WO2021142854A1 - 一种寻呼方法及通信装置 - Google Patents

一种寻呼方法及通信装置 Download PDF

Info

Publication number
WO2021142854A1
WO2021142854A1 PCT/CN2020/073069 CN2020073069W WO2021142854A1 WO 2021142854 A1 WO2021142854 A1 WO 2021142854A1 CN 2020073069 W CN2020073069 W CN 2020073069W WO 2021142854 A1 WO2021142854 A1 WO 2021142854A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
information
drx cycle
message
terminal device
Prior art date
Application number
PCT/CN2020/073069
Other languages
English (en)
French (fr)
Inventor
王宏
许斌
李秉肇
陈磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/073069 priority Critical patent/WO2021142854A1/zh
Priority to CN202080093107.9A priority patent/CN114946234B/zh
Priority to EP20913124.2A priority patent/EP4080952A4/en
Publication of WO2021142854A1 publication Critical patent/WO2021142854A1/zh
Priority to US17/867,372 priority patent/US20220353844A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to a paging method and a communication device.
  • Non-terrestrial Networks Non-terrestrial Networks
  • the terminal device when there is no uplink and downlink service data transmission between the terminal device and the base station, the terminal device is in an idle state or an inactive state of a radio resource control (Radio Resource Control, RRC) connection. In this state, the base station can wake up the terminal device through a paging process. After receiving the paging message sent by the base station, the terminal device initiates a random access process to establish an RRC connection with the base station.
  • RRC Radio Resource Control
  • the base station will page the terminal device at any time, which requires the terminal device to monitor the physical downlink control channel (PDCCH) to receive the paging according to the downlink control information (DCI) carried by the PDCCH information.
  • a discontinuous reception (DRX) mechanism can be applied to the terminal device, so that the terminal device wakes up and monitors the PDCCH according to the DRX cycle. Due to the movement of the satellite base station, the terminal device may experience different satellite base stations when it wakes up in the next DRX cycle, which causes the terminal device to frequently read the system information of different satellite base stations, which increases the power consumption of the terminal device.
  • DRX discontinuous reception
  • the embodiments of the present application provide a paging method and a communication device, so that a terminal device wakes up under the same base station, thereby reducing the power consumption of the terminal device to read system messages.
  • a paging method is provided.
  • the method is suitable for terminal devices.
  • the method includes: receiving a first message from a first network device, the first message includes DRX cycle information, and the DRX cycle information is based on the second network device.
  • the signal coverage period information of the device is determined, the DRX period information is used to configure the DRX period T UE for the terminal device to receive the paging message, and the signal coverage period information is used to indicate the signal coverage period of the second network device; it may also be based on the DRX period
  • the message receives a paging message from the second network device.
  • the DRX cycle of the terminal device can be configured according to the signal coverage period of the base station (for example, the second network device described in the embodiment of the present application), so that the terminal device wakes up as much as possible during each DRX cycle.
  • the terminal device does not need to obtain the system information of other base stations. It can establish a connection with the same base station based on the previously obtained system information, avoiding the terminal device from frequently obtaining the system information of different base stations, saving The power consumption of the terminal device.
  • the method further includes: sending a second message to the first network device, the second message including at least one of the following: a first duration, a first information, the second information; wherein the first duration is determined based on coverage period, the terminal device is intended for indicating the DRX period T E; information indicating a first terminal device is determined based on coverage supports DRX cycle period T UE ; second information for indicating a first offset of the DRX cycle T E Offset1.
  • the embodiment of the present application also provides other information elements that may be included in the second message.
  • a first duration such that a first network device may determine T UE DRX cycle according to the duration of the period signal coverage of the second network device
  • the terminal apparatus comprising the expected DRX period T E, such that a first network device according to a second network coverage cycle device and a terminal device intended to determine the DRX cycle T E T UE DRX cycle
  • T E when the DRX cycle comprises a first offset Offset1, such that the first network device may be determined according to a second DRX cycle T UE Offset1 of The offset Offset2.
  • the DRX period T UE is an integer multiple of the signal coverage period.
  • the specific implementation of determining the DRX cycle T UE according to the signal coverage period of the second network device may be: the DRX cycle T UE is an integer multiple of the signal coverage period, which can ensure that the terminal device wakes up in each DRX cycle They are all within the signal coverage of the same base station, which prevents the terminal equipment from frequently acquiring system information of different base stations and saves the power consumption of the terminal equipment.
  • the first message further includes third information, and the third information is used to indicate DRX The second offset Offset2 of the period T UE.
  • the terminal device determines the boundary of the DRX cycle according to the offset.
  • the method further includes: determining to receive the paging according to the DRX cycle T UE and the second offset Offset2 The time t'of the message.
  • the terminal device can determine the time to receive the paging message according to the DRX cycle T UE configured by the first network device and the offset of the DRX cycle T UE , so as to establish a connection with the second network device according to the paging message .
  • t' (Offset2+R*T UE ) mod T C , where R is a positive integer and T C is the system time period; or,
  • the embodiment of the application provides a specific implementation of determining the time to receive a paging message according to the offset of the DRX cycle T UE and the DRX cycle T UE , so that the terminal device can accurately receive the paging message sent by the second network device, so as to communicate with the second network device.
  • the network device establishes a connection.
  • the method further includes: when the terminal device receives the first message from the first network device, setting R to 0 or 1, or, when R reaches the first threshold, set R to 0 or 1, and the first threshold is predefined or pre-configured.
  • the embodiment of the present application also provides a counting method for updating R.
  • the terminal device can calculate the time to receive the paging message according to the R value.
  • the method further includes: receiving from a second network device The fourth information is used to indicate the signal coverage period.
  • the terminal device may also receive fourth information sent by the second network device, and determine the signal coverage period of the second network device according to the fourth information, so as to request the DRX period according to the signal coverage period, so that the terminal device Each DRX cycle wakes up within the signal coverage of the same base station.
  • the first network device and the second network device are the same A network device.
  • the base station may configure the terminal device with the actually used DRX cycle T UE .
  • the first network device and the second network device are the same network device, for example, the first network device and the second network device.
  • the equipment is the same base station.
  • a paging method which is applicable to a first network device, and includes: determining DRX cycle information of a terminal device according to signal coverage period information of the second network device; the DRX cycle information is used to configure the terminal
  • the device receives the DRX cycle T UE of the paging message, and the signal coverage cycle information is used to indicate the signal coverage cycle of the second network device; it may also send a first message to the terminal device, and the first message includes the DRX cycle information.
  • the DRX cycle of the terminal device can be configured according to the signal coverage period of the base station (for example, the second network device described in the embodiment of the present application), so that the terminal device wakes up as much as possible during each DRX cycle.
  • the terminal device does not need to obtain the system information of other base stations. It can establish a connection with the same base station based on the previously obtained system information, avoiding the terminal device from frequently obtaining the system information of different base stations, saving The power consumption of the terminal device.
  • the method further includes: receiving a second message from the terminal device, the second message including at least one of the following: a first duration, first information , the second information; wherein the first duration is determined based on coverage period, the terminal device is intended for indicating the DRX period T E; information indicating a first terminal device configured to support coverage period determined according to a DRX cycle; the first two first offset information for indicating the DRX cycle T E Offset1.
  • the DRX period T UE is an integer multiple of the signal coverage period.
  • the first message further includes third information, and the third information is used to indicate DRX The second offset Offset2 of the period T UE.
  • the method further includes: sending a second offset Offset2 to the second network device, where Offset2 is the DRX cycle T UE 's second offset.
  • the first network device when the first network device sends the first message to the terminal device, the first network device sets R to 0 or 1. Or, when R reaches the second threshold, the first network device sets R to 0 or 1; the second threshold is predefined or pre-configured.
  • the method further includes: reporting to a second network device Send DRX cycle information.
  • the first network device and the second network device are the same A network device.
  • a paging method is provided.
  • the method is applicable to a second network device.
  • the method includes: receiving DRX cycle information from the first network device.
  • the DRX cycle information is used to configure the DRX cycle T for the terminal device to receive paging messages.
  • the DRX cycle T UE is determined according to the signal coverage period of the second network device; the DRX cycle T UE may also send a paging message to the terminal device according to the DRX cycle T UE.
  • the DRX cycle of the terminal device can be configured according to the signal coverage period of the base station (for example, the second network device described in the embodiment of the present application), so that the terminal device wakes up as much as possible during each DRX cycle.
  • the terminal device does not need to obtain the system information of other base stations. It can establish a connection with the same base station based on the previously obtained system information, avoiding the terminal device from frequently obtaining the system information of different base stations, saving The power consumption of the terminal device.
  • the DRX period T UE is an integer multiple of the signal coverage period.
  • the method further includes: receiving a second offset Offset2 from the first network device, where Offset2 is The second offset of the DRX period T UE.
  • the method further includes: from the first network device Receive the DRX cycle T UE .
  • the first network device and the second network device are the same A network device.
  • a communication device including:
  • the communication unit is configured to receive a first message from a first network device, the first message includes discontinuous reception DRX cycle information, the DRX cycle information is determined according to the signal coverage cycle information of the second network device, and the DRX cycle information is used for configuration
  • the terminal device receives the DRX cycle T UE of the paging message, and the signal coverage cycle information is used to indicate the signal coverage cycle of the second network device; the processing unit is configured to receive the paging message from the second network device according to the DRX cycle information.
  • the communication unit is further configured to send a second message to the first network device, where the second message includes at least one of the following: the first duration, the first information, the second information; wherein the first duration is determined based on coverage period, the terminal device is intended for indicating the DRX period T E; information indicating a first terminal device is determined based on coverage supports DRX cycle period T UE ; second information for indicating a first offset of the DRX cycle T E Offset1.
  • the DRX period T UE is an integer multiple of the signal coverage period.
  • the first message further includes third information, and the third information is used to indicate DRX The second offset Offset2 of the period T UE.
  • the processing unit is further configured to determine to receive the paging message according to the DRX cycle T UE and the second offset Offset2 Time t'.
  • the processing unit is further configured to, when the communication unit receives the first message from the first network device, set R Is 0 or 1, or, when R reaches the first threshold, set R to 0 or 1, and the first threshold is predefined or pre-configured.
  • the communication unit is further configured to receive data from the second network
  • the fourth information of the device the fourth information is used to indicate the signal coverage period.
  • the first network device and the second network device are the same A network device.
  • a communication device including: a processing unit, configured to determine DRX cycle information of a terminal device according to signal coverage period information of a second network device; DRX cycle information is used to configure the terminal device to receive paging messages DRX cycle T UE, periodic signal coverage information indicating the second network device coverage period; a communication unit for transmitting a first message to the terminal device, a first message including DRX cycle information.
  • the communication unit is further configured to receive a second message from the terminal device, where the second message includes at least one of the following: first duration, first information second information; a first duration period is determined based on the signal coverage for the terminal device is intended to indicate DRX period T E; information indicating a first DRX cycle is configured to support the terminal device is determined based on coverage period; second information first offset for indicating the DRX cycle T E Offset1.
  • the DRX period T UE is an integer multiple of the signal coverage period.
  • the first message further includes third information, and the third information is used to indicate DRX The second offset Offset2 of the period T UE.
  • the communication unit is further configured to send the second offset Offset2 to the second network device.
  • the first network device when the communication unit sends the first message to the terminal device, the first network device sets R to 0 or 1, Or, when R reaches the second threshold, the first network device sets R to 0 or 1; the second threshold is predefined or pre-configured.
  • the communication unit is further configured to send DRX cycle information to the second network device.
  • the communication device and the second network device are the same network device.
  • a communication device including:
  • the communication unit is configured to receive DRX cycle information from the first network device, the DRX cycle information is used to configure the DRX cycle T UE for the terminal device to receive paging messages, and the DRX cycle T UE is determined according to the signal coverage period of the second network device ;
  • the processing unit is used to send a paging message to the terminal device according to the DRX cycle T UE.
  • the DRX period T UE is an integer multiple of the signal coverage period.
  • the communication unit is further configured to receive the second offset Offset2 from the first network device, Offset2 is the second offset of the DRX cycle T UE.
  • the communication unit is further configured to receive the DRX cycle T UE from the first network device .
  • the first network device and the communication device are the same network device .
  • the communication unit may be a transceiver, which may include an antenna and a radio frequency circuit, etc., and the transceiver may be an integrated device.
  • the processing module can be a processor, such as a baseband chip.
  • the communication device is a component having the functions of the aforementioned network equipment and terminal equipment
  • the communication unit may be a radio frequency unit
  • the processing module may be a processor.
  • the communication device is a chip system
  • the communication unit may be an input/output interface of the chip system
  • the processing module may be a processor of the chip system, such as a central processing unit (CPU).
  • a communication device including at least one processor and a communication interface.
  • the processor is configured to execute the method described in the second aspect and any one of the implementation manners of the second aspect, or, the first aspect and the first aspect.
  • the communication interface is used for communication between the communication device and other devices.
  • the communication device may further include a memory, and the at least one processor may be coupled with the memory; the memory is used to store a computer program;
  • the at least one processor is configured to execute a computer program stored in the memory, so that the apparatus executes the method according to any one of the foregoing second aspect and the second aspect, or, the foregoing first aspect And the method described in any implementation manner of the first aspect, or the method described in any one of the foregoing third aspect and the third aspect.
  • a computer-readable storage medium including: instructions stored in the computer-readable storage medium; When the device is running, the communication device is caused to execute the communication method described in the first aspect and any one of the implementation manners of the first aspect.
  • a computer-readable storage medium including: instructions stored in the computer-readable storage medium; When the device is running, the communication device is caused to execute the communication method described in the second aspect and any one of the implementation manners of the second aspect.
  • a computer-readable storage medium including: instructions stored in the computer-readable storage medium; When running on the device, the communication device is caused to execute the communication method described in the third aspect and any one of the implementation manners of the third aspect.
  • a wireless communication device includes a processor, for example, applied to a communication device to implement the method described in the first aspect and any one of the implementation manners of the first aspect.
  • the communication device may be a chip system, for example.
  • the chip system further includes a memory for storing program instructions and data necessary to realize the functions of the method described in the first aspect.
  • a wireless communication device includes a processor, for example, applied to a communication device for implementing the above-mentioned second aspect and the method involved in any one of the implementation manners of the second aspect
  • the communication device may be a chip system, for example.
  • the chip system further includes a memory for storing program instructions and data necessary to realize the functions of the method described in the second aspect.
  • a wireless communication device includes a processor, for example, applied to a communication device for implementing the third aspect and the method involved in any one of the implementation manners of the third aspect.
  • the communication device may be a chip system, for example.
  • the chip system further includes a memory for storing program instructions and data necessary to realize the functions of the method described in the third aspect.
  • the chip system in the above aspect may be a system on chip (SOC), or a baseband chip, etc., where the baseband chip may include a processor, a channel encoder, a digital signal processor, a modem, and an interface module.
  • SOC system on chip
  • baseband chip may include a processor, a channel encoder, a digital signal processor, a modem, and an interface module.
  • a communication system including a first network device, a second network device, and a terminal device.
  • the first network device determines the DRX cycle information of the terminal device according to the signal coverage period information of the second network device; the DRX cycle information is used to configure the DRX cycle T UE for the terminal device to receive paging messages, and the signal coverage period information is used to indicate the second network The signal coverage period of the device; the first network device may also send a first message to the terminal device, where the first message includes DRX cycle information.
  • the second network device receives the DRX cycle T UE from the first network device, and may also send a paging message to the terminal device according to the DRX cycle T UE.
  • the terminal device receives the first message from the first network device, and may also receive the paging message from the second network device according to the DRX cycle information.
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of this application.
  • FIG. 2 is a schematic diagram of the DRX cycle provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of a terminal device acquiring system information according to an embodiment of the application.
  • Fig. 4a is a structural block diagram of a communication device provided by an embodiment of the application.
  • FIG. 4b is another structural block diagram of a communication device provided by an embodiment of this application.
  • FIG. 5 is a schematic flowchart of a paging method provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of the start time of the DRX cycle provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of another flow of a paging method provided by an embodiment of this application.
  • FIG. 8 is a schematic diagram of another flow of a paging method provided by an embodiment of this application.
  • FIG. 9 is a schematic diagram of another flow of a paging method provided by an embodiment of this application.
  • 10 to 13 are another structural block diagrams of a communication device provided by an embodiment of this application.
  • FIG. 1 shows a schematic diagram of a communication system to which the technical solution provided by this application is applicable.
  • the communication system may include multiple network devices (only network device 100 and network device 101 are shown) and multiple terminal devices ( Figure Only the terminal device 200 is shown in ).
  • FIG. 1 is only a schematic diagram, and does not constitute a limitation on the applicable scenarios of the technical solutions provided in this application.
  • the network device 100 is mounted on a high-altitude aircraft (for example, a satellite), the high-altitude aircraft orbits the earth, and the terminal device 200 is on the ground. Since the signal coverage provided by the network device 100 is relatively large and its orbital period is short, for the terminal device 200, when the signal coverage provided by the network device 100 periodically appears in the same geographic area, the terminal device 200 generally does not Move out of this geographic area. Referring to FIG. 1, when the network device 100 runs somewhere in its track, the terminal device 200 can obtain system information of the network device 100 and communicate within the signal coverage area of the network device 100. When the network device 100 continues to operate, the terminal device 200 will leave the signal coverage area of the network device 100, and the network device 100 will no longer provide signal coverage for the terminal device 200.
  • a high-altitude aircraft for example, a satellite
  • the terminal device 200 is on the ground. Since the signal coverage provided by the network device 100 is relatively large and its orbital period is short, for the terminal device 200, when the signal coverage provided by the network device 100 periodically appears in the
  • network equipment In the scenario where network equipment is mounted on a satellite, depending on the altitude of the satellite, it can be divided into low earth orbits (LEO) satellites, medium earth orbits (MEO) satellites, and geostationary earth orbits. GEO satellites and highly elliptical orbit (highly earth orbits, HEO) satellites.
  • LEO low earth orbits
  • MEO medium earth orbits
  • HEO high earth orbits
  • the network device 100 may be any device with a wireless transceiving function. Including but not limited to: evolved base station (E-UTRAN NodeB or e-NodeB or eNB) in LTE, base station (gNodeB or gNB) or transmission point (transmission) in 5G or new radio (NR) access technology /reception point, TRP), 3GPP subsequent evolution of base stations, access nodes in the WiFi system, wireless relay nodes, wireless backhaul nodes, etc.
  • the base station can be: a macro base station, a micro base station, a pico base station, a small station, a relay station, or a balloon station, etc. Multiple base stations can support networks of the same technology mentioned above, or networks of different technologies mentioned above.
  • the base station can contain one or more co-site or non-co-site TRPs.
  • the network device may also be a wireless controller, a centralized unit (CU), and/or a distributed unit (DU) in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the network device can also be a server, a wearable device, or a vehicle-mounted device.
  • the following description takes the network device as a base station as an example.
  • the multiple network devices may be base stations of the same type, or base stations of different types.
  • the base station can communicate with the terminal equipment, and it can also communicate with the terminal equipment through the relay station.
  • the terminal device can communicate with multiple base stations of different technologies.
  • the terminal device can communicate with a base station that supports an LTE network, can also communicate with a base station that supports a 5G network, and can also support communication with a base station of an LTE network and a base station of a 5G network. Double connection.
  • the network device 101 may be an access and mobility management function (AMF).
  • AMF is mainly responsible for terminal registration management, terminal connection management, terminal reachability management, terminal access authorization and access authentication. Rights, terminal security functions, terminal mobility management, network slice selection, SMF selection and other functions.
  • AMF serves as the anchor point of N1/N2 interface signaling connection and provides SMF with N1/N2 interface session management (session management, SM) message routing, maintenance and management of terminal state information.
  • AMF access and mobility management function
  • a terminal device (such as terminal device 200) is a device with a wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on the water (such as a ship, etc.); it can also be deployed In the air (for example, on airplanes, balloons, satellites, etc.).
  • the terminal equipment may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver function, virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, industrial control ( Wireless terminals in industrial control), vehicle-mounted terminal equipment, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety ( Wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, wearable terminal devices, and so on.
  • the embodiments of this application do not limit the application scenarios.
  • Terminals can sometimes be referred to as terminal equipment, user equipment (UE), access terminal equipment, vehicle-mounted terminal, industrial control terminal, UE unit, UE station, mobile station, mobile station, remote station, remote terminal equipment, mobile Equipment, UE terminal equipment, terminal equipment, wireless communication equipment, UE agent or UE device, etc.
  • the terminal can also be fixed or mobile.
  • the terminal device of the present application may also be a vehicle-mounted module, vehicle-mounted module, vehicle-mounted component, vehicle-mounted chip, or vehicle-mounted unit built into a vehicle as one or more components or units. The vehicle passes through the built-in vehicle-mounted module, vehicle-mounted module, An on-board component, on-board chip, or on-board unit can implement the method of the present application.
  • Radio resource control radio resource control
  • the terminal equipment has three RRC states: RRC connected state (connected state), RRC idle state (idle state) and inactive state (inactive state).
  • RRC connected state (or, can also be referred to as connected state for short):
  • the terminal device has established an RRC connection with the network device, and data transmission can be carried out.
