WO2021057032A1 - 一种透射式可控温的激光激发远程荧光材料的测试装置 - Google Patents

一种透射式可控温的激光激发远程荧光材料的测试装置 Download PDF

Info

Publication number
WO2021057032A1
WO2021057032A1 PCT/CN2020/088858 CN2020088858W WO2021057032A1 WO 2021057032 A1 WO2021057032 A1 WO 2021057032A1 CN 2020088858 W CN2020088858 W CN 2020088858W WO 2021057032 A1 WO2021057032 A1 WO 2021057032A1
Authority
WO
WIPO (PCT)
Prior art keywords
integrating sphere
fluorescent material
spectrometer
temperature
testing device
Prior art date
Application number
PCT/CN2020/088858
Other languages
English (en)
French (fr)
Inventor
周晓萍
邓亮
樊嘉杰
丰建芬
李茹
唐芝彬
Original Assignee
常州星宇车灯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州星宇车灯股份有限公司 filed Critical 常州星宇车灯股份有限公司
Publication of WO2021057032A1 publication Critical patent/WO2021057032A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means

Definitions

  • the design relates to the technical field of semiconductor laser testing, specifically a transmission type temperature-controllable laser excitation remote fluorescent material testing device.
  • laser diode lighting As a new generation technology in the field of third-generation semiconductor lighting, laser diode lighting has unique advantages over LED lighting: long life, higher brightness, smaller volume, higher photoelectric conversion efficiency, and longer irradiation distance.
  • the device for laser excitation of the remote fluorescent material can measure the reflectance and transmittance parameters and can simultaneously test the thermal stability phenomenon of the fluorescent material.
  • the purpose of the present invention is to solve the above technical shortcomings and provide a transmission type temperature-controllable laser-excited remote fluorescent material testing device that can realize laser-excited remote fluorescent material testing.
  • a transmission-type temperature-controllable laser excitation remote fluorescent material test device which is characterized in that it includes integrating sphere 1, integrating sphere 2, integrating sphere three, control Temperature platform, slide rail one, slide rail two, optical platform, laser diode, slider one, slider two, slider three, spectrometer one, spectrometer two, spectrometer three and drive power, integrating sphere one is installed on slider three And through the sliding block three, the sliding rail 1 and the sliding rail two are respectively slid and matched, the integrating sphere 2 is installed on the sliding rail 2 and the sliding rail 1 and the sliding rail 2 are respectively slidably matched through the sliding block 2, and the integrating sphere 3 is installed on the sliding block
  • the laser diode is placed on the side of the integrating sphere, and the light beam emitted by the laser diode is irradiated on the temperature control platform where the fluorescent material is placed through the integrating sphere.
  • the first spectrometer that collects the reflected light inside the integrating sphere one is installed on the optical platform and located beside the integrating sphere
  • the second spectrometer for collecting the scattered light inside the integrating sphere two is installed on the optical platform and located beside the second integrating sphere for collection
  • the transmitted light spectrometer 3 inside the integrating sphere 3 is installed on the optical platform and beside the integrating sphere 3.
  • the slide rails 1 and 2 are both installed on the optical platform.
  • the driving power supply is installed on the optical platform and is connected to the spectrometer 1 and spectrometer respectively.
  • Spectrometer 3. Electrical connection between laser diode and temperature control platform.
  • the sliding rail 1 and the sliding rail 2 are detachably connected to the optical platform.
  • the volume and density of integrating sphere one, integrating sphere two, and integrating sphere three are the same.
  • a clamp is also included, and the laser diode is mounted on the optical platform through the clamp.
  • the temperature control platform includes a copper plate, a semiconductor cooler TEC, a radiator, a bracket, a fluorescent material placement area, a temperature sensor, a temperature measuring instrument, a driving power supply, and a wire.
  • the copper plate is installed on the bracket, and a fluorescent material is placed on the front of the copper plate.
  • the fluorescent material is placed above the area with a temperature sensor
  • the back of the copper plate is provided with a semiconductor cooler TEC and a radiator in turn, the copper plate, semiconductor cooler TEC and the radiator are all provided with through holes
  • the temperature sensor is connected to the temperature measuring instrument signal.
  • the driving power supply is electrically connected with the semiconductor cooler TEC through a wire.
  • the temperature control platform further includes a fan, the fan is arranged on the bracket and faces the copper plate, and the driving power supply is electrically connected to the fan through a wire.
  • the fluorescent material placement area on the copper plate is coated with thermal conductive glue.
