WO2021160117A1 - 配置信息获取方法及装置 - Google Patents

配置信息获取方法及装置 Download PDF

Info

Publication number
WO2021160117A1
WO2021160117A1 PCT/CN2021/076212 CN2021076212W WO2021160117A1 WO 2021160117 A1 WO2021160117 A1 WO 2021160117A1 CN 2021076212 W CN2021076212 W CN 2021076212W WO 2021160117 A1 WO2021160117 A1 WO 2021160117A1
Authority
WO
WIPO (PCT)
Prior art keywords
configuration information
cell
terminal device
identity
dci
Prior art date
Application number
PCT/CN2021/076212
Other languages
English (en)
French (fr)
Inventor
张云昊
骆喆
徐修强
陈雁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21754416.2A priority Critical patent/EP4087304A4/en
Priority to BR112022015740A priority patent/BR112022015740A2/pt
Publication of WO2021160117A1 publication Critical patent/WO2021160117A1/zh
Priority to US17/874,006 priority patent/US20220369300A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0219Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave where the power saving management affects multiple terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • H04W52/028Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof switching on or off only a part of the equipment circuit blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/26Network addressing or numbering for mobility support
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of communication technology, and specifically relate to a method and device for obtaining configuration information.
  • Downlink control information can schedule the transmission of the downlink data channel, such as scheduling the transmission of the physical downlink shared channel (PDSCH); it can also schedule the transmission of the uplink data channel, such as scheduling the physical uplink sharing Channel (physical uplink shared channel, PUSCH) transmission.
  • the DCI for scheduling PDSCH/PUSCH transmission is transmitted via a physical downlink control channel (PDCCH).
  • the PDCCH is carried on the time-frequency resource determined by the configuration information of the control resource set (CORESET) and the configuration information of the search space (SearchSpace).
  • the time-frequency resource jointly determined by the configuration information of CORESET and the configuration information of SearchSpace may be referred to as the time-frequency resource of DCI, and the terminal device can detect the DCI on the time-frequency resource.
  • the cyclic redundancy check (CRC) of the DCI is scrambled by a radio network temporary identifier (RNTI).
  • RNTI radio network temporary identifier
  • the RNTI may be public or exclusive to the terminal device, which can be pre-defined or configured by the network device for the terminal device.
  • the terminal device uses the RNTI to try to descramble the CRC of the DCI, and if the descrambling is successful, it can receive and obtain the content of the DCI.
  • the terminal device can establish a radio resource control (Radio Resource Control, RRC) connection with the network device.
  • RRC Radio Resource Control
  • the RRC state of the terminal device is the RRC connected state.
  • the RRC state that the terminal device is in may also be the RRC idle state or the RRC inactive state.
  • a terminal device in the RRC inactive state cannot obtain the configuration of the corresponding RNTI when entering the RRC inactive state, and therefore cannot perform data transmission with the network device.
  • the terminal device needs to obtain the RNTI used when in the RRC inactive state.
  • the embodiments of the present application provide a method and device for obtaining configuration information, which can enable a terminal device to obtain an RNTI used when the RRC is in an inactive state, thereby enabling the terminal device to perform data transmission with low power consumption.
  • the first aspect of the embodiments of the present application provides a method for obtaining configuration information.
  • the method may be executed by a terminal device or a component of the terminal device (for example, a processor, a chip, or a chip system, etc.), including:
  • Receive downlink control information DCI DCI; receive downlink data; send uplink control information; send uplink data.
  • the first configuration information is used to configure the RNTI.
  • the first configuration information for configuring the RNTI is obtained through the cell identifier, so that the terminal device can implement data transmission with the network device according to the RNTI.
  • the cell identifier can be used to identify the cell where the terminal device resides, for example, it can be used to identify the cell where the terminal device resides when the terminal device is in the RRC inactive state.
  • the terminal device in the RRC inactive state executes the method provided in the first aspect, so that the terminal device can obtain the RNTI used when it is in the RRC inactive state, so as to realize the communication between the terminal device in the RRC inactive state and the network device. data transmission.
  • the terminal device is in the RRC inactive state for data transmission, so that the terminal device performs data transmission with low power consumption, which can slow down the power consumption speed of the terminal device and extend the use time of the terminal device.
  • signaling overhead can be saved, thereby saving network resources.
  • the terminal device receives second configuration information, and the second configuration information is used to configure the correspondence between the cell identity and the first configuration information.
  • the terminal device can receive the second configuration information when it is in the RRC connected state, and when it is in the RRC inactive state, it can obtain the first configuration information according to the second configuration information and the acquired cell identity, so as to make the RRC inactive state
  • the terminal device can transmit data with low power consumption.
  • the corresponding relationship between the cell identity and the first configuration information can also be predefined, so that when the terminal device obtains the cell identity, the first configuration information can be directly obtained, so that it can quickly enter data transmission with low power consumption. Scenes.
  • the corresponding relationship between the cell identifier and the first configuration information may be that the cell identifier and the RNTI have a corresponding relationship, and the terminal device obtains the RNTI according to the acquired cell identifier, so as to perform the following items according to the RNTI One or more items: receiving downlink control information, receiving downlink data; sending uplink control information, sending uplink data, so that the terminal device can perform data transmission with low power consumption.
  • the first configuration information is used to configure the time-frequency resource of the downlink control information, so that the terminal device can quickly detect the downlink control information.
  • the time-frequency resource of the downlink control information is determined by the configuration information of the control resource set and the configuration information of the search space.
  • the corresponding relationship between the cell identity and the first configuration information may be that the cell identity has a corresponding relationship with the RNTI and the time-frequency resource of the downlink control information, and the terminal device obtains the RNTI according to the acquired cell identity. And the time-frequency resources of the downlink control information, so that the terminal equipment can quickly obtain the downlink control information.
  • the downlink control information can schedule PDSCH transmission, and the terminal device can receive the downlink data carried on the PDSCH according to the received downlink control information, so that the terminal device can receive the downlink data with low power consumption.
  • the corresponding relationship between the cell identity and the first configuration information may be that the cell identity has a corresponding relationship with RNTI and time-frequency resources of the downlink control information.
  • the terminal device also obtains The synchronization signal block index, the synchronization signal block index has a corresponding relationship with the time-frequency resource of the downlink control information.
  • the terminal device obtains the RNTI according to the obtained cell identity, and obtains the time-frequency resource of the downlink control information according to the obtained cell identity and synchronization signal block index, so that the terminal device can quickly obtain the accurate time-frequency resource of the downlink control information.
  • the terminal device can obtain the cell identity through the detected synchronization signal block, and can obtain a more accurate cell identity; can obtain the synchronization signal block index through the detected synchronization signal block, and can obtain the more accurate synchronization signal block index.
  • the corresponding relationship between the cell identity and the first configuration information may be that the cell identity has a corresponding relationship with RNTI and uplink authorization configuration resources, and the terminal device obtains the RNTI and the uplink authorization according to the obtained cell identity.
  • the resources are configured to send uplink control information and/or uplink data according to the RNTI and uplink authorization configuration resources, so that the terminal device can perform uplink transmission with low power consumption.
  • the first configuration information when the timer corresponding to the first configuration information expires, the first configuration information becomes invalid; otherwise, the timer corresponding to the first configuration information does not expire, and the first configuration information becomes valid.
  • the first configuration information when the terminal device is in the RRC connected state, the first configuration information is invalid; when the terminal device is in the RRC inactive state, the first configuration information is valid.
  • the terminal device fails to transmit data using the RNTI configured by the first configuration information
  • the first configuration information becomes invalid; otherwise, the first configuration information is valid.
  • the terminal device cannot continue to use the first configuration information. For example, it cannot perform one or more of the following according to the first configuration information: receiving downlink control information; receiving downlink data; sending uplink control Information; send uplink data. In this way, invalid data transmission by the terminal device can be avoided.
  • the terminal device can release the RNTI and time-frequency resources configured by the first configuration information in time, thereby saving network resources.
  • a second aspect of the embodiments of the present application provides a communication device.
  • the communication device may be a terminal device, a component in a terminal device, or a device that can be used in combination with the terminal device.
  • the terminal device may be in the RRC inactive state.
  • the device may include a module corresponding to the method/operation/step/action described in the first aspect.
  • the module may be a hardware circuit, software, or a combination of hardware circuit and software.
  • the device may include a processing module and a transceiver module. Exemplary,
  • the processing module is further configured to control the transceiver module to perform one or more of the following according to the first configuration information:
  • Receive downlink control information receive downlink data; send uplink control information; send uplink data.
  • the first configuration information is used to configure the RNTI.
  • the transceiver module is further configured to receive second configuration information, and the second configuration information is used to configure the correspondence between the cell identity and the first configuration information.
  • the cell identity has a corresponding relationship with the first configuration information, specifically: the cell identity has a corresponding relationship with the wireless network temporary identity;
  • the processing module is specifically configured to obtain a temporary wireless network identifier according to the cell identifier.
  • the first configuration information is used for time-frequency resource configuration of downlink control information.
  • the time-frequency resource of the downlink control information is determined by the configuration information of the control resource set and the configuration information of the search space.
  • the cell identity has a corresponding relationship with the first configuration information, specifically: the cell identity has a corresponding relationship with the wireless network temporary identity and the time-frequency resource of the downlink control information;
  • the processing module is specifically configured to obtain the time-frequency resource of the wireless network temporary identification and the downlink control information according to the cell identification.
  • the cell identifier has a corresponding relationship with the first configuration information, specifically: the cell identifier has a corresponding relationship with the wireless network temporary identifier and the time-frequency resource of the downlink control information;
  • the processing module is also used to obtain a synchronization signal block index, and there is a corresponding relationship between the synchronization signal block index and the time-frequency resource of the downlink control information;
  • the processing module is specifically configured to obtain a temporary wireless network identifier according to the cell identifier; and obtain the time-frequency resource of the downlink control information according to the cell identifier and the synchronization signal block index.
  • the first configuration information becomes invalid.
  • the first configuration information becomes invalid.
  • the wireless network temporary identification fails to transmit data
  • the first configuration information becomes invalid.
  • a third aspect of the embodiments of the present application provides a communication device, which includes a processor, configured to implement the method described in the first aspect.
  • the device may also include a memory for storing instructions and data.
  • the memory is coupled with the processor, and when the processor executes the instructions stored in the memory, the device can implement the method described in the first aspect.
  • the device may also include a communication interface, which is used for the device to communicate with other devices.
  • the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface, and the other device may be a network device. Wait.
  • the device includes:
  • Memory used to store program instructions
  • the processor is configured to obtain a cell identity; according to the cell identity, first configuration information is obtained, the cell identity has a corresponding relationship with the first configuration information, and the cell identity is based on a cell in the notification area RNA of the radio access network Identification; according to the first configuration information, control the communication interface to perform one or more of the following:
  • Receive downlink control information receive downlink data; send uplink control information; send uplink data.
  • the first configuration information is used to configure the RNTI.
  • the processor controlling the communication interface further executes: receiving second configuration information, where the second configuration information is used to configure the correspondence between the cell identity and the first configuration information.
  • the cell identity has a corresponding relationship with the first configuration information, specifically: the cell identity has a corresponding relationship with the wireless network temporary identity;
  • the processor is specifically configured to obtain a temporary wireless network identifier according to the cell identifier.
  • the first configuration information is used for time-frequency resource configuration of downlink control information.
  • the time-frequency resource of the downlink control information is determined by the configuration information of the control resource set and the configuration information of the search space.
  • the cell identity has a corresponding relationship with the first configuration information, specifically: the cell identity has a corresponding relationship with the wireless network temporary identity and the time-frequency resource of the downlink control information;
  • the processor is specifically configured to obtain the time-frequency resource of the wireless network temporary identification and the downlink control information according to the cell identification.
  • the cell identity has a corresponding relationship with the first configuration information, specifically: the cell identity has a corresponding relationship with the wireless network temporary identity and the time-frequency resource of the downlink control information;
  • the processor is also used to obtain a synchronization signal block index, and there is a corresponding relationship between the synchronization signal block index and the time-frequency resource of the downlink control information;
  • the processor is specifically configured to obtain the temporary wireless network identification according to the cell identification; and obtain the time-frequency resource of the downlink control information according to the cell identification and the synchronization signal block index.
  • the first configuration information becomes invalid.
  • the first configuration information becomes invalid.
  • the wireless network temporary identification fails to transmit data
  • the first configuration information becomes invalid.
  • a fourth aspect of the embodiments of the present application provides a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute the method provided in the first aspect.
  • a fifth aspect of the embodiments of the present application provides a chip system.
  • the chip system includes a processor and may also include a memory, configured to implement the method provided in the above-mentioned first aspect.
  • the chip system can be composed of chips, or it can include chips and other discrete devices.
  • the sixth aspect of the embodiments of the present application provides a method for obtaining configuration information.
  • the method may be executed by a first network device or a component (such as a processor, a chip, or a chip system, etc.) of the first network device, including:
  • the first network device sends identification information of the terminal device, and the identification information of the terminal device is used to request third configuration information corresponding to the terminal device;
  • the first network device receives the third configuration information; the third configuration information has a corresponding relationship with the cell identity of the second cell, and the cell identity is based on the identity of a cell in the notification area RNA of the radio access network.
  • the first configuration information is used to configure the RNTI.
  • the first network device may be a network device that establishes an RRC connection with the terminal device before the terminal device switches to the RRC inactive state.
  • the first network device may send the identification information of the terminal device to the second network device, and the first network device may Receive the third configuration information from the second network device.
  • the second network device may be a network device in a notification area configured for the terminal device, the number of the second network device may be one or more, and the coverage of the second network device includes one or more second cells. When the terminal device is in the RRC inactive state, it can move within the notification area.
  • the first network device informs the second network device of the identification information of the terminal device, so that the second network device allocates third configuration information to the terminal device, so that the second network device can allocate to different terminal devices
  • the terminal equipment can obtain a dedicated RNTI that is used when the RRC is in an inactive state.
  • the first network device sends fourth configuration information to the terminal device, and the first and fourth configuration information is used to configure the correspondence between the cell identity of the second cell and the third configuration information, so that the terminal device
  • the first configuration information can be obtained according to the obtained cell identity, so that the terminal device can perform data transmission with low power consumption.
  • the correspondence between the third configuration information and the cell identity of the second cell may be that there is a correspondence between the RNTI and the cell identity of the second cell, so that the terminal device can be based on the obtained cell identity of the second cell. ID, obtain the RNTI corresponding to the cell ID, so that the terminal device can obtain the RNTI used when the RRC is in the inactive state, and use the RNTI to realize data transmission with low power consumption.
  • the third configuration information is used to configure the time-frequency resource of the downlink control information, so that the terminal device can quickly detect the downlink control information.
  • the time-frequency resource of the downlink control information is determined by the configuration information of the control resource set and the configuration information of the search space.
  • the corresponding relationship between the third configuration information and the cell identity of the second cell may be that the time-frequency resources of the RNTI and downlink control information have a corresponding relationship with the cell identity of the second cell, so that the terminal device can follow The obtained cell identity of the second cell can quickly obtain downlink control information.
  • the terminal device can obtain the RNTI corresponding to the cell identity according to the obtained cell identity of the second cell;
  • the obtained cell identification and synchronization signal block index obtain the time-frequency resource of the downlink control information, so that the terminal device can quickly obtain the accurate time-frequency resource of the downlink control information.
  • the first network device receives fifth configuration information, and the fifth configuration information is used to configure a timer corresponding to the third configuration information, so that the first network device can determine whether the third configuration information is valid.
  • the fourth configuration information sent by the first network device to the terminal device can also be used to configure a timer corresponding to the third configuration information, so that the terminal device can determine whether the first configuration information is valid, and avoid the terminal device from performing invalid data transmission.
  • the fifth configuration information can come from the second network device, can be sent together with the third configuration information, or can be sent separately.
  • the third configuration information becomes invalid; otherwise, the timer corresponding to the third configuration information does not expire, and the third configuration information is valid.
  • the third configuration information when the terminal device is in the RRC connected state, the third configuration information is invalid; when the terminal device is not in the RRC connected state, the third configuration information is valid.
  • the third configuration information becomes invalid.
  • a seventh aspect of the embodiments of the present application provides a communication device.
  • the communication device may be a first network device, a component in the first network device, or a device that can be matched and used with the first network device.
  • the device may include a module corresponding to the method/operation/step/action described in the sixth aspect.
  • the module may be a hardware circuit, or software, or a hardware circuit combined with software.
  • the device may include a transceiver module, and the transceiver module may include a sending module and a receiving module. Exemplary,
  • An eighth aspect of the embodiments of the present application provides a communication device, which includes a processor, configured to implement the method described in the sixth aspect.
  • the device may also include a memory for storing instructions and data.
  • the memory is coupled with the processor, and when the processor executes the instructions stored in the memory, the device can implement the method described in the sixth aspect.
  • the device may also include a communication interface, which is used for the device to communicate with other devices.
  • the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface, and the other device may be a terminal device. , Second network equipment, etc.
  • the device includes:
  • Memory used to store program instructions
  • the processor is configured to control the communication interface to send identification information of the terminal device, the identification information of the terminal device is used to request third configuration information corresponding to the terminal device; to control the communication interface to receive the third configuration information; the third configuration information and the second cell There is a corresponding relationship between the cell identifiers of, and the cell identifier is based on the identifier of a cell in the notification area RNA of the radio access network.
  • a tenth aspect of the embodiments of the present application provides a chip system.
  • the chip system includes a processor and may also include a memory for implementing the method provided in the sixth aspect.
  • the chip system can be composed of chips, or it can include chips and other discrete devices.
  • the eleventh aspect of the embodiments of the present application provides a method for obtaining configuration information.
  • the method may be executed by a second network device or a component (such as a processor, a chip, or a chip system, etc.) of the first network device, including :
  • the third configuration information is used to configure the RNTI.
  • the correspondence between the third configuration information and the cell identity of the second cell may be that there is a correspondence between the RNTI and the cell identity of the second cell, so that the terminal device can be based on the obtained cell identity of the second cell. ID, obtain the RNTI corresponding to the cell ID, so that the terminal device can obtain the RNTI used when the RRC is in the inactive state, and use the RNTI to realize data transmission with low power consumption.
  • the third configuration information is used to configure the time-frequency resource of the downlink control information, so that the terminal device can quickly detect the downlink control information.
  • the time-frequency resource of the downlink control information is determined by the configuration information of the control resource set and the configuration information of the search space.
  • the corresponding relationship between the third configuration information and the cell identity of the second cell may be that the time-frequency resources of the RNTI and downlink control information have a corresponding relationship with the cell identity of the second cell, so that the terminal device can follow The obtained cell identity of the second cell can quickly obtain downlink control information.
  • the terminal device can obtain the RNTI corresponding to the cell identity according to the obtained cell identity of the second cell;
  • the obtained cell identification and synchronization signal block index obtain the time-frequency resource of the downlink control information, so that the terminal device can quickly obtain the accurate time-frequency resource of the downlink control information.
  • the second network device sends fifth configuration information to the first network device, and the fifth configuration information is used to configure a timer corresponding to the third configuration information, so that the first network device can determine the third Whether the configuration information is valid.
  • the fifth configuration information can be sent together with the third configuration information, or sent separately.
  • the third configuration information becomes invalid; otherwise, the timer corresponding to the third configuration information does not expire, and the third configuration information is valid.
  • the third configuration information when the terminal device is in the RRC connected state, the third configuration information is invalid; when the terminal device is not in the RRC connected state, the third configuration information is valid.
  • the third configuration information becomes invalid.
  • the second network device When the third configuration information becomes invalid, the second network device does not continue to perform data transmission with the terminal device, which can prevent the second network device from performing invalid data transmission.
  • the second network device can release the RNTI and time-frequency resources configured by the third configuration information in time, thereby saving network resources.
  • a twelfth aspect of the embodiments of the present application provides a communication device.
  • the communication device may be a second network device, a component in the second network device, or a device that can be used in combination with the second network device.
  • the device may include a module corresponding to the method/operation/step/action described in the eleventh aspect.
  • the module may be a hardware circuit, software, or a combination of hardware circuit and software.
  • the device may include a transceiver module, and the transceiver module may include a sending module and a receiving module. Exemplary,
  • the receiving module is used to receive the identification information of the terminal device
  • the sending module is used to send third configuration information according to the identification information of the terminal device; the third configuration information has a corresponding relationship with the cell identification of the second cell, and the cell identification is based on a cell in the notification area RNA of the radio access network Of the logo.
  • a thirteenth aspect of the embodiments of the present application provides a communication device, which includes a processor, configured to implement the method described in the eleventh aspect.
  • the device may also include a memory for storing instructions and data.
  • the memory is coupled with the processor, and when the processor executes the instructions stored in the memory, the device can implement the method described in the eleventh aspect.
  • the device may also include a communication interface, which is used for the device to communicate with other devices.
  • the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface, and other devices may be the first network. Equipment, etc.
  • the device includes:
  • Memory used to store program instructions
  • the fourteenth aspect of the embodiments of the present application provides a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute the method provided in the eleventh aspect.
  • the fifteenth aspect of the embodiments of the present application provides a chip system.
  • the chip system includes a processor and may also include a memory, configured to implement the method provided in the eleventh aspect.
  • the chip system can be composed of chips, or it can include chips and other discrete devices.
  • Figure 1 is a schematic diagram of the transition between three RRC states
  • Figure 2 is a schematic diagram of time-frequency resources
  • FIG. 3 is an example diagram of the configuration information of the control resource set and the configuration information of the search space
  • Figure 4 is a schematic diagram of a paging process
  • FIG. 5 is a schematic diagram of a network architecture to which an embodiment of the present application is applied.
  • FIG. 6 is a schematic diagram of another network architecture to which an embodiment of the present application is applied.
  • FIG. 7 is a schematic flowchart of a method for obtaining configuration information according to an embodiment of the application.
  • FIG. 8 is a schematic flowchart of another method for obtaining configuration information according to an embodiment of the application.
  • FIG. 9 is an example diagram provided by an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 11 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • FIG. 12 is a schematic diagram of another structure of a communication device provided by an embodiment of this application.
  • terminal equipment can access network equipment and communicate with the access network equipment.
  • the terminal device can establish a radio resource control (Radio Resource Control, RRC) connection with the network device during or after accessing the network device.
  • RRC Radio Resource Control
  • the RRC state of the terminal device is the RRC connected state.
  • the terminal device When the terminal device is in the RRC connected state, it can send uplink data to the network device through an uplink data channel, such as PUSCH.
  • the uplink data may be, for example, unicast data of a terminal device.
  • the terminal device can also receive downlink data from the network device through a downlink data channel, such as PDSCH.
  • the downlink data may be, for example, unicast data for terminal equipment.
  • the network device can use the RRC release process, such as sending an RRC release message to the terminal device, so that the terminal device is converted from the RRC connected state to the RRC idle state, or the terminal device is converted from the RRC connected state to the RRC inactive state ( inactive) state.
  • RRC release process such as sending an RRC release message to the terminal device, so that the terminal device is converted from the RRC connected state to the RRC idle state, or the terminal device is converted from the RRC connected state to the RRC inactive state ( inactive) state.
  • the terminal device When the terminal device is in the RRC idle state, the connection between the terminal device and the network device and the connection between the terminal device and the core network are released.