  • RRC idle state (or, also referred to as idle state for short): the terminal device has not established an RRC connection with the network device, and the network device does not store the context of the terminal device. If the terminal device needs to enter the RRC connected state from the RRC idle state, it needs to initiate a random access process to establish an RRC connection with a network device (for example, a base station).
  • a network device for example, a base station
  • RRC inactive state also referred to as “inactive state”, “inactive state” or “RRC deactivated state”: The terminal device entered the RRC connection state before, and then the base station released the RRC connection, but the base station saved the The context of the terminal device. If the terminal device needs to enter the RRC connected state again from the RRC inactive state, it needs to initiate the RRC connection recovery process (or called the RRC connection re-establishment process). Compared with the RRC establishment process, the RRC recovery process has shorter time delay and lower signaling overhead. However, the base station needs to save the context of the terminal device, which will occupy the storage overhead of the base station.
  • the terminal device When there is no data transmission between the terminal device and the network device, the terminal device is in the idle state or inactive state of the RRC connection.
  • the network device wakes up the terminal device through the paging process, and the terminal device initiates a random access process after receiving the paging message, and then establishes an RRC connection with the base station.
  • the terminal device needs to monitor the PDCCH scheduling the paging message.
  • the terminal device can be configured with DRX so that the terminal device periodically wakes up to monitor the PDCCH. For example, referring to FIG. 2, the period when the terminal device wakes up is DRX Cycle (DRX cycle). Among them, the terminal device monitors the PDCCH within the wake-up period (On Duration), and the period during which the terminal device does not monitor the PDCCH is called Opportunity for DRX.
  • the signal coverage period can be considered as the interval time during which the signal coverage of the network device periodically appears in a certain geographic area.
  • the signal coverage provided by the network device 100 for the terminal device 200 occurs periodically.
  • the signal coverage period of the network device 100 may be the orbital period (OP) of the network device 100, that is, the length of time the network device 100 travels along its orbit for one cycle.
  • the offset of the DRX cycle may characterize the start time of the DRX cycle. For example, if the DRX cycle is T and the offset of the DRX cycle is t1, then the boundary of the DRX cycle is (t1+N ⁇ T), where N is a non-negative integer. Wherein, the boundary of the DRX cycle may be the start time of the DRX cycle.
  • base station 1 provides signal coverage for terminal device 200 at time t2, and the terminal device can wake up under base station 1 according to the DRX cycle to obtain system information and receive paging messages.
  • the base station 1 may move to another position of the track and cannot provide signal coverage for the terminal device 200.
  • the base station 2 can provide signal coverage for the terminal equipment.
  • the terminal equipment obtains the system information of the base station 2 and receives a paging message.
  • the terminal device 200 wakes up according to the DRX cycle, it may experience different base stations. At this time, the terminal device 200 is required to obtain system information of different base stations, for example, master information block (MIB) and/or system information block 1 ( system information block 1, SIB1) and/or other system information blocks, and frequent acquisition of base station system information will increase the power consumption of the terminal device.
  • MIB master information block
  • SIB1 system information block 1, SIB1
  • a terminal device can receive a first message from a first network device (for example, a core network device).
  • the first message includes DRX cycle information, and the DRX cycle information is based on the first message. 2.
  • the signal coverage period information of the network equipment (for example, the base station mounted on the satellite) is determined.
  • the terminal device may receive a paging message from the second network device according to the DRX cycle information.
  • the signal coverage period of the second network device is used to indicate the period of signal coverage provided by the second network device, for example, the orbit period of the second network device.
  • the DRX cycle of the terminal device can be configured according to the signal coverage period of the base station, so that the terminal device is within the signal coverage of the same base station as much as possible when it wakes up in each DRX cycle.
  • the terminal device does not need to acquire the system information of other base stations, which prevents the terminal device from frequently acquiring the system information of different base stations and saves the power consumption of the terminal device.
  • FIG. 4a shows a schematic diagram of the hardware structure of a communication device 410 provided by an embodiment of the application.
  • the communication device 410 includes a processor 4101 and at least one communication interface (in FIG. 4a, the communication interface 4103 is taken as an example for illustration), and optionally, a memory 4102 is also included.
  • the processor 4101, the memory 4102, and the communication interface 4103 are connected to each other.
  • the processor 4101 can be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more programs used to control the execution of the program of this application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communication interface 4103 using any device such as a transceiver to communicate with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN) Wait.
  • RAN radio access network
  • WLAN wireless local area networks
  • the memory 4102 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions
  • the dynamic storage device can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, optical disc storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be used by a computer Any other media accessed, but not limited to this.
  • the memory can exist independently, or it can be connected to the processor. The memory can also be integrated with the processor.
  • the memory 4102 is used to store computer-executable instructions for executing the solution of the present application, and the processor 4101 controls the execution.
  • the processor 4101 is configured to execute computer-executable instructions stored in the memory 4102, so as to implement the intention processing method provided in the following embodiments of the present application.
  • the computer-executable instructions in the embodiments of the present application may also be referred to as application program codes, which are not specifically limited in the embodiments of the present application.
  • the processor 4101 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 4a.
  • the communication device 410 may include multiple processors, such as the processor 4101 and the processor 4106 in FIG. 4a. Each of these processors can be a single-CPU (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (e.g., computer program instructions).
  • the communication apparatus 410 may further include an output device 4104 and an input device 4105.
  • the output device 4104 communicates with the processor 4101 and can display information in a variety of ways.
  • the output device 4104 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) Wait.
  • the input device 4105 communicates with the processor 4101, and can receive user input in a variety of ways.
  • the input device 4105 may be a mouse, a keyboard, a touch screen device, or a sensor device.
  • the aforementioned communication device 410 may be a general-purpose device or a special-purpose device.
  • the communication device 410 may be a desktop computer, a portable computer, a network server, a personal digital assistant (PDA), a mobile phone, a tablet computer, a wireless terminal device, an embedded device, or a similar structure in Figure 4a. equipment.
  • PDA personal digital assistant
  • the embodiment of the present application does not limit the type of the communication device 410.
  • the communication device 410 may be a complete terminal machine, may also be a functional component or component that implements the terminal, or may be a communication chip, such as a baseband chip.
  • the communication interface may be a radio frequency module.
  • the communication interface 4103 may be an input/output interface circuit of the chip, and the input/output interface circuit is used to read in and output baseband signals.
  • Fig. 4b is a schematic structural diagram of a communication device.
  • the structure of the network device 420 can refer to the structure shown in FIG. 4b.
  • the network device includes at least one processor 4201, at least one transceiver 4203, at least one network interface 4204, and one or more antennas 4205.
  • at least one memory 4202 is also included.
  • the processor 4201, the memory 4202, the transceiver 4203 and the network interface 4204 are connected, for example, by a bus.
  • the antenna 4205 is connected to the transceiver 4203.
  • the network interface 4204 is used to connect the network device to other communication devices through a communication link, for example, the network device is connected to a core network element through an S1 interface.
  • the connection may include various interfaces, transmission lines, or buses, etc., which is not limited in this embodiment.
  • the processor in the embodiment of the present application may include at least one of the following types: a general-purpose central processing unit (Central Processing Unit, CPU), a digital signal processor (Digital Signal Processor, DSP), a microprocessor, Application-Specific Integrated Circuit (ASIC), Microcontroller Unit (MCU), Field Programmable Gate Array (FPGA), or integrated circuit used to implement logic operations .
  • the processor 4201 may be a single-CPU processor or a multi-CPU processor.
  • the at least one processor 4201 may be integrated in one chip or located on multiple different chips.
  • the memory in the embodiment of the present application may include at least one of the following types: read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory Random access memory (RAM) or other types of dynamic storage devices that can store information and instructions, or electrically erasable programmable read-only memory (EEPROM).
  • ROM read-only memory
  • RAM random access memory Random access memory
  • EEPROM electrically erasable programmable read-only memory
  • the memory can also be a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.) , Disk storage media or other magnetic storage devices, or any other media that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but are not limited thereto.
  • CD-ROM compact disc read-only memory
  • optical disc storage including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.
  • Disk storage media or other magnetic storage devices or any other media that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but are not limited thereto.
  • the memory 4202 may exist independently and is connected to the processor 4201.
  • the memory 4202 may also be integrated with the processor 4201, for example, integrated in one chip.
  • the memory 4202 can store program codes for executing the technical solutions of the embodiments of the present application, and the processor 4201 controls execution, and various types of computer program codes executed can also be regarded as driver programs of the processor 4201.
  • the processor 4201 is configured to execute computer program codes stored in the memory 4202, so as to implement the technical solutions in the embodiments of the present application.
  • the transceiver 4203 may be used to support the reception or transmission of radio frequency signals between the network device and the terminal device, and the transceiver 4203 may be connected to the antenna 4205.
  • one or more antennas 4205 can receive radio frequency signals
  • the transceiver 4203 can be used to receive the radio frequency signals from the antennas, convert the radio frequency signals into digital baseband signals or digital intermediate frequency signals, and convert the digital baseband signals or
  • the digital intermediate frequency signal is provided to the processor 4201, so that the processor 4201 performs further processing on the digital baseband signal or digital intermediate frequency signal, such as demodulation processing and decoding processing.
  • the transceiver 4203 can be used to receive a modulated digital baseband signal or digital intermediate frequency signal from the processor 4201, and convert the modulated digital baseband signal or digital intermediate frequency signal into a radio frequency signal, and pass it through one or more antennas 4205 Sending the radio frequency signal.
  • the transceiver 4203 can selectively perform one or more stages of down-mixing processing and analog-to-digital conversion processing on the radio frequency signal to obtain a digital baseband signal or a digital intermediate frequency signal.
  • the order of precedence is adjustable.
  • the transceiver 4203 can selectively perform one or more stages of up-mixing processing and digital-to-analog conversion processing on the modulated digital baseband signal or digital intermediate frequency signal to obtain a radio frequency signal, the up-mixing processing and digital-to-analog conversion processing The order of precedence is adjustable. Digital baseband signals and digital intermediate frequency signals can be collectively referred to as digital signals.
  • the transceiver may be called a transceiver circuit, a transceiver unit, a transceiver device, a transmission circuit, a transmission unit, or a transmission device, and so on.
  • the communication device 420 may be a complete network device, a component or component that realizes the function of the network device, or a communication chip.
  • the transceiver 4203 may be an interface circuit of the chip, and the interface circuit is used to read in and output baseband signals.
  • the embodiment of the present application provides a paging method. As shown in FIG. 5, the method includes the following steps:
  • the first network device determines DRX cycle information of the terminal device according to the signal coverage period information of the second network device.
  • the signal coverage period information of the second network device is used to indicate the period of signal coverage provided by the second network device.
  • the second network device is mounted on the high-altitude aircraft, which can provide periodic signal coverage for the terminal device.
  • the second network device may be a base station.
  • the first network device and the second network device may be the same network device, for example, the first network device and the second network device are the same base station.
  • the first network device may be a core network device, and the second network device may be a base station.
  • the first network device is an access and mobility management function (AMF) entity or a mobility management entity (mobility management entity, MME).
  • AMF access and mobility management function
  • MME mobility management entity
  • the DRX cycle information of the terminal device may indicate the DRX cycle T UE in which the terminal device receives the paging message.
  • the DRX cycle T UE of the terminal equipment can be determined in the following ways:
  • the DRX period T UE may be an integer multiple of the signal coverage period of the second network device.
  • the DRX cycle T UE is one Nth of the signal coverage cycle of the second network device, that is, within a signal coverage cycle of the second network device, the terminal device wakes up according to the DRX cycle, and each wakes up experience Different base stations and terminal equipment obtain system messages of different base stations.
  • the smaller the value of N the fewer times the terminal device obtains system messages of different base stations.
  • the number of base stations that the terminal device experiences when waking up is reduced as much as possible, thereby reducing the number of times of obtaining system messages from different base stations. Reduce the power consumption of terminal equipment.
  • T UE is the DRX cycle and the K ⁇ T S (i.e., an integral multiple of a second period signal coverage network device) may be disposed closest to the DRX cycle T q.
  • the configurable DRX cycle is a DRX cycle configurable by the terminal device.
  • T UE is the DRX cycle and the K ⁇ T S (i.e., an integral multiple of a second period signal coverage network device) may be disposed closest to the DRX cycle T q, and K ⁇ T S ⁇ T q. That is, T q satisfies
  • T UE is the DRX cycle and the K ⁇ T S (i.e., an integral multiple of a second period signal coverage network device) closest to the terminal device may be configured DRX cycle T q, and T q ⁇ K ⁇ T S. That is, T q satisfies
  • the signal coverage period T S of the second network device may be equal to the orbit period T O of the second network device.
  • the first network device sends a first message to the terminal device, where the first message includes DRX cycle information of the terminal device.
  • the first message may be an attach accept message or a registration accept message or a tracking area update accept message or an RRC connection reconfiguration message or an RRC connection Release (RRC connection release) message or RRC reconfiguration (RRC reconfiguration) message or RRC release (RRC release) message.
  • RRC connection release RRC connection Release
  • RRC reconfiguration RRC release
  • the terminal device receives the first message from the first network device. Further, the paging message from the second network device is received according to the DRX cycle information in the first message.
  • the method shown in FIG. 5 further includes: before step 501, further includes step 501a: the terminal device sends a second message to the first network device, and the second message includes at least one of the following: Duration, first message.
  • the terminal device is intended for indicating the DRX period T E.
  • the terminal device determines that the requested DRX cycle T R in accordance with the expected DRX cycle T E. In one possible implementation, T E is equal to T R.
  • the first information is used to indicate the capabilities of the terminal device, for example, the first information is used to indicate that the terminal device supports the DRX cycle determined according to the signal coverage period, or the first information is used to indicate the terminal
  • the device supports the DRX cycle configured according to the signal coverage cycle. It is understandable that the terminal device itself may request to configure the DRX cycle according to the signal coverage period, or, when the first network device configures the DRX cycle of the terminal device according to the signal coverage period, the terminal device may according to the first network device
  • the configured DRX cycle receives paging messages.
  • the second message may be an attach request (attach request) message or a registration request (registration request) message or a tracking area update request (tracking area update request) message.
  • step 501b the terminal device receives fourth information from the second network device, where the fourth information is used to indicate the signal coverage period T S of the second network device.
  • the terminal device may also determine the expected DRX cycle signal T E, according to the coverage period T S.
  • the terminal device T E expected DRX cycle is an integer multiple of the signal period T S of the cover.
  • the terminal device T E expected DRX cycle may be H ⁇ T S, where, H is an integer greater than or equal to 1.
  • K H and previously described may be equal, i.e., a first network device to accept the terminal device requesting DRX period T R.
  • H and the aforementioned K may also be unequal, that is, the first network device does not accept the DRX cycle T R requested by the terminal device, then the first network device can be the terminal device according to the signal coverage period T S of the second network device Configure the DRX cycle T UE .
  • the second message may also include type indication information.
  • the type indication information is used to indicate the type of the terminal device.
  • the type may include a low-power consumption terminal, a low-complexity terminal, a long-term standby terminal, and a machine.
  • Type terminal Internet of Things terminal, etc.
  • the DRX may also be extended DRX (extended DRX, eDRX).
  • the first network device, the second network device, and the terminal device can determine the time to send or receive the paging message according to the start time of the DRX cycle (method 1), or can be based on the DRX cycle offset To determine the time to send a paging message or receive a paging message (Method 2).
  • Method 1 Determine the time to send or receive the paging message according to the start time of the DRX cycle.
  • the first network device or the second network device may determine the start time of the DRX cycle according to the sending time or the receiving time of the specified message (for example, message 1 and message 2 described below), and then according to the DRX cycle T UE and the DRX cycle
  • the start moment determines the moment when the paging message is sent, and the paging message is sent at that moment.
  • the terminal device may determine the starting time of the DRX cycle according to the sending time or receiving time of the designated message, and then determine the time to receive the paging message according to the DRX cycle T UE and the starting time of the DRX cycle, and receive the paging message at that moment.
  • the first network device, the second network device, and the terminal device may determine the start time of the DRX cycle T UE in the following two ways (a) and (b).
  • the start time of the DRX cycle T UE determined by the first network device or the second network device is DRX Start_NW
  • the start time of the DRX cycle T UE determined by the terminal device is DRX Start_UE .
  • the time when the first network device or the second network device sends the message 1 is T Tx1 , and the first network device or the second network device determines that the transmission duration of the message 1 is T NW1 , then the first network device or the second network device Determine that DRX Start_WN is T Tx1 or T Tx1 mod T UE or T Tx1 +T NW1 or (T Tx1 +T NW1 mod T UE ).
  • "mod" is the remainder operation.
  • X mod Y represents the remainder after X divided by Y.
  • the time when the terminal device receives message 1 is T Rx1 , and the terminal device determines that the transmission duration of message 1 is T UE1 , then the terminal device determines that DRX Start_UE is T Rx1 or T Rx1 mod T UE or T Rx1 +T UE1 or (T Rx1 +T UE1 ) mod T UE .
  • the message 1 may be the earliest message sent by the second network device to the terminal device in this RRC connection.
  • the message 1 may be a random access response (RAR) message, or an RRC establishment (RRC setup) message or RRC resume (RRC resume) message.
  • message 1 is the last message sent by the second network device to the terminal device in this RRC connection.
  • message 1 may be an RRC release (RRC release) message.
  • RRC release RRC release
  • this RRC connection is the RRC connection established between the terminal device and the second network device when step 501 is performed.
  • the time when the first network device or the second network device receives the message 2 is T Rx2 , and the first network device or the second network device determines that the transmission duration of the message 2 is T NW2 , then the first network device or the second network device determines DRX Start_WN T Rx2 or T Rx2 mod T UE or T Rx2 +T NW2 or (T Rx2 +T NW2 ) mod T UE .
  • the terminal device sends the message 2 at T Tx2 , the terminal device determines that the transmission duration of the message 2 is T UE2 , and the terminal device determines that DRX Start_UE is T Tx2 or T Tx2 mod T UE or T Tx2 +T UE2 or (T Tx2 +T UE2 )mod T UE .
  • the message 2 may be the earliest message received by the second network device from the terminal device in this RRC connection.
  • the message 2 is a Preamble (random access preamble) or an RRC request (RRC request) message or an RRC recovery request ( RRC Resume Request) message.
  • the message 2 is the last message sent by the terminal device to the second network device in this RRC connection, for example, the message 2 is an RRC Release (Release) positive response.
  • R may be a count value maintained by the first network device and/or the second network device and/or the terminal device.
  • R can indicate the number of DRX cycles. Specifically, for a terminal device, R can be used to indicate the number of DRX cycles that have passed since the terminal device received the first message, or R can be used to indicate the number of DRX cycles that have passed since the terminal device sent the second message. The number of DRX cycles.
  • R can be used to indicate the number of DRX cycles that have elapsed since the first network device or the second network device sends the first message, or R can be used to indicate The number of DRX cycles that have elapsed since the first network device or the second network device received the second message.
  • the initial value of the count value R may be 0 or 1.
  • the R when the first network device or the second network device sends the first message to the terminal device, the R is set as an initial value. Or, when the first network device or the second network device updates the DRX cycle, set the R as an initial value; or, when the first network device or the second network device uses a new DRX cycle When determining the time for sending the paging message, when the terminal device uses the new DRX cycle to determine the time for receiving the paging message, the R is set as an initial value.
  • the terminal device sets the R as the initial value
  • the count value R of the first network device reaches the second threshold value maintained by the first network device
  • the first The network device sets the R as an initial value.
  • the first threshold and the second threshold may be equal.
  • T C is the system time period.
  • the unit of DRX Start_NW may be subframes or milliseconds, and T C may be 1024 system frames, that is, 10240 milliseconds, or T C may be 1024 superframes, that is, 1024 ⁇ 1024 ⁇ 10 milliseconds.
  • the network device by setting the count value R, it is convenient for the network device to determine the number of elapsed DRX cycles, so that the time for sending the paging message can be calculated according to the number of elapsed DRX cycles.
  • the terminal device can also determine the number of elapsed DRX cycles according to the count value R, so that the time for receiving a paging message can be calculated according to the number of elapsed DRX cycles, which realizes time synchronization between network devices and terminal devices and ensures paging reliability.
  • Method 2 Determine the moment of sending or receiving the paging message according to the DRX cycle offset.
  • the method shown in FIG. 5 further includes: before step 501, the second message sent by the terminal device to the first network device may include second information. Said second information indicating a first offset Offset1 or the DRX cycle T R T E of the DRX cycle. Note that the first offset is the offset for the DRX cycle Offset1 terminal device requested by the T R.
  • the second message may be an attach request (attach request) message, a registration request (registration request) message, or a tracking area update request (tracking area update request) message.
  • the first message further includes third information, and the third information is used to indicate the second offset Offset2 of the DRX cycle T UE.
  • the second offset Offset2 is the offset configured by the first network device for the terminal device.
  • the first network device may accept the first offset requested by the terminal device, that is, the second offset Offset2 may be equal to the first offset Offset1; the first network device may also reconfigure the offset for the terminal device, for example, The second offset Offset2 and the first offset Offset1 are not equal.
  • the first network device when the first network device accepts the first offset requested by the terminal device, it may not send Offset2 to the terminal device.
  • the DRX cycle offset configured by the first network device for the terminal device is The first offset requested by the terminal device.
  • the first network device may send the DRX cycle T to the second network device.
  • the UE and the second offset Offset2 and the second network device determines the time t'for sending the paging message according to the DRX cycle T UE and the second offset Offset2.
  • the second network device sends a paging message to the terminal device at time t'.
  • the terminal device determines time t'according to the DRX cycle T UE and the second offset Offset2, and receives a paging message sent by the second network device at time t'.
  • t S can be the system frame number (system frame number, SFN) or super frame number (Hyper-SFN, H-SFN) or sub-frame number (sub-frame, SF), and the UE-ID is the UE identification or according to the UE Logo generated.
  • the first network device when the first network device accepts the first offset Offset1 requested by the terminal device, it can be considered that Offset2 is equal to Offset1, and the second network device can be based on the DRX cycle T UE and the first offset
  • the offset Offset1 determines the time t'to send the paging message, and the terminal device may determine the time t'to receive the paging message according to the DRX cycle T UE and the first offset Offset1.
  • the time t' (Offset1+R*T UE ) mod T C.
