WO2021212372A1 - 资源分配方法和终端 - Google Patents

资源分配方法和终端 Download PDF

Info

Publication number
WO2021212372A1
WO2021212372A1 PCT/CN2020/086167 CN2020086167W WO2021212372A1 WO 2021212372 A1 WO2021212372 A1 WO 2021212372A1 CN 2020086167 W CN2020086167 W CN 2020086167W WO 2021212372 A1 WO2021212372 A1 WO 2021212372A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
information
transmitted
data
supported
Prior art date
Application number
PCT/CN2020/086167
Other languages
English (en)
French (fr)
Inventor
赵振山
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2020/086167 priority Critical patent/WO2021212372A1/zh
Priority to EP20932732.9A priority patent/EP4138496A4/en
Priority to CN202080098129.4A priority patent/CN115245027A/zh
Publication of WO2021212372A1 publication Critical patent/WO2021212372A1/zh
Priority to US17/970,047 priority patent/US20230041458A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • This application relates to the field of communications, and more specifically, to a resource allocation method and terminal.
  • D2D Device to Device
  • SL Sidelink
  • V2X Vehicle to Everything
  • the terminal can apply to the network for transmission resources. In this case, there will be network delays; the terminal can also select transmission resources autonomously. In this case, the selected transmission resource conflicts are likely to occur, resulting in side-line transmission between the terminals. Transmission interference. Therefore, how to allocate transmission resources reasonably is a problem that needs to be solved in side-line transmission.
  • the embodiments of the present application provide a resource allocation method and a terminal, which can allocate side-line transmission resources through the terminal, thereby reducing side-line transmission interference between terminals.
  • An embodiment of the present application provides a resource allocation method, including:
  • the first terminal sends first information to the second terminal, where the first information is used to instruct the second terminal to allocate sideline transmission resources to the first terminal.
  • An embodiment of the present application provides a resource allocation method, including:
  • the second terminal receives the first information from the first terminal
  • the second terminal allocates sideline transmission resources to the first terminal based on the first information.
  • An embodiment of the present application provides a terminal, including:
  • the sending unit is configured to send first information to the second terminal, where the first information is used to instruct the second terminal to allocate side transmission resources to the first terminal.
  • An embodiment of the present application provides a terminal, including:
  • a receiving unit configured to receive first information from the first terminal
  • the allocation unit is configured to allocate sideline transmission resources to the first terminal based on the first information.
  • the embodiment of the present application provides a terminal including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the above-mentioned resource allocation method.
  • the embodiment of the present application provides a chip for implementing the above-mentioned resource allocation method.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes the above-mentioned resource allocation method.
  • the embodiment of the present application provides a computer-readable storage medium for storing a computer program, and the computer program enables a computer to execute the above-mentioned resource allocation method.
  • the embodiments of the present application provide a computer program product, including computer program instructions, and the computer program instructions cause a computer to execute the above-mentioned resource allocation method.
  • the embodiment of the present application provides a computer program, which when running on a computer, causes the computer to execute the above-mentioned resource allocation method.
  • the side-line transmission resources can be allocated by the terminal to reduce the side-line transmission interference between the terminals.
  • delay can be reduced, allocation time can be reduced, and allocation efficiency can be improved.
  • Fig. 1 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • Figure 2A is a schematic diagram of the network covering inbound communication.
  • Figure 2B is a schematic diagram of partial network coverage sideline communication.
  • Figure 2C is a schematic diagram of the network covering outbound communications.
  • Figure 3A is a schematic diagram of unicast transmission.
  • Figure 3B is a schematic diagram of multicast transmission.
  • Figure 3C is a schematic diagram of broadcast transmission.
  • Figure 4 is a schematic diagram of lateral feedback.
  • Fig. 5 is a schematic flowchart of a method for processing side feedback information according to an embodiment of the present application.
  • Figure 6 is a schematic diagram of side row resource allocation.
  • FIG. 7 is a schematic diagram of using destination address information for side row resource allocation.
  • Figure 8 is a schematic diagram of side-line transmission.
  • Fig. 9 is a schematic diagram of another side-line transmission.
  • Fig. 10 is a schematic flowchart of a resource allocation method according to another embodiment of the present application.
  • Fig. 11 is a schematic block diagram of a terminal according to an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a terminal according to another embodiment of the present application.
  • Fig. 13 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • Fig. 14 is a schematic block diagram of a chip according to an embodiment of the present application.
  • Fig. 15 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • UMTS universal mobile telecommunication system
  • WLAN wireless Local Area Networks
  • 5G next-generation communications
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • the communication system in the embodiments of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, can also be applied to a dual connectivity (DC) scenario, and can also be applied to a standalone (SA) deployment.
  • CA Carrier Aggregation
  • DC dual connectivity
  • SA standalone
  • the embodiment of the application does not limit the applied frequency spectrum.
  • the embodiments of this application can be applied to licensed spectrum or unlicensed spectrum.
  • the embodiments of this application describe various embodiments in combination with network equipment and terminal equipment.
  • the terminal equipment may also be referred to as User Equipment (UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, and remote. Station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • UE User Equipment
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, and remote.
  • Station remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • the terminal device can be a station (STAION, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, and personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, and next-generation communication systems, such as terminal devices in the NR network or Terminal equipment in the public land mobile network (PLMN) network that will evolve in the future.
  • STAION, ST station
  • WLAN Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for using wearable technology to intelligently design everyday wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • a network device can be a device used to communicate with mobile devices.
  • the network device can be an access point (AP) in WLAN, a base station (BTS) in GSM or CDMA, or a device in WCDMA.
  • a base station (NodeB, NB) can also be an Evolutional Node B (eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and a network device (gNB) in the NR network Or network equipment in the PLMN network that will evolve in the future.
  • AP access point
  • BTS base station
  • gNB network device
  • the network equipment provides services for the cell
  • the terminal equipment communicates with the network equipment through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell
  • the cell may be a network equipment (for example, The cell corresponding to the base station.
  • the cell can belong to a macro base station or a base station corresponding to a small cell.
  • the small cell here can include: Metro cell, Micro cell, Pico Cells, Femto cells, etc. These small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-rate data transmission services.
  • Fig. 1 exemplarily shows a communication system.
  • the communication system includes a network device 110 and two terminal devices 120.
  • the communication system 100 may include multiple network devices 110, and the coverage of each network device 110 may include other numbers of terminal devices 120, which is not limited in the embodiment of the present application.
  • the communication system 100 may also include other network entities such as a mobility management entity (Mobility Management Entity, MME), access and mobility management function (Access and Mobility Management Function, AMF). Not limited.
  • MME Mobility Management Entity
  • AMF Access and Mobility Management Function
  • side-line communication according to the network coverage of the terminal communicating, it can be divided into: network-covered inner-line communication, partial network-covered lateral communication, and network-covered outer-line communication, as shown in Figure 2A, Figure 2B and Figure 2C Shown.
  • the network covers the inner line communication
  • all the terminals performing the side line communication are within the coverage of the same base station. Therefore, these terminals can all perform side-line communication based on the same side-line configuration by receiving the configuration signaling of the base station.
  • part of the terminals performing side-line communication are located within the coverage of the base station, and this part of the terminals can receive the configuration signaling of the base station and perform side-line communication according to the configuration of the base station.
  • the terminal located outside the network coverage area cannot receive the configuration signaling of the base station.
  • the terminal outside the network coverage area can determine the side based on the pre-configuration information and the information carried in the Physical Sidelink Broadcast Channel (PSBCH) sent by the terminal located in the network coverage area.
  • PSBCH Physical Sidelink Broadcast Channel
  • all terminals performing sideline communication are located outside the network coverage area, and all terminals determine the sideline configuration for sideline communication according to the pre-configuration information.
  • the Internet of Vehicles system adopts terminal-to-terminal direct communication.
  • 3GPP 3rd Generation Partnership Project
  • the Internet of Vehicles has two transmission modes: the first mode and the second mode.
  • the first mode the transmission resources of the terminal are allocated by the network, such as the base station gNB.
  • the terminal transmits data on the side link according to the resources allocated by the base station; the base station can allocate resources for a single transmission to the terminal, or allocate resources for semi-static transmission to the terminal.
  • the terminal is located within the network coverage area, and the network allocates transmission resources for side transmission to the terminal.
  • the second mode The terminal selects a resource in the resource pool for data transmission. As shown in FIG. 2C, the terminal is located outside the coverage area of the cell, and the terminal autonomously selects transmission resources from the pre-configured resource pool for side transmission. Or, as shown in FIG. 2A, the terminal autonomously selects transmission resources for side-line transmission in the resource pool configured in the network.
  • LTE-V2X the broadcast transmission mode is supported.
  • NR-V2X unicast and multicast transmission modes are introduced.
  • unicast transmission there is only one terminal at the receiving end.
  • the receiving end is all terminals in a communication group, or all terminals within a certain transmission distance.
  • UE1, UE2, UE3, and UE4 form a communication group, where UE1 sends data, and other terminals in the group are all receiving end terminals.
  • the receiving end is any terminal around the transmitting end terminal.
  • UE1 is the transmitting terminal, and other terminals around it, UE2-UE6 are all receiving terminals.
  • a side-line feedback channel is introduced.
  • the sender terminal sends sideline data to the receiver terminal (for example, including the Physical Sidelink Control Channel (PSCCH) and the Physical Sidelink Shared Channel). Channel, PSSCH));
  • the receiving terminal sends Hybrid Automatic Repeat reQuest (HARQ) feedback information to the transmitting terminal, and the transmitting terminal determines whether retransmission is required according to the feedback information of the receiving terminal.
  • the HARQ feedback information is carried in a side-line feedback channel, such as a physical side-link feedback channel (PSFCH).
  • PSFCH physical side-link feedback channel
  • the side feedback can be activated or deactivated through pre-configuration information or network configuration information. If the sideline feedback is activated, the receiving end terminal receives the sideline data sent by the sending end terminal, and feeds back HARQ Acknowledgement (ACK) or Negative Acknowledgement (NACK) to the sending end according to the detection result.
  • the sending end terminal decides to send retransmission data or new data according to the feedback information of the receiving end terminal. If the side-line feedback is deactivated, the receiving terminal does not need to send feedback information, and the transmitting terminal usually sends data in a blind retransmission manner. For example, the sending end terminal repeatedly sends K times for each side row data, instead of deciding whether to send retransmitted data according to the feedback information of the receiving end terminal.
  • FIG. 5 is a schematic flowchart of a resource allocation method 200 according to an embodiment of the present application. This method can optionally be applied to the system shown in FIG. 1, but is not limited to this. The method includes at least part of the following content.
  • the first terminal sends first information to the second terminal, where the first information is used to instruct the second terminal to allocate side transmission resources to the first terminal.
  • multiple terminals can form a communication group.
  • the central control node can have the following functions: responsible for the establishment and maintenance of communication groups; joining and leaving group members; resource allocation, coordination and scheduling, allocating side-line transmission resources to other terminals, and receiving side-line feedback information from other terminals ; Perform resource coordination and other functions with other communication groups.
  • the central control node can obtain information such as resource requests from other terminals, buffer status reports, and the period of side-line data to be transmitted.
  • the communication group includes a first terminal UE1 and a second terminal UE2.
  • the first terminal is a group member requesting to allocate resources
  • the second terminal is a central control node or a group head terminal.
  • the first terminal may send first information to the second terminal, where the first information is used to assist the second terminal in allocating sideline transmission resources for the first terminal.
  • the second terminal may allocate sideline transmission resources to the first terminal based on the first information.
  • the second terminal sends the sideline transmission resource allocated for the first terminal to the first terminal.
  • the first terminal may use the sideline transmission resource to transmit data, for example, send sideline data to the third terminal.
  • the resource allocation method of the embodiment of the present application can allocate side-line transmission resources through terminals, thereby reducing side-line transmission interference between terminals.
  • multiple terminals can form a communication group, and one terminal in the communication group serves as the group head terminal or the central control node.