  • the through hole of the heat sink is coaxial with the through hole of the semiconductor refrigerator TEC and the through hole on the heat sink, and the diameter of the through hole is the same.
  • the transmission-type temperature-controllable laser-excited remote fluorescent material testing device of the present invention can simultaneously measure reflected light, scattered light and transmitted light in the experiment of laser-excited remote fluorescent material when in use. And through the temperature control platform to control the temperature of the fluorescent material, its thermal stability test is realized.
  • Fig. 1 is a schematic diagram of a test structure of a transmission-type temperature-controllable laser excitation remote fluorescent material test device.
  • FIG. 2 is a schematic diagram of the temperature control platform of the transmission-type temperature-controllable laser excitation remote fluorescent material test device
  • Fig. 3 is a schematic diagram of the test flow of the temperature control platform of the transmission-type temperature-controllable laser excitation remote fluorescent material test device.
  • a transmission-type temperature-controllable laser excitation remote fluorescent material testing device including integrating sphere-1, integrating sphere-2, integrating sphere-3, temperature control platform 4, slide rail-1 , Slide two 6, optical platform 7, laser diode 8, slider one 9, slider two 10, slider three 11, spectrometer one 12, spectrometer two 13, spectrometer three 14 and drive power 15, integrating sphere one 1 installation
  • the integrating sphere two 2 is installed on the sliding block two 10 and is respectively connected with the sliding rail one 5 and the sliding rail one through the sliding block two 10
  • Sliding rail two 6 is in sliding fit
  • integrating sphere three 3 is mounted on sliding rail one 9 and is slidably matched with sliding rail one 5 and sliding rail two 6 through sliding block one 9, by limiting the positions of sliding rail one and two Therefore, it can be stably ensured that the positions of integrating sphere-1, integrating sphere-2, and
  • the fluorescent material in the fluorescent material placement area on the temperature control platform 4 needs to be processed each time When replacing, you can directly slide integrating sphere-1, integrating sphere-2, and integrating sphere-3, so that a gap is formed between integrating sphere-1 and integrating sphere-2, which facilitates the replacement of fluorescent materials.
  • the laser diode 8 is placed in the integrating sphere. A side 1 and a blue laser diode are used. The light beam emitted by the laser diode 8 is irradiated on the temperature control platform 4 coated with fluorescent material through the integrating sphere 1.
  • the laser light emitted by the laser diode 8 will irradiate the fluorescent material placement area 43 on the copper plate 44, and its through hole 411 is located at the position of the fluorescent material placement area 43, so the light emitted by the fluorescent material will pass through the copper plate 44 and the semiconductor in turn
  • the through holes 411 on the cooler TEC45 and the radiator 46 enter the integrating sphere 1, integrating sphere 2 and integrating sphere 3.
  • the integrating sphere 1, integrating sphere 2 and integrating sphere 3 are all provided for light penetration.
  • the through hole one passing through and the through hole one and the through hole 411 are on the same center line
  • the end of the integrating sphere 3 3 is a closed structure
  • the spectrometer 12 for collecting the reflected light inside the integrating sphere 1 is installed on the optical platform 7 And it is located next to integrating sphere 1
  • spectrometer two 13 for collecting scattered light inside integrating sphere two 2 is installed on the optical platform 7 and located next to integrating sphere two 2, and is used to collect the transmitted light inside integrating sphere three 3.
  • Three 14 is installed on the optical platform 7 and beside the integrating sphere three, the slide rail 5 and the slide rail two 6 are both installed on the optical platform 7, and the driving power supply 15 is installed on the optical platform 7 and is respectively connected with the spectrometer 12 and the spectrometer.
  • Two 13 is installed on the optical platform 7 and beside the integrating sphere three, the slide rail 5 and the slide rail two 6 are both installed on the optical platform 7, and the driving power supply 15 is installed on the optical platform 7 and is respectively connected with the spectrometer 12 and the spectrometer. Two 13.
  • Spectrometer three 14, laser diode 8 and temperature control platform 4 are electrically connected; slide rail one 5 and slide rail two 6 are detachably connected to the optical platform 7; integrating sphere one 1, integrating sphere two 2, integral The volume and density of the ball 3 are the same; it also includes a fixture 16, and the laser diode 8 is installed on the optical platform 7 through the fixture 16; the temperature control platform 4 includes a copper plate 44, a semiconductor cooler TEC45, a radiator 46, a bracket 47, and fluorescent materials Placement area 43, temperature sensor 41, measuring The temperature meter 42, the driving power supply 410 and the wire 49, the copper plate 44 is installed on the bracket 47, the front of the copper plate 44 is provided with a fluorescent material placement area 43, the fluorescent material placement area 43 is provided with a temperature sensor 41, and the back of the copper plate 44 is sequentially provided with semiconductors