  • Offset1 and Offset2 may be in units of system frames, superframes, or subframes.
  • the embodiment of the present application also provides a paging method.
  • the terminal device can request the DRX cycle from the AMF according to the orbit period of the base station, and the DRX cycle requested by the terminal device is an integer multiple of the orbit period of the base station.
  • the DRX cycle configured by the AMF for the terminal device is an integer multiple of the base station orbit period, which can make the terminal device wake up under the same base station and reduce the power consumption of the terminal device to read system messages.
  • the method includes the following steps:
  • the second network device sends the orbit period T O of the second network device to a terminal device.
  • the second network device provides signal coverage for the terminal device.
  • the second network device is the network device 100 shown in FIG. 1.
  • the second network device is a base station.
  • the T O may be considered as the signal coverage period T S of the second network device.
  • the second network device sends T O to the terminal device through a system message or dedicated signaling. It can be understood that the TO is included in system messages or dedicated signaling.
  • the terminal device transmits a second message to the first network device, said second message comprising a terminal device requesting DRX cycle T R.
  • the first network device may be a core network device, and the terminal device needs to communicate with the core network device through a base station.
  • the first network device is the network device 101 shown in FIG. 1.
  • the first network device is an AMF. That is, the terminal device sends the second message to the second network device, and the second network device may forward the second message to the first network device. The second message may be used to request registration to the first network device.
  • the terminal device requests a DRX period T R T O orbital period may be an integer multiple.
  • T R T O ⁇ H
  • H is an integer greater than or equal to 1.
  • the second message may be an attach request (attach request) message or a registration request (registration request) message or a tracking area update request (tracking area update request) message.
  • the second message may further include type indication information, the type indication information is used to indicate the type of the terminal device, and the type may include a low-power consumption terminal, a low-complexity terminal, a long-term standby terminal, and a machine Type terminal, Internet of Things terminal, etc.
  • the second message may further include first information, and the first information is used to indicate the capability of the terminal device.
  • first information is used to indicate the capability of the terminal device.
  • reference may be made to the definition of the first information in Embodiment 1, which will not be repeated here.
  • the first network device sends a first message to the terminal device, where the first message includes the DRX cycle T UE configured by the first network device for the terminal device.
  • the DRX period T UE configured by the first network device for the terminal device may be an integer multiple of the orbit period T O.
  • T UE K ⁇ T O
  • K is an integer greater than or equal to 1
  • K and H may be equal or not equal.
  • the first message may be an attach accept message or a registration accept message or a tracking area update accept message.
  • the first message may further include a first indication information, the first indication information for indicating the first network device to accept the terminal device requests a DRX cycle of T R.
  • the first message may not include T UE , and the terminal device determines that T UE is equal to TR .
  • the first indication information may be an implicit indication, that is, when the terminal device receives the first message, it means that the second network device accepts the DRX cycle requested by the terminal device.
  • the first network device sends a third message to the second network device, where the third message includes the T UE corresponding to the terminal device and the identifier of the terminal device.
  • T UE is the duration of the DRX cycle configured by the first network device for the terminal device.
  • step 704 may be omitted, and step 705 may be executed directly.
  • the second network device sends a paging message to the terminal device, where the paging message includes the identifier of the terminal device.
  • the second network device may send a paging message according to the T UE. For example, the second network device starts the timer Timer NW at DRX Start_NW , where the duration of Timer NW is T UE , and DRX Start_NW is the start time of the DRX cycle determined by the second network device.
  • the second network apparatus transmits the paging message upon timeout Timer NW, when Timer NW times out, the second network device restart Timer NW.
  • the time for the second network device to send a paging message when the Timer NW times out is t'.
  • t' refer to the detailed description of the embodiment shown in FIG. 5 in the foregoing.
  • the second network device determines to send a paging message.
  • the time t'of the message (DRX Start_NW + R ⁇ T UE ) mod T C.
  • the second network device determines the time t'when the paging message is sent according to the DRX cycle offset (that is, the second offset Offset2 described in Embodiment 1 of the present application) for which the first network device is the terminal device.
  • the DRX cycle offset that is, the second offset Offset2 described in Embodiment 1 of the present application
  • the terminal device receives the paging message sent by the second network device according to the T UE.
  • the terminal device starts the timer Timer UE in DRX Start_UE , the duration of Timer UE is T UE , and DRX Start_UE is the start time of the DRX cycle determined by the terminal device.
  • the terminal device receives the paging message sent by the second network device when the Timer UE times out, and restarts the Timer UE .
  • the time for the terminal device to receive the paging message when the Timer UE times out is t', and the specific implementation of t'refers to the detailed description of the embodiment shown in FIG. 5 in the foregoing.
  • the terminal device determines the time t'to send the paging message according to the DRX cycle offset (that is, the second offset Offset2 described in the embodiment of the present application).
  • the DRX cycle offset that is, the second offset Offset2 described in the embodiment of the present application.
  • step 701 is an optional step, that is, the terminal device may pre-store the T O of the second network device, the second network device may not send the T O to the terminal device, and the terminal device may use the pre-stored T O O requests the DRX cycle from the first network device.
  • the embodiment of the present application also provides a paging method.
  • the terminal device can request the DRX cycle and the offset of the DRX cycle from the AMF according to the track cycle of the base station, and the DRX cycle requested by the terminal device is an integer multiple of the track cycle of the base station.
  • the DRX cycle configured by the AMF for the terminal equipment is an integer multiple of the base station track cycle.
  • AMF also configures the DRX cycle offset for the terminal equipment, which can make the terminal equipment wake up under the same base station and reduce the terminal equipment reading Take the power consumption of system messages.
  • the terminal device can also determine the moment of receiving the paging message according to the offset of the DRX cycle to ensure paging reliability.
  • the method includes the following steps:
  • the second network device sends the orbit period T O of the second network device to a terminal device.
  • the second network device provides signal coverage for the terminal device.
  • the second network device is the network device 100 shown in FIG. 1.
  • the second network device is a base station.
  • step 801 refer to the related description of step 701 above, which will not be repeated here.
  • the T O may be considered as the signal coverage period T S of the second network device.
  • the terminal device transmits a second message to the first network device, said second message comprises a first DRX cycle offset Offsetl terminal device requesting DRX period T R and T R of the terminal device of a request.
  • the first network device may be a core network device, and the terminal device needs to communicate with the core network device through a base station.
  • the first network device is the network device 101 shown in FIG. 1.
  • the first network device is an AMF.
  • step 802 can refer to the related description of step 702.
  • the second request message includes a terminal device in addition to a DRX cycle T R, further comprising a first offset Offsetl DRX cycle of a terminal device requests.
  • Offset1 DRX Start_UE , and its unit may be a super frame, a system frame, or a subframe (ie, ms).
  • the second message may further include type indication information, the type indication information is used to indicate the type of the terminal device, and the type may include a low-power consumption terminal, a low-complexity terminal, a long-term standby terminal, and a machine Type terminal, Internet of Things terminal, etc.
  • the second message may also include first information, and the first information is used to indicate the capability of the terminal device.
  • first information is used to indicate the capability of the terminal device.
  • a first network device sends a first message to the terminal device, said first message comprising the first network device DRX cycle is configured DRX cycle T UE terminal device and a first network device configuration of the terminal device T UE The second offset Offset2.
  • the first message may further include second indication information, the second indication information indicates that the first network device for receiving the DRX cycle DRX cycle requested by the terminal device and the terminal device T R requested The first offset offset Offset1.
  • the first message may not include T UE and the second offset of the DRX cycle Offset2, the DRX cycle T UE that the terminal device actually uses to receive the paging message is TR , and the second DRX cycle is The offset is Offset1.
  • the second indication information may be an implicit indication, that is, when the terminal device receives the first message, it means that the second network device accepts the DRX cycle TR and the first offset of the DRX cycle requested by the terminal device Offset1.
  • Offset1 and Offset2 are equal.
  • the first network device sends a third message to the second network device, where the third message includes the identifier of the terminal device, T UE, and Offset2.
  • T UE is the duration of the DRX cycle configured by the first network device for the terminal device
  • Offset2 is the offset of the DRX cycle configured by the second network device for the terminal device.
  • the second network device sends a paging message to the terminal device according to T UE and Offset2, where the paging message includes the identifier of the terminal device.
  • time t' the time for the second network device to send the paging message.
  • the terminal device receives the paging message sent by the second network device according to T UE and Offset2.
  • the embodiment of the application also provides a paging method.
  • a configurable DRX cycle T Con can be exchanged between the terminal device and the AMF.
  • the terminal device can request the DRX cycle from the AMF according to the orbit period of the base station (it can be an integer multiple of the orbit period or T Con ).
  • the DRX cycle configured by the AMF for the terminal device is T Con , which is the closest integer multiple of the orbital period of the base station, which can make the terminal device wake up in the same base station as much as possible, and reduce the power consumption of the terminal device to read system messages.
  • the terminal device can also determine the moment of receiving the paging message according to the offset of the DRX cycle to ensure paging reliability.
  • the embodiment of the present application also provides a paging method. As shown in FIG. 9, the method includes the following steps:
  • the first network device receives orbit period T O information and fifth information sent by at least one second network device.
  • the first network device may be a core network device, and the terminal device needs to communicate with the core network device through a base station.
  • the first network device is the network device 101 shown in FIG. 1.
  • the first network device is an AMF.
  • the fifth information includes the cell identity of the second network device and/or the identity of the second network device, and the orbit period TO information is used to indicate the signal coverage period T S of the second network device.
  • the first network device may store TO and fifth information sent by at least one second network device.
  • the first network device maintenance in Table 1 and / or Table 2, recording at least one second network device reported by T O and fifth information.
  • T O Cell ID of the network equipment T OA Cell A1 ,Cell A2 ,... T OB Cell B1 ,Cell B2 ,... ... ...
  • step 901 is an optional step.
  • the first network device may pre-configure Table 1 and/or Table 2, and there is no need to receive a message from the second network device to determine the orbital period information and the fifth information.
  • the terminal device transmits a second message to the first network device, said second message comprising a terminal device requesting DRX cycle T R.
  • the terminal device may also send third indication information to the first network device, and the third indication information may be used to indicate at least one of the following:
  • the cell identification may be the cell identification of the coverage cell of the second network device.
  • the terminal device requests to configure the DRX cycle according to the orbit cycle
  • the terminal device requests to configure the DRX cycle according to the signal coverage cycle.
  • the first network device determines the orbit period T O according to the identifier of the second network device and Table 1; the first network device may determine the orbit period T O according to the cell identifier and Table 2; the first network device may also determine the orbit period T O according to the third
  • the instruction information clarifies the requirements of the terminal device. For example, if the terminal device requests to configure the DRX cycle according to the orbit period, the first network device can configure the DRX cycle according to the orbit period; or, the terminal device requests to configure the DRX cycle according to the signal coverage period, and the first network device can Configure the DRX cycle according to the signal coverage cycle.
  • the second network device in step 902 is a network device that provides signal coverage for the terminal device.
  • the second network device is the network device 100 shown in FIG. 1.
  • the second network device is a base station.
  • the second message may further include type indication information, the type indication information is used to indicate the type of the terminal device, and the type may include a low-power consumption terminal, a low-complexity terminal, a long-term standby terminal, and a machine Type terminal, Internet of Things terminal, etc.
  • the second message may also include first information, and the first information is used to indicate the capability of the terminal device.
  • first information is used to indicate the capability of the terminal device.
  • the configurable DRX cycle T Con can be understood as a configurable DRX cycle in a terrestrial communication scenario, or can be understood as a configurable DRX cycle in a non-satellite communication scenario, or can be understood as a non-periodical provision of signal coverage.
  • Configurable DRX cycle in the scene can be understood as a configurable DRX cycle in a terrestrial communication scenario, or can be understood as a configurable DRX cycle in a non-satellite communication scenario, or can be understood as a non-periodical provision of signal coverage.
  • Configurable DRX cycle in the scene can be understood as a configurable DRX cycle in a terrestrial communication scenario, or can be understood as a configurable DRX cycle in a non-satellite communication scenario, or can be understood as a non-periodical provision of signal coverage.
  • TR is a configurable DRX cycle.
  • TR is L ⁇ T O.
  • L is an integer greater than or equal to 1.
  • DRX cycle request network device determines the DRX cycle T R T UE0.
  • the DRX cycle T UE0 a first network device is a terminal device requesting DRX cycle DRX period T R is selected in the terminal device T Con DRX cycle may be configurable in accordance with.
  • the terminal device and the first network device support interactively configurable DRX cycle T Con , but the configurable DRX cycle T Con may not be an integral multiple of the orbital period T O.
  • the terminal device and the first network device may interact with a configurable DRX cycle T Con to determine the actual DRX cycle T UE used when monitoring and sending a paging message.
  • the terminal device requests the first network device DRX period T R are determined by the configured DRX cycle T UE0, a first network device may be configured to transmit to the terminal device DRX cycle T UE0, from the terminal apparatus according to the first network device T UE0 determines the actually used DRX cycle T UE .
  • the terminal apparatus requesting DRX period T R is configurable DRX cycle
  • the first network device may determine the DRX cycle is transmitted to the terminal device T UE0 by the following method:
  • the first network device determines that (L ⁇ T O ) is the closest to TR. It can be understood that (L ⁇ T O ) is an integer multiple of the orbital period closest to TR.
  • the first network device determines that (L ⁇ T O ) is the closest to TR. It can be understood that (L ⁇ T O ) is an integer multiple of the orbital period closest to TR.
  • the terminal apparatus requesting DRX period T R is L ⁇ T O
  • the first network device may determine the DRX cycle is transmitted to the terminal device T UE0 by the following method.
  • the first network device may determine the DRX period T UE of the terminal device according to the orbit period T O of the second network device.
  • the first network device searches for T O corresponding to at least one second network device according to the third indication information.
  • the second network device identifier reported by the terminal device is "A”
  • the first network device queries Table 1 or Table 2 to determine that the T O corresponding to the second network device is TOA .
  • the first network device sends a first message to the terminal device, where the first message includes the T UE0 .
  • the first network device sends a third message to the second network device, where the third message includes the identifier of the terminal device and the T UE .
  • the second network device sends a paging message to the terminal device according to the identifiers of the T UE and the terminal device.
  • the second network device may also refer to the first method or the second method described in the foregoing embodiment 1 to determine the time to send the paging message according to the T UE, which is not repeated here.
  • the terminal device receives the paging message sent by the second network device according to T UE0.
  • the terminal device may also refer to the first or second method described in the foregoing embodiment 1 to determine the time to receive the paging message according to the T UE, which is not repeated here.
  • the method one and the method two in the first embodiment and the content related to the second message are applicable to this embodiment.
  • configuring the DRX cycle for the terminal device according to the base station orbit period can make the terminal device wake up under the same base station and reduce the power consumption of the terminal device to read system messages.
  • the transmission of T O by the second network device to the terminal device is reduced, and the transmission of T O in the broadcast message is avoided, so as to improve communication security.
  • FIG. 10 shows a possible schematic diagram of the structure of the communication device involved in the foregoing embodiment.
  • the communication device shown in FIG. 10 may be the terminal device described in the embodiment of the present application, may also be a component in the terminal device that implements the foregoing method, or may also be a chip applied to the terminal device.
  • the chip may be a System-On-a-Chip (SOC) or a baseband chip with communication function.
  • the communication device includes a processing unit 1001 and a communication unit 1002.
  • the processing unit may be one or more processors, and the communication unit may be a transceiver.
  • the processing unit 1001 is configured to support the terminal device to perform step 503, step 706, step 806, and step 907, and/or other processes used in the technology described herein.
  • the communication unit 1002 is used to support the communication between the terminal device and other communication devices, for example, to support the terminal device to perform step 502, step 701 to step 703 and step 705, step 801 to step 803 and step 805, step 902, step 904 and step 906, and/or other processes used in the techniques described herein.
  • the communication device includes: a processing module 1101 and a communication module 1102.
  • the processing module 1101 is used to control and manage the actions of the communication device, for example, to perform the steps performed by the above-mentioned processing unit 1001, and/or to perform other processes of the technology described herein.
  • the communication module 1102 is configured to perform the steps performed by the above-mentioned communication unit 1002, and supports interaction between the communication device and other devices, such as interaction with other devices.
  • the communication device may further include a storage module 1103, and the storage module 1103 is used to store the program code and data of the communication device.
  • the processing module 1101 is a processor
  • the communication module 1102 is a transceiver
  • the storage module 1103 is a memory
  • the communication device is the communication device shown in FIG. 4a.
  • FIG. 12 shows a possible structural schematic diagram of the communication device involved in the foregoing embodiment.
  • the communication device shown in FIG. 12 may be the first network device or the second network device described in the embodiment of the present application, or a component that implements the above method in the first network device or the second network device, or it may be Applied to the chip in the first network device or the second network device.
  • the chip may be a System-On-a-Chip (SOC) or a baseband chip with communication function.
  • the communication device includes a processing unit 1201 and a communication unit 1202.
  • the processing unit 1201 may be one or more processors, and the communication unit 1202 may be a transceiver.
  • the processing unit 1201 is configured to support the first network device to perform step 501 and step 903, to support the second network device to generate paging messages, and/or other processes used in the technology described herein.
  • the communication unit 1202 is used to support communication between the first network device and other communication devices, for example, to support the first network device to perform step 502, step 701 to step 704, step 801 to step 804, step 901, step 902, step 904, step 905, supporting the second network device to perform step 705, step 805, and step 906, and/or other processes used in the technology described herein.
  • the communication device includes: a processing module 1301 and a communication module 1302.
  • the processing module 1301 is used to control and manage the actions of the communication device, for example, to perform the steps performed by the above-mentioned processing unit 1201, and/or to perform other processes of the technology described herein.
  • the communication module 1302 is configured to perform the steps performed by the above-mentioned communication unit 1202, and support interaction between the communication device and other devices, such as interaction with other first network equipment devices.
  • the communication device may further include a storage module 1303, and the storage module 1303 is used to store the program code and data of the communication device.
  • the processing module 1301 is a processor
  • the communication module 1302 is a transceiver
  • the storage module 1303 is a memory
  • the communication device is the communication device shown in FIG. 4b.
  • the embodiment of the present application provides a computer-readable storage medium, and the computer-readable storage medium stores instructions; the instructions are used to execute the method shown in FIG. 5 or FIG. 7-9.
  • the embodiment of the present application provides a computer program product including instructions, which when running on a communication device, causes the communication device to execute the method shown in FIG. 5 or FIG. 7 to FIG. 9.
  • a wireless communication device in an embodiment of the application includes: instructions stored in the wireless communication device; when the wireless communication device runs on the communication device shown in FIG. 4a, FIG. 4b, and FIG. 10 to FIG. The method shown in Figure 5 or Figure 7-9.
  • the wireless communication device may be a chip.
  • An embodiment of the present application also provides a communication system, including: a terminal device, a first network device, and a second network device.
  • the terminal device may be the communication device shown in FIG. 4a, FIG. 10, and FIG. 11, and the first network device or the second network device may be the communication device shown in FIG. 4b, FIG. 12, and FIG.
  • the processor in the embodiment of the present application may include but is not limited to at least one of the following: central processing unit (CPU), microprocessor, digital signal processor (DSP), microcontroller (microcontroller unit, MCU) ), or various computing devices running software such as artificial intelligence processors.
  • Each computing device may include one or more cores for executing software instructions for calculation or processing.
  • the processor can be a single semiconductor chip, or it can be integrated with other circuits to form a semiconductor chip. For example, it can form an SoC (on-chip) with other circuits (such as codec circuits, hardware acceleration circuits, or various bus and interface circuits).
  • the processor may further include necessary hardware accelerators, such as field programmable gate array (FPGA) and PLD (programmable logic device) , Or a logic circuit that implements dedicated logic operations.
  • FPGA field programmable gate array
  • PLD programmable logic device
  • the memory in the embodiments of the present application may include at least one of the following types: read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory , RAM) or other types of dynamic storage devices that can store information and instructions, and may also be electrically erasable programmable read-only memory (EEPROM).
  • ROM read-only memory
  • RAM random access memory
  • EEPROM electrically erasable programmable read-only memory
  • the memory can also be a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.) , Disk storage media or other magnetic storage devices, or any other media that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but are not limited thereto.
  • CD-ROM compact disc read-only memory
  • optical disc storage including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.
  • Disk storage media or other magnetic storage devices or any other media that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but are not limited thereto.
  • At least one refers to one or more.
  • Multiple means two or more.
  • And/or describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • the following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • words such as “first” and “second” are used to distinguish the same or similar items with substantially the same function and effect. Those skilled in the art can understand that words such as “first” and “second” do not limit the quantity and order of execution, and words such as “first” and “second” do not limit the difference.
  • the disclosed database access device and method can be implemented in other ways.
  • the embodiments of the database access device described above are merely illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods, such as multiple units or The components can be combined or integrated into another device, or some features can be omitted or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, database access devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate parts may or may not be physically separate.
  • the parts displayed as units may be one physical unit or multiple physical units, that is, they may be located in one place, or they may be distributed to multiple different places. . Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a readable storage medium.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the prior art, or all or part of the technical solutions can be embodied in the form of a software product, and the software product is stored in a storage medium. It includes several instructions to make a device (may be a single-chip microcomputer, a chip, etc.) or a processor execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种寻呼方法及通信装置,涉及通信领域,尤其适用于NTN通信,网络设备通过第一消息为终端设备配置接收寻呼消息的DRX周期,使得终端设备每次唤醒时被同一基站服务,进而减少终端设备频繁读取***消息的功耗。该方法包括:接收来自第一网络设备的第一消息,所述第一消息包括非连续接收DRX周期信息,所述DRX周期信息是根据第二网络设备的信号覆盖周期信息确定的,所述DRX周期信息用于配置终端设备接收寻呼消息的DRX周期T UE,所述信号覆盖周期信息用于指示第二网络设备的信号覆盖周期;根据所述DRX周期信息接收来自所述第二网络设备的寻呼消息。

