WO2021023076A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2021023076A1
WO2021023076A1 PCT/CN2020/105483 CN2020105483W WO2021023076A1 WO 2021023076 A1 WO2021023076 A1 WO 2021023076A1 CN 2020105483 W CN2020105483 W CN 2020105483W WO 2021023076 A1 WO2021023076 A1 WO 2021023076A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
dci
discontinuous reception
minimum
pdcch
Prior art date
Application number
PCT/CN2020/105483
Other languages
English (en)
French (fr)
Inventor
张战战
铁晓磊
周涵
黄雯雯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20850023.1A priority Critical patent/EP4009713A4/en
Publication of WO2021023076A1 publication Critical patent/WO2021023076A1/zh
Priority to US17/587,297 priority patent/US20220151017A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communication technology, and in particular to a communication method and device.
  • the network device will start the discontinuous reception inactivity timer (drx-InactivityTimer) at the first symbol after the symbol where the physical downlink control channel (PDCCH) of the DCI is transmitted.
  • drx-InactivityTimer discontinuous reception inactivity timer
  • the UE only after successfully decoding the DCI will the UE know whether the DCI indicates a new uplink or downlink data transmission. If the DCI indicates a new uplink or downlink data transmission, the UE starts the drx-InactivityTimer. The count value of the timer is still counted from the first symbol after the symbol where the PDCCH is located.
  • the network equipment and the UE will have an impact on the discontinuous reception activation time. Understand inconsistencies.
  • the network device thinks that the drx-InactivityTimer is running, so this time period is the discontinuous reception activation time; on the other hand, because the UE has not successfully decoded the DCI and has not started the drx-InactivityTimer, the UE thinks that the time period is non-inactive. Continuously receive activation time. If the network device sends the DCI to schedule the UE on the PDCCH during this time period, the UE will miss the PDCCH, resulting in a waste of network resources and power consumption, and also an increase in the data delay of the UE.
  • the reason that the UE decoding DCI time exceeds the discontinuous reception activation time may have the following two points:
  • the current downlink scheduling and uplink scheduling are restricted by minimum K0 and minimum K2 respectively.
  • the UE does not know whether the decoded DCI indicates downlink scheduling or uplink scheduling before successfully decoding the DCI, so if the UE wants to successfully decode the DCI before the scheduled data, the UE decoding time is limited by the minimum K0 and minimum K2 The smaller value of.
  • the UE has to reserve time for the uplink data to be sent after successfully decoding the DCI. Therefore, if the minimum K2 is less than the minimum K0, the UE generally does not extend the decoding time to N+minimum At the end of the K2-1 time slot, but to reserve time for data preparation.
  • minimum K2 greater than minimum K0 for downlink scheduling and uplink scheduling, the UE can extend the DCI decoding time to the time slot corresponding to N+minimum K0-1, for example, to the end time of the time slot corresponding to N+minimum K0-1 .
  • minimum K0 represents the minimum time slot interval between PDCCH and physical downlink shared channel (physical downlink shared channel, PDSCH)
  • minimum K2 represents the time between PDCCH and physical uplink shared channel (physical uplink shared channel, PDSCH).
  • N is the slot number of the slot where the DCI is located.
  • minimum K2 will be greater than or equal to minimum K0, and this application is also based on this assumption.
  • the shortest time for the UE to decode DCI may also require 2 to 3 time slots.
  • the network device will start the drx-InactivityTimer at the first symbol after the symbol where the PDCCH is located.
  • the network device considers that the UE is in discontinuous reception activation time during the operation of the drx-InactivityTimer.
  • the UE will consider the time slot as the non-discontinuous reception activation time, so the UE will not monitor the PDCCH. If the network device sends the DCI scheduling UE on the PDCCH in this time slot, the UE will miss the PDCCH, resulting in a waste of network resources and power consumption, and an increase in UE data delay.
  • the embodiments of the present application provide a communication method and device, which are used to solve the problem of inconsistent understanding of discontinuous reception activation time between network equipment and UE.
  • an embodiment of the present application provides a communication method.
  • the method includes: a first communication device receives first downlink control information DCI from a network device within a first discontinuous reception activation time, and the first DCI uses To indicate a new uplink or downlink data transmission; the first communication device does not expect to receive the physical downlink control channel PDCCH from the network device in the first time period after the first discontinuous reception activation time, the first The start time of a time period is the end time of the first discontinuous reception activation time, and the end time of the first time period is within the second discontinuous reception activation time; the first communication device is in the The PDCCH is monitored after the first time period.
  • the UE behavior by specifying the UE behavior, it is specified that the UE does not expect to receive the PDCCH in the first time period after the current discontinuous reception activation time, and the network device does not send the PDCCH in the first time period, which can avoid the DCI decoding time Exceeding the current discontinuous reception activation time causes the network device and the UE to have inconsistent understanding of whether the first time period is in the discontinuous reception activation time, and can save network resources and avoid waste of power consumption.
  • the first communication device receives at least one first DCI from the network device during the second time period within the first discontinuous reception activation time, and the first communication device The first DCI is not received from the network device in the X-th time slot from the bottom within the first discontinuous reception activation time;
  • X is an integer
  • minimum K0 represents the minimum time slot interval between the PDCCH and the physical downlink shared channel PDSCH
  • Z represents the first constant value
  • Z is a positive integer
  • the start of the second time period The time is the start time of the X-1th time slot from the bottom within the first discontinuous reception activation time
  • the end time of the second time period is the end time of the first discontinuous reception activation time.
  • the length of the first time period is Xy time slots; wherein, the first time slot of the first DCI received by the first communication device in the second time period is Is the y-th time slot from the bottom within the first discontinuous reception activation time, y ⁇ X, and y is a positive integer.
  • the first communication device can successfully decode the DCI within the first time period or at the end of the first time period.
  • the first communication device may The first DCI is successfully decoded within the continuous reception activation time, that is, the first DCI decoding time will not exceed the first discontinuous reception duration, the first time period is 0, and there will be no pairing between the network device and the first communication device. Discontinuous reception activation time understands the problem of inconsistency.
  • the first communication device receives the first DCI from the network device in the time slot before the Xth time slot (for example, the X+1th time slot from the bottom) within the first discontinuous reception activation time, y>X, this When the first communication device can successfully decode the first DCI within the first discontinuous reception activation time, that is, the first DCI decoding time will not exceed the first discontinuous reception duration, there is no first time period, and no There may be a problem that the network device and the first communication device have inconsistent understanding of the discontinuous reception activation time.
  • the first communication device can successfully decode the DCI within the first time period or at the end of the first time period.
  • the first constant value Z is associated with the subcarrier interval, and the first constant value corresponding to the first subcarrier interval is greater than or equal to the first constant value corresponding to the second subcarrier interval, where all The first subcarrier interval is greater than the second subcarrier interval.
  • the first communication device can successfully decode the DCI within the first time period or at the end of the first time period.
  • an embodiment of the present application provides a communication method.
  • the method includes: a first communication device receives a first DCI from a network device within a first discontinuous reception activation time, and the first DCI is used to indicate a new Uplink or downlink data transmission; the first communication device starts or restarts the discontinuous reception inactivity timer at the beginning of the time slot corresponding to the sum of the time slot number of the time slot where the first DCI is located and X, X Is an integer greater than or equal to 0.
  • both the network equipment and UE start or restart drx-InactivityTimer at the same time after the UE has successfully decoded the DCI, which can avoid the inconsistent understanding of the discontinuous reception activation time between the network equipment and the UE problem.
  • the first communication device can successfully decode the DCI before the drx-InactivityTimer starts.
  • the first constant value Z is associated with the subcarrier interval, and the first constant value corresponding to the first subcarrier interval is greater than or equal to the first constant value corresponding to the second subcarrier interval, where all The first subcarrier interval is greater than the second subcarrier interval.
  • the first communication device can successfully decode the DCI before the drx-InactivityTimer starts.
  • an embodiment of the present application provides a communication method.
  • the method includes: a network device sends a first DCI to a first communication device at a first discontinuous reception activation time, where the first DCI is used to indicate a new uplink or Downlink data transmission; the network device does not send the PDCCH to the first communication device in the first time period after the first discontinuous reception activation time; the network device sends the PDCCH to the first communication device after the first time period
  • the first communication device sends the PDCCH; the start time of the first time period is the end time of the first discontinuous reception activation time, and the end time of the first time period is located at the second discontinuous reception continuous Within time.
  • the network device does not send the PDCCH in the first time period, which can avoid the inconsistent understanding between the network device and the UE on whether the first time period is in the discontinuous reception activation time due to the DCI decoding time exceeding the current discontinuous reception activation time Problems, and can save network resources and avoid waste of power consumption.
  • the network device sending the first DCI to the first communication device at the first discontinuous reception activation time includes: the network device is in the second time period of the first discontinuous reception activation time At least one first DCI is sent to the first communication device, and the network device does not send the first DCI to the first communication device during the X-th last time slot within the first discontinuous reception activation time DCI;
  • the start time of the second time period is the start time of the X-1th time slot from the bottom within the first discontinuous reception activation time, and the end of the second time period The time is the end time of the first discontinuous reception activation time.
  • the length of the first time period is Xy time slots; wherein, the time slot where the first first DCI transmitted by the network device in the second time period is located is the The y-th time slot from the bottom within the first discontinuous reception activation time, y ⁇ X, y is a positive integer.
  • the first communication device can successfully decode the DCI within the first time period or at the end of the first time period.
  • the first communication device can successfully decode the DCI within the first time period or at the end of the first time period.
  • the first constant value Z is associated with the subcarrier interval, and the first constant value corresponding to the first subcarrier interval is greater than or equal to the first constant value corresponding to the second subcarrier interval, where all The first subcarrier interval is greater than the second subcarrier interval.
  • the first communication device can successfully decode the DCI within the first time period or at the end of the first time period.
  • an embodiment of the present application provides a communication method.
  • the method includes: a network device sends a first DCI to a first communication device within a first discontinuous reception activation time, where the first DCI is used to indicate a new uplink or Downlink data transmission; the network device starts or restarts the discontinuous reception inactivity timer at the beginning of the time slot corresponding to the sum of the time slot number of the first DCI and X, where X is greater than or equal to 0 The integer.
  • both the network equipment and UE start or restart drx-InactivityTimer at the same time after the UE has successfully decoded the DCI, which can avoid the inconsistent understanding of the discontinuous reception activation time between the network equipment and the UE problem.
  • the first constant value Z is associated with the subcarrier interval, and the first constant value corresponding to the first subcarrier interval is greater than or equal to the first constant value corresponding to the second subcarrier interval, where all The first subcarrier interval is greater than the second subcarrier interval.
  • the first communication device can successfully decode the DCI before the drx-InactivityTimer starts.
  • an embodiment of the present application provides a communication method, the method includes: a first communication device monitors the PDCCH in a third time period after the first discontinuous reception activation time; the start time of the third time period Is the end time of the first discontinuous reception activation time; if the first communication device is in the second discontinuous reception activation time at the end of the third time period, the first communication device is in the third Continue to monitor the PDCCH after the time period; if the first communication device is not in the second discontinuous reception activation time at the end of the third time period, the first communication device will not Monitor the PDCCH.
  • the network device After the first discontinuous reception activation time, the UE can be continuously scheduled.
  • the UE continues to monitor the PDCCH in the third time period after the first discontinuous reception activation time, so the UE will not miss any PDCCH detection, which avoids the network
  • the device and the UE have inconsistent understanding of whether a period of time after the first discontinuous reception activation time is in the discontinuous reception activation time.
  • the network device can also schedule the UE as soon as possible, reducing scheduling Data latency.
  • the length of the third time period is Xy time slots; wherein, the first communication device receives the first communication device from the network during the second time period within the first discontinuous reception activation time
  • the device receives at least one first DCI, where the first DCI is carried by the PDCCH and is used to indicate new uplink or downlink data transmission, and the first communication device receives the activation time during the first discontinuous reception
  • the X-th time slot from the bottom of the slot did not receive the first DCI from the network device;
  • the start time of the second time period is the Xth from the bottom within the first discontinuous reception active time -1 the start time of the time slot, the end time of the second time period is the end time of the first discontinuous reception activation time;
  • the first communication device can successfully decode the DCI within the third time period or at the end of the third time period.
  • the first communication device may The first DCI is successfully decoded within the continuous reception activation time, that is, the first DCI decoding time will not exceed the first discontinuous reception duration, the third time period is 0, and there will be no pairing between the network device and the first communication device. Discontinuous reception activation time understands the problem of inconsistency.
  • the first communication device receives the first DCI from the network device in the time slot before the Xth time slot (for example, the X+1th time slot from the bottom) within the first discontinuous reception activation time, y>X, this When the first communication device can successfully decode the first DCI within the first discontinuous reception activation time, that is, the first DCI decoding time will not exceed the first discontinuous reception duration, there is no third time period, and no There may be a problem that the network device and the first communication device have inconsistent understanding of the discontinuous reception activation time.
  • the first communication device can successfully decode the DCI within the third time period or at the end of the third time period.
  • the first constant value Z is associated with the subcarrier interval, and the first constant value corresponding to the first subcarrier interval is greater than or equal to the first constant value corresponding to the second subcarrier interval, where all The first subcarrier interval is greater than the second subcarrier interval.
  • the first communication device can successfully decode the DCI within the third time period or at the end of the third time period.
  • the method further includes: the first communication device receives a second DCI from a network device in the third time period, the second DCI is carried by the PDCCH, and the second DCI is not used To indicate new uplink or downlink data transmission.
  • the first communication device can receive the second DCI from the network device in the third time period, and the UE will not miss any PDCCH detection.
  • the second DCI is used to indicate retransmission of uplink or downlink data, or the DCI format of the second DCI is a non-scheduled type of DCI format.
  • the time delay for the first communication device to schedule data can be reduced.
  • the method further includes: the first communication device receives the first DCI from the network device in a second time period within the first discontinuous reception activation time, wherein the first The DCI is carried by the PDCCH and is used to indicate new uplink or downlink data transmission; the first communication device receives the first DCI from the network device in the third time period; wherein, the second time period
  • the start time of is the start time of the X-1th time slot from the bottom within the first discontinuous reception activation time, and the end time of the second time period is the end of the first discontinuous reception activation time Time;
  • the first communication device can receive the first DCI from the network device in the third time period, and the UE will not miss any PDCCH detection, which can reduce the time delay for the first communication device to schedule data.
  • an embodiment of the present application provides a communication method.
  • the method includes: a network device sends a PDCCH to a first communication device in a third time period after the first discontinuous reception activation time; the beginning of the third time period The start time is the end time of the first discontinuous reception activation time; if the network device is in the second discontinuous reception activation time at the end of the third time period, the network device is in the third time period Then send the PDCCH to the first communication device; if the network device is not in the second discontinuous reception activation time at the end of the third time period, the network device will not Sending the PDCCH to the first communication device.
  • the network device After the first discontinuous reception activation time, the UE can be continuously scheduled.