  • the group head terminal can allocate side transmission resources to the group member terminals, thereby avoiding side-by-side transmission of the group member terminals. Interference between line transmissions.
  • the allocation of side-line transmission resources to member terminals through the group head terminal can reduce delay, reduce allocation time, and improve allocation efficiency.
  • the first information includes a scheduling request (Scheduling Request, SR).
  • SR scheduling request
  • the SR is a type of resource request information.
  • the first terminal When the first terminal has sideline data to be transmitted, it can send the resource request information SR to the second terminal, and the SR is used to request the sideline transmission resource from the second terminal.
  • the second terminal can obtain the resource request information of the first terminal based on the SR, so as to allocate the side transmission resource to the first terminal.
  • the first terminal sends a sideline feedback channel PSFCH to the second terminal, and the sideline feedback channel carries resource request information SR.
  • the first information further includes a buffer status report (Buffer Status Report, BSR).
  • BSR Buffer Status Report
  • the first terminal sends a BSR to the second terminal to indicate the buffer status (Buffer Status) of the first terminal, such as the size of the buffer and the corresponding logical channel identity (Logical Channel Identity).
  • the second terminal may allocate transmission resources of an appropriate size to the first terminal according to the buffer size indicated by the BSR.
  • the first information further includes related information about the side line data to be transmitted by the first terminal.
  • the related information of the side data to be transmitted by the first terminal includes at least one of the following:
  • the information size of the side row data to be transmitted is the information size of the side row data to be transmitted.
  • the related information of the side line data to be transmitted can be sent to the second terminal together with the SR or BSR, or can be sent to the second terminal separately.
  • Example 1 If the sideline data to be transmitted by the first terminal is a periodic service, the attribute parameters of the sideline data to be transmitted, such as the period of the sideline data, can be sent to the second terminal.
  • the second terminal can allocate periodic transmission resources or semi-static transmission resources to the first terminal, which can prevent the first terminal from frequently requesting transmission resources from the second terminal and reduce the signaling overhead of the side link.
  • Example 2 When the first terminal applies to the second terminal for transmission resources, it may send the delay budget of the side data to be transmitted to the second terminal.
  • the second terminal can allocate transmission resources that meet the delay requirement for the first terminal, which can prevent the time domain location corresponding to the allocated sideline transmission resource from exceeding the delay requirement, causing the transmission resource to be unavailable or invalid.
  • Example 3 When the first terminal applies to the second terminal for transmission resources, the reliability information (Reliability) of the side data to be transmitted may be sent to the second terminal.
  • the second terminal may allocate transmission resources to the first terminal according to the reliability requirement corresponding to the reliability information. For example, for high-reliability data, multiple side-line transmission resources can be allocated or the side-line feedback mechanism can be enabled/activated; for low-reliability data, it can be disabled/deactivated. ) Lateral feedback mechanism.
  • Example 4 The first terminal sends priority information of the data to be transmitted to the second terminal to assist the second terminal in allocating side-line transmission resources for the first terminal. For example, in the case of limited transmission resources, the second terminal preferentially allocates side-line transmission resources to data with higher priority, or allocates more transmission resources, more transmission opportunities, and so on.
  • Example 5 The first terminal sends indication information to the second terminal, which is used to indicate the message size (message size) of the side row data to be transmitted. According to the information, the second terminal may allocate corresponding transmission resources for the first terminal to satisfy the size of the information.
  • the first information further includes terminal assistance information.
  • the terminal assistance information includes at least one of the following:
  • the number of carriers supported by the first terminal is the number of carriers supported by the first terminal
  • the number of channels supported by the first terminal is the number of channels supported by the first terminal
  • the maximum number of antenna ports supported by the first terminal is the maximum number of antenna ports supported by the first terminal
  • the maximum number of transmission layers of the first terminal is the maximum number of transmission layers of the first terminal.
  • the modulation level supported by the first terminal is the modulation level supported by the first terminal
  • the capability level of the first terminal is the capability level of the first terminal.
  • the terminal assistance information may include the bandwidth supported by the first terminal.
  • the allocated frequency domain resource size needs to be less than or equal to the bandwidth supported by the first terminal.
  • the terminal assistance information may include the number of carriers supported by the first terminal, and the second terminal may allocate side-line transmission resources to the first terminal on one or more carriers according to the number of carriers supported by the first terminal, so that the first terminal can be increased.
  • a terminal transmission rate may be used to allocate side-line transmission resources to the first terminal on one or more carriers according to the number of carriers supported by the first terminal, so that the first terminal can be increased.
  • the terminal assistance information may include the number of channels supported by the first terminal, for example, one channel corresponds to a transmission bandwidth of 20 MHz.
  • the second terminal can determine the maximum bandwidth that the first terminal can support according to the information, so that the first terminal can be allocated frequency domain resources of a corresponding size.
  • the terminal auxiliary information may include the maximum number of antenna ports supported by the first terminal.
  • the number of antenna ports supported by the terminal corresponds to the maximum number of layers that can be transmitted. For example, if 2 antenna ports are supported, the number of data layers supported for transmission is 2 Layer, the larger the number of antenna ports supported, the higher the transmission rate of the terminal.
  • the terminal assistance information may include the maximum number of transmission layers of the first terminal, and the second terminal may allocate transmission resources for the first terminal according to the number of transmission layers supported by the first terminal. For example, assuming that the data to be transmitted by the first terminal is 1000 bytes, if the first terminal supports a maximum of 1 layer transmission, the second terminal needs to allocate 10 physical resource blocks (PRB) for the first terminal ; If the first terminal supports a maximum of layer 2 transmission, the second terminal can allocate 5 PRBs to the first terminal, and the first terminal uses layer 2 transmission to transmit 1000 bytes on 5 PRBs.
  • PRB physical resource blocks
  • the terminal assistance information may include the modulation level supported by the first terminal, and the second terminal may allocate sideline transmission resources to the first terminal according to the maximum modulation level supported by the first terminal. For example, if the first terminal supports a maximum modulation level of 16QAM, the second terminal needs to allocate 10 PRBs for the first terminal to transmit data to be transmitted by the first terminal. If the first terminal can support a modulation level of 256QAM, the second terminal can allocate 5 PRBs for the first terminal to transmit data to be transmitted by the first terminal.
  • the capability level of the terminal includes: whether the terminal is a power limit terminal; whether the terminal is a power saving terminal; whether the terminal is a low power consumption terminal, etc.
  • the first information further includes a set of available resources.
  • the set of available resources may include a set of available transmission resources acquired by the first terminal according to interception in the resource pool.
  • the second terminal allocates side-line transmission resources to the first terminal, since the locations of the second terminal and the first terminal are different, the perceived interference may also be different.
  • the first terminal may send a set of available transmission resources to the second terminal.
  • the second terminal may select transmission resources from the set of available resources and allocate them to the first terminal.
  • the available resource set may include, for example, channel information, frequency band information, interlace PRB information, time slot information, and the like.
  • the first information further includes an unavailable resource set.
  • the set of unavailable resources may include a set of unusable transmission resources acquired by the first terminal according to interception in the resource pool, and may also be determined according to the status of sideline transmission between the first terminal and other terminals. Similar to the previous example, the first terminal may also send the unavailable resource set to the second terminal. The second terminal avoids allocating transmission resources in the unavailable resource set to the first terminal.
  • the first terminal performs unicast sideline transmission with the third terminal and the fourth terminal respectively, and the first terminal learns that the fourth terminal will send sideline data to the first terminal in time slot m.
  • the first terminal applies to the second terminal for the side-line transmission resource for sending side-line data to the third terminal, it can send the transmission resource set corresponding to the time slot m to the second terminal to prevent the second terminal from allocating the time slot. Transmission resources on m. In this way, it is possible to prevent the first terminal from both sending and receiving data in this time slot, and avoid the half-duplex problem.
  • the first information further includes a channel occupancy ratio (Channel Busy Ratio, CBR).
  • CBR Channel Busy Ratio
  • the first terminal can measure CBR, which is used to reflect the ratio of transmission channels or transmission resources occupied, including users of the same system (such as users based on sideline transmission technology) or users of different systems (such as wireless fidelity (Wireless Fidelity)). Fidelity (WiFi) user) occupied channel.
  • CBR is used to reflect the ratio of transmission channels or transmission resources occupied, including users of the same system (such as users based on sideline transmission technology) or users of different systems (such as wireless fidelity (Wireless Fidelity)).
  • WiFi Wireless Fidelity
  • the first information further includes power information.
  • the power information includes at least one of the following:
  • the power headroom information of the first terminal is the power headroom information of the first terminal.
  • the maximum transmit power information of the first terminal may be 23 dBm (decibel milliwatt).
  • the second terminal can determine the transmission power corresponding to the side-line data or resource allocation information sent to the first terminal based on the information and the path loss of the side link. .
  • the second terminal can adjust the transmit power of the first terminal according to the information.
  • the transmission power of the first terminal to transmit side line data may be controlled by the second terminal, and the second terminal may increase or decrease the transmission power of the first terminal.
  • the first terminal reports the power headroom to the second terminal, and the second terminal can learn the power headroom of the first terminal, so that it can learn whether the transmission power of the first terminal can be increased, or how much transmission power can be increased.
  • the first terminal sends the maximum transmit power (23dBm) to the second terminal, and the second terminal allocates the first side line transmission resource to the first terminal, and the first terminal transmits at 17 dBm on the first side line transmission resource. Row data.
  • the second terminal can learn that the power range that can also be adjusted for the first terminal is 6 dBm. Further, the second terminal can learn that the transmit power of the first terminal is 17 dBm according to the received information of the maximum power of the first terminal of 23 dBm.
  • the first information further includes destination address information.
  • the destination address information (Destination Identity) may include the information of the receiving end corresponding to the data to be transmitted of the first terminal.
  • the destination address information includes the identity of the third terminal, and the third terminal is the receiving end terminal of the side data to be transmitted of the first terminal.
  • the first terminal may send the information of the receiving end corresponding to the data to be transmitted to the second terminal.
  • the first terminal wants to send sideline data to the third terminal, and when the first terminal requests transmission resources from the second terminal, the first terminal sends to the second terminal the destination address corresponding to the sideline transmission, that is, the third terminal identifier.
  • the second terminal allocates side-line transmission resources to the first terminal. If the side-line feedback information is enabled, the second terminal may allocate transmission resources for transmitting the side-line feedback information to the third terminal.
  • the third terminal can directly send the side-line feedback information corresponding to the side-line data sent by the first terminal to the second terminal, instead of sending it to the first terminal, and then sending it from the first terminal to the second terminal, which can reduce the transmission rate. Delay and transmission resource overhead.
  • the first information further includes synchronization source information.
  • the synchronization source information includes at least one of the type, reliability, and measurement result of the synchronization source of the first terminal.
  • the type of synchronization source may include: Global Navigation Satellite System (GNSS); base station such as gNB/eNB; terminal such as UE.
  • GNSS Global Navigation Satellite System
  • the first terminal may also send instruction information to the second terminal for determining whether the first terminal uses the second terminal as the synchronization source.
  • the first terminal may also send to the second terminal whether the synchronization source is reliable or a measurement result based on the synchronization source. For example, if the gNB is used as the synchronization source, the first terminal may report to the second terminal a measurement result based on a synchronization signal block (Synchronization Signal Block, SSB), such as Reference Signal Receiving Power (RSRP). For another example, if the second terminal is used as the synchronization source, the first terminal may report to the second terminal the measurement result RSRP based on the Sidelink SSB (S-SSB) sent by the second terminal.
  • SSB Synchronization Signal Block
  • RSRP Reference Signal Receiving Power
  • the first information is carried by at least one of the following:
  • SCI Sidelink Control Information
  • MAC Media Access Control
  • CE Control Element
  • the side row control information SCI may include a first-order SCI and a second-order SCI.