Description

一种寻呼方法及通信装置 技术领域
本申请实施例涉及通信领域,尤其涉及一种寻呼方法及通信装置。
背景技术
近几年,随着通信技术的发展,出现了非陆地通信网络(Non-terrestrial networks)通信业务,即基站搭载于高空中的飞行器上,为地面上的终端设备提供网络覆盖。例如,利用卫星、飞机、气球等进行信号传输。
现有技术中,当终端设备与基站之间没有上下行业务数据传输时,终端设备处于无线资源控制(radio resource control,RRC)连接的空闲态或非激活态。在该状态下,基站可以通过寻呼过程将终端设备唤醒,终端设备接收到基站发送的寻呼消息后发起随机接入过程,与基站建立RRC连接。
在实际场景中,基站会随时寻呼终端设备,这就需要终端设备监听物理下行控制信道(Physical downlink control channel,PDCCH),以根据PDCCH承载的下行控制信息(downlink control information,DCI)接收寻呼消息。为了降低终端设备监听PDCCH的功耗,可以为终端设备应用非连续接收(discontinuous reception,DRX)机制,使得终端设备按DRX周期醒来监听PDCCH。由于卫星基站的移动,终端设备在下一个DRX周期醒来时可能经历不同的卫星基站,导致终端设备需要频繁读取不同卫星基站的***信息,增加终端设备的功耗。
发明内容
本申请实施例提供一种寻呼方法及通信装置,使得终端设备在同一基站下唤醒,减少终端设备读取***消息的功耗。
第一方面,提供了一种寻呼方法,该方法适用于终端设备,该方法包括:接收来自第一网络设备的第一消息,第一消息包括DRX周期信息,DRX周期信息是根据第二网络设备的信号覆盖周期信息确定的,DRX周期信息用于配置所述终端设备接收寻呼消息的DRX周期T UE,信号覆盖周期信息用于指示第二网络设备的信号覆盖周期;还可以根据DRX周期信息接收来自第二网络设备的寻呼消息。
本申请实施例中可以根据基站(例如,本申请实施例所述的第二网络设备)的信号覆盖周期来配置终端设备的DRX周期,使得终端设备在每个DRX周期醒来时都尽可能的是在同一个基站的信号覆盖内,该终端设备不需要获取其他基站的***信息,可以根据先前获取的***消息与同一个基站建立连接,避免终端设备频繁地获取不同基站的***信息,节约了终端设备的功耗。
结合第一方面,在第一方面的第一种可能的实现方式中,所述方法还包括:向第一网络设备发送第二消息,第二消息包括以下至少一种:第一时长、第一信息、第二信息;其中,第一时长是根据信号覆盖周期确定的,用于指示终端设备预期的DRX周期T E;第一信息用于指示终端设备支持根据信号覆盖周期确定的DRX周期T UE;第二信息用于指示DRX周期T E的第一偏移量Offset1。
本申请实施例还提供了第二消息可能包括的其他信元。当包括第一时长,使得第一网络设备可以根据第二网络设备的信号覆盖周期的时长确定DRX周期T UE;当包括终端设备预期的DRX周期T E,使得第一网络设备可以根据第二网络设备的信号覆盖周期以及终端设备预期的DRX周期T E确定DRX周期T UE;当包括DRX周期T E的第一偏移量Offset1,使得第一网络设备可以根据Offset1确定DRX周期T UE的第二偏移量Offset2。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,DRX周期T UE为信号覆盖周期的整数倍。
本申请实施例中,根据第二网络设备的信号覆盖周期确定DRX周期T UE的具体实现可以是:DRX周期T UE为信号覆盖周期的整数倍,可以确保终端设备在每个DRX周期醒来时都是在同一个基站的信号覆盖内,避免终端设备频繁地获取不同基站的***信息,节约了终端设备的功耗。
结合第一方面或第一方面的第一或第二种可能的实现方式,在第一方面的第三种可能的实现方式中,第一消息还包括第三信息,第三信息用于指示DRX周期T UE的第二偏移量Offset2。
本申请实施例中,提供了第一消息可能包括的其他信息,例如,DRX周期T UE的偏移量,终端设备根据该偏移量确定DRX周期的边界。
结合第一方面的第三种可能的实现方式中,在第一方面的第四种可能的实现方式中,所述方法还包括:根据DRX周期T UE和第二偏移量Offset2确定接收寻呼消息的时间t’。
本申请实施例提供中,终端设备可以根据第一网络设备配置的DRX周期T UE以及DRX周期T UE的偏移量确定接收寻呼消息的时间,以便根据寻呼消息与第二网络设备建立连接。
结合第一方面的第四种可能的实现方式,在第一方面的第五种可能的实现方式中,
t’=(Offset2+R*T UE)mod T C,其中,R为正整数,T C为***时间周期;或者,
t’为满足下式的***时间t S,(t S+Offset2)mod T UE=UE-ID mod T UE,其中,UE-ID为UE标识或根据UE标识生成的。
本申请实施例提供了根据DRX周期T UE以及DRX周期T UE的偏移量确定接收寻呼消息时间的具体实现,使得终端设备可以准确接收第二网络设备发送的寻呼消息,以便和第二网络设备建立连接。
结合第一方面的第五种可能的实现方式,在第一方面的第六种可能的实现中,所述方法还包括:当终端设备从第一网络设备接收到第一消息时,设置R为0或1,或者,当R达到第一阈值时,设置R为0或1,第一阈值为预定义的或者预配置的。
本申请实施例还提供了更新R的计数方法,终端设备可以根据R值计算接收寻呼消息的时间。
结合第一方面或第一方面的第一至第六种可能的实现方式的任意一种,在第一方面的第七种可能的实现方式中,所述方法还包括:接收来自第二网络设备的第四信息,第四信息用于指示信号覆盖周期。
本申请实施例中,终端设备还可以接收第二网络设备发送的第四信息,根据第四 信息确定第二网络设备的信号覆盖周期,以便根据信号覆盖周期请求DRX周期,以使得终端设备在每个DRX周期醒来时都是同一个基站的信号覆盖内。
结合第一方面或第一方面的第一至第七种可能的实现方式中的任意一种,在第一方面的第八种可能的实现方式中,第一网络设备和第二网络设备是同一个网络设备。
本申请实施例中,可以是基站为终端设备配置实际使用的DRX周期T UE,示例的,上述第一网络设备和第二网络设备是同一个网络设备,例如,第一网络设备和第二网络设备是同一个基站。
第二方面,提供了一种寻呼方法,该方法适用于第一网络设备,包括:根据第二网络设备的信号覆盖周期信息确定终端设备的DRX周期信息;DRX周期信息用于配置所述终端设备接收寻呼消息的DRX周期T UE,信号覆盖周期信息用于指示第二网络设备的信号覆盖周期;还可以向终端设备发送第一消息,第一消息包括DRX周期信息。
本申请实施例中可以根据基站(例如,本申请实施例所述的第二网络设备)的信号覆盖周期来配置终端设备的DRX周期,使得终端设备在每个DRX周期醒来时都尽可能的是在同一个基站的信号覆盖内,该终端设备不需要获取其他基站的***信息,可以根据先前获取的***消息与同一个基站建立连接,避免终端设备频繁地获取不同基站的***信息,节约了终端设备的功耗。
结合第二方面,在第二方面的第一种可能的实现方式中,所述方法还包括:接收来自终端设备的第二消息,第二消息包括以下至少一种:第一时长、第一信息、第二信息;其中,第一时长是根据信号覆盖周期确定的,用于指示终端设备预期的DRX周期T E;第一信息用于指示终端设备支持配置根据信号覆盖周期确定的DRX周期;第二信息用于指示DRX周期T E的第一偏移量Offset1。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,DRX周期T UE为信号覆盖周期的整数倍。
结合第二方面或第二方面的第一或第二种可能的实现方式,在第二方面的第三种可能的实现方式中,第一消息还包括第三信息,第三信息用于指示DRX周期T UE的第二偏移量Offset2。
结合第二方面的第三种可能的实现方式,在第二方面的第四种可能的实现方式中,所述方法还包括:向第二网络设备发送第二偏移量Offset2,Offset2为DRX周期T UE的第二偏移量。
结合第二方面的第四种可能的实现方式,在第二方面的第五种可能的实现方式中,T UE和Offset2用于第二网络设备确定发送寻呼消息的时间t’;t’=(Offset2+R*T UE)mod T C,其中,R为正整数,T C为***时间周期;或者,t’为满足下式的***时间t S,(t S+Offset2)mod T UE=UE-ID mod T UE,其中,UE-ID为用户设备UE标识或根据UE标识生成的。
结合第二方面的第五种可能的实现方式,在第二方面的第六种可能的实现方式中,当第一网络设备向终端设备发送第一消息时,第一网络设备设置R为0或1,或者,当R达到第二阈值时,第一网络设备设置R为0或1;第二阈值为预定义的或者预配置的。
结合第二方面或第二方面的第一至第六种可能的实现方式中的任意一种,在第二 方面的第七种可能的实现方式中,所述方法还包括:向第二网络设备发送DRX周期信息。
结合第二方面或第二方面的第一至第七种可能的实现方式中的任意一种,在第二方面的第八种可能的实现方式中,第一网络设备和第二网络设备是同一个网络设备。
第三方面,提供了一种寻呼方法,该方法适用于第二网络设备,包括:接收来自第一网络设备的DRX周期信息,DRX周期信息用于配置终端设备接收寻呼消息的DRX周期T UE,DRX周期T UE是根据第二网络设备的信号覆盖周期确定的;还可以根据DRX周期T UE向终端设备发送寻呼消息。
本申请实施例中可以根据基站(例如,本申请实施例所述的第二网络设备)的信号覆盖周期来配置终端设备的DRX周期,使得终端设备在每个DRX周期醒来时都尽可能的是在同一个基站的信号覆盖内,该终端设备不需要获取其他基站的***信息,可以根据先前获取的***消息与同一个基站建立连接,避免终端设备频繁地获取不同基站的***信息,节约了终端设备的功耗。
结合第三方面,在第三方面的第一种可能的实现方式中,DRX周期T UE为信号覆盖周期的整数倍。
结合第三方面或第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,方法还包括:从第一网络设备接收第二偏移量Offset2,Offset2为DRX周期T UE的第二偏移量。
结合第三方面的第二种可能的实现方式,在第三方面的第三种可能的实现方式中,T UE和Offset2用于第二网络设备确定发送寻呼消息的时间t’;t’=(Offset2+R*T UE)mod T C,其中,R为正整数,T C为***时间周期;或者,t’为满足下式的***时间t S,(t S+Offset2)mod T UE=UE-ID mod T UE,其中,UE-ID为用户设备UE标识或根据UE标识生成的。
结合第三方面或第三方面的第一至第三种可能的实现方式中的任意一种,在第三方面的第四种可能的实现方式中,所述方法还包括:从第一网络设备接收DRX周期T UE
结合第三方面或第三方面的第一至第三种可能的实现方式中的任意一种,在第三方面的第四种可能的实现方式中,第一网络设备和第二网络设备是同一个网络设备。
第四方面,提供了一种通信装置,包括:
通信单元,用于接收来自第一网络设备的第一消息,第一消息包括非连续接收DRX周期信息,DRX周期信息是根据第二网络设备的信号覆盖周期信息确定的,DRX周期信息用于配置终端设备接收寻呼消息的DRX周期T UE,信号覆盖周期信息用于指示第二网络设备的信号覆盖周期;处理单元,用于根据DRX周期信息接收来自第二网络设备的寻呼消息。
结合第四方面,在第四方面的第一种可能的实现方式中,通信单元还用于,向第一网络设备发送第二消息,第二消息包括以下至少一种:第一时长、第一信息、第二信息;其中,第一时长是根据信号覆盖周期确定的,用于指示终端设备预期的DRX周期T E;第一信息用于指示终端设备支持根据信号覆盖周期确定的DRX周期T UE;第二信息用于指示DRX周期T E的第一偏移量Offset1。
结合第四方面或第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现方式中,DRX周期T UE为信号覆盖周期的整数倍。
结合第四方面或第四方面的第一或第二种可能的实现方式,在第四方面的第三种可能的实现方式中,第一消息还包括第三信息,第三信息用于指示DRX周期T UE的第二偏移量Offset2。
结合第四方面的第三种可能的实现方式,在第四方面的第四种可能的实现方式中,处理单元还用于,根据DRX周期T UE和第二偏移量Offset2确定接收寻呼消息的时间t’。
结合第四方面的第四种可能的实现方式,在第四方面的第五种可能的实现方式中,t’=(Offset2+R*T UE)mod T C,其中,R为正整数,T C为***时间周期;或者,t’为满足下式的***时间t S,(t S+Offset2)mod T UE=UE-ID mod T UE,其中,UE-ID为UE标识或根据UE标识生成的。
结合第四方面的第五种可能的实现方式,在第四方面的第六种可能的实现方式中,处理单元还用于,当通信单元从第一网络设备接收到第一消息时,设置R为0或1,或者,当R达到第一阈值时,设置R为0或1,第一阈值为预定义的或者预配置的。
结合第四方面或第四方面的第一至第六种可能的实现方式中的任意一种,在第四方面的第七种可能的实现方式中,通信单元还用于,接收来自第二网络设备的第四信息,第四信息用于指示信号覆盖周期。
结合第四方面或第四方面的第一至第七种可能的实现方式中的任意一种,在第四方面的第八种可能的实现方式中,第一网络设备和第二网络设备是同一个网络设备。
第五方面,提供了一种通信装置,包括:处理单元,用于根据第二网络设备的信号覆盖周期信息确定终端设备的DRX周期信息;DRX周期信息用于用于配置终端设备接收寻呼消息的DRX周期T UE,信号覆盖周期信息用于指示第二网络设备的信号覆盖周期;通信单元,用于向终端设备发送第一消息,第一消息包括DRX周期信息。
结合第五方面,在第五方面的第一种可能的实现方式中,通信单元还用于,接收来自终端设备的第二消息,第二消息包括以下至少一种:第一时长、第一信息、第二信息;第一时长是根据信号覆盖周期确定的,用于指示终端设备预期的DRX周期T E;第一信息用于指示终端设备支持配置根据信号覆盖周期确定的DRX周期;第二信息用于指示DRX周期T E的第一偏移量Offset1。
结合第五方面或第五方面的第一种可能的实现方式,在第五方面的第二种可能的实现方式中,DRX周期T UE为信号覆盖周期的整数倍。
结合第五方面或第五方面的第一或第二种可能的实现方式,在第五方面的第三种可能的实现方式中,第一消息还包括第三信息,第三信息用于指示DRX周期T UE的第二偏移量Offset2。
结合第五方面的第三种可能的实现方式,在第五方面的第四种可能的实现方式中,通信单元还用于,向第二网络设备发送第二偏移量Offset2。
结合第五方面的第四种可能的实现方式,在第五方面的第五种可能的实现方式中,T UE和Offset2用于第二网络设备确定发送寻呼消息的时间t’;t’=(Offset2+R*T UE)mod T C,其中,R为正整数,T C为***时间周期;或者,t’为满足下式的***时间t S, (t S+Offset2)mod T UE=UE-ID mod T UE,其中,UE-ID为用户设备UE标识或根据UE标识生成的。
结合第五方面的第五种可能的实现方式,在第五方面的第六种可能的实现方式中,当通信单元向终端设备发送第一消息时,第一网络设备设置R为0或1,或者,当R达到第二阈值时,第一网络设备设置R为0或1;第二阈值为预定义的或者预配置的。
结合第五方面或第五方面的第一至第六种可能的实现方式,在第五方面的第七种可能的实现方式中,通信单元还用于,向第二网络设备发送DRX周期信息。
结合第五方面或第五方面的第一至第七种可能的实现方式,在第五方面的第八种可能的实现方式中,通信装置和第二网络设备是同一个网络设备。
第六方面,提供了一种通信装置,包括:
通信单元,用于接收来自第一网络设备的DRX周期信息,DRX周期信息用于配置终端设备接收寻呼消息的DRX周期T UE,DRX周期T UE是根据第二网络设备的信号覆盖周期确定的;处理单元,用于根据DRX周期T UE向终端设备发送寻呼消息。
结合第六方面,在第六方面的第一种可能的实现方式中,DRX周期T UE为信号覆盖周期的整数倍。
结合第六方面或第六方面的第一种可能的实现方式,在第六方面的第二种可能的实现方式中,通信单元还用于,从第一网络设备接收第二偏移量Offset2,Offset2为DRX周期T UE的第二偏移量。
结合第六方面的第二种可能的实现方式,在第六方面的第三种可能的实现方式中,T UE和Offset2用于第二网络设备确定发送寻呼消息的时间t’;t’=(Offset2+R*T UE)mod T C,其中,R为正整数,T C为***时间周期;或者,t’为满足下式的***时间t S,(t S+Offset2)mod T UE=UE-ID mod T UE,其中,UE-ID为用户设备UE标识或根据UE标识生成的。
结合第六方面或第六方面的第一至第三种可能的实现方式,在第六方面的第四种可能的实现方式中,通信单元还用于,从第一网络设备接收DRX周期T UE
结合第六方面或第六方面第一至第四种可能的实现方式中的任意一种,在第六方面的第五种可能的实现方式中,第一网络设备和通信装置是同一个网络设备。
需要说明的是,当上述通信装置是网络设备、终端设备或可实现上述网络设备、终端设备功能的组合器件时,通信单元可以是收发器,可以包括天线和射频电路等,收发器可以是整合的发送器和接收器,处理模块可以是处理器,例如基带芯片等。当通信装置是具有上述网络设备、终端设备功能的部件时,通信单元可以是射频单元,处理模块可以是处理器。当通信装置是芯片***时,通信单元可以是芯片***的输入输出接口,处理模块可以是芯片***的处理器,例如:中央处理单元(central processing unit,CPU)。
第七方面,提供了一种通信装置,包括至少一个处理器和通信接口,处理器用于执行上述第二方面以及第二方面任意一种实现方式所述的方法,或,上述第一方面以及第一方面任意一种实现方式所述的方法,或,上述第三方面以及第三方面任意一种实现方式所述的方法。
通信接口用于所述通信装置和其他设备之间的通信。
可选的,所述通信装置还可以包括存储器,所述至少一个处理器可以与所述存储器耦合;所述存储器,用于存储计算机程序;
所述至少一个处理器,用于执行所述存储器中存储的计算机程序,以使得所述装置执行如上述第二方面以及第二方面任意一种实现方式所述的方法,或,上述第一方面以及第一方面任意一种实现方式所述的方法,或,上述第三方面以及第三方面任意一种实现方式所述的方法。
第八方面,提供了一种计算机可读存储介质,包括:计算机可读存储介质中存储有指令;当计算机可读存储介质在上述第四方面以及第四方面任意一种实现方式所述的通信装置上运行时,使得通信装置执行如上述第一方面以及第一方面任意一种实现方式所述的通信方法。
第九方面,提供了一种计算机可读存储介质,包括:计算机可读存储介质中存储有指令;当计算机可读存储介质在上述第五方面以及第五方面任意一种实现方式所述的通信装置上运行时,使得通信装置执行如上述第二方面以及第二方面任意一种实现方式所述的通信方法。
第十方面,提供了一种计算机可读存储介质,包括:计算机可读存储介质中存储有指令;当计算机可读存储介质在上述第六方面以及第六方面任意一种实现方式所述的通信装置上运行时,使得通信装置执行如上述第三方面以及第三方面任意一种实现方式所述的通信方法。
第十一方面,提供了一种无线通信装置,该通信装置包括处理器,例如,应用于通信装置中,用于实现上述第一方面以及第一方面任意一种实现方式所述的方法,该通信装置例如可以是芯片***。在一种可行的实现方式中,所述芯片***还包括存储器,所述存储器,用于保存实现上述第一方面所述方法的功能必要的程序指令和数据。
第十二方面,提供了一种无线通信装置,该通信装置包括处理器,例如,应用于通信装置中,用于实现上述第二方面以及第二方面任意一种实现方式所述的方法所涉及的功能或方法,该通信装置例如可以是芯片***。在一种可行的实现方式中,所述芯片***还包括存储器,所述存储器,用于保存实现上述第二方面所述方法的功能必要的程序指令和数据。
第十三方面,提供了一种无线通信装置,该通信装置包括处理器,例如,应用于通信装置中,用于实现上述第三方面以及第三方面任意一种实现方式所述的方法所涉及的功能或方法,该通信装置例如可以是芯片***。在一种可行的实现方式中,所述芯片***还包括存储器,所述存储器,用于保存实现上述第三方面所述方法的功能必要的程序指令和数据。
上述方面中的芯片***可以是片上***(system on chip,SOC),也可以是基带芯片等,其中基带芯片可以包括处理器、信道编码器、数字信号处理器、调制解调器和接口模块等。
第十四方面,提供了一种通信***,包括第一网络设备、第二网络设备以及终端设备。
第一网络设备根据第二网络设备的信号覆盖周期信息确定终端设备的DRX周期信息;DRX周期信息用于配置终端设备接收寻呼消息的DRX周期T UE,信号覆盖周 期信息用于指示第二网络设备的信号覆盖周期;第一网络设备还可以向终端设备发送第一消息,第一消息包括DRX周期信息。
第二网络设备接收来自第一网络设备的DRX周期T UE,还可以根据DRX周期T UE向终端设备发送寻呼消息。
终端设备接收来自第一网络设备的第一消息,还可以根据DRX周期信息接收来自第二网络设备的寻呼消息。
终端设备的具体执行过程可参照上述第一方面以及第一方面的任意一种可能的实现方式,在此不做赘述。第一网络设备的具体执行过程可参照上述第二方面以及第二方面的任意一种可能的实现方式,在此不做赘述。第二网络设备的具体执行过程可参照上述第三方面以及第三方面的任意一种可能的实现方式,在此不做赘述。
附图说明
图1为本申请实施例提供的通信***的示意图;
图2为本申请实施例提供的DRX周期的示意图;
图3为本申请实施例提供的终端设备获取***消息的示意图;
图4a为本申请实施例提供的通信装置的结构框图;
图4b为本申请实施例提供的通信装置的另一结构框图;
图5为本申请实施例提供的寻呼方法的流程示意图;
图6为本申请实施例提供的DRX周期起始时间的示意图;
图7为本申请实施例提供的寻呼方法的另一流程示意图;
图8为本申请实施例提供的寻呼方法的另一流程示意图;
图9为本申请实施例提供的寻呼方法的另一流程示意图;
图10~图13为本申请实施例提供的通信装置的另一结构框图。
具体实施方式
图1给出了本申请提供的技术方案所适用的一种通信***的示意图,该通信***可以包括多个网络设备(仅示出了网络设备100和网络设备101)以及多个终端设备(图中仅示出了终端设备200)。图1仅为示意图,并不构成对本申请提供的技术方案的适用场景的限定。
图1所示的***中,网络设备100搭载于高空飞行器(例如,卫星)上,高空飞行器绕地球周期运行,终端设备200位于地面。由于网络设备100提供的信号覆盖范围较大且其运行轨道周期较短,对于终端设备200而言,当网络设备100提供的信号覆盖周期性出现在相同的地理区域时,终端设备200一般不会移出该地理区域。参考图1,当网络设备100运行到其轨道的某处时,终端设备200可以获取网络设备100的***信息,在网络设备100的信号覆盖范围内进行通信。当网络设备100继续运行,终端设备200会离开网络设备100的信号覆盖范围,网络设备100不再为终端设备200提供信号覆盖。
在网络设备搭载于卫星的场景下,根据卫星轨道高度的不同,可分为低轨(low earth orbits,LEO)卫星、中轨(medium earth orbits,MEO)卫星、地球同步轨道(geostationary earth orbits,GEO)卫星和高椭圆轨道(highly earth orbits,HEO)卫星。
网络设备100可以是任意一种具有无线收发功能的设备。包括但不限于:LTE中的演进型基站(E-UTRAN NodeB或e-NodeB或eNB),5G或新无线(new radio,NR)接入技术中的基站(gNodeB或gNB)或收发点(transmission/reception point,TRP),3GPP后续演进的基站,WiFi***中的接入节点,无线中继节点,无线回传节点等。基站可以是:宏基站,微基站,微微基站,小站,中继站,或,气球站等。多个基站可以支持上述提及的同一种技术的网络,也可以支持上述提及的不同技术的网络。基站可以包含一个或多个共站或非共站的TRP。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中式单元(centralized unit,CU),和/或分布式单元(distributed unit,DU)。网络设备还可以是服务器,可穿戴设备,或车载设备等。以下以网络设备为基站为例进行说明。所述多个网络设备可以为同一类型的基站,也可以为不同类型的基站。基站可以与终端设备进行通信,也可以通过中继站与终端设备进行通信。终端设备可以与不同技术的多个基站进行通信,例如,终端设备可以与支持LTE网络的基站通信,也可以与支持5G网络的基站通信,还可以支持与LTE网络的基站以及5G网络的基站的双连接。
网络设备101可以是接入移动管理网元(access and mobility management function,AMF),AMF主要负责终端的注册管理、终端的连接管理、终端的可达性管理、终端的接入授权和接入鉴权、终端的安全功能、终端的移动性管理、网络切片(network slice)选择、SMF选择等功能。AMF作为N1/N2接口信令连接的锚点并为SMF提供N1/N2接口会话管理(session management,SM)消息的路由、维护和管理终端的状态信息。