  • the cooler TEC45 and the radiator 46, the copper plate 44, the semiconductor cooler TEC45 and the radiator 46 are provided with through holes 411, and the laser light e
  • the light passing through the fluorescent material at the same time passes through the copper plate 44, the semiconductor cooler TEC45 and the through hole 411 on the heat sink 46 in turn, and enters the through hole 1 of the integrating sphere two 2 and the integrating sphere three 3 .
  • the temperature sensor 41 is signally connected to the temperature measuring instrument 42, and the driving power supply 410 is electrically connected to the semiconductor cooler TEC45 through the wire 49; the semiconductor cooler TEC45 is powered by the driving power supply 410, and the PLC control module directly controls the semiconductor cooler TEC45 to realize the control of the copper plate 44 Heating, so that the thermal stability of the fluorescent material can be detected by the temperature sensor 41;
  • the fan 48 also includes a fan 48.
  • the fan 48 is arranged on the bracket 47 and faces the copper plate 44.
  • the driving power supply 410 is electrically connected to the fan 48 through a wire 49; the fluorescent material placement area 43 on the copper plate 44 is coated with thermal conductive glue; the radiator 46 is provided with Through holes, the through holes 411 of the heat sink 46 are coaxial with the through holes 411 of the TEC45 and the through holes 411 on the heat sink 46, and the diameters of the through holes 411 are the same.
  • the fluorescent material is coated with thermally conductive glue and fixed on the copper plate 44.
  • the laser diode 8 excites the remote fluorescent material, and the temperature control platform 4 can realize its temperature control.
  • the PLC control module acts on the semiconductor refrigeration
  • the TEC45 changes its power to increase the temperature of the copper plate 44.
  • the temperature measuring instrument 42 collects the surface temperature of the copper plate 44 through the temperature sensor 41. When the collected temperature is lower than the set temperature, the driving power supply 410 continues to act on the semiconductor cooler TEC45. , The temperature is increased until the set temperature is reached.
  • the driving power supply 410 When the collected temperature reaches the set temperature, the driving power supply 410 is turned off; when the fluorescent material needs to be cooled, the PLC control module acts on the semiconductor cooler TEC45 to change its power, and the copper plate 44 The temperature is lowered, and the fan 48 is turned on to accelerate the cooling of the radiator 46.
  • the temperature measuring instrument 42 collects the surface temperature of the copper plate 44 through the temperature sensor 41.
  • the driving power supply 410 continues to act as semiconductor refrigeration.
  • the fan 48 continues to work and cools down until the set temperature is reached.
  • the driving power supply 410 When the collected temperature reaches the set temperature, the driving power supply 410 is turned off; the temperature control platform 4 can realize the temperature control of the fluorescent material to evaluate its heat Stability phenomenon.
  • the laser diode 8 is placed at the left end of the outside of the integrating sphere, the light is irradiated by the laser diode 8 to the temperature control platform 4 where the fluorescent material is placed, and the reflected light, scattered light, and transmitted light inside the integrating sphere are collected by the spectrometer.
  • the temperature is increased by changing the current of the semiconductor cooler TEC45, and the temperature measuring instrument 42 collects the surface temperature of the copper plate 44; when the fluorescent material needs to be cooled, the temperature is reduced by changing the current of the semiconductor cooler TEC45, and the fan 48 is turned on at the same time .
  • the surface temperature of the copper plate 48 is collected by the temperature measuring instrument 42.
  • the invention can not only collect the reflected light, scattered light and transmitted light of the remote fluorescent material excited by the laser at the same time, but also can control the temperature of the fluorescent material and evaluate its thermal stability performance.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种可实现激光激发远程荧光材料测试的透射式可控温的激光激发远程荧光材料的测试装置,包括积分球一(1)、积分球二(2)、积分球三(3)、控温平台(4)、滑轨一(5)、滑轨二(6)、光学平台(7)、激光二极管(8)、滑块一(9)、滑块二(6)、滑块三(11)、光谱仪一(12)、光谱仪二(13)、光谱仪三(14)和驱动电源(15),积分球一(1)安装在滑块三(11)上并通过滑块三(11)分别与滑轨一(5)和滑轨二(6)滑动配合,积分球二(2)安装在滑块二(10)上并通过滑块二(10)分别与滑轨一(5)和滑轨二(6)滑动配合,积分球三(3)安装在滑块一(9)上且并通过滑块一(9)分别与滑轨一(5)和滑轨二(6)滑动配合,激光二极管(8)放置于积分球一(1)旁,由激光二极管(8)发出光束通过积分球一(1)照射到放置荧光材料的控温平台(4)上。