  • the terminal device can receive one or more of paging messages, broadcast channels, or system information from the network device, but cannot perform unicast data transmission with the network device, for example, cannot receive data from the network device through PDSCH The transmitted downlink data; or the uplink data cannot be sent to the network device through PUSCH.
  • the terminal device When the terminal device is in the RRC inactive state, the connection between the terminal device and the network device is released, but the connection between the terminal device and the core network can be maintained. In this case, the terminal device may receive one or more of a paging message, a broadcast channel, or system information from the network device.
  • the network device retains the registration information of the terminal device, but suspends most of the air interface behavior between the terminal device and the network device, for example, the terminal device suspends receiving the PDCCH for scheduling unicast transmission of the terminal device .
  • the RRC inactive state is a state that enables the terminal device to save power. However, by implementing the embodiments of the present application, the terminal device in the RRC inactive state can perform unicast data transmission with the network device.
  • the transition between the RRC connected state, the RRC idle state and the RRC inactive state can be seen in FIG. 1.
  • the terminal device When the terminal device is not connected to the network device, it can establish an RRC connection with the network device through an RRC setup (setup) process.
  • the RRC state that the terminal device is in is the RRC connected state.
  • the network device can change the RRC state of the terminal device from the RRC connected state to the RRC idle state or the RRC inactive state through the RRC release process.
  • the terminal device in the RRC idle state can change the RRC state in which the terminal device is from the RRC idle state to the RRC connected state through the RRC establishment process.
  • the terminal device in the RRC idle state initiates the RRC establishment process, which can be triggered by the paging message sent by the network device, or by the higher layer of the terminal device.
  • the high-level trigger of the terminal device for example, the terminal device needs to send data to the network device.
  • the RRC setup process may include: the terminal device sends an RRC setup request (setup request) message to the network device; when the network device receives the RRC setup request message, it can send it to the terminal device RRC setup message.
  • the RRC setup message is used to indicate that the network device agrees to establish an RRC connection, so that the RRC state of the terminal device is switched from the RRC idle state to the RRC connected state; if the network device does not agree to establish an RRC connection, it can send RRC to the terminal device
  • the reject message makes the RRC state of the terminal device still the RRC idle state.
  • the terminal device in the RRC inactive state can switch from the RRC inactive state to the RRC connected state through the RRC establishment process or the RRC resume (resume) process.
  • the terminal device in the RRC inactive state initiates the RRC recovery process, which can be triggered by a paging message sent by the network device, or by the higher layer of the terminal device.
  • the network device can change the RRC state of the terminal device from the RRC inactive state to the RRC idle state through the RRC release process.
  • the RRC recovery process may include: the terminal device sends an RRC recovery request (resume request) message to the network device; when the network device receives the RRC recovery request message, it may send an RRC setup message or an RRC recovery message to the terminal device, so that The RRC state of the terminal device is switched from the RRC inactive state to the RRC connected state; if the network device does not agree to establish or resume the RRC connection, it can send an RRC reject message to the terminal device, so that the RRC state of the terminal device is still RRC non- Active state.
  • the aforementioned RRC connected state can also be described as RRC-connected state or connected state, etc.
  • the aforementioned RRC idle state can also be described as RRC-idle state or idle state, etc.
  • the aforementioned RRC inactive state can also be described as RRC-inactive state, RRC Deactivated state or RRC third state, etc.
  • the RRC connected state, the RRC idle state, and the RRC inactive state are used as examples, and other names or terms used to describe these three states should fall within the protection scope of the embodiments of the present application.
  • a resource block group includes 6 consecutive resource blocks (RB) in the frequency domain; an RB includes 12 subcarriers in the frequency domain; one slot (slot) In the time domain, it usually includes 14 symbols (symbol); a resource element (RE) includes one subcarrier in the frequency domain and one symbol in the time domain.
  • the symbols can be orthogonal frequency division multiplexing (OFDM) symbols, discrete Fourier transform spread spectrum orthogonal frequency division multiplexing (discrete Fourier transform spread spectrum orthogonal frequency division multiplexing, DFT-S- OFDM) symbols, etc.
  • OFDM orthogonal frequency division multiplexing
  • DFT-S- OFDM discrete Fourier transform spread spectrum orthogonal frequency division multiplexing
  • the time-frequency resource of the downlink control information can also be described as searching for the time-frequency resource of the downlink control information, or detecting the time-frequency resource of the downlink control information, or searching for the time-frequency resource range of the downlink control information, etc.
  • the time-frequency resource of the downlink control information includes the time-frequency resource determined according to the configuration information of CORESET and the configuration information of the SearchSpace, and the time-frequency resource is used to search for the downlink control information.
  • the configuration information described as CORESET and the configuration information of SearchSpace are used to indicate the time-frequency resources of the downlink control information.
  • the configuration information of CORESET is used to configure the location of frequency domain resources (frequencyDomainResources) and the length of time domain resources (duration).
  • frequencyDomainResources can indicate the available RBGs of the terminal device in the frequency domain through a bitmap.
  • Each bit in the bitmap indicates whether the corresponding RBG belongs to the CORESET, for example, the value of a bit in the bitmap is "1", which means that the RBG corresponding to the bit belongs to the CORESET; the value of the bit is "0", which means the CORESET The RBG corresponding to the bit does not belong to the CORESET.
  • the time domain resource length (duration) is used to configure the number of symbols occupied by CORESET, and the value range is usually 1 to 3, which means that 1 or 2 or 3 symbols are occupied.
  • the time domain resource length (duration) in the configuration information of CORESET is used to configure the time domain length for searching DCI.
  • the specific time domain location of the search DCI can be configured by the configuration information of SearchSpace.
  • the configuration information of the SearchSpace is used to configure the detection period and offset (monitoringSlotPeriodicityAndOffset), the length of the detection slot (duration), and the detection symbol position (monitoringSymbolsWithinSlot).
  • monitoringSlotPeriodicityAndOffset is used to configure the period and offset of the SearchSpace, so as to determine the starting slot position of the SearchSpace in the period.
  • the offset refers to the offset of the start slot of the SearchSpace relative to the start slot of the period in the period, and the monitoringSlotPeriodicityAndOffset is in the unit of slot.
  • monitoringSlotPeriodicityAndOffset (10,4), which means that the period of the SearchSpace is 10 slots, and the start slot of the SearchSpace is offset by 4 slots from the start slot of the period.
  • the detection time slot length (duration) is used to configure the number of consecutive slots occupied by the SearchSpace.
  • monitoringSymbolsWithinSlot is used to configure the position of the starting symbol in the slot.
  • the configuration information of CORESET and the configuration information of SearchSpace are described using Figure 3 as an example.
  • the monitoringSlotPeriodicityAndOffset in the SearchSpace configuration information is used to indicate the period and offset of the SearchSpace, that is, the starting slot position of the SearchSpace in the period, and the detection time slot length (duration) is used to indicate that the SearchSpace occupies 3 consecutive slots.
  • the monitoringSlotPeriodicityAndOffset and the detection time slot length (duration) it can be determined that there may be DCI on 3 slots in a cycle.
  • These 3 slots are the 3 black rectangular blocks in a cycle in Figure 3, and a black rectangular block represents a slot. .
  • monitoringSymbolsWithinSlot is used to indicate the position of the start symbol in the slot.
  • the start symbol in Figure 3 is the second symbol in the slot.
  • the time domain resource length (duration) in CORESET is used to indicate the time domain length that can be used to search for DCI in the slot.
  • the time domain resource length (duration) in FIG. 3 is 3, which means that the number of symbols for searching for DCI at one time is 3 symbols. According to the configuration information of CORESET and SearchSpace, it can be determined that the time-frequency resource represented by the gray-bottomed rectangular block in FIG. 3 is the time-frequency resource for searching DCI, and the DCI detection range in each black-bottomed rectangular block is the same.
  • the RNA includes the coverage area of the second network device, may include the coverage area of the first network device, or may not include the coverage area of the first network device, depending on the RNA configured by the first network device for the terminal device.
  • the RNA may include the coverage of one or more second network devices.
  • the core network element thinks that the terminal device in the RRC inactive state is still within the coverage of the first network device. Therefore, when there is a downlink message to be sent on the network side, the core network element sends a paging message to the first network device to trigger the first network device.
  • a network device paging that is, step 1 in Figure 4.
  • the first network device does not know which second network device in the RNA is covered by the terminal device in the RRC inactive state at this time, and therefore sends a paging instruction to the second network device in the RNA, that is, step 2 in FIG. 4.
  • the second network device initiates paging to the terminal device, that is, step 3 in FIG. 4.
  • the second network device initiates paging by sending a paging message to the terminal device.
  • the PDSCH carrying the paging message is scheduled by the DCI, and the CRC of the DCI is scrambled by the P-RNTI (valued as FFFE, hexadecimal) in Table 1. It can be understood that the paging messages sent by the network device to multiple terminal devices are scheduled by DCI scrambled by the same P-RNTI.
  • the terminal device uses the P-RNTI to descramble the DCI, reads the paging message according to the instructions of the DCI, and judges whether the network side has paged itself according to whether the paging message includes its own I-RNTI. For example, terminal device 1 and terminal device 2 in the RRC inactive state use P-RNTI to successfully descramble DCI and receive a paging message scheduled by the DCI.
  • the paging message includes I-RNTI A, I-RNTI A Is the I-RNTI of terminal device 1, then terminal device 1 determines that it is paged; and the I-RNTI of terminal device 2 is I-RNTI B, which does not match the I-RNTI A included in the paging message, and terminal device 2 determines I am not paged.
  • P-RNTI is used to scramble and descramble the DCI in the broadcast information/multicast information, but all terminal devices that are paged use P-RNTI to descramble the DCI in the broadcast information/multicast information.
  • the P-RNTI is not exclusive to the terminal device, that is, it is not configured with different RNTIs for scrambling and descrambling for different terminal devices.
  • the RNTI dedicated to the terminal device can also be understood as the RNTI used by different terminal devices within a specific DCI time-frequency resource of a cell. For different terminal devices, I-RNTI is different, but I-RNTI is not used for scrambling and descrambling of DCI.
  • the embodiments of the present application provide a method and device for obtaining configuration information, which can enable a terminal device to obtain a dedicated RNTI that is used when the RRC is in an inactive state, and the RNTI can be used for DCI descrambling. Further, the terminal device can obtain DCI, and can receive downlink data according to the DCI. Optionally, the RNTI is also used to send uplink control information and/or uplink data. Using the embodiments of the present application, data transmission between a terminal device in an RRC inactive state and a network device can be realized.
  • the technology described in the embodiments of this application can be used in various communication systems, such as the fourth generation (4G) communication system, 4.5G communication system, 5G communication system, a system that integrates multiple communication systems, or a communication system that will evolve in the future .
  • 4G fourth generation
  • 4.5G communication system 5G communication system
  • 5G communication system a system that integrates multiple communication systems
  • 3GPP 3rd generation partnership project
  • the terminal device (also referred to as a terminal) involved in the embodiments of this application can be a device with a wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; and can also be deployed on water (such as a ship Etc.); it can also be deployed in the air (for example, on airplanes, balloons, and satellites).
  • the terminal device may be a user equipment (UE), where the UE includes a handheld device with a wireless communication function, a vehicle-mounted device, a wearable device, or a computing device.
  • the UE may be a mobile phone, a tablet computer, or a computer with a wireless transceiver function.
  • the terminal may be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for using wearable technology to intelligently design everyday wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • the terminal may be a terminal in the Internet of Things (IoT) system.
  • IoT Internet of Things
  • MTC machine type communication
  • the terminal of the present application may be an in-vehicle module, an in-vehicle module, an in-vehicle component, an in-vehicle chip, or an in-vehicle unit that is built into a vehicle as one or more components or units.
  • On-board chip or on-board unit can implement the method of this application. Therefore, the embodiments of the present application can be applied to the Internet of Vehicles, such as vehicle to everything (V2X), long term evolution vehicle (LTE-V), and vehicle to vehicle (V2V). Wait.
  • V2X vehicle to everything
  • LTE-V long term evolution vehicle
  • V2V vehicle to vehicle
  • the embodiment of the present application also relates to a core network (core network) network element.
  • Core network elements can also be described as core network equipment or core network functional entities, etc., and refer to network elements in the core network that provide service support for terminal equipment.
  • the core network element may be the core network element in the LTE system, the core network element in the 5G system, or the core network element in the future communication system.
  • the core network elements may include access and mobility management function (AMF) entities, session management function (session management function, SMF) entities, and user plane functions (user plane functions). , UPF) entities, etc.
  • AMF access and mobility management function
  • SMF session management function
  • UPF user plane functions
  • the AMF entity can be responsible for terminal device access management and mobility management; the SMF entity can be responsible for session management, such as session establishment, etc.; the UPF entity can be responsible for connecting to external networks, such as receiving data from external networks, and passing data through network devices Transmission to terminal equipment, etc.
  • the entity in the embodiments of the present application can also be described as a network element or a functional entity, etc., for example, an AMF entity can also be described as an AMF network element, an AMF functional entity, or an AMF, etc.
  • the first network device 502 may be a network device that establishes an RRC connection with the terminal device 501 before the terminal device 501 is switched to the RRC inactive state;
  • the second network device 503 may be the network device of the terminal device 501
  • the number of the second network device 503 may be more than one, and the specific number depends on the situation.
  • the RNA of the terminal device 501 refers to the range that the terminal device 501 can move when it is in the RRC inactive state. The specific scope of RNA is determined by the AMF entity.
  • the coverage area of the first network device 502 includes the first cell.
  • the first cell is the cell where the terminal device 501 resides when it is in the RRC connected state.
  • the first network device 502 is in the first cell.
  • the terminal device 501 moves out of the first cell, for example, from the first cell to the second cell
  • the first network device 502 can trigger the terminal device 501 to transition from the RRC connected state to the RRC inactive state.
  • the second cell may be a cell in RNA.
  • RNA may include the first cell, then the second cell is a cell other than the first cell in RNA; RNA may not include the first cell, then the second cell is any cell in RNA.
  • the terminal device 501 After the terminal device 501 transitions from the RRC connected state to the RRC inactive state, it can obtain the cell identity according to the searched synchronization signal block, and obtain the configuration information according to the cell identity.
  • the configuration information is used to configure the RNTI, and the cell identity exists with the configuration information.
  • the terminal device 501 can obtain the RNTI used when it is in the RRC inactive state.
  • the terminal device 501 in the RRC inactive state obtains the RNTI, it can descramble the DCI according to the RNTI to obtain the content of the DCI; further, it can receive downlink data according to the PDSCH scheduled by the DCI.
  • the terminal device 501 in the RRC inactive state may directly receive the downlink data according to the RNTI in the case of obtaining the RNTI.
  • the terminal device 501 in the RRC inactive state can scramble the uplink control information according to the RNTI to send the uplink control information; further, the uplink control information can schedule the uplink data to send the uplink data.
  • the terminal device 501 in the RRC inactive state may directly send uplink data according to the RNTI in the case of obtaining the RNTI. Different terminal devices in the RRC inactive state can obtain different RNTIs, so that the terminal devices can obtain exclusive RNTIs.
  • the first network device 502 may be a network device connected to the terminal device 501 before moving; the second network device 503 may be a network device connected or to be connected after the terminal device 501 is moved.
  • the coverage area of the first network device 502 is the first cell, and the first cell may be the cell where the terminal device 501 is before moving; the coverage area of the second network device 503 is the second cell, which may be the cell after the terminal device 501 moves. The cell you are in.
  • the terminal device 501 After the terminal device 501 moves, it obtains the cell identity of the second cell, and obtains configuration information according to the cell identity.
  • the configuration information is used to configure the RNTI. There is a correspondence between the cell identity and the configuration information, so that the mobile terminal device 501 can Get RNTI.
  • FIG. 6 is a schematic diagram of another network architecture to which an embodiment of the present application is applied.
  • the network architecture includes a terminal device 601 and a network device 602. It should be noted that the device form and the number of devices shown in FIG. 6 are used as examples, and do not constitute a limitation on the examples of this application.
  • the coverage area of the network device 602 includes the first cell and the second cell.
  • the first cell is the cell where the terminal device 601 resides when the terminal device 601 is in the RRC connection state.
  • the number of second cells may be multiple.
  • the network device 602 can trigger the terminal device 601 to switch from the RRC connected state to the RRC inactive state.
  • the second cell may be a cell in RNA.
  • the network device 602 may send the SSB in the same cell, for example, the SSB in the first cell; it may also send the SSB in multiple cells, for example, a part of the SSB is sent in the first cell, and another part of the SSB is sent in the second cell.
  • the terminal device 601 After the terminal device 601 transitions from the RRC connected state to the RRC inactive state, it searches for a synchronization signal block in the second cell, obtains the cell identity of the second cell, and obtains configuration information according to the cell identity.
  • the configuration information is used to configure the RNTI, thereby
  • the terminal device 601 in the RRC inactive state may receive DCI in the second cell according to the RNTI, and further receive downlink data in the second cell.
  • the terminal device 601 in the RRC inactive state may also send uplink control information in the second cell according to the RNTI, and further send uplink data in the second cell. Different terminal devices in the RRC inactive state can obtain different RNTIs, so that the terminal devices can obtain exclusive RNTIs.
  • Step 701 Obtain a cell identity.
  • the coverage of a network device may include one or more cells, for example, the coverage of a network device may include three cells.
  • the cell ID can also be described as a cell identification code, a cell number, or area identification information, etc., and is used to distinguish different cells.
  • the two names of the cell and the cell identifier are used for example, and do not constitute a limitation to the embodiment of the present application.
  • the terminal device when it needs to determine the cell where it resides and/or perform downlink synchronization, it searches for the SSB on a predefined frequency point or within a predefined frequency range.
  • the SSB includes primary synchronization signal (primary synchronization signal, PSS), secondary synchronization signal (secondary synchronization signal, SSS), and physical broadcast channel (physical broadcast channel, PBCH).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH physical broadcast channel
  • sequence value of PSS d PSS is based on There are three candidate sequences, which can be expressed as:
  • d PSS sequence length is 128, d PSS (n) d PSS represents the n-th element.
  • d SSS sequence length is 128, d SSS (n) d SSS represents the n-th element.
  • the terminal device may obtain the synchronization signal block index (SSB index) through the detected SSB.
  • the sync signal block index refers to the index of the detected SSB.
  • the terminal device may determine the index of the SSB according to the demodulation reference signal (DMRS) sequence of the PBCH in the SSB and/or the payload (payload) of the PBCH.
  • DMRS demodulation reference signal
  • Step 702 Obtain first configuration information according to the cell identity.
  • the network device may inform the terminal device of the correspondence relationship.
  • the terminal device receives the second configuration information, and the second configuration information is used to configure the correspondence relationship between the cell identifier and the first configuration information.
  • the second configuration information may be sent by the first network device to the terminal device, and the first network device is the network device connected when the terminal device is in the RRC connection state.
  • the second configuration information can also be used to configure the corresponding relationship between the cell identifiers of other cells in the RNA and other first configuration information.
  • Other cells refer to cells other than the cell identified by the cell identifier in the RNA
  • other first configuration information refers to first configuration information corresponding to other cells.
  • the terminal device obtains the first configuration information according to the cell identity, which can be implemented in one or more of the following ways:
  • the first configuration information is used to configure the RNTI, and the corresponding relationship between the cell identifier and the first configuration information can be expressed as the corresponding relationship between the cell identifier and the RNTI.
  • the terminal device can obtain the RNTI according to the correspondence between the cell identity and the RNTI.
  • the first configuration information is used to configure the time-frequency resources of RNTI and DCI, and the corresponding relationship between the cell identity and the first configuration information can be expressed as the corresponding relationship between the cell identity and the time-frequency resources of RNTI and DCI.
  • the terminal device can obtain the time-frequency resources of the RNTI and the DCI according to the correspondence between the cell identity and the time-frequency resources of the RNTI and the DCI.
  • the terminal device When the terminal device obtains the cell identity and synchronization signal block index, it can obtain the RNTI according to the correspondence between the cell identity and the RNTI; it can obtain the RNTI according to the correspondence between the cell identity and the time-frequency resource of the DCI, and the synchronization
  • the corresponding relationship between the signal block index and the time-frequency resource of the DCI is used to obtain the time-frequency resource of the DCI.
  • the value of RNTI in the above three methods may be one of the value ranges in Table 1.
  • the RNTI may be a newly defined RNTI, or may reuse one of multiple RNTIs in Table 1.
  • for configuration may be understood as including, for indicating, or for determining, and so on.
  • the first configuration information can be used to configure the RNTI, or in addition to the time-frequency resources of the RNTI and DCI, and can also be used to configure available uplink grant configuration (configured-grant, CG) resources.
  • the available uplink CG resources can be used for terminal equipment to send uplink control information and/or uplink data.
  • the uplink CG resources configured in the first configuration information are determined by the period of time domain resources, open-loop power control related parameters, waveforms, redundancy version sequence, repetition times, frequency hopping mode, resource allocation type, and hybrid automatic The number of retransmission request (hybrid auto repeat request, HARQ) processes, demodulation reference signal (DMRS) related parameters, modulation and coding scheme (MCS) table, resource block group (Resource Block Group, RBG) size, and One or more of time domain resources, frequency domain resources, or MCS is configured.
  • DMRS demodulation reference signal
  • MCS modulation and coding scheme
  • RBG Resource Block Group
  • Another implementation method is to configure the period of time domain resources in the first configuration information, open-loop power control related parameters, waveforms, redundancy version sequence, number of repetitions, frequency hopping mode, resource allocation type, number of HARQ processes, demodulation Use one or more of reference signal related parameters, MCS table, or RBG size, and then use the DCI scrambled by the RNTI configured in the first configuration information to activate CG-based PUSCH transmission.
  • the DCI can indicate time domain resources, frequency One or more of domain resources, DMRS, or MCS.
  • Step 703 According to the first configuration information, perform one or more of the following:
  • Receive downlink control information receive downlink data; send uplink control information; or send uplink data.
  • the first configuration information is used to configure the RNTI, then the terminal device uses the RNTI to descramble the CRC of the DCI, and if the descrambling is successful, the DCI can be received and obtained Content.
  • the first configuration information is also used to configure time-frequency resources of DCI, then the terminal device detects DCI on the time-frequency resources of DCI, and uses RNTI to descramble the CRC of DCI. If the descrambling is successful, it can receive and Get the content of DCI. For example, the terminal device obtains the indication information in the DCI, and the indication information is used to indicate the time-frequency resource of the PDSCH.
  • the first configuration information is used to configure the time-frequency resources of RNTI and DCI, and the terminal device receives DCI when obtaining DCI according to the time-frequency resources of RNTI and DCI.
  • Scheduled downlink data For example, if the DCI includes indication information for indicating the time-frequency resources of the PDSCH, the terminal device can receive the downlink data carried on the PDSCH according to the indication information.
  • the terminal device when the terminal device obtains the DCI, it sends uplink control information and/or uplink data according to the indication information in the DCI, and the indication information may be used to indicate the uplink control information and/or the time-frequency resource of the uplink data.
  • the first configuration information is used to configure the uplink CG resources and RNTI
  • the terminal device uses the RNTI to generate a sequence, uses the sequence to scramble the uplink control information, and scrambles the uplink control information according to The uplink CG resource sends uplink control information.
  • the terminal device uses RNTI to scramble the uplink control information and sends the uplink control information according to the uplink CG resource.
  • the first configuration information is used to configure the uplink CG resource and RNTI
  • the terminal device uses the RNTI to generate a sequence, uses the sequence to scramble the uplink data and scrambles the uplink data according to the uplink CG
  • the resource sends uplink data.
  • the terminal device uses RNTI to scramble the uplink data and sends the uplink data according to the uplink CG resource.
  • the first configuration information is used to configure the RNTI, as well as the period of time domain resources, open-loop power control related parameters, waveforms, redundancy version sequence, number of repetitions, and hops.
  • the RNTI As well as the period of time domain resources, open-loop power control related parameters, waveforms, redundancy version sequence, number of repetitions, and hops.
  • the terminal equipment When the terminal equipment obtains the DCI according to the RNTI, it activates the CG-based PUSCH transmission according to the DCI, uses the RNTI to generate a sequence, uses the sequence to scramble the uplink data, and according to the time domain resources, frequency domain resources, DMRS, and DMRS indicated by the DCI Or one or more of MCS to send uplink data. Or, in the case of obtaining DCI according to RNTI, the terminal device activates CG-based PUSCH transmission according to DCI, uses RNTI to scramble uplink data, and according to the time domain resource, frequency domain resource, DMRS, or MCS indicated by DCI One or more, sending uplink data.
  • the terminal device may perform step 703.
  • the terminal device may determine whether the first configuration information is valid through one of the following methods or a combination of multiple methods. Effective, can be understood as being able to continue to use; invalid, can be understood as being unable to continue to use.
  • Manner 1 When the timer corresponding to the first configuration information expires, the first configuration information becomes invalid; otherwise, the timer corresponding to the first configuration information does not expire, and the first configuration information is valid.
  • the timer configuration information corresponding to the first configuration information may be notified to the terminal device by the network device.
  • the second configuration information received by the terminal device is not only used to configure the correspondence between the cell identity and the first configuration information, but also used to configure the timer corresponding to the first configuration information.
  • the terminal device may respectively receive the second configuration information and the timer configuration information corresponding to the first configuration information, and the timer configuration information is used to configure the timer corresponding to the first configuration information.
  • the timer corresponding to the first configuration information may also be predefined.
  • the timer corresponding to the first configuration information is defined in the protocol.
  • the timer corresponding to the first configuration information can be implemented in multiple different ways.
  • the timer corresponding to the first configuration information can be expressed as the start time ⁇ the end time, for example, 2020/1/1814:20:20 ⁇ 2020/1/18 14:30:20, then the terminal device can set the current system time Match the start time to the end time. If the current system time is within the range of the start time to the end time, the first configuration information is determined to be valid; otherwise, the first configuration information is determined to be invalid.
  • the timer corresponding to the first configuration information may be a timer corresponding to all the configuration information included in the first configuration information, or may be a timer corresponding to part of the configuration information included in the first configuration information.
  • the timer corresponding to the first configuration information may be a timer corresponding to the time-frequency resource of the DCI configured in the first configuration information, that is, the timer acts on the time-frequency resource of the DCI.
  • the timer corresponding to the partial configuration information included in the first configuration information is invalid, the first configuration information may be considered invalid.