终端设备(例如终端设备200)是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、车载终端设备、无人驾驶(self-driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、可穿戴终端设备等等。本申请的实施例对应用场景不做限定。终端有时也可以称为终端设备、用户设备(user equipment,UE)、接入终端设备、车载终端、工业控制终端、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、终端设备、无线通信设备、UE代理或UE装置等。终端也可以是固定的或者移动的。本申请的终端设备还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请的方法。
首先,对本申请实施例涉及的术语进行解释说明:
(1)无线资源控制(radio resource control,RRC)状态
终端设备有3种RRC状态:RRC连接态(connected态)、RRC空闲态(idle态)和非激活态(inactive态)。
RRC连接态(或,也可以简称为连接态):终端设备与网络设备建立了RRC连 接,可以进行数据传输。
RRC空闲态(或,也可以简称为空闲态):终端设备没有与网络设备建立RRC连接,网络设备没有存储该终端设备的上下文。如果终端设备需要从RRC空闲态进入RRC连接态,则需要发起随机接入过程,与网络设备(例如,基站)建立RRC连接。
RRC非激活态(也可以简称为“非激活态”、“去活动态”或“RRC去激活态”):终端设备之前进入了RRC连接态,然后基站释放了RRC连接,但是基站保存了该终端设备的上下文。如果该终端设备需要从RRC非激活态再次进入RRC连接态,则需要发起RRC连接恢复过程(或者称为RRC连接重建立过程)。RRC恢复过程相对于RRC建立过程来说,时延更短,信令开销更小。但是基站需要保存终端设备的上下文,会占用基站的存储开销。
(2)DRX周期
终端设备与网络设备之间没有数据传输时,终端设备处于RRC连接的空闲态或非激活态。网络设备通过寻呼过程将终端设备唤醒,终端设备接收到寻呼消息后发起随机接入过程,进而与基站建立RRC连接。具体地,终端设备需要监听调度寻呼消息的PDCCH,为了节省终端设备在监听PDCCH上的功耗,可以为终端设备配置DRX,使得终端设备周期性醒来监听PDCCH。示例的,参考图2,终端设备醒来的周期为DRX Cycle(DRX周期)。其中,终端设备在唤醒时长(On Duration)内监听PDCCH,终端设备不监听PDCCH的时段称为Opportunity for DRX。
(3)信号覆盖周期
本申请实施例中,信号覆盖周期可以认为是网络设备的信号覆盖周期性出现在某一地理区域的间隔时长。示例的,图1所示的通信***中,网络设备100为终端设备200提供的信号覆盖是周期性出现的。伴随着网络设备100在运行轨道上绕地球运行一周,对于终端设备200来说,网络设备100提供的信号覆盖出现一次。网络设备100的信号覆盖周期可以是网络设备100的轨道周期(orbital period,OP),即网络设备100沿其轨道运行一周的时长。
(4)DRX周期的偏移量
DRX周期的偏移量可以表征DRX周期的起始时刻。示例的,DRX周期为T,DRX周期的偏移量为t1,则DRX周期的边界为(t1+N×T),其中N为非负整数。其中,DRX周期的边界可以是DRX周期的起始时刻。
在图1所示场景中,为保证网络设备能够连续服务终端设备200,需要部署多个网络设备来覆盖全球(地球同步轨道场景除外)。示例性的,参考图3,在t2时刻基站1为终端设备200提供信号覆盖,终端设备可以根据DRX周期在基站1下醒来获取***信息并接收寻呼消息。当终端设备200根据DRX周期再次醒来时,基站1可能运行到轨道的其他位置,不能为终端设备200提供信号覆盖。此时,基站2可以为终端设备提供信号覆盖,这时,终端设备获取基站2的***信息并接收寻呼消息。可见,终端设备200根据DRX周期唤醒时,可能经历不同的基站,这时需要终端设备200获取不同基站的***信息,例如,主信息块(master information block,MIB)和/或***信息块1(system information block 1,SIB1)和/或其他***信息块,而频繁地获取基站的***信息会增加终端设备的功耗。
本申请实施例提供一种寻呼方法,终端设备可以接收来自第一网络设备(例如,核心网设备)的第一消息,所述第一消息包括DRX周期信息,所述DRX周期信息是根据第二网络设备(例如,搭载于卫星上的基站)的信号覆盖周期信息确定的。终端设备可以根据所述DRX周期信息接收来自所述第二网络设备的寻呼消息。其中,第二网络设备的信号覆盖周期用于指示第二网络设备提供的信号覆盖的周期,例如,第二网络设备的轨道周期。可见,本申请实施例中可以根据基站的信号覆盖周期来配置终端设备的DRX周期,使得终端设备在每个DRX周期醒来时都尽可能的是在同一个基站的信号覆盖内,这时,该终端设备不需要获取其他基站的***信息,避免终端设备频繁地获取不同基站的***信息,节约了终端设备的功耗。
本申请实施例所述的终端设备,可以通过图4a中的通信装置410来实现。图4a所示为本申请实施例提供的通信装置410的硬件结构示意图。该通信装置410包括处理器4101以及至少一个通信接口(图4a中仅是示例性的以包括通信接口4103为例进行说明),可选的,还包括存储器4102。其中,处理器4101、存储器4102以及通信接口4103之间互相连接。
处理器4101可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信接口4103,使用任何收发器一类的装置,用于与其他设备或通信网络进行通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。
存储器4102可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,也可以与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器4102用于存储执行本申请方案的计算机执行指令,并由处理器4101来控制执行。处理器4101用于执行存储器4102中存储的计算机执行指令,从而实现本申请下述实施例提供的意图处理方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器4101可以包括一个或多个CPU,例如图4a中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置410可以包括多个处理器,例如图4a中的处理器4101和处理器4106。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设 备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,通信装置410还可以包括输出设备4104和输入设备4105。输出设备4104和处理器4101通信,可以以多种方式来显示信息。例如,输出设备4104可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备4105和处理器4101通信,可以以多种方式接收用户的输入。例如,输入设备4105可以是鼠标、键盘、触摸屏设备或传感设备等。
上述的通信装置410可以是一个通用设备或者是一个专用设备。在具体实现中,通信装置410可以是台式机、便携式电脑、网络服务器、掌上电脑(personal digital assistant,PDA)、移动手机、平板电脑、无线终端装置、嵌入式设备或有图4a中类似结构的设备。本申请实施例不限定通信装置410的类型。
需要说明的是,通信装置410可以是终端整机,也可以是实现终端上的功能部件或组件,也可以是通信芯片,例如基带芯片等。通信装置410是终端整机时,通信接口可以是射频模块。当通信装置410为通信芯片,通信接口4103可以是该芯片的输入输出接口电路,输入输出接口电路用于读入和输出基带信号。
图4b是一种通信装置的结构示意图。网络设备420的结构可以参考图4b所示的结构。
网络设备包括至少一个处理器4201、至少一个收发器4203、至少一个网络接口4204和一个或多个天线4205。可选的,还包括至少一个存储器4202。处理器4201、存储器4202、收发器4203和网络接口4204相连,例如通过总线相连。天线4205与收发器4203相连。网络接口4204用于网络设备通过通信链路与其它通信设备相连,例如网络设备通过S1接口与核心网网元相连。在本申请实施例中,所述连接可包括各类接口、传输线或总线等,本实施例对此不做限定。
本申请实施例中的处理器,例如处理器4201,可以包括如下至少一种类型:通用中央处理器(Central Processing Unit,CPU)、数字信号处理器(Digital Signal Processor,DSP)、微处理器、特定应用集成电路专用集成电路(Application-Specific Integrated Circuit,ASIC)、微控制器(Microcontroller Unit,MCU)、现场可编程门阵列(Field Programmable Gate Array,FPGA)、或者用于实现逻辑运算的集成电路。例如,处理器4201可以是一个单核(single-CPU)处理器或多核(multi-CPU)处理器。至少一个处理器4201可以是集成在一个芯片中或位于多个不同的芯片上。
本申请实施例中的存储器,例如存储器4202,可以包括如下至少一种类型:只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically erasable programmabler-only memory,EEPROM)。在某些场景下,存储器还可以是只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
存储器4202可以是独立存在,与处理器4201相连。可选的,存储器4202也可以和处理器4201集成在一起,例如集成在一个芯片之内。其中,存储器4202能够存储执行本申请实施例的技术方案的程序代码,并由处理器4201来控制执行,被执行的各类计算机程序代码也可被视为是处理器4201的驱动程序。例如,处理器4201用于执行存储器4202中存储的计算机程序代码,从而实现本申请实施例中的技术方案。
收发器4203可以用于支持网络设备与终端设备之间射频信号的接收或者发送,收发器4203可以与天线4205相连。具体地,一个或多个天线4205可以接收射频信号,该收发器4203可以用于从天线接收所述射频信号,并将射频信号转换为数字基带信号或数字中频信号,并将该数字基带信号或数字中频信号提供给所述处理器4201,以便处理器4201对该数字基带信号或数字中频信号做进一步的处理,例如解调处理和译码处理。此外,收发器4203可以用于从处理器4201接收经过调制的数字基带信号或数字中频信号,并将该经过调制的数字基带信号或数字中频信号转换为射频信号,并通过一个或多个天线4205发送所述射频信号。具体地,收发器4203可以选择性地对射频信号进行一级或多级下混频处理和模数转换处理以得到数字基带信号或数字中频信号,所述下混频处理和模数转换处理的先后顺序是可调整的。收发器4203可以选择性地对经过调制的数字基带信号或数字中频信号时进行一级或多级上混频处理和数模转换处理以得到射频信号,所述上混频处理和数模转换处理的先后顺序是可调整的。数字基带信号和数字中频信号可以统称为数字信号。收发器可以称为收发电路、收发单元、收发器件、发送电路、发送单元或者发送器件等等。
需要说明的是,通信装置420可以是网络设备整机,也可以是实现网络设备功能的部件或组件,也可以是通信芯片。当通信装置420为通信芯片,收发器4203可以是该芯片的接口电路,该接口电路用于读入和输出基带信号。
实施例一
本申请实施例提供了一种寻呼方法,如图5所示,所述方法包括以下步骤:
501、第一网络设备根据第二网络设备的信号覆盖周期信息确定终端设备的DRX周期信息。
需要说明的是,第二网络设备的信号覆盖周期信息用于指示第二网络设备提供的信号覆盖的周期。例如,第二网络设备搭载于高空飞行器之上,可以为终端设备提供周期性出现的信号覆盖。第二网络设备可以为基站。第一网络设备可以和第二网络设备为同一个网络设备,例如,第一网络设备和第二网络设备为同一个基站。或者,第一网络设备可以为核心网设备,第二网络设备为基站。例如,第一网络设备为接入和移动性管理功能(access and mobility management function,AMF)实体或移动性管理实体(mobility management entity,MME)。
本申请实施例中,终端设备的DRX周期信息可以指示终端设备接收寻呼消息的DRX周期T UE。可以通过以下几种方式确定终端设备的DRX周期T UE
方式一:DRX周期T UE可以为第二网络设备的信号覆盖周期的整数倍。示例的,第二网络设备的信号覆盖周期为T S,终端设备的DRX周期T UE为K×T S,其中,K为大于或等于1的整数。
方式二:DRX周期T UE可以为第二网络设备的信号覆盖周期的N分之一,其中, N为正整数或N=2 M,M为非负整数。
在方式二中,DRX周期T UE为第二网络设备的信号覆盖周期的N分之一,即在第二网络设备的一个信号覆盖周期内,终端设备根据DRX周期醒来,每次醒来经历不同的基站,终端设备获取不同基站的***消息。N取值越小,终端设备获取不同基站***消息的次数越少,通过设置N的取值,尽可能地减少终端设备醒来时经历基站的个数,进而减少不同基站***消息的获取次数,降低终端设备的功耗。
方式三:DRX周期T UE是与K×T S(即第二网络设备的信号覆盖周期的整数倍)最接近的可配置DRX周期T q。其中,可配置DRX周期是终端设备可配置的DRX周期。示例的,终端设备可配置的DRX周期T A包含{T 1、T 2、…、T q、…、T Q-1、T Q},其中Q为大于或等于1的整数,1≤q≤Q,T UE=T q,T q满足|T q–K×T S|最小,即终端设备可配置的DRX周期中与K×T S最接近的周期为T q
方式四:DRX周期T UE是与K×T S(即第二网络设备的信号覆盖周期的整数倍)最接近的可配置DRX周期T q,且K×T S≤T q。即T q满足|T q–K×T S|最小且K×T S≤T q
方式五:DRX周期T UE是与K×T S(即第二网络设备的信号覆盖周期的整数倍)最接近的终端设备可配置的DRX周期T q,且T q≤K×T S。即T q满足|T q–K×T S|最小且T q≤K×T S
需要说明的是,第二网络设备的信号覆盖周期T S可以与第二网络设备的轨道周期T O相等。
502、第一网络设备向终端设备发送第一消息,所述第一消息包括终端设备的DRX周期信息。
具体实现中,第一消息可以是附着接受(attach accept)消息或注册接受(registration accept)消息或跟踪区更新接受(tracking area update accept)消息或RRC连接重配置(RRC connection reconfiguration)消息或RRC连接释放(RRC connection release)消息或RRC重配置(RRC reconfiguration)消息或RRC释放(RRC release)消息。
503、终端设备从第一网络设备接收第一消息。进一步,根据第一消息中的DRX周期信息接收来自所述第二网络设备的寻呼消息。
可选的,图5所示的方法还包括:在步骤501之前,还包括步骤501a:终端设备向所述第一网络设备发送第二消息,所述第二消息包括以下至少一种:第一时长、第一信息。
其中,所述第一时长是根据所述信号覆盖周期确定的,用于指示所述终端设备预期的DRX周期T E。本申请实施例中,终端设备根据预期的DRX周期T E确定所请求的DRX周期T R。在一种可能的实现中,T E等于T R
所述第一信息用于指示终端设备的能力,例如,所述第一信息用于指示所述终端设备支持根据所述信号覆盖周期确定的DRX周期,或者,第一信息用于指示所述终端设备支持根据所述信号覆盖周期配置的DRX周期。可以理解的是,终端设备自身可以请求根据所述信号覆盖周期来配置DRX周期,或者,当第一网络设备根据所述信号覆盖周期配置终端设备的DRX周期时,终端设备可以根据第一网络设备配置的DRX周期接收寻呼消息。
具体实现中,所述第二消息可以是附着请求(attach request)消息或注册请求 (registration request)消息或跟踪区更新请求(tracking area update request)消息。
可选的,在步骤501a之前,还包括步骤501b:终端设备接收来自所述第二网络设备的第四信息,所述第四信息用于指示所述第二网络设备的信号覆盖周期T S。终端设备还可以根据所述信号覆盖周期T S确定预期的DRX周期T E
示例的,终端设备预期的DRX周期T E是所述信号覆盖周期T S的整数倍。例如,第二网络设备的信号覆盖周期为T S,终端设备预期的DRX周期T E可以为H×T S,其中,H为大于或等于1的整数。H与前文所述的K可以相等,即第一网络设备接受终端设备请求的DRX周期T R。H与前文所述的K也可以不相等,即第一网络设备未接受终端设备请求的DRX周期T R,则第一网络设备可以根据所述第二网络设备的信号覆盖周期T S为终端设备配置DRX周期T UE
可选的,第二消息还可以包括类型指示信息,所述类型指示信息用于指示所述终端设备的类型,所述类型可以包括低功耗终端、低复杂度终端、长时待机终端、机器类型终端、物联网终端等。
本申请实施例中,所述DRX还可以为扩展的DRX(extended DRX,eDRX)。
具体实现中,第一网络设备、第二网络设备和终端设备可以根据DRX周期的起始时刻确定发送寻呼消息或接收寻呼消息的时刻(方法一),或者,可以根据DRX周期偏移量来确定发送寻呼消息或接收寻呼消息的时刻(方法二)。
方法一:根据DRX周期的起始时刻确定发送寻呼消息或接收寻呼消息的时刻。
第一网络设备或第二网络设备可以根据指定消息(例如,下文所述的消息1、消息2)的发送时刻或接收时刻确定DRX周期的起始时刻,进而根据DRX周期T UE以及DRX周期的起始时刻确定发送寻呼消息的时刻,在该时刻发送寻呼消息。
终端设备可以根据指定消息的发送时刻或接收时刻确定DRX周期的起始时刻,进而根据DRX周期T UE以及DRX周期的起始时刻确定接收寻呼消息的时刻,在该时刻接收寻呼消息。
本申请实施例中,第一网络设备、第二网络设备、终端设备可以通过以下(a)、(b)两种方式确定DRX周期T UE的起始时刻。示例的,参考图6,第一网络设备或第二网络设备确定的DRX周期T UE的起始时刻为DRX Start_NW,终端设备确定的DRX周期T UE的起始时刻为DRX Start_UE
方式(a):第一网络设备或第二网络设备根据消息1的发送时刻确定DRX Start_NW,终端设备根据消息1的接收时刻确定DRX Start_UE
具体地,第一网络设备或第二网络设备发送消息1的时间为T Tx1,第一网络设备或第二网络设备确定消息1的传输时长为T NW1,则第一网络设备或第二网络设备确定DRX Start_WN为T Tx1或T Tx1mod T UE或T Tx1+T NW1或(T Tx1+T NW1mod T UE)。其中,“mod”为取余运算。也就是说,X mod Y代表X除以Y后的余数。
终端设备接收消息1的时间为T Rx1,终端设备确定消息1的传输时长为T UE1,则终端设备确定DRX Start_UE为T Rx1或T Rx1mod T UE或T Rx1+T UE1或(T Rx1+T UE1)mod T UE
所述消息1可以为在本次RRC连接中第二网络设备向终端设备发送的最早的消息,例如,消息1可以为随机接入响应(random access response,RAR)消息,或者,RRC建立(RRC setup)消息或RRC恢复(RRC resume)消息。或者,消息1为本次RRC 连接中第二网络设备最后向终端设备发送的消息,例如,消息1可以为RRC释放(RRC release)消息。其中,“本次RRC连接”为执行步骤501时,终端设备与第二网络设备之间建立的RRC连接。
方式(b):第一网络设备或第二网络设备根据消息2的接收时刻确定DRX Start_NW,终端设备根据消息2的发送时刻确定DRX Start_UE
第一网络设备或第二网络设备接收消息2的时间为T Rx2,第一网络设备或第二网络设备确定消息2的传输时长为T NW2,则第一网络设备或第二网络设备确定DRX Start_WN为T Rx2或T Rx2mod T UE或T Rx2+T NW2或(T Rx2+T NW2)mod T UE
终端设备发送消息2的时间为T Tx2,终端设备确定消息2的传输时长为T UE2,终端设备确定DRX Start_UE为T Tx2或T Tx2mod T UE或T Tx2+T UE2或(T Tx2+T UE2)mod T UE
所述消息2可以为在本次RRC连接中第二网络设备从终端设备最早接收的消息,例如,消息2为Preamble(随机接入前导码)或RRC请求(RRC request)消息或RRC恢复请求(RRC Resume Request)消息。或者,所述消息2为本次RRC连接中终端设备最后向第二网络设备发送的消息,例如,所述消息2为RRC Release(释放)的肯定应答。
具体实现中,第一网络设备或第二网络设备根据以上方式(a)或(b)确定DRX Start_NW,进而确定发送寻呼消息的时间t’=(DRX Start_NW+R×T UE)mod T C;终端设备根据以上方式(a)或(b)确定DRX Start_UE,进而确定接收寻呼消息的时间t’=(DRX Start_UE+R×T UE)mod T C,其中R为整数。
在一种可能的实现方式中,R可以为第一网络设备和/或第二网络设备和/或终端设备维护的计数值。R可以指示DRX周期的个数。具体地,对于终端设备,R可以用于指示从所述终端设备接收到第一消息开始,经过的DRX周期的次数,或者,R用于指示从所述终端设备发送第二消息开始,经过的DRX周期的次数。对于第一网络设备或第二网络设备,R可以用于指示从所述第一网络设备或所述第二网络设备发送第一消息开始,经过的DRX周期的次数,或者,R用于指示从所述第一网络设备或所述第二网络设备接收到第二消息开始,经过的DRX周期的次数。所述计数值R的初始值可以为0或1。
一种可能的实现方式中,当所述第一网络设备或所述第二网络设备向所述终端设备发送所述第一消息时,设置所述R为初始值。或者,当所述第一网络设备或所述第二网络设备更新DRX周期时,设置所述R为初始值;或者,当所述第一网络设备、所述第二网络设备使用新的DRX周期确定发送寻呼消息的时间,所述终端设备使用新的DRX周期确定接收寻呼消息的时间时,设置所述R为初始值。或者,当终端设备的计数值R达到终端设备维护的第一阈值,终端设备设置所述R为初始值,当第一网络设备的计数值R达到第一网络设备维护的第二阈值,第一网络设备设置所述R为初始值。第一阈值和第二阈值可以相等。
T C为***时间周期。例如,DRX Start_NW的单位可以为子帧或毫秒,T C可以为1024个***帧,即10240毫秒,或者,T C可以为1024超帧,即1024×1024×10毫秒。
本申请实施例提供的方法中,通过设置计数值R,方便网络设备确定经过的DRX 周期的数量,从而可以根据经过的DRX周期的数量计算发送寻呼消息的时间。终端设备也可以根据计数值R确定经过的DRX周期的数量,从而可以根据经过的DRX周期的数量计算接收寻呼消息的时间,实现了网络设备、终端设备的时间同步,保证寻呼可靠性。
方法二:根据DRX周期偏移量来确定发送寻呼消息或接收寻呼消息的时刻。
可选的,图5所示的方法还包括:在步骤501之前,终端设备向所述第一网络设备发送的所述第二消息可以包括第二信息。所述第二信息用于指示所述DRX周期T R或所述DRX周期T E的第一偏移量Offset1。需要说明的是,所述第一偏移量Offset1是终端设备所请求的DRX周期T R的偏移量。
具体实现中,所述第二消息可以是附着请求(attach request)消息或注册请求(registration request)消息或跟踪区更新请求(tracking area update request)消息。
可选的,所述第一消息还包括第三信息,所述第三信息用于指示所述DRX周期T UE的第二偏移量Offset2。第二偏移量Offset2是第一网络设备为终端设备配置的偏移量。第一网络设备可以接受终端设备请求的第一偏移量,即第二偏移量Offset2可以和第一偏移量Offset1相等;第一网络设备也可以为终端设备重新配置偏移量,例如,第二偏移量Offset2和第一偏移量Offset1不相等。
需要说明的是,第一网络设备接受终端设备请求的第一偏移量时,也可以不向终端设备发送Offset2,默认第一网络设备为终端设备配置的所述DRX周期的偏移量为所述终端设备请求的第一偏移量。
当第一网络设备为终端设备配置了DRX周期的偏移量(例如,本申请实施例所述的第二偏移量Offset2),第一网络设备可以向第二网络设备发送所述DRX周期T UE和所述第二偏移量Offset2,第二网络设备根据所述DRX周期T UE和所述第二偏移量Offset2确定发送寻呼消息的时间t’。第二网络设备在时间t’向终端设备发送寻呼消息。
终端设备根据所述DRX周期T UE和所述第二偏移量Offset2确定时间t’,在时间t’接收第二网络设备发送的寻呼消息。
具体地,时间t’=(Offset2+R*T UE)mod T C;或者,时间t’为满足下式的***时间t S:(t S+Offset2)mod T UE=UE-ID mod T UE
其中,t S可以为***帧号(system frame number,SFN)或超帧号(Hyper-SFN,H-SFN)或子帧号(sub-frame,SF),UE-ID为UE标识或根据UE标识生成的。
一种可能的实现方式中,当第一网络设备接受了终端设备请求的第一偏移量Offset1,可以认为Offset2等于Offset1,第二网络设备可以根据所述DRX周期T UE和所述第一偏移量Offset1确定发送寻呼消息的时间t’,终端设备可以根据所述DRX周期T UE和所述第一偏移量Offset1确定接收寻呼消息的时间t’。
