少なくとも1種とからなる共重合体であることが好ましく、エチレンと、炭素数3~12のα-オレフィンから選ばれる少なくとも1種とからなる共重合体であることがより好ましい。上記α-オレフィンとしては、例えば、プロピレン、1-ブテン、1-ペンテン、1-へキセン、1-オクテン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコサン等が挙げられ、これらを1種又は2種以上を併用することができる。
 また、上記エチレン-α-オレフィン共重合体としては、エチレンと、プロピレンコモノマー、ブテンコモノマー、ヘキセンコモノマー及びオクテンコモノマーから選ばれる少なくとも1種のコモノマーとの共重合体が、一般に入手が容易であり、好適に使用できる。
 上記ポリエチレン系樹脂は、クロム系触媒、チーグラー系触媒、メタロセン系触媒等の公知の触媒を用いて重合することができ、洗浄性能の観点から、分子量分布が広いクロム系触媒、又はチーグラー系触媒が好ましく、炭素数が6以上からなる分子鎖の長鎖分岐を有するクロム系触媒、又はメタロセン触媒がより好ましい。
 上記ポリエチレン系樹脂は、1種を単独で、又は2種以上を組み合わせて用いることができる。洗浄性能の観点から、長鎖分岐構造を有するポリエチレン系樹脂であることがより好ましい。
 また、上記ポリエチレン系樹脂は、洗浄性能の観点から、MFR(190℃、荷重2.16kg)が0.01~30g/10minであることが好ましく、0.05~25g/10minであることがより好ましく、0.1~20g/10minであることが更に好ましい。
 上記ポリプロピレン系樹脂としては、ポリプロピレン、プロピレン-α-オレフィン共重合体、プロピレンとエチレンとα-オレフィンとの3元共重合体等が挙げられる。
 上記プロピレン-α-オレフィン共重合体とは、プロピレンとα-オレフィンから選ばれる少なくとも1種とからなる共重合体を示す。上記プロピレン-α-オレフィン共重合体は、プロピレンと、エチレン及び炭素数4~20のα-オレフィンから選ばれる少なくとも1種とからなる共重合体が好ましく、プロピレンと、エチレン及び炭素数4~8のα-オレフィンから選ばれる少なくとも1種とからなる共重合体がより好ましい。ここで、炭素数4~20のα-オレフィンとしては、例えば、1-ブテン、1-ペンテン、1-へキセン、1-オクテン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコサン等が挙げられ、これらを1種又は2種以上を併用することができる。これらの共重合体は、ブロック共重合体、ランダム共重合体等のいずれの形態でもよく、好ましくはプロピレンとエチレンとのランダム共重合体である。上記プロピレン-α-オレフィン共重合体としては、プロピレンと、エチレンコモノマー、ブテンコモノマー、ヘキセンコモノマー及びオクテンコモノマーから選ばれる少なくとも1種類のコモノマーとの共重合体が、一般に入手が容易であり、好適に使用できる。
 上記プロピレンとエチレンとα-オレフィンとの3元共重合体としては、プロピレンと、エチレンと、ブテン、ヘキセン、オクテン等のα-オレフィンとの3元共重合体等が好適に使用できる。これらの3元共重合体は、ブロック共重合体、ランダム共重合体等のいずれの形態でもよく、好ましくはプロピレンとエチレンとブテンとのランダム共重合体である。
 上記ポリプロピレン系樹脂は、チーグラー・ナッタ触媒のような触媒で重合された樹脂だけでなく、メタロセン系触媒等の公知の触媒を用いて重合された樹脂でよく、例えば、シンジオタクチックポリプロピレンや、アイソタクティックポリプロピレン等も使用できる。
 また、上記ポリプロピレン系樹脂は、洗浄性能の観点から長鎖分岐を有することが好ましく、例えば、電離性放射線照射によるグラフト化や重合によって分岐を導入することができる。
 上記ポリプロピレン系樹脂は、洗浄性能の観点から、MFR(230℃、荷重2.16kg)が0.01~30.0g/10minであることが好ましく、0.05~25g/10minであることがより好ましく、0.1~20g/10minであることが更に好ましい。
 上記ポリブテン系樹脂は、ポリプロピレン系樹脂との相溶性が特に優れるため、溶融粘度の調整を目的として、上記ポリプロピレン系樹脂と併用することが好ましい。
 上記ポリブテン系樹脂としては、結晶性であり、ブテンと、エチレン、プロピレン及び炭素数5~8のオレフィン系化合物から選ばれる少なくとも1種からなる共重合体が好適に使用できる。
 上記エチレン-酢酸ビニル共重合樹脂とは、エチレンモノマーと酢酸ビニルモノマーとの共重合により得られる共重合体を示す。また、エチレン-脂肪族不飽和カルボン酸共重合樹脂とは、エチレンモノマーと、脂肪族不飽和カルボン酸から選ばれる少なくとも1種のモノマーとの共重合により得られる共重合体を示す。脂肪族不飽和カルボン酸としては、例えば、アクリル酸、メタクリル酸、フマル酸、マレイン酸等が挙げられる。
 更に、エチレン-脂肪族不飽和カルボン酸エステル共重合樹脂とは、エチレンモノマーと、脂肪族不飽和カルボン酸エステルから選ばれる少なくとも1種のモノマーとの共重合により得られる共重合体を示す。脂肪族不飽和カルボン酸エステルとしては、例えば、アクリル酸エステル、メタクリル酸エステル、フマル酸エステル、マレイン酸エステル等が挙げられる。
 上記共重合樹脂の共重合は、高圧法、溶融法等の公知の方法により行うことができ、重合反応の触媒としてマルチサイト触媒やシングルサイト触媒等を用いることができる。また、上記共重合体において、各モノマーの結合形状は特に限定されず、ランダム結合、ブロック結合等の結合形状を有するポリマーを使用することができる。
 上記アイオノマー樹脂とは、ポリマー構造間にイオン結合のある樹脂であり、エチレンとアクリル酸又はメタクリル酸との共重合体に、アルカリ金属又はアルカリ土類金属が結合して架橋構造を形成している樹脂が好適に使用できる。
 上記スチレン系樹脂とは、ポリスチレン、又はスチレンと1種若しくは2種以上の他の単量体との共重合体であって、スチレンの含有量が50質量%以上のものをいう。
 スチレンと共重合させる他の単量体としては、例えば、アクリロニトリル、ブタジエン等が挙げられる。
 スチレン系樹脂の具体例としては、ポリスチレン、スチレン-アクリロニトリル共重合体、スチレン-ブタジエン-アクリロニトリル共重合体等が挙げられる。
