WO2021109323A1 - 可逆动态大孔弹性体聚合物材料及其制备方法和应用 - Google Patents

可逆动态大孔弹性体聚合物材料及其制备方法和应用 Download PDF

Info

Publication number
WO2021109323A1
WO2021109323A1 PCT/CN2020/072562 CN2020072562W WO2021109323A1 WO 2021109323 A1 WO2021109323 A1 WO 2021109323A1 CN 2020072562 W CN2020072562 W CN 2020072562W WO 2021109323 A1 WO2021109323 A1 WO 2021109323A1
Authority
WO
WIPO (PCT)
Prior art keywords
macroporous
polymer material
precursor
reversible dynamic
elastomeric polymer
Prior art date
Application number
PCT/CN2020/072562
Other languages
English (en)
French (fr)
Inventor
崔家喜
王宏
Original Assignee
成都玉瓶科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都玉瓶科技有限公司 filed Critical 成都玉瓶科技有限公司
Publication of WO2021109323A1 publication Critical patent/WO2021109323A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/20Esters of polyhydric alcohols or phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/142Compounds containing oxygen but no halogen atom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/05Elimination by evaporation or heat degradation of a liquid phase
    • C08J2201/0502Elimination by evaporation or heat degradation of a liquid phase the liquid phase being organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/14Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes

Definitions

  • the invention relates to the technical field of polymer materials, in particular to a reversible dynamic macroporous elastomer polymer material and a preparation method and application thereof.
  • Macroporous polymers are a kind of materials with interpenetrating or closed pore structures composed of polymers as the base material, and the main cavity diameter is above 50 nanometers (according to the international IUPAC standard). Macroporous polymers can combine the advantages of both macroporous materials and polymers. In addition to the large surface area and adjustable pore size of the macroporous material itself, it also has high mechanical strength, good thermal stability, and good solvent resistance. , Easy processing, low raw material prices, etc., has been widely used in catalysis, energy storage, sound insulation, gas separation, water treatment, drug delivery and other fields.
  • the diversity of polymer synthesis methods can provide a wealth of synthesis paths to construct pore structures with different properties, and can provide a wider range of applications for macroporous materials, such as anti-fouling and drag reduction interfaces, reflective coatings, fluorescence detection, Energy transfer, liquid storage, tissue engineering scaffolds, cell culture and other new application scenarios, so it is considered to be one of the most promising porous materials.
  • macroporous materials such as anti-fouling and drag reduction interfaces, reflective coatings, fluorescence detection, Energy transfer, liquid storage, tissue engineering scaffolds, cell culture and other new application scenarios, so it is considered to be one of the most promising porous materials.
  • phase separation polymerization free-drying, gas-blowing, and templating methods, etc. .
  • the phase separation polymerization method is the earliest method used to prepare porous polymers. Its mechanism is that the diluent that is compatible with the precursor phase separates during the polymerization or cross-linking process, and the diluent aggregates domains are formed in situ as a cavity template. , These areas can be removed after polymerization to obtain a permanent porous structure. Various polymerizable monomers and crosslinkable polymer precursors can be prepared by this method to obtain macroporous polymers.
  • the diluent can be a solvent, a non-solvent (such as supercritical carbon dioxide), or an inert polymer.
  • the suspension polymerization method commonly used to prepare porous polymer beads belongs to this method. This method requires the polymerization/crosslinking kinetics to match the phase separation kinetics, and the obtained pore size distribution is relatively broad, which often involves a relatively complicated diluent removal process.
  • the freeze-drying method is a method that has emerged in recent years. It mainly uses the water crystals in the freeze-drying process to drive the irreversible aggregation of the polymer in the system, thereby obtaining a porous polymer after removing the solvent. This method consumes a lot of energy, and the mechanical properties of the macroporous polymer obtained are relatively poor.
  • the foaming method is a method that uses foaming agents to generate bubbles as a template during the curing of the material, and is widely used in industries such as artificial leather and sponges.
  • the template method is a method of preparing a porous polymer using a porogen that is insoluble in a polymer precursor (a mixed precursor of a monomer and a crosslinking agent or a crosslinkable polymer precursor) as a cavity template. Generally, it includes three steps: firstly disperse the porogen into the precursor; then initiate polymerization or crosslinking to form a continuous polymer phase; finally, leaching and eluting the porogen to obtain a macroporous material. This method is suitable for various monomers and polymers.
  • the cavity structure and pore size can be precisely controlled by the template (which can be small molecules, micro-nano particles or continuous frameworks), which is convenient for preparing large-area samples; but the process is relatively complicated, especially The leaching process is time-consuming, high-cost, and easy to cause material deformation.
  • the template which can be small molecules, micro-nano particles or continuous frameworks
  • the current preparation methods of macroporous polymers often involve volatile organic solvents or consume large amounts of energy or time, and the prepared macroporous structures are often permanent, and generally cannot change their topology under external stimuli. structure.
  • the properties of macroporous polymers are usually determined by the material composition and pore structure.
  • the current strategy for preparing smart macroporous polymers is mainly to select stimulus-responsive polymers as the base material or modify the pore surface through responsive molecules to achieve the purpose of changing the material properties; and to adjust the macroporous polymer materials by changing the pore topology
  • Controlling the opening and closing of pores is one of the most effective ways to adjust the performance of porous materials.
  • the current method is to modify the responsive molecules in the pores, through external stimuli, such as light, pH, salt, recognition molecules, electrical signals, etc., to change the topological structure and properties of these molecules to prevent the entry and output of specific substances.
  • So as to achieve the internal performance of the switch material such as catalytic properties, transport capacity, optical performance and other aspects.
  • these changes at the molecular level can only be used in systems with relatively small pore sizes (a few nanometers), and it is difficult to open up the macroporous structure.
  • the purpose of the present invention is to provide a reversible dynamic macroporous elastomeric polymer material and its preparation method and application.
  • the technical solutions of the present invention to solve the above technical problems are as follows:
  • a method for preparing a reversible dynamic macroporous elastomeric polymer material includes the following steps:
  • the template liquid is a volatile solution that is incompatible with the mixed precursor, or is a volatile solution that is incompatible with the crosslinkable polymer precursor;
  • the curing precursor is applied to the substrate or mold for curing to prepare a reversible dynamic macroporous elastomeric polymer material.
  • the polymerizable monomer of the present invention refers to a small molecule monomer that can undergo polymerization under the action of a crosslinking agent.
  • the cross-linkable polymer precursor of the present invention refers to a polymer capable of forming a covalent bond cross-link, and a cross-linking catalyst, a free radical initiator, an oil-soluble organic pigment and a surfactant can be optionally added.
  • polymerizable monomers or crosslinkable polymer precursors are used as raw materials to mix with the template liquid.
  • the template solution is a volatile solution that is incompatible with the polymerizable monomers or crosslinkable polymer precursors.
  • the template liquid and the precursor are used (Including polymerizable monomers and cross-linkable polymer precursors, the same applies below) incompatibility so as to form a template for the formation of pore structure during the polymerization and cross-linking process.
  • the template solution due to the volatility of the template solution, it can During the curing process, it volatilizes, so that the space originally occupied by the template liquid forms a pore structure after volatilization, thereby obtaining a porous and macroporous elastomeric polymer.
  • the pore structure collapses.
  • the original pore structure supported by the template liquid becomes a collapsed solid state under the action of gravity, but the pores actually exist, and when the porous elastomer receives external stimuli At this time, the collapsed pores are restored to open, thereby realizing the reversible conversion between the solid state and the porous state.
  • the cross-linking polymerization of the precursor itself and the volatilization of the template liquid can be controlled by means to adjust and control the pore structure, thereby obtaining reversible dynamic macropores with different properties.
  • Elastomer polymer material
  • the template liquid of the present invention can be randomly distributed in the solidified precursor in the form of countless small droplets, or embedded in the solidified precursor in a specific shape (fiber, pattern or three-dimensional array).
  • the specific form is based on the template liquid and the precursor.
  • the way the body is mixed is related. For example, by stirring and mixing, the template liquid is dispersed into numerous small droplets, or by injection, the template liquid is formed into a fibrous liquid in the solidified precursor.
  • the method of applying the cured precursor to the substrate or mold in the present invention includes, but is not limited to, pouring, brushing, spraying, and spin coating processes.
  • the curing precursor can be prepared directly on the base or mold without pre-mixing, that is, a mixed precursor of a polymerizable monomer and a crosslinking agent or a crosslinkable polymer precursor. It is applied to the substrate or in the film tool, and then the template liquid is introduced to obtain a solidified precursor.
  • Those skilled in the art can select a suitable method according to the performance requirements of the required porous elastomer material.
  • the localization and patterning of the porous structure can be realized by the method of sequential casting. For example, first cast a mixed precursor containing a polymerizable monomer and a crosslinking agent or a crosslinkable polymer precursor on the film tool to obtain a specific model, and then cast a mixture of the corresponding precursor and water in the blank area, and the obtained product is completely cured. A whole material has a porous structure only in specific areas after stimulation.
  • a mixed precursor containing a polymerizable monomer and a cross-linking agent or a cross-linkable polymer precursor can be cast and cured in a film tool to obtain a reverse elastomer film tool, and the corresponding precursor and water can be poured into the film tool.
  • the mixed precursor after mixing is cured to obtain a transparent elastomer material. Under external stimuli, the responsive part of this material will become porous, showing a specific pattern macroscopically.
  • a cavity structure with a specific geometric structure can be prepared in combination with a printing method, or only one cavity can be prepared.
  • a viscous mixed precursor containing polymerizable monomers and cross-linking agents or cross-linkable polymer precursors an aqueous solution is injected to print graphics, and after curing, a transparent solid polymer material is obtained, which can become porous under external stimuli To show the printed pattern.
  • a channel that opens and closes under external stimuli can be obtained.
  • the organic silica gel precursor is poured on the substrate, and the polyvinyl alcohol aqueous solution is injected into the viscous precursor through the needle to form a fibrous water template that runs through the precursor. After curing, a transparent silicone elastomer is obtained. This elastomer is stimulated by the outside world. A microchannel will appear at the water template.
  • the size of the droplets in the obtained emulsion can be adjusted by the stirring time of the mixture of the polymerizable or crosslinkable precursor and the template solution, thereby adjusting the pore size of the obtained porous elastomeric polymer material.
  • the stirring time of the mixture of the crosslinkable polymer precursor and water is 5-50 minutes, which corresponds to a droplet size of 30-1 microns.
  • the present invention can prepare anisotropic materials by stretching the sample orientation sample during the curing process.
  • the crosslinkable polymer precursor is mixed with an aqueous solution of polyvinyl alcohol to obtain an emulsion, and then pre-cured for 5-30 minutes under a sealed condition of 50-90°C.
  • the obtained elastomer is stretched to different degrees, for example, 110-250% of the original sample, volatilized and finally solidified under open conditions, to obtain an anisotropic macroporous polymer.
  • the prepared time-acting polymer exhibits different responsiveness under stimuli from different directions.
  • the curing process in step (2) is performed in an open environment, and the curing temperature is room temperature or not higher than the boiling temperature of the template liquid.
  • the curing process occurs naturally in an open room temperature environment, and the template liquid naturally volatilizes; it can also be heated at a temperature not higher than the boiling point of the template liquid to promote faster volatilization of the template liquid.
  • curing and template liquid volatilization are carried out at the same time.
  • step (2) includes the following steps:
  • the intermediate is finally cured, and the curing temperature is room temperature or lower than 200°C to prepare a reversible dynamic macroporous elastomeric polymer material.
  • the present invention divides the curing into three stages of pre-curing, volatilization and final curing by controlling the curing conditions. The mechanism of each stage is explained separately below.
  • Pre-curing is carried out in the presence of the template liquid to form a part of the permanent cross-linked polymer structure.
  • This part of the cross-linked polymer is referred to as the first network, which has the tendency to maintain the geometric shape of the sample in the state of containing the template liquid.
  • the template liquid does not volatilize. And in the pre-curing process, it can be carried out at room temperature, or under a heating state not higher than the boiling point of the template liquid. If heating is used for pre-curing, the heating temperature should not be higher than the boiling point of the template liquid or the volatile substances in the template liquid.