具体地,所述时间t’=(Offset1+R*T UE)mod T C。或者,所述时间t’为满足下式的***时间t S:(t S+Offset1)mod T UE=UE-ID mod T UE
需要说明的是,上述Offset1和Offset2可以以***帧或超帧或子帧为单位。
实施例二
本申请实施例还提供一种寻呼方法,终端设备可以根据基站的轨道周期向AMF请求DRX周期,终端设备请求的DRX周期是基站轨道周期的整数倍。根据终端设备 的请求,AMF为终端设备配置的DRX周期是基站轨道周期的整数倍,可以使得终端设备在同一基站下唤醒,减少终端设备读取***消息的功耗。
以下结合具体示例详细介绍本申请实施例提供的寻呼方法,参考图7,所述方法包括以下步骤:
701、第二网络设备向终端设备发送所述第二网络设备的轨道周期T O
需要说明的是,所述第二网络设备为所述终端设备提供信号覆盖,例如,第二网络设备为图1所示的网络设备100,一种可能的实现方式中,第二网络设备为基站。所述T O可以认为是第二网络设备的信号覆盖周期T S
在一种可能的实现方式中,第二网络设备通过***消息或专用信令向所述终端设备发送T O。可以理解的是,所述T O包含于***消息或专用信令中。
702、终端设备向第一网络设备发送第二消息,所述第二消息包括终端设备请求的DRX周期T R
其中,第一网络设备可以是核心网设备,终端设备需要通过基站与核心网设备进行通信。例如,第一网络设备为图1所示网络设备101,一种可能的实现方式中,第一网络设备为AMF。即终端设备向第二网络设备发送所述第二消息,第二网络设备可以向第一网络设备转发所述第二消息。所述第二消息可以用于请求注册到所述第一网络设备。
需要说明的是,终端设备请求的DRX周期T R可以为轨道周期T O的整数倍。例如,T R=T O×H,H为大于或等于1的整数。
在一种可能的实现方式中,第二消息可以为附着请求(attach request)消息或注册请求(registration request)消息或跟踪区更新请求(tracking area update request)消息。
可选地,第二消息还可以包括类型指示信息,所述类型指示信息用于指示所述终端设备的类型,所述类型可以包括低功耗终端、低复杂度终端、长时待机终端、机器类型终端、物联网终端等。
可选地,所述第二消息还可以包括第一信息,所述第一信息用于指示所述终端设备的能力,可以参考实施例一中对于第一信息的定义,此处不再赘述。
703、第一网络设备向终端设备发送第一消息,所述第一消息包括所述第一网络设备为终端设备配置的DRX周期T UE
需要说明的是,第一网络设备为终端设备配置的DRX周期T UE可以为轨道周期T O的整数倍。例如,T UE=K×T O,K为大于或等于1的整数,K与H可以相等,也可以不相等。
在一种可能的实现方式中,所述第一消息可以为附着接受(attach accept)消息或注册接受(registration accept)消息或跟踪区更新接受(tracking area update accept)消息。
可选的,所述第一消息还可以包括第一指示信息,所述第一指示信息用于指示所述第一网络设备接受所述终端设备请求的DRX周期T R。在此实现方式中,所述第一消息可以不包括T UE,终端设备确定T UE等于T R
可选地,所述第一指示信息可以为隐式指示,即终端设备收到第一消息则表示第二网络设备接受所述终端设备请求的DRX周期。
704、第一网络设备向第二网络设备发送第三消息,所述第三消息包括所述终端设备对应的T UE和所述终端设备的标识。
需要说明的是,T UE是第一网络设备为终端设备配置的DRX周期的时长。当第一网络设备和第二网络设备是同一个设备时,例如,第一网络设备和第二网络设备是同一个基站,可以省略步骤704,直接执行步骤705。
705、第二网络设备向所述终端设备发送寻呼消息,所述寻呼消息包括所述终端设备的标识。
具体实现中,第二网络设备可以根据T UE发送寻呼消息。示例的,第二网络设备在DRX Start_NW启动定时器Timer NW,其中Timer NW的时长为T UE,DRX Start_NW为第二网络设备确定的DRX周期的起始时刻。
一种可能的实现方式中,第二网络设备在Timer NW超时时发送所述寻呼消息,当Timer NW超时,第二网络设备重启Timer NW
需要说明的是,DRX Start_NW的具体实现参考前文对图5所示实施例的详细描述,在此不做赘述。
此外,第二网络设备在Timer NW超时时发送寻呼消息的时间为t’,t’的具体实现参考前文对图5所示实施例的详细描述,示例的,第二网络设备确定发送寻呼消息的时间t’=(DRX Start_NW+R×T UE)mod T C
或者,第二网络设备根据第一网络设备为终端设备的DRX周期偏移量(即本申请实施例一所述的第二偏移量Offset2)确定发送寻呼消息的时刻t’。
示例的,t’=(Offset2+R*T UE)mod T C;或者,时间t’为满足下式的***时间t S:(t S+Offset2)mod T UE=UE-ID mod T UE,详细描述见实施例一。
706、终端设备根据T UE接收第二网络设备发送的寻呼消息。
具体实现中,终端设备在DRX Start_UE启动定时器Timer UE,Timer UE的时长为T UE,DRX Start_UE为终端设备确定的DRX周期的起始时刻。
一种可能的实现方式中,终端设备在Timer UE超时时接收第二网络设备发送的寻呼消息,并重启Timer UE
需要说明的是,DRX Start_UE的具体实现参考前文对图5所示实施例的详细描述,在此不做赘述。
终端设备在Timer UE超时时接收寻呼消息的时间为t’,t’的具体实现参考前文对图5所示实施例的详细描述。示例的,终端设备确定接收寻呼消息的时间t’=(DRX Start_UE+R×T UE)mod T C,详细描述见实施例一。
或者,终端设备根据DRX周期偏移量(即本申请实施例所述的第二偏移量Offset2)确定发送寻呼消息的时刻t’,详细描述见实施例一。
示例的,t’=(Offset2+R*T UE)mod T C;或者,时间t’为满足下式的***时间t S:(t S+Offset2)mod T UE=UE-ID mod T UE,详细描述见实施例一。
需要说明的是,步骤701为可选步骤,即终端设备可以预先存储了第二网络设备的T O,第二网络设备可以不向终端设备发送所述T O,终端设备可以根据预先存储的T O向第一网络设备请求DRX周期。
实施例三
本申请实施例还提供一种寻呼方法,终端设备可以根据基站的轨道周期向AMF请求DRX周期以及DRX周期的偏移量,终端设备请求的DRX周期是基站轨道周期的整数倍。根据终端设备的请求,AMF为终端设备配置的DRX周期是基站轨道周期的整数倍,AMF还为终端设备配置了DRX周期的偏移量,可以使得终端设备在同一基站下唤醒,减少终端设备读取***消息的功耗。此外,终端设备还可以根据DRX周期的偏移量确定接收寻呼消息的时刻,保证寻呼可靠性。
以下结合具体示例详细介绍本申请实施例提供的寻呼方法,如图8所示,所述方法包括以下步骤:
801、第二网络设备向终端设备发送所述第二网络设备的轨道周期T O
需要说明的是,所述第二网络设备为所述终端设备提供信号覆盖,例如,第二网络设备为图1所示的网络设备100,一种可能的实现方式中,第二网络设备为基站。步骤801的详细解释参考前文对步骤701的相关描述,在此不做赘述。所述T O可以认为是所述第二网络设备的信号覆盖周期T S
802、终端设备向第一网络设备发送第二消息,所述第二消息包括终端设备请求的DRX周期T R和终端设备请求的DRX周期T R的第一偏移量Offset1。
其中,第一网络设备可以是核心网设备,终端设备需要通过基站与核心网设备进行通信。例如,第一网络设备为图1所示网络设备101,一种可能的实现方式中,第一网络设备为AMF。
需要说明的是,步骤802的详细解释可以参考步骤702的相关说明。与步骤702不同的是,在步骤802中,第二消息除了包括终端设备请求的DRX周期T R,还包括终端设备请求的DRX周期的第一偏移量Offset1。
一种可能的实施方式中,Offset1=DRX Start_UE,其单位可以为超帧、***帧或子帧(即ms)。
可选地,第二消息还可以包括类型指示信息,所述类型指示信息用于指示所述终端设备的类型,所述类型可以包括低功耗终端、低复杂度终端、长时待机终端、机器类型终端、物联网终端等。
可选地,所述第二消息还可以包括第一信息,所述第一信息用于指示所述终端设备的能力,具体见实施例一关于第一信息的描述,此处不再赘述。
803、第一网络设备向终端设备发送第一消息,所述第一消息包括所述第一网络设备为终端设备配置的DRX周期T UE和第一网络设备为终端设备配置的DRX周期T UE的第二偏移量Offset2。
可选的,所述第一消息还可以包括第二指示信息,所述第二指示信息用于指示所述第一网络设备接受所述终端设备请求的DRX周期T R和终端设备请求的DRX周期偏的第一移量Offset1。在此实现方式中,所述第一消息可以不包括T UE和DRX周期的第二偏移量Offset2,终端设备实际用于接收寻呼消息的DRX周期T UE为T R,DRX周期的第二偏移量为Offset1。
可选地,所述第二指示信息可以为隐式指示,即终端设备收到第一消息则表示第二网络设备接受所述终端设备请求的DRX周期T R和DRX周期的第一偏移量Offset1。
可选的,Offset1与Offset2相等。
804、第一网络设备向第二网络设备发送第三消息,所述第三消息包括所述终端设备的标识、T UE和Offset2。
需要说明的是,T UE是第一网络设备为终端设备配置的DRX周期的时长,Offset2是第二网络设备为终端设备配置的DRX周期的偏移量。当第一网络设备和第二网络设备是同一个设备时,例如,第一网络设备和第二网络设备是同一个基站,可以省略步骤804,直接执行步骤805。
805、第二网络设备根据T UE和Offset2向所述终端设备发送寻呼消息,所述寻呼消息包括所述终端设备的标识。
具体见前述实施例,例如,第二网络设备发送寻呼消息的时间为t’,t’的具体实现参考前文对图5所示实施例的详细描述,示例的,时间t’=(Offset2+R*T UE)mod T C;或者,时间t’为满足下式的***时间t S:(t S+Offset2)mod T UE=UE-ID mod T UE
806、终端设备根据T UE和Offset2接收第二网络设备发送的寻呼消息。
具体见前述实施例,例如,终端设备接收寻呼消息的时间为t’,t’的具体实现参考前文对图5所示实施例的详细描述。示例的,时间t’=(Offset2+R*T UE)mod T C;或者,时间t’为满足下式的***时间t S:(t S+Offset2)mod T UE=UE-ID mod T UE
实施例四
本申请实施例还提供一种寻呼方法,终端设备与AMF之间可以交互可配置的DRX周期T Con,终端设备可以根据基站的轨道周期向AMF请求DRX周期(可以是整数倍轨道周期或T Con)。根据终端设备的请求,AMF为终端设备配置的DRX周期是与基站轨道周期整数倍最接近的T Con,可以使得终端设备尽可能在同一基站下唤醒,减少终端设备读取***消息的功耗。此外,终端设备还可以根据DRX周期的偏移量确定接收寻呼消息的时刻,保证寻呼可靠性。
本申请实施例还提供一种寻呼方法,如图9所示,所述方法包括以下步骤:
901、第一网络设备接收至少一个第二网络设备发送的轨道周期T O信息和第五信息。
其中,第一网络设备可以是核心网设备,终端设备需要通过基站与核心网设备进行通信。例如,第一网络设备为图1所示网络设备101,一种可能的实现方式中,第一网络设备为AMF。一种可能的实现方式中,第五信息包括第二网络设备的小区标识和/或第二网络设备的标识,所述轨道周期T O信息用于指示第二网络设备的信号覆盖周期T S
第一网络设备可以存储至少一个第二网络设备发送的T O和第五信息。一种可能的实现方式中,第一网络设备维护表1和/或表2,记录至少一个第二网络设备上报的T O和第五信息。
表1
网络设备标识 T O
A T OA
B T OB
... ...
表2
T O 网络设备的小区标识
T OA Cell A1,Cell A2,...
T OB Cell B1,Cell B2,...
... ...
需要说明的是,步骤901为可选步骤,第一网络设备可以预配置表1和/或表2,进而不需要通过接收来自第二网络设备的消息来确定轨道周期信息和第五信息。
902、终端设备向第一网络设备发送第二消息,所述第二消息包括终端设备请求的DRX周期T R
在一种可能的实现方式中,终端设备还可以向第一网络设备发送第三指示信息,所述第三指示信息可以用于指示以下至少一项:
(1)第二网络设备的标识;
(2)小区标识;所述小区标识可以是第二网络设备的覆盖小区的小区标识。
(3)所述终端设备请求根据轨道周期配置DRX周期;
(4)所述终端设备请求根据信号覆盖周期配置DRX周期。
具体实现中,第一网络设备根据第二网络设备的标识和表1确定轨道周期T O;第一网络设备可以根据小区标识和表2确定轨道周期T O;第一网络设备还可以根据第三指示信息明确终端设备的需求,例如,终端设备请求根据轨道周期配置DRX周期,第一网络设备可以根据轨道周期配置DRX周期;或者,终端设备请求根据信号覆盖周期配置DRX周期,第一网络设备可以根据信号覆盖周期配置DRX周期。
需要说明的是,步骤902中所述第二网络设备是为所述终端设备提供信号覆盖的网络设备。例如,第二网络设备为图1所示的网络设备100,一种可能的实现方式中,第二网络设备为基站。
可选地,第二消息还可以包括类型指示信息,所述类型指示信息用于指示所述终端设备的类型,所述类型可以包括低功耗终端、低复杂度终端、长时待机终端、机器类型终端、物联网终端等。
可选地,所述第二消息还可以包括第一信息,所述第一信息用于指示所述终端设备的能力,具体见实施例一关于第一信息的描述,此处不再赘述。
本申请中,可配置的DRX周期T Con可以理解为陆地通信场景下可配置的DRX周期,或可以理解为非卫星通信场景下可配置的DRX周期,或可以理解为非周期性提供信号覆盖的场景下可配置的DRX周期。
一种可能的实现方法中,T R为可配置的DRX周期。
一种可能的实现方法中,T R为L×T O。其中,L为大于或等于1的整数。
903、第一网络设备根据终端设备请求的DRX周期T R确定DRX周期T UE0
一种可能的实现方法中,DRX周期T UE0是第一网络设备根据终端设备请求的DRX周期T R在终端设备可配置的DRX周期T Con中选择的DRX周期。
需要说明的是,终端设备和第一网络设备支持交互可配置的DRX周期T Con,但可配置的DRX周期T Con可能与轨道周期T O不成整数倍关系。终端设备和第一网络设备可以通过交互可配置的DRX周期T Con来确定监听和发送寻呼消息时实际使用的DRX 周期T UE。示例的,第一网络设备根据终端设备请求的DRX周期T R确定可配置的DRX周期T UE0,第一网络设备向终端设备发送可配置的DRX周期T UE0,终端设备根据来自第一网络设备的T UE0确定实际使用的DRX周期T UE
一种可能的实现方法中,终端设备请求的DRX周期T R为可配置的DRX周期,则所述第一网络设备可以通过以下方法确定向终端设备发送的DRX周期T UE0
方法一:所述第一网络设备根据第三指示信息和TR确定T UE=L×T O,向所述终端设备发送T UE0,且T UE0=T UE。一种可能的实现方法中,所述第一网络设备根据第三指示信息和表1或表2,确定第二网络设备对应的T O,然后再根据T R确定T UE=L×T O,向所述终端设备发送T UE0,且T UE0=T UE。在一种可能的实现方法中,第一网络设备确定(L×T O)与T R最接近。可以理解的是,(L×T O)是与T R最接近的整数倍轨道周期。
方法二:所述第一网络设备根据第三指示信息和TR确定T UE=L×T O,向所述终端设备发送T UE0,其中,T UE0为可配置的DRX周期,且T UE0与L×T O最接近。一种可能的实现方法中,所述第一网络设备根据第三指示信息查询表1或表2,确定第二网络设备对应的T O,然后再根据T R确定T UE=L×T O,向所述终端设备发送T UE0,且T UE0与L×T O最接近。在一种可能的实现方法中,第一网络设备确定(L×T O)与T R最接近。可以理解的是,(L×T O)是与T R最接近的整数倍轨道周期。
一种可能的实现方法中,终端设备请求的DRX周期T R为L×T O,则所述第一网络设备可以通过以下方法确定向终端设备发送的DRX周期T UE0
方法一:所述第一网络设备根据第三指示信息和T R确定T UE=L×T O,向所述终端设备发送T UE0,且T UE0=T UE。一种可能的实现方法中,所述第一网络设备根据第三指示信息查询表1或表2,确定第二网络设备对应的T O,然后再根据T R确定T UE=L×T O,向所述终端设备发送T UE0,且T UE0=T UE
方法二:所述第一网络设备根据第三指示信息和T R确定T UE=L×T O,向所述终端设备发送T UE0,其中,T UE0为可配置的DRX周期,且T UE0与L×T O最接近。一种可能的实现方法中,所述第一网络设备根据第三指示信息查询表1或表2,确定第二网络设备对应的T O,然后再根据T R确定T UE=L×T O,向所述终端设备发送T UE0,且T UE0与L×T O最接近。
一种可能的实现方式中,第一网络设备可以根据第二网络设备的轨道周期T O确定终端设备的DRX周期T UE
示例的,所述第一网络设备根据所述第三指示信息查找至少一个第二网络设备对应的T O。示例的,终端设备上报的第二网络设备标识为“A”,第一网络设备查询表1或表2,可以确定第二网络设备对应的T O为T OA
904、第一网络设备向终端设备发送第一消息,所述第一消息包括所述T UE0
905、第一网络设备向第二网络设备发送第三消息,第三消息包括终端设备的标识和所述T UE
906、第二网络设备根据T UE和终端设备的标识向所述终端设备发送寻呼消息。
具体地,第二网络设备确定T UE的具体实现参考步骤903,在此不做赘述。第二网络设备还可以参考前文实施例一中所述的方式一或方式二根据T UE确定发送寻呼消 息的时刻,在此不做赘述。
907、所述终端设备根据T UE0接收所述第二网络设备发送的寻呼消息。
具体实现中,终端设备可以根据T UE0确定T UE,T UE=L×T O,其中该T UE是与T UE0最接近的整数倍轨道周期。终端设备还可以参考前文实施例一中所述的方式一或方式二根据T UE确定接收寻呼消息的时刻,在此不做赘述。
实施例一中的方法一和方法二,以及与第二消息相关的内容适用于本实施例。
图9所示的方法中,根据基站轨道周期为终端设备配置DRX周期,可以使得终端设备在同一基站下唤醒,减少终端设备读取***消息的功耗。此外,减少第二网络设备向终端设备发送T O,避免在广播消息中传输T O,以提升通信安全。
在采用对应各个功能划分各个功能模块的情况下,图10示出上述实施例中所涉及的通信装置的一种可能的结构示意图。图10所示的通信装置可以是本申请实施例所述的终端设备,也可以是终端设备中实现上述方法的部件,或者,也可以是应用于终端设备中的芯片。所述芯片可以是片上***(System-On-a-Chip,SOC)或者是具备通信功能的基带芯片等。如图10所示,通信装置包括处理单元1001以及通信单元1002。处理单元可以是一个或多个处理器,通信单元可以是收发器。
处理单元1001,用于支持终端设备执行步骤503、步骤706、步骤806以及步骤907,和/或用于本文所描述的技术的其它过程。
通信单元1002,用于支持该终端设备与其他通信装置之间的通信,例如,支持终端设备执行步骤502、步骤701~步骤703以及步骤705,步骤801~步骤803以及步骤805,步骤902,步骤904以及步骤906,和/或用于本文所描述的技术的其它过程。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
示例性的,在采用集成的单元的情况下,本申请实施例提供的通信装置的结构示意图如图11所示。在图11中,该通信装置包括:处理模块1101和通信模块1102。处理模块1101用于对通信装置的动作进行控制管理,例如,执行上述处理单元1001执行的步骤,和/或用于执行本文所描述的技术的其它过程。通信模块1102用于执行上述通信单元1002执行的步骤,支持通信装置与其他设备之间的交互,如与其他设备装置之间的交互。可选的,如图11所示,通信装置还可以包括存储模块1103,存储模块1103用于存储通信装置的程序代码和数据。
当处理模块1101为处理器,通信模块1102为收发器,存储模块1103为存储器时,通信装置为图4a所示的通信装置。
在采用对应各个功能划分各个功能模块的情况下,图12示出上述实施例中所涉及的通信装置的一种可能的结构示意图。图12所示的通信装置可以是本申请实施例所述的第一网络设备或第二网络设备,也可以是第一网络设备或第二网络设备中实现上述方法的部件,或者,也可以是应用于第一网络设备或第二网络设备中的芯片。所述芯片可以是片上***(System-On-a-Chip,SOC)或者是具备通信功能的基带芯片等。如图12所示,通信装置包括处理单元1201以及通信单元1202。处理单元1201可以是一个或多个处理器,通信单元1202可以是收发器。
处理单元1201,用于支持第一网络设备执行步骤501,步骤903,支持第二网络 设备生成寻呼消息,和/或用于本文所描述的技术的其它过程。
通信单元1202,用于支持第一网络设备与其他通信装置之间的通信,例如,支持第一网络设备执行步骤502,步骤701~步骤704,步骤801~步骤804,步骤901,步骤902,步骤904,步骤905,支持第二网络设备执行步骤705,步骤805以及步骤906,和/或用于本文所描述的技术的其它过程。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
示例性的,在采用集成的单元的情况下,本申请实施例提供的通信装置的结构示意图如图13所示。在图13中,该通信装置包括:处理模块1301和通信模块1302。处理模块1301用于对通信装置的动作进行控制管理,例如,执行上述处理单元1201执行的步骤,和/或用于执行本文所描述的技术的其它过程。通信模块1302用于执行上述通信单元1202执行的步骤,支持通信装置与其他设备之间的交互,如与其他第一网络设备装置之间的交互。可选的,如图13所示,通信装置还可以包括存储模块1303,存储模块1303用于存储通信装置的程序代码和数据。
当处理模块1301为处理器,通信模块1302为收发器,存储模块1303为存储器时,通信装置为图4b所示的通信装置。
本申请实施例提供一种计算机可读存储介质,计算机可读存储介质中存储有指令;指令用于执行如图5或图7~图9所示的方法。
本申请实施例提供一种包括指令的计算机程序产品,当其在通信装置上运行时,使得通信装置执行如图5或图7~图9所示的方法。
本申请实施例一种无线通信装置,包括:无线通信装置中存储有指令;当无线通信装置在图4a、图4b、图10至图13所示的通信装置上运行时,使得通信装置执行如图5或图7~图9所示的方法。该无线通信装置可以为芯片。
本申请实施例还提供一种通信***,包括:终端设备、第一网络设备以及第二网络设备。示例性的,终端设备可以是图4a、图10、图11所示的通信装置,第一网络设备或第二网络设备可以是图4b、图12、图13所示的通信装置。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将数据库访问装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
本申请实施例中的处理器,可以包括但不限于以下至少一种:中央处理单元(central processing unit,CPU)、微处理器、数字信号处理器(DSP)、微控制器(microcontroller unit,MCU)、或人工智能处理器等各类运行软件的计算设备,每种计算设备可包括一个或多个用于执行软件指令以进行运算或处理的核。该处理器可以是个单独的半导体芯片,也可以跟其他电路一起集成为一个半导体芯片,例如,可以跟其他电路(如编解码电路、硬件加速电路或各种总线和接口电路)构成一个SoC(片上***),或者也可以作为一个ASIC的内置处理器集成在所述ASIC当中,该集成了处理器的ASIC可以单独封装或者也可以跟其他电路封装在一起。该处理器除了包括用于执行软件指令以进行运算或处理的核外,还可进一步包括必要的硬件加速器,如 现场可编程门阵列(field programmable gate array,FPGA)、PLD(可编程逻辑器件)、或者实现专用逻辑运算的逻辑电路。
本申请实施例中的存储器,可以包括如下至少一种类型:只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically erasable programmabler-only memory,EEPROM)。在某些场景下,存储器还可以是只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
本申请中,“至少一个”是指一个或者多个。“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
在本申请所提供的几个实施例中,应该理解到,所揭露的数据库访问装置和方法,可以通过其它的方式实现。例如,以上所描述的数据库访问装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,数据库访问装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备 (可以是单片机,芯片等)或处理器执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (42)