 上記スチレン系樹脂は、洗浄性能の観点から長鎖分岐を有することが好ましく、例えば、分岐を有する樹脂等も使用できる。
 上記ポリカーボネート系樹脂とは、主鎖の繰り返し単位中に炭酸エステル結合を持つ共重合体であって、芳香族ジヒドロキシ化合物とカーボネート前駆体とを反応せしめる方法、芳香族ジヒドロキシ化合物とカーボネート前駆体(例えば、ホスゲン)とを水酸化ナトリウム水溶液及び塩化メチレン溶媒の存在下に反応させる界面重合法(例えば、ホスゲン法)、芳香族ジヒドロキシ化合物と炭酸ジエステル(例えば、ジフェニルカーボネート等)とを反応させるエステル交換法(溶融法)、ホスゲン法又は溶融法で得られた結晶化カーボネートプレポリマーを固相重合する方法等で得られる共重合物が挙げられる。
 上記ポリカーボネート系樹脂は、洗浄性能の観点から長鎖分岐を有することが好ましく、例えば、電離性放射線照射によるグラフト化や重合によって分岐が導入された樹脂等も使用できる。
 上記ポリアミド系樹脂とは、主鎖の繰り返し単位中にアミド結合を有する脂肪族ポリアミド系共重体又は芳香族ポリアミド系共重合体であって、ナイロン6、ナイロン6/66、メタキシリレンアジパミド(MYD6Ny)等が好適に使用できる。
 上記ポリエステル系樹脂とは、主鎖の繰り返し単位中にエステル結合を持つ共重合体であり、テレフタル酸とエチレングリコールとの重縮合によって得られるポリエチレンテレフタレート等が好適に使用できる。
 本実施形態の洗浄剤には添加剤が含まれてもよい。
 添加剤の含有量は、洗浄剤組成物100質量%に対して10質量%以下であることが好ましい。
 以下に添加剤について説明する。
(滑剤)
 滑剤としては、有機酸、有機酸金属塩、有機酸アミド、有機酸エステル等の有機酸誘導体、各種エステルワックス、オレフィンワックス、フッ素系樹脂、ミネラルオイル等が挙げられるが、これらに特に限定されるものではない。
 滑剤は、洗浄性能の観点から、表面張力が32mN/m以下であることが好ましく、融点又は軟化温度が70℃以上であることがより好ましい。例えば、ステアリン酸亜鉛の表面張力は24mN/m、ステアリン酸アルミニウムの表面張力は25mN/m、ポリオレフィンワックスの表面張力は32mN/m等となっている。
 上記有機酸としては、炭素数9~28の飽和脂肪酸、炭素数9~28の不飽和脂肪酸、安息香酸が好ましい。鎖の一部にヒドロキシル基を有していても良い。特に、入手のしやすさ、耐熱性の観点から、ステアリン酸、12-ヒドロキシステアリン酸、パルミチン酸、ミリスチン酸、ラウリン酸がより好ましい。また、アルキル鎖の異なる混合脂肪酸であってもよい。炭素数が上記範囲であると、ガスの発生や臭気の問題がなく、入手の容易さや界面での滑剤としての特性がうまく機能するといった点で好ましい。
 上記有機酸は金属塩であってもよい。有機酸金属塩における金属塩としては、特に限定されるものではないが、ナトリウム、カリウム、リチウム、セシウム、マグネシウム、カルシウム、アルミニウム、亜鉛、鉄、コバルト、バリウム塩等が挙げられる。中でも、滑剤としての効果が最も発揮されるリチウム、カルシウム、バリウム、亜鉛又はアルミニウムの金属塩が好ましい。また、中でも、アルミニウム、亜鉛の金属塩は極性が低く、熱可塑性樹脂からのブリードアウトにより外部滑性を発現しやすく、より好ましい。特に好ましくは、亜鉛金属塩である。
 炭化水素部位は、先に記述の脂肪酸の鎖長と同じく、入手のしやすさ、耐熱性の観点から、ステアリン酸あるいは12-ヒドロキシステアリン酸、パルミチン酸、ミリスチン酸、ラウリン酸が好ましい。
 上記有機酸アミドとしては、炭素数9~28の、飽和脂肪酸アミド、不飽和脂肪酸アミド、飽和脂肪酸ビスアミド、不飽和脂肪酸ビスアミド等が挙げられる。中でも、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸等の炭素数12~18の脂肪酸、エルカ酸等の不飽和脂肪酸のアミド、エチレンビスステアリン酸アミド等の飽和脂肪酸ビスアミドが、入手のしやすさ、滑剤の効果から好ましく、より好ましくはエチレンビスステアリン酸アミド等の飽和脂肪酸ビスアミドである。
 上記有機酸エステル、エステルワックスとしては、炭素数9~28の飽和脂肪酸エステル、不飽和脂肪酸エステル、中鎖脂肪酸トリグリセリド、硬化油等のポリオールエステル等が挙げられる。入手のしやすさ、滑剤の効果から、ステアリン酸ステアレート、グリセリン脂肪酸エステルモノグリセライド等が好ましい。
 上記オレフィンワックスとしては、低分子ポリオレフィン等が挙げられ、特に種類を限定するものではないが、一般的な低密度あるいは高密度ポリエチレン、ポリプロピレン等が用いられる。分子量は重量平均分子量で1,000~50,000程度、滴点80~180℃が最も滑剤としての効果を得られやすい。
 なお、上記熱可塑性樹脂に、上記滑剤のオレフィンワックスは含まれないものとする。
 上記フッ素系樹脂とは、PTFEやPFA、PVDF、PVDF系共重合体、ETFE、PFE等が挙げられ、金属面への樹脂付着性を抑える効果が期待できる。形状としては、ペレット状、パウダー状と種々あるが、加工する際に均一に分散させるためにパウダー状のものが特に好ましい。平均粒径は大きく限定はされないが、1,000μm以下が好ましい。
 なお、上記熱可塑性樹脂に、上記滑剤のフッ素系樹脂は含まれないものとする。
 上記ミネラルオイルとは、石油を精製して得られる油であり、鉱物油、潤滑油、流動パラフィン等とも呼ばれるナフテン、イソパラフィン等も含む飽和炭化水素系のオイルである。広い粘度範囲のミネラルオイルが使用可能であり、例えば、流動パラフィンの場合、JIS K2283により測定した動粘度が50~500mm2/sであるもの、レッドウッド法(日本油化学協会基準油脂分析試験法2.2.10.4-1996)により測定した粘度が30~2000(秒)の範囲のものを用いてもよい。
 上述の滑剤は、1種単独で用いてもよく、2種以上併用してもよい。
(界面活性剤)
 上記界面活性剤の例としては、陰イオン活性剤、陽イオン活性剤、非イオン活性剤、両性表面活性剤等が挙げられる。陰イオン活性剤としては、具体的には、高級脂肪酸アルカリ塩、アルキル硫酸塩、アルキルスルホン酸塩、アルキルアリールスルホン酸塩、スルホコハク酸エステル塩等が例示できる。陽イオン活性剤としては、具体的には、高級アミンハロゲン酸塩、ハロゲン化アルキルピリジニウム、第四アンモニウム塩等が例示できる。非イオン活性剤としては、具体的には、ポリエチレングリコールアルキルエ-テル、ポリエチレングリコール脂肪酸エステル、ソルビタン脂肪酸エステル、脂肪酸モノグリセリド