  • the first-order SCI is carried in the PSCCH and is used to transmit PSSCH scheduling information, such as PSSCH transmission resources, priority information, reserved resource indication information, modulation and coding strategy (Modulation and Coding Scheme, MCS), demodulation reference Signal (Demodulation Reference Signal, DMRS) pattern, number of antenna ports, etc.
  • the second-order SCI is used to transmit demodulated PSSCH information, such as HARQ process ID, NDI (New Data Indicator, new data indicator), sender identification (ID) information, target ID information, side-line feedback indication information, etc. .
  • the second-order SCI can be multiplexed with side row data.
  • the second-order SCI and PSSCH are transmitted together, and are mapped around the PSSCH DMRS symbol, and the second-order SCI is demodulated according to the PSSCH DMRS.
  • the aforementioned resource request information SR corresponds to 1 bit and is carried in the first-order SCI or the second-order SCI.
  • the group head terminal and group members can exchange information through PC5-RRC signaling, and the first information can be carried in PC5-RRC signaling.
  • PC5 is the connection interface between the terminal and the terminal.
  • the first information may be carried in the MAC CE of the side row data.
  • UE1, UE2, and UE3 form a communication group
  • UE2 is the group head terminal
  • UE1 and UE3 are group member terminals
  • UE2 is responsible for allocating side transmission resources for group member terminals.
  • UE1 needs to send sideline data to UE3, UE1 sends a resource request to UE2, and sends a buffer report, UE2 allocates transmission resources for UE1, and UE1 uses the transmission resources to send sideline data 1 to UE3.
  • UE1 when UE1 has a periodic service that needs to be sent to UE3, UE1 applies to UE2 for transmission resources, and sends parameters such as the period of data to be transmitted and information size to UE2.
  • UE2 allocates semi-static transmission resources to UE1.
  • UE1 uses the semi-static transmission resources allocated by UE2 to send sideline data 2, 3, and 4 to UE3, respectively.
  • the terminal when it has sideline data to be transmitted, it can apply to the central control node for transmission resources, and send auxiliary information to the central control node, for example, including the attribute parameters of the data to be transmitted, the set of available resources, and power information, Target address information, etc., to assist the central control node to allocate transmission resources for it.
  • auxiliary information for example, including the attribute parameters of the data to be transmitted, the set of available resources, and power information, Target address information, etc.
  • FIG. 10 is a schematic flowchart of a resource allocation method 300 according to another embodiment of the present application. This method can optionally be applied to the system shown in FIG. 1, but is not limited to this. The method includes at least part of the following content.
  • the second terminal receives the first information from the first terminal.
  • the second terminal allocates a sideline transmission resource to the first terminal based on the first information.
  • the first information includes a scheduling request SR.
  • the first information includes a buffer status report BSR.
  • the first information further includes related information about the side line data to be transmitted by the first terminal.
  • the related information of the side data to be transmitted by the first terminal includes at least one of the following:
  • the information size of the side row data to be transmitted is the information size of the side row data to be transmitted.
  • the first information further includes terminal assistance information.
  • the terminal assistance information includes at least one of the following:
  • the number of carriers supported by the first terminal is the number of carriers supported by the first terminal
  • the number of channels supported by the first terminal is the number of channels supported by the first terminal
  • the maximum number of antenna ports supported by the first terminal is the maximum number of antenna ports supported by the first terminal
  • the maximum number of transmission layers of the first terminal is the maximum number of transmission layers of the first terminal.
  • the modulation level supported by the first terminal is the modulation level supported by the first terminal
  • the capability level of the first terminal is the capability level of the first terminal.
  • the first information further includes a set of available resources.
  • the first information further includes an unavailable resource set.
  • the first information further includes the channel occupancy rate CBR.
  • the first information further includes power information.
  • the power information includes at least one of the following:
  • the power headroom information of the first terminal is the power headroom information of the first terminal.
  • the first information further includes destination address information.
  • the destination address information includes the identity of the third terminal, and the method further includes:
  • the second terminal allocates a transmission resource of side-line feedback information to the first terminal, which is used by the first terminal to send side-line data to the third terminal.
  • the first information further includes synchronization source information.
  • the synchronization source information includes at least one of the type, reliability, and measurement result of the synchronization source of the first terminal.
  • the first information is carried by at least one of the following:
  • FIG. 11 is a schematic block diagram of a terminal 400 according to an embodiment of the present application.
  • the terminal 400 may be the first terminal in the foregoing resource allocation method.
  • the terminal may include:
  • the sending unit 410 is configured to send first information to the second terminal, where the first information is used to instruct the second terminal to allocate side transmission resources to the first terminal.
  • the first information includes a scheduling request SR.
  • the first information further includes a buffer status report BSR.
  • the first information further includes related information about the side line data to be transmitted by the first terminal.
  • the related information of the side data to be transmitted by the first terminal includes at least one of the following:
  • the information size of the side row data to be transmitted is the information size of the side row data to be transmitted.
  • the first information further includes terminal assistance information.
  • the terminal assistance information includes at least one of the following:
  • the number of carriers supported by the first terminal is the number of carriers supported by the first terminal
  • the number of channels supported by the first terminal is the number of channels supported by the first terminal
  • the maximum number of antenna ports supported by the first terminal is the maximum number of antenna ports supported by the first terminal
  • the maximum number of transmission layers of the first terminal is the maximum number of transmission layers of the first terminal.
  • the modulation level supported by the first terminal is the modulation level supported by the first terminal
  • the capability level of the first terminal is the capability level of the first terminal.
  • the first information further includes a set of available resources.
  • the first information further includes an unavailable resource set.
  • the first information further includes the channel occupancy rate CBR.
  • the first information further includes power information.
  • the power information includes at least one of the following:
  • the power headroom information of the first terminal is the power headroom information of the first terminal.
  • the first information further includes destination address information.
  • the destination address information includes the identity of the third terminal, and the third terminal is the receiving end terminal of the side data to be transmitted of the first terminal.
  • the first information further includes synchronization source information.
  • the synchronization source information includes at least one of the type, reliability, and measurement result of the synchronization source of the first terminal.
  • the first information is carried by at least one of the following:
  • the terminal 400 of the embodiment of the present application can implement the corresponding function of the first terminal in the foregoing method embodiment.
  • the corresponding processes, functions, implementation manners, and beneficial effects of each module (sub-module, unit or component, etc.) in the terminal 400 please refer to the corresponding description in the foregoing method embodiment, which will not be repeated here.
  • each module (sub-module, unit or component, etc.) in the terminal 400 of the application embodiment can be implemented by different modules (sub-module, unit or component, etc.), or by the same module. (Submodule, unit or component, etc.) Realization.
  • FIG. 12 is a schematic block diagram of a terminal 500 according to another embodiment of the present application.
  • the terminal 500 may be the second terminal in the foregoing resource allocation method.
  • the terminal 500 may include:
  • the receiving unit 510 is configured to receive first information from the first terminal
  • the allocating unit 520 is configured to allocate side-line transmission resources to the first terminal based on the first information.
  • the first information includes a scheduling request SR.
  • the first information includes a buffer status report BSR.
  • the first information further includes related information about the side line data to be transmitted by the first terminal.
  • the related information of the side data to be transmitted by the first terminal includes at least one of the following:
  • the information size of the side row data to be transmitted is the information size of the side row data to be transmitted.
  • the first information further includes terminal assistance information.
  • the terminal assistance information includes at least one of the following:
  • the number of carriers supported by the first terminal is the number of carriers supported by the first terminal
  • the number of channels supported by the first terminal is the number of channels supported by the first terminal
  • the maximum number of antenna ports supported by the first terminal is the maximum number of antenna ports supported by the first terminal
  • the maximum number of transmission layers of the first terminal is the maximum number of transmission layers of the first terminal.
  • the modulation level supported by the first terminal is the modulation level supported by the first terminal
  • the capability level of the first terminal is the capability level of the first terminal.
  • the first information further includes a set of available resources.
  • the first information further includes an unavailable resource set.
  • the first information further includes the channel occupancy rate CBR.
  • the first information further includes power information.
  • the power information includes at least one of the following:
  • the power headroom information of the first terminal is the power headroom information of the first terminal.
  • the first information further includes destination address information.
  • the destination address information includes the identity of the third terminal
  • the allocating unit 520 is further configured to allocate the transmission resource of side feedback information to the first terminal for the first terminal.
  • the terminal sends sideline data to the third terminal.
  • the first information further includes synchronization source information.
  • the synchronization source information includes at least one of the type, reliability, and measurement result of the synchronization source of the first terminal.
  • the first information is carried by at least one of the following:
  • the terminal 500 of the embodiment of the present application can implement the corresponding function of the second terminal in the foregoing method embodiment.
  • the corresponding processes, functions, implementation manners, and beneficial effects of each module (sub-module, unit or component, etc.) in the terminal 500 please refer to the corresponding description in the above method embodiment, which will not be repeated here.
  • each module (sub-module, unit or component, etc.) in the terminal 500 of the application embodiment can be implemented by different modules (sub-module, unit or component, etc.), or by the same module. (Submodule, unit or component, etc.) Realization.
  • FIG. 13 is a schematic structural diagram of a communication device 600 according to an embodiment of the present application.
  • the communication device 600 shown in FIG. 13 includes a processor 610, and the processor 610 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620.
  • the processor 610 may call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 600 may be the first terminal or the second terminal of the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the first terminal or the second terminal in the various methods of the embodiments of the present application. , For the sake of brevity, I won’t repeat it here.
  • FIG. 14 is a schematic structural diagram of a chip 700 according to an embodiment of the present application.
  • the chip 700 shown in FIG. 14 includes a processor 710, and the processor 710 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720.
  • the processor 710 may call and run a computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710, or may be integrated in the processor 710.
  • the chip 700 may further include an input interface 730.
  • the processor 710 can control the input interface 730 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 700 may further include an output interface 740.
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the first terminal or the second terminal in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the first terminal or the second terminal in the various methods of the embodiments of the present application. It's concise, so I won't repeat it here.
  • the chip mentioned in the embodiment of the present application may also be referred to as a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip, etc.
  • the aforementioned processors can be general-purpose processors, digital signal processors (digital signal processors, DSP), ready-made programmable gate arrays (field programmable gate arrays, FPGAs), application specific integrated circuits (ASICs), or Other programmable logic devices, transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processors
  • FPGA field programmable gate arrays
  • ASIC application specific integrated circuits
  • the aforementioned general-purpose processor may be a microprocessor or any conventional processor.
  • the above-mentioned memory may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM).
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memory in the embodiments of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
  • FIG. 15 is a schematic block diagram of a communication system 800 according to an embodiment of the present application. As shown in FIG. 15, the communication system 800 includes a first terminal 810 and a second terminal 820.
  • the first terminal 810 is configured to send first information to the second terminal, where the first information is used to instruct the second terminal to allocate side transmission resources to the first terminal.
  • the second terminal 820 is configured to receive first information from the first terminal; based on the first information, allocate sideline transmission resources to the first terminal.
  • the first terminal 810 can be used to implement the corresponding functions implemented by the first terminal in the above method
  • the second terminal 820 can be used to implement the above method implemented by the second terminal The corresponding function.
  • I will not repeat them here.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instruction may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instruction may be transmitted from a website, computer, server, or data center through a cable (Such as coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种资源分配方法和终端。该资源分配方法,包括:第一终端向第二终端发送第一信息,所述第一信息用于指示第二终端为所述第一终端分配侧行传输资源。本申请实施例,可以通过终端分配侧行传输资源,减少终端之间的侧行传输干扰。此外,与向网络申请传输资源相比,可以减少延时,减少分配时间,提高分配效率。