  • the UE continues to monitor the PDCCH in the third time period after the first discontinuous reception activation time, so the UE will not miss any PDCCH detection, which avoids the network
  • the device and the UE have inconsistent understanding of whether a period of time after the first discontinuous reception activation time is in the discontinuous reception activation time.
  • the network device can also schedule the UE as soon as possible, reducing scheduling Data latency.
  • the length of the third time period is Xy time slots; wherein, the second time period during the first discontinuous reception activation time of the network device is transferred to the first A communication device sends at least one first DCI, where the first DCI is carried by the PDCCH and is used to indicate new uplink or downlink data transmission, and the network device is within the first discontinuous reception activation time
  • the Xth time slot from the bottom to the first communication device does not send the first DCI
  • X is an integer
  • minimum K0 means The minimum time slot interval between PDCCH and PDSCH, Z represents the first constant value, Z is a positive integer;
  • the start time of the second time period is the Xth from the bottom within the first discontinuous reception active time -1 the start time of a time slot, the end time of the second time period is the end time of the first discontinuous reception activation time; the first one sent by the network device in the
  • the first communication device can successfully decode the DCI within the third time period or at the end of the third time period.
  • the first communication device can successfully decode the DCI within the third time period or at the end of the third time period.
  • the first constant value Z is associated with the subcarrier interval, and the first constant value corresponding to the first subcarrier interval is greater than or equal to the first constant value corresponding to the second subcarrier interval, where all The first subcarrier interval is greater than the second subcarrier interval.
  • the first communication device can successfully decode the DCI within the third time period or at the end of the third time period.
  • the network device sending the PDCCH to the first communication device in a third time period after the first discontinuous reception activation time includes: the network device sends the PDCCH to the first communication device in the third time period
  • the communication device sends a second DCI, the second DCI is carried by the PDCCH, and the second DCI is not used to indicate new uplink or downlink data transmission.
  • the first communication device can receive the second DCI from the network device in the third time period, and the UE will not miss any PDCCH detection.
  • the second DCI is used to indicate retransmission of uplink or downlink data, or the DCI format of the second DCI is a non-scheduled type of DCI format.
  • the time delay for the first communication device to schedule data can be reduced.
  • the first communication device can receive the first DCI from the network device in the third time period, and the UE will not miss any PDCCH detection, which can reduce the time delay for the first communication device to schedule data.
  • an embodiment of the present application provides a communication method, which includes:
  • the first communication device receives the first DCI from the network device within the first discontinuous reception activation time, where the first DCI is used to indicate a new uplink or downlink data transmission; the first communication device is located at the first DCI
  • the start time of the Z1+1th symbol after the symbol starts or restarts the discontinuous reception inactivation timer, Z1 is the second constant value, and Z1 is an integer greater than or equal to 1.
  • both the network equipment and UE start or restart drx-InactivityTimer at the same time after the UE has successfully decoded the DCI, which can avoid the inconsistent understanding of the discontinuous reception activation time between the network equipment and the UE problem.
  • the second constant value Z1 is associated with the sub-carrier interval, and the second constant value corresponding to the first sub-carrier interval is greater than or equal to the second constant value corresponding to the second sub-carrier interval.
  • the first subcarrier interval is greater than the second subcarrier interval.
  • the first communication device can successfully decode the DCI before the drx-InactivityTimer starts.
  • an embodiment of the present application provides a communication method.
  • the method includes: a network device sends a first DCI to a first communication device within a first discontinuous reception activation time, where the first DCI is used to indicate a new uplink or Downlink data transmission; the network device starts or restarts the discontinuous reception inactivity timer at the beginning of the Z1+1th symbol after the symbol where the first DCI is located, Z1 is the second constant value, and Z1 is greater than or equal to An integer of 1.
  • both the network equipment and UE start or restart drx-InactivityTimer at the same time after the UE has successfully decoded the DCI, which can avoid the inconsistent understanding of the discontinuous reception activation time between the network equipment and the UE problem.
  • the second constant value Z1 is associated with the sub-carrier interval, and the second constant value corresponding to the first sub-carrier interval is greater than or equal to the second constant value corresponding to the second sub-carrier interval.
  • the first subcarrier interval is greater than the second subcarrier interval.
  • the first communication device can successfully decode the DCI before the drx-InactivityTimer starts.
  • an embodiment of the present application provides a communication device, such as a first communication device.
  • the device may be a terminal device or a chip in the terminal device.
  • the device may include a processing unit, a sending unit, and a receiving unit. It should be understood that the sending unit and the receiving unit may also be a transceiver unit.
  • the processing unit may be a processor, and the sending unit and receiving unit may be transceivers; the terminal device may also include a storage unit, and the storage unit may be a memory; the storage unit is used to store instructions , The processing unit executes the instructions stored in the storage unit, so that the terminal device executes any one of the possible designs in the first aspect or the first aspect, or any one of the second or second aspects in the possible design Or any one of the possible designs in the fifth aspect or the fifth aspect, or any one of the seventh or seventh aspects in a possible design.
  • the processing unit may be a processor, the sending unit and the receiving unit may be input/output interfaces, pins or circuits, etc.; the processing unit executes instructions stored in the storage unit to Make the chip execute the method in the first aspect or any one of the possible designs in the first aspect, or any one of the possible design methods in the second or the second aspect, or any one of the fifth or fifth aspects A possible design method, or any one of the seventh aspect or the seventh aspect.
  • the storage unit is used to store instructions.
  • the storage unit can be a storage unit in the chip (for example, a register, a cache, etc.), or a storage unit in the terminal device located outside the chip (for example, read-only memory, Random access memory, etc.).
  • an embodiment of the present application provides a communication device.
  • the device may be a network device or a chip in the network device.
  • the device may include a processing unit, a sending unit, and a receiving unit. It should be understood that the sending unit and the receiving unit may also be a transceiver unit.
  • the processing unit may be a processor, the sending unit and the receiving unit may be transceivers; the network device may also include a storage unit, and the storage unit may be a memory; the storage unit is used to store instructions , The processing unit executes the instructions stored in the storage unit, so that the network device executes the method in the third aspect or any one of the possible designs of the third aspect, or any one of the fourth aspect or the fourth aspect Or any one of the possible designs in the sixth aspect or the sixth aspect, or any one of the eighth or the eighth aspects in a possible design.
  • the processing unit may be a processor, the sending unit and the receiving unit may be input/output interfaces, pins or circuits, etc.; the processing unit executes instructions stored in the storage unit to Make the chip execute the method in the third aspect or any one of the possible designs of the third aspect, or any one of the possible design methods in the fourth or the fourth aspect, or any of the sixth or sixth aspects Possible design method, or any one of the eighth aspect or the eighth aspect possible design method.
  • the storage unit is used to store instructions.
  • the storage unit can be a storage unit in the chip (for example, a register, cache, etc.), or a storage unit in the network device located outside the chip (for example, read-only memory, Random access memory, etc.).
  • an embodiment of the present application also provides a computer-readable storage medium that stores a computer program, and when the computer program runs on a computer, the computer executes the first to eighth aspects. Method.
  • the embodiments of the present application also provide a computer program product containing a program, which when running on a computer, causes the computer to execute the methods of the first to eighth aspects.
  • FIG. 1 is a schematic diagram of scheduling new downlink data transmission during the duration of discontinuous reception in this application;
  • FIG. 2 is a schematic diagram of UE power consumption for PDCCH scheduling PDSCH in different scenarios in this application;
  • FIG. 3 is a schematic diagram of the DCI decoding time in this application.
  • Figure 4 is a schematic diagram of the DRX cycle in this application.
  • FIG. 5 is a schematic diagram of discontinuous reception of the start time of the inactive timer in the prior art in this application;
  • FIG. 6 is a schematic diagram of the communication system architecture in this application.
  • FIG. 7 is one of the overview flowcharts of a communication method in this application.
  • Figure 8 is one of the schematic diagrams of the first time period in the application.
  • Figure 9 is the second schematic diagram of the first time period in the application.
  • Figure 10 is the third schematic diagram of the first time period in the application.
  • Figure 11 is the fourth schematic diagram of the first time period in the application.
  • Figure 12 is a schematic diagram of the second time period in the application.
  • Figure 13 is the fifth schematic diagram of the first time period in the application.
  • Figure 14 is the second flow chart of an overview of a communication method in this application.
  • FIG. 15 is one of the schematic diagrams of the starting time of the discontinuous reception inactive timer in this application.
  • 16 is the second schematic diagram of the start time of the discontinuous reception inactive timer in this application.
  • Figure 17 is the third schematic diagram of the start time of the discontinuous reception inactivation timer in this application.
  • Figure 18 is the third of the overview flowchart of a communication method in this application.
  • Figure 19 is the fourth flow chart of an overview of a communication method in this application.
  • Figure 20 is one of the schematic diagrams of the third time period in this application.
  • Figure 21 is the second schematic diagram of the third time period in this application.
  • FIG. 22 is a schematic diagram of the third time period and the fourth time period in the application.
  • Figure 23 is one of the schematic diagrams of the device structure in this application.
  • Figure 24 is the second schematic diagram of the device structure in this application.
  • the DCI when a network device sends DCI on the PDCCH to schedule a UE to receive downlink data or uplink data, the DCI can indicate PDSCH (corresponding to downlink data) or PUSCH (corresponding to uplink data) transmission parameters. These transmission parameters are used to determine the time domain resource location of the PDSCH or PUSCH.
  • the PDSCH time domain resource location includes: the time slot in which the PDSCH is located, and the starting position and length of the symbols occupied by the PDSCH in the aforementioned time slot.
  • the PUSCH time domain resource location includes: the time slot where the PUSCH is located, and the starting position and length of the symbol occupied by the PUSCH in the above time slot.
  • the time slot interval between PDCCH and PDSCH is represented by K0; the time slot interval between PDCCH and PUSCH is represented by K2.
  • the network device will configure the available value set of K0 and K2 for the UE through RRC signaling, for example, by configuring a time-domain resource allocation (TDRA) table, which includes multiple K0 and K2, and then use DCI
  • TDRA time-domain resource allocation
  • the aforementioned NR Rel-15 scheduling method is not conducive to UE energy saving, which can be specifically reflected in the following two aspects:
  • the UE can turn off the radio frequency module without buffering any signals while decoding the DCI.
  • the energy saving effect can be achieved (as shown on the right side of Figure 2, the shaded part in the lower right corner is the energy saved).
  • the speed at which the UE decodes the DCI will also affect the power consumption of the UE. If the UE decodes DCI faster, it needs to work at a higher clock frequency and voltage, so the power consumption is higher. However, if the UE knows in advance that there is a minimum time slot interval between the PDCCH and the PDSCH (or PUSCH), the UE can reduce the DCI decoding speed, thereby reducing the working clock frequency and voltage, so as to save power consumption.
  • the UE can reduce The DCI decoding speed, for example, for minimum K0 greater than or equal to 1, the time for decoding DCI can be extended to the end of the time slot where (n+minimum K0-1) is located, where n is the number of the time slot where DCI is located.
  • the UE can know whether the current scheduling is simultaneous slot scheduling or cross-slot scheduling before decoding DCI If it is determined that the current scheduling is cross-slot scheduling, the UE can enter micro-sleep (such as turning off the receiving RF) without buffering any signal before successfully decoding the DCI to save power consumption and at the same time , UE can reduce the decoding speed of DCI, thereby reducing the clock frequency and working voltage, in order to save power consumption.
  • micro-sleep such as turning off the receiving RF
  • the UE may be configured for discontinuous reception (connected-discontinuous reception, C-DRX) in the RRC connected state.
  • the purpose is to make the terminal device enter the discontinuous reception duration (DRX ON Duration) every certain period to send and receive data. At other times, it can enter the sleep state without monitoring the PDCCH, so that UE power consumption can be saved.
  • the state of the UE configured with DRX can be divided into the discontinuous reception active (DRX Active) state and the discontinuous reception inactive (DRX non-active) state.
  • the time the UE is in the DRX Active state is called the discontinuous reception active time (DRX Active). Time).
  • DRX Active Time When the UE is in DRX Active Time, the UE will continue to monitor the PDCCH.
  • the UE does not monitor the PDCCH.
  • the UE is in DRX Active Time when any one of the following timers is running. These timers include: discontinuous reception duration timer (drx-onDurationTimer), discontinuous reception inactivity timer (drx-InactivityTimer), discontinuous reception Receive downlink retransmission timer (drx-RetransmissionTimerDL), discontinuous reception uplink retransmission timer (drx-RetransmissionTimerUL), random access contention resolution timer (ra-ContentionResolutionTimer).
  • drx-onDurationTimer discontinuous reception duration timer
  • drx-InactivityTimer discontinuous reception inactivity timer
  • drx-RetransmissionTimerDL discontinuous reception Receive downlink retransmission timer
  • drx-RetransmissionTimerUL discontinuous reception uplink retransmission timer
  • random access contention resolution timer ra-ContentionResolutionTimer
  • DRX active time also includes other situations, such as the waiting period after the UE sends a scheduling request (SR) on PUCCH; the UE successfully receives a random access based on non-contention (non-contention) random access. After the random access response (RAR), the PDCCH indicating new uplink or downlink data transmission has not been received.
  • SR scheduling request
  • RAR random access response
  • the cyclic redundancy check (CRC) of the PDCCH here can be a radio network temporary identifier (RNTI) scrambled as follows: cell RNTI (cell RNTI) C-RNTI), configured scheduling radio network temporary identifier (Configured Scheduling RNTI, CS-RNTI), interrupted radio network temporary identifier (Interruption RNTI, INT-RNTI), slot format indication radio network temporary identifier (Slot Format Indication RNTI, SFI-RNTI), semi-persistent channel state information wireless network temporary identification (Semi-Persistent CSI RNTI, SP-CSI-RNTI), PUCCH transmission power control wireless network temporary identification (transmit power control-PUCCH-RNTI, TPC-PUCCH-RNTI) ), PUSCH transmission power control wireless network temporary identification (transmit power control-PUCCH-RNTI, TPC-PUCCH-RNTI) ), PUSCH transmission power control wireless network temporary identification (transmit power control-PUCCH-RNTI, T
  • Figure 4 shows an example of the UE state after the DRX cycle is configured.
  • the DRX ON Duration will be entered first, and the drx-onDuration Timer will be turned on at the same time. If the UE receives the PDCCH for indicating new downlink or uplink data transmission during the DRX ON Duration, the drx-Inactivity Timer will be turned on. The UE will remain in the DRX-Active state until the drx-InactivityTimer expires, or the UE receives related control unit (MAC CE) signaling to stop the drx-InactivityTimer early.
  • MAC CE related control unit
  • the timer drx-InactivityTimer is started or restarted at the first symbol after indicating the symbol of the PDCCH for new uplink or downlink data transmission.
  • the PDCCH in FIG. 5 schedules new PDSCH transmission.
  • This application is mainly applied to the 5th generation wireless communication system (new radio, NR) system, and can also be applied to other communication systems, such as narrow band-internet of things (NB-IoT) systems, machine-type communications (machine type communication, MTC) system, future next-generation communication system, etc.
  • NB-IoT narrow band-internet of things
  • MTC machine type communication
  • future next-generation communication system etc.