  • the time-frequency resource of the DCI is invalid, the first configuration information may be considered invalid.
  • Manner 2 When the terminal device is in the RRC connected state, the first configuration information becomes invalid. It can also be understood that the first configuration information is valid when the terminal device is in the RRC inactive state. When the terminal device receives the paging message from the network device, it can switch from the RRC inactive state to the RRC connected state, and the first configuration information becomes invalid at this time.
  • the network device can be the first network device or any network device in RNA. Or, when the terminal device needs to send uplink data or uplink information, it can switch from the RRC inactive state to the RRC connected state, and the first configuration information becomes invalid at this time.
  • the terminal device When the terminal device is in the RRC connected state, the terminal device can release the first configuration information, that is, the first configuration information corresponding to the cell identity. If the terminal device is in the RRC connected state and the location moves, then the cell handover process may be triggered.
  • the RNTI may be, for example, the RNTI configured by the first configuration information.
  • the terminal equipment uses RNTI to transmit data.
  • the terminal equipment may use RNTI to generate a sequence, use the sequence to scramble the uplink data, and send the uplink data; or the terminal equipment may use RNTI to scramble the uplink data and send the sequence.
  • Upstream data For example, if the terminal device uses RNTI to scramble the uplink data and sends the uplink data, but after sending the uplink data, it does not receive the feedback of successful reception by the network device, then the RNTI is determined to be invalid, and then the first configuration information is determined to be invalid.
  • RACH random access channel
  • the terminal device in the RRC inactive state can perform steps 701 to 703, so that the terminal device in the RRC inactive state can obtain the RNTI and perform data transmission in the RRC inactive state.
  • the application scenario of the embodiment shown in FIG. 7 is not limited to the terminal device in the RRC inactive state.
  • the terminal device switches from one cell to another cell and maintains the RRC connection state. This scenario can also be used
  • the embodiment shown in FIG. 7 ensures the transmission of data.
  • the terminal device when the terminal device obtains the cell identity, it obtains the first configuration information for configuring the RNTI according to the cell identity, so that the terminal device can obtain the RNTI used when in the RRC inactive state, In this way, the terminal equipment in the RRC inactive state can receive downlink data and/or transmit uplink data.
  • FIG. 8 is a schematic flowchart of another method for obtaining configuration information according to an embodiment of this application. This process is introduced from the perspective of interaction, which can include but is not limited to the following steps:
  • SSB detection can be performed to perform downlink synchronization.
  • the UE1 detects the SSB, it obtains the cell identity corresponding to the SSB according to the SSB, that is, obtains the cell identity of the cell where the UE1 resides.
  • UE1 obtains the index of the SSB according to the SSB.
  • the UE1 obtains the cell identity and the index of the SSB according to the SSB.
  • the SSB may be the SSB from the first network device or the SSB from the second network device.
  • the UE1 determines the first configuration information according to the cell identity and the fourth configuration information.
  • the fourth configuration information comes from the first network device. For details, please refer to the specific description of step 803.
  • the UE1 determines the RNTI corresponding to the cell identity according to the cell identity and the correspondence between the cell identity of the second cell configured by the fourth configuration information and the third configuration information (used to configure the RNTI), And use the RNTI as the content of the first configuration information configuration. For example, the UE1 searches for the RNTI corresponding to the cell identifier in the table corresponding to the third configuration information according to the cell identifier, and uses the RNTI as the content of the first configuration information configuration.
  • UE1 determines the corresponding relationship between the cell identity and the cell identity of the second cell configured by the fourth configuration information and the third configuration information (time-frequency resources for configuring RNTI and DCI).
  • the time-frequency resources of the RNTI and the DCI corresponding to the cell identity, and the time-frequency resources of the RNTI and the DCI are used as the content of the first configuration information configuration.
  • the UE1 looks up the time-frequency resources of the RNTI and the DCI corresponding to the cell identity in the table corresponding to the third configuration information according to the cell identity, and uses the time-frequency resources of the RNTI and the DCI as the content of the first configuration information configuration. If the time-frequency resource of the DCI in the first configuration information includes multiple sets of time-frequency resources, the UE1 can use the set of time-frequency resources used last time, or randomly choose to use one set of time-frequency resources.
  • the UE1 configures the cell identity of the second cell according to the cell identity and the fourth configuration information and the third configuration information (used to configure the time-frequency resources of RNTI and DCI, and correspond to the time-frequency resources of DCI) SSB index) to determine the first configuration information. For example, UE1 looks up the time-frequency resources of the RNTI and DCI corresponding to the cell identity in the table corresponding to the third configuration information according to the cell identity.
  • the third configuration information is transferred from the second network device to the first network device.
  • Step 806 UE1 performs one or more of the following according to the first configuration information:
  • Receive downlink control information receive downlink data; send uplink control information; or send uplink data.
  • step 806 refer to the specific description of step 703 in the embodiment shown in FIG. 7, which will not be repeated here.
  • Steps 804 to 806 can be performed when the UE1 is in the RRC inactive state.
  • the second network device may determine whether the third configuration information is valid through one or more of the following methods.
  • Manner 1 When the timer corresponding to the third configuration information expires, the third configuration information becomes invalid; otherwise, the timer corresponding to the third configuration information does not expire, and the third configuration information is valid.
  • the timer corresponding to the third configuration information refer to the description of the timer corresponding to the first configuration information in the embodiment shown in FIG. 7, which is not repeated here.
  • Manner 2 When UE1 is in the RRC connected state, the third configuration information becomes invalid. It can be understood that when the UE1 transitions from the RRC inactive state to the RRC connected state, the third configuration information becomes invalid. The UE1 transitions from the RRC inactive state to the RRC connected state, and the connected network device can send a notification message to the second network device. The notification message is used to indicate that the UE1 is in the RRC connected state. If the network device connected to UE1 is one of the second network devices, the network device sends a notification message to other second network devices, and the other second network devices determine that the third configuration information is invalid, and release the third configuration information.
  • the first network device sends a notification message to the second network device, and the second network device determines that the third configuration information is invalid, and releases the third configuration information.
  • the second network device may also learn that the UE1 is in the RRC connected state through other methods.
  • Manner 2 When UE1 is in the RRC connected state, the third configuration information becomes invalid. When the UE1 resumes the RRC connection with the first network device, the first network device determines that the third configuration information configured by the second network device is invalid, and releases the third configuration information. When UE1 transitions from the RRC inactive state to the RRC connected state and the connected network device is not the first network device, the first network device can learn from the network device, or learn that UE1 is in the RRC connected state by other means. When the first network device determines that the third configuration information is invalid, the third configuration information is released.
  • step 801 to step 803 are further included before step 804.
  • Step 801 The first network device sends the identification information of UE1 to the second network device.
  • the second network device receives the identification information of UE1 from the first network device.
  • Steps 801 to 803 can be performed when the UE1 is in the RRC connected state.
  • UE1 may be a terminal device in the network.
  • the first network device is a network device that establishes an RRC connection with UE1 before UE1 switches to the RRC inactive state
  • the second network device is a network device in RNA.
  • UE1 When UE1 is in the RRC connected state, it resides in the first cell within the coverage of the first network device.
  • the cell within the coverage of the second network device is called the second cell.
  • the number of second network devices can be one or more.
  • One, the number of second cells can be one or more.
  • the embodiment shown in FIG. 8 takes a second network device and a second cell as an example for description.
  • the first network device sends the identification information of the UE1 to the second network device.
  • the identification information of the UE1 is used to request the second network device to allocate third configuration information to the UE1, and further, to request the second network device to allocate the third configuration information corresponding to the second cell to the UE.
  • the second network device may allocate different third configuration information corresponding to the second cell for different UEs.
  • the third configuration information is used to configure RNTI; or used to configure time-frequency resources of RNTI and DCI; or used to configure RNTI, time-frequency resources of DCI, and SSB index information corresponding to time-frequency resources of DCI; or used to configure RNTI and uplink CG time-frequency resources.
  • the second network device further sends fifth configuration information to the first network device, where the fifth configuration information is used to configure the correspondence between the third configuration information and the timer.
  • the second network device also sends the configuration information of the timer corresponding to the third configuration information to the first network device. This timer is used to judge or maintain the validity of the third configuration information.
  • the first network device When the first network device receives the third configuration information from the second network device, it sends fourth configuration information to UE1.
  • the fourth configuration information is used to configure the difference between the cell identity of the second cell and the third configuration information. Correspondence.
  • the corresponding RNTI is RNTI-1; when the cell identity of the second cell is ID-2, the corresponding RNTI is RNTI-2; the cell identity of the second cell When it is ID-X, the corresponding RNTI is RNTI-X.
  • the corresponding RNTI is RNTI-1, corresponding to three sets of time-frequency resources.
  • the corresponding RNTI is RNTI-1, which corresponds to three sets of time-frequency resources, and each set of time-frequency resources corresponds to a timer. Or, the three sets of time-frequency resources may correspond to the same timer.
  • the timer is used to determine or maintain the validity of the third configuration information. For example, if a timer expires, the third configuration information corresponding to the timer is invalid.
  • Table 2.1 to Table 2.5 are used for examples and do not constitute a limitation to the embodiments of the present application. It should be noted that Table 2.1-Table 2.5 take the correspondence between the cell identity of the second cell and the third configuration information as an example. In practical applications, you can also configure the relationship between the cell identity of the first cell and the configuration information. The corresponding relationship and the configuration method are similar to the third configuration information.
  • the fourth configuration information can be stored, so that the first configuration information can be determined according to the fourth configuration information when the UE1 transitions to the RRC inactive state.
  • the first network device can trigger the UE1 to transition from the RRC connected state to the RRC inactive state. For example, the first network device sends an RRC release message to UE1, so that UE1 transitions from the RRC connected state to the RRC inactive state.
  • step 804 to step 806 may be performed.
  • the first network device obtains the third configuration information configured by the second network device for UE1, and sends the fourth configuration information to UE1, so that UE1 in the RRC inactive state depends on the obtained cell
  • the identifier is used to obtain the first configuration information, so that the terminal device in the RRC inactive state can receive downlink data and/or transmit uplink data.
  • the content of the fourth configuration information configuration is shown in Table 3 below.
  • the first row of configuration information, namely RNTI-1 can be determined from Table 3.
  • the time-frequency resource of DCI is CORESET-1.1+SearchSpace-1.1
  • the SSB index is SSB-1
  • the valid time is 100 seconds (counted from UE1 entering the RRC inactive state).
  • PUCCH physical uplink control channel
  • PRACH physical random access channel
  • steps 801-803 can be simplified as follows: the network device allocates third configuration information for each cell to UE1, The fourth configuration information is sent to the UE1, where the fourth configuration information is used to configure the correspondence between the cell identity of each cell within the coverage of the network device and the third configuration information.
  • the UE1 in the RRC inactive state obtains the cell identity, it can obtain the first configuration information according to the cell identity and the fourth configuration information, so as to realize the communication between the terminal device in the RRC inactive state and the network device. data transmission.
  • the embodiments of the present application also provide corresponding devices, including corresponding modules for executing the foregoing embodiments.
  • the module can be software, hardware, or a combination of software and hardware.
  • FIG. 10 shows a schematic diagram of the structure of a communication device.
  • the communication device 1000 may be a network device (the first network device or the second network device), a terminal device, a chip, a chip system, or a processor that supports the network device to implement the above method, or a terminal device.
  • the device can be used to implement the method described in the foregoing method embodiment, and for details, please refer to the description in the foregoing method embodiment.
  • the communication device 1000 may include one or more processors 1001.
  • the processor 1001 may also be referred to as a processing unit or a processing module, etc., and may implement certain control functions.
  • the processor 1001 may be a general-purpose processor, a special-purpose processor, or the like. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to process communication devices (such as base stations, baseband chips, terminals, terminal chips, distributed units (DU) or centralized units). (centralized unit, CU), etc.) control, execute software programs, and process data in software programs.
  • DU distributed units
  • centralized unit, CU centralized unit, CU, etc.
  • the processor 1001 may also store instructions and/or data 1003, and the instructions and/or data 1003 may be executed by the processor 1001, so that the communication device 1000 executes the methods described in the foregoing method embodiments. method.
  • the processor 1001 may include a transceiver unit for implementing receiving and sending functions.
  • the transceiver unit may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces, or interface circuits used to implement the receiving and transmitting functions can be separate or integrated.
  • the foregoing transceiver circuit, interface, or interface circuit can be used for code/data reading and writing, or the foregoing transceiver circuit, interface, or interface circuit can be used for signal transmission or transmission.
  • the communication device 1000 may include one or more memories 1002, on which instructions 1004 may be stored, and the instructions 1004 may be executed on the processor 1001, so that the communication device 1000 executes the methods described in the foregoing method embodiments.
  • the memory 1002 may also store data.
  • instructions and/or data may also be stored in the processor 1001.
  • the processor 1001 and the memory 1002 can be provided separately or integrated together. For example, the corresponding relationship described in the foregoing method embodiment may be stored in the memory 1002 or stored in the processor 1001.
  • the communication device 1000 may further include a transceiver 1005 and/or an antenna 1006.
  • the transceiver 1005 may be called a transceiver unit, a transceiver, a transceiver circuit, a transceiver device, or a transceiver module, etc., for implementing the transceiver function.
  • the communication device 1000 when the communication device 1000 is a terminal device, it can be used to perform step 701-step 703 in FIG. 7 or step 804-step 806 in FIG. 8; the communication device 1000 is the first network When the device is a device, it can be used to perform step 801 to step 803 in FIG. 8; when the communication device 1000 is a second network device, it can be used to perform step 801 and step 802 in FIG. 8.
  • the processor and transceiver described in this application can be implemented in integrated circuit (IC), analog IC, radio frequency integrated circuit RFIC, mixed signal IC, application specific integrated circuit (ASIC), printed circuit board ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured by various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiment may be a network device or a terminal device, but the scope of the device described in this application is not limited to this, and the structure of the communication device may not be limited by FIG. 10.
  • the communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • the IC collection may also include storage components for storing data and/or instructions;
  • ASIC such as modem (MSM)
  • FIG. 11 provides a schematic structural diagram of a terminal device.
  • the terminal device can be applied to the network architecture shown in FIG. 5 or FIG. 6.
  • FIG. 11 only shows the main components of the terminal device.
  • the terminal device 1100 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, parse and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit processes the baseband signal to obtain a radio frequency signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves. .
  • the radio frequency circuit receives the radio frequency signal through the antenna, the radio frequency signal is further converted into a baseband signal, and the baseband signal is output to the processor, and the processor converts the baseband signal into data and performs processing on the data. deal with.
  • FIG. 11 only shows a memory and a processor. In an actual terminal device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
  • the processor may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data.
  • the central processing unit is mainly used to control the entire terminal device and execute Software program, processing the data of the software program.
  • the processor in FIG. 11 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors, and are interconnected by technologies such as a bus.
  • the terminal device may include multiple baseband processors to adapt to different network standards, the terminal device may include multiple central processors to enhance its processing capabilities, and the various components of the terminal device may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and the communication data can be built in the processor, or can be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • an antenna and a control circuit with a transceiving function can be regarded as the transceiving module 1111 of the terminal device 1100, and a processor with a processing function can be regarded as the processing module 1112 of the terminal device 1100.
  • the terminal device 1100 includes a transceiver module 1111 and a processing module 1112.
  • the transceiver module may also be called a transceiver, a transceiver, a transceiver device, or a transceiver unit.
  • the device for implementing the receiving function in the transceiver module 1111 can be regarded as the receiving module, and the device for implementing the sending function in the transceiver module 1111 can be regarded as the sending module, that is, the transceiver module 1111 includes a receiving module and a sending module.
  • the receiving module may also be called a receiver, a receiver, a receiving circuit, or a receiving unit
  • the sending module may be called a transmitter, a transmitter, a transmitting circuit, or a sending unit, etc.
  • the foregoing receiving module and sending module may be one integrated module, or multiple independent modules.
  • the above-mentioned receiving module and sending module may be located in one geographic location or scattered in multiple geographic locations.
  • the device may be a terminal device or a component of a terminal device (for example, an integrated circuit, a chip, etc.).
  • the device may be a network device (the first network device or the second network device), or a component of the network device (for example, an integrated circuit, a chip, etc.).
  • the device may also be another communication module, which is used to implement the method in the method embodiment of the present application.
  • the communication device 1200 may include: a processing module 1202 (or referred to as a processing unit).
  • it may also include a transceiver module 1201 (or referred to as a transceiving unit) and a storage module 1203 (or referred to as a storage unit).
  • one or more modules as shown in Figure 12 may be implemented by one or more processors, or by one or more processors and memories; or by one or more processors It may be implemented with a transceiver; or implemented by one or more processors, memories, and transceivers, which is not limited in the embodiment of the present application.
  • the processor, memory, and transceiver can be set separately or integrated.
  • the communication device 1200 has the function of implementing the terminal device described in the embodiment of the present application.
  • the communication device 1200 includes a terminal device to execute the module or unit or means corresponding to the step related to the terminal device described in the embodiment of the present application.
  • a unit or means (means) can be realized by software, or by hardware, or by hardware executing corresponding software, or by a combination of software and hardware.
  • the communication device 1200 has the function of implementing the network device described in the embodiment of this application.
  • the communication device 1200 includes a first network device to execute the module or unit or means corresponding to the steps related to the first network device described in the embodiment of this application ( means), the function or unit or means (means) can be realized by software, or by hardware, or by hardware executing corresponding software, or by a combination of software and hardware.
  • a first network device to execute the module or unit or means corresponding to the steps related to the first network device described in the embodiment of this application
  • the function or unit or means can be realized by software, or by hardware, or by hardware executing corresponding software, or by a combination of software and hardware.
  • each module in the communication device 1200 in the embodiment of the present application may be used to execute the method described in FIG. 7 or FIG. 8 in the embodiment of the present application, or may be used to execute the method described in the above two or more figures. The methods are combined with each other.
  • the communication device 1200 is a terminal device, and may include: a processing module 1202 and a transceiver module 1201.
  • the processing module 1202 is configured to obtain a cell identity; obtain first configuration information according to the cell identity; there is a corresponding relationship between the cell identity and the first configuration information; the first configuration information is used to configure a wireless network temporary identity;
  • the processing module 1202 is further configured to control the transceiver module 1201 to perform one or more of the following according to the first configuration information:
  • Receive downlink control information receive downlink data; send uplink control information; or send uplink data.
  • the transceiver module 1202 is further configured to receive second configuration information, and the second configuration information is used to configure the correspondence between the cell identity and the first configuration information.
  • the processing module 1202 is specifically configured to obtain the wireless network temporary identity according to the cell identity.
  • the first configuration information is also used to configure time-frequency resources of the downlink control information.
  • the cell identity has a corresponding relationship with the wireless network temporary identity and the time-frequency resource of the downlink control information; the processing module 1202 is specifically configured to obtain the wireless network according to the cell identity.
  • Temporary network identification and time-frequency resources of downlink control information are specifically configured to obtain the wireless network according to the cell identity.
  • the cell identifier has a corresponding relationship with the time-frequency resource of the wireless network temporary identifier and the downlink control information; the processing module 1202 is also used to obtain the synchronization signal block index, There is a corresponding relationship between the synchronization signal block index and the time-frequency resource of the downlink control information; the processing module 1202 is specifically configured to obtain the temporary wireless network identification according to the cell identification; and obtain the time-frequency resource of the downlink control information according to the cell identification and the synchronization signal block index resource.
  • the first configuration information becomes invalid.
  • the first configuration information becomes invalid.
  • the first configuration information becomes invalid.
  • the terminal device is in a radio resource control inactive state.
  • the communication device 1200 is a first network device and may include a transceiver module 1201, and the transceiver module 1201 may include a sending module 1211 and a receiving module 1221.
  • the sending module 1211 is configured to send identification information of the terminal device, the identification information of the terminal device is used to request third configuration information corresponding to the terminal device; the third configuration information is used to configure a wireless network temporary identity;
  • the receiving module 1221 is configured to receive third configuration information; the third configuration information has a corresponding relationship with the cell identity of the second cell.
  • the sending module 1211 is further configured to send fourth configuration information to the terminal device, where the fourth configuration information is used to configure the correspondence between the cell of the second cell and the third configuration information.
  • the third configuration information there is a correspondence between the third configuration information and the cell identity of the second cell, specifically: there is a correspondence between the wireless network temporary identity and the cell identity of the second cell.
  • the third configuration information is also used to configure time-frequency resources of the downlink control information.
  • the third configuration information there is a correspondence between the third configuration information and the cell identity of the second cell, specifically: there is a correspondence between the time-frequency resources of the wireless network temporary identity and the downlink control information and the cell identity of the second cell.
  • the time-frequency resource of the downlink control information also has a corresponding relationship with the synchronization signal block index.
  • the receiving module 1221 is further configured to receive fifth configuration information, and the fifth configuration information is used to configure a timer corresponding to the third configuration information.
  • the communication device 1200 is a first network device and may include a transceiver module 1201, and the transceiver module 1201 may include a sending module 1211 and a receiving module 1221.
  • the receiving module 1221 is used to receive the identification information of the terminal device
  • the sending module 1211 is configured to send third configuration information according to the identification information of the terminal device; the third configuration information is used to configure a temporary wireless network identity; the third configuration information has a corresponding relationship with the cell identity of the second cell.
  • the third configuration information there is a correspondence between the third configuration information and the cell identity of the second cell, specifically: there is a correspondence between the wireless network temporary identity and the cell identity of the second cell.
  • the third configuration information is also used to configure time-frequency resources of the downlink control information.
  • the third configuration information there is a correspondence between the third configuration information and the cell identity of the second cell, specifically: there is a correspondence between the time-frequency resources of the wireless network temporary identity and the downlink control information and the cell identity of the second cell.
  • the time-frequency resource of the downlink control information also has a corresponding relationship with the synchronization signal block index.
  • the sending module is further configured to send fifth configuration information, and the fifth configuration information is used to configure a timer corresponding to the third configuration information.
  • the third configuration information becomes invalid.
  • the third configuration information becomes invalid.
  • the third configuration information becomes invalid.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments may be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (ASIC), a field programmable gate array (field programmable gate array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the processing unit used to execute these technologies at a communication device can be implemented in one or more general-purpose processors, DSPs, digital signal processing devices, ASICs, Programmable logic device, FPGA, or other programmable logic device, discrete gate or transistor logic, discrete hardware component, or any combination of the foregoing.
  • the general-purpose processor may be a microprocessor.
  • the general-purpose processor may also be any traditional processor, controller, microcontroller, or state machine.
  • the processor can also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration. accomplish.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer-readable medium on which a computer program is stored, and when the computer program is executed by a computer, the function of any of the foregoing method embodiments is realized.
  • This application also provides a computer program product, which, when executed by a computer, realizes the functions of any of the foregoing method embodiments.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk, SSD)) etc.
  • system and “network” in this article are often used interchangeably in this article.
  • the term “and/or” in this article is only an association relationship describing associated objects, which means that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, exist alone In the three cases of B, A can be singular or plural, and B can be singular or plural.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B based on A does not mean that B is determined only based on A, and B can also be determined based on A and/or other information.
  • the corresponding relationships shown in the tables in this application can be configured or pre-defined.
  • the value of the information in each table is only an example, and can be configured to other values, which is not limited in this application.
  • the corresponding relationship shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, and so on.
  • the names of the parameters shown in the titles in the above tables may also be other names that can be understood by the communication device, and the values or expressions of the parameters may also be other values or expressions that can be understood by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear tables, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables, or hash tables. Wait.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种配置信息获取方法及装置,可以应用于终端设备获取RNTI的场景,终端设备可以处于RRC非激活态。其中,该方法可包括:获取小区标识;根据该小区标识,获得第一配置信息,该小区标识与第一配置信息存在对应关系,第一配置信息用于配置RNTI;根据第一配置信息,执行以下一项或多项:接收下行控制信息;接收下行数据;发送上行控制信息;或发送上行数据。采用本申请实施例,可以使得终端设备获得在处于RRC非激活态时使用的RNTI,从而可以实现终端设备以低功耗进行数据传输。