等が例示できる。両性表面活性剤としては、具体的には、アミノ酸等を例示する事ができる。
 上述の界面活性剤は、1種単独で用いてもよく、2種以上併用してもよい。
 本実施形態の洗浄剤は、易置換性のため、無機フィラーや無機発泡剤、超高分子量樹脂等のスクラブ効果を有する添加剤の含有量が、9質量%以下であることが好ましく、7質量%以下であることがより好ましく、5質量%以下であることがさらに好ましい。
 スクラブ効果を有する添加剤の置換性に対する効果は必ずしも明らかではないが、以下のように考えられる。すなわち、無機フィラーや無機発泡剤、超高分子量樹脂は、汚れに対する掻き取り効果によって洗浄力を向上させる一方で、押出成形や射出成形等の金型やダイ内部の流路が複雑な場合は成形機内に滞留しやすいため排出が困難であり、置換性が阻害されると考えられる。
(スクラブ効果を有する添加剤)
(無機フィラー)
 本実施形態において、無機フィラーとは、無機発泡剤以外の無機化合物をいい、天然物及び人工合成物のいずれも示す。このような無機化合物の具体例としては、タルク、マイカ、ワラストナイト、ゾノトライト、カオリンクレー、モンモリロナイト、ベントナイト、セピオライト、イモゴライト、セリサイト、ローソナイト、スメクタイト、硫酸カルシウム繊維、炭酸カルシウム、炭酸マグネシウム、酸化チタン、水酸化アルミニウム、水酸
化マグネシウム、ゼオライト、ケイソウ土、ガラス粉末、ガラス球、ガラス繊維、シラスバルーン等が挙げられる。
(無機発泡剤)
 本実施形態において、無機発泡剤とは、加熱により分解し、発泡、すなわち気体を発生する無機化合物を指す。例としては、水等の無機物理発泡剤、炭酸水素ナトリウム(以下「重曹」とも記す。)、炭酸水素アンモニウム等の炭酸水素塩、炭酸ナトリウム、炭酸アンモニウム等の炭酸塩、亜硝酸アンモニウム等の亜硝酸塩、ホウ水素化ナトリウム等の水素化物、アジ化カルシウム等のアジド化合物、マグネシウム、アルミニウム等の軽金属、炭酸水素ナトリウムと酸との組合せ、過酸化水素とイースト菌との組合せ、アルミニウム粉末と酸との組合せ等の公知の無機化学発泡剤が挙げられる。
(超高分子量樹脂)
 本実施形態において、超高分子量樹脂とは、分子量100万以上の高分子であり、例えば、エチレン系超高分子、スチレン-アクリロニトリル系超高分子、メタクリル酸メチル系超高分子等が挙げられるが、中でもエチレン系超高分子が好ましい。分子量の上限は特に限定されないが、一般的には1000万以下であることが実用上好ましい。
 また、超高分子量樹脂はホモポリマーでもコポリマーでもよく、コポリマーの場合は主成分(例えば、エチレン、スチレン-アクリロニトリル共重合体、メタクリル酸メチル等)の含有量が50質量%以上である必要がある。
 上記超高分子量樹脂は、洗浄性能の観点から長鎖分岐を有することが好ましく、例えば、分岐を有する樹脂等も使用できる。
 洗浄力と易置換性の観点から、超高分子量樹脂の含有量は、洗浄剤組成物100質量%に対して、0.1質量%以上9質量%以下であることが好ましく、0.2質量%以上7質量%以下であることがより好ましく、0.3質量%以上5質量%以下であることが更に好ましい。このような洗浄剤組成物は、洗浄力と易置換性を両立することができる。
 上記効果が奏される理由は必ずしも明らかではないが、以下のように考えられる。すなわち、超高分子量樹脂を含有することで汚れの掻き取り効果によって洗浄力が向上するが、一方で含有量が多くなると、せん断粘度が過度に大きくなるため、易置換性が阻害されると考えられる。
 なお、上記熱可塑性樹脂に、上記スクラブ効果を有する添加剤の超高分子量樹脂は含まれないものとする。
 本実施形態の成形機用洗浄剤は、光散乱によって求めた絶対分子量が100万の時に、分岐指数が0.30超1.00未満であり、0.35超0.97未満であることが好ましく、0.40超0.95未満であることがより好ましい。絶対分子量100万における分岐指数が上記範囲であることにより伸長流動が促され、高洗浄力及び易置換性を達成することができる。分岐指数が0.3未満であると、ゲル化のおそれや、側鎖の割合が極めて多いため伸長流動が抑制されるおそれがある。分岐指数が1.00以上である場合は、分岐が存在しないことを意味し、せん断流動が主な流動となるため洗浄効果が期待できない。
 上記分岐指数を0.30超1.00未満にする方法としては、長鎖分岐を多く導入するなど、分子鎖の絡まりを増加させることが挙げられる。
 なお、絶対分子量100万における分岐指数は、ゲル浸透クロマトグラフ(GPC)(例えば、Polymer Laboratories社製PL-GPC220型高温ゲル浸透クロマトグラフ)で測定される絶対分子量及び極限粘度から算出することができ、具体的には、後述の実施例に記載の方法により求めることができる。
 本実施形態において、洗浄剤の洗浄性能は、ツインキャピラリーレオメータ(狭窄型粘度計)(例えば、Malvern社製RH10)で測定される伸張粘度及びせん断粘度、並びにレオメータ(例えば、TAインスツルメント社製ARES-G2)で測定される貯蔵弾性率に依存するため、成形加工時の温度範囲、せん断速度、及び角速度での粘性と弾性の両方の調整を行う必要がある。
 また、本実施形態において、高洗浄力及び易置換性を達成するためには、溶融時の粘弾性が重要であり、特に、成形機の洗浄において、洗浄剤組成物全体の伸長粘度が高ければ伸長流動が促され、前の成形で使用した成形材料から洗浄剤へ容易に切り替えることができる。
 ツインキャピラリーレオメータによる測定で得られる粘弾性データの内、粘性はせん断粘度にて、弾性は伸長粘度にて評価される。本実施形態の洗浄剤のせん断速度範囲は数十から数百sec-1であり、特に押出加工の洗浄性能と相関が高いせん断速度は100sec-1である。
 成形機の洗浄において、前の成形で使用した成形材料に対する高い洗浄力を達成するためには、洗浄剤組成物全体の伸長粘度が高いことが好ましい。具体的には、温度190℃、せん断速度100sec-1において、洗浄剤組成物の伸長粘度は、42~150kPa・sであることが好ましく、50~140kPa・sであることがより好ましく、55~130kPa・sであることがさらに好ましい。