  • the network elements involved in the embodiments of the present application include terminal equipment and network equipment.
  • network equipment and terminal equipment form a communication system.
  • the network equipment sends information to the terminal equipment through a downlink channel
  • the terminal equipment sends information to the network equipment through an uplink channel.
  • the terminal device can be a mobile phone, a tablet computer, a computer with a wireless transceiver function, an Internet of Things terminal device, etc., and can also be called a mobile station, a mobile station, a remote station, and a remote terminal.
  • the network equipment can be various forms of base stations, such as: macro base stations, micro base stations (also called small stations), relay stations, access points, evolved base stations (eNodeB), wireless fidelity access points, WiFi AP), worldwide interoperability for microwave access (base station, WiMAX BS), etc., are not limited here.
  • base stations such as: macro base stations, micro base stations (also called small stations), relay stations, access points, evolved base stations (eNodeB), wireless fidelity access points, WiFi AP), worldwide interoperability for microwave access (base station, WiMAX BS), etc.
  • base station WiMAX BS
  • an evolved NodeB evolved NodeB, eNB or eNodeB
  • eNB evolved NodeB
  • Node B Node B
  • gNB gNode B
  • the above-mentioned network elements may be network elements implemented on dedicated hardware, software instances running on dedicated hardware, or instances of virtualized functions on an appropriate platform.
  • the embodiments of the present application may also be applicable to other future-oriented communication technologies.
  • the network architecture and business scenarios described in this application are intended to explain the technical solutions of this application more clearly, and do not constitute a limitation on the technical solutions provided by this application. Those of ordinary skill in the art will know that with the evolution of the network architecture and new business scenarios The technical solutions provided in this application are equally applicable to similar technical problems.
  • the first communication device may be a terminal device or a chip system in the terminal device.
  • an embodiment of the present application provides a communication method, which includes:
  • the first communication device receives the first DCI from the network device within the first discontinuous reception activation time, and the first DCI is used to indicate new uplink or downlink data transmission.
  • the network device sends the first DCI to the first communication device within the first discontinuous reception activation time.
  • the network device starts the discontinuous reception inactivity timer at the first symbol after the symbol occupied by the first DCI sent to the first communication device.
  • the first communication device does not expect to receive the PDCCH from the network device in the first time period after the first discontinuous reception activation time, the start time of the first time period is the end time of the first discontinuous reception activation time, and The end time of a time period is within the second discontinuous reception activation time.
  • the network device does not send the PDCCH to the first communication device in the first time period after the first discontinuous reception activation time.
  • S703 The first communication device monitors the PDCCH after the first time period.
  • the network device may send the PDCCH to the first communication device after the first time period.
  • sending the PDCCH by the network device means that the network device sends DCI on the PDCCH, such as the first DCI or other types of DCI.
  • Receiving the PDCCH by the first communication device refers to blindly detecting the PDCCH, or monitoring the PDCCH, or receiving downlink control information on the PDCCH, or blindly detecting the downlink control information on the PDCCH.
  • the first communication device does not expect to receive the PDCCH from the network device, which means that the first communication device does not expect DCI to exist on the PDCCH, or it is assumed that the network device does not send DCI on the PDCCH.
  • the first communication device does not expect to receive the PDCCH from the network device in the first time period after the first discontinuous reception activation time.
  • the PDCCH is the PDCCH that the network device sends only during the DRX active time, for example .
  • the first communication device does not expect to receive DCI whose CRC is scrambled by the following RNTI: C-RNTI, CS-RNTI, INT-RNTI, SFI-RNTI, SP-CSI-RNTI, TPC-PUCCH-RNTI, TPCPUSCH- RNTI, and TPC-SRS-RNTI.
  • the symbol occupied by the first DCI is within the first discontinuous reception activation time.
  • the first discontinuous reception activation time may refer to any one of the following timers in operation, and these timers include: drx-onDurationTimer, drx-InactivityTimer, drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, ra-ContentionResolutionTimer.
  • the first discontinuous reception activation time also includes other situations, for example: the waiting period after the first communication device sends the SR on the PUCCH; the first communication device has not yet successfully received the RAR based on non-contention random access During receipt of a PDCCH indicating new uplink or downlink data transmission.
  • the first symbol after the symbol occupied by the first DCI (or the symbol where the PDCCH used to indicate new uplink or downlink data transmission is located) is the start time of the second discontinuous reception activation time.
  • the second discontinuous reception activation time refers to the time period during which the drx-InactivityTimer runs.
  • the timer corresponding to the second discontinuous reception activation time starts (ie start or restart).
  • the timer corresponding to the first discontinuous reception activation time has not expired, but the discontinuous reception activation time is updated, so here is the time when drx-InactivityTimer is started or restarted It is defined as the start time of the second discontinuous reception activation time. Note that the end time of the first discontinuous reception activation time is still the time when the timer corresponding to the first discontinuous reception activation time naturally ends.
  • the end time of the first discontinuous reception activation time is the time when the drx-onDurationTimer ends (ie, timeout). If the network device sends the first DCI during the drx-onDurationTimer timing (ie OnDuration), the network device starts the drx-InactivityTimer at the first symbol after the first DCI, the discontinuous reception activation time is updated, and the second discontinuous The receive activation time begins. The end time of the first discontinuous reception activation time is after the start time of the second discontinuous reception activation time.
  • the timer corresponding to the first discontinuous reception activation time is drx-InactivityTimer, and the current drx-InactivityTimer is running
  • the network device sends the first DCI during the drx-InactivityTimer timing
  • the network device is after the first DCI
  • the first symbol of the restart drx-InactivityTimer the discontinuous reception activation time is updated, and the second discontinuous reception activation time starts.
  • the end time of the first discontinuous reception activation time is the time when the natural timing expires before the drx-InactivityTimer restarts, and is located after the start time of the second discontinuous reception activation time.
  • the first communication device receives at least one first DCI from the network device during the second period of the first discontinuous reception activation time, and the first communication device receives the activation time during the first discontinuous reception
  • the Xth time slot from the bottom to the inside does not receive the first DCI from the network device.
  • the start time of the second time period is the start time of the X-1 time slot from the bottom within the first discontinuous reception activation time
  • the end time of the second time period is the end time of the first discontinuous reception activation time.
  • the length of the first time period is Xy time slots.
  • the first communication device may The first DCI is successfully decoded within the continuous reception activation time, that is, the first DCI decoding time will not exceed the first discontinuous reception duration, the first time period is 0, and there will be no pairing between the network device and the first communication device. Discontinuous reception activation time understands the problem of inconsistency.
  • the first communication device receives the first DCI from the network device in the time slot before the Xth time slot (for example, the X+1th time slot from the bottom) within the first discontinuous reception activation time, y>X, this When the first communication device can successfully decode the first DCI within the first discontinuous reception activation time, that is, the first DCI decoding time will not exceed the first discontinuous reception duration, there is no first time period, and no There may be a problem that the network device and the first communication device have inconsistent understanding of the discontinuous reception activation time.
  • minimum K0 represents the minimum time slot interval between PDCCH and PDSCH
  • Z represents the first constant value
  • minimum K0 is the minimum K0 value currently in effect, indicating that the time slot interval between the PDSCH scheduled by the PDCCH and the PDCCH is greater than or equal to the minimum K0.
  • the PDSCH scheduled by the first DCI is in the time slot n+minimum K0 or the time slot after n+minimum K0, and the UE does not expect it to be at n+minimum K0
  • the PDSCH scheduled by the first DCI is received before the time slot. Therefore, the UE can continue the first DCI decoding time until the time slot corresponding to n+minimum K0-1. If the UE decoding the first DCI time exceeds the UE’s first discontinuous reception activation time, the UE will exceed the first discontinuous reception activation time. Active time but still does not monitor the PDCCH during the time period of decoding the first DCI.
  • the UE When the UE successfully decodes the first DCI, it learns that the first DCI indicates new downlink data transmission by analyzing the first DCI, and the UE starts or restarts drx -InactivityTimer, when the drx-InactivityTimer is started, the UE returns to the discontinuous reception activation time. At this time, the UE enters the second discontinuous reception activation time, and the UE resumes monitoring the PDCCH.
  • the timing value when the UE starts the drx-InactivityTimer It should be calculated from the first symbol after the symbol of the PDCCH carrying the first DCI, and the second discontinuous reception activation time starts from the moment when the network device starts the drx-InactivityTimer, that is, from the PDCCH carrying the first DCI
  • the beginning of the first symbol after the symbol is defined as the start moment of the second discontinuous reception activation time.
  • the timing value when the UE completes the first DCI decoding and starts drx-InactivityTimer is T-delta
  • the purpose is to align the timer value of the UE and the network device. It should be understood that the UE can learn the time delta used to decode the first DCI by itself.
  • the network device does not send the PDCCH in the first time period, and may send the PDCCH after the first time period.
  • the drx-InactivityTimer is started, and the UE resumes monitoring the PDCCH.
  • the drx-InactivityTimer is restarted at the first symbol of, and the network device updates the DRX active time, that is, the operating period after drx-InactivityTimer restarts is the second discontinuous reception activation time.
  • the time for the UE to decode DCI lasts until the end of the n+minimum K0-1 time slot, and the UE considers that the first time period is not in the discontinuous reception activation time, because The UE has not started or restarted the drx-InactivityTimer in the first time period.
  • the time for the UE to decode DCI depends on the UE implementation, so the UE's DCI decoding time may not last until the end of n+minimum K0-1 time slot, but before the end of n+minimum K0-1 time slot It is possible to decode DCI successfully at any position.
  • the embodiment of the application does not limit the DCI decoding time of the UE, nor does it limit the UE to start or restart the drx-InactivityTimer at the end of the n+minimum K0-1 time slot.
  • the UE decodes the DCI successfully, the UE can know Whether the DCI indicates new uplink or downlink data transmission, if so, the UE starts or restarts the drx-InactivityTimer. Otherwise, the UE enters the DRX non-active state.
  • the timer value must be counted from the first symbol after the symbol of the PDCCH used to indicate new uplink or downlink data transmission.
  • the network equipment does not know when the UE has successfully decoded the DCI, even if the UE has a faster decoding speed, the network equipment does not know that the UE has successfully decoded the DCI before the end of the first time period. Successfully decoded DCI.
  • the network equipment does not expect to receive the PDCCH in the first time period, and accordingly, the network device does not send the PDCCH in the first time period.
  • the UE starts drx-InactivityTimer After that, the UE is in the DRX active time, and the first time period is also in the DRX active time, but the UE does not monitor the PDCCH in the first time period.
  • the network device does not send the PDCCH in the first time period. After the first time period, the UE resumes monitoring the PDCCH normally, and the network device may also send the PDCCH.
  • FIG. 7 The embodiment shown in FIG. 7 will be described in detail below with reference to specific examples. It should be understood that the following examples are only examples and are not intended to limit the application.
  • Example 1 as shown in Figure 12, PDCCH-1, PDCCH-2, and PDCCH-3 are all used to indicate new data transmission.
  • PDCCH-1 is sent in the second time slot from the bottom of the running period of the first drx-InactivityTimer, and the second drx-InactivityTimer restarts on the first symbol after the symbol where PDCCH-1 is located. Therefore, when the network device sends PDCCH-2, it is no longer the last time slot of the first drx-InactivityTimer, but the fourth time slot of the second drx-InactivityTimer. Gap.
  • the position is the time when the first drx-InactivityTimer naturally timed out. It can also be said to be the end position of the n+y-1 time slot, that is, the end position of the n+1 time slot, and n is the time slot where the PDCCH-1 is located.
  • the network device does not send the PDCCH in the first time period.
  • SCS subcarrier spacing
  • time for UE to decode DCI may need to be greater than 1 time slot, for example, all UEs It can decode successfully before time slot n+2 (the time for UE to decode DCI may last to the end of time slot n+1, and time slot n is the time slot where PDCCH is used to indicate new uplink or downlink data transmission. Time slot number).
  • Table 1 or Table 2 for the relationship between the value of Z and the subcarrier spacing.
  • SCS Z (unit: slots) 15KHz 1 30KHz 1 60KHz 2 120KHz 2
  • SCS Z (unit: slots) 15KHz 1 30KHz 1 60KHz 1 120KHz 2
  • the first constant value Z may cover the decoding time of all first communication devices, that is, the first constant value Z reflects the minimum requirement for the decoding time of all first communication devices.
  • n to represent the number of the time slot where the PDCCH is located. The UE has successfully decoded the DCI at the end of the n+Z-1 time slot, but the time when the UE completes the DCI decoding may be in the n+Z-1 time slot Before the end position.
  • the time for the UE to decode DCI can be extended as the minimum K0 increases.
  • the time for the UE to decode DCI cannot be extended with the increase of minimum K0, but is limited by a constant.
  • the constant reflects the UE capability, and the time indicated by the constant includes the time for the UE to decode DCI.
  • the constant Z can be pre-defined, or it can be configured by the network equipment to the terminal equipment (for example, through radio resource control (RRC) signaling), or the terminal equipment can be reported to the network equipment through RRC signaling.
  • RRC radio resource control
  • UE capability information UE capability information
  • UE assistance information UE assistance information
  • Mode 3 is a combination of Mode 1 and Mode 2.
  • the UE can extend the DCI decoding time when minimum K0>Z, for example, to n+minimum K0-1 time slot.
  • the minimum K0 ⁇ Z is limited by the UE's capabilities, the UE cannot speed up the DCI decoding speed because the minimum K0 becomes smaller, so the DCI decoding time may still continue to the n+Z-1 time slot. So X is the larger value of the two.
  • the UE does not expect to receive the PDCCH in the first time period after the current discontinuous reception activation time, and the network device does not send the PDCCH in the first time period, which can prevent the DCI decoding time from exceeding
  • the current discontinuous reception activation time causes the network device and the UE to have inconsistent understanding of whether the first time period is in the discontinuous reception activation time, and can save network resources and avoid waste of power consumption.
  • This method is also applicable to the case where the PDCCH is located at the middle symbol position or the end symbol position of a slot.
  • the decoding speed of DCI can be adjusted based on the UE to make DCI decode It is still completed before n+X time slots.
  • the UE cannot complete the DCI decoding at the beginning of time slot n+1. At this time, the time for the UE to decode the first DCI also exceeds the first discontinuous reception activation time.
  • the first The duration of the time period is X+1-y time slots, where X and y are as described before, and will not be repeated here.
  • the duration of the first time period is X time slots, and X is as described above, and will not be repeated here.
  • an embodiment of the present application provides a communication method, which includes:
  • the first communication device receives the first DCI from the network device within the first discontinuous reception activation time, and the first DCI is used to indicate new uplink or downlink data transmission.
  • the network device sends the first DCI to the first communication device within the first discontinuous reception activation time.
  • the first communication device starts or restarts the discontinuous reception inactivation timer at the beginning of the time slot corresponding to the sum of the time slot number of the time slot where the first DCI is located and X, where X is an integer greater than or equal to 0.
  • the network device starts or restarts the discontinuous reception inactivation timer at the beginning of the time slot corresponding to the sum of the time slot number of the first DCI and X.