Description

一种透射式可控温的激光激发远程荧光材料的测试装置 技术领域
本设计涉及半导体激光测试技术领域,具体为一种透射式可控温的激光激发远程荧光材料的测试装置。
背景技术
传统半导体白光照明主要采用蓝光LED芯片配合荧光粉的方式,但随着蓝光功率的不断上升,已出现日趋严重的发热和散热问题。近年激光二极管技术的发展,陆续出现蓝光激光和荧光转化材料配合的发光方案。作为第三代半导体照明领域的新一代技术,激光二极管照明有着超越LED照明的独特优势:长寿命、更高亮度、体积更小、光电转换效率更高、照射距离更长。而激光激发远程荧光材料的装置可以很好的测量反射率、透射率参数并且可以同时测试荧光材料的热稳定性现象。
而目前还没有此类试验的实验装置,故设计一款可以测量反射光、散射光和透射光且测试荧光材料的热稳定性现象的装置是很有必要的。
发明内容
本发明的目的是为了解决上述技术不足,提供了一种可实现激光激发远程荧光材料测试的透射式可控温的激光激发远程荧光材料的测试装置。
为解决上述技术问题,本发明所采用的技术方案为:一种透射式可控温的激光激发远程荧光材料的测试装置,其特征在于:包括积分球一、积分球二、积分球三、控温平台、滑轨一、滑轨二、光学平台、激光二极管、滑块一、滑块二、滑块三、光谱仪一、光谱仪二、光谱仪三和驱动电源,积分球一安装在滑块三上并通过滑块三分别与滑轨一和滑轨二滑动配合,积分球二安装在滑块二上并通过滑块二分别与滑轨一和滑轨二滑动配合,积分球三安装在滑块一上 且并通过滑块一分别与滑轨一和滑轨二滑动配合,激光二极管放置于积分球一旁,由激光二极管发出光束通过积分球一照射到放置荧光材料的控温平台上,用于采集积分球一内部的反射光的光谱仪一安装在光学平台上且位于积分球一旁,用于采集积分球二内部的散射光的光谱仪二安装在光学平台上且位于积分球二旁,用于采集积分球三内部的透射光的光谱仪三安装在光学平台上且位于积分球三旁,滑轨一、滑轨二均安装在光学平台上,驱动电源安装在光学平台上且分别与光谱仪一、光谱仪二、光谱仪三、激光二极管和控温平台电连接。
作为优选,滑轨一和滑轨二与光学平台之间为可拆式连接。
作为优选,积分球一、积分球二、积分球三的体积和密度均相同。
作为优选,还包括夹具,激光二极管通过夹具安装在光学平台上。
作为优选,控温平台包括铜板、半导体制冷器TEC、散热器、支架、荧光材料放置区、温度传感器、测温仪表、驱动电源和导线,铜板安装在支架上,铜板正面上设有荧光材料放置区,荧光材料放置区上方设有温度传感器,铜板背面依次设有半导体制冷器TEC和散热器,铜板、半导体制冷器TEC和散热器上均设有通孔,温度传感器与测温仪表信号连接,驱动电源通过导线与半导体制冷器TEC电连接。
作为优选,所述控温平台还包括风扇,风扇设在支架上且朝向铜板,驱动电源通过导线与风扇电连接。
作为优选,铜板上的荧光材料放置区涂覆有导热胶。
作为优选,所述散热器的通孔与半导体制冷器TEC的通孔以及散热器上的通孔均同轴心且通孔的孔径均相同。
本发明所达到的有益效果:本发明的透射式可控温的激光激发远程荧光材料的测试装置在使用时可以在激光激发远程荧光材料的试验中,同时测量反射 光、散射光和透射光,并且通过控温平台对荧光材料温度的控制,实现对其热稳定性测试。
附图说明
图1为透射式可控温的激光激发远程荧光材料的测试装置的测试结构示意图。
图2为透射式可控温的激光激发远程荧光材料的测试装置的控温平台的结构示意图
图3为透射式可控温的激光激发远程荧光材料的测试装置的控温平台的测试流程示意图。
具体实施方式
下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
如图1~3所示:一种透射式可控温的激光激发远程荧光材料的测试装置,包括积分球一1、积分球二2、积分球三3、控温平台4、滑轨一5、滑轨二6、光学平台7、激光二极管8、滑块一9、滑块二10、滑块三11、光谱仪一12、光谱仪二13、光谱仪三14和驱动电源15,积分球一1安装在滑块三11上并通过滑块三11分别与滑轨一5和滑轨二6滑动配合,积分球二2安装在滑块二10上并通过滑块二10分别与滑轨一5和滑轨二6滑动配合,积分球三3安装在滑块一9上且并通过滑块一9分别与滑轨一5和滑轨二6滑动配合,通过限定滑轨一和滑轨二的位置,从而可以稳定保证积分球一1、积分球二2和积分球三3的位置球心始终保持同轴心,再者当每一次需要对控温平台4上的荧光材料放置区的荧光材料进行更换时,可以直接滑动积分球一1和积分球二2以及积分球三3,从而使得积分球一1与积分球二2之间形成空隙,便于荧光材料的更换, 