 洗浄剤組成物の伸長粘度を上記範囲とするためには、熱可塑性樹脂への長鎖分岐構造の導入や熱可塑性樹脂の分子量、分岐度、分子量分布、及び超高分子量樹脂の添加の有無等の選択、調整が挙げられ、特に、長鎖分岐構造を有する熱可塑性樹脂を5質量%以上70質量%以下含むことが好ましく、10質量%以上60質量%以下含むことがより好ましく、15質量%以上50質量%以下含むことが更に好ましい。このような洗浄剤組成物であれば、上述の伸長粘度を有することができ、前の成形で使用した成形材料から洗浄剤へ容易に切り替えることができる。
 上記効果が奏される理由は必ずしも明らかではないが、伸長粘度に起因する伸長流動によって渦のような循環流を発現させることで材料置換を促すことができると考えられる。長鎖分岐構造を有する樹脂の含有量が5質量%未満の場合は十分な伸長粘度向上が困難であり、75質量%以上の場合は洗浄剤組成物全体の貯蔵弾性率が低下する傾向となり、いずれも十分な洗浄性能が得られなかい傾向にある。
 ここで、本実施形態におけるツインキャピラリーレオメータによる伸長粘度の測定について説明する。図1にツインキャピラリーレオメータの装置概念図を示す。ツインキャピラリーレオメータは、その名のとおり、2本のバレル2と2本のピストン1を備え、左右それぞれに異なったL(長さ)/d(直径)のダイス(ロングダイス4及びショートダイス5)を付け、ダイス直近のバレルサイドの圧力計3でせん断速度の変化に伴う圧力変化を測定し、下記Cogswellの理論式(Polymer Engineering Science、12、64(1972))により伸長粘度を求める。
 伸長粘度λ[kPa・s]=9(n+1)2Po2/(32ηγ2
 せん断粘度η[kPa・s]=Tc/γ
 みかけのせん断速度γ[s-1]=4Q/((πd3)/8)
 補正したせん断応力Tc[kPa]=(Pl-Po)d/4L
(式中、Q:容積流量、d:ダイの細管直径(mm)、Pl:ロングダイス側圧力損失、Ps:ショートダイス測定圧力損失、Po:ショートダイス側厚みゼロ換算圧力、或いはPl-Psの値から外挿して得られるL/d=0の圧力、n:パワーロー指数(n=1、2、3、4・・・)を表す。)
 なお、データの補正は、Bagley補正のみを使用し、Rabinowitsch補正は使用しないものとする。
 洗浄剤組成物の上記伸長粘度は、具体的には、後述の実施例に記載の方法により測定することができる。
 また、洗浄力の更なる向上として、洗浄剤組成物の貯蔵弾性率が、温度190℃、角速度100rad/secにおいて、80~250kPaであることが好ましく、90~240kPaであることがより好ましく、100~230kPaであることが更に好ましい。このような洗浄剤組成物は、高い洗浄性能を有することができる。
 上記効果が奏される理由は必ずしも明らかではないが、貯蔵弾性率が高い洗浄剤組成物は前の成形で使用した成形材料を排出し易く、これは溶融時の洗浄剤の固さが影響していると考えられ、特に角速度100rad/secの貯蔵弾性率が洗浄性能と良い相関関係になることを見出した。
 また、特に、融点が130℃以上の結晶性樹脂を含むことが洗浄性能向上の観点から好ましく、高密度ポリエチレンを含むことがより好ましく、チーグラー系触媒を用いて重合した直鎖状高密度ポリエチレンを含むことがさらに好ましい。
 上記効果が奏される理由は必ずしも明らかではないが、洗浄剤組成物の貯蔵弾性率の向上が洗浄性能に影響していると考えられる。
 なお、洗浄剤組成物の上記貯蔵弾性率は、具体的には、後述の実施例に記載の方法により測定することができる。
 また、洗浄剤は、洗浄剤から次の成形に使用する成形材料への置換に対する易置換性も要求される。そのため、易置換性を向上させるため、洗浄剤組成物のせん断粘度は、温度190℃、せん断速度100sec-1において、500~1400Pa・sであることが好ましく、550~1350Pa・sであることがより好ましく、600~1300Pa・sであることがさらに好ましい。このようなせん断粘度を有する洗浄剤組成物は、易置換性が高く、洗浄剤から次の成形材料に容易に切り替えることができる。せん断粘度を低下させるためには、分子量が低い、又は分子量分布が広い熱可塑性樹脂を含むことが好ましく、これらは2種以上の熱可塑性樹脂を組み合わせて達成してもよい。このような洗浄剤組成物は、流動性が高いため次の成形材料に切り替わりやすいと考えられる。
 なお、せん断速度100sec-1、温度190℃におけるせん断粘度は、後述の実施例に記載の方法により測定することができる。
 また、一方で、洗浄力と易置換性とは基本的にトレードオフの関係にあるが、高性能を両立するためには温度190℃、せん断速度100sec-1において、伸長粘度の前記せん断粘度に対する割合(伸長粘度(Pa・s)/せん断粘度(Pa・s))が30以上であることが好ましく、伸長粘度/せん断粘度が35以上であることがより好ましく、伸長粘度/せん断粘度が40以上であることが更に好ましい。このような洗浄剤組成物は、洗浄性能が高く、且つ洗浄剤から次に成形する成形材料へも容易に切り替えることができる。
 上記効果が奏される理由は必ずしも明らかではないが、上述の伸長流動による前の成形材料の排出と、せん断粘度が低いことによる洗浄剤自体の排出を両立することができるためと考えられる。上記を達成するためには、熱可塑性樹脂の分子量を低下させる一方で、熱可塑性樹脂に長鎖分岐構造を導入する等の分子鎖の絡まりを増加させることが好ましい。
本実施形態の洗浄剤組成物は、流路が複雑な射出成形や押出成形の洗浄用途に適しており、中でも、ポリオレフィンを含む成形品の加工後の洗浄により好適である。
(洗浄剤の製造方法)
 本実施態様の洗浄剤組成物の製造方法は、特に限定されないが、例えば、上記各成分を混合機で予備混合した後、押出機で混練押出し、ペレタイズする方法等により製造することができる。
(洗浄剤の形状)
 本実施形態の洗浄剤の形状は、本発明の効果を阻害しない限り特に限定されないが、例えば、円柱状、球状、フレーク状、パウダー状等の形状が挙げられる。
(樹脂成形加工機の洗浄方法)
 本実施形態に係る樹脂成形加工機械の洗浄方法は、上述の洗浄剤組成物を用いる。
 また、本実施形態に係る樹脂成形加工機械の洗浄方法は、上述の洗浄剤組成物を樹脂成形加工機械内に滞留させる工程を有してもよい。
 上記樹脂成形加工機械の具体例としては、射出成形機、押出成形機等が挙げられる。