Description

资源分配方法和终端 技术领域
本申请涉及通信领域,并且更具体地,涉及一种资源分配方法和终端。
背景技术
设备到设备(Device to Device,D2D)通信是一种基于侧行链路(Sidelink,SL)的传输技术。与传统的蜂窝***中通信数据通过基站接收或者发送的方式不同,D2D***具有更高的频谱效率以及更低的传输时延。车联网(Vehicle to Everything,V2X)***采用终端到终端直接通信的方式。在侧行传输中,终端可以向网络申请传输资源,这种情况下会存在网络延迟;终端也可以自主选取传输资源,这种情况下容易出现选取的传输资源冲突,导致终端之间的侧行传输干扰。因此,如何合理地分配传输资源,是侧行传输需要解决的问题。
发明内容
本申请实施例提供一种资源分配方法和终端,可以通过终端分配侧行传输资源,减少终端之间的侧行传输干扰。
本申请实施例提供一种资源分配方法,包括:
第一终端向第二终端发送第一信息,该第一信息用于指示第二终端为该第一终端分配侧行传输资源。
本申请实施例提供一种资源分配方法,包括:
第二终端接收来自第一终端的第一信息;
该第二终端基于该第一信息为该第一终端分配侧行传输资源。
本申请实施例提供一种终端,包括:
发送单元,用于向第二终端发送第一信息,该第一信息用于指示第二终端为第一终端分配侧行传输资源。
本申请实施例提供一种终端,包括:
接收单元,用于接收来自第一终端的第一信息;
分配单元,用于基于该第一信息为该第一终端分配侧行传输资源。
本申请实施例提供一种终端,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的资源分配方法。
本申请实施例提供一种芯片,用于实现上述的资源分配方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的资源分配方法。
本申请实施例提供一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的资源分配方法。
本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的资源分配方法。
本申请实施例提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述的资源分配方法。
本申请实施例,可以通过终端分配侧行传输资源,减少终端之间的侧行传输干扰。此外,与向网络申请传输资源相比,可以减少延时,减少分配时间,提高分配效率。
附图说明
图1是根据本申请实施例的应用场景的示意图。
图2A是网络覆盖内侧行通信的示意图。
图2B是部分网络覆盖侧行通信的示意图。
图2C是网络覆盖外侧行通信的示意图。
图3A是单播传输的示意图。
图3B是组播传输的示意图。
图3C是广播传输的示意图。
图4是侧行反馈的示意图。
图5是是根据本申请一实施例侧行反馈信息处理方法的示意性流程图。
图6是侧行资源分配的示意图。
图7是利用目的地址信息进行侧行资源分配的示意图。
图8是一种侧行传输的示意图。
图9是另一种侧行传输的示意图。
图10是根据本申请另一实施例的资源分配方法的示意性流程图。
图11是根据本申请一实施例的终端的示意性框图。
图12是根据本申请另一实施例的终端的示意性框图。
图13是根据本申请实施例的通信设备示意性框图。
图14是根据本申请实施例的芯片的示意性框图。
图15是根据本申请实施例的通信***的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通讯(Global System of Mobile communication,GSM)***、码分多址(Code Division Multiple Access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)***、先进的长期演进(Advanced long term evolution,LTE-A)***、新无线(New Radio,NR)***、NR***的演进***、免授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)***、免授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)***、通用移动通信***(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信(5th-Generation,5G)***或其他通信***等。
通常来说,传统的通信***支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信***将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机 器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可以应用于这些通信***。
可选地,本申请实施例中的通信***可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
本申请实施例对应用的频谱并不限定。例如,本申请实施例可以应用于授权频谱,也可以应用于免授权频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中:终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信***,例如,NR网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备等。
在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
图1示例性地示出了一种通信***。该通信***包括一个网络设备110和两个终端设备120。可选地,该通信***100可以包括多个网络设备110,并且每个网络设备110的覆盖范围内可以包括其它数量的终端设备120,本申请实施例对此不做限定。
可选地,该通信***100还可以包括移动性管理实体(Mobility Management Entity,MME)、接入与移动性管理功能(Access and Mobility Management Function,AMF)等其他网络实体,本申请实施例对此不作限定。
应理解,本文中术语“***”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在侧行通信中,根据进行通信的终端所处的网络覆盖情况,可以分为:网络覆盖内侧行通信、部分网络覆盖侧行通信及网络覆盖外侧行通信,如图2A、图2B和图2C所示。
在网络覆盖内侧行通信的情况下,所有进行侧行通信的终端处于同一基站的覆盖范围内。因此,这些终端均可以通过接收基站的配置信令,基于相同的侧行配置进行侧行通信。
在部分网络覆盖侧行通信的情况下,部分进行侧行通信的终端位于基站的覆盖范围内,这部分终端能够接收到基站的配置信令,而且根据基站的配置进行侧行通信。而位于网络覆盖范围外的终端,无法接收基站的配置信令。在这种情况下,网络覆盖范围外的终端可以根据预配置(pre-configuration)信息及位于网络覆盖范围内的终端发送的侧行广播信道(Physical Sidelink Broadcast Channel,PSBCH)中携带的信息确定侧行配置,进行侧行通信。
在网络覆盖外侧行通信的情况下,所有进行侧行通信的终端均位于网络覆盖范围外,所有终端均根据预配置信息确定侧行配置进行侧行通信。
车联网***采用终端到终端直接通信的方式,第三代移动通信标准化组织(3rd Generation Partnership Project,3GPP)协议中,车联网具有两种传输模式:第一模式和第二模式。
第一模式:终端的传输资源是由网络例如基站gNB分配的。终端根据基站分配的资源在侧行链路上进行数据的发送;基站可以为终端分配单次传输的资源,也可以为终端分配半静态传输的资源。如图2A所示,终端位于网络覆盖范围内,网络为终端分配侧行传输使用的传输资源。
第二模式:终端在资源池中选取一个资源进行数据的传输。如图2C所示,终端位于小区覆盖范围外,终端在预配置的资源池中自主选取传输资源进行侧行传输。或者,如图2A所示,终端在网络配置的资源池中自主选取传输资源进行侧行传输。
在NR-V2X中,可以支持自动驾驶,因此对车辆之间数据交互提出了更高的要求。如更高的吞吐量、更低的时延、更高的可靠性、更大的覆盖范围、更灵活的资源分配等。
在LTE-V2X中,支持广播传输方式,在NR-V2X中,引入了单播和组播的传输方式。对于单播传输,其接收端终端只有一个终端。如图3A所示,UE1、UE2之间进行单播传输。对于组播传输,其接收端是一个通信组内的所有终端,或者是在一定传输距离内的所有终端。如图3B所示,UE1、UE2、UE3和UE4构成一个通信组,其中UE1发送数据,该组内的其他终端都是接收端终端。对于广播传输方式,其接收端是发送端终端周围的任意一个终端。如图3C所示,UE1是发送端终端,其周围的其他终端,UE2-UE6都是接收端终端。
在NR-V2X中,为了提高可靠性,引入了侧行反馈信道。例如,如图4所示,对于单播传输,发送端终端向接收端终端发送侧行数据(例如包括物理侧行控制信道(Physical Sidelink Control Channel,PSCCH)和物理侧行共享信道(Physical Sidelink Shared Channel,PSSCH));接收端终端向发送端终端发送混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)反馈信息,发送端终端根据接收端终端的反馈信息判断是否需要进行重传。其中,HARQ反馈信息承载在侧行反馈信道例如物理侧行反馈信道(Physical Sidelink Feedback Channel,PSFCH)中。
可以通过预配置信息或者网络配置信息激活或者去激活侧行反馈。如果侧行反馈被激活,则接收端 终端接收发送端终端发送的侧行数据,并且根据检测结果向发送端反馈HARQ肯定确认(Acknowledgement,ACK)或者否定确认(Negative Acknowledgement,NACK)。发送端终端根据接收端终端的反馈信息决定发送重传数据或者新数据。如果侧行反馈被去激活,接收端终端不需要发送反馈信息,发送端终端通常采用盲重传的方式发送数据。例如,发送端终端对每个侧行数据重复发送K次,而不是根据接收端终端反馈信息决定是否需要发送重传数据。
图5是根据本申请一实施例的资源分配方法200的示意性流程图。该方法可选地可以应用于图1所示的***,但并不仅限于此。该方法包括以下内容的至少部分内容。
S210、第一终端向第二终端发送第一信息,该第一信息用于指示第二终端为该第一终端分配侧行传输资源。
在一种应用场景中,在侧行通信中,多个终端可以构成一个通信组。该通信组中可以有一个终端作为中央控制节点,又称为组头终端。该中央控制节点可以具有如下功能:负责通信组的建立、维护;组成员的加入、离开;进行资源的分配、协调和调度,为其他终端分配侧行传输资源,接收其他终端的侧行反馈信息;与其他通信组进行资源协调等功能。为了实现中央控制节点为其他终端分配侧行传输资源,该中央控制节点可以获取其他终端的资源请求、缓冲区状态报告、待传输侧行数据的周期等信息。
例如,如图6所示,通信组中包括第一终端UE1和第二终端UE2。第一终端为请求分配资源的组成员,第二终端为中央控制节点或组头终端。第一终端可以向第二终端发送第一信息,该第一信息用于辅助第二终端为第一终端分配侧行传输资源。第二终端收到第一信息后,可以基于该第一信息为第一终端分配侧行传输资源。然后,第二终端将为第一终端分配的侧行传输资源发送给第一终端。第一终端可以使用该侧行传输资源传输数据,例如向第三终端发送侧行数据。