激光二极管8放置于积分球一1旁且采用蓝光激光二极管,由激光二极管8发出光束通过积分球一1照射到涂覆荧光材料的控温平台4上,由于铜板44、半导体制冷器TEC45和散热器46上均设有通孔411,激光二极管8发出的激光会照射在位于铜板44上的荧光材料放置区43,其通孔411就位于荧光材料放置区43位置,所以荧光材料发出的光线会依次穿过铜板44、半导体制冷器TEC45和散热器46上的通孔411,并进入积分球一1、积分球二2和积分球三3,积分球一1、积分球二2和积分球三3均设有用于光线穿过的通孔一且通孔一与通孔411为同一中心线上,积分球三3的末端为封闭结构,用于采集积分球一1内部的反射光的光谱仪一12安装在光学平台7上且位于积分球一1旁,用于采集积分球二2内部的散射光的光谱仪二13安装在光学平台7上且位于积分球二2旁,用于采集积分球三3内部的透射光的光谱仪三14安装在光学平台7上且位于积分球三3旁,滑轨一5、滑轨二6均安装在光学平台7上,驱动电源15安装在光学平台7上且分别与光谱仪一12、光谱仪二13、光谱仪三14、激光二极管8和控温平台4电连接;滑轨一5和滑轨二6与光学平台7之间为可拆式连接;积分球一1、积分球二2、积分球三3的体积和密度均相同;还包括夹具16,激光二极管8通过夹具16安装在光学平台7上;控温平台4包括铜板44、半导体制冷器TEC45、散热器46、支架47、荧光材料放置区43、温度传感器41、测温仪表42、驱动电源410和导线49,铜板44安装在支架47上,铜板44正面上设有荧光材料放置区43,荧光材料放置区43上方设有温度传感器41,铜板44背面依次设有半导体制冷器TEC45和散热器46,铜板44、半导体制冷器TEC45和散热器46上均设有通孔411,激光二极管8发出的激光会分别穿过积分球一1的通孔一打到荧光材料放置区43上的荧光材料上,同时穿过荧光材料的光线 会依次通过铜板44、半导体制冷器TEC45和散热器46上的通孔411,进入积分球二2的通孔一和积分球三3中。
温度传感器41与测温仪表42信号连接,驱动电源410通过导线49与半导体制冷器TEC45电连接;通过驱动电源410为半导体制冷器TEC45供电,PLC控制模块直接控制半导体制冷器TEC45实现对铜板44的加热,从而可以通过温度传感器41检测到荧光材料的热稳定性;
还包括风扇48,风扇48设在支架47上且朝向铜板44,驱动电源410通过导线49与风扇48电连接;铜板44上的荧光材料放置区43涂覆有导热胶;散热器46上设有通孔,散热器46的通孔411与半导体制冷器TEC45的通孔411以及散热器46上的通孔411均同轴心且通孔411的孔径均相同。
荧光材料涂覆导热胶固定在铜板44上,测试时,激光二极管8激发远程荧光材料,控温平台4可以实现其温度的控制,当需要对荧光材料升温时,由PLC控制模块作用于半导体制冷器TEC45改变其功率,对铜板44实行升温,由测温仪表42通过温度传感器41采集铜板44表面温度,当采集的温度低于设定温度时,则由驱动电源410继续作用于半导体制冷器TEC45,进行升温,直至达到设定温度,当采集的温度达到设定温度时,则关闭驱动电源410;当荧光材料需要降温时,由PLC控制模块作用于半导体制冷器TEC45改变其功率,对铜板44实行降温,同时开启风扇48对散热器46进行加速冷却,由测温仪表42通过温度传感器41采集铜板44表面温度,当采集的温度高于设定温度时,则由驱动电源410继续作用半导体制冷器TEC45同时风扇48继续工作,进行降温,直至达到设定温度,当采集的温度达到设定温度时,则关闭驱动电源410;控温平台4可以实现对荧光材料的温度控制,从而评价其热稳定性现象。
在测试时,激光二极管8放置于积分球外侧左端,光由激光二极管8照射到放置荧光材料的控温平台4,由光谱仪采集积分球内部的反射光、散射光、透射光。当荧光材料需要升温时,通过改变半导体制冷器TEC45电流升高温度,由测温仪表42采集铜板44表面温度;当荧光材料需要降温时,通过改变半导体制冷器TEC45电流降低温度,同时开启风扇48,加速降温冷却过程,由测温仪表42采集铜板48表面温度。本发明不仅能够同时采集激光激发远程荧光材料的反射光、散射光和透射光,而且可以对荧光材料进行控温处理,评价其热稳定性性能。
以上仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (8)