 本実施形態に係る樹脂成形加工機械の洗浄方法は、洗浄前に成形加工した材料を効率的に排出させることができるだけでなく、洗浄後に樹脂成形加工機械を休止する場合、洗浄剤組成物を樹脂成形加工機械内に充満させた状態で滞留させることにより、万が一洗浄不足で洗浄前に成形加工した材料が樹脂成形加工機械内に残っている場合でも、残った材料の熱劣化を防止できる利点がある。
 洗浄力が弱い洗浄剤を使用した場合、前の成形材料が樹脂成形加工機内に残存して次の成形材料に異物となって混入するだけでなく、成形加工機械を休止する時には残存した成形材料が劣化し、再度成形加工機械を立ち上げる時に劣化物となって混入するという問題が生じやすくなる。そのため、この問題を回避する目的で洗浄剤の洗浄力を高める方法として、例えば、基材となる熱可塑性樹脂に、洗浄力を高めるための無機フィラーや無機発泡剤等が配合されることが多い。しかし、これらの洗浄成分は置換性が低いため、樹脂成形加工機内の洗浄に使用した場合、次に使用する成形材料による置換に長時間を要し、かつ成形材料のロスが多くなり、生産の効率が低下しやすいという課題があった。
 以下、実施例及び比較例により本発明を更に詳細に説明する。本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
 実施例及び比較例の洗浄剤の測定法・評価法は、以下のとおりである。
<分岐指数、伸長粘度、せん断粘度、貯蔵弾性率、長鎖分岐を有する熱可塑性樹脂の成分比率算出>
[分岐指数]
 ゲル浸透クロマトグラフとして、装置内蔵の示差屈折計、PD2040型2角度光散乱光度計(Precision Detectors社製)、及びPL-BV400型ブリッジ型粘度計(Polymer Laboratories社製)を装備したPL-GPC220型高温ゲル浸透クロマトグラフ(Polymer Laboratories社製)を用い、移動相溶媒は、1,2,4-トリクロロベンゼン(酸化防止剤BHT添加)、流量は1mL/分、カラムは、東ソー社製TSKgel GMHHR-H(S)を2本とTSKgel GHHR-M(S)1本とした。カラム、試料注入部および各検出器の温度は、140℃、試料濃度は1mg/mLとし、注入量は0.5mLとした。試料ろ過には孔径1μmの焼結フィルターを用いた。装置校正に東ソー製の分子量190,000のポリスチレンを用いて、各洗浄剤組成物の絶対分子量、極限粘度を算出した。
 分岐指数は、光散乱によって求めた絶対分子量が100万の時の上記粘度計で測定して得られた極限粘度([η]br)の、線状ポリマーを測定して得られた極限粘度([η]lin)に対する比率([η]br/[η]lin)として算出した。
 線状ポリマーは、ポリエチレン系樹脂については、Nist製の直鎖状低密度ポリエチレン1475aを、ポリプロピレン系樹脂についてはAmerican Polymer Standards製PP210Kを、ポリスチレン系樹脂については東ソー製単分散ポリスチレン(分子量190,000)を用いた。なお、複数種類の熱可塑性樹脂を用いた場合は、それぞれに対応する線状ポリマーを同じ成分比率で混合した混合物を用いた。
 なお、線状ポリマーの[η]linの対数は分子量の対数と線形の関係があることは、Mark-Houwink-plotとして公知であるから、[η]linは、低分子量側や高分子量側に適宜外挿して数値を得ることができる。
 また、分子量が大きくなるほど分岐指数が小さくなる場合に、長鎖分岐が存在すると判断した。
[伸長粘度、せん断粘度測定]
 ツインキャピラリーレオメータ(Malvern社製RH10)を用い、温度190℃にて、ロングダイス(L/d=16、直径1mm、流入角90°)及びショートダイス(L/d=0.25、直径1mm、流入角90°)のオリフィスダイを使用して、ツインバーグレーの測定モードにて、せん断速度100s-1についてせん断応力を測定し、下記Cogswellの理論式(Polymer Engineering Science、12、64(1972))に従って伸長粘度λ(kPa・s)及びせん断粘度η(Pa・s)を求めた。
 なお、データの補正は、Bagley補正のみを使用し、Rabinowitsch補正は使用しなかった。
  伸長粘度λ[kPa・s]=9(n+1)2Po2/(32ηγ2
  せん断粘度η[kPa・s]=Tc/γ
  みかけのせん断速度γ[s-1]=4Q/((πd3)/8)
  補正したせん断応力Tc[kPa]=(Pl-Po)d/4L
(式中、Q:容積流量、d:ダイの細管直径(mm)、Pl:ロングダイス側圧力損失、Ps:ショートダイス側圧力損失、Po:ショートダイス側厚みゼロ換算圧力、或いはPl-Psの値から外挿して得られるL/d=0の圧力、n:パワーロー指数(n=1、2、3、4・・・)を表す。)
[貯蔵弾性率測定]
 レオメータ(TAインスツルメント社製ARES-G2)を用い、温度190℃にて、パラレルプレート(直径25mm)、窒素雰囲気下、ギャップ1.0~2.0mm、ひずみ0.3~1.0%で、角速度100rad/secについて、貯蔵弾性率(kPa)を測定した。
[長鎖分岐構造を有する熱可塑性樹脂の成分比率算出]
 組成分析には、結晶化溶出分別によるクロマトグラフとして、装置内蔵のIR5 MCT赤外検出器(Polymer Char社製)を装備したハイスループット組成分析装置(Polymer Char社製)を用いた。移動溶媒は1,2-ジクロロベンゼン(酸化防止剤BHT添加)、カラムはCEFカラム(Polymer Char社製、長さ150mm、容量2.3mL、検出波長はメチレンセンサ CH2 3.42μm(2920cm-1)、メチルセンサー CH3 3.38μm(2960cm-1)を用いた。試料濃度は16mg/8mL、溶解条件は150℃、60min,N2雰囲気化とし、試料ろ過は1.0μmインラインフィルターを用いた。注入量は0.2mLとし、降温条件は95℃→-20℃、1.0℃/min、流量0.012mL/min、昇温条件は-20℃→160℃、4.0℃/min、流量1.0mL/minにて、溶出曲線のピーク面積から洗浄剤組成物中の長鎖分岐構造を有する熱可塑性樹脂の成分比率(質量%)を求めた。
<洗浄性評価>