本申请实施例的资源分配方法,可以通过终端分配侧行传输资源,减少终端之间的侧行传输干扰。例如,多个终端可以构成一个通信组,该通信组中的一个终端作为组头终端或中央控制节点,通过该组头终端可以为组成员终端分配侧行传输资源,从而避免组成员终端的侧行传输之间的干扰。此外与向网络申请传输资源相比,通过组头终端为成员终端分配侧行传输资源,可以减少延时,减少分配时间,提高分配效率。
可选地,在本申请实施例中,该第一信息包括调度请求(Scheduling Request,SR)。
SR是一种资源请求信息,当第一终端有待传输的侧行数据时,可以向第二终端发送资源请求信息SR,该SR用于向第二终端请求侧行传输资源。第二终端基于该SR可以获取第一终端的资源请求信息,从而为第一终端分配侧行传输资源。
例如,第一终端向第二终端发送侧行反馈信道PSFCH,在该侧行反馈信道中承载资源请求信息SR。
可选地,在本申请实施例中,该第一信息还包括缓冲区状态报告(Buffer Status Report,BSR)。
具体地,第一终端向第二终端发送BSR,以指示第一终端的缓冲区状态(Buffer Status),如缓冲区的大小、对应的逻辑信道标识(Logical Channel Identity)。第二终端可以根据BSR指示的缓冲区大小为第一终端分配适当大小的传输资源。
可选地,在本申请实施例中,该第一信息还包括该第一终端待传输侧行数据的相关信息。
可选地,在本申请实施例中,该第一终端待传输侧行数据的相关信息包括以下至少之一:
待传输侧行数据的周期信息;
待传输侧行数据的时延信息;
待传输侧行数据的可靠性信息;
待传输侧行数据的优先级信息;
待传输侧行数据的信息大小。
这些待传输侧行数据的相关信息既可以与SR或BSR一起发送给第二终端,也可以单独发送给第二终端。下面对这几种待传输侧行数据的相关信息分别进行举例说明:
示例一,如果第一终端待传输的侧行数据是周期性的业务,可以将待传输的侧行数据的属性参数如侧行数据的周期,发送给第二终端。第二终端可以为第一终端分配周期性的传输资源或半静态的传输资源等,可以避免第一终端频繁的向第二终端申请传输资源,降低侧行链路的信令开销。
示例二,第一终端向第二终端申请传输资源时,可以将待传输侧行数据的时延信息(Delay budget)发送给第二终端。第二终端可以为第一终端分配满足时延需求的传输资源,可以避免分配的侧行传输资源对应的时域位置超过该时延需求,导致该传输资源不可用或者是无效的传输资源。
示例三,第一终端向第二终端申请传输资源时,可以将待传输侧行数据的可靠性信息(Reliability)发送给第二终端。第二终端可以根据该可靠性信息对应的可靠性需求为第一终端分配传输资源。例如,对于高可靠性的数据,可以分配多个侧行传输资源或者使能(enable)/激活(active)侧行反馈机制;对于低可靠性的数据,可以无效(disable)/去激活(deactive)侧行反馈机制。
示例四,第一终端将待传输数据的优先级信息发送给第二终端以辅助第二终端为第一终端分配侧行传输资源。例如,在传输资源受限的情况下,第二终端优先为优先级高的数据分配侧行传输资源,或者分配更多的传输资源、更多的传输机会等。
示例五,第一终端向第二终端发送指示信息,用于指示其待传输的侧行数据的信息大小(message size)。第二终端可以根据该信息为第一终端分配满足能承载该信息大小的相应的传输资源。
可选地,在本申请实施例中,该第一信息还包括终端辅助信息。
可选地,在本申请实施例中,该终端辅助信息(UeAssistanceInformation)包括以下至少之一:
该第一终端支持的带宽;
该第一终端支持的载波数;
该第一终端支持的信道数;
该第一终端支持的最大天线端口数;
该第一终端的最大传输层数;
该第一终端支持的调制等级;
该第一终端的能力等级。
例如,终端辅助信息可以包括第一终端支持的带宽,当第二终端在为第一终端分配频域资源时,分配的频域资源大小需要小于或等于第一终端能够支持的带宽大小。
再如,终端辅助信息可以包括第一终端支持的载波数,第二终端可以根据第一终端支持的载波数为该第一终端在一个或者多个载波上分配侧行传输资源,从而可以提高第一终端传输速率。
再如,终端辅助信息可以包括第一终端支持的信道数,例如,一个信道对应20M Hz的传输带宽。第二终端根据该信息可以确定第一终端能够支持的最大带宽,从而可以为第一终端分配相应大小的频域资源。
再如,终端辅助信息可以包括第一终端支持的最大天线端口数,终端支持的天线端口数与能够传输 的最大层数相对应,如支持2个天线端口,即支持传输的数据层数为2层,支持的天线端口数越大,终端的传输速率也越高。
再如,终端辅助信息可以包括第一终端最大传输层数,第二终端可以根据第一终端支持的传输层数为第一终端分配传输资源。例如,假设第一终端待传输的数据是1000个字节(byte),如果第一终端最大支持1层传输,第二终端需要为第一终端分配10个物理资源块(Physical Resource Block,PRB);如果第一终端最大支持2层传输,第二终端可以为第一终端分配5个PRB,第一终端采用2层传输的方式在5个PRB上传输1000个字节。
再如,终端辅助信息可以包括第一终端支持的调制等级,第二终端可以根据第一终端支持的最大调制等级为第一终端分配侧行传输资源。例如,如果第一终端最大支持16QAM的调制等级,第二终端需要为第一终端分配10个PRB用于传输第一终端待传输的数据。如果第一终端可以支持256QAM的调制等级,则第二终端可以为第一终端分配5个PRB用于传输第一终端待传输的数据。
再如,终端的能力等级包括:该终端是否是功率受限(power limit)的终端;该终端是否是节能终端(power saving);该终端是否是低功率消耗(low power consumption)的终端等。
可选地,在本申请实施例中,该第一信息还包括可用资源集合。
例如,可用资源集合可以包括第一终端在资源池中根据侦听获取的可以使用的传输资源的集合。第二终端为第一终端分配侧行传输资源时,由于第二终端和第一终端的位置不同,因此其感知的干扰也可能是不同的。为了辅助第二终端为第一终端分配侧行传输资源,第一终端可以向第二终端发送可用传输资源集合。第二终端可以在该可用资源集合中选取传输资源,并分配给第一终端。
该可用资源集合例如可以包括信道信息、频带信息、梳齿资源块(interlace PRB)信息、时隙信息等。
可选地,在本申请实施例中,该第一信息还包括不可用资源集合。
例如,不可用资源集合可以包括第一终端在资源池中根据侦听获取的不可以使用的传输资源的集合,还可以根据第一终端与其他终端进行侧行传输的状态确定。和上例类似,第一终端也可以向第二终端发送不可用资源集合。第二终端避免为第一终端分配该不可用资源集合中的传输资源。
例如,第一终端与第三终端和第四终端分别进行单播侧行传输,第一终端获知第四终端将要在时隙m向第一终端发送侧行数据。第一终端向第二终端申请向第三终端发送侧行数据的侧行传输资源时,可以将时隙m所对应的传输资源集合发送给第二终端,避免第二终端为其分配该时隙m上的传输资源。这样,可以避免第一终端在该时隙上,既要发数据又要接收数据,避免半双工问题。
可选地,在本申请实施例中,该第一信息还包括信道占用率(Channel Busy Ratio,CBR)。
例如,第一终端可以测量CBR,该CBR用于反映传输信道或传输资源被占用的比率,包括被同***用户(如基于侧行传输技术的用户)或异***用户(如无线保真(Wireless Fidelity,WiFi)用户)占用的信道。
可选地,在本申请实施例中,该第一信息还包括功率信息。
可选地,在本申请实施例中,该功率信息包括以下至少之一:
该第一终端的最大发送功率信息;
该第一终端期望接收到的功率信息;
该第一终端的功率余量信息。
例如,第一终端的最大发送功率信息可以为23dBm(分贝毫瓦)。
再如,收到第一终端期望接收到的功率信息后,第二终端根据该信息以及侧行链路的路损,可以确定向第一终端发送侧行数据或资源分配信息所对应的传输功率。
再如,收到第一终端的功率余量(power headroom)信息后,第二终端根据该信息可以调整第一终端的发送功率。第一终端发送侧行数据的发送功率可以由第二终端控制,第二终端可以提高或降低第一终端的发送功率。第一终端将功率余量上报给第二终端,第二终端可以获知第一终端的功率余量,从而可以获知是否还可以提高第一终端的发送功率,或者能够提高多少发送功率。例如,第一终端将最大发送功率(23dBm)发送给第二终端,第二终端为第一终端分配了第一侧行传输资源,第一终端在该第一侧行传输资源上以17dBm发送侧行数据。如果第一终端向第二终端上报功率余量6dBm,第二终端可以获知还可以为第一终端调整的功率范围为6dBm。进一步的,第二终端根据收到的第一终端的最大功率23dBm信息,可以获知第一终端的发送功率是17dBm。
可选地,在本申请实施例中,该第一信息还包括目的地址信息。例如,目的地址信息(Destination Identity)可以包括第一终端的待传输数据所对应的接收端的信息。
可选地,在本申请实施例中,该目的地址信息包括第三终端的标识,该第三终端是该第一终端的待传输侧行数据的接收端终端。
具体地,如图7所示,第一终端可以将待传输数据所对应的接收端的信息发送给第二终端。例如,第一终端要向第三终端发送侧行数据,第一终端在向第二终端请求传输资源时,向第二终端发送该侧行传输对应的目的地址,即第三终端标识。第二终端为第一终端分配侧行传输资源,如果使能侧行反馈信息,则第二终端可以为第三终端分配用于传输侧行反馈信息的传输资源。这样,第三终端可以将第一终端发送的侧行数据对应的侧行反馈信息直接发送给第二终端,而不是发送给第一终端,再由第一终端发送给第二终端,可以降低传输时延和传输资源的开销。
可选地,在本申请实施例中,该第一信息还包括同步源信息。
可选地,在本申请实施例中,该同步源信息包括该第一终端的同步源的类型、可靠性和测量结果的至少之一。
例如,同步源的类型可以包括:全球卫星导航***(Global Navigation Satellite System,GNSS);基站例如gNB/eNB;终端例如UE等。第一终端还可以向第二终端发送指示信息用于确定该第一终端是否是以第二终端作为同步源。
此外,第一终端还可以向第二终端发送该同步源是否可靠或基于该同步源的测量结果。例如,如果以gNB作为同步源,第一终端可以向第二终端上报基于同步信号块(Synchronization Signal Block,SSB)的测量结果,例如参考信号接收功率(Reference Signal Receiving Power,RSRP)。再如,如果以第二终端为同步源,第一终端可以向第二终端上报基于第二终端发送的侧行同步信号块(Sidelink SSB,S-SSB)的测量结果RSRP。
可选地,在本申请实施例中,该第一信息通过以下至少之一承载:
侧行控制信息(Sidelink Control Information,SCI);
侧行反馈信道PSFCH;
PC5-无线资源控制(Radio Resource Control,RRC)信令;
媒体访问控制(Media Access Control,MAC)控制元素(Control Element,CE)。
具体地,在NR-V2X中,侧行控制信息SCI可以包括第一阶SCI和第二阶SCI。其中第一阶SCI承载在PSCCH中,用于传输调度PSSCH的信息,如PSSCH的传输资源、优先级信息、预留资源指示信息、调制与编码策略(Modulation and Coding Scheme,MCS)、解调参考信号(Demodulation Reference Signal,DMRS)图案、天线端口数等。第二阶SCI用于传输解调PSSCH的信息,如HARQ进程号、NDI(New Data Indicator,新数据指示)、发送端标识(Identity,ID)信息、目标端ID信息、侧行反馈指示信息等。第二阶SCI可以和侧行数据复用。例如,第二阶SCI和PSSCH一起传输,并且映射到PSSCH DMRS符号周围,根据PSSCH DMRS解调第二阶SCI。