  • the template liquid contained in the pre-cured body is completely volatilized or the volatile substances in the template liquid are completely volatilized in an open state or a negative pressure state.
  • negative pressure is generated inside the material; this negative pressure causes the cavity inside the material to collapse, resulting in a visually solid structure with an interface where the original template liquid is located microscopically, where this interface is referred to as Wrinkled.
  • the second network for short, which has a tendency to maintain the collapsed state of the polymer material.
  • the resulting material is a polymer in a collapsed state, which exhibits the characteristics of a non-porous material. For example, the material can exhibit good transparency.
  • a polymer in a collapsed state is called a solid polymer for short. In fact, the state of mind is maintained by the interaction between the second network and the fold interface.
  • a porous elastomeric polymer material with a first network structure, wrinkles and a second network structure is obtained.
  • the cavity structure will open to obtain a macroporous polymer , This state is referred to as the porous state for short; the cavity structure in the porous state has geometric characteristics close to but slightly smaller than the original template liquid.
  • the porous structure collapses, the cavity in the porous state disappears, and it returns to the solid state again. Therefore, through external stimulus conditions, the porous elastomeric polymer material can switch between a solid state and a porous state, and exist stably without specific stimuli.
  • the content of the template liquid in the curing precursor is 5-90 wt%.
  • the porosity of the finally obtained polymer material can be adjusted by controlling the content of the template liquid in the curing precursor.
  • the porosity formed is between 4 and 80%.
  • the above-mentioned polymerizable monomer is a non-volatile monomer or a monomer with a boiling point higher than 150° C. or a mixture of both.
  • the above-mentioned polymerizable monomer is 4-hydroxybutyl acrylate, isooctyl acrylate, poly(ethylene glycol) methyl ether acrylate, octamethylcyclotetradecane One or more combinations of silyl ether, methylcyclopentadiene dimer and dicyclopentadiene;
  • the crosslinking agent is 1,6-hexanediol diacrylate, 1,6-hexanediol dimethacrylate, 1,4-butanediol diacrylate, 1,4-butanediol dimethacrylate Ester, 1,2-ethylene glycol diacrylate, 1,2-ethylene glycol dimethacrylate, poly(ethylene glycol) diacrylate and poly(ethylene glycol) dimethacrylatekind or multiple combinations;
  • the template liquid is water, polyvinyl alcohol aqueous solution, polyethylene oxide aqueous solution, ethanol, isopropanol, ether or n-hexane.
  • the mixed precursor further includes an initiator and/or a thickener.
  • the initiator and thickener can be optionally added according to the properties of the polymerizable monomer.
  • the polymerizable monomer is 4-hydroxybutyl acrylate
  • the initiator can be selected as azobisisobutyronitrile
  • the thickener can be selected as Poly(4-hydroxybutyl acrylate).
  • the crosslinkable polymer precursor is double-end acrylated polypropylene, double-end acrylated polytetrahydrofuran, double-end acrylated polypropylene, and double-end mercapto groups.
  • the template liquid is water, polyvinyl alcohol aqueous solution, poly(N-isopropylacrylamide) aqueous solution, ethanol, isopropanol, ether or n-hexane.
  • the organic silica gel used in the embodiment of the present invention may be a commercially available room temperature curing AB silica gel whose components are mixed 1:1, or may be a commercially available transparent liquid silica gel.
  • silica gel is used as a cross-linkable polymer precursor, and a poly(N-isopropylacrylamide) aqueous solution is used as a template liquid.
  • the responsive polymer After curing, the responsive polymer will be deposited on the cavity/wrinkle surface to form a chemical composition A macroporous polymer that can change both the geometry of the cavity and the geometry of the cavity.
  • the crosslinkable polymer precursor also includes one or more combinations of crosslinking catalysts, free radical initiators, oil-soluble organic pigments and surfactants, crosslinking
  • the catalyst is a tin catalyst or a platinum catalyst.
  • the reaction activity of the silica gel precursor can be improved by adding a platinum catalyst to the silica gel. In this case, it can be cured at room temperature. As another embodiment, it is also possible to directly increase the reaction activity and promote the curing process by heating.
  • oil-soluble organic pigments are mixed in a catalyst-containing silica gel precursor to prepare colored macroporous polymers.
  • the present invention controls the structure of the pores by adding surfactants.
  • a mixture of organic silica gel precursor and water can prepare closed-pore macroporous polymers, while in a mixture of organic silica gel precursor and water containing surfactants, when the water content is greater than 40% of the total volume, A macroporous polymer with an open-pore structure can be prepared.
  • the solid state and the porous state of the reversible dynamic macroporous elastomeric polymer material of the present invention have different material density, light transmittance or surface roughness.
  • the cavity portion can be used to store liquid, and exhibits significantly higher swelling properties than the bulk polymer material.
  • the aforementioned stimulus responsiveness includes, but is not limited to, mechanical force responsiveness, humidity responsiveness, and solvent responsiveness.
  • the above-mentioned reversible dynamic macroporous elastomeric polymer material is used in an energy-saving coating.
  • the macroporous polymer can be adjusted to switch between the solid state and the porous state.
  • the reversible dynamic macroporous elastomeric polymer material can transmit sunlight in the solid state to achieve the heating effect, and in the porous state, it can reflect sunlight on the one hand and heat radiation on the other hand to dissipate heat, thereby achieving a cooling effect.
  • the above-mentioned materials can be made into a coating and coated on a coating that can absorb sunlight.
  • the light-absorbing layer can increase the heating effect in a solid state.
  • the reversible dynamic macroporous elastomer polymer material of the present invention is prepared into a coating material, which can achieve the following excellent properties: first, in fact, both the mental state and the porous state can exist stably between minus 200 degrees and 250 degrees; second, , After treatment at a temperature between minus 200 degrees and 250 degrees, it can maintain its mechanical responsiveness after returning to room temperature; third, in fact, the mental state and the porous state can exist stably in a humid environment and a rainy environment, and maintain Its mechanical responsiveness; fourth, in fact, both mental states and porous states can exist stably under solar radiation and maintain their mechanical responsiveness.
  • the above-mentioned reversible dynamic macroporous elastomeric polymer material is used in a smart interface.
  • the reversible dynamic macroporous elastomer polymer still maintains its stimulus responsiveness after cutting the inside; the cut interface has low surface roughness in the solid state, the water contact angle is relatively low, and the water droplet rolling angle is high. It is a non-superhydrophobic interface; after being transformed into a porous state, the cut interface has a relatively good surface roughness, high water contact angle, and water droplets are easy to roll, which is a superhydrophobic interface.
  • the above-mentioned reversible dynamic macroporous elastomeric polymer material is used in liquid storage and extended surface smoothness.
  • the polymer changes from a solid state to a porous state, and these cavities can be used to store the swelling liquid.
  • the liquid molecules stored in the cavity can diffuse to the surface to maintain surface lubrication.
  • the porous structure can increase the storage capacity of liquid molecules so as to extend the time that the surface maintains lubricating properties.
  • the above-mentioned reversible dynamic macroporous elastomeric polymer material is used in fluid control.
  • the macroporous elastomeric polymer material with communicating pores/channels does not allow fluid (gas or liquid) to pass through in the solid state, but allows fluid to pass through in the porous state.
  • the above-mentioned reversible dynamic macroporous elastomeric polymer material is used for volume change.
  • the tangential force of the macroporous elastomeric polymer material will change from a solid state to a porous state, and at the same time the volume will increase significantly. This phenomenon can be used for bottle mouth sealing and also for fixing objects.
  • the macroporous elastomeric polymer material absorbs energy during the process of transforming from a porous state to a solid state, and plays a role of damping and protection.
  • the porous organic elastic polymer material prepared by the invention has a controllable pore structure, overall volume and light transmittance. It has good reflection performance for sunlight and high permeability for infrared light in the atmospheric window, and can realize the conversion between the multi-empty state and the physical state under the action of external mechanical force, thereby realizing itself
  • the adjustment of optical performance realizes the reflection and absorption of responsive sunlight, and then adjusts the heat absorption and heat release behavior of the material.
  • the novel elastomeric polymer material with reversible dynamic porous structure of the present invention has simple and easy synthesis process, green environmental protection, high yield, low preparation cost and easy promotion.
  • the reversible dynamic macroporous elastomer polymer material of the present invention has an adjustable reversible multi-layered pore structure, has good convertible sunlight reflection performance and infrared radiation performance, belongs to a macroporous polymer, and is used in radiant cooling and solar heating. have a broad vision of application.
  • Figure 1 is a schematic diagram of the manufacturing principle of a reversible dynamic macroporous elastomeric polymer material according to an embodiment of the present invention
  • Figure 2 is the reversible stimulus response hollowing behavior of the reversible dynamic macroporous elastomeric polymer material according to an embodiment of the present invention
  • FIG. 3 is a sample diagram of the reversible dynamic porous elastomeric polymer in different preparation stages of an embodiment of the present invention
  • Figure 4 is an optical microscope view of the reversible dynamic macroporous elastomeric polymer material under tension or pressure according to an embodiment of the present invention
  • FIG. 5 is a diagram showing the changes of the reversible dynamic macroporous elastomeric polymer material of the embodiment of the present invention before and after force/solvent stimulation by setting the pattern "human";
  • Fig. 6 is a variation diagram of the reversible dynamic macroporous elastomeric polymer material of the embodiment of the present invention that the channel can be opened and closed under external stimuli;
  • Fig. 7 is a closed-pore microscope view of a reversible dynamic macroporous elastomeric polymer material prepared by a solidified precursor with a water content of 15% according to an embodiment of the present invention
  • FIG. 8 is a microscopic view of an open hole prepared by a reversible dynamic macroporous elastomeric polymer material of an embodiment of the present invention through a cured precursor with a water content of 90%;
  • Figure 9 is a microscope view of a macroporous elastomeric polymer with a multi-layered pore structure according to an embodiment of the present invention.
  • FIG. 10 is a graph showing the relationship change between solidified precursors with different water content and porosity of the reversible dynamic macroporous elastomeric polymer material of an embodiment of the present invention.
  • FIG. 11 is a graph showing changes in optical properties of an anisotropic reversible dynamic macroporous elastomeric polymer material in which the sample is stretched to 250% during the final curing process of the embodiment of the present invention under the action of mechanical forces at different angles;
  • Fig. 12 is a graph showing changes in optical properties of the reversible dynamic macroporous elastomeric polymer material in a solid state and a porous state according to an embodiment of the present invention
  • Figure 13 is an actual heating effect diagram of a macroporous elastomeric polymer coating of an embodiment of the present invention in a solid state;
  • Figure 14 is a diagram of the actual cooling effect of the macroporous elastomeric polymer coating in the porous state of the embodiment of the present invention.
  • Figure 15 is the density of the reversible dynamic macroporous elastomeric polymer material in the solid state and the porous state according to an embodiment of the present invention
  • 16 is a view showing the effect of the reversible dynamic macroporous elastomeric polymer material in a solid state and a porous state in water according to an embodiment of the present invention
  • Figure 17 is a contact angle diagram of water droplets on the surface of the reversible dynamic macroporous elastomeric polymer material of an embodiment of the present invention.
  • Fig. 18 is a graph showing the relationship between porosity and swelling rate of the reversible dynamic macroporous elastomeric polymer material in silicone oil according to an embodiment of the present invention.
  • the concentration of the platinum catalyst solution used is 1% by weight, and the product information is platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex Xylene solution of compound, Pt ⁇ 2%.