  1. 一种寻呼方法,其特征在于,所述方法适用于终端设备,包括:
    接收来自第一网络设备的第一消息,所述第一消息包括非连续接收DRX周期信息,所述DRX周期信息是根据信号覆盖周期信息确定的,所述DRX周期信息用于配置所述终端设备接收寻呼消息的DRX周期T UE,所述信号覆盖周期信息用于指示第二网络设备的信号覆盖周期;
    根据所述DRX周期信息接收来自所述第二网络设备的寻呼消息。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    向所述第一网络设备发送第二消息,所述第二消息包括以下至少一种:
    第一时长、第一信息、第二信息;
    所述第一时长是根据所述信号覆盖周期确定的,用于指示所述终端设备预期的DRX周期T E
    所述第一信息用于指示所述终端设备支持根据所述信号覆盖周期确定的DRX周期T UE
    所述第二信息用于指示所述DRX周期T E的第一偏移量Offset1。
  3. 根据权利要求1或2所述的方法,其特征在于,所述DRX周期T UE为所述信号覆盖周期的整数倍。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一消息还包括第三信息,所述第三信息用于指示所述DRX周期T UE的第二偏移量Offset2。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    根据所述DRX周期T UE和所述第二偏移量Offset2确定接收寻呼消息的时间t’。
  6. 根据权利要求5所述的方法,其特征在于,
    所述t’=(Offset2+R*T UE)mod T C,其中,R为正整数,T C为***时间周期;或者,
    所述t’为满足下式的***时间t S,(t S+Offset2)mod T UE=UE-ID mod T UE,其中,UE-ID为UE标识或根据UE标识生成的。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    当所述终端设备从所述第一网络设备接收到所述第一消息时,设置所述R为0或1,或者,
    当所述R达到第一阈值时,设置所述R为0或1,所述第一阈值为预定义的或者预配置的。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述第二网络设备的第四信息,所述第四信息用于指示所述信号覆盖周期。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述第一网络设备和所述第二网络设备是同一个网络设备。
  10. 一种寻呼方法,其特征在于,所述方法适用于第一网络设备,包括:
    根据信号覆盖周期信息确定DRX周期信息;所述DRX周期信息用于配置终端设备接收寻呼消息的DRX周期T UE,所述信号覆盖周期信息用于指示第二网络设备的信 号覆盖周期;
    向所述终端设备发送第一消息,所述第一消息包括所述DRX周期信息。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    接收来自所述终端设备的第二消息,所述第二消息包括以下至少一种:
    第一时长、第一信息、第二信息;
    所述第一时长是根据所述信号覆盖周期确定的,用于指示所述终端设备预期的DRX周期T E
    所述第一信息用于指示所述终端设备支持配置根据所述信号覆盖周期确定的DRX周期;
    所述第二信息用于指示所述DRX周期T E的第一偏移量Offset1。
  12. 根据权利要求10或11所述的方法,其特征在于,所述DRX周期T UE为所述信号覆盖周期的整数倍。
  13. 根据权利要求10-12任一项所述的方法,其特征在于,所述第一消息还包括第三信息,所述第三信息用于指示所述DRX周期T UE的第二偏移量Offset2。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    向所述第二网络设备发送所述第二偏移量Offset2。
  15. 根据权利要求14所述的方法,其特征在于,
    所述T UE和所述Offset2用于所述第二网络设备确定发送寻呼消息的时间t’;
    所述t’=(Offset2+R*T UE)mod T C,其中,R为正整数,T C为***时间周期;或者,
    所述t’为满足下式的***时间t S,(t S+Offset2)mod T UE=UE-ID mod T UE,其中,UE-ID为用户设备UE标识或根据UE标识生成的。
  16. 根据权利要求15所述的方法,所述方法还包括:
    当所述第一网络设备向所述终端设备发送所述第一消息时,所述第一网络设备设置所述R为0或1,或者,
    当所述R达到第二阈值时,所述第一网络设备设置所述R为0或1;所述第二阈值为预定义的或者预配置的。
  17. 根据权利要求10-16任一项所述的方法,其特征在于,所述方法还包括:
    向所述第二网络设备发送所述DRX周期信息。
  18. 根据权利要求10-17任一项所述的方法,其特征在于,所述第一网络设备和所述第二网络设备是同一个网络设备。
  19. 一种寻呼方法,其特征在于,所述方法适用于第二网络设备,包括:
    接收来自第一网络设备的DRX周期信息,所述DRX周期信息用于配置终端设备接收寻呼消息的DRX周期T UE,所述DRX周期T UE是根据所述第二网络设备的信号覆盖周期确定的;
    根据所述DRX周期T UE向所述终端设备发送寻呼消息。
  20. 根据权利要求19所述的方法,其特征在于,所述DRX周期T UE为所述信号覆盖周期的整数倍。
  21. 根据权利要求19或20所述的方法,其特征在于,所述方法还包括:
    从所述第一网络设备接收第二偏移量Offset2,所述Offset2为所述DRX周期T UE的第二偏移量。
  22. 根据权利要求21所述的方法,其特征在于,
    所述T UE和所述Offset2用于所述第二网络设备确定发送寻呼消息的时间t’;
    所述t’=(Offset2+R*T UE)mod T C,其中,R为正整数,T C为***时间周期;或者,
    所述t’为满足下式的***时间t S,(t S+Offset2)mod T UE=UE-ID mod T UE,其中,UE-ID为用户设备UE标识或根据UE标识生成的。
  23. 根据权利要求19-22任一项所述的方法,其特征在于,所述方法还包括:
    从所述第一网络设备接收所述DRX周期信息。
  24. 根据权利要求19-23任一项所述的方法,其特征在于,所述第一网络设备和所述第二网络设备是同一个网络设备。
  25. 一种通信装置,其特征在于,包括:
    通信单元,用于接收来自第一网络设备的第一消息,所述第一消息包括非连续接收DRX周期信息,所述DRX周期信息是根据第二网络设备的信号覆盖周期信息确定的,所述DRX周期信息用于配置终端设备接收寻呼消息的DRX周期T UE,所述信号覆盖周期信息用于指示所述第二网络设备的信号覆盖周期;
    处理单元,用于根据所述DRX周期信息接收来自所述第二网络设备的寻呼消息。
  26. 根据权利要求25所述的通信装置,其特征在于,所述通信单元还用于,向所述第一网络设备发送第二消息,所述第二消息包括以下至少一种:
    第一时长、第一信息、第二信息;
    所述第一时长是根据所述信号覆盖周期确定的,用于指示所述终端设备预期的DRX周期T E
    所述第一信息用于指示所述终端设备支持根据所述信号覆盖周期确定的DRX周期T UE
    所述第二信息用于指示所述DRX周期T E的第一偏移量Offset1。
  27. 根据权利要求25或26所述的通信装置,其特征在于,所述DRX周期T UE为所述信号覆盖周期的整数倍。
  28. 根据权利要求25-27任一项所述的通信装置,其特征在于,所述第一消息还包括第三信息,所述第三信息用于指示所述DRX周期T UE的第二偏移量Offset2。
  29. 根据权利要求28所述的通信装置,其特征在于,所述处理单元还用于,
    根据所述DRX周期T UE和所述第二偏移量Offset2确定接收寻呼消息的时间t’。
  30. 根据权利要求29所述的通信装置,其特征在于,
    所述t’=(Offset2+R*T UE)mod T C,其中,R为正整数,T C为***时间周期;或者,
    所述t’为满足下式的***时间t S,(t S+Offset2)mod T UE=UE-ID mod T UE,其中,UE-ID为UE标识或根据UE标识生成的。
  31. 根据权利要求30所述的通信装置,其特征在于,所述处理单元还用于,当所述通信单元从所述第一网络设备接收到所述第一消息时,设置所述R为0或1,或者,
    当所述R达到第一阈值时,设置所述R为0或1,所述第一阈值为预定义的或者预配置的。
  32. 根据权利要求25-31任一项所述的通信装置,其特征在于,所述通信单元还用于,接收来自所述第二网络设备的第四信息,所述第四信息用于指示所述信号覆盖周期。
  33. 根据权利要求25-32任一项所述的通信装置,其特征在于,所述第一网络设备和所述第二网络设备是同一个网络设备。
  34. 一种通信装置,其特征在于,包括:
    处理单元,用于根据第二网络设备的信号覆盖周期信息确定终端设备的DRX周期信息;所述DRX周期信息用于配置所述终端设备接收寻呼消息的DRX周期T UE,所述信号覆盖周期信息用于指示所述第二网络设备的信号覆盖周期;
    通信单元,用于向所述终端设备发送第一消息,所述第一消息包括所述DRX周期信息。
  35. 根据权利要求34所述的通信装置,其特征在于,所述通信单元还用于,接收来自所述终端设备的第二消息,所述第二消息包括以下至少一种:
    第一时长、第一信息、第二信息;
    所述第一时长是根据所述信号覆盖周期确定的,用于指示所述终端设备预期的DRX周期T E
    所述第一信息用于指示所述终端设备支持配置根据所述信号覆盖周期确定的DRX周期;
    所述第二信息用于指示所述DRX周期T E的第一偏移量Offset1。
  36. 根据权利要求34或35所述的通信装置,其特征在于,所述DRX周期T UE为所述信号覆盖周期的整数倍。
  37. 根据权利要求34-36任一项所述的通信装置,其特征在于,所述第一消息还包括第三信息,所述第三信息用于指示所述DRX周期T UE的第二偏移量Offset2。
  38. 根据权利要求37所述的通信装置,其特征在于,所述通信单元还用于,向所述第二网络设备发送所述第二偏移量Offset2。
  39. 根据权利要求38所述的通信装置,其特征在于,
    所述T UE和所述Offset2用于所述第二网络设备确定发送寻呼消息的时间t’;
    所述t’=(Offset2+R*T UE)mod T C,其中,R为正整数,T C为***时间周期;或者,
    所述t’为满足下式的***时间t S,(t S+Offset2)mod T UE=UE-ID mod T UE,其中,UE-ID为用户设备UE标识或根据UE标识生成的。
  40. 根据权利要求39所述的通信装置,所述处理单元还用于,当所述通信单元向所述终端设备发送所述第一消息时,设置所述R为0或1,或者,
    当所述R达到第二阈值时,设置所述R为0或1;所述第二阈值为预定义的或者预配置的。
  41. 根据权利要求34-40任一项所述的通信装置,其特征在于,所述通信单元还用于,向所述第二网络设备发送所述DRX周期T UE
  42. 一种计算机可读存储介质,包括程序或指令,当所述程序或指令被处理器运行时,如权利要求1至24中任意一项所述的方法被执行。
PCT/CN2020/073069 2020-01-19 2020-01-19 一种寻呼方法及通信装置 WO2021142854A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/073069 WO2021142854A1 (zh) 2020-01-19 2020-01-19 一种寻呼方法及通信装置
CN202080093107.9A CN114946234B (zh) 2020-01-19 2020-01-19 一种寻呼方法及通信装置
EP20913124.2A EP4080952A4 (en) 2020-01-19 2020-01-19 PAGING METHOD AND COMMUNICATION DEVICE
US17/867,372 US20220353844A1 (en) 2020-01-19 2022-07-18 Paging Method and Communication Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/073069 WO2021142854A1 (zh) 2020-01-19 2020-01-19 一种寻呼方法及通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/867,372 Continuation US20220353844A1 (en) 2020-01-19 2022-07-18 Paging Method and Communication Apparatus