  1. 一种透射式可控温的激光激发远程荧光材料的测试装置,其特征在于:包括积分球一(1)、积分球二(2)、积分球三(3)、控温平台(4)、滑轨一(5)、滑轨二(6)、光学平台(7)、激光二极管(8)、滑块一(9)、滑块二(10)、滑块三(11)、光谱仪一(12)、光谱仪二(13)、光谱仪三(14)和驱动电源(15),积分球一(1)安装在滑块三(11)上并通过滑块三(11)分别与滑轨一(5)和滑轨二(6)滑动配合,积分球二(2)安装在滑块二(10)上并通过滑块二(10)分别与滑轨一(5)和滑轨二(6)滑动配合,积分球三(3)安装在滑块一(9)上且并通过滑块一(9)分别与滑轨一(5)和滑轨二(6)滑动配合,激光二极管(8)放置于积分球一(1)旁,由激光二极管(8)发出光束通过积分球一(1)照射到放置荧光材料的控温平台(4)上,用于采集积分球一(1)内部的反射光的光谱仪一(12)安装在光学平台(7)上且位于积分球一(1)旁,用于采集积分球二(2)内部的散射光的光谱仪二(13)安装在光学平台(7)上且位于积分球二(2)旁,用于采集积分球三(3)内部的透射光的光谱仪三(14)安装在光学平台(7)上且位于积分球三(3)旁,滑轨一(5)、滑轨二(6)均安装在光学平台(7)上,驱动电源(15)安装在光学平台(7)上且分别与光谱仪一(12)、光谱仪二(13)、光谱仪三(14)、激光二极管(8)和控温平台(4)电连接。
  2. 根据权利要求1的透射式可控温的激光激发远程荧光材料的测试装置,其特征在于:滑轨一(5)和滑轨二(6)与光学平台(7)之间为可拆式连接。
  3. 根据权利要求1的透射式可控温的激光激发远程荧光材料的测试装置,其特征在于:积分球一(1)、积分球二(2)、积分球三(3)的体积和密度均相同。
  4. 根据权利要求1的透射式可控温的激光激发远程荧光材料的测试装置,其特征在于:还包括夹具(16),激光二极管(8)通过夹具(16)安装在光学平台(7)上。
  5. 根据权利要求1的透射式可控温的激光激发远程荧光材料的测试装置,其特征在于:控温平台(4)包括铜板(44)、半导体制冷器TEC(45)、散热器(46)、支架(47)、荧光材料放置区(43)、温度传感器(41)、测温仪表(42)、驱动电源(410)和导线(49),铜板(44)安装在支架(47)上,铜板(44)正面上设有荧光材料放置区(43),荧光材料放置区(43)上方设有温度传感器(41),铜板(44)背面依次设有半导体制冷器TEC(45)和散热器(46),铜板(44)、半导体制冷器TEC(45)和散热器(46)上均设有通孔(411),温度传感器(41)与测温仪表(42)信号连接,驱动电源(410)通过导线(49)与半导体制冷器TEC(45)电连接。
  6. 根据权利要求5的透射式可控温的激光激发远程荧光材料的测试装置,其特征在于:所述控温平台(4)还包括风扇(48),风扇(48)设在支架(47)上且朝向铜板(44),驱动电源(410)通过导线(49)与风扇(48)电连接。
  7. 根据权利要求5的透射式可控温的激光激发远程荧光材料的测试装置,其特征在于:铜板(44)上的荧光材料放置区(43)涂覆有导热胶。
  8. 根据权利要求5的透射式可控温的激光激发远程荧光材料的测试装置,其特征在于:所述散热器(46)的通孔(411)与半导体制冷器TEC(45)的通孔(411)以及散热器(46)上的通孔(411)均同轴心且通孔(411)的孔径均相同。
PCT/CN2020/088858 2019-09-29 2020-05-07 一种透射式可控温的激光激发远程荧光材料的测试装置 WO2021057032A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910929473.2A CN110426380B (zh) 2019-09-29 2019-09-29 一种透射式可控温的激光激发远程荧光材料的测试装置
CN201910929473.2 2019-09-29