  • AB silica gel and transparent organic silica gel precursors are commercially available.
  • concentration of the polyvinyl alcohol aqueous solution is 1 wt%.
  • Figure 1 shows the principle diagram of the preparation of the reversible dynamic macroporous polymer in the embodiment of the present invention.
  • the present invention combines the polymerizable/crosslinked precursors (ie the above-mentioned polymerizable monomers and crosslinkable polymer precursors) with the incompatible And the volatile template liquid is mixed, and the monomer undergoes a solidification reaction in the presence of the template liquid.
  • the template liquid also continues to play.
  • the space originally occupied by the volatilized template liquid source of macropores
  • the space originally occupied by the volatilized template liquid is under the action of gravity. It collapses to form a wrinkled and solid state.
  • Fig. 3 is a general process of preparation in an embodiment of the present invention, showing the state of samples at different stages.
  • the following examples use different monomers and corresponding template solutions to synthesize reversible macroporous elastomer polymers with different properties. Due to different materials, each example also has a corresponding stimulus method to achieve reversibility in the state. Place application.
  • the present invention includes but is not limited to the following examples. The following examples are only used to illustrate the present invention and do not have a limiting effect.
  • the reversible dynamic macroporous elastomeric polymer material prepared in this embodiment is a transparent material.
  • the reversible dynamic macroporous elastomeric polymer material prepared in this embodiment is a transparent material.
  • a mixture of 10 g of A and 10 g of B was used to obtain a silicone precursor.
  • the silicone precursor and 3 g of an aqueous solution containing 1 wt% polyvinyl alcohol were mixed and stirred for 30 minutes, and the obtained emulsion was cast on a substrate and cured at room temperature for 6 days to prepare a reversible dynamic macroporous elastomeric polymer material.
  • the reversible dynamic macroporous elastomeric polymer material prepared in this embodiment is a transparent material.
  • a 1% platinum catalyst solution was added to a mixture of 20 g and 2 g of the silica gel precursor, and mixed to obtain an organosilicon precursor with high reactivity.
  • the silicone precursor and 3.4 g of an aqueous solution containing 1 wt% polyvinyl alcohol were mixed and stirred for 30 minutes, and the obtained emulsion was cast on a substrate and cured at room temperature for 6 days to prepare a reversible dynamic macroporous elastomeric polymer material.
  • the reversible dynamic macroporous elastomeric polymer material containing a heterogeneous structure prepared in this embodiment is a transparent material.
  • a silicone precursor 10 g of A and 10 g of B are uniformly mixed to obtain a silicone precursor.
  • the silicone precursor and 3g of 1% polyvinyl alcohol-containing aqueous solution were mixed and stirred for 5 minutes, and the obtained emulsion was cast on the substrate and pre-cured at 70°C for 20 minutes to obtain an opaque film material.
  • the opaque film continued to open at 70°C.
  • a transparent reversible dynamic macroporous elastomer polymer material was prepared.
  • the reversible dynamic macroporous elastomeric polymer material prepared in this embodiment is a transparent material.
  • a silicone precursor 10 g of A and 10 g of B are uniformly mixed to obtain a silicone precursor.
  • the silicone precursor and 3g of the aqueous solution containing 1wt% polyvinyl alcohol were mixed and stirred for 10 minutes, and the obtained emulsion was cast on the substrate and pre-cured at 70°C for 20 minutes to obtain an opaque film material.
  • the opaque film continued to open at 70°C.
  • a transparent reversible dynamic macroporous elastomer polymer material was prepared.
  • the reversible dynamic macroporous elastomeric polymer material prepared in this embodiment is a transparent material.
  • a silicone precursor 10 g of A and 10 g of B are uniformly mixed to obtain a silicone precursor.
  • the silicone precursor and 3g of 1% polyvinyl alcohol-containing aqueous solution were mixed and stirred for 30 minutes, and the resulting emulsion was cast on the substrate and pre-cured at 70°C for 20 minutes to obtain an opaque film material, which was continued to be cured in an open environment at 70°C In 2 days, a transparent reversible dynamic macroporous elastomer polymer material was prepared.
  • the reversible dynamic macroporous elastomeric polymer material prepared in this embodiment is a transparent material.
  • 10 g of A and 10 g of B are uniformly mixed to obtain a silicone precursor.
  • the silicone precursor and 3 g of an aqueous solution containing 1% polyvinyl alcohol were mixed and stirred for 30 minutes, and the obtained emulsion 1 was mixed.
  • 10 g of A and 10 g of B are uniformly mixed to obtain a silicone precursor.
  • the silicone precursor and 3 g of an aqueous solution containing 1% polyvinyl alcohol were mixed and stirred for 1 min, and the obtained emulsion 2 was mixed.
  • the emulsion 1 and the emulsion 2 were mixed and stirred for 4 minutes to obtain a cured precursor.
  • the curing precursor was cast on a substrate and pre-cured for 20 minutes in a closed environment at 70°C to obtain an opaque film material.
  • the open mouth was cured in an open environment at 70°C for 2 days to obtain a transparent reversible dynamic macroporous elastomeric polymer material.
  • a silicone precursor 10 g of A and 10 g of B and 0.05 g of a peryleneimide-based oil-soluble red organic pigment were uniformly mixed to obtain a silicone precursor.
  • the silicone precursor and 3 g of 1% polyvinyl alcohol-containing aqueous solution were mixed and stirred for 30 minutes, and the obtained emulsion was cast on the substrate and pre-cured for 20 minutes in a closed environment at 70°C to obtain an opaque film material; the opaque film material was continued at 70°C After curing in an open environment for 2 days, a transparent reversible dynamic macroporous elastomeric polymer material with red color was prepared.
  • the colored reversible dynamic macroporous elastomeric polymer material prepared in this embodiment is a transparent material.
  • the reversible dynamic macroporous elastomeric polymer material with a functional pore surface prepared in this example is a transparent material.
  • the reversible dynamic macroporous elastomer polymer material patterned under external stimulation is a transparent material.
  • a silicone precursor 10 g of A and 10 g of B are uniformly mixed to obtain a silicone precursor.
  • the organic silica gel precursor is poured on the substrate, and the polyvinyl alcohol aqueous solution is injected into the viscous precursor through a needle to form a fibrous water template that runs through the precursor, and then it is placed in an open environment at 70°C for 5 days to be cured.
  • Transparent solid polymer material As shown in Figure 6, after applying tension (stimulus 1), a channel can be seen. On the contrary, by applying pressure (stimulus 2), the polymer material returns to its original shape.
  • the channel reversible dynamic elastomer polymer material that opens and closes under external stimuli is a transparent material.
  • a silicone precursor 10 g of A and 10 g of B are uniformly mixed to obtain a silicone precursor.
  • the silicone precursor and 3g of 1% polyvinyl alcohol-containing aqueous solution were mixed and stirred for 30 minutes, and the resulting emulsion was cast on the substrate and pre-cured in a closed environment at 70°C for 20 minutes, and then the pre-cured elastomer was stretched to 110 %, and then place it in an open environment at 70°C for 2 days to cure to obtain a 110% anisotropic transparent solid polymer material.
  • a silicone precursor 10 g of A and 10 g of B are uniformly mixed to obtain a silicone precursor.
  • the silicone precursor and 3g of 1% polyvinyl alcohol-containing aqueous solution were mixed and stirred for 30 minutes, the resulting emulsion was poured on the substrate and pre-cured at 70°C for 20 minutes in a closed environment, and then the pre-cured elastomer was stretched to 170 %, and then placed it in an open environment at 70°C for 2 days to obtain a transparent solid polymer material with 170% anisotropy.
  • a silicone precursor 10 g of A and 10 g of B are uniformly mixed to obtain a silicone precursor.
  • the silicone precursor and 3g of 1% polyvinyl alcohol-containing aqueous solution were mixed and stirred for 30 minutes, and the resulting emulsion was cast on the substrate and pre-cured in a closed environment at 70°C for 20 minutes, and then the pre-cured elastomer was stretched to 250 %, and then place it in an open environment at 70° C. and cure for 2 days to prepare a 250% anisotropic transparent solid polymer material.
  • a silicone precursor 10 g of A and 10 g of B are uniformly mixed to obtain a silicone precursor.
  • the silicone precursor and 1 g of 1% polyvinyl alcohol-containing aqueous solution were mixed and stirred for 30 minutes, and the resulting emulsion was poured on the substrate and pre-cured in a closed environment at 70°C for 20 minutes, and then placed in an open environment at 70°C for curing 2 Tian, a transparent solid polymer material with a water content of 5 wt% was prepared.
  • a silicone precursor 10 g of A and 10 g of B are uniformly mixed to obtain a silicone precursor.
  • the silicone precursor and 20 g of 1% polyvinyl alcohol-containing aqueous solution were mixed and stirred for 30 minutes, and the resulting emulsion was poured on the substrate and pre-cured in a closed environment at 70°C for 20 minutes, and then placed in an open environment at 70°C for curing 2
  • a transparent solid polymer material containing 50% by weight of water was prepared.
  • 10 g of A and 10 g of B are uniformly mixed to obtain a silicone precursor.
  • Mix 8 g of organic silicon precursor and 1 g of carbon black stir for 30 minutes to obtain a black liquid, brush the liquid on the tile, and place it at 70°C for 4 hours to cure to obtain the first layer.
  • Mix 12g of silicone precursor and 30g of aqueous solution containing 1% polyvinyl alcohol for 30 minutes brush the obtained emulsion on the cured first layer sample, pre-curing at 70°C for 20 minutes in a closed environment, and then place it Cured in an open environment at 70°C for 2 days to obtain a double-layer material.
  • the porous state is obtained by scraping, and the solid state is obtained by squeezing.
  • the anisotropic reversible dynamic macroporous elastomeric polymer material prepared in this embodiment is a transparent material.
  • Test Example 1 Responsiveness of mechanical force of reversible dynamic macroporous elastomeric polymer material
  • the reversible dynamic macroporous elastomeric polymer material of the embodiment of the present invention is transformed from a solid state to a porous state under the action of tension; under the action of pressure, it transforms from a porous state to a solid state again to achieve Dynamically reversible.
  • Test Example 2 Solvent responsiveness of reversible dynamic macroporous elastomeric polymer materials
  • an elastomer material with a specific shape is formed in the solidified body, such as the chevron shown in Figure 5 and the one shown in Figure 6 Font.
  • the initial solid state can be collapsed under tension to show the corresponding pattern, or the solvent can enter the large pores and swell to form the corresponding pattern.
  • Test Example 3 The influence of template liquid content on pore structure
  • Figures 7 and 8 when water is used as the template liquid, the elastomer polymer material prepared from the cured precursor with 15% water content is closed pores, and the elastomer polymer prepared from the cured precursor with 90% water content is Opening holes.
  • Figure 9 is a macroporous elastomer polymer with a multi-layered pore structure obtained by mixing a variety of curing precursors with different water contents. It can be seen from Figure 10 that as the water content increases, the porosity increases.
  • Test Example 4 The influence of different mechanical stimulation angles on optical performance
  • the anisotropic reversible dynamic macroporous elastomer polymer material stretched to 250% has different light transmittance under the action of mechanical force at different angles.
  • the tensile force direction is 0°, that is, when the tensile force is applied parallel to the surface of the material, with the continuous increase of the tensile force, the light transmittance hardly changes.
  • the pulling force is inclined and is 45° or 90° with respect to the material surface, as the pulling force increases, the light transmittance gradually decreases, and the decrease is faster at 90° than at 45°.
  • Test Example 5 The cooling and heating effect of reversible dynamic macroporous elastomer polymer material
  • Figure 13 is a solid state, the temperature inside the material is significantly higher than the ambient air temperature, the material can let sunlight through, can effectively play a heating role;
  • Figure 14 is a porous state, the coating The internal temperature is significantly lower than the atmospheric temperature, which can reflect sunlight and dissipate heat radiation, which plays a role in cooling.
  • Test Example 7 Surface roughness of reversible dynamic macroporous elastomeric polymer material
  • the surface roughness of the elastomeric polymer material changes.
  • the contact angle is 108°
  • the contact angle is 152°.
  • the porous state is compared with The surface of the solid state is rougher.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本发明涉及了一种可逆动态大孔弹性体聚合物材料及其制备方法和应用。本发明将可聚合前体或可交联聚合物前体和不溶于前体的模板液混合搅拌均匀,将得到的乳液进行固化,制得可逆动态大孔弹性体聚合物材料。本发明的可逆动态多孔结构的新型弹性体聚合物材料,合成工艺简单易行,绿色环保,产率高,制备成本低,易于推广。本发明的可逆动态大孔弹性体聚合物材料具有可调节的可逆多层次孔结构,具有良好的可转换的太阳光反射性能和红外辐射性能、高的溶液储存能力、可调制的表面粗糙度,属于大孔聚合物材料,在辐射制冷太阳能制热、智能界面方面具有广阔的应用前景。