 青色に着色された低密度ポリエチレン(旭化成(株)製サンテックM1920)を着色マスターバッチとし、着色マスターバッチ10質量部と高密度ポリエチレン(旭化成(株)製サンテックB871)90質量部とを混合し、ブロー成形機(日本鉄鋼所製JEB-7)に3kg投入して、スクリューを回転させて当該樹脂混合物をダイから排出して成形機内に疑似的な汚れを付着させた。
 その後、当該成形機に実施例及び比較例で得られた洗浄剤組成物を4kg投入し、シリンダー温度190℃及びダイ温度190℃の条件でスクリュー回転により洗浄した。ダイから排出されるパージ屑の色調を目視にて観察しながら、洗浄が完了するまでパージ屑を排出し、排出されたパージ屑量(kg)を天秤で測定した。当該排出されたパージ屑量が少ないほど、洗浄性に優れるとし、以下の評価基準で評価した。
 なお、洗浄した際にダイから排出されるパージ屑を室温まで冷却して固化させたものの色調が、青色から洗浄剤組成物の色に変わった時点を洗浄完了とした。
[評価基準]
  A:パージ屑量が2.6kg以下であり、洗浄性が特に良好
  B:パージ屑量が2.6kg超2.8kg以下であり、洗浄性がより良好
  C:パージ屑量が2.8kg超3.0kg以下であり、洗浄性が良好
  D:パージ屑量が3.0kgより多く、洗浄が困難
<置換性評価>
 上記の<洗浄性評価>の後、高密度ポリエチレン(旭化成(株)製サンテックB871)を上記ブロー成形機に4kg投入し、シリンダー温度190℃及びダイ温度190℃の条件でスクリュー回転により置換し、ダイから排出される溶融樹脂の外観の色調を目視にて観察しながら、置換が完了するまでパージ屑を排出し、排出されたパージ屑量(kg)を天秤で測定した。当該排出されたパージ屑量が少ないほど、置換性に優れるとし、以下の評価基準で評価した。
 なお、置換の際にダイから排出される溶融状態のパージ屑の外観の色調が、洗浄剤組成物の色から透明に変わった時点を置換完了とした。
[評価基準]
  A:パージ屑量が1.5kg未満であり、置換性が良好
  D:パージ屑量が1.5kg以上であり、洗浄剤の置換が困難
 実施例及び比較例において使用した原材料は、以下のとおりである。
[熱可塑性樹脂]
  HD1:高密度ポリエチレン(旭化成(株)製サンテックB770)、長鎖分岐なし
  HD2:高密度ポリエチレン(日本ポリエチレン(株)製ノバテックHB420R)、長鎖分岐あり
  HD3:高密度ポリエチレン(東ソー(株)製ニポロンハード6900B)、長鎖分岐なし
  HD4:高密度ポリエチレン(三井化学(株)製ハイゼックス5000SR)、長鎖分岐なし
  HD5:高密度ポリエチレン(三井化学(株)製ハイゼックス6200B)、長鎖分岐なし
  LD1:低密度ポリエチレン(旭化成(株)製サンテックM2102)、長鎖分岐あり
  LD2:低密度ポリエチレン(東ソー(株)製ペトロセン219)、長鎖分岐あり
  LL1:線状低密度ポリエチレン(日本ポリエチレン(株)製ノバテックUF320)、長鎖分岐なし
  LL2:線状低密度ポリエチレン(三井化学(株)製エボリューSP3010、長鎖分岐なし
  LL3:線状低密度ポリエチレン((株)NUC製GS650)、長鎖分岐なし
  EEA:エチレン・アクリル酸エチル共重合体(三井デュポンケミカル(株)製エバフレックスAN4214C)、長鎖分岐なし
  PP1:ポリプロピレンホモポリマー(サンアロマー(株)製VS200A)、長鎖分岐なし
  MAH-PS:スチレン-マレイン酸共重合体(第一工業製薬(株)製ニューフロンティアMI-400P)、長鎖分岐なし
  MMSC:メタクリル酸メチル-スチレン共重合体(第一工業製薬(株)ニューフロンティアMS-750P、長鎖分岐なし
[添加剤]
  無機発泡剤1:炭酸水素ナトリウム
  炭カル:炭酸カルシウム(奥多摩工業(株)製TW-300s)
  GF:ガラス繊維(日本電気硝子(株)製ECS-03-T-120)
  タルク:タルク(竹原化学工業(株)製PHSHタルク)
  AL(OH)3:(昭和軽金属(株)製ハイジライトH-32)
  PEO:ポリエチレンオキサイド(明成化学(株)製アルコックスR-1000)
  AB1:滑剤(日油(株)製アルフローH-50F)
  AB2:滑剤(堺化学(株)製ステアリン酸マグネシウムSM-PG)
  AB3:滑剤(ステアリン酸モノグリセライドのホウ酸エステルカルシウム塩)
  AB4:滑剤(堺化学(株)製塩基性炭酸マグネシウム)
  SU1:界面活性剤(理研ビタミン(株)製O71D)
  SU2:界面活性剤(花王(株)製ポリオキシエチレンジステアレート)
  SU3:界面活性剤(三洋化成(株)製ケミスタット3033)
  SU4:界面活性剤(クラリアントジャパン(株)Hostapur SAS93)
  SU5:界面活性剤(純正化学(株)製ドデシルベンゼンスルホン酸ナトリウム)
[実施例1]
 熱可塑性樹脂としてLD1、滑剤としてAB1、界面活性剤としてSU1を表1に示す割合で含む組成物を、あらかじめタンブラーブレンダーを用いて5分間予備混合し、得られた混合物を二軸押出機によって混錬した。混練には二軸押出機(東芝機械(株)製TEM26SS)を使用し、押出温度240℃、押出レート20kg/時間の条件で行った。
 このようにして得られた溶融混練物をストランド状に押し出し、水冷してからストランドカッターにて切断し、ペレット状の洗浄剤組成物を得た。
 得られた洗浄剤組成物について、評価結果を表1に示す。
[実施例2~12]
 組成を表1に示すように変更したこと以外は実施例1と同様にして、ペレット状の洗浄剤組成物を得た。
 得られた洗浄剤組成物について、評価結果を表1に示す。
[比較例1~9]
 組成を表2に示すように変更したこと以外は実施例1と同様にして、ペレット状の洗浄剤組成物を得た。
 得られた洗浄剤組成物について、評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 上記の結果から、実施例1~12で得られた洗浄剤組成物は、良好な洗浄性と易置換性を有していることが分かる。
 一方で、上記の結果から、比較例1~9で得られた洗浄剤組成物は、分岐指数が低く、洗浄力が十分でないため、洗浄に適さないことが分かった。
 本発明の樹脂成形加工機用洗浄剤組成物は、優れた洗浄性能を発揮するほか、易置換性も優れており、熱可塑性樹脂の洗浄、特に、射出成形や押出成形加工機械用洗浄剤組成物として有用である。
 1:ピストン
 2:バレル
 3:圧力計
 4:ロングダイス
 5:ショートダイス