  • the start time of the time slot corresponding to the sum of the time slot number of the first DCI and X is the start symbol of the time slot corresponding to the sum of the time slot number of the first DCI and X.
  • the first communication device and the network are set to start or restart the discontinuous reception inactivation timer at the beginning of the time slot corresponding to the sum of the time slot number of the first DCI and X, which can also be equivalently described as :
  • the first communication device and the network are set to start or restart the discontinuous reception inactivity timer at the end time (or end symbol) of the time slot corresponding to the sum of the time slot number of the first DCI and X-1.
  • the DCI decoding time is drawn in the figure, The embodiment of the present application does not limit the DCI decoding time.
  • the UE starts the drx-InactivityTimer after successfully decoding the DCI.
  • the initial value of the timer should be counted from the start symbol of the PDCCH slot, that is, the timing value when the UE starts the drx-InactivityTimer should be deducted from The length of time between the start of the PDCCH slot and the successful DCI decoding.
  • both the network equipment and the UE start drx-InactivityTimer at the beginning of time slot n+1, so the time slot n+1 after on duration is the discontinuous reception activation time, which will not cause the network equipment and UE to Whether the time period is in the discontinuous reception activation time is inconsistent.
  • both the network equipment and the UE start the drx-InactivityTimer at the end of time slot n+1, so the time slot n+1 after the on duration is not a discontinuous reception activation time, which will not cause the network equipment and UE to respond to the time Whether the segment is in discontinuous reception activation time is inconsistent.
  • both the network device and the UE start or restart drx-InactivityTimer at the same time after the UE has successfully decoded the DCI, which can avoid inconsistent understanding of the discontinuous reception activation time between the network device and the UE The problem.
  • the symbols of the aforementioned time slots may be orthogonal frequency division multiplexing (OFDM) symbols.
  • OFDM orthogonal frequency division multiplexing
  • a symbol can be referred to as a time period, such as the start time or the end time; when the time length of a symbol is not negligible, when describing a time as a symbol, Describes the beginning or end of this symbol.
  • the start time of a time slot is the start time of the start symbol of the time slot.
  • This method is also applicable to the case where the PDCCH is located at the middle symbol position or the end symbol position of a slot.
  • the decoding speed of DCI can be adjusted based on the UE to make DCI decode It is still completed before n+X time slots.
  • the UE cannot complete the DCI decoding at the beginning of time slot n+1. At this time, the time for the UE to decode the first DCI also exceeds the first discontinuous reception activation time.
  • the drx-InactivityTimer starts or restarts at the beginning of the n+minimum K0 time slot . It cannot solve the problem that the network equipment and the UE have inconsistent understanding of the discontinuous reception activation time because the DCI decoding time exceeds the current discontinuous reception activation time.
  • an embodiment of the present application provides a communication method, which includes:
  • the first communication device receives the first DCI from the network device within the first discontinuous reception activation time, where the first DCI is used to indicate new uplink or downlink data transmission.
  • the network device sends the first DCI to the first communication device within the first discontinuous reception activation time.
  • the first communication device starts or restarts the discontinuous reception inactivity timer at the start time of the Z1+1th symbol after the symbol where the first DCI is located, Z1 is the second constant value, and Z1 is an integer greater than or equal to 1.
  • the network device starts or restarts the discontinuous reception inactivation timer at the start time of the Z1+1th symbol after the symbol where the first DCI is located.
  • the second constant value Z1 is associated with the subcarrier interval, the second constant value corresponding to the first subcarrier interval is greater than or equal to the second constant value corresponding to the second subcarrier interval, wherein the first subcarrier interval is greater than the second subcarrier interval Carrier spacing.
  • a second constant value Z1 may be defined in advance, and the second constant value Z1 represents the number of symbols and represents the length of time for the UE to decode DCI.
  • the second constant value Z1 may be pre-defined by the standard, or configured by the network device to the first communication device (for example, through RRC signaling), or reported by the first communication device to the network device through RRC signaling, for example , Carried in the capability information (UE capability information) reported by the UE or in the assistance information (UE assistance information).
  • UE capability information capability information
  • UE assistance information assistance information
  • both the network device and the UE start or restart drx-InactivityTimer at the same time after the UE has successfully decoded the DCI, which can avoid inconsistent understanding of the discontinuous reception activation time between the network device and the UE The problem.
  • an embodiment of the present application provides a communication method, which includes:
  • the first communication device monitors the PDCCH in a third time period after the first discontinuous reception activation time; the start time of the third time period is the end time of the first discontinuous reception activation time.
  • S1902 If the first communication device is in the second discontinuous reception activation time at the end of the third time period, the first communication device continues to monitor the PDCCH after the third time period; if the first communication device is not at the end of the third time period In the second discontinuous reception activation time, the first communication device does not monitor the PDCCH after the third time period.
  • the length of the third time period is Xy time slots; wherein, the first communication device receives at least one first DCI from the network device in the second time period during the first discontinuous reception activation time , Where the first DCI is carried by the PDCCH and is used to indicate new uplink or downlink data transmission, and the first communication device does not receive the first time slot from the network device during the first X time slot within the first discontinuous reception activation time.
  • the start time of the second time period is the start time of the X-1th time slot from the bottom within the first discontinuous reception activation time, and the end time of the second time period is the first discontinuous reception activation time The end of time;
  • the first time slot of the first DCI received by the first communication device in the second time period is the yth time slot from the bottom within the first discontinuous reception activation time, y ⁇ X, y is Positive integer;
  • the first constant value Z is associated with the subcarrier interval, the first constant value corresponding to the first subcarrier interval is greater than or equal to the first constant value corresponding to the second subcarrier interval, and the first subcarrier interval is greater than the second subcarrier interval. Carrier spacing.
  • the network device does not schedule new uplink or downlink data transmission through the PDCCH, and the UE still monitors the PDCCH in the third time period after the on-duration. The UE does not monitor the PDCCH after the third time period.
  • the network device schedules new downlink data transmission through PDCCH in the penultimate time slot of the on duration, but the time for the UE to decode the DCI lasts until the first time slot after the on duration At the end of (that is, the end of the n+1 slot), the UE still monitors the PDCCH in the third time period. In this way, the network device can also send the PDCCH in the third time period, which can reduce the data delay.
  • the UE starts the drx-InactivityTimer and re-enters the discontinuous reception activation time, that is, the second discontinuous reception activation time, so the UE continues to monitor the PDCCH after the third time period.
  • the embodiment of the present application does not limit the DCI decoding time of the UE, nor does it limit when the UE starts or restarts the drx-InactivityTimer.
  • the UE may also complete the DCI decoding before the end of the n+minimum K0-1 time slot, for example, complete the DCI decoding in the middle of the third time period.
  • the network device sending the second DCI to the first communication device in the third time period includes but not limited to the following possible scenarios:
  • the first possible scenario the network device sends the second DCI to the first communication device in the third time period, the second DCI is carried by the PDCCH, and the second DCI is not used to indicate new uplink or downlink data transmission.
  • the second DCI is used to indicate retransmission of uplink or downlink data, or the DCI format of the second DCI is a non-scheduled DCI format.
  • the DCI format (DCI format) is DCI format 2_0/2_1/2_2/2_3, etc., or the DCI format of the transmission power saving signal.
  • the power saving signal includes the maximum multiple-input multiple-output that indicates the UE to work. MIMO) the number of layers (including uplink and downlink), or used to indicate the minimum value of K0 and/or K2, or specifically used to indicate partial bandwidth (Bandwidth part, BWP) switching, etc.
  • the second possible scenario If the network device sends the first DCI to the first communication device during the second time period within the first discontinuous reception activation time, the first DCI is carried by the PDCCH to indicate a new uplink or Downlink data transmission; the network device sends the first DCI to the first communication device in the third time period.
  • the start time of the second time period is the start time of the X-1th time slot from the bottom within the first discontinuous reception activation time
  • the end time of the second time period is the end of the first discontinuous reception activation time Time
  • minimum K0 represents the minimum time slot interval between PDCCH and PDSCH
  • Z represents the first constant value.
  • the network equipment will be the first after the first discontinuous reception activation time.
  • the PDCCH used to indicate new uplink or downlink data transmission will not be sent in the three time periods.
  • the network device does not send the PDCCH for indicating new uplink or downlink data transmission in the last M+1 time slot of the first discontinuous reception activation time, but the network device sends the PDCCH for indicating the third time period
  • the network device does not send the PDCCH in the fourth time period, and the start time of the fourth time period is the end position of the third time period. After the fourth time period, the network device can continue to send the PDCCH.
  • the duration of the fourth time period is: X-y time slots.
  • y indicates that the first time slot in which the PDCCH for indicating new uplink or downlink data transmission is located in the third time period is the yth time slot from the bottom of the third time period.
  • the network device does not send a PDCCH for indicating new downlink data transmission within the first discontinuous reception activation time (that is, on duration), and the UE continues to monitor the PDCCH in the third time period.
  • the PDCCH-1 and PDCCH-2 sent by the network device in the third time period both indicate the PDCCH used to indicate new downlink data transmission, where PDCCH-1 is the first one used to indicate the new downlink data transmission in the third time period.
  • the start position of the fourth time period is the end position of the third time period.
  • the UE does not monitor the PDCCH in the fourth time period, and the network device does not send the PDCCH in the fourth time period.
  • the UE successfully decodes the DCI transmitted by the PDCCH-1 it will start the drx-InactivityTimer, and then the UE re-enters the discontinuous reception activation time, that is, the second discontinuous reception activation time. Therefore, the UE continues to monitor the PDCCH after the fourth time period, and the network device may also continue to send the PDCCH after the fourth time period.
  • the network device After the first discontinuous reception activation time, the UE can be continuously scheduled.
  • the UE continues to monitor the PDCCH in the third time period after the first discontinuous reception activation time, so the UE will not miss any PDCCH detection, which avoids
  • the network device and the UE have inconsistent understanding of whether a period of time after the first discontinuous reception activation time is in the discontinuous reception activation time.
  • the network device can also schedule the UE as soon as possible, reducing Delay of scheduling data.
  • This method is also applicable to the case where the PDCCH is located at the middle symbol position or the end symbol position of a slot.
  • the decoding speed of DCI can be adjusted based on the UE to make DCI decode It is still completed before n+X time slots.
  • the UE cannot complete the DCI decoding at the beginning of time slot n+1. At this time, the time for the UE to decode the first DCI also exceeds the first discontinuous reception activation time.
  • the third The duration of the time period is X+1-y time slots, where X and y are as described before, and will not be repeated here.
  • the duration of the third time period is X time slots, and X is as described above, and will not be repeated here.
  • each network element such as a network device and a terminal device, includes a hardware structure and/or software module corresponding to each function.
  • each network element such as a network device and a terminal device
  • each network element includes a hardware structure and/or software module corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed by hardware or computer software-driven hardware depends on the specific application and design constraints of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • an embodiment of the present application further provides an apparatus 2300, which includes a transceiver unit 2302 and a processing unit 2301.
  • the apparatus 2300 is used to implement the function of the first communication device in the foregoing method.
  • the device may be a terminal device, or a device in a terminal device, such as a chip system.
  • the transceiver unit 2302 receives the first downlink control information DCI from the network device within the first discontinuous reception activation time, and the first DCI is used to indicate new uplink or downlink data transmission;
  • the processing unit 2301 does not expect to receive the physical downlink control channel PDCCH from the network device in the first time period after the first discontinuous reception activation time, and the start time of the first time period is the first non-continuous reception
  • the end time of the continuous reception activation time, the end time of the first time period is within the second discontinuous reception activation time;
  • the transceiver unit 2302 monitors the PDCCH after the first time period.
  • the apparatus 2300 is used to implement the function of the first communication device in the foregoing method.
  • the device may be a terminal device, or a device in a terminal device, such as a chip system.
  • the transceiving unit 2302 receives the first DCI from the network device within the first discontinuous reception activation time, and the first DCI is used to indicate new uplink or downlink data transmission;
  • the processing unit 2301 starts or restarts the discontinuous reception inactivation timer at the beginning of the time slot corresponding to the sum of the time slot number of the time slot where the first DCI is located and X, where X is an integer greater than or equal to 0.
  • the apparatus 2300 is used to implement the function of the first communication device in the foregoing method.
  • the device can be a terminal device or a device in a terminal device, such as a chip system.
  • the transceiver unit 2302 monitors the PDCCH in a third time period after the first discontinuous reception activation time; the start time of the third time period is the end time of the first discontinuous reception activation time;
  • the processing unit 2301 determines that it is in the second discontinuous reception activation time at the end of the third time period, the transceiver unit 2302 continues to monitor the PDCCH after the third time period;
  • the processing unit 2301 determines that it is not in the second discontinuous reception activation time at the end of the third time period, the transceiver unit 2302 does not monitor the PDCCH after the third time period.
  • the apparatus 2300 is used to implement the function of the first communication device in the foregoing method.
  • the device may be a terminal device, or a device in a terminal device, such as a chip system.
  • the transceiver unit 2302 receives the first DCI from the network device within the first discontinuous reception activation time, where the first DCI is used to indicate new uplink or downlink data transmission;
  • the processing unit 2301 starts or restarts the discontinuous reception inactivity timer at the start time of the Z1+1th symbol after the symbol where the first DCI is located, Z1 is a second constant value, and Z1 is an integer greater than or equal to 1.
  • the apparatus 2300 is used to implement the function of the network device in the above method.
  • the device can be a network device or a device in a network device.
  • the processing unit 2301 calls the transceiver unit 2302 to send the first DCI to the first communication device at the first discontinuous reception activation time, where the first DCI is used to indicate new uplink or downlink data transmission;
  • the processing unit 2301 calls the transceiver unit 2302 not to send the PDCCH to the first communication device in the first time period after the first discontinuous reception activation time;
  • the processing unit 2301 calls the transceiver unit 2302 to send the PDCCH to the first communication device after the first time period;
  • the start time of the first time period is the end time of the first discontinuous reception activation time, and the end time of the first time period is within the second discontinuous reception duration.
  • the apparatus 2300 is used to implement the function of the network device in the above method.
  • the device can be a network device or a device in a network device.
  • the transceiver unit 2302 sends a first DCI to the first communication device within the first discontinuous reception activation time, where the first DCI is used to indicate new uplink or downlink data transmission;
  • the processing unit 2301 starts or restarts the discontinuous reception inactivation timer at the beginning of the time slot corresponding to the sum of the time slot number of the time slot where the first DCI is located and X, where X is an integer greater than or equal to 0.
  • the apparatus 2300 is used to implement the function of the network device in the above method.
  • the device can be a network device or a device in a network device.
  • the transceiver unit 2302 sends the PDCCH to the first communication device in a third time period after the first discontinuous reception activation time; the start time of the third time period is the end time of the first discontinuous reception activation time If the processing unit 2301 determines that it is in the second discontinuous reception activation time at the end of the third time period, the transceiver unit 2302 sends the PDCCH to the first communication device after the third time period; if the processing unit 2301 determines that it is not in the second discontinuous reception activation time at the end of the third time period, and the transceiver unit 2302 does not send the PDCCH to the first communication device after the third time period.