Description

配置信息获取方法及装置
本申请要求于2020年2月14日提交中国专利局、申请号为202010093115.5、申请名称为“配置信息获取方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,具体涉及一种配置信息获取方法及装置。
背景技术
下行控制信息(downlink control information,DCI),可以调度下行数据信道的传输,例如调度物理下行共享信道(physical downlink shared channel,PDSCH)的传输;也可以调度上行数据信道的传输,例如调度物理上行共享信道(physical uplink shared channel,PUSCH)的传输。调度PDSCH/PUSCH传输的DCI,经由物理下行控制信道(physical downlink control channel,PDCCH)传输。PDCCH承载在控制资源集(control resource set,CORESET)的配置信息和搜索空间(SearchSpace)的配置信息共同确定的时频资源上。可以将由CORESET的配置信息和SearchSpace的配置信息共同确定的时频资源称为DCI的时频资源,终端设备可以在该时频资源上检测DCI。
DCI的循环冗余校验(cyclic redundancy check,CRC)由一个无线网络临时标识(radio network temporary identifier,RNTI)加扰。在不同的场景下,RNTI可能是公共的或终端设备专属的,具体可以预定义,或由网络设备为终端设备配置。终端设备采用RNTI尝试对DCI的CRC进行解扰,若解扰成功,则可以接收并获得该DCI的内容。
终端设备可以与网络设备建立无线资源控制(radio resource control,RRC)连接。在RRC连接建立的情况下,终端设备所处的RRC状态为RRC连接态。终端设备所处的RRC状态除了可以是RRC连接态之外,还可以是RRC空闲态或RRC非激活态。目前,处于RRC非激活态的终端设备,由于在进入RRC非激活态时无法获得相应RNTI的配置,因此无法与网络设备进行数据传输。为了实现处于RRC非激活态的终端设备与网络设备之间的数据传输,终端设备需获得在处于RRC非激活态时使用的RNTI。
因此,终端设备如何获得在处于RRC非激活态时使用的RNTI是亟待解决的技术问题。
发明内容
本申请实施例提供一种配置信息获取方法及装置,可以使得终端设备获得在处于RRC非激活态时使用的RNTI,从而可以实现终端设备以低功耗进行数据传输。
本申请实施例第一方面提供一种配置信息获取方法,该方法可以由终端设备执行,也可以由终端设备的部件(例如处理器、芯片、或芯片***等)执行,包括:
获取小区标识;根据该小区标识,获得第一配置信息,该小区标识与第一配置信息存在对应关系,该小区标识为基于无线接入网的通知区域RNA中的一个小区的标识;根据第一配置信息,执行以下一项或多项:
接收下行控制信息DCI;接收下行数据;发送上行控制信息;发送上行数据。
在一种可能的实现方式中,第一配置信息用于配置RNTI。
本申请实施例第一方面,通过小区标识获得用于配置RNTI的第一配置信息,以便终端设备可以根据RNTI实现与网络设备之间的数据传输。
其中,该小区标识可用于标识终端设备驻留的小区,例如可用于标识终端设备处于RRC非激活态时驻留的小区。处于RRC非激活态的终端设备执行第一方面提供的方法,可以使得终端设备可以获得在处于RRC非激活态时使用的RNTI,从而可以实现处于RRC非激活态的终端设备与网络设备之间的数据传输。终端设备处于RRC非激活态进行数据传输,使得终端设备以低功耗进行数据传输,从而可以减缓终端设备的电量消耗速度,延长终端设备的使用时长。相比处于RRC连接态的终端设备进行数据传输,可以节省信令开销,从而节省网络资源。
在一种可能的实现方式中,终端设备接收第二配置信息,第二配置信息用于配置该小区标识与第一配置信息之间的对应关系。终端设备可在处于RRC连接态时,接收第二配置信息,在处于RRC非激活态时,可以根据第二配置信息和获取的小区标识,获得第一配置信息,从而使得处于RRC非激活态的终端设备可以低功耗进行数据传输。
该小区标识与第一配置信息之间的对应关系也可以预定义,以便终端设备可以在获取到该小区标识时,可以直接获得第一配置信息,从而可以快速进入以低功耗进行数据传输的场景。
在一种可能的实现方式中,该小区标识与第一配置信息存在对应关系可以是该小区标识与RNTI存在对应关系,终端设备根据获取到的小区标识,获得RNTI,以便根据RNTI执行以下一项或多项:接收下行控制信息,接收下行数据;发送上行控制信息,发送上行数据,从而可以实现终端设备以低功耗进行数据传输。
在一种可能的实现方式中,第一配置信息用于下行控制信息的时频资源的配置,以便终端设备可以快速检测下行控制信息。
在一种可能的实现方式中,下行控制信息的时频资源由控制资源集的配置信息和搜索空间的配置信息确定。
在一种可能的实现方式中,该小区标识与第一配置信息存在对应关系可以是该小区标识与RNTI和下行控制信息的时频资源存在对应关系,终端设备根据获取到的小区标识,获得RNTI和下行控制信息的时频资源,以便终端设备可以快速获得下行控制信息。进一步的,下行控制信息可调度PDSCH的传输,终端设备可根据接收的下行控制信息,接收承载在PDSCH上的下行数据,可以实现终端设备以低功耗接收下行数据。
在一种可能的实现方式中,该小区标识与第一配置信息存在对应关系可以是该小区标识与RNTI和下行控制信息的时频资源存在对应关系,终端设备除了获取小区标识之外,还获取同步信号块索引,该同步信号块索引与下行控制信息的时频资源存在对应关系。终端设备根据获取到的小区标识,获得RNTI,根据获取到的小区标识和同步信号块索引,获得下行控制信息的时频资源,使得终端设备可以快速获得准确的下行控制信息的时频资源。
终端设备可通过检测到的同步信号块获取小区标识,可以获得较为准确的小区标识;可通过检测到的同步信号块获取同步信号块索引,可以获得较为准确的同步信号块索引。
在一种可能的实现方式中,该小区标识与第一配置信息存在对应关系可以是该小区标 识与RNTI和上行授权配置资源存在对应关系,终端设备根据获取到的小区标识,获得RNTI和上行授权配置资源,以便根据RNTI和上行授权配置资源发送上行控制信息和/或上行数据,从而可以实现终端设备以低功耗进行上行传输。
在一种可能的实现方式中,当第一配置信息对应的定时器超时时,第一配置信息失效;反之,第一配置信息对应的定时器未超时,第一配置信息有效。
在一种可能的实现方式中,当终端设备处于RRC连接态时,第一配置信息失效;当终端设备处于RRC非激活态时,第一配置信息有效。
在一种可能的实现方式中,当终端设备采用第一配置信息配置的RNTI传输数据失败时,第一配置信息失效;反之,第一配置信息有效。
上述三种方式中,第一配置信息失效,终端设备便不能继续使用第一配置信息,例如不能根据第一配置信息执行以下一项或多项:接收下行控制信息;接收下行数据;发送上行控制信息;发送上行数据。这样可以避免终端设备进行无效的数据传输。第一配置信息失效时,终端设备可及时释放第一配置信息配置的RNTI和时频资源,从而可以节省网络资源。
本申请实施例第二方面提供一种通信装置,该通信装置可以是终端设备,也可以是终端设备中的部件,或者是能够与终端设备匹配使用的装置。终端设备可以处于RRC非激活态。一种设计中,该装置可以包括执行第一方面中所描述的方法/操作/步骤/动作所对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和收发模块。示例性的,
所述处理模块,用于获取小区标识;根据该小区标识,获得第一配置信息,该小区标识与第一配置信息存在对应关系,该小区标识为基于无线接入网的通知区域RNA中的一个小区的标识;
所述处理模块,还用于根据第一配置信息,控制所述收发模块执行以下一项或多项:
接收下行控制信息;接收下行数据;发送上行控制信息;发送上行数据。
在一种可能的实现方式中,第一配置信息用于配置RNTI。
在一种可能的实现方式中,所述收发模块,还用于接收第二配置信息,第二配置信息用于配置小区标识与第一配置信息之间的对应关系。
在一种可能的实现方式中,该小区标识与第一配置信息存在对应关系,具体为:该小区标识与无线网络临时标识存在对应关系;
所述处理模块,具体用于根据该小区标识,获得无线网络临时标识。
在一种可能的实现方式中,第一配置信息用于下行控制信息的时频资源的配置。
在一种可能的实现方式中,下行控制信息的时频资源由控制资源集的配置信息和搜索空间的配置信息确定。
在一种可能的实现方式中,该小区标识与第一配置信息存在对应关系,具体为:该小区标识与无线网络临时标识和下行控制信息的时频资源存在对应关系;
所述处理模块,具体用于根据该小区标识,获得无线网络临时标识和下行控制信息的时频资源。
在一种可能的实现方式中,该小区标识与第一配置信息存在对应关系,具体为:该小 区标识与无线网络临时标识和下行控制信息的时频资源存在对应关系;
所述处理模块,还用于获取同步信号块索引,同步信号块索引与下行控制信息的时频资源存在对应关系;
所述处理模块,具体用于根据小区标识,获得无线网络临时标识;以及根据小区标识和同步信号块索引,获得下行控制信息的时频资源。
在一种可能的实现方式中,当第一配置信息对应的定时器超时时,第一配置信息失效。
在一种可能的实现方式中,当处于无线资源控制连接态时,第一配置信息失效。
在一种可能的实现方式中,当采用无线网络临时标识传输数据失败时,第一配置信息失效。
本申请实施例第三方面提供一种通信装置,该装置包括处理器,用于实现上述第一方面描述的方法。该装置还可以包括存储器,用于存储指令和数据。该存储器与该处理器耦合,该处理器执行该存储器中存储的指令时,可以使该装置实现上述第一方面描述的方法。该装置还可以包括通信接口,该通信接口用于该装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,其它设备可以为网络设备等。在一种可能的设计中,该装置包括:
存储器,用于存储程序指令;
处理器,用于获取小区标识;根据该小区标识,获得第一配置信息,该小区标识与第一配置信息存在对应关系,该小区标识为基于无线接入网的通知区域RNA中的一个小区的标识;根据第一配置信息,控制通信接口执行以下一项或多项:
接收下行控制信息;接收下行数据;发送上行控制信息;发送上行数据。
在一种可能的实现方式中,第一配置信息用于配置RNTI。
在一种可能的实现方式中,处理器控制通信接口还执行:接收第二配置信息,第二配置信息用于配置小区标识与第一配置信息之间的对应关系。
在一种可能的实现方式中,该小区标识与第一配置信息存在对应关系,具体为:该小区标识与无线网络临时标识存在对应关系;
处理器,具体用于根据该小区标识,获得无线网络临时标识。
在一种可能的实现方式中,第一配置信息用于下行控制信息的时频资源的配置。
在一种可能的实现方式中,下行控制信息的时频资源由控制资源集的配置信息和搜索空间的配置信息确定。
在一种可能的实现方式中,该小区标识与第一配置信息存在对应关系,具体为:该小区标识与无线网络临时标识和下行控制信息的时频资源存在对应关系;
处理器,具体用于根据该小区标识,获得无线网络临时标识和下行控制信息的时频资源。
在一种可能的实现方式中,该小区标识与第一配置信息存在对应关系,具体为:该小区标识与无线网络临时标识和下行控制信息的时频资源存在对应关系;
处理器,还用于获取同步信号块索引,同步信号块索引与下行控制信息的时频资源存在对应关系;
处理器,具体用于根据小区标识,获得无线网络临时标识;以及根据小区标识和同步 信号块索引,获得下行控制信息的时频资源。
在一种可能的实现方式中,当第一配置信息对应的定时器超时时,第一配置信息失效。
在一种可能的实现方式中,当处于无线资源控制连接态时,第一配置信息失效。
在一种可能的实现方式中,当采用无线网络临时标识传输数据失败时,第一配置信息失效。
本申请实施例第四方面提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行第一方面提供的方法。
本申请实施例第五方面提供一种芯片***,该芯片***包括处理器,还可以包括存储器,用于实现上述第一方面提供的方法。该芯片***可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例第六方面提供一种配置信息获取方法,该方法可以由第一网络设备执行,也可以由第一网络设备的部件(例如处理器、芯片、或芯片***等)执行,包括:
第一网络设备发送终端设备的标识信息,终端设备的标识信息用于请求与终端设备对应的第三配置信息;
第一网络设备接收第三配置信息;第三配置信息与第二小区的小区标识存在对应关系,该小区标识为基于无线接入网的通知区域RNA中的一个小区的标识。
在一种可能的实现方式中,第一配置信息用于配置RNTI。
其中,第一网络设备可以是终端设备切换至RRC非激活态之前,与终端设备建立RRC连接的网络设备,第一网络设备可以向第二网络设备发送终端设备的标识信息,第一网络设备可以接收来自第二网络设备的第三配置信息。第二网络设备可以是为终端设备所配置的通知区域中的网络设备,第二网络设备的数量可以是一个或多个,第二网络设备的覆盖范围包括一个或多个第二小区。终端设备处于RRC非激活态时,可以在通知区域内移动。
本申请实施例第六方面,第一网络设备将终端设备的标识信息告知第二网络设备,以便第二网络设备为终端设备分配第三配置信息,使得第二网络设备可以为不同的终端设备分配不同的RNTI,进而终端设备可以获得在处于RRC非激活态时使用的,专属的RNTI。
在一种可能的实现方式中,第一网络设备向终端设备发送第四配置信息,第一四配置信息用于配置第二小区的小区标识与第三配置信息之间的对应关系,以便终端设备可以根据获取到的小区标识,获得第一配置信息,从而可以实现终端设备以低功耗进行数据传输。
在一种可能的实现方式中,第三配置信息与第二小区的小区标识存在对应关系可以是RNTI与第二小区的小区标识存在对应关系,以便终端设备可以根据获取到的第二小区的小区标识,获得该小区标识对应的RNTI,从而可以实现终端设备获得在处于RRC非激活态时使用的RNTI,使用RNTI可以实现以低功耗进行数据传输。
在一种可能的实现方式中,第三配置信息用于下行控制信息的时频资源的配置,以便终端设备可以快速检测下行控制信息。
在一种可能的实现方式中,下行控制信息的时频资源由控制资源集的配置信息和搜索空间的配置信息确定。
在一种可能的实现方式中,第三配置信息与第二小区的小区标识存在对应关系可以是RNTI和下行控制信息的时频资源与第二小区的小区标识存在对应关系,以便终端设备可以 根据获取到的第二小区的小区标识,快速获得下行控制信息。
在一种可能的实现方式中,下行控制信息的时频资源与同步信号块索引存在对应关系,以便终端设备可以根据获取到的第二小区的小区标识,获得该小区标识对应的RNTI;根据获取到的小区标识和同步信号块索引,获得下行控制信息的时频资源,使得终端设备可以快速获得准确的下行控制信息的时频资源。
在一种可能的实现方式中,第一网络设备接收第五配置信息,第五配置信息用于配置与第三配置信息对应的定时器,以便第一网络设备可判断第三配置信息是否有效。第一网络设备向终端设备发送的第四配置信息,还可用于配置与第三配置信息对应的定时器,以便终端设备可判断第一配置信息是否有效,避免终端设备进行无效的数据传输。第五配置信息可来自第二网络设备,可与第三配置信息一同发送,也可分别发送。
在一种可能的实现方式中,当第三配置信息对应的定时器超时时,第三配置信息失效;反之,第三配置信息对应的定时器未超时,第三配置信息有效。
在一种可能的实现方式中,当终端设备处于RRC连接态时,第三配置信息失效;当终端设备未处于RRC连接态时,第三配置信息有效。
在一种可能的实现方式中,当终端设备未处于通知区域时,第三配置信息失效。
本申请实施例第七方面提供一种通信装置,该通信装置可以是第一网络设备,也可以是第一网络设备中的部件,或者是能够与第一网络设备匹配使用的装置。一种设计中,该装置可以包括执行第六方面中所描述的方法/操作/步骤/动作所对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括收发模块,收发模块可包括发送模块和接收模块。示例性的,
发送模块,用于发送终端设备的标识信息,终端设备的标识信息用于请求与终端设备对应的第三配置信息;
接收模块,用于接收第三配置信息;第三配置信息与第二小区的小区标识存在对应关系,该小区标识为基于无线接入网的通知区域RNA中的一个小区的标识。
本申请实施例第八方面提供一种通信装置,该装置包括处理器,用于实现上述第六方面描述的方法。该装置还可以包括存储器,用于存储指令和数据。该存储器与该处理器耦合,该处理器执行该存储器中存储的指令时,可以使该装置实现上述第六方面描述的方法。该装置还可以包括通信接口,该通信接口用于该装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,其它设备可以为终端设备、第二网络设备等。在一种可能的设计中,该装置包括:
存储器,用于存储程序指令;
处理器,用于控制通信接口发送终端设备的标识信息,终端设备的标识信息用于请求与终端设备对应的第三配置信息;控制通信接口接收第三配置信息;第三配置信息与第二小区的小区标识存在对应关系,该小区标识为基于无线接入网的通知区域RNA中的一个小区的标识。
本申请实施例第九方面提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行第六方面提供的方法。
本申请实施例第十方面提供一种芯片***,该芯片***包括处理器,还可以包括存储 器,用于实现上述第六方面提供的方法。该芯片***可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例第十一方面提供一种配置信息获取方法,该方法可以由第二网络设备执行,也可以由第一网络设备的部件(例如处理器、芯片、或芯片***等)执行,包括:
第二网络设备接收终端设备的标识信息;
第二网络设备根据终端设备的标识信息,发送第三配置信息;第三配置信息用于配置RNTI,第三配置信息与第二小区的小区标识存在对应关系。
其中,第二网络设备可以是为终端设备所配置的通知区域中的网络设备,第二网络设备的数量可以是一个或多个,第二网络设备的覆盖范围包括一个或多个第二小区。终端设备处于RRC非激活态时,可以在通知区域内移动。第二网络设备可接收来自第一网络设备的终端设备的标识信息,可向第一网络设备发送第三配置信息。第一网络设备可以是终端设备切换至RRC非激活态之前,与终端设备建立RRC连接的网络设备。
在一种可能的实现方式中,第三配置信息用于配置RNTI。
本申请实施例第十一方面,第二网络设备根据终端设备的标识信息向第一网络设备发送第三配置信息,可以实现第二网络设备为不同的终端设备分配不同的RNTI,进而终端设备可以获得在处于RRC非激活态时使用的,专属的RNTI,用于实现终端设备以低功耗与第二网络设备进行数据传输,也可以节省第二网络设备的信令开销。
在一种可能的实现方式中,第三配置信息与第二小区的小区标识存在对应关系可以是RNTI与第二小区的小区标识存在对应关系,以便终端设备可以根据获取到的第二小区的小区标识,获得该小区标识对应的RNTI,从而可以实现终端设备获得在处于RRC非激活态时使用的RNTI,使用RNTI可以实现以低功耗进行数据传输。
在一种可能的实现方式中,第三配置信息用于下行控制信息的时频资源的配置,以便终端设备可以快速检测下行控制信息。
在一种可能的实现方式中,下行控制信息的时频资源由控制资源集的配置信息和搜索空间的配置信息确定。
在一种可能的实现方式中,第三配置信息与第二小区的小区标识存在对应关系可以是RNTI和下行控制信息的时频资源与第二小区的小区标识存在对应关系,以便终端设备可以根据获取到的第二小区的小区标识,快速获得下行控制信息。
在一种可能的实现方式中,下行控制信息的时频资源与同步信号块索引存在对应关系,以便终端设备可以根据获取到的第二小区的小区标识,获得该小区标识对应的RNTI;根据获取到的小区标识和同步信号块索引,获得下行控制信息的时频资源,使得终端设备可以快速获得准确的下行控制信息的时频资源。
在一种可能的实现方式中,第二网络设备向第一网络设备发送第五配置信息,第五配置信息用于配置与第三配置信息对应的定时器,以便第一网络设备可判断第三配置信息是否有效。第五配置信息可与第三配置信息一同发送,也分别发送。
在一种可能的实现方式中,当第三配置信息对应的定时器超时时,第三配置信息失效;反之,第三配置信息对应的定时器未超时,第三配置信息有效。
在一种可能的实现方式中,当终端设备处于RRC连接态时,第三配置信息失效;当终 端设备未处于RRC连接态时,第三配置信息有效。
在一种可能的实现方式中,当终端设备未处于通知区域时,第三配置信息失效。
第三配置信息失效时,第二网络设备便不继续与终端设备进行数据传输,可以避免第二网络设备进行无效的数据传输。第三配置信息失效时,第二网络设备可及时释放第三配置信息配置的RNTI和时频资源,从而可以节省网络资源。
本申请实施例第十二方面提供一种通信装置,该通信装置可以是第二网络设备,也可以是第二网络设备中的部件,或者是能够与第二网络设备匹配使用的装置。一种设计中,该装置可以包括执行第十一方面中所描述的方法/操作/步骤/动作所对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括收发模块,收发模块可包括发送模块和接收模块。示例性的,
接收模块,用于接收终端设备的标识信息;
发送模块,用于根据终端设备的标识信息,发送第三配置信息;第三配置信息与第二小区的小区标识存在对应关系,该小区标识为基于无线接入网的通知区域RNA中的一个小区的标识。
本申请实施例第十三方面提供一种通信装置,该装置包括处理器,用于实现上述第十一方面描述的方法。该装置还可以包括存储器,用于存储指令和数据。该存储器与该处理器耦合,该处理器执行该存储器中存储的指令时,可以使该装置实现上述第十一方面描述的方法。该装置还可以包括通信接口,该通信接口用于该装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,其它设备可以第一网络设备等。在一种可能的设计中,该装置包括:
存储器,用于存储程序指令;
处理器,用于控制通信接口接收模块,用于接收终端设备的标识信息;根据终端设备的标识信息,控制通信接口发送第三配置信息;第三配置信息与第二小区的小区标识存在对应关系,该小区标识为基于无线接入网的通知区域RNA中的一个小区的标识。
本申请实施例第十四方面提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行第十一方面提供的方法。
本申请实施例第十五方面提供一种芯片***,该芯片***包括处理器,还可以包括存储器,用于实现上述第十一方面提供的方法。该芯片***可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例第十六方面提供一种通信***,该通信***包括第二方面所述的终端设备,可选的还包括第七方面所述的第一网络设备和第十二方面所述的第二网络设备。或,该通信***包括第三方面所述的终端设备,可选的还包括第八方面所述第一网络设备和第十三方面所述的第二网络设备。
附图说明
图1为三种RRC状态之间的转换示意图;
图2为时频资源的示意图;
图3为控制资源集的配置信息和搜索空间的配置信息的示例图;
图4为一种寻呼过程的示意图;
图5为应用本申请实施例的一种网络架构示意图;
图6为应用本申请实施例的另一种网络架构示意图;
图7为本申请实施例提供的一种配置信息获取方法的流程示意图;
图8为本申请实施例提供的另一种配置信息获取方法的流程示意图;