Claims (7)

  1.  長鎖分岐構造を有する熱可塑性樹脂を含み、絶対分子量100万における分岐指数が0.30超1.00未満であることを特徴とする、成形機用洗浄剤。
  2.  せん断速度100sec-1における190℃の伸長粘度の、せん断速度100sec-1における190℃のせん断粘度に対する割合(伸長粘度/せん断粘度)が30以上である、請求項1に記載の成形機用洗浄剤。
  3.  せん断速度100sec-1における190℃の伸長粘度が42~150kPa・sであり、且つせん断速度100sec-1における190℃のせん断粘度が500~1400Pa・sである、請求項1又は2に記載の成形機用洗浄剤。
  4.  前記長鎖分岐構造を有する熱可塑性樹脂を5質量%以上70質量%以下含む、請求項1~3のいずれか一項に記載の成形機用洗浄剤。
  5.  角速度100rad/secにおける190℃の貯蔵弾性率が80kPa以上である、請求項1~4のいずれか一項に記載の成形機用洗浄剤。
  6.  スクラブ効果を有する添加剤の含有量が9質量%以下である、請求項1~5のいずれか一項に記載の成形機用洗浄剤。
  7.  融点が130℃以上の熱可塑性樹脂を含む、請求項1~6のいずれか一項に記載の成形機用洗浄剤。
PCT/JP2021/017561 2020-05-08 2021-05-07 成形機用洗浄剤 WO2021225168A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180031628.6A CN115485359A (zh) 2020-05-08 2021-05-07 成型机用清洗剂
EP21799635.4A EP4147840A4 (en) 2020-05-08 2021-05-07 CLEANING AGENT FOR MOLDING MACHINES
JP2022519635A JPWO2021225168A1 (ja) 2020-05-08 2021-05-07
KR1020227029338A KR20220134580A (ko) 2020-05-08 2021-05-07 성형기용 세정제