Description

可逆动态大孔弹性体聚合物材料及其制备方法和应用 技术领域
本发明涉及高分子材料技术领域,具体涉及一种可逆动态大孔弹性体聚合物材料及其制备方法和应用。
背景技术
大孔聚合物(macroporous polymers,也被称为聚合物大孔材料)是一类由聚合物为基材构成互相贯通或封闭孔洞结构的材料,其主要的空腔孔径在50纳米以上(根据国际IUPAC标准)。大孔聚合物能够结合大孔材料和聚合物两种材料的优点,除了具有大孔材料本身的表面积较大和孔径可调等特性以外,还具有机械强度高、热稳定性好、耐溶剂性好、易加工、原料价格低廉等特点,已被广泛应用于催化、储能、隔音隔热、气体分离、水处理、药物传递等领域。同时,高分子合成方法的多样性能够提供丰富的合成路径来构建具有不同性质的孔径结构,能够为大孔材料提供更加广泛的应用领域,例如抗污减阻界面、反射涂层、荧光检测、能量传递、液体存储、组织工程支架、细胞培养等新的应用场景,因此被认为是最有应用前景的多孔材料之一。
目前,制备大孔聚合物的方法很多,最主要的方法是相分离法(phase separation polymerization)、冷冻干燥法(free-drying)、发泡法(gas-blowing)和模板法(templating method)等。
相分离聚合法是最早用于制备多孔聚合物的方法,其机理在于预先与前体相容的稀释剂在聚合或交联过程中发生相分离,原位形成稀释剂聚集微区作为空腔模板,这些区域在聚合后可以去除,得到永久性多孔结构。各种能聚合的单体和能交联的聚合物前体均能通过这种方法制备得到大孔聚合物。稀释剂可以是溶剂、非溶剂(如超临界二氧化碳)或惰性聚合物等。常用于制备多孔聚 合物珠的悬浮聚合法属于这一方法。这种方法要求聚合/交联动力学与相分离动力学相匹配,得到的孔径分布比较宽,往往涉及相对复杂的稀释剂去除工艺。
冷冻干燥法是近年兴起的方法,主要利用冻干过程中的水结晶来驱使体系中的聚合物不可逆聚集,从而在去除溶剂后得到多孔聚合物。这种方法能耗比较大,得到的大孔聚合物力学性能相对比较差。
发泡法是利用发泡剂在材料固化过程中生成气泡作为模板的方法,广泛用于制备人造皮革和海绵等工业。
模板法是使用不溶于聚合物前体(单体和交联剂的混合前体或可交联的聚合物前体)的制孔剂(porogen)作为空腔模板制备多孔聚合物的方法,其一般包含三个步骤:首先把制孔剂分散到前体中;然后引发聚合或交联形成聚合物连续相;最后通过沥滤洗脱制孔剂得到大孔材料。这种方法适用于各种单体和聚合物,空腔结构和孔径大小可通过模板(可以是小分子、微纳颗粒或者连续骨架)精确控制,便于制备大面积样品;但工艺相对复杂,特别是沥滤过程耗时长、成本高、容易引起材料形变。
总的来说,目前的大孔聚合物制备方法往往涉及挥发性有机溶剂或者能耗大或者耗时长,并且所制备得到的大孔结构往往是永久性的,一般不能在外界刺激下改变其拓扑结构。
材料智能化是近年科学研究和材料市场的趋势,对于新型响应性大孔聚合的设计合成一直备受关注。大孔聚合物的性能通常由材料组分和孔结构共同决定。目前制备智能大孔聚合物的策略主要是选择刺激响应性聚合物作为基底材料或通过响应性分子修饰孔表面,从而达到改变材料性能的目的;而通过改变孔拓扑结构来调节大孔聚合物材料性能的方法很少,能在不需要外界物质填充的条件下实现大孔结构完全开关的例子还未见报道。
控制孔道的开关是调节多孔材料性能的最有效的方法之一。目前的方法是在孔内修饰响应性分子,通过外界刺激,如光、pH值、盐、识别分子、电信号等,改变这些分子的拓扑结构和性能,用于防止特定物质的进入和输出,从而达到开关材料内部性能,如催化特性、运输能力、光学性能等方面的目的。然而,这些分子水平上的改变仅能用于孔径尺寸比较小(几个纳米)的体系,难以开光大孔结构。此外,这些方法不能有效改变材料的宏观性能,比如,材料的体积、表面积、透光性、液体存储能力、表面粗糙度等。相对这些需求,目前还没有能有效可逆开关大孔聚合物空腔的方法。
总而言之,目前缺乏绿色环保制备响应性大孔聚合物的方法,所制备的大孔聚合物不能有效可逆开关其孔结构,相关的应用也因此而少有探索。
发明内容
针对现有技术中的不足,本发明的目的是提供一种可逆动态大孔弹性体聚合物材料及其制备方法和应用,本发明解决上述技术问题的技术方案如下:
一种可逆动态大孔弹性体聚合物材料的制备方法,包括以下步骤:
(1)将包含可聚合单体和交联剂的混合前体或者将可交联聚合前体与模板液混合,得到固化前体;
其中,模板液为与混合前体不相容的挥发性溶液,或者为与可交联聚合前体不相容的挥发性溶液;
(2)将固化前体施加至基底或模具中固化,制得可逆动态大孔弹性体聚合物材料。
本发明的可聚合单体是指在交联剂作用下可发生聚合反应的小分子单体。本发明的可交联聚合前体是指能够形成共价键交联的聚合物,还可选择性的加入交联催化剂、自由基引发剂、油溶性有机颜料和表面活性剂。
本发明以可聚合单体或可交联聚合前体为原料与模板液混合,模板液为与可聚合单体或可交联聚合前体不相容的挥发性溶液,利用模板液与前体(包括可聚合单体和可交联聚合前体,下文亦同)之间的不相容性从而在聚合交联过程中起到形成孔结构的模板作用,同时由于模板液具有挥发性,能够在固化过程中挥发,使得模板液原先占据的空间因挥发后则形成孔结构,由此来获得多孔且为大孔的弹性体聚合物。随着固化过程中模板液的挥发,孔结构塌陷,原先有模板液支撑的孔结构在重力作用下变成塌缩的实心态,但孔实际是存在的,而当多孔弹性体收到外界刺激时,塌缩的孔恢复打开,从而实现在实心态和多孔态之间的可逆转换。
本发明的固化前体在固化过程中,前体自身的交联聚合和模板液的挥发可以通过手段来控制是否同时进行,以此对孔结构进行调节控制,从而获得不同性能的可逆动态大孔弹性体聚合物材料。
本发明的模板液可以以无数小液滴的形式无规则分布在固化前体中,也可以以特定形状(纤维、图案或三维阵列)包埋在固化前体中,具体形式以模板液与前体的混合方式相关。例如,通过搅拌混合,将模板液分散无数小液滴,或者通过注射使模板液在固化前体中形成纤维状液体。
本发明中固化前体施加至基底或模具的方式包括但不限于浇注、刷涂、喷涂和旋涂工艺。此外,作为另一种优选实施方式,固化前体可以直接在基地或模具上进行制备,不必经过预先混合,即,可聚合单体和交联剂的混合前体或可交联聚合前体先施加到基底上或膜具中,然后引入模板液,得到固化前体。本领域技术人员可以根据所需多孔弹性体材料的性能要求来选择合适的方式。
本发明可以通过依次浇注的方法实现多孔结构的局部化和图案化。例如,先在膜具上浇注包含可聚合单体和交联剂的混合前体或者可交联聚合前体得到 特定模型,然后浇注对应前体和水的混合液在空白处,完全固化后得到一整体材料,在刺激后,仅特定区域的地方出现多孔化结构。
本发明可以将包含可聚合单体和交联剂的混合前体或者可交联聚合前体浇注在膜具中固化得到有反相弹性体膜具,在膜具中浇注对应前体和水充分混合后的混合前体,固化后得到透明弹性体材料。此材料在外界刺激下,具有响应性部分会出现多孔化,宏观上表现出特定图案。
本发明可以结合打印的方法制备具有特定几何结构的空腔结构,还可以是仅制备一个空腔的。例如,在粘稠包含可聚合单体和交联剂的混合前体或者可交联聚合前体中,注射水溶液打印图形,固化后得到透明实心聚合物材料,此材料在外界刺激下能多孔化,显现所打印的图案。还比如,当仅打印一条纤维状水模板,可以得到在外界刺激下打开和闭合的通道。把有机硅胶前体浇注在基底上,通过针头在粘稠前体中注入聚乙烯醇水溶液,形成一条贯前体的纤维状水模板,固化后得到透明硅胶弹性体,此弹性体在外界刺激下会在水模板处出现一条微通道。
本发明可以通过可聚合或可交联前体与模板溶液混合物的搅拌时间来调控所得的乳液中液滴的尺寸大小,以此调节所得到多孔弹性体聚合物材料的孔径大小。例如,可交联聚合前体和水的混合液的搅拌时间为5-50分钟,对应水滴尺寸30-1微米。通过将包含有不同尺寸水滴的固化前体进行一定比例的混合,可以得到具有不同尺寸的层次的动态可逆多空结构。例如,搅拌5分钟和搅拌50分钟的两种固化前体混合后,可以得到含有1微米和30微米两层次的孔径的大孔材料。
本发明可以在固化过程中通过拉伸样品取向样品制备得到各向异性材料。例如,将可交联聚合前体与聚乙烯醇水溶液混合得到乳液,然后在50-90℃的密 封条件下进行预固化5-30min。所得到的弹性体被拉伸到不同程度,例如为原样品的110-250%,在敞口条件下挥发和终固化,得到各项异性的大孔聚合物。制备得到的时实行态聚合物,其在不同方向的刺激下,表现出不同的响应性。
需要说明的是,在选择单体和模板液时,应当选择固化时间长于模板液完全挥发所需的时间的单体,以便模板液挥发完后,剩余单体能够继续交联固化,直至固化完。
进一步地,在本发明较佳的实施例中,步骤(2)中固化过程是在开放环境中进行,固化温度为室温或不高于模板液的沸点温度。
固化过程在开放的室温环境下自然发生,模板液自然挥发;也可以在不高于模板液沸点温度下进行加热,以促进模板液更加快速的挥发。在开放环境中,固化和模板液挥发是同时进行的。
进一步地,在本发明较佳的实施例中,步骤(2)的固化过程包括以下步骤:
(21)将固化前体施加至基底或模具中并且在模板液存在的条件下于密封环境中进行预固化,固化温度为室温或不高于所述模板液的沸点温度,得到预固化体;
(22)将预固化体中的模板液的挥发性成分挥发去除,得到中间体;
(23)将中间体进行终固化,固化温度为室温或低于200℃,制得可逆动态大孔弹性体聚合物材料。
本发明通过控制固化的条件将固化分为预固化、挥发和终固化是三个阶段。下面分别对每个阶段的机理进行解释说明。
预固化是在模板液存在的条件下进行,使部分永久***联聚合物结构形成,这部分交联聚合物简称第一网络,其具有维持样品在含模板液状态下几何形状的趋势。在密封状态下的预固化过程中,模板液不挥发。且在预固化过程中, 可以在室温下进行,也可以在不高于模板液沸点的加热状态下进行。若是采用加热方式进行预固化,加热温度应当不高于模板液或模板液中挥发性物质的沸点。
当预固化完成后,在敞口状态或负压状态下将预固化体中含有的模板液中完全挥发或者模板液中的可挥发性物质完全挥发。在挥发过程中,材料内部会产生负压;这一负压使得材料内部空腔塌缩,得到在视觉上实心、而微观上在原模板液所在处有界面的结构,其中,这一界面简称为皱褶。
当模板液挥发完全后,剩余的固化前体在材料内部空腔塌缩的状态下固化,这一部分交联聚合物简称为第二网络,其有维持聚合物材料塌缩状态的趋势。终固化完成后,所得到的材料是塌缩状态下的聚合物,其表现出非多孔材料的特性。比如,材料能表现出良好透明性。塌缩状态的聚合物简称为实心聚合物,其实心态是通过第二网络和皱褶界面相互作用共同维持的。
通过上述三个阶段,得到具有第一网络结构、褶皱以及第二网络结构的多孔弹性体聚合物材料,在施加外界刺激影响这些作用力的情况下,空腔结构会打开,得到大孔聚合物,这一状态简称为多孔态;多孔态下的空腔结构具有接近但略小于原模板液的几何特征。当这种外机刺激消除,多孔结构塌陷,多孔态下的空腔消失,再次回到实心状态。因此,通过外界刺激条件,多孔弹性体聚合物材料可以在实心态和多孔态之间转换,并在没有特定刺激的条件下稳定存在。
进一步地,在本发明较佳的实施例中,步骤(1)中,固化前体中模板液的含量为5-90wt%。
本发明可以通过控制固化前体中模板液的含量来调节最终获得聚合物材料的孔隙率。例如,在有机硅前体和聚乙烯醇水溶液构成的固化前体中,当有机 硅前体中水含量在5-90wt%之间时,形成孔隙率在4-80%之间。
进一步地,在本发明较佳的实施例中,上述可聚合单体为非挥发单体或沸点高于150℃的单体或两者混合物。
进一步地,在本发明较佳的实施例中,上述可聚合物单体为4-羟基丁基丙烯酸酯、丙烯酸异辛酯、聚(乙二醇)甲基醚丙烯酸酯、八甲基环四硅醚、甲基环戊二烯二聚体和双环戊二烯中的一种或多种组合;
交联剂为1,6-己二醇二丙烯酸酯、1,6-己二醇二甲基丙烯酸酯、1,4-丁二醇二丙烯酸酯、1,4-丁二醇二甲基丙烯酸酯、1,2-乙二醇二丙烯酸酯、1,2-乙二醇二甲基丙烯酸酯、聚(乙二醇)二丙烯酸酯和聚(乙二醇)二甲基丙烯酸酯中的一种或多种组合;
模板液为水、聚乙烯醇水溶液、聚环氧乙烯水溶液、乙醇、异丙醇、***或正己烷。
进一步地,在本发明较佳的实施例中,混合前体还包括引发剂和/或增稠剂。