图9为本申请实施例提供的一种示例图;
图10为本申请实施例提供的通信装置的结构示意图;
图11为本申请实施例提供的一种终端设备的结构示意图;
图12为本申请实施例提供的通信装置的另一种结构示意图。
具体实施方式
为了更好地理解本申请实施例提供的技术方案,首先对本申请实施例涉及的技术术语进行介绍。
(1)RRC连接态、RRC空闲态、RRC非激活态
在通信***中,终端设备可以接入网络设备,并与接入网络设备进行通信。终端设备在接入网络设备的过程中或接入网络设备之后,可以与网络设备建立无线资源控制(radio resource control,RRC)连接。在RRC连接建立的情况下,终端设备所处的RRC状态为RRC连接(connected)态。
终端设备在处于RRC连接态的情况下,可通过上行数据信道,例如PUSCH,向网络设备发送上行数据。上行数据例如可以是终端设备的单播数据等。终端设备还可以通过下行数据信道,例如PDSCH,接收来自网络设备的下行数据。下行数据例如可以是针对终端设备的单播数据等。
网络设备可通过RRC释放过程,例如向终端设备发送RRC释放(release)消息,使得终端设备从RRC连接态转换为RRC空闲(idle)态,或使得终端设备从RRC连接态转换为RRC非激活(inactive)态。
终端设备在处于RRC空闲态的情况下,释放了终端设备与网络设备之间的连接以及终端设备与核心网之间的连接。该情况下,终端设备可以从网络设备接收寻呼消息、广播信道或***信息等中的一种或多种,但是无法与网络设备进行单播数据传输,例如无法接收来自网络设备的,通过PDSCH传输的下行数据;或无法通过PUSCH向网络设备发送上行数据。
终端设备在处于RRC非激活态的情况下,释放了终端设备与网络设备之间的连接,但是可以保持终端设备与核心网之间的连接。该情况下,终端设备可以从网络设备接收寻呼消息、广播信道或***信息等中的一种或多种。目前,对于处于RRC非激活态的终端设备,网络设备会保留终端设备的注册信息,但是暂停终端设备与网络设备之间的大部分空口行为,例如终端设备暂停接收调度终端设备单播传输的PDCCH。可以理解的是,RRC非激活态是一种使终端设备省电的状态。但是通过执行本申请实施例,处于RRC非激活态的终端设备,可以与网络设备进行单播数据传输。
在一种可能的实现方式中,RRC连接态、RRC空闲态和RRC非激活态之间的转换可参见图1。终端设备在未接入网络设备时,可通过RRC建立(setup)过程,建立与网络设备之间的RRC连接。在RRC连接建立的情况下,终端设备所处的RRC状态为RRC连接 态。网络设备可通过RRC释放过程,使得终端设备所处的RRC状态从RRC连接态转换至RRC空闲态或RRC非激活态。
处于RRC空闲态的终端设备,可通过RRC建立过程,使得终端设备所处的RRC状态从RRC空闲态转换至RRC连接态。处于RRC空闲态的终端设备发起RRC建立过程,可由网络设备发送的寻呼消息触发,或由终端设备的高层触发。终端设备的高层触发,例如终端设备需要向网络设备发送数据。
对处于RRC空闲态的终端设备而言,RRC建立过程可包括:终端设备向网络设备发送RRC建立请求(setup request)消息;网络设备接收到该RRC建立请求消息的情况下,可向终端设备发送RRC建立消息,RRC建立消息用于指示网络设备同意建立RRC连接,使得终端设备所处的RRC状态从RRC空闲态切换至RRC连接态;若网络设备不同意建立RRC连接,可向终端设备发送RRC拒绝(reject)消息,使得终端设备所处的RRC状态仍为RRC空闲态。
处于RRC非激活态的终端设备,可通过RRC建立过程或RRC恢复(resume)过程,使得终端设备从RRC非激活态转换至RRC连接态。RRC非激活态的终端设备发起RRC恢复过程,可由网络设备发送的寻呼消息触发,或由终端设备的高层触发。网络设备可以通过RRC释放过程,使得终端设备所处的RRC状态从RRC非激活态转换至RRC空闲态。
其中,RRC恢复过程可包括:终端设备向网络设备发送RRC恢复请求(resume request)消息;网络设备接收到该RRC恢复请求消息的情况下,可向终端设备发送RRC建立消息或RRC恢复消息,使得终端设备所处的RRC状态从RRC非激活态切换至RRC连接态;若网络设备不同意建立或恢复RRC连接,可向终端设备发送RRC拒绝消息,使得终端设备所处的RRC状态仍为RRC非激活态。
上述RRC连接态也可以描述为RRC-连接态或连接态等,上述RRC空闲态也可以描述为RRC-空闲态或空闲态等,上述RRC非激活态也可以描述为RRC-非激活态、RRC去激活态或RRC第三态等。本申请实施例中,RRC连接态、RRC空闲态和RRC非激活态,用于举例,其他用于描述这三种状态的名称或术语理应落入本申请实施例的保护范围。
(2)下行控制信息的时频资源
为了便于理解下行控制信息的时频资源,先对时频资源进行介绍,以图2所示的时频资源为例。图2中的具体数值用于举例,并不构成对本申请实施例的限定。图2中,一个资源块组(resource block group,RBG)在频域上包括6个连续的资源块(resource block,RB);一个RB在频域上包括12个子载波;一个时隙(slot)在时域上通常包括14个符号(symbol);一个资源元素(resource element,RE)在频域上包括一个子载波,在时域上包括一个符号。其中,符号可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号、离散傅里叶变换扩频的正交频分复用(discrete Fourier transform spread spectrum orthogonal frequency division multiplexing,DFT-S-OFDM)符号等。
下行控制信息的时频资源,也可以描述为搜索下行控制信息的时频资源,或检测下行控制信息的时频资源,或搜索下行控制信息的时频资源范围等。下行控制信息的时频资源包括根据CORESET的配置信息和SearchSpace的配置信息确定的时频资源,该时频资源用于搜索下行控制信息。或描述为CORESET的配置信息和SearchSpace的配置信息用于指示 下行控制信息的时频资源。
示例性的,CORESET的配置信息用于配置频域资源位置(frequencyDomainResources)和时域资源长度(duration)。其中,frequencyDomainResources可通过比特图(bitmap)指示终端设备在频域上可用的RBG。bitmap中的每个比特指示对应的RBG是否属于该CORESET,例如,bitmap中某个比特的值为“1”,表示该比特对应的RBG属于该CORESET;该比特的值为“0”,表示该比特对应的RBG不属于该CORESET。时域资源长度(duration)用于配置CORESET占用的符号数,取值范围通常为1~3,表示占用1个或2个或3个符号。CORESET的配置信息中的时域资源长度(duration)用于配置搜索DCI的时域长度。搜索DCI的具体时域位置可由SearchSpace的配置信息配置。
示例性的,SearchSpace的配置信息用于配置检测周期和偏置(monitoringSlotPeriodicityAndOffset),检测时隙长度(duration),以及检测符号位置(monitoringSymbolsWithinSlot)。其中,monitoringSlotPeriodicityAndOffset用于配置SearchSpace的周期和偏移(offset),从而可以确定SearchSpace在周期中的起始时隙(slot)位置。offset指的是在周期中SearchSpace的起始slot相对于周期的起始slot的偏移,monitoringSlotPeriodicityAndOffset以slot为单位。例如,monitoringSlotPeriodicityAndOffset=(10,4),表示SearchSpace的周期为10个slot,SearchSpace的起始slot相对于周期的起始slot偏移4个slot。检测时隙长度(duration)用于配置SearchSpace占用的连续slot的数量。monitoringSymbolsWithinSlot用于配置slot中起始符号的位置。
示例性,CORESET的配置信息和SearchSpace的配置信息以图3为例进行描述。图3中,SearchSpace的配置信息中的monitoringSlotPeriodicityAndOffset用于指示SearchSpace的周期和偏移,即指示SearchSpace在周期中的起始slot位置,检测时隙长度(duration)用于指示SearchSpace占用3个连续的slot。根据monitoringSlotPeriodicityAndOffset和检测时隙长度(duration)可以确定一个周期中3个slot上可能有DCI,这3个slot即为图3中一个周期中的3个黑底矩形块,一个黑色矩形块表示一个slot。monitoringSymbolsWithinSlot用于指示slot中起始符号的位置,图3中起始符号为slot中的第二个符号。CORESET中的时域资源长度(duration)用于指示slot中可以用于搜索DCI的时域长度,图3中时域资源长度(duration)为3,表示一次搜索DCI的符号数为3个符号。根据CORESET和SearchSpace的配置信息,可以确定图3中灰底矩形块所表示的时频资源为搜索DCI的时频资源,且每个黑底矩形块中的DCI检测范围均如此。
(3)无线网络临时标识(RNTI)
RNTI,在网络中可以用于标识不同的终端设备。示例性的,下表1列举不同的RNTI的取值范围。
表1
Figure PCTCN2021076212-appb-000001
Figure PCTCN2021076212-appb-000002
表1中,0001–FFEF(十六进制)范围内的RNTI,可以由网络设备配置RNTI值,分配给终端设备,使得终端设备能够进行随机接入、上下行调度、功率控制、或帧结构配置等。
在不同的场景下,RNTI可能是公共的,例如网络设备针对多个终端设备可以配置相同的RNTI值;RNTI也可能是终端设备专属的,例如网络设备针对不同的终端设备配置不同的RNTI值。通常,网络设备对于相同的DCI的时频资源,为不同的终端设备配置不同的RNTI,使不同的终端设备可通过RNTI来区分自己的DCI。例如,终端设备1根据DCI的时频资源搜索DCI,采用RNTI对DCI的CRC进行解扰,若解扰成功,那么可获得该DCI的内容。
(4)非激活RNTI(inactive-RNTI,I-RNTI)和通知区域
I-RNTI,由网络设备为处于RRC非激活态的终端设备配置的,是一个40比特(bit)长度的比特串。I-RNTI在网络设备为终端设备配置的通知区域内是唯一的。网络设备可在RRC释放过程中,为终端设备配置通知区域,例如RRC释放消息用于配置通知区域。处于RRC非激活态的终端设备可以在该通知区域内移动。其中,通知区域也可以描述为基于无线接入网的通知区域(radio access network-based notification area,RNA)、或移动范围等。本申请实施例中,通知区域以描述为RNA为例。RNA可包括一个或多个网络设备覆盖的范围。
处于RRC非激活态的终端设备在RNA中,可根据寻呼消息中是否含有终端设备专属的I-RNTI来判断是否被寻呼,具体可结合图4所示的寻呼过程进行介绍。图4中,第一网 络设备指的是触发终端设备从RRC连接态转换至RRC非激活态的网络设备,即在终端设备切换至RRC非激活态之前,与终端设备建立RRC连接的网络设备;第二网络设备指的是RNA中的网络设备,第二网络设备的数量可以是一个或多个。RNA包括第二网络设备的覆盖范围,可能包括第一网络设备的覆盖范围,也可能不包括第一网络设备的覆盖范围,视第一网络设备为终端设备配置的RNA而定。RNA中可包括一个或多个第二网络设备的覆盖范围。
核心网网元认为RRC非激活态的终端设备仍然在第一网络设备的覆盖范围内,因此当网络侧有下行消息要发送时,核心网网元向第一网络设备发送寻呼消息,触发第一网络设备寻呼,即图4中的步骤1。第一网络设备不知此时RRC非激活态的终端设备在RNA中的哪个第二网络设备的覆盖范围内,因此向RNA中的第二网络设备发送寻呼指示,即图4中的步骤2。第二网络设备在寻呼时机中,向终端设备发起寻呼,即图4中的步骤3。
第二网络设备通过向终端设备发送寻呼消息(paging message),发起寻呼。承载寻呼消息的PDSCH由DCI调度,该DCI的CRC由表1中的P-RNTI(取值为FFFE,十六进制)加扰。可以理解的是,网络设备向多个终端设备发送的寻呼消息,由同一P-RNTI加扰的DCI调度。寻呼消息中可以包括32个终端设备的标识(identify,ID),终端设备的标识可以是I-RNTI或下一代-第五代-临时移动用户标识(next generation-5 th generation–S-temporary mobile subscriber identity,NG-5G-S-TMSI),I-RNTI用于寻呼处于RRC非激活态的终端设备,即寻呼处于RRC非激活态的终端设备使用I-RNTI;NG-5G-S-TMSI用于寻呼处于RRC空闲态的终端设备,即寻呼处于RRC空闲态的终端设备使用NG-5G-S-TMSI。可以理解的是,寻呼消息中包括I-RNTI,用于寻呼处于RRC非激活态的终端设备,针对不同终端设备的寻呼消息,携带的I-RNTI不同。
终端设备使用P-RNTI解扰DCI,根据DCI的指示,读取寻呼消息,根据寻呼消息中是否包括自己的I-RNTI,判断网络侧是否寻呼了自己。例如,处于RRC非激活态的终端设备1和终端设备2使用P-RNTI成功解扰DCI,并接收到由该DCI调度的寻呼消息,寻呼消息中包括I-RNTI A,I-RNTI A为终端设备1的I-RNTI,那么终端设备1确定自己被寻呼;而终端设备2的I-RNTI为I-RNTI B,与寻呼消息包括的I-RNTI A不匹配,终端设备2确定自己未被寻呼。
P-RNTI用于加扰和解扰广播信息/组播信息中的DCI,但是被寻呼的所有终端设备均采用P-RNTI对广播信息/组播信息中的DCI进行解扰。换言之,P-RNTI不是终端设备专属的,即不是针对不同的终端设备配置不同的用于加扰和解扰的RNTI。终端设备专属的RNTI,也可以理解为在一个小区的特定的DCI时频资源内,不同终端设备所使用的RNTI不同。对于不同的终端设备,I-RNTI不同,但是I-RNTI不用于DCI的加扰和解扰。因此,处于RRC非激活态的终端设备无法获取专属的,用于解扰DCI的RNTI。鉴于此,本申请实施例提供一种配置信息获取方法及装置,可以使得终端设备获取专属的,在处于RRC非激活态时使用的RNTI,该RNTI可用于DCI的解扰。进一步的,终端设备可获得DCI,可根据DCI接收下行数据。可选的,该RNTI还用于发送上行控制信息和/或上行数据。采用本申请实施例,可以实现处于RRC非激活态的终端设备与网络设备之间的数据传输。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中, 在本申请实施例的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下一项(个)或多项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的一项或多项,可以表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能基本相同或相似的技术特征进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
本申请实施例描述的技术可用于各种通信***,例如***(4th generation,4G)通信***,4.5G通信***,5G通信***,多种通信***融合的***,或者未来演进的通信***。例如长期演进(long term evolution,LTE)***,新空口(new radio,NR)***,无线保真(wireless-fidelity,WiFi)***,以及第三代合作伙伴计划(3rd generation partnership project,3GPP)相关的通信***等,以及其他此类通信***。
本申请实施例涉及的终端设备(也可称为终端)可以是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。终端设备可以是用户终端(user equipment,UE),其中,UE包括具有无线通信功能的手持式设备、车载设备、穿戴式设备或计算设备。示例性地,UE可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、智能汽车(smart vehicle)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、等等。本申请实施例中,用于实现终端设备的功能的装置可以是终端设备;也可以是能够支持终端设备实现该功能的装置,例如芯片***,该装置可以被安装在终端设备中或者和终端设备匹配使用。在本申请实施例提供的技术方案中,以用于实现终端设备的功能的装置是终端设备为例,描述本申请实施例提供的技术方案。
作为示例而非限定,在本申请中,终端可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请中,终端可以是物联网(internet of things,IoT)***中的终端,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。本申请中的终端可以是机器类型通信(machine type  communication,MTC)中的终端。本申请的终端可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请的方法。因此,本申请实施例可以应用于车联网,例如车辆外联(vehicle to everything,V2X)、车间通信长期演进技术(long term evolution vehicle,LTE-V)、车到车(vehicle to vehicle,V2V)等。
本申请实施例涉及的网络设备,可以包括基站(base station,BS),可以是一种部署在无线接入网络中能够和终端设备进行无线通信的设备。其中,基站可能有多种形式,比如宏基站、微基站、中继站和接入点等。示例性地,本申请实施例涉及到的网络设备可以是5G中的基站或长期演进(long term evolution,LTE)中的基站,其中,5G中的基站还可以称为发送接收点(transmission reception point,TRP)或下一代基站节点(next generation Node B,gNB)。本申请实施例中,用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片***,该装置可以被安装在网络设备中或者和网络设备匹配使用。本申请实施例中,芯片***可以由芯片构成,也可以包括芯片和其他分立器件。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
本申请实施例还涉及核心网(core network)网元。核心网网元也可以描述为核心网设备或核心网功能实体等,指的是为终端设备提供业务支持的核心网中的网元。核心网网元可以是LTE***中的核心网网元,也可以是5G***中的核心网网元,还可以是未来通信***中的核心网网元。以5G***为例,核心网网元可以包括接入和移动性管理功能(access and mobility management function,AMF)实体,会话管理功能(session management function,SMF)实体,和用户面功能(user plane function,UPF)实体等。其中,AMF实体可以负责终端设备的接入管理和移动性管理;SMF实体可以负责会话管理,例如建立会话等;UPF实体可以负责连接外部网络,例如接收来自外部网络的数据,将数据通过网络设备传输至终端设备等。需要说明的是,本申请实施例中实体也可以描述为网元或功能实体等,例如AMF实体也可以描述为AMF网元或AMF功能实体或AMF等。
请参见图5,为应用本申请实施例的一种网络架构示意图。该网络架构包括终端设备501、第一网络设备502和第二网络设备503。需要说明的是,图5所示的设备形态和设备数量用于举例,并不构成对本申请实例的限定,例如可以包括多个第二网络设备。
在一种实现方式中,第一网络设备502,可以是在终端设备501切换至RRC非激活态之前,与终端设备501建立RRC连接的网络设备;第二网络设备503,可以是终端设备501的RNA中的网络设备,第二网络设备503的数量可以不止一个,具体数量视情况而定。终端设备501的RNA,指的是终端设备501处于RRC非激活态时,可以移动的范围。RNA的具体范围由AMF实体确定。
在图5所示的网络架构中,第一网络设备502的覆盖范围包括第一小区,第一小区为终端设备501处于RRC连接态时驻留的小区,第一网络设备502在第一小区内发送SSB;第二网络设备503的覆盖范围包括第二小区,第二网络设备503在第二小区内发送SSB。终端设备501移动出第一小区,例如从第一小区移动至第二小区,第一网络设备502可以 触发终端设备501从RRC连接态转换至RRC非激活态。第二小区可以是RNA中的小区。RNA可能包括第一小区,那么第二小区为RNA中除第一小区之外的小区;RNA可能不包括第一小区,那么第二小区为RNA中任意一个小区。
终端设备501从RRC连接态转换至RRC非激活态之后,可根据搜索到的同步信号块获得小区标识,根据小区标识获得配置信息,该配置信息用于配置RNTI,该小区标识与该配置信息存在对应关系,从而使得终端设备501可以获得在处于RRC非激活态时使用的RNTI。处于RRC非激活态的终端设备501在获得该RNTI的情况下,可根据该RNTI解扰DCI,从而获得DCI的内容;进一步的,可根据DCI调度的PDSCH,接收下行数据。或者,处于RRC非激活态的终端设备501在获得该RNTI的情况下,可直接根据该RNTI接收下行数据。处于RRC非激活态的终端设备501在获得该RNTI的情况下,可根据该RNTI加扰上行控制信息,以便发送上行控制信息;进一步的,上行控制信息可调度上行数据,从而发送上行数据。或者,处于RRC非激活态的终端设备501在获得该RNTI的情况下,可直接根据该RNTI发送上行数据。处于RRC非激活态的不同终端设备可以获得不同的RNTI,从而可以实现终端设备获得专属的RNTI。
在一种实现方式中,第一网络设备502,可以是终端设备501移动前所连接的网络设备;第二网络设备503,可以是终端设备501移动后连接或将连接的网络设备。第一网络设备502的覆盖范围为第一小区,第一小区可以是终端设备501移动前所在的小区;第二网络设备503的覆盖范围为第二小区,第二小区可以是终端设备501移动后所在的小区。
终端设备501在移动后,获取第二小区的小区标识,根据小区标识获得配置信息,该配置信息用于配置RNTI,该小区标识与该配置信息存在对应关系,从而使得移动后的终端设备501可以获得RNTI。
请参见图6,为应用本申请实施例的另一种网络架构示意图。该网络架构包括终端设备601和网络设备602。需要说明的是,图6所示的设备形态和设备数量用于举例,并不构成对本申请实例的限定,
图6与图5不同之处在于,图6中,网络设备602的覆盖范围包括第一小区和第二小区,第一小区为终端设备601处于RRC连接态时驻留的小区,实际应用中,第二小区的数量可为多个。终端设备601移动出第一小区,例如从第一小区移动至第二小区,网络设备602可以触发终端设备601从RRC连接态转换至RRC非激活态。第二小区可以是RNA中的小区。网络设备602可能在同一小区内发送SSB,例如在第一小区内发送SSB;也可能在多个小区内发送SSB,例如一部分SSB在第一小区内发送,另一部分SSB在第二小区内发送。