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-082600 2020-05-08
JP2020082600 2020-05-08

Publications (1)

Publication Number Publication Date
WO2021225168A1 true WO2021225168A1 (ja) 2021-11-11

Family

ID=78468039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017561 WO2021225168A1 (ja) 2020-05-08 2021-05-07 成形機用洗浄剤

Country Status (6)

Country Link
EP (1) EP4147840A4 (ja)
JP (1) JPWO2021225168A1 (ja)
KR (1) KR20220134580A (ja)
CN (1) CN115485359A (ja)
TW (1) TWI785601B (ja)
WO (1) WO2021225168A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0859905A (ja) * 1994-08-17 1996-03-05 Chisso Corp 洗浄用添加剤
JP2001150456A (ja) * 1999-11-22 2001-06-05 Asahi Kasei Corp 成形機用洗浄剤
JP2002210748A (ja) * 2001-01-18 2002-07-30 West Japan Plastic Products Industrial Association プラスチック成形機用洗浄剤
WO2018159752A1 (ja) 2017-03-03 2018-09-07 ダイセルポリマー株式会社 成形加工機洗浄用の熱可塑性樹脂組成物

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05124046A (ja) 1991-10-31 1993-05-21 Lion Corp 洗浄用熱可塑性樹脂組成物
JPH1081898A (ja) 1996-09-05 1998-03-31 Nitto Kako Kk 洗浄剤
JP3680453B2 (ja) 1996-10-16 2005-08-10 チッソ株式会社 洗浄用熱可塑性樹脂組成物
JP3852185B2 (ja) 1997-09-30 2006-11-29 チッソ株式会社 洗浄用熱可塑性樹脂組成物
JP2005232227A (ja) * 2004-02-17 2005-09-02 Tosoh Corp ポリエチレン樹脂組成物、それからなるフィルム及びその積層体
JP2006256236A (ja) * 2005-03-18 2006-09-28 Nippon A & L Kk 成形機洗浄用樹脂組成物およびその使用方法
JP2006335913A (ja) 2005-06-03 2006-12-14 Daicel Polymer Ltd 洗浄用樹脂組成物
JP2007021765A (ja) 2005-07-12 2007-02-01 Nippon A & L Kk 成形機洗浄用樹脂組成物および洗浄方法
JP5032283B2 (ja) 2007-11-30 2012-09-26 花王株式会社 二軸押出型混練装置の洗浄方法
JP5667754B2 (ja) * 2009-08-26 2015-02-12 ダイセルポリマー株式会社 洗浄用の熱可塑性樹脂組成物
JP5409514B2 (ja) * 2010-05-27 2014-02-05 旭化成ケミカルズ株式会社 洗浄剤
CN102971130B (zh) * 2010-07-08 2015-07-08 日本合成化学工业株式会社 清洗剂和使用其的清洗方法
US9309340B2 (en) * 2011-03-30 2016-04-12 Japan Polyethylene Corporation Ethylene-based polymer, polyethylene-based resin composition and use thereof, catalyst component for olefin polymerization, olefin polymerization catalyst containing the component, and method for producing ethylene-based polymer by using the catalyst
JP2013014031A (ja) * 2011-06-30 2013-01-24 Mitsubishi Gas Chemical Co Inc ダイレクトブロー容器の製造方法及び包装体
BR112014006866B1 (pt) 2011-09-21 2021-07-20 Ecolab Usa Inc. Composições concentradas aquosas não newtonianas e métodos para formar uma solução de uso
WO2015080103A1 (ja) 2013-11-26 2015-06-04 日本合成化学工業株式会社 パージング剤およびこれを用いたパージング方法
CN111051486B (zh) * 2017-10-02 2021-10-08 旭化成株式会社 注射成型机和模具用清洗剂树脂组合物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0859905A (ja) * 1994-08-17 1996-03-05 Chisso Corp 洗浄用添加剤
JP2001150456A (ja) * 1999-11-22 2001-06-05 Asahi Kasei Corp 成形機用洗浄剤
JP2002210748A (ja) * 2001-01-18 2002-07-30 West Japan Plastic Products Industrial Association プラスチック成形機用洗浄剤
WO2018159752A1 (ja) 2017-03-03 2018-09-07 ダイセルポリマー株式会社 成形加工機洗浄用の熱可塑性樹脂組成物

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Developments in Polymer Characterization-4", 1983, APPLIED SCIENCE PUBLISHERS
POLYMER ENGINEERING SCIENCE, vol. 12, 1972, pages 64
See also references of EP4147840A4

Also Published As

Publication number Publication date
KR20220134580A (ko) 2022-10-05
TW202202305A (zh) 2022-01-16
TWI785601B (zh) 2022-12-01
EP4147840A1 (en) 2023-03-15
JPWO2021225168A1 (ja) 2021-11-11
CN115485359A (zh) 2022-12-16
EP4147840A4 (en) 2023-10-25

Similar Documents

Publication Publication Date Title
ES2655738T3 (es) Composiciones adhesivas y métodos para su fabricación
ES2524390T3 (es) Pellas que comprenden polímero y envase que contiene las mismas
CN1227581A (zh) 聚乙烯加工方法
US8080506B2 (en) Reactive purge compound for polymer purging
MXPA02000084A (es) Composicion flexible a partir de polimeros de propileno.
CA2499517C (en) Polymer compositions for extrusion coating
WO2021225168A1 (ja) 成形機用洗浄剤
CN107107435A (zh) 清洗剂
JP2023031305A (ja) 成形機用洗浄剤、その使用、及び成形機の洗浄方法
KR20190103938A (ko) 생산 처리 보조제
JP6604682B2 (ja) ポリオレフィン組成物およびポリオレフィン延伸フィルム、延伸多層フィルム、並びに延伸フィルムの製造方法
JP7289779B2 (ja) 樹脂成形加工機械用洗浄剤組成物
JP2000129044A (ja) 高純度薬品用ポリエチレン容器
JP7467785B1 (ja) 成形機洗浄用樹脂組成物
JP2006256236A (ja) 成形機洗浄用樹脂組成物およびその使用方法
JP6591201B2 (ja) 軟質樹脂の造粒方法
JP2021036036A (ja) 樹脂成形加工機用洗浄剤、樹脂成形加工機の洗浄方法
EP2390279A1 (en) Polypropylene composition with plasticiser for sterilisable films
WO2024157827A1 (ja) 樹脂成形加工機械用洗浄剤組成物
JP2008024769A (ja) 回転成形用エチレン系重合体パウダーおよび回転成形容器
JP2024022569A (ja) 樹脂加工機械用洗浄剤用樹脂組成物
JP2004043788A (ja) ポリプロピレン系樹脂組成物およびそのフィルム
JP6386884B2 (ja) パウダー状マスターバッチ、マスターバッチ、及びこれらの製造方法
JP2024021910A (ja) 樹脂加工機械用洗浄剤用樹脂組成物及びその製造方法
JP7187726B1 (ja) 樹脂加工機械用洗浄剤、その製造方法、及び樹脂加工機械内の洗浄方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21799635

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022519635

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227029338

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021799635

Country of ref document: EP

Effective date: 20221208

NENP Non-entry into the national phase

Ref country code: DE