引发剂和增稠剂可根据可聚合单体的性质进行选择性添加。例如,当时可聚合单体为4-羟基丁基丙烯酸酯时,需在混合前体中,加入引发剂和增稠剂,引发剂可以选择为偶氮二异丁腈,增稠剂可以选择为聚(4-羟基丁基丙烯酸酯)。
进一步地,在本发明较佳的实施例中,可交联聚合前体为双端丙烯酸酯化的聚丙烯、双端丙烯酸酯化的聚四氢呋喃、双端丙烯酸酯化的聚丙烯、双端巯基化的聚丙烯、双端丙烯酸酯化的聚四氢呋喃和双端巯基化的聚四氢呋喃中的一种或多种组合,或者为有机硅胶;
模板液为水、聚乙烯醇水溶液、聚(N-异丙基丙烯酰胺)水溶液、乙醇、异丙醇、***或正己烷。
本发明实施例采用的有机硅胶可以是市售室温固化AB硅胶,其组分为1:1 混合,也可以是市售透明液体硅胶。
本发明以硅胶作为可交联聚合前体,以聚(N-异丙基丙烯酰胺)水溶液用做模板液,固化后,响应性聚合物会沉积在空腔/褶皱表面上,从而形成化学成分和空腔几何结构均能改变的大孔聚合物。
进一步地,在本发明较佳的实施例中,可交联聚合物前体还包括交联催化剂、自由基引发剂、油溶性有机颜料和表面活性剂中的一种或多种组合,交联催化剂为锡催化剂或铂催化剂。
本发明可以通过在硅胶中添加铂催化剂来提高硅胶前体的反应活性,此时,可以在室温下对其进行固化处理。作为另一种实施方式,也可以直接通过升温加热的方式来提高反应活性,促进固化过程。
本发明通过将油溶性有机颜料参杂在含催化剂硅胶前体中,用以制备得到具有颜色的大孔聚合物。
本发明通过添加表面活性剂来控制孔的结构。例如,有机硅胶前体和水的混合液能制备得到闭孔大孔聚合物,而在有机硅胶前体和含表面活性剂的水的混合液,当水含量大于总体积的40%以上时,可以制备得到具有开孔结构的大孔聚合物。
上述的制备方法制备得到的可逆动态大孔弹性体聚合物材料。
本发明的可逆动态大孔弹性体聚合物材料的实心态和多孔态具有不同的材料密度、透光性或表面粗糙度。可逆动态大孔弹性体聚合物材料在多孔态时,空腔部分可以用于储存液体,表现出比本体聚合物材料明显高的溶胀性。
可逆动态大孔弹性体聚合物材料在制备刺激响应性聚合物材料中的应用。
上述刺激响应性包括但不限于机械力响应性、湿度响应性和溶剂响应性。
进一步地,在本发明较佳的实施例中,上述的可逆动态大孔弹性体聚合物 材料在节能涂层中的应用。
当给可逆动态大孔弹性体聚合物材料施加不同机械力时,可以调节大孔聚合物在实心态和多孔态之间转换。可逆动态大孔弹性体聚合物材料在实心状态下可以让太阳光透过从而实现制热效果,而在多孔态下一方面能反射太阳光且另一方面热辐射散热,从而可以实现制冷效果。优选地,上述材料可做成涂层,涂在能吸收太阳光的涂层上,吸光层能增加实心态下的制热效果。
将本发明的可逆动态大孔弹性体聚合物材料制备成涂层材料,其能够达到以下优异性能:第一,其实心态和多孔态均能在零下200度到250度之间稳定存在;第二,在零下200度到250度之间的温度处理后,恢复到室温后,能保持其力学响应性;第三,其实心态和多孔态均能在潮湿环境和下雨环境下稳定存在,并保持其力学响应性;第四,其实心态和多孔态均能在太阳辐照下稳定存在,并保持其力学响应性。
进一步地,在本发明较佳的实施例中,上述的可逆动态大孔弹性体聚合物材料在智能界面中的应用。
可逆动态大孔弹性体聚合物在切开内部后,依然保持其刺激响应性;以切开后的界面在实心态下具有低的表面粗糙度,水接触角相对低,水珠滚动角高,属于非超疏水界面;在转变成多孔态后,切开的界面具有比较好的表面粗糙度,水接触角高,水珠易滚动,属于超疏水界面。
进一步地,在本发明较佳的实施例中,上述的可逆动态大孔弹性体聚合物材料在液体存储以及延长表面光滑中的应用。
聚合物在溶胀过程中,会从实心态转变成多孔态,这些空腔可以用于存储溶胀液体。在溶胀的聚合物表面存在一层液体分子,可以起到润滑作用,形成超滑表面。当这些液体分子被消耗时,存储在空腔内的液体分子可以扩散到表 面来,维持表面润滑。多孔结构能提高液体分子的存储量从而提高延长表面保持润滑特性的时间。当溶胀聚合物在受到外力时,会放出大量液体分子;在外力去除时,会把液体分子从新吸回去。
进一步地,在本发明较佳的实施例中,上述的可逆动态大孔弹性体聚合物材料在控制流体中的应用。
具有联通孔/通道的大孔弹性体聚合物材料在实心态下不允许流体(气体或液体)通过,而在多孔态下允许流体通过。
进一步地,在本发明较佳的实施例中,上述的可逆动态大孔弹性体聚合物材料体积变化的应用。
大孔弹性体聚合物材料在切向的作用力会从实心态转变成多孔态,同时体积会明显增大,这一现象可用于瓶口密封,也可以用于固定物品。大孔弹性体聚合物材料在从多孔态转变成实心态的过程中会吸收能量,起到阻尼和保护的作用。
本发明具有以下有益效果:
本发明制备的多孔有机弹性聚合物材料具有可调控的孔径结构、整体体积、透光度。对于太阳光具有好的反射性能同时能够对处于大气窗口处的红外光具有高的透过性,且可以在外界机械力的作用下实现多空状态与实体状态之间的转化,从而实现其自身光学性能的调控,实现响应性的太阳光的反射和吸收,进而调节材料的吸热和放热行为。
本发明可逆动态多孔结构的新型弹性体聚合物材料,合成工艺简单易行,绿色环保,产率高,制备成本低,易于推广。本发明的可逆动态大孔弹性体聚合物材料具有可调节的可逆多层次孔结构,具有良好的可转换的太阳光反射性能和红外辐射性能,属于大孔聚合物,在辐射制冷太阳能制热方面具有广阔的 应用前景。
附图说明
图1是本发明实施例的可逆动态大孔弹性体聚合物材料的制造原理图;
图2是本发明实施例的可逆动态大孔弹性体聚合物材料的可逆刺激响应中空化行为;
图3是本发明实施例的可逆动态多孔弹性体聚合物在不同制备阶段的样品图;
图4是本发明实施例的可逆动态大孔弹性体聚合物材料在拉力或压力作用下的光学显微镜图;
图5是本发明实施例的可逆动态大孔弹性体聚合物材料通过设定图案“人”字在力/溶剂刺激前后的变化图;
图6是本发明实施例的可逆动态大孔弹性体聚合物材料的在外界刺激下通道可打开和闭合的变化图;
图7是本发明实施例的可逆动态大孔弹性体聚合物材料通过15%水含量的固化前体制备得到的封闭孔显微镜图;
图8是本发明实施例的可逆动态大孔弹性体聚合物材料通过90%水含量的固化前体制备得到的开口孔显微镜图;
图9是本发明实施例的具有多层次孔结构的大孔弹性体聚合物的显微镜图;
图10是本发明实施例的可逆动态大孔弹性体聚合物材料的不同水含量的固化前体与孔隙率的关系变化图;
图11是本发明实施例的终固化过程中样品被拉伸到250%的各向异性可逆动态大孔弹性体聚合物材料在不同角度机械力作用下的光学性能的变化图;
图12是本发明实施例的可逆动态大孔弹性体聚合物材料在实心态和多孔态 下的光学性能的变化图;
图13是本发明实施例的大孔弹性体聚合物涂层在实体状态下的实际制热效果图;
图14是本发明实施例的大孔弹性体聚合物涂层在多孔状态下的实际制冷效果图;
图15是本发明实施例的可逆动态大孔弹性体聚合物材料在实心态和多孔态下的密度;
图16是本发明实施例的可逆动态大孔弹性体聚合物材料在实心态和多孔态下在水中效果图;
图17是水滴在本发明实施例的可逆动态大孔弹性体聚合物材料表面上的接触角图;
图18是本发明实施例的可逆动态大孔弹性体聚合物材料在硅油中孔隙率与溶胀率的关系图。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
本发明下列实施例中,采用的铂催化剂溶液的浓度为1wt%,产品信息为铂(0)-1,3-二乙烯基-1,1,3,3-四甲基二硅氧烷络合物的二甲苯溶液,Pt~2%。
AB硅胶和透明有机硅胶前体均为市售。聚乙烯醇水溶液的浓度为1wt%。
如图1所示本发明实施例制备可逆动态大孔聚合物的原理图,本发明将可聚合/交联前体(即上述可聚合单体和可交联聚合前体)和与其不相容且具有挥 发性的模板液进行混合,单体在模板液存在的条件下发生固化反应,与此同时模板液也不断发挥,挥发后的模板液原来占据的空间(大孔来源)在重力作用下塌陷,形成褶皱、实心状态,模板液挥发完全后,固化仍在继续,直至完成终固化过程,最后得到可逆大孔弹性体聚合物。如图2所示,该聚合物可以在不同的刺激条件在实心和大孔状态下切换。图3为本发明实施例制备的大致流程,展示了不同阶段的样品状态。
下面实施例采用不同的单体以及对应的模板液合成具有不同性能的可逆大孔弹性体聚合物,由于材料不同,每个实施例也具有与之对应的刺激方式来实现状态可逆,从而在不同场所应用。本发明包括但不限于下列实施例,下列实施例仅用于举例说明本发明,不具有限定作用。
实施例1:
本实施例的小分子聚合得到可逆动态大孔聚合物的制备方法包括:
将20g的4-羟基丁基丙烯酸酯、0.2g的1,6-己二醇二丙烯酸酯、0.1g的偶氮二异丁腈和0.2g的聚(4-羟基丁基丙烯酸酯)混合均匀,得到粘稠聚合前体溶液。然后与3.1g的含1wt%的聚乙烯醇水混合,剧烈搅拌得到乳液。所得到的乳液在室温、自然光和敞口条件下固化1天,在固化后得到处于实心态的动态可逆大孔聚合物。
本实施例制得可逆动态大孔弹性体聚合物材料为透明材料。
实施例2:
本实施例的小分子聚合得到可逆动态大孔聚合物的制备方法包括:
将20g的4-羟基丁基丙烯酸酯、0.2g的1,6-己二醇二丙烯酸酯、0.1g的偶氮二异丁腈和0.2g的聚(4-羟基丁基丙烯酸酯)混合均匀,得到粘稠聚合前体溶液。然后与3.1g的纯水混合,剧烈搅拌得到乳液。所得到的乳液在 40℃的密封条件下进行预固化15分钟;然后样品敞口放入保干器中,在室温下抽真空直到得到透明样品后,取出样品,重新升温到40进行固化1天。在固化后得到处于实心态的动态可逆大孔聚合物。
本实施例制得可逆动态大孔弹性体聚合物材料为透明材料。
实施例3:
本实施例通过可交联聚合物前体制备可逆动态大孔弹性体聚合物的制备方法包括:
将10g的A,10g的B的混合液得到有机硅前体。将有机硅前体和3g的含有1wt%聚乙烯醇水溶液混合搅拌30min,将得到的乳液浇注在基底上于室温下固化6天制得可逆动态大孔弹性体聚合物材料。
本实施例制得可逆动态大孔弹性体聚合物材料为透明材料。
实施例4:
本实施例通过可交联聚合物前体制备可逆动态大孔弹性体聚合物的制备方法包括:
在硅胶前体20g和2g的混合液添加1%的铂催化剂溶液,混合得到高反应活性的有机硅前体。将有机硅前体和3.4g的含有1wt%聚乙烯醇水溶液混合搅拌30min,将得到的乳液浇注在基底上于室温下固化6天制得可逆动态大孔弹性体聚合物材料。
本实施例制得含有非均相结构的可逆动态大孔弹性体聚合物材料为透明材料。
实施例5:
本实施例的可逆动态大孔弹性体聚合物材料的制备方法包括:
将10g的A和10g的B混合均匀,得到有机硅前体。将有机硅前体和3g 的含有1%聚乙烯醇的水溶液混合搅拌5min,将得到的乳液浇注在基底上于70℃环境下预固化20min,得到不透明薄膜材料,不透明膜继续于70℃开放环境中固化2天,制得透明的可逆动态大孔弹性体聚合物材料。
本实施例制得可逆动态大孔弹性体聚合物材料为透明材料。
实施例6:
本实施例的可逆动态大孔弹性体聚合物材料的制备方法包括:
将10g的A和10g的B混合均匀,得到有机硅前体。将有机硅前体和3g的含有1wt%聚乙烯醇的水溶液混合搅拌10min,将得到的乳液浇注在基底上于70℃环境下预固化20min,得到不透明薄膜材料,不透明薄膜继续于70℃开放环境中固化2天,制得透明的可逆动态大孔弹性体聚合物材料。
本实施例制得可逆动态大孔弹性体聚合物材料为透明材料。
实施例7:
本实施例的可逆动态大孔弹性体聚合物材料的制备方法包括:
将10g的A和10g的B混合均匀,得到有机硅前体。将有机硅前体和3g的含有1%聚乙烯醇的水溶液混合搅拌30min,将得到的乳液浇注在基底上于70℃环境下预固化20min,得到不透明薄膜材料,继续于70℃开放环境中固化2天,制得透明的可逆动态大孔弹性体聚合物材料。
本实施例制得可逆动态大孔弹性体聚合物材料为透明材料。
实施例8:
本实施例的具有多层次孔结构的可逆动态大孔弹性体聚合物材料的制备方法包括:
将10g的A和10g的B混合均匀,得到有机硅前体。将有机硅前体和3g的含有1%聚乙烯醇的水溶液混合搅拌30min,将得到的乳液1。将10g的A 和10g的B混合均匀,得到有机硅前体。将有机硅前体和3g的含有1%聚乙烯醇的水溶液混合搅拌1min,将得到的乳液2。把乳液1和乳液2混合搅拌4分钟得到固化前体。将固化前体浇注在基底上于70℃密闭环境下预固化20min,得到不透明薄膜材料,敞口继续于70℃开放环境中固化2天,制得透明的可逆动态大孔弹性体聚合物材料。