终端设备601从RRC连接态转换至RRC非激活态之后,在第二小区内搜索到同步信号块,获得第二小区的小区标识,根据小区标识获得配置信息,该配置信息用于配置RNTI,从而处于RRC非激活态的终端设备601可以根据该RNTI在第二小区接收DCI,进一步的在第二小区接收下行数据。处于RRC非激活态的终端设备601也可以根据该RNTI在第二小区发送上行控制信息,进一步的在第二小区发送上行数据。处于RRC非激活态的不同终端设备可以获得不同的RNTI,从而可以实现终端设备获得专属的RNTI。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技 术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面将结合附图对本申请实施例提供的配置信息获取方法进行介绍。需要说明的是,介绍过程中,终端设备与网络设备之间交互的信息或数据的名称用于举例,并不构成对本申请实施例的限定。
请参见图7,为本申请实施例提供的一种配置信息获取方法的流程示意图,该流程可以包括但不限于如下步骤:
步骤701,获取小区标识。
其中,网络设备覆盖内可包括一个或多个小区(cell),例如一个网络设备的覆盖范围可以包括三个小区。小区标识(cell ID)也可以描述为小区识别码、小区编号或区域标识信息等,用于区分不同的小区。在本申请实施例中,小区和小区标识这两个名称,用于举例,并不构成对本申请实施例的限定。
终端设备获取小区标识。在一种实现方式中,终端设备可通过检测到的SSB获取小区标识。
例如,当终端设备需要确定驻留的小区,和/或进行下行同步时,在预定义的频点上或在预定义的频率范围内,搜索SSB。SSB中包括主同步信号(primary synchronization signal,PSS)和辅同步信号(secondary synchronization signal,SSS)和物理广播信道(physical broadcast channel,PBCH)。下面举例说明PSS和SSS。
PSS的序列值d PSS根据
Figure PCTCN2021076212-appb-000003
的不同,有三种候选的序列,可表示为:
Figure PCTCN2021076212-appb-000004
其中,
Figure PCTCN2021076212-appb-000005
x(i+7)=(x(i+4)+x(i))mod2,[x(6) x(5) x(4) x(3) x(2) x(1) x(0)]=[1 1 1 0 1 1 0]。d PSS的序列长度为128,d PSS(n)表示d PSS中第n个元素。
SSS的序列值d SSS根据
Figure PCTCN2021076212-appb-000006
的不同,有336种候选的序列,可表示为:
d SSS(n)=[1-2*x 0((n+m 0)mod127)]*[1-2*x 1((n+m 1)mod127)]
Figure PCTCN2021076212-appb-000007
其中,
Figure PCTCN2021076212-appb-000008
x 0(i+7)=(x 0(i+4)+x 0(i))mod2,x 1(i+7)=(x 1(i+1)+x 1(i))mod2,[x 0(6) x 0(5) x 0(4) x 0(3) x 0(2) x 0(1) x 0(0)]=[0 0 0 0 0 0 1], [x 1(6) x 1(5) x 1(4) x 1(3) x 1(2) x 1(1) x 1(0)]=[0 0 0 0 0 0 1]。d SSS的序列长度为128,d SSS(n)表示d SSS中第n个元素。
终端设备可通过序列检测获得PSS的图样,进而确定
Figure PCTCN2021076212-appb-000009
可通过序列检测获得SSS的图样,进而确定
Figure PCTCN2021076212-appb-000010
可根据
Figure PCTCN2021076212-appb-000011
获得cell ID,
Figure PCTCN2021076212-appb-000012
表示cell ID。
可选的,终端设备可通过检测到的SSB,获取同步信号块索引(SSB index)。同步信号块索引指的是检测到的SSB的索引。终端设备可根据SSB中的PBCH的解调参考信号(demodulation reference signal,DMRS)序列和/或PBCH的负载(payload),确定SSB的索引(index)。
步骤702,根据小区标识,获得第一配置信息。
终端设备可根据小区标识,获得第一配置信息。该小区标识与第一配置信息存在对应关系。该小区标识可以是通过检测到的SSB获取的小区标识,该小区标识可以是为终端设备配置的RNA中的一个小区的标识。
在一种实现方式中,该对应关系可由网络设备告知终端设备,例如终端设备接收第二配置信息,第二配置信息用于配置该小区标识与第一配置信息之间的对应关系。第二配置信息可由第一网络设备向终端设备发送,第一网络设备为终端设备处于RRC连接态时所连接的网络设备。第二配置信息除了用于配置该小区标识与第一配置信息之间的对应关系之外,还可用于配置RNA中其他小区的小区标识与其他的第一配置信息之间的对应关系。其他小区指的是RNA中除该小区标识所标识的小区之外的小区,其他的第一配置信息指的是其他小区对应的第一配置信息。例如,该小区标识为cell ID1,该小区标识对应的第一配置信息为第一配置信息A,RNA包括cell ID 1、cell ID 2和cell ID 3;第二配置信息可用于配置cell ID1与第一配置信息A之间的对应关系,还可用于配置cell ID 2与第一配置信息B之间的对应关系,以及cell ID 3与第一配置信息C之间的对应关系。终端设备在获得该小区标识的情况下,可根据第二配置信息所配置的对应关系,获得该小区标识对应的第一配置信息。在另一种实现方式中,该对应关系可以是预定义的,例如协议中定义一个或多个小区标识与一个或多个第一配置信息之间的对应关系,那么终端设备在获得该小区标识的情况下,可根据该对应关系,获得该小区标识对应的第一配置信息。
终端设备根据小区标识,获得第一配置信息,可通过如下一种或多种方式实现:
方式一,第一配置信息用于配置RNTI,小区标识与第一配置信息存在的对应关系可表示为小区标识与RNTI存在对应关系。终端设备在获得小区标识的情况下,可根据该小区标识与RNTI之间的对应关系,获得RNTI。
方式二,第一配置信息用于配置RNTI和DCI的时频资源,小区标识与第一配置信息存在的对应关系可表示为小区标识与RNTI和DCI的时频资源存在对应关系。终端设备在获得小区标识的情况下,可根据该小区标识与RNTI和DCI的时频资源之间的对应关系,获得RNTI和DCI的时频资源。
方式三,第一配置信息用于配置RNTI和DCI的时频资源,小区标识与第一配置信息存在的对应关系可表示为小区标识与RNTI和DCI的时频资源存在对应关系。此外,DCI的时频资源还与同步信号块索引存在对应关系。终端设备在获得小区标识和同步信号块索 引的情况下,可根据该小区标识与RNTI之间的对应关系,获得RNTI;可根据该小区标识与DCI的时频资源之间的对应关系,以及同步信号块索引与DCI的时频资源之间的对应关系,获得DCI的时频资源。
上述三种方式中的RNTI的取值可以是表1中取值范围中的一个。该RNTI可以是新定义的一种RNTI,也可以复用表1中多种RNTI中的一种。
在本申请实施例中,用于配置可以理解为包括、用于指示或用于确定等。
第一配置信息除了用于配置RNTI,或除了用于配置RNTI和DCI的时频资源外,还可以用于配置可用的上行授权配置(configured-grant,CG)资源。可用的上行CG资源可用于终端设备发送上行控制信息和/或上行数据。
一种实现方式是,第一配置信息中配置的上行CG资源由时域资源的周期、开环功控相关参数、波形、冗余版本序列、重复次数、跳频模式、资源分配类型、混合自动重传请求(hybrid auto repeat request,HARQ)进程数、解调参考信号(DMRS)相关参数、调制编码策略(modulation and coding scheme,MCS)表格、资源块组(Resource Block Group,RBG)大小、以及时域资源、频域资源、或MCS中的一种或多种进行配置。
另一种实现方式是,第一配置信息中配置时域资源的周期、开环功控相关参数、波形、冗余版本序列、重复次数、跳频模式、资源分配类型、HARQ进程数、解调用参考信号相关参数、MCS表格、或RBG大小中的一种或多种,然后由使用第一配置信息中配置的RNTI加扰的DCI激活基于CG的PUSCH传输,DCI可指示时域资源、频域资源、DMRS、或MCS中的一种或多种。
步骤703,根据第一配置信息,执行以下一项或多项:
接收下行控制信息;接收下行数据;发送上行控制信息;或发送上行数据。
在根据第一配置信息接收下行控制信息的一种实现方式中,第一配置信息用于配置RNTI,那么终端设备采用RNTI对DCI的CRC进行解扰,若解扰成功,则可以接收并获得DCI的内容。可选的,第一配置信息还用于配置DCI的时频资源,那么终端设备在DCI的时频资源上检测DCI,采用RNTI对DCI的CRC进行解扰,若解扰成功,则可以接收并获得DCI的内容。例如终端设备获得DCI中的指示信息,该指示信息用于指示PDSCH的时频资源。
在根据第一配置信息接收下行数据的一种实现方式中,第一配置信息用于配置RNTI和DCI的时频资源,终端设备在根据RNTI和DCI的时频资源获得DCI的情况下,接收DCI调度的下行数据。例如,DCI中包括用于指示PDSCH的时频资源的指示信息,那么终端设备可根据该指示信息接收承载在PDSCH上的下行数据。
可选的,终端设备在获得DCI的情况下,根据DCI中的指示信息发送上行控制信息和/或上行数据,该指示信息可用于指示上行控制信息和/或上行数据的时频资源。
在根据第一配置信息发送上行控制信息的一种实现方式中,第一配置信息用于配置上行CG资源和RNTI,终端设备采用RNTI生成一个序列,采用该序列对上行控制信息进行加扰并根据上行CG资源发送上行控制信息。或者,终端设备采用RNTI对上行控制信息进行加扰并根据上行CG资源发送上行控制信息。
在根据第一配置信息发送上行数据的一种实现方式中,第一配置信息用于配置上行CG 资源和RNTI,终端设备采用RNTI生成一个序列,采用该序列对上行数据进行加扰并根据上行CG资源发送上行数据。或者,终端设备采用RNTI对上行数据进行加扰并根据上行CG资源发送上行数据。
在根据第一配置信息发送上行数据的一种实现方式中,第一配置信息用于配置RNTI,以及时域资源的周期、开环功控相关参数、波形、冗余版本序列、重复次数、跳频模式、资源分配类型、HARQ进程数、解调用参考信号相关参数、MCS表格、或RBG大小中的一种或多种。终端设备在根据RNTI获得DCI的情况下,根据DCI激活基于CG的PUSCH传输,采用RNTI生成一个序列,采用该序列对上行数据进行加扰,根据DCI指示的时域资源、频域资源、DMRS、或MCS中的一种或多种,发送上行数据。或者,终端设备在根据RNTI获得DCI的情况下,根据DCI激活基于CG的PUSCH的传输,采用RNTI对上行数据进行加扰,根据DCI指示的时域资源、频域资源、DMRS、或MCS中的一种或多种,发送上行数据。
在第一配置信息有效的情况下,终端设备可执行步骤703。终端设备可通过如下一种方式或多种方式的组合确定第一配置信息是否有效。有效,可以理解为可以继续使用;失效,可以理解为不能继续使用。
方式一,当第一配置信息对应的定时器超时时,第一配置信息失效;反之,第一配置信息对应的定时器未超时,第一配置信息有效。第一配置信息对应的定时器配置信息可由网络设备告知终端设备。例如终端设备接收的第二配置信息除了用于配置小区标识与第一配置信息之间的对应关系外,还用于配置第一配置信息对应的定时器。再例如,终端设备可分别接收第二配置信息和第一配置信息对应的定时器配置信息,定时器配置信息用于配置第一配置信息对应的定时器。第一配置信息对应的定时器也可以是预定义的,例如协议中定义第一配置信息对应的定时器。
第一配置信息对应的定时器可以有多种不同的实现方式。
例如,第一配置信息对应的定时器可以表示为起始时间~终止时间,例如2020/1/1814:20:20~2020/1/18 14:30:20,那么终端设备可将当前***时间与起始时间~终止时间进行匹配,若当前***时间在起始时间~终止时间范围内,则确定第一配置信息有效;反之确定第一配置信息无效。
又例如,第一配置信息对应的定时器可以表示为时间范围,例如20min,那么终端设备可计算当前***时间与进入RRC非激活态的起始时间之间的差值,若差值在20min内,则确定第一配置信息有效;反之确定第一配置信息无效。
第一配置信息对应的定时器可以是第一配置信息中包含的全部配置信息对应的定时器,也可以是第一配置信息中包含的部分配置信息对应的定时器。例如,第一配置信息对应的定时器可以是第一配置信息中配置的DCI的时频资源对应的定时器,即定时器作用于DCI的时频资源。在第一配置信息中包含的部分配置信息对应的定时器无效时,可以认为第一配置信息无效。例如,在DCI的时频资源无效时,可以认为第一配置信息无效。
方式二,当终端设备处于RRC连接态时,第一配置信息失效。也可以理解为,第一配置信息在终端设备处于RRC非激活态时有效。终端设备在接收到来自网络设备的寻呼消息时,可从RRC非激活态转换至RRC连接态,此时第一配置信息失效。网络设备可以是第 一网络设备,也可以是RNA中的任意一个网络设备。或者,终端设备在需要发送上行数据或上行信息时,可从RRC非激活态转换至RRC连接态,此时第一配置信息失效。
当终端设备处于RRC连接态时,终端设备可释放第一配置信息,即释放小区标识对应的第一配置信息。若终端设备处于RRC连接态的过程中,发生位置移动,那么可能触发小区切换过程。
方式三,当终端设备采用RNTI传输数据失败时,第一配置信息失效。该RNTI例如可以是由第一配置信息配置的RNTI。终端设备采用RNTI传输数据,可以是终端设备采用RNTI生成一个序列,采用该序列对上行数据进行加扰,并发送该上行数据;也可以是终端设备采用RNTI对上行数据进行加扰,并发送该上行数据。例如,终端设备采用RNTI对上行数据进行加扰,并发送该上行数据,但是在发送该上行数据后,未收到网络设备成功接收的反馈,那么确定RNTI失效,进而确定第一配置信息失效。此时,若终端设备需要发送上行数据,那么需要重新通过随机接入信道(random access channel,RACH)发起随机接入过程。
上述三种方式用于举例,并不构成对本申请实施例的限定。
处于RRC非激活态的终端设备可执行步骤701-步骤703,使得处于RRC非激活态的终端设备可以获取RNTI,并在RRC非激活态下进行数据传输。可以理解,图7所示实施例的应用场景不限于RRC非激活态的终端设备,例如在小区切换场景中,终端设备从一个小区切换至另一个小区并保持RRC连接态,该场景也可以采用图7所示的实施例以确保数据的传输。
在图7所示的实施例中,终端设备获取到小区标识时,根据该小区标识获得用于配置RNTI的第一配置信息,从而使得终端设备可以获得在处于RRC非激活态时使用的RNTI,从而可以实现处于RRC非激活态的终端设备可以进行下行数据的接收,和/或上行数据的传输。
请参见图8,为本申请实施例提供的另一种配置信息获取方法的流程示意图。该流程从交互的角度进行介绍,可以包括但不限于如下步骤:
步骤804,UE1检测SSB,获取小区标识。
UE1处于RRC非激活态时,可以进行SSB检测,以进行下行同步。UE1在检测到SSB的情况下,根据该SSB获取该SSB对应的小区标识,即获取UE1驻留小区的小区标识。可选的,UE1根据该SSB获取该SSB的索引。UE1根据SSB获取小区标识以及SSB的索引,可参见图7所示实施例中步骤701的具体描述,在此不再赘述。
该SSB可以是来自第一网络设备的SSB,也可以是来自第二网络设备SSB。
步骤805,UE1根据小区标识,确定第一配置信息。
UE1根据小区标识和第四配置信息,确定第一配置信息。其中,第四配置信息来自第一网络设备,具体可参见步骤803的具体描述。
在一种实现方式中,UE1根据小区标识,以及第四配置信息配置的第二小区的小区标识与第三配置信息(用于配置RNTI)之间的对应关系,确定该小区标识对应的RNTI,并将该RNTI作为第一配置信息配置的内容。例如,UE1根据小区标识在该第三配置信息对 应的表中查找该小区标识对应的RNTI,并将该RNTI作为第一配置信息配置的内容。
在一种实现方式中,UE1根据小区标识,以及第四配置信息配置的第二小区的小区标识与第三配置信息(用于配置RNTI和DCI的时频资源)之间的对应关系,确定该小区标识对应的RNTI和DCI的时频资源,并将该RNTI和该DCI的时频资源作为第一配置信息配置的内容。例如,UE1根据小区标识在该第三配置信息对应的表中查找该小区标识对应的RNTI和DCI的时频资源,并将该RNTI和该DCI的时频资源作为第一配置信息配置的内容。若第一配置信息中的DCI的时频资源包括多套时频资源,那么UE1可使用上次使用的那套时频资源,或随机选择使用一套时频资源。
在一种实现方式中,UE1根据小区标识,以及第四配置信息配置的第二小区的小区标识与第三配置信息(用于配置RNTI和DCI的时频资源,以及与DCI的时频资源对应的SSB索引)之间的对应关系,确定第一配置信息。例如,UE1根据小区标识在该第三配置信息对应的表中查找该小区标识对应的RNTI和DCI的时频资源,若该DCI的时频资源包括多套时频资源,可根据检测到的SSB的索引在多套时频资源中查找与该索引对应的时频资源,并将该RNTI和该时频资源作为第一配置信息配置的内容。后续UE1再次转换至RRC非激活态,检测到该SSB时,可直接使用该RNTI和该时频资源。
上述几种实现方式中,第三配置信息由第二网络设备向第一网络设备,具体可参见步骤802的描述。
步骤806,UE1根据第一配置信息,执行以下一项或多项:
接收下行控制信息;接收下行数据;发送上行控制信息;或发送上行数据。
步骤806可参见图7所示实施例中步骤703的具体描述,在此不再赘述。
步骤804-步骤806可在UE1处于RRC非激活态的情况下执行。
在一种实现方式中,对于处于RRC非激活态的UE1,第二网络设备可通过如下一种或多种方式确定第三配置信息是否有效。
方式一,当第三配置信息对应的定时器超时时,第三配置信息失效;反之,第三配置信息对应的定时器未超时,第三配置信息有效。第三配置信息对应的定时器,可参见图7所示实施例中第一配置信息对应的定时器的描述,在此不再赘述。
方式二,当UE1处于RRC连接态时,第三配置信息失效。可以理解的是,当UE1从RRC非激活态转换至RRC连接态时,第三配置信息失效。UE1从RRC非激活态转换至RRC连接态,所连接的网络设备可向第二网络设备发送通知消息,该通知消息用于指示UE1处于RRC连接态。如果UE1所连接的网络设备为第二网络设备中的一个,那么该网络设备向其他第二网络设备发送通知消息,其他第二网络设备确定第三配置信息失效,并释放第三配置信息。如果UE1所连接的网络设备为第一网络设备,那么第一网络设备向第二网络设备发送通知消息,第二网络设备确定第三配置信息失效,并释放第三配置信息。第二网络设备也可以通过其他方式获知UE1处于RRC连接态。
方式三,当UE1未处于RNA时,第三配置信息失效。可以理解的是,当UE1离开RNA时,第三配置信息失效。RNA中的所有网络设备向UE1发送的下行数据,且未接收到UE1的反馈,则认为UE1离开RNA。AMF实体可以获知RNA中的网络设备发送的下行数据是否接收到UE1的反馈。AMF实体在获知RNA中的所有网络设备发送的下行数据均为接 收到反馈的情况下,向第二网络设备发送通知消息,该通知消息用于指示UE1已离开RNA。那么第二网络设备在接收到该通知消息时,可确定第三配置信息失效,并释放第三配置信息。第二网络设备也可以通过其他方式获知UE1已离开RNA。
上述三种方式用于举例,并不构成对本申请实施例的限定。
在一种实现方式中,对于处于RRC非激活态的UE1,第一网络设备可通过如下一种或多种方式确定第三配置信息是否有效。
方式一,当第三配置信息对应的定时器超时时,第三配置信息失效;反之,第三配置信息对应的定时器未超时,第三配置信息有效。
方式二,当UE1处于RRC连接态时,第三配置信息失效。当UE1恢复与第一网络设备之间的RRC连接时,第一网络设备确定第二网络设备配置的第三配置信息失效,并释放第三配置信息。当UE1从RRC非激活态转换至RRC连接态所连接的网络设备不是第一网络设备时,第一网络设备可以从该网络设备获知,或通过其他方式获知UE1处于RRC连接态。当第一网络设备确定第三配置信息失效时,释放第三配置信息。
方式三,当UE1未处于RNA时,第三配置信息失效。可参见第二网络设备确定是否失效的方式三,在此不再赘述。
可选的,步骤804之前还包括步骤801-步骤803。
步骤801,第一网络设备向第二网络设备发送UE1的标识信息。相应的,第二网络设备接收来自第一网络设备的UE1的标识信息。
步骤801-步骤803可在UE1处于RRC连接态的情况下执行。UE1可以是网络中的终端设备。
第一网络设备为UE1切换至RRC非激活态之前,与UE1建立RRC连接的网络设备,第二网络设备为RNA中的网络设备。UE1处于RRC连接态时驻留在第一网络设备的覆盖范围内的第一小区,将第二网络设备的覆盖范围内的小区称为第二小区,第二网络设备的数量可以是一个或多个,第二小区的数量可以是一个或多个。为了便于理解,图8所示实施例中以一个第二网络设备和一个第二小区为例进行描述。
其中,UE1的标识信息用于标识UE1,可以包括但不限于:C-RNTI、CS-RNTI、MCS-C-RNTI或SP-CSI-RNTI等用于标识终端设备的RNTI;国际移动用户识别码(International mobile subscriber identification number,IMSI);国际移动设备识别码(International mobile equipment identity,IMEI);设备标识等。
第一网络设备向第二网络设备发送UE1的标识信息。UE1的标识信息用于请求第二网络设备为UE1分配第三配置信息,进一步的,用于请求第二网络设备为UE分配与第二小区对应的第三配置信息。第二网络设备可针对不同的UE分配不同的,与第二小区对应的第三配置信息。
步骤802,第二网络设备向第一网络设备发送第三配置信息。相应的,第一网络设备接收来自第二网络设备的第三配置信息。
在第二网络设备的覆盖范围包括一个第二小区的情况下,第二网络设备根据UE1的标识信息,为UE1分配第三配置信息,第三配置信息即为与第二小区对应的配置信息。在第二网络设备的覆盖范围包括多个第二小区的情况下,第二网络设备根据UE1的标识信息, 为UE1针对每个第二小区分配一个第三配置信息。可以理解的是,一个第二小区的小区标识与一个第三配置信息存在对应关系。
第三配置信息用于配置RNTI;或用于配置RNTI和DCI的时频资源;或用于配置RNTI,DCI的时频资源,以及与DCI的时频资源对应的SSB index信息;或用于配置RNTI和上行CG时频资源。
可选的,第二网络设备还向第一网络设备发送与第三配置信息对应的第二小区的小区标识,以便第一网络设备获知第二小区的小区标识与第三配置信息之间的对应关系。
可选的,第二网络设备还向第一网络设备发送第五配置信息,第五配置信息用于配置第三配置信息与定时器之间的对应关系。或描述为第二网络设备还向第一网络设备发送与第三配置信息对应的定时器的配置信息。该定时器用于第三配置信息的有效性判断或维护。