  • the apparatus 2300 is used to implement the function of the network device in the above method.
  • the device can be a network device or a device in a network device.
  • the transceiver unit 2302 sends a first DCI to the first communication device within the first discontinuous reception activation time, and the first DCI is used to indicate a new uplink or downlink data transmission; the processing unit 2301 is in the symbol of the first DCI
  • the discontinuous reception inactivation timer is started or restarted at the start time of the Z1+1th symbol thereafter, Z1 is the second constant value, and Z1 is an integer greater than or equal to 1.
  • the division of modules in the embodiments of the present application is illustrative, and is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of the present application may be integrated into one process. In the device, it can also exist alone physically, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules.
  • the device may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device includes a processor and an interface, and the interface may be an input/output interface.
  • the processor completes the function of the aforementioned processing unit 2301
  • the interface completes the function of the aforementioned transceiver unit 2302.
  • the device may also include a memory, where the memory is used to store a program that can be run on the processor, and the processor implements the methods of the foregoing embodiments when the program is executed.
  • an embodiment of the present application further provides an apparatus 2400.
  • the device 2400 includes: a communication interface 2401, at least one processor 2402, and at least one memory 2403.
  • the communication interface 2401 is used to communicate with other devices through the transmission medium, so that the device used in the device 2400 can communicate with other devices.
  • the memory 2403 is used to store computer programs.
  • the processor 2402 calls the computer program stored in the memory 2403, and transmits and receives data through the communication interface 2401 to implement the method in the foregoing embodiment.
  • the memory 2403 is used to store a computer program; the processor 2402 calls the computer program stored in the memory 2403, and executes the method executed by the network device in the foregoing embodiment through the communication interface 2401.
  • the memory 2403 is used to store a computer program; the processor 2402 calls the computer program stored in the memory 2403, and executes the method executed by the terminal device in the foregoing embodiment through the communication interface 2401.
  • the communication interface 2401 may be a transceiver, a circuit, a bus, a module, or other types of communication interfaces.
  • the processor 2402 may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and can implement or execute the embodiments of the present application The disclosed methods, steps and logic block diagrams.
  • the general-purpose processor may be a microprocessor or any conventional processor. The steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory 2403 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., and may also be a volatile memory, such as random access memory (random access memory). -access memory, RAM).
  • the memory is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • the memory in the embodiment of the present application may also be a circuit or any other device capable of implementing a storage function.
  • the memory 2403 and the processor 2402 are coupled.
  • the coupling in the embodiments of the present application is an interval coupling or a communication connection between devices, units or modules, and may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the memory 2403 may also be located outside the apparatus 2400.
  • the processor 2402 can cooperate with the memory 2403.
  • the processor 2402 may execute program instructions stored in the memory 2403.
  • At least one of the at least one memory 2403 may also be included in the processor 2402.
  • the embodiment of the present application does not limit the connection medium between the communication interface 2401, the processor 2402, and the memory 2403.
  • the memory 2403, the processor 2402, and the communication interface 2401 may be connected by a bus, and the bus may be divided into an address bus, a data bus, and a control bus.
  • the apparatus in the embodiment shown in FIG. 23 may be implemented by the apparatus 2400 shown in FIG. 24.
  • the processing unit 2301 may be implemented by the processor 2402
  • the transceiver unit 2302 may be implemented by the communication interface 2401.
  • the embodiments of the present application also provide a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program runs on a computer, the computer executes the methods shown in the foregoing embodiments.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital video disc (digital video disc, DVD for short)), or a semiconductor medium (for example, a solid state disk Solid State Disk SSD), etc .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,该方法包括:第一通信设备在第一不连续接收激活时间内从网络设备接收到第一DCI,第一DCI用于指示新的上行或下行数据传输;第一通信设备在第一不连续接收激活时间之后的第一时间段内不期待从网络设备接收PDCCH,第一时间段的起始时刻为第一不连续接收激活时间的结束时刻,第一时间段的结束时刻位于第二不连续接收激活时间之内;第一通信设备在第一时间段之后监听PDCCH。因此,通过规定UE行为,可以避免由于DCI译码时间超过当前不连续接收激活时间造成网络设备和终端设备对第一时间段是否处于不连续接收激活时间理解不一致的问题,且可以实现节约网络资源,避免功耗浪费。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2019年08月02日提交中国专利局、申请号为201910713049.4、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
在现有技术中,如果用户设备(user equipment,UE)在不连续接收激活时间(DRX active time)的结尾收到下行控制信息(downlink control information,DCI),且该DCI用于指示新的上行或下行数据传输,则网络设备会在传输该DCI的物理下行控制信道(physical downlink control channel,PDCCH)所在符号之后的第一个符号启动不连续接收非激活定时器(drx-InactivityTimer)。但对于UE而言,UE只有成功译码DCI之后才会得知该DCI是否指示新的上行或下行数据传输,若该DCI指示新的上行或下行数据传输,UE启动drx-InactivityTimer,此时UE对定时器的计数值仍然从PDCCH所在符号之后的第一个符号算起。
但是,由于UE译码DCI的时间可能会超过不连续接收激活时间,则针对超过不连续接收激活时间且UE仍然在译码DCI的时间段,网络设备和UE会产生对不连续接收激活时间的理解不一致的问题。一方面,网络设备认为drx-InactivityTimer在运行,所以该时间段为不连续接收激活时间;另一方面,由于UE还没成功译码DCI,未启动drx-InactivityTimer,则UE认为该时间段是非不连续接收激活时间。如果网络设备在该时间段内在PDCCH发送DCI调度UE,则UE会漏掉该PDCCH,造成网络资源和功耗的浪费,同时也造成UE数据时延的增大。
其中,UE译码DCI的时间超过不连续接收激活时间的原因可能有以下两点:
1)当前的下行调度和上行调度分别有minimum K0和minimum K2的限制。UE在译码DCI成功之前不知道译码的DCI指示的是下行调度还是上行调度,所以如果UE想要在调度的数据之前译码DCI成功,那么UE译码时间受限于minimum K0和minimum K2的较小值。另外,针对DCI调度PUSCH的情况,UE在译码DCI成功之后还要预留准备所发送的上行数据的时间,所以如果minimum K2小于minimum K0,UE一般不会将译码时间延长到N+minimum K2-1时隙的结尾,而是要预留数据准备的时间。而对于minimum K2大于minimum K0,针对下行调度和上行调度,UE可以将DCI译码时间延长到N+minimum K0-1对应时隙,例如可以延长到N+minimum K0-1对应时隙的结束时刻。其中,minimum K0表示PDCCH与物理下行共享信道(physical downlink shared channel,PDSCH)之间的时隙间隔的最小值,minimum K2表示PDCCH与物理上行共享信道(physical uplink shared channel,PDSCH)之间的时隙间隔的最小值。N为DCI所在时隙的时隙编号。
一般情况下,minimum K2会大于或等于minimum K0,本申请中也是基于这个假设。
2)UE能力限制。例如,当子载波间隔(subcarrier spacing,SCS)较大时(比如SCS=120KHz),UE译码DCI时间最短可能也需要2~3个时隙。
如图1所示,在持续时间(on duration)的最后一个时隙,网络设备通过PDCCH传输DCI调度UE,该DCI指示新的下行数据传输。由于minimum K0=2,所以UE译码DCI的时间可能持续到持续时间之后的一个时隙。按照现有协议,网络设备会在PDCCH所在符号之后的第一个符号启动drx-InactivityTimer,按照现有协议规定网络设备认为drx-InactivityTimer运行期间UE是处于不连续接收激活时间。而若UE在持续时间后的一个时隙处于译码DCI状态,UE此时已经离开不连续接收激活时间,UE会认为该时隙是非不连续接收激活时间,所以UE不会监听PDCCH。如果网络设备在该时隙在PDCCH发送DCI调度UE,则UE会漏掉该PDCCH,造成网络资源和功耗的浪费,也造成了UE数据时延的增大。
发明内容
本申请实施例提供一种通信方法及装置,用于解决网络设备和UE对不连续接收激活时间的理解不一致的问题。
第一方面,本申请实施例提供一种通信方法,该方法包括:第一通信设备在第一不连续接收激活时间内从网络设备接收到第一下行控制信息DCI,所述第一DCI用于指示新的上行或下行数据传输;所述第一通信设备在所述第一不连续接收激活时间之后的第一时间段内不期待从所述网络设备接收物理下行控制信道PDCCH,所述第一时间段的起始时刻为所述第一不连续接收激活时间的结束时刻,所述第一时间段的结束时刻位于第二不连续接收激活时间之内;所述第一通信设备在所述第一时间段之后监听所述PDCCH。