例如,上述资源请求信息SR对应1比特,承载在第一阶SCI或第二阶SCI中。
在组播中,组头终端和组成员之间可以通过PC5-RRC信令交互信息,该第一信息可以承载在PC5-RRC信令中。其中,PC5是终端与终端之间的连接接口。
此外,该第一信息可以承载在侧行数据的MAC CE中。
在一种示例中,如图8所示,UE1、UE2、UE3构成通信组,UE2是组头终端,UE1和UE3是组成员终端,UE2负责为组成员终端分配侧行传输资源。UE1要向UE3发送侧行数据,UE1向UE2发送资源请求,并发送缓冲区报告,UE2为UE1分配传输资源,UE1使用该传输资源向UE3发送侧行数据1。
如图9所示,当UE1有周期性的业务需要向UE3发送时,UE1向UE2申请传输资源,并且向UE2发送待传输数据的周期、信息大小等参数。UE2为UE1分配半静态的传输资源。UE1使用UE2分配的半静态传输资源分别向UE3发送侧行数据2、3、4。
在本申请实施例中,终端有待传输的侧行数据时,可以向中央控制节点申请传输资源,并且向中央控制节点发送辅助信息,例如包括待传输数据的属性参数,可用资源集合,功率信息,目标地址信息等,以辅助中央控制节点为其分配传输资源。
图10是根据本申请另一实施例的资源分配方法300的示意性流程图。该方法可选地可以应用于图1所示的***,但并不仅限于此。该方法包括以下内容的至少部分内容。
S310、第二终端接收来自第一终端的第一信息。
S320、该第二终端基于该第一信息为该第一终端分配侧行传输资源。
可选地,在本申请实施例中,该第一信息包括调度请求SR。
可选地,在本申请实施例中,该第一信息包括缓冲区状态报告BSR。
可选地,在本申请实施例中,该第一信息还包括该第一终端待传输侧行数据的相关信息。
可选地,在本申请实施例中,该第一终端待传输侧行数据的相关信息包括以下至少之一:
待传输侧行数据的周期信息;
待传输侧行数据的时延信息;
待传输侧行数据的可靠性信息;
待传输侧行数据的优先级信息;
待传输侧行数据的信息大小。
可选地,在本申请实施例中,该第一信息还包括终端辅助信息。
可选地,在本申请实施例中,该终端辅助信息包括以下至少之一:
该第一终端支持的带宽;
该第一终端支持的载波数;
该第一终端支持的信道数;
该第一终端支持的最大天线端口数;
该第一终端的最大传输层数;
该第一终端支持的调制等级;
该第一终端的能力等级。
可选地,在本申请实施例中,该第一信息还包括可用资源集合。
可选地,在本申请实施例中,该第一信息还包括不可用资源集合。
可选地,在本申请实施例中,该第一信息还包括信道占用率CBR。
可选地,在本申请实施例中,该第一信息还包括功率信息。
可选地,在本申请实施例中,该功率信息包括以下至少之一:
该第一终端的最大发送功率信息;
该第一终端期望接收到的功率信息;
该第一终端的功率余量信息。
可选地,在本申请实施例中,该第一信息还包括目的地址信息。
可选地,在本申请实施例中,该目的地址信息包括第三终端的标识,该方法还包括:
所述第二终端为所述第一终端分配侧行反馈信息的传输资源,用于所述第一终端向所述第三终端发送侧行数据。
可选地,在本申请实施例中,该第一信息还包括同步源信息。
可选地,在本申请实施例中,该同步源信息包括该第一终端的同步源的类型、可靠性和测量结果的至少之一。
可选地,在本申请实施例中,其中,该第一信息通过以下至少之一承载:
侧行控制信息SCI;
侧行反馈信道PSFCH;
PC5-无线资源控制RRC信令;
媒体访问控制MAC控制元素CE。
本实施例的第二终端执行方法300的具体示例可以参见上述方法200的中关于第二终端的相关描述,为了简洁,在此不再赘述。
图11是根据本申请一实施例的终端400的示意性框图。该终端400可以为上述资源分配方法中的第一终端。该终端可以包括:
发送单元410,用于向第二终端发送第一信息,该第一信息用于指示第二终端为第一终端分配侧行传输资源。
可选地,在本申请实施例中,该第一信息包括调度请求SR。
可选地,在本申请实施例中,该第一信息还包括缓冲区状态报告BSR。
可选地,在本申请实施例中,该第一信息还包括该第一终端待传输侧行数据的相关信息。
可选地,在本申请实施例中,该第一终端待传输侧行数据的相关信息包括以下至少之一:
待传输侧行数据的周期信息;
待传输侧行数据的时延信息;
待传输侧行数据的可靠性信息;
待传输侧行数据的优先级信息;
待传输侧行数据的信息大小。
可选地,在本申请实施例中,该第一信息还包括终端辅助信息。
可选地,在本申请实施例中,该终端辅助信息包括以下至少之一:
该第一终端支持的带宽;
该第一终端支持的载波数;
该第一终端支持的信道数;
该第一终端支持的最大天线端口数;
该第一终端的最大传输层数;
该第一终端支持的调制等级;
该第一终端的能力等级。
可选地,在本申请实施例中,该第一信息还包括可用资源集合。
可选地,在本申请实施例中,该第一信息还包括不可用资源集合。
可选地,在本申请实施例中,该第一信息还包括信道占用率CBR。
可选地,在本申请实施例中,该第一信息还包括功率信息。
可选地,在本申请实施例中,该功率信息包括以下至少之一:
该第一终端的最大发送功率信息;
该第一终端期望接收到的功率信息;
该第一终端的功率余量信息。
可选地,在本申请实施例中,该第一信息还包括目的地址信息。
可选地,在本申请实施例中,该目的地址信息包括第三终端的标识,该第三终端是该第一终端的待传输侧行数据的接收端终端。
可选地,在本申请实施例中,该第一信息还包括同步源信息。
可选地,在本申请实施例中,该同步源信息包括该第一终端的同步源的类型、可靠性和测量结果的至少之一。
可选地,在本申请实施例中,该第一信息通过以下至少之一承载:
侧行控制信息SCI;
侧行反馈信道PSFCH;
PC5-无线资源控制RRC信令;
媒体访问控制MAC控制元素CE。
本申请实施例的终端400能够实现前述的方法实施例中的第一终端的对应功能。该终端400中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。
需要说明,关于申请实施例的终端400中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
图12是根据本申请另一实施例的终端500的示意性框图。该终端500可以为上述资源分配方法中的第二终端。该终端500可以包括:
接收单元510,用于接收来自第一终端的第一信息;
分配单元520,用于基于该第一信息为该第一终端分配侧行传输资源。
可选地,在本申请实施例中,该第一信息包括调度请求SR。
可选地,在本申请实施例中,该第一信息包括缓冲区状态报告BSR。
可选地,在本申请实施例中,该第一信息还包括该第一终端待传输侧行数据的相关信息。
可选地,在本申请实施例中,该第一终端待传输侧行数据的相关信息包括以下至少之一:
待传输侧行数据的周期信息;
待传输侧行数据的时延信息;
待传输侧行数据的可靠性信息;
待传输侧行数据的优先级信息;
待传输侧行数据的信息大小。
可选地,在本申请实施例中,该第一信息还包括终端辅助信息。
可选地,在本申请实施例中,该终端辅助信息包括以下至少之一:
该第一终端支持的带宽;
该第一终端支持的载波数;
该第一终端支持的信道数;
该第一终端支持的最大天线端口数;
该第一终端的最大传输层数;
该第一终端支持的调制等级;
该第一终端的能力等级。
可选地,在本申请实施例中,该第一信息还包括可用资源集合。
可选地,在本申请实施例中,该第一信息还包括不可用资源集合。
可选地,在本申请实施例中,该第一信息还包括信道占用率CBR。
可选地,在本申请实施例中,该第一信息还包括功率信息。
可选地,在本申请实施例中,该功率信息包括以下至少之一:
该第一终端的最大发送功率信息;
该第一终端期望接收到的功率信息;
该第一终端的功率余量信息。
可选地,在本申请实施例中,该第一信息还包括目的地址信息。
可选地,在本申请实施例中,该目的地址信息包括第三终端的标识,该分配单元520还用于为所述第一终端分配侧行反馈信息的传输资源,用于所述第一终端向所述第三终端发送侧行数据。
可选地,在本申请实施例中,该第一信息还包括同步源信息。
可选地,在本申请实施例中,该同步源信息包括该第一终端的同步源的类型、可靠性和测量结果的至少之一。
可选地,在本申请实施例中,该第一信息通过以下至少之一承载:
侧行控制信息SCI;
侧行反馈信道PSFCH;
PC5-无线资源控制RRC信令;
媒体访问控制MAC控制元素CE。
本申请实施例的终端500能够实现前述的方法实施例中的第二终端的对应功能。该终端500中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。
需要说明,关于申请实施例的终端500中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
图13是根据本申请实施例的通信设备600示意性结构图。图13所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图13所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图13所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600可为本申请实施例的第一终端或第二终端,并且该通信设备600可以实现本申请实施例的各个方法中由第一终端或第二终端实现的相应流程,为了简洁,在此不再赘述。
图14是根据本申请实施例的芯片700的示意性结构图。图14所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图14所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的第一终端或第二终端,并且该芯片可以实现本申请实施例的各个方法中由第一终端或第二终端实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为***级芯片,***芯片,芯片***或片上***芯片等。
上述提及的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、现成可编程门阵列(field programmable gate array,FPGA)、专用集成电路(application specific integrated circuit,ASIC)或者其他可编程逻辑器件、晶体管逻辑器件、分立硬件组件等。其中,上述提到的通用处理器可以是微处理器或者也可以是任何常规的处理器等。
上述提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两 者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图15是根据本申请实施例的通信***800的示意性框图。如图15所示,该通信***800包括第一终端810和第二终端820。
第一终端810,用于向第二终端发送第一信息,该第一信息用于指示第二终端为该第一终端分配侧行传输资源。第二终端820,用于接收来自第一终端的第一信息;基于该第一信息为该第一终端分配侧行传输资源。
其中,上述第一信息的相关描述,该第一终端810可以用于实现上述方法中由第一终端实现的相应的功能,以及该第二终端820可以用于实现上述方法中由第二终端实现的相应的功能。为了简洁,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以该权利要求的保护范围为准。