步骤803,第一网络设备向UE1发送第四配置信息。相应的,UE1接收来自第一网络设备的第四配置信息。
第一网络设备在接收到来自第二网络设备的第三配置信息的情况下,向UE1发送第四配置信息,第四配置信息用于配置第二小区的小区标识与第三配置信息之间的对应关系。
在一种实现方式中,第三配置信息用于配置RNTI,第四配置信息配置的第二小区的小区标识与第三配置信息之间的对应关系可表示为下表2.1。
表2.1
第二小区的小区标识 RNTI
ID-1 RNTI-1
ID-2 RNTI-2
ID-X RNTI-X
表2.1中,第二小区的小区标识为ID-1时,对应的RNTI为RNTI-1;第二小区的小区标识为ID-2时,对应的RNTI为RNTI-2;第二小区的小区标识为ID-X时,对应的RNTI为RNTI-X。
在一种实现方式中,第三配置信息用于配置RNTI和DCI的时频资源,DCI的时频资源可以包括一套或多套时频资源,一套时频资源对应一个CORESET的配置信息和一个SearchSpace的配置信息,第四配置信息配置的第二小区的小区标识与第三配置信息之间的对应关系可表示为下表2.2。
表2.2
Figure PCTCN2021076212-appb-000013
表2.2中,第二小区的小区标识为ID-1时,对应的RNTI为RNTI-1,对应三套时频资源。
在一种实现方式中,第三配置信息用于配置RNTI和DCI的时频资源,以及与DCI的时频资源对应的SSB索引,第四配置信息配置的第二小区的小区标识与第三配置信息之间的对应关系可表示为下表2.3。
表2.3
Figure PCTCN2021076212-appb-000014
表2.3中,第二小区的小区标识为ID-1时,对应的RNTI为RNTI-1,对应三套时频资源,每套时频资源对应一个或多个SSB索引,例如第二套时频资源对应SSB-2和SSB-3,第三套时频资源对应所有SSB(all)。所有SSB表示SSB周期内的所有SSB的索引,例如SSB周期包括4个SSB,那么所有SSB的索引即为SSB-1、SSB-2、SSB-3和SSB-4。一套时频资源可以对应一个或多个SSB索引,一个SSB索引可以对应一套或多套时频资源,例如表2.3中,SSB-1可以对应于第二小区的小区标识为ID-1的第一套时频资源,也可以对应于第二小区的小区标识为ID-2的时频资源。
表2.3中,SSB-X表示SSB周期内的一个或多个SSB的索引。
在一种实现方式中,第三配置信息用于配置RNTI和DCI的时频资源,以及定时器。定时器可以是与第三配置信息对应的定时器,也可以是与RNTI对应的定时器,还可以是与DCI的时频资源对应的定时器。第四配置信息配置的第二小区的小区标识与第三配置信息之间的对应关系可表示为下表2.4。
表2.4
Figure PCTCN2021076212-appb-000015
Figure PCTCN2021076212-appb-000016
表2.4中,第二小区的小区标识为ID-1时,对应的RNTI为RNTI-1,对应三套时频资源,每套时频资源对应一个定时器。或者,这三套时频资源可对应于同一定时器。定时器用于第三配置信息的有效性判断或维护,例如某个定时器超时,该定时器对应的第三配置信息无效。
上述表2.3与表2.4可结合,得到下表2.5。
表2.5
Figure PCTCN2021076212-appb-000017
上述表2.1-表2.5用于举例,并不构成对本申请实施例的限定。需要说明的是,表2.1-表2.5是以第二小区的小区标识与第三配置信息之间的对应关系为例,实际应用中,还可以配置第一小区的小区标识与配置信息之间的对应关系,配置的方式与第三配置信息类似。
RRC连接态的UE1在接收到第四配置信息的情况下,可对第四配置信息进行存储,以便在转换至RRC非激活态时,可以根据第四配置信息确定第一配置信息。
在步骤803之后,第一网络设备可触发UE1从RRC连接态转换至RRC非激活态。例如,第一网络设备向UE1发送RRC释放消息,使得UE1从RRC连接态转换至RRC非激活态。UE1处于RRC非激活态时,可执行步骤804-步骤806。
在图8所示的实施例中,第一网络设备获取第二网络设备为UE1配置的第三配置信息,并向UE1发送第四配置信息,以便处于RRC非激活态的UE1根据获取到的小区标识,获得第一配置信息,从而实现处于RRC非激活态的终端设备可以进行下行数据的接收,和/或上行数据的传输。
示例性的,UE1处于RRC连接态时,第四配置信息配置的内容如下表3所示。表3中的第一行可以表示为:cell ID=337的小区对应的配置信息包括RNTI-1为ABCD(十六进制);DCI的时频资源包括三套时频资源;第一套时频资源为CORESET-1.1+ SearchSpace-1.1,对应的SSB索引为SSB-1,对应的定时器为100秒;第二套时频资源为CORESET-1.2+SearchSpace-1.2,对应的SSB索引为SSB-2和SSB-3,对应的定时器为1000帧;第三套时频资源为CORESET-1.3+SearchSpace-1.3,对应的SSB索引为SSB-3,对应的定时器为200帧。其中,第一套时频资源中,CORESET-1.1的配置信息包括:频域资源位置(frequencyDomainResources)=“111011011110011”,时域资源长度(duration)=3;SearchSpace-1.1的配置信息包括:检测周期和偏置(monitoringSlotPeriodicityAndOffset)=S10,4(以slot为单位),检测时隙长度(duration)=2(slot),检测符号位置(monitoringSymbolsWithinSlot)=0(即从slot中的第一个符号开始检测)。
表3
Figure PCTCN2021076212-appb-000018
UE1在从RRC连接态转换至RRC非激活态之后,可能会在RNA中进行移动,且网络侧不知道UE1移动到哪里了。因此,UE1会定期检测SSB,以确定驻留小区,并进行下行同步。如图9所示,当UE检测到一个SSB时,根据该SSB获得cell ID=337,SSB index=1(即SSB-1),从表3中可确定第一行配置信息,即RNTI-1为ABCD(十六进制),DCI的时频资源为CORESET-1.1+SearchSpace-1.1,SSB索引为SSB-1,有效时间为100秒(从UE1进入RRC非激活态算起)。
UE1在图9所示的DCI的时频资源内,用RNTI-1=ABCD来检测DCI。若检测到DCI,可根据DCI中的指示信息,接收下行数据,例如接收并解调PDSCH中的数据。UE1也可以根据DCI中的指示信息,发送上行数据,例如通过物理上行控制信道(physical uplink control channel,PUCCH)、PUSCH或物理随机接入信道(physical random access channel,PRACH)中的一种或多种发送上行数据/序列。UE1也可以进行与DCI无关的上行数据/序列的发送,例如在预配置的时频资源上,采用RNTI-1=ABCD对上行数据进行加扰,通过PUSCH发送上行数据。
图8所示的实施例基于图5所示的网络架构,若基于图6所示的网络架构,那么步骤801-步骤803可简化为:网络设备为UE1针对每个小区分配第三配置信息,向UE1发送第四配置信息,第四配置信息用于配置网络设备的覆盖范围内的每个小区的小区标识与第三配置信息之间的对应关系。处于RRC非激活态的UE1在获取到小区标识的情况下,可根据该小区标识和第四配置信息,获得第一配置信息,从而可以实现处于RRC非激活态的终端设备与网络设备之间的数据传输。
相应于上述方法实施例给出的方法,本申请实施例还提供了相应的装置,包括用于执行上述实施例相应的模块。所述模块可以是软件,也可以是硬件,或者是软件和硬件结合。
图10给出了一种通信装置的结构示意图。通信装置1000可以是网络设备(第一网络设备或第二网络设备),也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片***、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片***、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置1000可以包括一个或多个处理器1001,处理器1001也可以称为处理单元或处理模块等,可以实现一定的控制功能。处理器1001可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端、终端芯片,分布式单元(distributed unit,DU)或集中式单元(centralized unit,CU)等)进行控制,执行软件程序,处理软件程序的数据。
在一种可选的设计中,处理器1001也可以存有指令和/或数据1003,所述指令和/或数据1003可以被处理器1001运行,使得通信装置1000执行上述方法实施例中描述的方法。
在另一种可选的设计中,处理器1001中可以包括用于实现接收和发送功能的收发单元。例如该收发单元可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
可选的,通信装置1000中可以包括一个或多个存储器1002,其上可以存有指令1004,指令1004可在处理器1001上被运行,使得通信装置1000执行上述方法实施例中描述的方法。可选的,存储器1002中还可以存储有数据。可选的,处理器1001中也可以存储指令和/或数据。处理器1001和存储器1002可以单独设置,也可以集成在一起。例如,上述方法实施例中所描述的对应关系可以存储在存储器1002中,或者存储在处理器1001中。
可选的,通信装置1000还可以包括收发器1005和/或天线1006。收发器1005可以称为收发单元、收发机、收发电路、收发装置或收发模块等,用于实现收发功能。
可选的,本申请实施例中,通信装置1000为终端设备时,可以用于执行图7中的步骤701-步骤703,或图8中的步骤804-步骤806;通信装置1000为第一网络设备时,可以用于执行图8中的步骤801-步骤803;通信装置1000为第二网络设备时,可以用于执行图8中的步骤801和步骤802。
本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(Bipolar Junction Transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备,但本申请中描述的装置 的范围并不限于此,而且通信装置的结构可以不受图10的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片***或子***;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据和/或指令的存储部件;
(3)ASIC,例如调制解调器(MSM);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端、智能终端、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备、机器设备、家居设备、医疗设备、工业设备等等;
(6)其他等等。
图11提供了一种终端设备的结构示意图。该终端设备可适用于图5或图6所示出的网络架构中。为了便于说明,图11仅示出了终端设备的主要部件。如图11所示,终端设备1100包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端进行控制,执行软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解析并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行处理后得到射频信号并将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,该射频信号被进一步转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
为了便于说明,图11仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图11中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在一个例子中,可以将具有收发功能的天线和控制电路视为终端设备1100的收发模块1111,将具有处理功能的处理器视为终端设备1100的处理模块1112。如图11所示,终端 设备1100包括收发模块1111和处理模块1112。收发模块也可以称为收发器、收发机、收发装置或者收发单元等。可选的,可以将收发模块1111中用于实现接收功能的器件视为接收模块,将收发模块1111中用于实现发送功能的器件视为发送模块,即收发模块1111包括接收模块和发送模块。示例性的,接收模块也可以称为接收机、接收器、接收电路或者接收单元等,发送模块可以称为发射机、发射器、发射电路或者发送单元等。可选的,上述接收模块和发送模块可以是集成在一起的一个模块,也可以是各自独立的多个模块。上述接收模块和发送模块可以在一个地理位置,也可以分散在多个地理位置。
如图12所示,本申请又一实施例提供了一种通信装置1200。该装置可以是终端设备,也可以是终端设备的部件(例如,集成电路,芯片等等)。或者,该装置可以是网络设备(第一网络设备或第二网络设备),也可以是网络设备的部件(例如,集成电路,芯片等等)。该装置也可以是其他通信模块,用于实现本申请方法实施例中的方法。该通信装置1200可以包括:处理模块1202(或称为处理单元)。可选的,还可以包括收发模块1201(或称为收发单元)和存储模块1203(或称为存储单元)。
在一种可能的设计中,如图12中的一个或者多个模块可能由一个或者多个处理器来实现,或者由一个或者多个处理器和存储器来实现;或者由一个或多个处理器和收发器实现;或者由一个或者多个处理器、存储器和收发器实现,本申请实施例对此不作限定。所述处理器、存储器、收发器可以单独设置,也可以集成。
通信装置1200具备实现本申请实施例描述的终端设备的功能,比如,通信装置1200包括终端设备执行本申请实施例描述的终端设备涉及步骤所对应的模块或单元或手段(means),所述功能或单元或手段(means)可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现,还可以通过软件和硬件结合的方式实现。详细可进一步参考前述对应方法实施例中的相应描述。或者,通信装置1200具备实现本申请实施例描述的网络设备的功能,比如,通信装置1200包括第一网络设备执行本申请实施例描述的第一网络设备涉及步骤所对应的模块或单元或手段(means),所述功能或单元或手段(means)可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现,还可以通过软件和硬件结合的方式实现。详细可进一步参考前述对应方法实施例中的相应描述。
可选的,本申请实施例中的通信装置1200中各个模块可以用于执行本申请实施例中图7或图8描述的方法,也可以用于执行上述两个图或更多个图中描述的方法相互结合的方法。
在一种可能的设计中,通信装置1200为终端设备,可包括:处理模块1202和收发模块1201。
处理模块1202,用于获取小区标识;根据小区标识,获得第一配置信息;小区标识与第一配置信息存在对应关系;第一配置信息用于配置无线网络临时标识;
处理模块1202,还用于根据第一配置信息,控制收发模块1201执行以下一项或多项:
接收下行控制信息;接收下行数据;发送上行控制信息;或发送上行数据。
可选的,收发模块1202,还用于接收第二配置信息,第二配置信息用于配置小区标识与第一配置信息之间的对应关系。
可选的,小区标识与第一配置信息存在对应关系,具体为:小区标识与无线网络临时 标识存在对应关系;处理模块1202,具体用于根据小区标识,获得无线网络临时标识。
可选的,第一配置信息还用于配置下行控制信息的时频资源。
可选的,小区标识与第一配置信息存在对应关系,具体为:小区标识与无线网络临时标识和下行控制信息的时频资源存在对应关系;处理模块1202,具体用于根据小区标识,获得无线网络临时标识和下行控制信息的时频资源。
可选的,小区标识与第一配置信息存在对应关系,具体为:小区标识与无线网络临时标识和下行控制信息的时频资源存在对应关系;处理模块1202,还用于获取同步信号块索引,同步信号块索引与下行控制信息的时频资源存在对应关系;处理模块1202,具体用于根据小区标识,获得无线网络临时标识;以及根据小区标识和同步信号块索引,获得下行控制信息的时频资源。
可选的,当第一配置信息对应的定时器超时时,第一配置信息失效。
可选的,当处于无线资源控制连接态时,第一配置信息失效。
可选的,当采用无线网络临时标识传输数据失败时,第一配置信息失效。
可选的,终端设备处于无线资源控制非激活态。
在一种可能的设计中,通信装置1200为第一网络设备,可包括:收发模块1201,收发模块1201可包括发送模块1211和接收模块1221。
发送模块1211,用于发送终端设备的标识信息,终端设备的标识信息用于请求与终端设备对应的第三配置信息;第三配置信息用于配置无线网络临时标识;
接收模块1221,用于接收第三配置信息;第三配置信息与第二小区的小区标识存在对应关系。
可选的,发送模块1211,还用于向终端设备发送第四配置信息,第四配置信息用于配置第二小区的小区与第三配置信息之间的对应关系。
可选的,第三配置信息与第二小区的小区标识存在对应关系,具体为:无线网络临时标识与第二小区的小区标识存在对应关系。
可选的,第三配置信息还用于配置下行控制信息的时频资源。
可选的,第三配置信息与第二小区的小区标识存在对应关系,具体为:无线网络临时标识和下行控制信息的时频资源与第二小区的小区标识存在对应关系。
可选的,下行控制信息的时频资源还与同步信号块索引存在对应关系。
可选的,接收模块1221,还用于接收第五配置信息,第五配置信息用于配置与第三配置信息对应的定时器。
在一种可能的设计中,通信装置1200为第一网络设备,可包括:收发模块1201,收发模块1201可包括发送模块1211和接收模块1221。
接收模块1221,用于接收终端设备的标识信息;
发送模块1211,用于根据终端设备的标识信息,发送第三配置信息;第三配置信息用于配置无线网络临时标识;第三配置信息与第二小区的小区标识存在对应关系。
可选的,第三配置信息与第二小区的小区标识存在对应关系,具体为:无线网络临时标识与第二小区的小区标识存在对应关系。
可选的,第三配置信息还用于配置下行控制信息的时频资源。
可选的,第三配置信息与第二小区的小区标识存在对应关系,具体为:无线网络临时标识和下行控制信息的时频资源与第二小区的小区标识存在对应关系。
可选的,下行控制信息的时频资源还与同步信号块索引存在对应关系。
可选的,发送模块,还用于发送第五配置信息,第五配置信息用于配置与第三配置信息对应的定时器。
可选的,当第三配置信息对应的定时器超时时,第三配置信息失效。
可选的,当终端设备处于无线资源控制连接态时,第三配置信息失效。
可选的,当终端设备未处于通知区域时,第三配置信息失效。
可以理解的是,本申请实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,比如其当前所基于的方案,而独立实施,解决相应的技术问题,达到相应的效果,也可以在某些场景下,依据需求与其他特征进行结合。相应的,本申请实施例中给出的装置也可以相应的实现这些特征或功能,在此不予赘述。
本领域技术人员还可以理解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个***的设计要求。本领域技术人员对于相应的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
可以理解,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
本申请所描述的方案可通过各种方式来实现。例如,这些技术可以用硬件、软件或者硬件结合的方式来实现。对于硬件实现,用于在通信装置(例如,基站,终端、网络实体、或芯片)处执行这些技术的处理单元,可以实现在一个或多个通用处理器、DSP、数字信号处理器件、ASIC、可编程逻辑器件、FPGA、或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合中。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、 同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请还提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
可以理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各个实施例未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。可以理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
可以理解,在本申请中,“当…时”、“若”以及“如果”均指在某种客观情况下装置会做出相应的处理,并非是限定时间,且也不要求装置实现时一定要有判断的动作,也不意味着存在其它限定。
本申请中的“同时”可以理解为在相同的时间点,也可以理解为在一段时间段内,还可以理解为在同一个周期内。
本申请中对于使用单数表示的元素旨在用于表示“一个或多个”,而并非表示“一个且仅一个”,除非有特别说明。本申请中,在没有特别说明的情况下,“至少一个”旨在用于表示“一个或者多个”,“多个”旨在用于表示“两个或两个以上”。
另外,本文中术语“***”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示: 单独存在A,同时存在A和B,单独存在B这三种情况,其中A可以是单数或者复数,B可以是单数或者复数。
可以理解,在本申请各实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以理解,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本领域普通技术人员可以理解,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
可以理解,本申请中描述的***、装置和方法也可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而 前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请中各个实施例之间相同或相似的部分可以互相参考。在本申请中各个实施例、以及各实施例中的各个实施方式/实施方法/实现方法中,如果没有特殊说明以及逻辑冲突,不同的实施例之间、以及各实施例中的各个实施方式/实施方法/实现方法之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例、以及各实施例中的各个实施方式/实施方法/实现方法中的技术特征根据其内在的逻辑关系可以组合形成新的实施例、实施方式、实施方法、或实现方法。以上所述的本申请实施方式并不构成对本申请保护范围的限定。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。