采用上述方法,通过规定UE行为,规定UE在当前不连续接收激活时间之后的第一时间段内不期待收到PDCCH,网络设备在第一时间段内不发送PDCCH,可以避免由于DCI译码时间超过当前不连续接收激活时间造成网络设备和UE对第一时间段是否处于不连续接收激活时间理解不一致的问题,且可以实现节约网络资源,避免功耗浪费。
在一种可能的设计中,所述第一通信设备在所述第一不连续接收激活时间内的第二时间段从所述网络设备接收到至少一个第一DCI,且所述第一通信设备在所述第一不连续接收激活时间内的倒数第X个时隙未从所述网络设备接收到所述第一DCI;其中,X为整数,X=minimum K0,或者X=Z,或者X=max(minimum K0,Z),minimum K0表示PDCCH与物理下行共享信道PDSCH之间的时隙间隔的最小值,Z表示第一常数值,Z为正整数;所述第二时间段的起始时刻为所述第一不连续接收激活时间内的倒数第X-1个时隙的起始时刻,所述第二时间段的结束时刻为所述第一不连续接收激活时间的结束时刻。
在一种可能的设计中,所述第一时间段的长度为X-y个时隙;其中,所述第一通信设备在所述第二时间段内接收到的第一个第一DCI所在时隙为所述第一不连续接收激活时间内的倒数第y个时隙,y<X,y为正整数。
采用上述设计,可以使第一通信设备在第一时间段内或第一时间段的结束时刻对DCI译码成功。
应理解的是,若第一通信设备在第一不连续接收激活时间内的倒数第X个时隙从网络设备接收到第一DCI,y=X,此时第一通信设备可以在第一不连续接收激活时间内对第一DCI译码成功,即第一DCI译码时间不会超过第一不连续接收持续时间,第一时间段为0, 且不会出现网络设备和第一通信设备对不连续接收激活时间理解不一致的问题。若第一通信设备在第一不连续接收激活时间内的倒数第X个时隙之前的时隙(例如倒数第X+1个时隙)从网络设备接收到第一DCI,y>X,此时第一通信设备可以在第一不连续接收激活时间内对第一DCI译码成功,即第一DCI译码时间不会超过第一不连续接收持续时间,不存在第一时间段,且不会出现网络设备和第一通信设备对不连续接收激活时间理解不一致的问题。
在一种可能的设计中,所述第一时间段的长度为M个时隙;其中,M=minimum K0-1,或者M=Z-1,或者M=max(minimum K0,Z)-1,minimum K0表示PDCCH与PDSCH之间的时隙间隔的最小值,Z表示第一常数值,Z为正整数。
采用上述设计,可以使第一通信设备在第一时间段内或第一时间段的结束时刻对DCI译码成功。
在一种可能的设计中,所述第一常数值Z与子载波间隔关联,第一子载波间隔对应的第一常数值大于或等于第二子载波间隔对应的第一常数值,其中,所述第一子载波间隔大于所述第二子载波间隔。
采用上述设计,可以使第一通信设备在第一时间段内或第一时间段的结束时刻对DCI译码成功。
第二方面,本申请实施例提供一种通信方法,该方法包括:第一通信设备在第一不连续接收激活时间内从网络设备接收到第一DCI,所述第一DCI用于指示新的上行或下行数据传输;所述第一通信设备在所述第一DCI所在时隙的时隙编号与X之和所对应的时隙的起始时刻启动或重启不连续接收非激活定时器,X为大于等于0的整数。
采用上述方法,通过修改drx-InactivityTimer的启动时间,网络设备和UE都在UE已经译码DCI成功后同时启动或重启drx-InactivityTimer,可以避免网络设备和UE对不连续接收激活时间的理解不一致的问题。
在一种可能的设计中,X=minimum K0,或者X=Z,或者X=max(minimum K0,Z),minimum K0表示PDCCH与PDSCH之间的时隙间隔的最小值,Z表示第一常数值。
采用上述设计,可以使第一通信设备在drx-InactivityTimer启动前对DCI译码成功。
在一种可能的设计中,所述第一常数值Z与子载波间隔关联,第一子载波间隔对应的第一常数值大于或等于第二子载波间隔对应的第一常数值,其中,所述第一子载波间隔大于所述第二子载波间隔。
采用上述设计,可以使第一通信设备在drx-InactivityTimer启动前对DCI译码成功。
第三方面,本申请实施例提供一种通信方法,该方法包括:网络设备在第一不连续接收激活时间向第一通信设备发送第一DCI,所述第一DCI用于指示新的上行或下行数据传输;所述网络设备在所述第一不连续接收激活时间之后的第一时间段内不向所述第一通信设备发送PDCCH;所述网络设备在所述第一时间段之后向所述第一通信设备发送所述PDCCH;所述第一时间段的起始时刻为所述第一不连续接收激活时间的结束时刻,所述第一时间段的结束时刻位于第二不连续接收持续时间之内。
采用上述方法,网络设备在第一时间段内不发送PDCCH,可以避免由于DCI译码时间超过当前不连续接收激活时间造成网络设备和UE对第一时间段是否处于不连续接收激活时间理解不一致的问题,且可以实现节约网络资源,避免功耗浪费。
在一种可能的设计中,网络设备在第一不连续接收激活时间向第一通信设备发送第一 DCI,包括:所述网络设备在所述第一不连续接收激活时间内的第二时间段向所述第一通信设备发送至少一个第一DCI,且所述网络设备在所述第一不连续接收激活时间内的倒数第X个时隙不向所述第一通信设备发送所述第一DCI;其中,X为整数,X=minimum K0,或者X=Z,或者X=max(minimum K0,Z),minimum K0表示PDCCH与PDSCH之间的时隙间隔的最小值,Z表示第一常数值,Z为正整数;所述第二时间段的起始时刻为所述第一不连续接收激活时间内的倒数第X-1个时隙的起始时刻,所述第二时间段的结束时刻为所述第一不连续接收激活时间的结束时刻。
在一种可能的设计中,所述第一时间段的长度为X-y个时隙;其中,所述网络设备在所述第二时间段内发送的第一个第一DCI所在时隙为所述第一不连续接收激活时间内的倒数第y个时隙,y<X,y为正整数。
采用上述设计,可以使第一通信设备在第一时间段内或第一时间段的结束时刻对DCI译码成功。
在一种可能的设计中,所述第一时间段的长度为M个时隙;其中,M=minimum K0-1,或者M=Z-1,或者M=max(minimum K0,Z)-1,minimum K0表示PDCCH与物理下行共享信道PDSCH之间的时隙间隔的最小值,Z表示第一常数值,Z为正整数。
采用上述设计,可以使第一通信设备在第一时间段内或第一时间段的结束时刻对DCI译码成功。
在一种可能的设计中,所述第一常数值Z与子载波间隔关联,第一子载波间隔对应的第一常数值大于或等于第二子载波间隔对应的第一常数值,其中,所述第一子载波间隔大于所述第二子载波间隔。
采用上述设计,可以使第一通信设备在第一时间段内或第一时间段的结束时刻对DCI译码成功。
第四方面,本申请实施例提供一种通信方法,该方法包括:网络设备在第一不连续接收激活时间内向第一通信设备发送第一DCI,所述第一DCI用于指示新的上行或下行数据传输;所述网络设备在所述第一DCI所在时隙的时隙编号与X之和所对应的时隙的起始时刻启动或重启不连续接收非激活定时器,X为大于等于0的整数。
采用上述方法,通过修改drx-InactivityTimer的启动时间,网络设备和UE都在UE已经译码DCI成功后同时启动或重启drx-InactivityTimer,可以避免网络设备和UE对不连续接收激活时间的理解不一致的问题。
在一种可能的设计中,X=minimum K0,或者X=Z,或者X=max(minimum K0,Z),minimum K0表示PDCCH与PDSCH之间的时隙间隔的最小值,Z表示第一常数值。
在一种可能的设计中,所述第一常数值Z与子载波间隔关联,第一子载波间隔对应的第一常数值大于或等于第二子载波间隔对应的第一常数值,其中,所述第一子载波间隔大于所述第二子载波间隔。
采用上述设计,可以使第一通信设备在drx-InactivityTimer启动前对DCI译码成功。
第五方面,本申请实施例提供一种通信方法,该方法包括:第一通信设备在第一不连续接收激活时间之后的第三时间段内监听PDCCH;所述第三时间段的起始时刻为所述第一不连续接收激活时间的结束时刻;若所述第一通信设备在所述第三时间段结束时处于第二不连续接收激活时间,所述第一通信设备在所述第三时间段之后继续监听所述PDCCH;若所述第一通信设备在所述第三时间段结束时未处于第二不连续接收激活时间,所述第一 通信设备在所述第三时间段之后不监听所述PDCCH。
采用上述方法,一旦网络设备在第一不连续接收激活时间的结尾(比如第一不连续接收激活时间的倒数第一个时隙)通过PDCCH调度了新的上行或下行数据传输,则网络设备在第一不连续接收激活时间之后就可以连续调度UE,UE在第一不连续接收激活时间之后的第三时间段继续监听PDCCH,所以UE并不会漏掉任何的PDCCH检测,这样既避免了网络设备和UE对第一不连续接收激活时间之后可能存在的一个时间段是否处于不连续接收激活时间理解不一致的问题,同时,在有数据收发时,网络设备也可以尽快的调度UE,减少了调度数据的时延。
在一种可能的设计中,所述第三时间段的长度为X-y个时隙;其中,所述第一通信设备在所述第一不连续接收激活时间内的第二时间段从所述网络设备接收到至少一个第一DCI,其中,所述第一DCI通过所述PDCCH承载,用于指示新的上行或下行数据传输,且所述第一通信设备在所述第一不连续接收激活时间内的倒数第X个时隙未从所述网络设备接收到所述第一DCI;X为整数,X=minimum K0,或者X=Z,或者X=max(minimum K0,Z),minimum K0表示PDCCH与PDSCH之间的时隙间隔的最小值,Z表示第一常数值,Z为正整数;所述第二时间段的起始时刻为所述第一不连续接收激活时间内的倒数第X-1个时隙的起始时刻,所述第二时间段的结束时刻为所述第一不连续接收激活时间的结束时刻;所述第一通信设备在所述第二时间段内接收到的第一个所述第一DCI所在时隙为所述第一不连续接收激活时间内的倒数第y个时隙,y<X,y为正整数。
采用上述设计,可以使第一通信设备在第三时间段内或第三时间段的结束时刻对DCI译码成功。
应理解的是,若第一通信设备在第一不连续接收激活时间内的倒数第X个时隙从网络设备接收到第一DCI,y=X,此时第一通信设备可以在第一不连续接收激活时间内对第一DCI译码成功,即第一DCI译码时间不会超过第一不连续接收持续时间,第三时间段为0,且不会出现网络设备和第一通信设备对不连续接收激活时间理解不一致的问题。若第一通信设备在第一不连续接收激活时间内的倒数第X个时隙之前的时隙(例如倒数第X+1个时隙)从网络设备接收到第一DCI,y>X,此时第一通信设备可以在第一不连续接收激活时间内对第一DCI译码成功,即第一DCI译码时间不会超过第一不连续接收持续时间,不存在第三时间段,且不会出现网络设备和第一通信设备对不连续接收激活时间理解不一致的问题。
在一种可能的设计中,所述第三时间段的长度为M个时隙,M=minimum K0-1,或者M=Z-1,或者M=max(minimum K0,Z)-1,其中,minimum K0表示PDCCH与PDSCH之间的时隙间隔的最小值,Z为第一常数值。
采用上述设计,可以使第一通信设备在第三时间段内或第三时间段的结束时刻对DCI译码成功。
在一种可能的设计中,所述第一常数值Z与子载波间隔关联,第一子载波间隔对应的第一常数值大于或等于第二子载波间隔对应的第一常数值,其中,所述第一子载波间隔大于所述第二子载波间隔。
采用上述设计,可以使第一通信设备在第三时间段内或第三时间段的结束时刻对DCI译码成功。
在一种可能的设计中,还包括:所述第一通信设备在所述第三时间段从网络设备接收 到第二DCI,所述第二DCI通过所述PDCCH承载,所述第二DCI不用于指示新的上行或下行数据传输。
采用上述设计,第一通信设备可以在第三时间段从网络设备接收第二DCI,UE并不会漏掉任何的PDCCH检测。
在一种可能的设计中,所述第二DCI用于指示重传上行或下行数据,或者所述第二DCI的DCI格式是非调度类型的DCI格式。
采用上述设计,可以减少第一通信设备调度数据的时延。
在一种可能的设计中,还包括:所述第一通信设备在所述第一不连续接收激活时间内的第二时间段从所述网络设备接收到第一DCI,其中,所述第一DCI通过所述PDCCH承载,用于指示新的上行或下行数据传输;所述第一通信设备在所述第三时间段从网络设备接收到所述第一DCI;其中,所述第二时间段的起始时刻为所述第一不连续接收激活时间内的倒数第X-1个时隙的起始时刻,所述第二时间段的结束时刻为所述第一不连续接收激活时间的结束时刻;X=minimum K0,或者X=Z,或者X=max(minimum K0,Z),minimum K0表示PDCCH与PDSCH之间的时隙间隔的最小值,Z表示第一常数值。
采用上述设计,第一通信设备可以在第三时间段从网络设备接收第一DCI,UE并不会漏掉任何的PDCCH检测,可以减少第一通信设备调度数据的时延。
第六方面,本申请实施例提供一种通信方法,该方法包括:网络设备在第一不连续接收激活时间之后的第三时间段内向第一通信设备发送PDCCH;所述第三时间段的起始时刻为所述第一不连续接收激活时间的结束时刻;若所述网络设备在所述第三时间段结束时处于第二不连续接收激活时间,所述网络设备在所述第三时间段之后向所述第一通信设备发送所述PDCCH;若所述网络设备在所述第三时间段结束时未处于第二不连续接收激活时间,所述网络设备在所述第三时间段之后不向所述第一通信设备发送所述PDCCH。
采用上述方法,一旦网络设备在第一不连续接收激活时间的结尾(比如第一不连续接收激活时间的倒数第一个时隙)通过PDCCH调度了新的上行或下行数据传输,则网络设备在第一不连续接收激活时间之后就可以连续调度UE,UE在第一不连续接收激活时间之后的第三时间段继续监听PDCCH,所以UE并不会漏掉任何的PDCCH检测,这样既避免了网络设备和UE对第一不连续接收激活时间之后可能存在的一个时间段是否处于不连续接收激活时间理解不一致的问题,同时,在有数据收发时,网络设备也可以尽快的调度UE,减少了调度数据的时延。
在一种可能的设计中,所述第三时间段的长度为X-y个时隙;其中,所述网络设备在所述第一不连续接收激活时间内的所述第二时间段向所述第一通信设备发送至少一个第一DCI,其中,所述第一DCI通过所述PDCCH承载,用于指示新的上行或下行数据传输,且所述网络设备在所述第一不连续接收激活时间内的倒数第X个时隙未向所述第一通信设备发送所述第一DCI,X为整数,X=minimum K0,或者X=Z,或者X=max(minimum K0,Z),minimum K0表示PDCCH与PDSCH之间的时隙间隔的最小值,Z表示第一常数值,Z为正整数;所述第二时间段的起始时刻为所述第一不连续接收激活时间内的倒数第X-1个时隙的起始时刻,所述第二时间段的结束时刻为所述第一不连续接收激活时间的结束时刻;所述网络设备在第二时间段内发送的第一个所述第一DCI所在时隙为所述第一不连续接收激活时间内的倒数第y个时隙,y<X,y为正整数。
采用上述设计,可以使第一通信设备在第三时间段内或第三时间段的结束时刻对DCI 译码成功。
在一种可能的设计中,所述第三时间段的长度为M个时隙,M=minimum K0-1,或者M=Z-1,或者M=max(minimum K0,Z)-1,其中,minimum K0表示PDCCH与PDSCH之间的时隙间隔的最小值,Z为第一常数值。
采用上述设计,可以使第一通信设备在第三时间段内或第三时间段的结束时刻对DCI译码成功。
在一种可能的设计中,所述第一常数值Z与子载波间隔关联,第一子载波间隔对应的第一常数值大于或等于第二子载波间隔对应的第一常数值,其中,所述第一子载波间隔大于所述第二子载波间隔。
采用上述设计,可以使第一通信设备在第三时间段内或第三时间段的结束时刻对DCI译码成功。
在一种可能的设计中,网络设备在第一不连续接收激活时间之后的第三时间段内向第一通信设备发送PDCCH,包括:所述网络设备在所述第三时间段向所述第一通信设备发送第二DCI,所述第二DCI通过所述PDCCH承载,所述第二DCI不用于指示新的上行或下行数据传输。
采用上述设计,第一通信设备可以在第三时间段从网络设备接收第二DCI,UE并不会漏掉任何的PDCCH检测。
在一种可能的设计中,所述第二DCI用于指示重传上行或下行数据,或者所述第二DCI的DCI格式是非调度类型的DCI格式。
采用上述设计,可以减少第一通信设备调度数据的时延。
在一种可能的设计中,网络设备在第一不连续接收激活时间之后的第三时间段内向第一通信设备发送PDCCH,包括:若所述网络设备在所述第一不连续接收激活时间内的第二时间段向所述第一通信设备发送第一DCI,其中,所述第一DCI通过所述PDCCH承载,用于指示新的上行或下行数据传输;所述网络设备在所述第三时间段向所述第一通信设备发送所述第一DCI;其中,所述第二时间段的起始时刻为所述第一不连续接收激活时间内的倒数第X-1个时隙的起始时刻,所述第二时间段的结束时刻为所述第一不连续接收激活时间的结束时刻;X=minimum K0,或者X=Z,或者X=max(minimum K0,Z),minimum K0表示PDCCH与PDSCH之间的时隙间隔的最小值,Z表示第一常数值。
采用上述设计,第一通信设备可以在第三时间段从网络设备接收第一DCI,UE并不会漏掉任何的PDCCH检测,可以减少第一通信设备调度数据的时延。
第七方面,本申请实施例提供一种通信方法,该方法包括:
第一通信设备在第一不连续接收激活时间内从网络设备接收第一DCI,所述第一DCI用于指示新的上行或下行数据传输;所述第一通信设备在所述第一DCI所在符号之后的第Z1+1个符号的起始时刻启动或重启不连续接收非激活定时器,Z1为第二常数值,Z1为大于等于1的整数。
采用上述方法,通过修改drx-InactivityTimer的启动时间,网络设备和UE都在UE已经译码DCI成功后同时启动或重启drx-InactivityTimer,可以避免网络设备和UE对不连续接收激活时间的理解不一致的问题。