Claims (78)

  1. 一种资源分配方法,包括:
    第一终端向第二终端发送第一信息,所述第一信息用于指示第二终端为所述第一终端分配侧行传输资源。
  2. 根据权利要求1所述的方法,其中,所述第一信息包括调度请求SR。
  3. 根据权利要求1或2所述的方法,其中,所述第一信息还包括缓冲区状态报告BSR。
  4. 根据权利要求1至3中任一项所述的方法,其中,所述第一信息还包括所述第一终端待传输侧行数据的相关信息。
  5. 根据权利要求4所述的方法,其中,所述第一终端待传输侧行数据的相关信息包括以下至少之一:
    待传输侧行数据的周期信息;
    待传输侧行数据的时延信息;
    待传输侧行数据的可靠性信息;
    待传输侧行数据的优先级信息;
    待传输侧行数据的信息大小。
  6. 根据权利要求1至5中任一项所述的方法,其中,所述第一信息还包括终端辅助信息。
  7. 根据权利要求6所述的方法,其中,所述终端辅助信息包括以下至少之一:
    所述第一终端支持的带宽;
    所述第一终端支持的载波数;
    所述第一终端支持的信道数;
    所述第一终端支持的最大天线端口数;
    所述第一终端的最大传输层数;
    所述第一终端支持的调制等级;
    所述第一终端的能力等级。
  8. 根据权利要求1至7中任一项所述的方法,其中,所述第一信息还包括可用资源集合。
  9. 根据权利要求1至8中任一项所述的方法,其中,所述第一信息还包括不可用资源集合。
  10. 根据权利要求1至9中任一项所述的方法,其中,所述第一信息还包括信道占用率CBR。
  11. 根据权利要求1至10中任一项所述的方法,其中,所述第一信息还包括功率信息。
  12. 根据权利要求11所述的方法,其中,所述功率信息包括以下至少之一:
    所述第一终端的最大发送功率信息;
    所述第一终端期望接收到的功率信息;
    所述第一终端的功率余量信息。
  13. 根据权利要求1至12中任一项所述的方法,其中,所述第一信息还包括目的地址信息。
  14. 根据权利要求13所述的方法,其中,所述目的地址信息包括第三终端的标识,所述第三终端是所述第一终端的待传输侧行数据的接收端终端。
  15. 根据权利要求1至14中任一项所述的方法,其中,所述第一信息还包括同步源信息。
  16. 根据权利要求15所述的方法,其中,所述同步源信息包括所述第一终端的同步源的类型、可靠 性和测量结果的至少之一。
  17. 根据权利要求1至16中任一项所述的方法,其中,所述第一信息通过以下至少之一承载:
    侧行控制信息SCI;
    侧行反馈信道PSFCH;
    PC5-无线资源控制RRC信令;
    媒体访问控制MAC控制元素CE。
  18. 一种资源分配方法,包括:
    第二终端接收来自第一终端的第一信息;
    所述第二终端基于所述第一信息为所述第一终端分配侧行传输资源。
  19. 根据权利要求18所述的方法,其中,所述第一信息包括调度请求SR。
  20. 根据权利要求18或19所述的方法,其中,所述第一信息包括缓冲区状态报告BSR。
  21. 根据权利要求18至20中任一项所述的方法,其中,所述第一信息还包括所述第一终端待传输侧行数据的相关信息。
  22. 根据权利要求21所述的方法,其中,所述第一终端待传输侧行数据的相关信息包括以下至少之一:
    待传输侧行数据的周期信息;
    待传输侧行数据的时延信息;
    待传输侧行数据的可靠性信息;
    待传输侧行数据的优先级信息;
    待传输侧行数据的信息大小。
  23. 根据权利要求18至22中任一项所述的方法,其中,所述第一信息还包括终端辅助信息。
  24. 根据权利要求23所述的方法,其中,所述终端辅助信息包括以下至少之一:
    所述第一终端支持的带宽;
    所述第一终端支持的载波数;
    所述第一终端支持的信道数;
    所述第一终端支持的最大天线端口数;
    所述第一终端的最大传输层数;
    所述第一终端支持的调制等级;
    所述第一终端的能力等级。
  25. 根据权利要求18至24中任一项所述的方法,其中,所述第一信息还包括可用资源集合。
  26. 根据权利要求18至25中任一项所述的方法,其中,所述第一信息还包括不可用资源集合。
  27. 根据权利要求18至26中任一项所述的方法,其中,所述第一信息还包括信道占用率CBR。
  28. 根据权利要求18至27中任一项所述的方法,其中,所述第一信息还包括功率信息。
  29. 根据权利要求28所述的方法,其中,所述功率信息包括以下至少之一:
    所述第一终端的最大发送功率信息;
    所述第一终端期望接收到的功率信息;
    所述第一终端的功率余量信息。
  30. 根据权利要求18至29中任一项所述的方法,其中,所述第一信息还包括目的地址信息。
  31. 根据权利要求30所述的方法,其中,所述目的地址信息包括第三终端的标识,所述方法还包括:
    所述第二终端为所述第一终端分配侧行反馈信息的传输资源,用于所述第一终端向所述第三终端发送侧行数据。
  32. 根据权利要求18至31中任一项所述的方法,其中,所述第一信息还包括同步源信息。
  33. 根据权利要求32所述的方法,所述同步源信息包括所述第一终端的同步源的类型、可靠性和测量结果的至少之一。
  34. 根据权利要求18至33中任一项所述的方法,其中,所述第一信息通过以下至少之一承载:
    侧行控制信息SCI;
    侧行反馈信道PSFCH;
    PC5-无线资源控制RRC信令;
    媒体访问控制MAC控制元素CE。
  35. 一种终端,包括:
    发送单元,用于向第二终端发送第一信息,所述第一信息用于指示第二终端为第一终端分配侧行传输资源。
  36. 根据权利要求35所述的终端,其中,所述第一信息包括调度请求SR。
  37. 根据权利要求35或36所述的终端,其中,所述第一信息还包括缓冲区状态报告BSR。
  38. 根据权利要求35至37中任一项所述的终端,其中,所述第一信息还包括所述第一终端待传输侧行数据的相关信息。
  39. 根据权利要求38所述的终端,其中,所述第一终端待传输侧行数据的相关信息包括以下至少之一:
    待传输侧行数据的周期信息;
    待传输侧行数据的时延信息;
    待传输侧行数据的可靠性信息;
    待传输侧行数据的优先级信息;
    待传输侧行数据的信息大小。
  40. 根据权利要求35至39中任一项所述的终端,其中,所述第一信息还包括终端辅助信息。
  41. 根据权利要求40所述的终端,其中,所述终端辅助信息包括以下至少之一:
    所述第一终端支持的带宽;
    所述第一终端支持的载波数;
    所述第一终端支持的信道数;
    所述第一终端支持的最大天线端口数;
    所述第一终端的最大传输层数;
    所述第一终端支持的调制等级;
    所述第一终端的能力等级。
  42. 根据权利要求35至41中任一项所述的终端,其中,所述第一信息还包括可用资源集合。
  43. 根据权利要求35至42中任一项所述的终端,其中,所述第一信息还包括不可用资源集合。
  44. 根据权利要求35至43中任一项所述的终端,其中,所述第一信息还包括信道占用率CBR。
  45. 根据权利要求35至44中任一项所述的终端,其中,所述第一信息还包括功率信息。
  46. 根据权利要求45所述的终端,其中,所述功率信息包括以下至少之一:
    所述第一终端的最大发送功率信息;
    所述第一终端期望接收到的功率信息;
    所述第一终端的功率余量信息。
  47. 根据权利要求35至46中任一项所述的终端,其中,所述第一信息还包括目的地址信息。
  48. 根据权利要求47所述的终端,其中,所述目的地址信息包括第三终端的标识,所述第三终端是所述第一终端的待传输侧行数据的接收端终端。
  49. 根据权利要求35至48中任一项所述的终端,其中,所述第一信息还包括同步源信息。
  50. 根据权利要求49所述的终端,其中,所述同步源信息包括所述第一终端的同步源的类型、可靠性和测量结果的至少之一。
  51. 根据权利要求35至50中任一项所述的终端,其中,所述第一信息通过以下至少之一承载:
    侧行控制信息SCI;
    侧行反馈信道PSFCH;
    PC5-无线资源控制RRC信令;
    媒体访问控制MAC控制元素CE。
  52. 一种终端,包括:
    接收单元,用于接收来自第一终端的第一信息;
    分配单元,用于基于所述第一信息为所述第一终端分配侧行传输资源。
  53. 根据权利要求52所述的终端,其中,所述第一信息包括调度请求SR。
  54. 根据权利要求52或53所述的终端,其中,所述第一信息包括缓冲区状态报告BSR。
  55. 根据权利要求52至54中任一项所述的终端,其中,所述第一信息还包括所述第一终端待传输侧行数据的相关信息。
  56. 根据权利要求55所述的终端,其中,所述第一终端待传输侧行数据的相关信息包括以下至少之一:
    待传输侧行数据的周期信息;
    待传输侧行数据的时延信息;
    待传输侧行数据的可靠性信息;
    待传输侧行数据的优先级信息;
    待传输侧行数据的信息大小。
  57. 根据权利要求52至56中任一项所述的终端,其中,所述第一信息还包括终端辅助信息。
  58. 根据权利要求57所述的终端,其中,所述终端辅助信息包括以下至少之一:
    所述第一终端支持的带宽;
    所述第一终端支持的载波数;
    所述第一终端支持的信道数;
    所述第一终端支持的最大天线端口数;
    所述第一终端的最大传输层数;
    所述第一终端支持的调制等级;
    所述第一终端的能力等级。
  59. 根据权利要求52至58中任一项所述的终端,其中,所述第一信息还包括可用资源集合。
  60. 根据权利要求52至59中任一项所述的终端,其中,所述第一信息还包括不可用资源集合。
  61. 根据权利要求52至60中任一项所述的终端,其中,所述第一信息还包括信道占用率CBR。
  62. 根据权利要求52至61中任一项所述的终端,其中,所述第一信息还包括功率信息。
  63. 根据权利要求62所述的终端,其中,所述功率信息包括以下至少之一:
    所述第一终端的最大发送功率信息;
    所述第一终端期望接收到的功率信息;
    所述第一终端的功率余量信息。
  64. 根据权利要求52至63中任一项所述的终端,其中,所述第一信息还包括目的地址信息。
  65. 根据权利要求64所述的终端,其中,所述目的地址信息包括第三终端的标识,所述分配单元还用于为所述第一终端分配侧行反馈信息的传输资源,用于所述第一终端向所述第三终端发送侧行数据。
  66. 根据权利要求52至65中任一项所述的终端,其中,所述第一信息还包括同步源信息。
  67. 根据权利要求66所述的终端,所述同步源信息包括所述第一终端的同步源的类型、可靠性和测量结果的至少之一。
  68. 根据权利要求52至67中任一项所述的终端,其中,所述第一信息通过以下至少之一承载:
    侧行控制信息SCI;
    侧行反馈信道PSFCH;
    PC5-无线资源控制RRC信令;
    媒体访问控制MAC控制元素CE。
  69. 一种终端,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至17中任一项所述的方法。
  70. 一种终端,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求18至34中任一项所述的方法。
  71. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至17中任一项所述的方法。
  72. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求18至34中任一项所述的方法。
  73. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至17中任一项所述的方法。
  74. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求18至34中任一项所述的方法。
  75. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至17中任一项所述的方法。
  76. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求18 至34中任一项所述的方法。
  77. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至17中任一项所述的方法。
  78. 一种计算机程序,所述计算机程序使得计算机执行如权利要求18至34中任一项所述的方法。
PCT/CN2020/086167 2020-04-22 2020-04-22 资源分配方法和终端 WO2021212372A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/086167 WO2021212372A1 (zh) 2020-04-22 2020-04-22 资源分配方法和终端
EP20932732.9A EP4138496A4 (en) 2020-04-22 2020-04-22 Resource allocation method and terminal
CN202080098129.4A CN115245027A (zh) 2020-04-22 2020-04-22 资源分配方法和终端
US17/970,047 US20230041458A1 (en) 2020-04-22 2022-10-20 Resource allocation method and terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/086167 WO2021212372A1 (zh) 2020-04-22 2020-04-22 资源分配方法和终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/970,047 Continuation US20230041458A1 (en) 2020-04-22 2022-10-20 Resource allocation method and terminal