Publications (1)

Publication Number Publication Date
WO2021142854A1 true WO2021142854A1 (zh) 2021-07-22

Family

ID=76863419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073069 WO2021142854A1 (zh) 2020-01-19 2020-01-19 一种寻呼方法及通信装置

Country Status (4)

Country Link
US (1) US20220353844A1 (zh)
EP (1) EP4080952A4 (zh)
CN (1) CN114946234B (zh)
WO (1) WO2021142854A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023125960A1 (zh) * 2021-12-31 2023-07-06 ***通信有限公司研究院 操作确定方法、信息发送方法、终端设备及网络设备
WO2024059981A1 (zh) * 2022-09-19 2024-03-28 北京小米移动软件有限公司 一种寻呼方法/装置/设备及存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115968018B (zh) * 2022-12-09 2023-10-27 深圳市领创星通科技有限公司 一种终端节电方法、终端设备和存储介质
CN118283650A (zh) * 2022-12-30 2024-07-02 华为技术有限公司 通信方法和通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105191356A (zh) * 2013-10-12 2015-12-23 华为技术有限公司 寻呼方法和装置
CN109699051A (zh) * 2017-10-21 2019-04-30 上海朗帛通信技术有限公司 一种无线通信的用户设备、网络设备中的方法和装置
CN110099394A (zh) * 2018-01-29 2019-08-06 展讯通信(上海)有限公司 异频测量及异***测量的实现方法、装置及用户设备
US20190394770A1 (en) * 2018-06-20 2019-12-26 Qualcomm Incorporated Upstream timing control mechanisms for non-terrestrial networks

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102917444B (zh) * 2011-08-01 2016-08-17 华为技术有限公司 空闲状态下非连续接收的方法及装置
CN109923912B (zh) * 2017-01-25 2022-02-01 华为技术有限公司 一种传输寻呼消息的方法及装置
WO2019028777A1 (zh) * 2017-08-10 2019-02-14 Oppo广东移动通信有限公司 寻呼方法、终端设备和网络设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105191356A (zh) * 2013-10-12 2015-12-23 华为技术有限公司 寻呼方法和装置
CN109699051A (zh) * 2017-10-21 2019-04-30 上海朗帛通信技术有限公司 一种无线通信的用户设备、网络设备中的方法和装置
CN110099394A (zh) * 2018-01-29 2019-08-06 展讯通信(上海)有限公司 异频测量及异***测量的实现方法、装置及用户设备
US20190394770A1 (en) * 2018-06-20 2019-12-26 Qualcomm Incorporated Upstream timing control mechanisms for non-terrestrial networks

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4080952A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023125960A1 (zh) * 2021-12-31 2023-07-06 ***通信有限公司研究院 操作确定方法、信息发送方法、终端设备及网络设备
WO2024059981A1 (zh) * 2022-09-19 2024-03-28 北京小米移动软件有限公司 一种寻呼方法/装置/设备及存储介质

Also Published As

Publication number Publication date
US20220353844A1 (en) 2022-11-03
EP4080952A1 (en) 2022-10-26
CN114946234B (zh) 2024-06-25
EP4080952A4 (en) 2023-01-25
CN114946234A (zh) 2022-08-26

Similar Documents

Publication Publication Date Title
WO2021142854A1 (zh) 一种寻呼方法及通信装置
CN112586042B (zh) 一种监测方法及设备
US20210212013A1 (en) Communications method and apparatus
CN109547174B (zh) 一种时间配置的方法、网络设备及ue
CN110958622B (zh) 一种信息发送和接收方法及装置、终端和基站
JP7458412B2 (ja) 装置及びその無線通信の方法
WO2021196099A1 (zh) 终端定位方法及装置
WO2021208802A1 (zh) ***信息传输方法、设备及***
WO2020143722A1 (zh) 一种资源指示方法及装置
WO2022188751A1 (zh) 通信方法及装置
WO2022042319A1 (zh) 一种非地面网络的通信方法及通信装置
CN115086987A (zh) 通信方法及装置
WO2024032287A1 (zh) 寻呼方法和通信装置
WO2022127777A1 (zh) 一种通信方法及通信装置
US20230232314A1 (en) System information acquisition for reduced capability nr devices
EP4412335A1 (en) Sidelink communication method, communication apparatus and communication system
WO2024016152A1 (zh) 寻呼方法与通信装置
EP4274315A1 (en) Wireless communication method, terminal device and network device
WO2024152282A1 (zh) 通信方法及通信装置
WO2023283778A1 (zh) 终端设备的控制方法、设备及存储介质
WO2024092653A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023147705A1 (en) Methods, devices, and computer readable medium for communication
CN118383060A (zh) 控制方法、终端设备和网络设备
CN115460675A (zh) 通信方法和通信装置
CN118201041A (zh) 一种通信方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913124

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020913124

Country of ref document: EP

Effective date: 20220721

NENP Non-entry into the national phase

Ref country code: DE