Publications (1)

Publication Number Publication Date
WO2021057032A1 true WO2021057032A1 (zh) 2021-04-01

Family

ID=68419102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088858 WO2021057032A1 (zh) 2019-09-29 2020-05-07 一种透射式可控温的激光激发远程荧光材料的测试装置

Country Status (2)

Country Link
CN (1) CN110426380B (zh)
WO (1) WO2021057032A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110426380B (zh) * 2019-09-29 2020-01-21 常州星宇车灯股份有限公司 一种透射式可控温的激光激发远程荧光材料的测试装置
CN111860987B (zh) * 2020-07-08 2024-05-31 江苏科慧半导体研究院有限公司 混合荧光材料发射光谱预测方法和装置
CN113848464B (zh) * 2021-11-25 2022-02-15 河北圣昊光电科技有限公司 一种芯片双积分球测试装置及测试方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101526465A (zh) * 2009-04-22 2009-09-09 天津大学 快速多波长组织光学参数测量装置及反构方法
CN105403548A (zh) * 2015-12-08 2016-03-16 厦门稀土材料研究所 一种变温光谱测量装置
CN207198042U (zh) * 2017-08-28 2018-04-06 重庆光遥光电科技有限公司 一种积分球内ld激发远程荧光粉的测试装置
US20190025208A1 (en) * 2017-07-21 2019-01-24 Hitachi High-Tech Science Corporation Fluorescence spectrophotometer and fluorescence spectrometry and imaging method
CN109540844A (zh) * 2018-11-06 2019-03-29 中国计量科学研究院 一种液体散射测量装置及其测量方法
CN110161010A (zh) * 2019-07-01 2019-08-23 河海大学常州校区 一种反射式可控温激光激发远程荧光材料测试装置
CN110186889A (zh) * 2019-06-03 2019-08-30 常州星宇车灯股份有限公司 激光远程激发测试装置及其测试方法
CN110426380A (zh) * 2019-09-29 2019-11-08 常州星宇车灯股份有限公司 一种透射式可控温的激光激发远程荧光材料的测试装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201740737U (zh) * 2010-05-18 2011-02-09 中国计量学院 一种基于led光源的积分球式荧光检测装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101526465A (zh) * 2009-04-22 2009-09-09 天津大学 快速多波长组织光学参数测量装置及反构方法
CN105403548A (zh) * 2015-12-08 2016-03-16 厦门稀土材料研究所 一种变温光谱测量装置
US20190025208A1 (en) * 2017-07-21 2019-01-24 Hitachi High-Tech Science Corporation Fluorescence spectrophotometer and fluorescence spectrometry and imaging method
CN207198042U (zh) * 2017-08-28 2018-04-06 重庆光遥光电科技有限公司 一种积分球内ld激发远程荧光粉的测试装置
CN109540844A (zh) * 2018-11-06 2019-03-29 中国计量科学研究院 一种液体散射测量装置及其测量方法