本实施例制得可逆动态大孔弹性体聚合物材料为透明材料
实施例9:
本实施例的具有颜色的可逆动态大孔弹性体聚合物材料的制备方法包括:
将10g的A和10g的B和0.05g的基于苝酰亚胺的油溶性红色有机颜料混合均匀,得到有机硅前体。将有机硅前体和3g的含有1%聚乙烯醇的水溶液混合搅拌30min,将得到的乳液浇注在基底上于70℃密闭环境下预固化20min,得到不透明薄膜材料;不透明薄膜材料继续于70℃开放环境中固化2天,制得具有红色的透明的可逆动态大孔弹性体聚合物材料。
本实施例制得具有颜色的可逆动态大孔弹性体聚合物材料为透明材料。
实施例10:
本实施例的具有功能孔表面的可逆动态大孔弹性体聚合物材料的制备方法包括:
将10g的A和10g混合均匀,得到有机硅前体。将有机硅前体和3g含有1%聚(N-异丙基丙烯酰胺)的水溶液混合搅拌30min,将得到的乳液浇注在基底上于70℃密闭环境下预固化20min,得到不透明薄膜材料;不透明薄膜材料继续于70℃开放环境中固化2天,制得具有功能孔表面的可逆动态大孔弹性体聚合物材料。把样品切开,冷水滴能浸润表面和高温水滴不能浸润表面。
本实施例制得具有功能孔表面的可逆动态大孔弹性体聚合物材料为透明材 料。
实施例11:
本实施例的具有特定图案的可逆动态大孔弹性体聚合物材料的制备方法包括:
将10g的A和10g的B混合均匀,得到有机硅前体。有机硅胶前体浇注在基底上,用注射器通过注入含1wt%聚乙烯纯水溶液写出“人”字,然后将其置于70℃开放环境中固化5天,制得透明实心聚合物材料。如图5所示,在施加拉力后(刺激1),可以看到不透明“人”字出现,反之,再通过施加压力(刺激2),不透明“人”字消失,聚合物材料恢复原状。
本实施例制得外界刺激下图案化的可逆动态大孔弹性体聚合物材料为透明材料。
实施例12:
本实施例的在外界刺激下打开和闭合的通道的可逆动态弹性体聚合物材料的制备方法包括:
将10g的A和10g的B混合均匀,得到有机硅前体。有机硅胶前体浇注在基底上,通过针头在粘稠前体中注入聚乙烯醇水溶液,形成一条贯前体的纤维状水模板,然后将其置于70℃开放环境中固化5天,制得透明实心聚合物材料。如图6所示,在施加拉力后(刺激1),可以看到一条通道,反之,再通过施加压力(刺激2),聚合物材料恢复原状。
本实施例制得在外界刺激下打开和闭合的通道可逆动态弹性体聚合物材料为透明材料。
实施例13:
本实施例的各项异性的可逆动态大孔弹性体聚合物材料的制备方法包括:
将10g的A和10g的B混合均匀,得到有机硅前体。将有机硅前体和3g的含有1%聚乙烯醇的水溶液混合搅拌30min,将得到的乳液浇注在基底上于70℃密闭环境下预固化20min,然后将预固化的弹性体被拉伸到110%,然后将其置于70℃开放环境中固化2天,制得110%各项异性的的透明实心聚合物材料。
实施例14:
本实施例的各项异性的可逆动态大孔弹性体聚合物材料的制备方法包括:
将10g的A和10g的B混合均匀,得到有机硅前体。将有机硅前体和3g的含有1%聚乙烯醇的水溶液混合搅拌30min,将得到的乳液浇注在基底上于70℃密闭环境下预固化20min,然后将预固化的弹性体被拉伸到170%,然后将其置于70℃开放环境中固化2天,制得170%各项异性的透明实心聚合物材料。
实施例15:
本实施例的各项异性的可逆动态大孔弹性体聚合物材料的制备方法包括:
将10g的A和10g的B混合均匀,得到有机硅前体。将有机硅前体和3g的含有1%聚乙烯醇的水溶液混合搅拌30min,将得到的乳液浇注在基底上于70℃密闭环境下预固化20min,然后将预固化的弹性体被拉伸到250%,然后将其置于70℃开放环境中固化2天,制得250%各项异性的的透明实心聚合物材料。
实施例16:
本实施例的具有可控孔隙率的可逆动态大孔弹性体聚合物材料的制备方法包括:
将10g的A和10g的B混合均匀,得到有机硅前体。将有机硅前体和1g的含有1%聚乙烯醇的水溶液混合搅拌30min,将得到的乳液浇注在基底上于70℃密闭环境下预固化20min,然后将其置于70℃开放环境中固化2天,制得含水5wt%的透明实心聚合物材料。
实施例17:
本实施例的具有可控孔隙率的可逆动态大孔弹性体聚合物材料的制备方法包括:
将10g的A和10g的B混合均匀,得到有机硅前体。将有机硅前体和20g的含有1%聚乙烯醇的水溶液混合搅拌30min,将得到的乳液浇注在基底上于70℃密闭环境下预固化20min,然后将其置于70℃开放环境中固化2天,制得含水50wt%的透明实心聚合物材料。
实施例18:
本实施例的具有可控孔隙率的可逆动态大孔弹性体聚合物材料的制备方法包括:
将1g的A和1g的B混合均匀,得到有机硅前体。将有机硅前体和20g的含有1%聚乙烯醇的水溶液混合搅拌30min,将得到的乳液浇注在基底上于70℃密闭环境下预固化20min,然后将其置于70℃开放环境中固化2天,制得含水90wt%的透明实心聚合物材料。
实施例19:
本实施例的具有可调制冷和制热功能的大孔弹性体聚合物涂层的制备方法包括:
将10g的A和10g的B混合均匀,得到有机硅前体。将8g有机硅前体和1g碳黑混合,搅拌30分钟得到黑色液体,把液体刷在瓷砖上,置于70℃固化4小时得到第一层。将12g有机硅前体和含有30g含1%聚乙烯醇的水溶液混合搅拌30min,将得到的乳液刷在固化好的第一层样品上,于70℃密闭环境下预固化20min,然后将其置于70℃开放环境中固化2天,制得双层材料。通过刮得到多孔态,挤压得到实心态。
本实施例制得各项异性的可逆动态大孔弹性体聚合物材料为透明材料。
试验例1 可逆动态大孔弹性体聚合物材料的机械力响应性
请参照图4所示,本发明实施例的可逆动态大孔弹性体聚合物材料在拉力作用下,其由实心态转变为多孔态;在压力作用下,由多孔态再次转变为实心态,实现动态可逆。
试验例2 可逆动态大孔弹性体聚合物材料的溶剂响应性
请参照图5和图6,通过在浇注时在材料中充入模板液或利用模具,在固化体中形成具有特定形状的弹性体材料,如图5所示的人字形和图6所示一字型。通过力或是溶剂溶胀,可将最初的实心态内的塌陷在拉力作用下显现出相应图案,或是溶剂进入大孔中溶胀,形成相应图案。
试验例3 模板液含量对孔结构的影响
请参照图7和图8,当以水作为模板液,15%水含量的固化前体制备得到弹性体聚合物材料为封闭孔,90%水含量的固化前体制备得到的弹性体聚合物为开口孔。图9是将多种不同含水量的固化前体进行混合,得到的具有多层次孔结构的大孔弹性体聚合物。从图10可以看出,随着含水量的增加,孔隙率随之增大。
试验例4 不同机械力刺激角度对光学性能的影响
如图11所示,拉伸到250%的各向异性可逆动态大孔弹性体聚合物材料在不同角度机械力作用下其透光度各不相同。当拉力方向为0°,即,平行材料表面施加拉力时,随着拉力的不断增大,透光度几乎不发生变化。然而,当拉力发生倾斜,相对于材料表面为45°或90°时,随着拉力增大,透光度逐渐降低,90°时下降较45°快。
从图12可以看出,随着循环次数的增加,太阳光透光度变化稳定,说明本 发明的可逆动态大孔弹性体聚合物材料并不会随着循环次数的增加而导致透光性和遮光性之间切换有性能差异,材料性能比较稳定。
试验例5 可逆动态大孔弹性体聚合物材料的制冷制热效果
如图13和图14所示,图13为实心状态,材料内部的温度明显高于环境大气温度,材料可以让太阳光透过,能够有效起到制热作用;图14为多孔状态,涂层内部温度明显低于大气温度,能够反射太阳光且热辐射散热,起到制冷的作用。
试验例6 可逆动态大孔弹性体聚合物材料的密度
如图15所示,随着孔隙率增加,多孔态的弹性体聚合物材料其密度也随之降低,与实心态的密度差异明显,如图16所示,实心态的弹性体聚合物材料沉入水底,而多孔态的弹性体聚合物漂浮在水面,说明不同状态下材料密度发生变化。如图18所示,随着孔隙率增加,多孔态的弹性体聚合物材料的硅油溶胀比例升高。
试验例7 可逆动态大孔弹性体聚合物材料的表面粗糙度
如图17所示,在不同状态下,弹性体聚合物材料的表面粗糙度发生变化,当为实心态时,接触角为108°,多孔态时,接触角为152°,多孔态相较于实心态的表面更粗糙。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种可逆动态大孔弹性体聚合物材料的制备方法,其特征在于,包括以下步骤:
    (1)将包含可聚合单体和交联剂的混合前体或者将可交联聚合前体与模板液混合,得到固化前体;
    其中,所述模板液为与所述混合前体不相容的挥发性溶液,或者为与所述可交联聚合前体不相容的挥发性溶液;
    (2)将所述固化前体施加至基底或模具中固化,制得可逆动态大孔弹性体聚合物材料。
  2. 根据权利要求1所述的可逆动态大孔弹性体聚合物材料的制备方法,其特征在于,步骤(2)中固化过程是在开放环境中进行,固化温度为室温或不高于所述模板液的沸点温度。
  3. 根据权利要求1所述的可逆动态大孔弹性体聚合物材料的制备方法,其特征在于,步骤(2)的固化过程包括以下步骤:
    (21)将所述固化前体施加至基底或模具中并且在所述模板液存在的条件下于密封环境中进行预固化,固化温度为室温或不高于所述模板液的沸点温度,得到预固化体;
    (22)将所述预固化体中的模板液的挥发性成分挥发去除,得到中间体;
    (23)将所述中间体进行终固化,固化温度为室温或低于200℃,制得可逆动态大孔弹性体聚合物材料。
  4. 根据权利要求1-3任一项所述的可逆动态大孔弹性体聚合物材料的制备方法,其特征在于,所述可聚合单体为非挥发单体或沸点高于150℃的单体或两者混合物。
  5. 根据权利要求4所述的可逆动态大孔弹性体聚合物材料的制备方法,其 特征在于,所述可聚合单体为4-羟基丁基丙烯酸酯、丙烯酸异辛酯、聚(乙二醇)甲基醚丙烯酸酯、八甲基环四硅醚、甲基环戊二烯二聚体和双环戊二烯中的一种或多种组合;
    所述交联剂为1,6-己二醇二丙烯酸酯、1,6-己二醇二甲基丙烯酸酯、1,4-丁二醇二丙烯酸酯、1,4-丁二醇二甲基丙烯酸酯、1,2-乙二醇二丙烯酸酯、1,2-乙二醇二甲基丙烯酸酯、聚(乙二醇)二丙烯酸酯和聚(乙二醇)二甲基丙烯酸酯中的一种或多种组合;
    所述模板液为水、聚乙烯醇水溶液、聚环氧乙烯水溶液、乙醇、异丙醇、***或正己烷。
  6. 根据权利要求4所述的可逆动态大孔弹性体聚合物材料的制备方法,其特征在于,所述混合前体还包括引发剂和/或增稠剂。
  7. 根据权利要求1-3任一项所述的可逆动态大孔弹性体聚合物材料的制备方法,其特征在于,所述可交联聚合前体为双端丙烯酸酯化的聚丙烯、双端丙烯酸酯化的聚四氢呋喃、双端丙烯酸酯化的聚丙烯、双端巯基化的聚丙烯、双端丙烯酸酯化的聚四氢呋喃和双端巯基化的聚四氢呋喃中的一种或多种组合,或者为有机硅胶;
    所述模板液为水、聚乙烯醇水溶液、聚(N-异丙基丙烯酰胺)水溶液、乙醇、异丙醇、***或正己烷。
  8. 根据权利要求7所述的可逆动态大孔弹性体聚合物材料的制备方法,其特征在于,所述可交联聚合前体还包括交联催化剂、自由基引发剂、油溶性有机颜料和表面活性剂中的一种或多种组合,所述交联催化剂为锡催化剂或铂催化剂。
  9. 权利要求1-8任一项所述的制备方法制备得到的可逆动态大孔弹性体聚 合物材料。
  10. 权利要求9所述的可逆动态大孔弹性体聚合物材料在制备刺激响应性聚合物材料中的应用。
PCT/CN2020/072562 2019-12-03 2020-01-16 可逆动态大孔弹性体聚合物材料及其制备方法和应用 WO2021109323A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911218637.7 2019-12-03
CN201911218637.7A CN110922629B (zh) 2019-12-03 2019-12-03 可逆动态大孔弹性体聚合物材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2021109323A1 true WO2021109323A1 (zh) 2021-06-10