在一种可能的设计中,所述第二常数值Z1与子载波间隔关联,第一子载波间隔对应的第二常数值大于或等于第二子载波间隔对应的第二常数值,其中,所述第一子载波间隔 大于所述第二子载波间隔。
采用上述设计,可以使第一通信设备在drx-InactivityTimer启动前对DCI译码成功。
第八方面,本申请实施例提供一种通信方法,该方法包括:网络设备在第一不连续接收激活时间内向第一通信设备发送第一DCI,所述第一DCI用于指示新的上行或下行数据传输;所述网络设备在所述第一DCI所在符号之后的第Z1+1个符号的起始时刻启动或重启不连续接收非激活定时器,Z1为第二常数值,Z1为大于等于1的整数。
采用上述方法,通过修改drx-InactivityTimer的启动时间,网络设备和UE都在UE已经译码DCI成功后同时启动或重启drx-InactivityTimer,可以避免网络设备和UE对不连续接收激活时间的理解不一致的问题。
在一种可能的设计中,所述第二常数值Z1与子载波间隔关联,第一子载波间隔对应的第二常数值大于或等于第二子载波间隔对应的第二常数值,其中,所述第一子载波间隔大于所述第二子载波间隔。
采用上述设计,可以使第一通信设备在drx-InactivityTimer启动前对DCI译码成功。
第九方面,本申请实施例提供一种通信装置,例如第一通信装置,该装置可以是终端设备,也可以是终端设备内的芯片。该装置可以包括处理单元、发送单元和接收单元。应理解的是,这里发送单元和接收单元还可以为收发单元。当该装置是终端设备时,该处理单元可以是处理器,该发送单元和接收单元可以是收发器;该终端设备还可以包括存储单元,该存储单元可以是存储器;该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该终端设备执行第一方面或第一方面任意一种可能的设计中的方法,或第二方面或第二方面任意一种可能的设计中的方法,或第五方面或第五方面任意一种可能的设计中的方法,或第七方面或第七方面任意一种可能的设计中的方法。当该装置是终端设备内的芯片时,该处理单元可以是处理器,该发送单元和接收单元可以是输入/输出接口、管脚或电路等;该处理单元执行存储单元所存储的指令,以使该芯片执行第一方面或第一方面任意一种可能的设计中的方法,或第二方面或第二方面任意一种可能的设计中的方法,或第五方面或第五方面任意一种可能的设计中的方法,或第七方面或第七方面任意一种可能的设计中的方法。该存储单元用于存储指令,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该终端设备内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第十方面,本申请实施例提供一种通信装置,该装置可以是网络设备,也可以是网络设备内的芯片。该装置可以包括处理单元、发送单元和接收单元。应理解的是,这里发送单元和接收单元还可以为收发单元。当该装置是网络设备时,该处理单元可以是处理器,该发送单元和接收单元可以是收发器;该网络设备还可以包括存储单元,该存储单元可以是存储器;该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该网络设备执行第三方面或第三方面任意一种可能的设计中的方法,或第四方面或第四方面任意一种可能的设计中的方法,或第六方面或第六方面任意一种可能的设计中的方法,或第八方面或第八方面任意一种可能的设计中的方法。当该装置是网络设备内的芯片时,该处理单元可以是处理器,该发送单元和接收单元可以是输入/输出接口、管脚或电路等;该处理单元执行存储单元所存储的指令,以使该芯片执行第三方面或第三方面任意一种可能的设计中的方法,或第四方面或第四方面任意一种可能的设计中的方法,或第六方面或第六方面任意一种可能的设计中的方法,或第八方面或第八方面任意一种可能的设计中的方 法。该存储单元用于存储指令,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该网络设备内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第十一方面,本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序在计算机上运行时,使得计算机执行上述第一方面至第八方面的方法。
第十二方面,本申请实施例还提供一种包含程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面至第八方面的方法。
附图说明
图1为本申请中在不连续接收持续时间调度新的下行数据传输的示意图;
图2为本申请中在不同场景下PDCCH调度PDSCH的UE功耗示意图;
图3为本申请中DCI译码时间的示意图;
图4为本申请中DRX周期的示意图;
图5为本申请中在现有技术下不连续接收非激活定时器启动时刻的示意图;
图6为本申请中通信***架构的示意图;
图7为本申请中一种通信方法的概述流程图之一;
图8为本申请中第一时间段的示意图之一;
图9为本申请中第一时间段的示意图之二;
图10为本申请中第一时间段的示意图之三;
图11为本申请中第一时间段的示意图之四;
图12为本申请中第二时间段的示意图;
图13为本申请中第一时间段的示意图之五;
图14为本申请中一种通信方法的概述流程图之二;
图15为本申请中不连续接收非激活定时器启动时刻示意图之一;
图16为本申请中不连续接收非激活定时器启动时刻示意图之二;
图17为本申请中不连续接收非激活定时器启动时刻示意图之三;
图18为本申请中一种通信方法的概述流程图之三;
图19为本申请中一种通信方法的概述流程图之四;
图20为本申请中第三时间段的示意图之一;
图21为本申请中第三时间段的示意图之二;
图22为本申请中第三时间段和第四时间段的示意图;
图23为本申请中装置结构示意图之一;
图24为本申请中装置结构示意图之二。
具体实施方式
下面结合附图,对本申请的实施例进行描述。
首先,对本申请实施例涉及的现有技术进行简单介绍:
在NR Rel-15版本中,网络设备在PDCCH发送DCI调度UE接收下行数据或上行数 据时,该DCI可以指示PDSCH(对应下行数据)或PUSCH(对应上行数据)的传输参数。这些传输参数用于确定PDSCH或PUSCH的时域资源位置。具体来说,PDSCH时域资源位置包括:PDSCH所在的时隙,以及PDSCH在上述时隙中所占用的符号的起始位置和长度。PUSCH时域资源位置包括:PUSCH所在的时隙,以及PUSCH在上述时隙中所占用的符号的起始位置和长度。
其中,PDCCH与PDSCH之间的时隙间隔用K0表示;PDCCH与PUSCH之间的时隙间隔用K2表示。网络设备会通过RRC信令,为UE配置K0和K2的可用值集合,例如通过配置时域资源分配(time-domain resource allocation,TDRA)表格,该表格包括多个K0和K2,然后通过DCI从TDRA的表格中的可用值集合中指示一个值,用于当前这次数据调度。如果PDCCH与PDSCH(或PUSCH)在相同时隙,称为同时隙调度(对应K0=0或K2=0的情况),如果PDCCH与PDSCH(或PUSCH)在不同时隙,称为跨时隙调度(对应K0>0或K2>0的情况)。
但是,在UE译码DCI之前,UE不知道DCI指示的K0或K2是多少。以下行调度为例,如果网络设备给UE配置的K0可用值集合中既包括K0=0,又包括K0>0的情况,UE在译码DCI之前不知道当前这次调度到底是同时隙调度还是跨时隙调度,只有当UE成功译码DCI,获得K0之后才会知道当前调度的PDSCH在哪个时隙。
因此,上述NR Rel-15的调度方式不利于UE节能,具体可以体现在以下两个方面:
一方面,以下行调度为例,如图2左侧所示,如果UE不知道当前时隙内是否是同时隙调度(比如,只要网络设备配置的TDRA表格中包括K0=0,就可能存在同时隙调度),为了避免丢失信号,UE在接收DCI之后,译码DCI的同时,需要缓存下行信号,若当前这次数据调度是跨时隙调度,则UE提前缓存的这部分信号是没有必要的,这造成了功耗的浪费。如图2右侧所示,如果UE提前能够知道当前这次数据调度是跨时隙调度,那么UE在接收DCI之后,译码DCI的同时,就可以把射频模块关闭,不缓存任何信号,从而可以达到节能的效果(如图2右侧所示,右下角阴影部分即为节省的能量)。
另一方面,UE译码DCI的速度也会影响UE的功耗。如果UE译码DCI的速度较快,则需要工作在较高的时钟频率与电压,所以功耗较高。但是,如果UE提前知道PDCCH与PDSCH(或PUSCH)之间有一个最小的时隙间隔,则UE就可以降低DCI的译码速度,从而降低工作的时钟频率和电压,以实现节省功耗。例如,如果网络设备指示了UE针对“K0”值的当前可用值的最小值,即网络通过RRC信令配置或者通过L1信令动态指示了minimum K0值,如图3所示,则UE可以降低DCI的译码速度,例如,针对minimum K0大于等于1,可以将译码DCI的时间延长到(n+minimum K0-1)所在时隙的结尾,其中,n是DCI所在的时隙编号。
由上可知,通过设定“K0和K2”的当前可用值的最小值,即minimum K0和minimum K2,UE可以在译码DCI之前,就获知当前这次调度为同时隙调度还是跨时隙调度,若确定当前这次调度为跨时隙调度,则UE可以在译码成功DCI之前不缓存任何信号,进入微睡眠(micro-sleep)(比如关掉接收RF),以实现节省功耗,同时,UE可以降低DCI的译码速度,从而降低时钟频率和工作电压,以实现节省功耗。
UE在RRC连接态可能会被配置不连续接收(connected-discontinuous reception,C-DRX),其目的是为了使终端设备每隔一定的周期进入不连续接收持续时间(DRX ON Duration)去收发数据,而在其他时候可以进入睡眠状态,不去监听PDCCH,从而可以实 现节省UE功耗。被配置DRX的UE的状态可以分为不连续接收激活(DRX Active)态和不连续接收非激活(DRX non-active)态,UE处于DRX Active态的时间称为不连续接收激活时间(DRX Active Time)。当UE处于DRX Active Time,UE会持续监听PDCCH。如果UE离开DRX Active态,即进入睡眠状态(DRX non-active),则UE不去监听PDCCH。当以下任意一个定时器在运行时,UE即处于DRX Active Time,这些定时器包括:不连续接收持续时间定时器(drx-onDurationTimer),不连续接收非激活定时器(drx-InactivityTimer),不连续接收下行重传定时器(drx-RetransmissionTimerDL),不连续接收上行重传定时器(drx-RetransmissionTimerUL),随机接入竞争解决定时器(ra-ContentionResolutionTimer)。此外,DRX active time还包括其他情况,例如:UE在PUCCH上发送了调度请求(scheduling request,SR)之后的等待期间;UE在成功接收到基于非竞争(non-contention based)随机接入的随机接入响应(random access response,RAR)之后还未收到指示新的上行或下行数据传输的PDCCH期间。
应理解的是,当UE处于DRX Active Time,UE会持续监听PDCCH。如果离开了DRX Active time,则UE不去监听PDCCH。具体的,这里的PDCCH的循环冗余校验(cyclic redundancy check,CRC)可以是如下的一种无线网络临时标识(radio network temporary identifier,RNTI)加扰的:小区无线网络临时标识(cell RNTI,C-RNTI),配置的调度无线网络临时标识(Configured Scheduling RNTI,CS-RNTI),中断无线网络临时标识(Interruption RNTI,INT-RNTI),时隙格式指示无线网络临时标识(Slot Format Indication RNTI,SFI-RNTI),半持续信道状态信息无线网络临时标识(Semi-Persistent CSI RNTI,SP-CSI-RNTI),PUCCH传输功率控制无线网络临时标识(transmit power control-PUCCH-RNTI,TPC-PUCCH-RNTI),PUSCH传输功率控制无线网络临时标识(transmit power control-PUSCH-RNTI,TPC-PUSCH-RNTI),和SRS传输功率控制无线网络临时标识(transmit power control-SRS-RNTI,TPC-SRS-RNTI)。
图4表示配置了DRX周期之后的UE状态示例。在C-DRX周期的开始时刻会首先进入DRX ON Duration,同时开启drx-onDurationTimer,如果在DRX ON Duration期间UE收到用于指示新的下行或上行数据传输的PDCCH,则会开启drx-InactivityTimer。UE将一直处于DRX-Active态直到drx-InactivityTimer超时,或者UE收到相关的控制单元(MAC CE)信令使该drx-InactivityTimer提前停止。在现有技术中,定时器drx-InactivityTimer是在指示新的上行或下行数据传输的PDCCH所在符号之后第一个符号启动或重启,如图5所示,图5中PDCCH调度新的PDSCH传输。
本申请主要应用于第5代无线通信***(new radio,NR)***,还可以应用于其它的通信***,例如,窄带物联网(narrow band-internet of things,NB-IoT)***,机器类通信(machine type communication,MTC)***,未来下一代通信***等。
本申请实施例中涉及的网元包括终端设备和网络设备。如图6所示,网络设备和终端设备组成一个通信***,在该通信***中,网络设备通过下行信道发送信息给终端设备,终端设备通过上行信道发送信息给网络设备。其中,终端设备可以为手机、平板电脑、带无线收发功能的电脑、物联网终端设备等,也可以称为移动站(mobile station)、移动台(mobile)、远程站(remote station)、远程终端(remote terminal)、接入终端(access terminal)、用户代理(user agent),还可以为车与车(vehicle-to-vehicle,V2V)通信中的汽车、机器 类通信中的机器等,在此不作限定。网络设备可以为各种形式的基站,例如:宏基站,微基站(也称为小站),中继站,接入点、演进型基站(eNodeB)、无线保真接入点(wireless fidelity access point,WiFi AP)、全球微波接入互操作性(worldwide interoperability for microwave access base station,WiMAX BS)等,在此不作限定。此外,在采用不同的无线接入技术的***中,具备提供无线接入功能的网络设备的名称可能会有所不同,例如,在LTE***中,称为演进的节点B(evolved NodeB,eNB或者eNodeB),在第三代(3rd generation,3G)***中,称为节点B(Node B),在NR***中,称为gNB。
上述各网元既可以是在专用硬件上实现的网络元件,也可以是在专用硬件上运行的软件实例,或者是在适当平台上虚拟化功能的实例。此外,本申请实施例还可以适用于面向未来的其他通信技术。本申请描述的网络架构以及业务场景是为了更加清楚的说明本申请的技术方案,并不构成对本申请提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请提供的技术方案对于类似的技术问题,同样适用。
本申请实施例中,第一通信设备可以是终端设备也可以是终端设备中的芯片***。
基于此,如图7所示,本申请实施例提供一种通信方法,该方法包括:
S701:第一通信设备在第一不连续接收激活时间内从网络设备接收到第一DCI,第一DCI用于指示新的上行或下行数据传输。
相应的,网络设备在第一不连续接收激活时间内向第一通信设备发送第一DCI。网络设备在向第一通信设备发送的第一DCI所占用的符号之后的第一个符号启动不连续接收非激活定时器。
S702:第一通信设备在第一不连续接收激活时间之后的第一时间段内不期待从网络设备接收PDCCH,第一时间段的起始时刻为第一不连续接收激活时间的结束时刻,第一时间段的结束时刻位于第二不连续接收激活时间之内。
相应的,网络设备在第一不连续接收激活时间之后的第一时间段内不向第一通信设备发送PDCCH。
S703:第一通信设备在第一时间段之后监听PDCCH。
相应的,网络设备在第一时间段之后可以向第一通信设备发送PDCCH。
应理解的是,网络设备发送PDCCH是指网络设备在PDCCH上发送DCI,例如第一DCI或其他类型的DCI。第一通信设备接收PDCCH是指盲检测PDCCH,或者说是监听PDCCH,或者说是在PDCCH接收下行控制信息,或者说是在PDCCH盲检测下行控制信息。第一通信设备不期待从网络设备接收PDCCH,表示第一通信设备不期待PDCCH上存在DCI,或者说是假设网络设备不在PDCCH发送DCI。
应理解的是,第一通信设备在第一不连续接收激活时间之后的第一时间段内不期待从网络设备接收PDCCH,所述PDCCH是网络设备只在DRX active time内所发送的PDCCH,例如,第一通信设备不期待收到其CRC由如下RNTI所加扰的DCI:C-RNTI,CS-RNTI,INT-RNTI,SFI-RNTI,SP-CSI-RNTI,TPC-PUCCH-RNTI,TPCPUSCH-RNTI,and TPC-SRS-RNTI。