CN110186889A (zh) * 2019-06-03 2019-08-30 常州星宇车灯股份有限公司 激光远程激发测试装置及其测试方法
CN110161010A (zh) * 2019-07-01 2019-08-23 河海大学常州校区 一种反射式可控温激光激发远程荧光材料测试装置
CN110426380A (zh) * 2019-09-29 2019-11-08 常州星宇车灯股份有限公司 一种透射式可控温的激光激发远程荧光材料的测试装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHUO NING-ZE, ZHANG NA, LI BO-CHAO, LI WEN-QUAN, HE QING-YANG, SHI FENG-HUA, ZHU YUE-HUA, XING HAI-DONG, WANG HAI-BO: "Investigation of photo-chromic properties of remote phosphor film and white light emitting diode mixed with TiO2 particles", ACTA PHYSICA SINICA, vol. 65, no. 5, 1 January 2016 (2016-01-01), pages 058501, XP055794429, ISSN: 1000-3290, DOI: 10.7498/aps.65.058501 *

Also Published As

Publication number Publication date
CN110426380B (zh) 2020-01-21
CN110426380A (zh) 2019-11-08

Similar Documents

Publication Publication Date Title
WO2021057032A1 (zh) 一种透射式可控温的激光激发远程荧光材料的测试装置
CN1840958B (zh) ***构装的高功率高效率二极管灯泡
US20100142212A1 (en) Thermally managed lamp assembly
US20120320566A1 (en) Liquid crystal display device, and led backlight unit
CN101839413A (zh) Led日光灯
CN103308499A (zh) 一种蓝光led激发荧光粉性能测试装置及测试方法
CN201273934Y (zh) 一种便携式led热阻测试装置
CN102662301A (zh) 光源***及相关投影***
TWI696788B (zh) 光照射裝置
CN201934975U (zh) 带散热装置的内置电源式led灯管
US10707385B2 (en) Wavelength conversion member and light-emitting device
CN110161010B (zh) 一种反射式可控温激光激发远程荧光材料测试装置
CN108535226A (zh) 一种基于多路探头的荧光片发射光性能测试装置及方法
WO2018227945A1 (zh) 一种紫外光固化设备及控制方法
CN201526843U (zh) 一种光纤照明***
CN106772979A (zh) 一种智能型多波长led荧光显微镜光源
KR102000358B1 (ko) Led 광 제어 기술을 이용한 태양전지 특성 평가장치
CN103969290B (zh) Led超导板散热性能测试设备
CN102305386B (zh) 基于荧光粉提高光转换效率的光源结构
CN201615359U (zh) 一种led灯
CN210831890U (zh) 一种适用于荧光色轮及光源密封腔体的散热装置
CN221406168U (zh) 一种混合驱动的宽光谱高功率荧光照明装置
CN112226359A (zh) 一种便携式小型实时荧光定量pcr仪及其检测方法
CN103353091B (zh) 基于荧光粉提高光转换效率的光源结构
CN220120358U (zh) 一种防水激光灯光源散热检验装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20867079

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20867079

Country of ref document: EP

Kind code of ref document: A1