Family

ID=69848436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072562 WO2021109323A1 (zh) 2019-12-03 2020-01-16 可逆动态大孔弹性体聚合物材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN110922629B (zh)
WO (1) WO2021109323A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111718651A (zh) * 2020-05-22 2020-09-29 苏州天澜生物材料科技有限公司 一种双层智能温控涂层材料及其制备方法和应用
CN114773202B (zh) * 2022-04-13 2023-07-21 电子科技大学长三角研究院(湖州) 一种用于分析互穿网络拓扑结构对材料性能影响的探针的制备方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070112081A1 (en) * 2003-12-12 2007-05-17 Basf Aktiengensellschaft Moldable-foam moldings composed of expandable styrene polymers and mixtures with thermoplastic polymers
EP1939241A1 (en) * 2006-12-04 2008-07-02 Rohm and Haas Company Rigid, Low Density Foam
CN103804889A (zh) * 2014-02-18 2014-05-21 山东美瑞新材料有限公司 一种发泡热塑性聚氨酯粒子及其制备方法和应用
CN105085916A (zh) * 2015-09-25 2015-11-25 青岛海洋新材料科技有限公司 一种低密度聚酰亚胺泡沫及其生产工艺
CN107151301A (zh) * 2017-05-22 2017-09-12 天津晶润锐拓科技发展有限公司 一种聚脲多孔载体球的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107312188B (zh) * 2017-08-02 2020-10-13 四川大学 一种含石墨烯的多孔硅橡胶薄膜及其制备方法和用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070112081A1 (en) * 2003-12-12 2007-05-17 Basf Aktiengensellschaft Moldable-foam moldings composed of expandable styrene polymers and mixtures with thermoplastic polymers
EP1939241A1 (en) * 2006-12-04 2008-07-02 Rohm and Haas Company Rigid, Low Density Foam
CN103804889A (zh) * 2014-02-18 2014-05-21 山东美瑞新材料有限公司 一种发泡热塑性聚氨酯粒子及其制备方法和应用
CN105085916A (zh) * 2015-09-25 2015-11-25 青岛海洋新材料科技有限公司 一种低密度聚酰亚胺泡沫及其生产工艺
CN107151301A (zh) * 2017-05-22 2017-09-12 天津晶润锐拓科技发展有限公司 一种聚脲多孔载体球的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI LING, YUE FENG-YING;QIAO LIN;SHEN HENG-RUI;SUO YAN-CHUN: "Flexible Pressure Sensor Based on Dielectric Layer of Porous PDMS Thin Film", INSTRUMENT TECHNIQUE AND SENSOR, SHENYANG YIQI YIBIAO GONGYI YANJIUSUO, CHINA, no. 4, 1 January 2019 (2019-01-01), China, pages 15 - 19, XP055819319, ISSN: 1002-1841 *

Also Published As

Publication number Publication date
CN110922629A (zh) 2020-03-27
CN110922629B (zh) 2021-01-26

Similar Documents

Publication Publication Date Title
WO2021109323A1 (zh) 可逆动态大孔弹性体聚合物材料及其制备方法和应用
Guo et al. Inspired smart materials with external stimuli responsive wettability: a review
Cao et al. Light-responsive Janus-particle-based coatings for cell capture and release
CN111925723B (zh) 一种制备具有力致变色能力的结构色色彩涂层的方法
Szilágyi et al. Rewritable microrelief formation on photoresponsive hydrogel layers
US7459197B2 (en) Reversibly adaptive rough micro- and nano-structures
TWI486412B (zh) 抗反射塗料組合物及其製備方法
Zhang et al. Active and responsive polymer surfaces
CN113248751A (zh) 一种液晶弹性体薄膜及其制备方法和应用
CN109021268A (zh) 一种快速响应光致变色凝胶膜材料的制备方法
JP3584722B2 (ja) 高分子ゲル組成物、その製造方法及びそれを用いた光学素子
JP4239637B2 (ja) 高分子ゲル組成物及びそれを用いた光学素子
CN110038644B (zh) 一种基于高内相乳液模法的共价有机框架复合材料及其制备方法和应用
JP4155016B2 (ja) 高分子ゲル組成物、並びに、それを用いた光学素子、樹脂組成物、及び光学フィルム
CN105859935A (zh) 一种内部具有体型网状结构的海绵体聚合物微球的制备方法
CN114940769B (zh) 基于结构色的无角度依赖电响应薄膜及其制备方法和应用
CN113386437A (zh) 具有温度/电压响应变色的柔性光子晶体材料及其制备方法
CN110531447A (zh) 一种防眩光保护膜及其制备方法
JP4378886B2 (ja) 高分子ゲル組成物及びその製造方法、並びに、前記高分子ゲル組成物を用いた光学素子
KR20080107864A (ko) 컬러 전자 잉크를 위한 마이크로캡슐의 제조방법
CN107848251A (zh) 层叠光学膜、层叠光学膜的制造方法、光学构件及图像显示装置
JP3876602B2 (ja) 高分子ゲル組成物およびその製造方法、並びにそれを用いた光学素子
JP2002105344A (ja) 高分子ゲル組成物およびその製造方法、並びにそれを用いた光学素子
JP2006036811A (ja) 機能性高分子ゲル、及びそれを含有する高分子ゲル組成物、並びに光学素子
Zhang Progress in preparation of monodisperse polymer microspheres

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20896339

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20896339

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20896339

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/03/2023).

122 Ep: pct application non-entry in european phase

Ref document number: 20896339

Country of ref document: EP

Kind code of ref document: A1