Publications (1)

Publication Number Publication Date
WO2021212372A1 true WO2021212372A1 (zh) 2021-10-28

Family

ID=78270948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086167 WO2021212372A1 (zh) 2020-04-22 2020-04-22 资源分配方法和终端

Country Status (4)

Country Link
US (1) US20230041458A1 (zh)
EP (1) EP4138496A4 (zh)
CN (1) CN115245027A (zh)
WO (1) WO2021212372A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024078908A1 (en) * 2022-10-13 2024-04-18 Sony Group Corporation Methods for sidelink communication, related wireless devices and a related network node

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230098273A1 (en) * 2021-09-24 2023-03-30 Qualcomm Incorporated Techniques for requesting a type of coordination information

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109314841A (zh) * 2016-07-18 2019-02-05 松下电器(美国)知识产权公司 对v2x传输的服务质量的改进的支持
US20190082459A1 (en) * 2015-05-14 2019-03-14 Blackberry Limited Transmitting a scheduling request for a device-to-device transmission
CN110574476A (zh) * 2017-05-05 2019-12-13 高通股份有限公司 设备到设备通信***中的中继
CN110679190A (zh) * 2017-05-11 2020-01-10 Lg电子株式会社 用于在无线通信***中使用中继ue来分配侧链路资源的方法和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111200875B (zh) * 2014-12-17 2023-09-12 华为技术有限公司 用户设备及d2d通信的方法
US9942917B2 (en) * 2015-05-14 2018-04-10 Blackberry Limited Allocating resources for a device-to-device transmission
JP7288954B2 (ja) * 2018-09-18 2023-06-08 オッポ広東移動通信有限公司 サイドリンクの通信方法とデバイス
EP4106431A4 (en) * 2020-02-12 2024-03-13 Innovative Technology Lab Co., Ltd METHOD AND DEVICE FOR DETERMINING RESOURCES TO BE COVERED FOR DEVICE-TO-DEVICE COMMUNICATION IN A WIRELESS COMMUNICATIONS SYSTEM

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190082459A1 (en) * 2015-05-14 2019-03-14 Blackberry Limited Transmitting a scheduling request for a device-to-device transmission
CN109314841A (zh) * 2016-07-18 2019-02-05 松下电器(美国)知识产权公司 对v2x传输的服务质量的改进的支持
CN110574476A (zh) * 2017-05-05 2019-12-13 高通股份有限公司 设备到设备通信***中的中继
CN110679190A (zh) * 2017-05-11 2020-01-10 Lg电子株式会社 用于在无线通信***中使用中继ue来分配侧链路资源的方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Resource allocation for UE-to-Network relay", 3GPP DRAFT; R1-151279, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Belgrade, Serbia; 20150420 - 20150424, 10 April 2015 (2015-04-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP050949732 *
See also references of EP4138496A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024078908A1 (en) * 2022-10-13 2024-04-18 Sony Group Corporation Methods for sidelink communication, related wireless devices and a related network node

Also Published As

Publication number Publication date
EP4138496A1 (en) 2023-02-22
US20230041458A1 (en) 2023-02-09
EP4138496A4 (en) 2023-06-28
CN115245027A (zh) 2022-10-25

Similar Documents

Publication Publication Date Title
WO2021232382A1 (zh) 侧行反馈资源配置方法、终端设备和网络设备
WO2019214184A1 (zh) 通信方法和设备
EP3941150B1 (en) Random access method, terminal device and network device
WO2021012167A1 (zh) 一种资源处理方法、设备及存储介质
WO2020056696A1 (zh) 一种资源分配方法及装置、终端
WO2020248258A1 (zh) 无线通信方法、收端设备和发端设备
WO2021217674A1 (zh) 侧行反馈方法和终端设备
US20230041458A1 (en) Resource allocation method and terminal
US20230069646A1 (en) Method for determining transmission resources and terminal device
WO2020034223A1 (zh) Harq信息的传输方法、网络设备和终端设备
WO2022134076A1 (zh) 无线通信的方法和终端设备
US20230345426A1 (en) Resource determination method, first terminal device, and second terminal device
WO2021196237A1 (zh) 侧行反馈信息处理方法、终端设备和网络设备
WO2021159413A1 (zh) 下行传输方法和终端设备
US20230069425A1 (en) Sidelink resource allocation method and terminal device
WO2020124534A1 (zh) 数据传输的方法和设备
WO2022061776A1 (zh) 确定资源集合的方法和终端设备
WO2020051767A1 (zh) 传输信息、接收信息的方法和通信设备
WO2023133685A1 (zh) 无线通信的方法及终端设备
WO2022236696A1 (zh) 无线通信的方法和终端设备
WO2023060559A1 (zh) 无线通信的方法和终端设备
WO2023108351A1 (zh) 无线通信的方法及终端设备
WO2022126636A1 (zh) 无线通信的方法和终端设备
WO2023220961A1 (zh) 数据传输方法、第一设备、第二设备
WO2023231965A1 (zh) 数据传输的方法、装置和***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932732

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020932732

Country of ref document: EP

Effective date: 20221117