Claims (69)

  1. 一种通信方法,其特征在于,包括:
    获取小区标识;
    根据所述小区标识,获得第一配置信息;所述小区标识与所述第一配置信息存在对应关系;所述小区标识为基于无线接入网的通知区域RNA中的一个小区的标识;
    根据所述第一配置信息,执行以下一项或多项:
    接收下行控制信息DCI;接收下行数据;发送上行控制信息;或发送上行数据。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收第二配置信息,所述第二配置信息用于配置所述小区标识与所述第一配置信息之间的对应关系。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一配置信息用于配置无线网络临时标识。
  4. 根据权利要求3所述的方法,其特征在于,
    所述小区标识与所述第一配置信息存在对应关系,具体为:所述小区标识与所述无线网络临时标识存在对应关系;
    根据所述小区标识,获得所述第一配置信息,包括:
    根据所述小区标识,获得所述无线网络临时标识。
  5. 根据权利要求1或2所述的方法,其特征在于,所述第一配置信息用于所述DCI的时频资源的配置。
  6. 根据权利要求5所述的方法,其特征在于,所述DCI的时频资源由控制资源集CORESET的配置信息和搜索空间的配置信息确定。
  7. 根据权利要求5所述的方法,其特征在于,
    所述小区标识与所述第一配置信息存在对应关系,具体为:所述小区标识与所述无线网络临时标识和所述DCI的时频资源存在对应关系;
    根据所述小区标识,获得所述第一配置信息,包括:
    根据所述小区标识,获得所述无线网络临时标识和所述DCI的时频资源。
  8. 根据权利要求5所述的方法,其特征在于,
    所述小区标识与所述第一配置信息存在对应关系,具体为:所述小区标识与所述无线网络临时标识和所述DCI的时频资源存在对应关系;
    所述方法还包括:
    获取同步信号块索引,所述同步信号块索引与所述DCI的时频资源存在对应关系;
    根据所述小区标识,获得所述第一配置信息,包括:
    根据所述小区标识,获得所述无线网络临时标识;以及
    根据所述小区标识和所述同步信号块索引,获得所述DCI的时频资源。
  9. 根据权利要求1-8中任一项所述的方法,其特征在于,当所述第一配置信息对应的定时器超时时,所述第一配置信息失效。
  10. 根据权利要求1-8中任一项所述的方法,其特征在于,当处于无线资源控制连接态 时,所述第一配置信息失效。
  11. 根据权利要求1-8中任一项所述的方法,其特征在于,当采用所述无线网络临时标识传输数据失败时,所述第一配置信息失效。
  12. 根据权利要求1所述的方法,其特征在于,所述方法由终端设备或终端设备的部件执行,所述终端设备处于无线资源控制非激活态。
  13. 一种通信方法,其特征在于,包括:
    发送终端设备的标识信息,所述终端设备的标识信息用于请求与所述终端设备对应的第三配置信息;
    接收所述第三配置信息;所述第三配置信息与第二小区的小区标识存在对应关系;所述小区标识为基于无线接入网的通知区域RNA中的一个小区的标识。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第四配置信息,所述第四配置信息用于配置所述第二小区的小区标识与所述第三配置信息之间的对应关系。
  15. 根据权利要求13或14所述的方法,其特征在于,所述第三配置信息用于配置无线网络临时标识。
  16. 根据权利要求15所述的方法,其特征在于,
    所述第三配置信息与所述第二小区的小区标识存在对应关系,具体为:所述无线网络临时标识与所述第二小区的小区标识存在对应关系。
  17. 根据权利要求13或14所述的方法,其特征在于,所述第三配置信息用于下行控制信息DCI的时频资源的配置。
  18. 根据权利要求17所述的方法,其特征在于,所述DCI的时频资源由控制资源集CORESET的配置信息和搜索空间的配置信息确定。
  19. 根据权利要求17所述的方法,其特征在于,
    所述第三配置信息与所述第二小区的小区标识存在对应关系,具体为:所述无线网络临时标识和所述DCI的时频资源与所述第二小区的小区标识存在对应关系。
  20. 根据权利要求17所述的方法,其特征在于,所述DCI的时频资源还与同步信号块索引存在对应关系。
  21. 根据权利要求13-20中任一项所述的方法,其特征在于,所述方法还包括:
    接收第五配置信息,所述第五配置信息用于配置与所述第三配置信息对应的定时器。
  22. 一种通信方法,其特征在于,包括:
    接收终端设备的标识信息;
    根据所述终端设备的标识信息,发送第三配置信息;所述第三配置信息与第二小区的小区标识存在对应关系;所述小区标识为基于无线接入网的通知区域RNA中的一个小区的标识。
  23. 根据权利要求22所述的方法,其特征在于,所述第三配置信息用于配置无线网络临时标识。
  24. 根据权利要求23所述的方法,其特征在于,
    所述第三配置信息与所述第二小区的小区标识存在对应关系,具体为:所述无线网络 临时标识与所述第二小区的小区标识存在对应关系。
  25. 根据权利要求22所述的方法,其特征在于,所述第三配置信息用于下行控制信息DCI的时频资源的配置。
  26. 根据权利要求25所述的方法,其特征在于,所述DCI的时频资源由控制资源集CORESET的配置信息和搜索空间的配置信息确定。
  27. 根据权利要求25所述的方法,其特征在于,
    所述第三配置信息与所述第二小区的小区标识存在对应关系,具体为:所述无线网络临时标识和所述DCI的时频资源与所述第二小区的小区标识存在对应关系。
  28. 根据权利要求25所述的方法,其特征在于,所述DCI的时频资源还与同步信号块索引存在对应关系。
  29. 根据权利要求22-28中任一项所述的方法,其特征在于,所述方法还包括:
    发送第五配置信息,所述第五配置信息用于配置与所述第三配置信息对应的定时器。
  30. 根据权利要求29所述的方法,其特征在于,当所述第三配置信息对应的定时器超时时,所述第三配置信息失效。
  31. 根据权利要求22-28中任一项所述的方法,其特征在于,当所述终端设备处于无线资源控制连接态时,所述第三配置信息失效。
  32. 根据权利要求22-28中任一项所述的方法,其特征在于,当所述终端设备未处于通知区域时,所述第三配置信息失效。
  33. 一种通信装置,其特征在于,包括处理模块和收发模块;
    所述处理模块,用于获取小区标识;根据所述小区标识,获得第一配置信息;所述小区标识与所述第一配置信息存在对应关系;所述小区标识为基于无线接入网的通知区域RNA中的一个小区的标识;
    所述处理模块,还用于根据所述第一配置信息,控制所述收发模块执行以下一项或多项:
    接收下行控制信息DCI;接收下行数据;发送上行控制信息;或发送上行数据。
  34. 根据权利要求33所述的装置,其特征在于,
    所述收发模块,还用于接收第二配置信息,所述第二配置信息用于配置所述小区标识与所述第一配置信息之间的对应关系。
  35. 根据权利要求33或34所述的装置,其特征在于,所述第一配置信息用于配置无线网络临时标识。
  36. 根据权利要求35所述的装置,其特征在于,所述小区标识与所述第一配置信息存在对应关系,具体为:所述小区标识与所述无线网络临时标识存在对应关系;
    所述处理模块,具体用于根据所述小区标识,获得所述无线网络临时标识。
  37. 根据权利要求33或34所述的装置,其特征在于,所述第一配置信息用于所述DCI的时频资源的配置。
  38. 根据权利要求37所述的装置,其特征在于,所述DCI的时频资源由控制资源集CORESET的配置信息和搜索空间的配置信息确定。
  39. 根据权利要求37所述的装置,其特征在于,所述小区标识与所述第一配置信息存 在对应关系,具体为:所述小区标识与所述无线网络临时标识和所述DCI的时频资源存在对应关系;
    所述处理模块,具体用于根据所述小区标识,获得所述无线网络临时标识和所述下行控制信息的时频资源。
  40. 根据权利要求37所述的装置,其特征在于,所述小区标识与所述第一配置信息存在对应关系,具体为:所述小区标识与所述无线网络临时标识和所述DCI的时频资源存在对应关系;
    所述处理模块,还用于获取同步信号块索引,所述同步信号块索引与所述下行控制信息的时频资源存在对应关系;
    所述处理模块,具体用于根据所述小区标识,获得所述无线网络临时标识;以及根据所述小区标识和所述同步信号块索引,获得所述DCI的时频资源。
  41. 根据权利要求33-40中任一项所述的装置,其特征在于,当所述第一配置信息对应的定时器超时时,所述第一配置信息失效。
  42. 根据权利要求33-40中任一项所述的装置,其特征在于,当处于无线资源控制连接态时,所述第一配置信息失效。
  43. 根据权利要求33-40中任一项所述的装置,其特征在于,当采用所述无线网络临时标识传输数据失败时,所述第一配置信息失效。
  44. 根据权利要求33所述的装置,其特征在于,所述装置为终端设备或终端设备的部件,所述终端设备处于无线资源控制非激活态。
  45. 一种通信装置,其特征在于,包括发送模块和接收模块;
    所述发送模块,用于发送终端设备的标识信息,所述终端设备的标识信息用于请求与所述终端设备对应的第三配置信息;
    所述接收模块,用于接收所述第三配置信息;所述第三配置信息与第二小区的小区标识存在对应关系;所述小区标识为基于无线接入网的通知区域RNA中的一个小区的标识。
  46. 根据权利要求45所述的装置,其特征在于,
    所述发送模块,还用于向所述终端设备发送第四配置信息,所述第四配置信息用于配置所述第二小区的小区与所述第三配置信息之间的对应关系。
  47. 根据权利要求45或46所述的装置,其特征在于,所述第三配置信息用于配置无线网络临时标识。
  48. 根据权利要求47所述的装置,其特征在于,所述第三配置信息与所述第二小区的小区标识存在对应关系,具体为:所述无线网络临时标识与所述第二小区的小区标识存在对应关系。
  49. 根据权利要求47所述的装置,其特征在于,所述第三配置信息用于配置下行控制信息DCI的时频资源的配置。
  50. 根据权利要求45或46所述的装置,其特征在于,所述DCI的时频资源由控制资源集CORESET的配置信息和搜索空间的配置信息确定。
  51. 根据权利要求50所述的装置,其特征在于,所述第三配置信息与所述第二小区的小区标识存在对应关系,具体为:所述无线网络临时标识和所述DCI的时频资源与所述第 二小区的小区标识存在对应关系。
  52. 根据权利要求50所述的装置,其特征在于,所述DCI的时频资源还与同步信号块索引存在对应关系。
  53. 根据权利要求45-52中任一项所述的装置,其特征在于,
    所述接收模块,还用于接收第五配置信息,所述第五配置信息用于配置与所述第三配置信息对应的定时器。
  54. 一种通信装置,其特征在于,包括接收模块和发送模块;
    所述接收模块,用于接收终端设备的标识信息;
    所述发送模块,用于根据所述终端设备的标识信息,发送第三配置信息;所述第三配置信息与第二小区的小区标识存在对应关系;所述小区标识为基于无线接入网的通知区域RNA中的一个小区的标识。
  55. 根据权利要求54所述的装置,其特征在于,所述第三配置信息用于配置无线网络临时标识。
  56. 根据权利要求55所述的装置,其特征在于,所述第三配置信息与所述第二小区的小区标识存在对应关系,具体为:所述无线网络临时标识与所述第二小区的小区标识存在对应关系。
  57. 根据权利要求54所述的装置,其特征在于,所述第三配置信息用于下行控制信息DCI的时频资源的配置。
  58. 根据权利要求57所述的装置,其特征在于,所述DCI的时频资源由控制资源集CORESET的配置信息和搜索空间的配置信息确定。
  59. 根据权利要求57所述的装置,其特征在于,所述第三配置信息与所述第二小区的小区标识存在对应关系,具体为:所述无线网络临时标识和所述DCI的时频资源与所述第二小区的小区标识存在对应关系。
  60. 根据权利要求57所述的装置,其特征在于,所述下行控制信息的时频资源还与同步信号块索引存在对应关系。
  61. 根据权利要求54-60中任一项所述的装置,其特征在于,
    所述发送模块,还用于发送第五配置信息,所述第五配置信息用于配置与所述第三配置信息对应的定时器。
  62. 根据权利要求61所述的装置,其特征在于,当所述第三配置信息对应的定时器超时时,所述第三配置信息失效。
  63. 根据权利要求54-60中任一项所述的装置,其特征在于,当所述终端设备处于无线资源控制连接态时,所述第三配置信息失效。
  64. 根据权利要求54-60中任一项所述的装置,其特征在于,当所述终端设备未处于通知区域时,所述第三配置信息失效。
  65. 一种通信装置,其特征在于,所述装置用于执行权利要求1至12中任一项所述的方法,或者,用于执行权利要求13至21中任一项所述的方法,或者,用于执行权利要求22至32中任一项所述的方法。
  66. 一种通信装置,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程 序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行如权利要求1至12中任一项所述的方法,或者,执行权利要求13至21中任一项所述的方法,或者,执行权利要求22至32中任一项所述的方法。
  67. 一种计算机可读存储介质,其上存储有计算机程序或指令,其特征在于,所述计算机程序或指令被执行时使得计算机执行如权利要求1至12中任一项所述的方法,或者,如权利要求13至21中任一项所述的方法,或者,如权利要求22至32中任一项所述的方法。
  68. 一种芯片,其特征在于,包括处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得装置执行如权利要求1至12中任一项所述的方法,或者,如权利要求13至21中任一项所述的方法,或者,如权利要求22至32中任一项所述的方法。
  69. 一种通信***,其特征在于,所述***包括如权利要求33至44中任一项所述的装置,如权利要求45至53中任一项所述的装置,以及如权利要求54至64中任一项所述的装置。
PCT/CN2021/076212 2020-02-14 2021-02-09 配置信息获取方法及装置 WO2021160117A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21754416.2A EP4087304A4 (en) 2020-02-14 2021-02-09 METHOD AND DEVICE FOR CAPTURE OF CONFIGURATION INFORMATION
BR112022015740A BR112022015740A2 (pt) 2020-02-14 2021-02-09 Método de comunicação, aparelho de comunicação, meio de armazenamento legível por computador, chip e sistema de comunicação
US17/874,006 US20220369300A1 (en) 2020-02-14 2022-07-26 Configuration information obtaining method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010093115.5 2020-02-14
CN202010093115.5A CN113271608A (zh) 2020-02-14 2020-02-14 配置信息获取方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/874,006 Continuation US20220369300A1 (en) 2020-02-14 2022-07-26 Configuration information obtaining method and apparatus

Publications (1)

Publication Number Publication Date
WO2021160117A1 true WO2021160117A1 (zh) 2021-08-19

Family

ID=77227196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076212 WO2021160117A1 (zh) 2020-02-14 2021-02-09 配置信息获取方法及装置

Country Status (5)

Country Link
US (1) US20220369300A1 (zh)
EP (1) EP4087304A4 (zh)
CN (1) CN113271608A (zh)
BR (1) BR112022015740A2 (zh)
WO (1) WO2021160117A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116209019A (zh) * 2021-11-30 2023-06-02 华为技术有限公司 切换方法及装置
CN117560120A (zh) * 2022-08-01 2024-02-13 上海朗帛通信技术有限公司 一种用于无线通信的方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017190353A1 (zh) * 2016-05-06 2017-11-09 华为技术有限公司 多播业务接收方法、多播业务发送方法、装置及***
CN108271227A (zh) * 2017-01-04 2018-07-10 电信科学技术研究院 一种跨rat的终端状态确定方法及终端
CN109150480A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 相位跟踪参考信号处理方法与装置
WO2019103552A1 (en) * 2017-11-24 2019-05-31 Samsung Electronics Co., Ltd. Resource element offsetting in a telecommunication system
CN110535557A (zh) * 2012-10-31 2019-12-03 华为技术有限公司 扰码序列的配置方法、装置、用户设备与基站

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107666692B (zh) * 2016-07-29 2019-09-17 电信科学技术研究院 一种状态转移方法、用户终端和基站
CN108616871B (zh) * 2017-01-06 2020-04-21 维沃移动通信有限公司 一种用户终端的标识符定义方法、网络侧设备及用户终端
AU2017429654A1 (en) * 2017-08-28 2019-12-05 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data transmission method, network device, and terminal device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110535557A (zh) * 2012-10-31 2019-12-03 华为技术有限公司 扰码序列的配置方法、装置、用户设备与基站
WO2017190353A1 (zh) * 2016-05-06 2017-11-09 华为技术有限公司 多播业务接收方法、多播业务发送方法、装置及***
CN108271227A (zh) * 2017-01-04 2018-07-10 电信科学技术研究院 一种跨rat的终端状态确定方法及终端
CN109150480A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 相位跟踪参考信号处理方法与装置
WO2019103552A1 (en) * 2017-11-24 2019-05-31 Samsung Electronics Co., Ltd. Resource element offsetting in a telecommunication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4087304A4

Also Published As

Publication number Publication date
EP4087304A4 (en) 2023-06-14
BR112022015740A2 (pt) 2022-10-11
EP4087304A1 (en) 2022-11-09
CN113271608A (zh) 2021-08-17
US20220369300A1 (en) 2022-11-17

Similar Documents

Publication Publication Date Title
US20200229114A1 (en) Method and apparatus for transmitting synchronization signal in wireless communication system
EP2632213B1 (en) Method and apparatus for performing network entry/reentry in wireless communication system
CN111436096B (zh) 分组唤醒信号的发送方法及装置
CN104969638B (zh) 控制信息的传输方法、用户设备和基站
WO2021138917A1 (zh) 一种寻呼方法及装置
US10785764B2 (en) Information change transmission method and device for single-cell multicast service
US20220369300A1 (en) Configuration information obtaining method and apparatus
WO2021138918A1 (zh) 一种随机接入方法及装置
WO2021102859A1 (zh) 同步信号块指示方法及通信装置
EP3982677B1 (en) Data transmission method and device
WO2021102815A1 (zh) ***信息获取方法及装置
CN118201046A (zh) 非连续接收的方法、终端设备和网络设备
CN116134904A (zh) 侧行链路的传输方法和终端
CN113557773A (zh) 用以针对无线网络调节ue的寻呼定时的第二ue标识的指配
JP7113030B2 (ja) 間欠受信用の方法及び装置
CN114600481B (zh) 一种通信方法和通信装置
CN116017418A (zh) 一种通信方法及通信装置
CN113677002A (zh) 一种通信方法及装置
CN114342541B (zh) 随机接入的方法和装置
US20240147421A1 (en) Communication method and communication apparatus
WO2022206745A1 (zh) 寻呼指示方法及装置
CN118019088A (zh) 通信方法及装置
CN115175314A (zh) 寻呼指示方法及装置
WO2024035878A1 (en) Method and apparatus for dynamic on-off operation for multiple transmission and reception (mtrp) in wireless communication
CN117812728A (zh) 一种上行唤醒的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21754416

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021754416

Country of ref document: EP

Effective date: 20220803

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022015740

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112022015740

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220809