在本申请实施例中,第一DCI所占用的符号(或用于指示新的上行或下行数据传输的PDCCH所在的符号)位于第一不连续接收激活时间内。第一不连续接收激活时间可以是 指以下任意一个定时器在运行时,这些定时器包括:drx-onDurationTimer,drx-InactivityTimer,drx-RetransmissionTimerDL,drx-RetransmissionTimerUL,ra-ContentionResolutionTimer。此外,第一不连续接收激活时间还包括其他情况,例如:第一通信设备在PUCCH上发送了SR之后的等待期间;第一通信设备在成功接收到基于非竞争随机接入的RAR之后还未收到指示新的上行或下数据传输的PDCCH期间。第一DCI所占用的符号(或用于指示新的上行或下行数据传输的PDCCH所在的符号)之后的第一个符号为第二不连续接收激活时间的开始时刻。第二不连续接收激活时间是指drx-InactivityTimer运行的时间段。
应理解的是,从第一DCI所占用的符号(或用于指示新的上行或下行数据传输的PDCCH所在的符号)之后的第一个符号开始,第二不连续接收激活时间对应的定时器drx-InactivityTimer计时开始(即启动或重启),此时,第一不连续接收激活时间对应的定时器尚未计时结束,但不连续接收激活时间得到更新,所以这里将drx-InactivityTimer启动或重启的时刻定义为第二不连续接收激活时间的开始时刻。注意,第一不连续接收激活时间的结束时刻仍然是第一不连续接收激活时间对应的定时器自然计时结束的时刻。例如,若第一不连续接收激活时间对应的定时器为drx-onDurationTimer,则第一不连续接收激活时间的结束时刻是drx-onDurationTimer计时结束(即:超时)的时刻。若网络设备在drx-onDurationTimer计时期间(即On Duration)发送了第一DCI,则网络设备在第一DCI之后的第一个符号启动drx-InactivityTimer,不连续接收激活时间得到更新,第二不连续接收激活时间开始。而第一不连续接收激活时间的结束时刻位于第二不连续接收激活时间开始时刻之后。再例如,若第一不连续接收激活时间对应的定时器为drx-InactivityTimer,当前drx-InactivityTimer正在运行,若网络设备在drx-InactivityTimer计时期间发送了第一DCI,则网络设备在第一DCI之后的第一个符号重启drx-InactivityTimer,不连续接收激活时间得到更新,第二不连续接收激活时间开始。而第一不连续接收激活时间的结束时刻是drx-InactivityTimer重启之前自然计时超时的时刻,位于第二不连续接收激活时间开始时刻之后。
在一种可能的设计中,第一通信设备在第一不连续接收激活时间内的第二时间段从网络设备接收到至少一个第一DCI,且第一通信设备在第一不连续接收激活时间内的倒数第X个时隙未从网络设备接收到第一DCI。第二时间段的起始时刻为第一不连续接收激活时间内的倒数第X-1个时隙的起始时刻,第二时间段的结束时刻为第一不连续接收激活时间的结束时刻。进一步地,若第一通信设备在第二时间段内接收到的第一个第一DCI所在时隙为第一不连续接收激活时间内的倒数第y个时隙,y<X,y为正整数,则第一时间段的长度为X-y个时隙。
应理解的是,若第一通信设备在第一不连续接收激活时间内的倒数第X个时隙从网络设备接收到第一DCI,y=X,此时第一通信设备可以在第一不连续接收激活时间内对第一DCI译码成功,即第一DCI译码时间不会超过第一不连续接收持续时间,第一时间段为0,且不会出现网络设备和第一通信设备对不连续接收激活时间理解不一致的问题。若第一通信设备在第一不连续接收激活时间内的倒数第X个时隙之前的时隙(例如倒数第X+1个时隙)从网络设备接收到第一DCI,y>X,此时第一通信设备可以在第一不连续接收激活时间内对第一DCI译码成功,即第一DCI译码时间不会超过第一不连续接收持续时间,不存在第一时间段,且不会出现网络设备和第一通信设备对不连续接收激活时间理解不一致 的问题。
以下对X的三种可能取值方式进行详细说明。其中,X=minimum K0,或者X=Z,或者X=max(minimum K0,Z),minimum K0表示PDCCH与PDSCH之间的时隙间隔的最小值,Z表示第一常数值。
方式1:X=minimum K0
minimum K0是当前生效的最小K0值,表示PDCCH调度的PDSCH与该PDCCH之间的时隙间隔大于或等于minimum K0。
示例性地,若PDCCH传输的第一DCI所在时隙为n,则第一DCI调度的PDSCH在n+minimum K0时隙或者在n+minimum K0之后的时隙,UE不期待在n+minimum K0时隙之前收到第一DCI调度的PDSCH。因此,UE可以将第一DCI译码时间持续到n+minimum K0-1对应时隙,如果UE译码第一DCI时间超过UE第一不连续接收激活时间,则UE在超过第一不连续接收激活时间但仍然在译码第一DCI的时间段不监听PDCCH,当UE译码第一DCI成功,通过解析第一DCI得知该第一DCI指示新的下行数据传输,则UE启动或重启drx-InactivityTimer,当启动了drx-InactivityTimer之后UE就重新回到不连续接收激活时间,此时UE进入第二不连续接收激活时间,UE恢复监听PDCCH。值得注意的是,虽然网络设备在承载第一DCI的PDCCH所在符号之后的第一个符号启动了drx-InactivityTimer,但由于UE译码DCI需要一定的时间,UE在启动drx-InactivityTimer时的计时值要从承载第一DCI的PDCCH所在符号之后的第一个符号算起,而第二不连续接收激活时间按照网络设备启动drx-InactivityTimer的时刻开始算起,也就是从承载第一DCI的PDCCH所在符号之后的第一个符号开始定义为第二不连续接收激活时间的起始时刻。例如,考虑定时器为倒计时,drx-InactivityTimer的初始值为T,UE译码第一DCI的用时为delta,则UE在完成第一DCI译码启动drx-InactivityTimer时的计时值为T-delta,目的是为了使UE和网络设备的定时器计时值对齐。应理解的是,UE可以获知自身译码第一DCI的用时delta。
在一示例中,如图8所示,若X=minimum K0=2,DRX on duration(即第一不连续接收激活时间)时长为2个时隙,网络设备在DRX on duration的最后一个时隙通过PDCCH调度了新的下行数据传输,y=1,则网络设备在PDCCH所在符号之后的第一个符号启动drx-InactivityTimer,网络设备更新DRX active time,即drx-InactivityTimer的运行时段为第二不连续接收激活时间。其中,第一时间段的长度为X-y=1个时隙,第一时间段的起始位置为DRX on duration的结束位置。网络设备在第一时间段不发送PDCCH,在第一时间段之后可以发送PDCCH。
UE在第一时间段内不监听PDCCH。由于minimum K0=2,所以UE确定PDCCH调度的PDSCH不会出现在n+minimum K0时隙之前的时隙,所以UE可以将DCI译码速度降低,从而可以将DCI译码时间延长到n+minimum K0-1时隙(图8中on duration之后的第一个时隙),这里,UE将DCI译码时间延长到了n+minimum K0-1时隙的结尾,也就是第一时间段的结束位置。当UE译码DCI成功之后会启动drx-InactivityTimer,UE恢复监听PDCCH。
在又一示例中,如图9所示,若X=minimum K0=3,当第一个drx-InactivityTimer(即第一不连续接收激活时间)正在运行时(为了描述方便,这里将drx-InactivityTimer重启之前称为第一个drx-InactivityTimer),网络设备在第一个drx-InactivityTimer的倒数第2个时 隙通过PDCCH调度了新的下行数据PDSCH,y=2,则网络设备在PDCCH所在符号之后的第一个符号重启drx-InactivityTimer,网络设备更新DRX active time,即drx-InactivityTimer重启之后的运行时段为第二不连续接收激活时间。第一时间段的长度为X-y=1个时隙,第一时间段的起始位置为drx-InactivityTimer重启之前自然计时的结束位置,即第一个drx-InactivityTimer自然计时结束的位置。UE在第一时间段内不监听PDCCH。由于minimum K0=3,UE可以将DCI译码时间延长到n+minimum K0-1时隙,即时隙n+2,比如延长到时隙n+2的结束位置,也就是第一时间段的结束位置。当UE译码DCI成功之后会重启drx-InactivityTimer,UE恢复监听PDCCH。
与图9类似,如图10所示,若X=minimum K0=3,当第一个drx-InactivityTimer(即第一不连续接收激活时间)正在运行时,网络设备在第一个drx-InactivityTimer的倒数第一个时隙通过PDCCH调度了新的下行数据传输,则y=1,第一时间段的长度为X-y=3-1=2个时隙。UE在第一时间段内不监听PDCCH。
应理解的是,针对上述图8到图10,UE译码DCI的时间都持续到了n+minimum K0-1时隙的结束位置,UE认为第一时间段不是处于不连续接收激活时间,因为在第一时间段内UE还未启动或重启drx-InactivityTimer。但是,UE译码DCI的时间取决于UE实现,所以UE的DCI译码时间可能不会持续到n+minimum K0-1时隙的结尾,而是在n+minimum K0-1时隙的结尾之前的任何位置都有可能译码DCI成功。因此,本申请实施例并不限制UE的DCI译码时间,也不会限制UE在n+minimum K0-1时隙的结尾启动或重启drx-InactivityTimer,只要UE译码DCI成功,UE即可获知该DCI是否指示新的上行或下行数据传输,若是,则UE启动或重启drx-InactivityTimer。否则,UE进入DRX non-active态。此外,不管UE在哪个时刻启动或重启drx-InactivityTimer,该定时器的计时值都要从用于指示新的上行或下行数据传输的PDCCH所在符号之后的第一个符号算起。
需要说明的是,由于网络设备并不知道UE何时译码DCI成功,所以,即使UE译码速度较快,在第一时间段结束之前就译码DCI成功了,网络设备也不知道UE已经译码DCI成功。为了避免网络设备和UE对第一时间段是否处于不连续接收激活时间的理解不一致的问题。因此,不管UE何时译码DCI成功,UE在第一时间段内都不期待收到PDCCH,相应地,网络设备在第一时间段不发送PDCCH。
例如,如图11,若X=minimum K0=2,但是UE译码DCI时间并没有持续到n+1时隙,而是在PDCCH所在时隙的结尾译码DCI成功,则UE启动drx-InactivityTimer,此后UE处于DRX active time,第一时间段也位于DRX active time内,但UE在第一时间段内不监听PDCCH。网络设备在第一时间段内不发送PDCCH。在第一时间段之后,UE恢复正常监听PDCCH,网络设备也可以发送PDCCH。
下面结合具体示例对图7所示实施例进行详细说明,应理解的是,以下各个示例仅为举例,不作为本申请的限定。
示例1,如图12所示,PDCCH-1,PDCCH-2,PDCCH-3都用于指示新的数据传输。网络设备在On Duration内发送PDCCH-1所在符号之后的第一个符号启动drx-InactivityTimer,第一不连续接收激活时间为从PDCCH-1所在符号之后的第一个符号开始drx-InactivityTimer运行的时间段。若X=3,PDCCH-2所在的时隙为drx-InactivityTimer运行时段内第一个指示新的数据传输的PDCCH,PDCCH-2所在的时隙为drx-InactivityTimer运行时段内的倒数第2个时隙,即y=2。因此,第一时间段为 drx-InactivityTimer运行时段之后的1个时隙。
示例2,如图13所示,若X=minimum K0=3,PDCCH-1和PDCCH-2都调度了新的下行数据传输。PDCCH-1是在第一个drx-InactivityTimer的运行时段的倒数第2个时隙发送的,第二个drx-InactivityTimer在PDCCH-1所在符号之后的第一个符号重启。因此,网络设备在发送PDCCH-2时,已经不再是第一个drx-InactivityTimer的运行时段的倒数第一个时隙了,而是第二个drx-InactivityTimer的运行时段的倒数第4个时隙。由于PDCCH-1所在时隙为第一个drx-InactivityTimer的运行时段的倒数第2个时隙,y=2,则第一时间段时长为X-y=1个时隙,第一时间段的起始位置为第一个drx-InactivityTimer自然计时超时的时刻,也可以说是n+y-1时隙的结束位置,即n+1时隙的结束位置,n为PDCCH-1所在的时隙。网络设备在第一时间段不发送PDCCH。由于PDCCH-2是在第二个drx-InactivityTimer的运行时段的倒数第4个时隙发送,y=4,不满足y<X,所以不存在第一时间段,第三个drx-InactivityTimer在PDCCH-2所在符号之后的第一个符号重启。因此,图13中,只有第一时间段网络设备不发送PDCCH,在其他时间段,网络设备都可以发送PDCCH调度UE。
方式2:X=Z
第一常数值可以是标准中预先规定好的。应理解的是,第一常数值Z与子载波间隔(subcarrier spacing,SCS)关联,第一子载波间隔对应的第一常数值大于或等于第二子载波间隔对应的第一常数值,其中,第一子载波间隔大于第二子载波间隔。比如,当SCS=15KHz/30KHz时,所有UE都能在一个时隙内译码DCI成功,当SCS=60KHz/120KHz时,UE译码DCI的时间可能需要大于1个时隙,比如所有UE都能够在n+2时隙之前译码成功(此时UE译码DCI的时间可能持续到n+1时隙的结尾,时隙n为用于指示新的上行或下行数据传输的PDCCH所在时隙的时隙编号)。Z的取值与子载波间隔的关系可以参阅表1或者表2。
表1
SCS Z(单位:slots)
15KHz 1
30KHz 1
60KHz 2
120KHz 2
表2
SCS Z(单位:slots)
15KHz 1
30KHz 1
60KHz 1
120KHz 2
以表2为例,当SCS=15KHz/30KHz/60KHz时,Z=1,当SCS=120KHz时,Z=2,因此,只有当SCS=120KHz时,才存在第一时间段,因为,当Z=2时,第一时间段的长度X-y才可能大于等于1个时隙。
此外,应理解的是,第一常数值Z可以涵盖所有第一通信设备的译码时间,即第一常数值Z反映了对所有第一通信设备的译码时间的最低要求。示例性地,用n表示PDCCH所在的时隙的编号,UE在n+Z-1时隙的结束位置已经译码DCI成功,但是UE完成DCI 译码的时刻可能在n+Z-1时隙的结束位置之前。
在方式1中,UE译码DCI的时间可以随着minimum K0的增大而延长。在方式2中,UE译码DCI的时间并不能随着minimum K0的增大而延长,而是受到一个常数的限制。该常数反应了UE能力,该常数表示的时间包括了UE译码DCI的时间。
需要说明的是,这里所说的预先定义的常数可以由其他符号表示,比如M、或N、或Q等,只要该常数能够反映DCI译码的时间即可。常数Z可以是预先定义的,也可以是网络设备配置给终端设备的(例如通过无线电资源控制(radio resource control,RRC)信令),或者是终端设备通过RRC信令上报给网络设备的,承载在UE上报的能力信息(UE capability information)中或者辅助信息(UE assistance information)中。
方式3:X=max(minimum K0,Z)
方式3是方式1和方式2的结合。
在方式3中,UE可以在minimum K0>Z时延长DCI译码时间,比如延到n+minimum K0-1时隙。但是当minimum K0≤Z时,受限于UE能力,UE并不能因为minimum K0变小而加快译码DCI速度,所以DCI译码时间可能仍然持续到n+Z-1时隙。所以X是取两者的较大值。
与基于上述X的三种可能取值方式相同的构思,在另一种可能的设计中,第一时间段的长度为M个时隙;其中,M=minimum K0-1,或者M=Z-1,或者M=max(minimum K0,Z)-1,minimum K0表示PDCCH与PDSCH之间的时隙间隔的最小值,Z表示第一常数值,Z为正整数。
综上,通过规定UE行为,规定UE在当前不连续接收激活时间之后的第一时间段内不期待收到PDCCH,网络设备在第一时间段内不发送PDCCH,可以避免由于DCI译码时间超过当前不连续接收激活时间造成网络设备和UE对第一时间段是否处于不连续接收激活时间理解不一致的问题,且可以实现节约网络资源,避免功耗浪费。
可以理解的是,如上所描述的方法适用于PDCCH位于一个时隙的最开始的几个符号的情况,例如位于一个时隙的前S个符号,S=1,或S=2,或S=3。该方法也适用于PDCCH位于一个时隙的中间的符号位置或结尾的符号位置的情况。当一个PDCCH位于一个时隙的中间符号或结尾符号时,即PDCCH的盲检搜索空间出现在一个时隙的中间符号或结尾符号时,可以基于UE实现调整DCI的译码速度,使DCI译码仍然在n+X时隙之前完成。
但是,有些情况下,并不能保证在n+X时隙之前完成DCI译码。例如,指示新的上行或下行数据传输的第一DCI位于第一不连续接收时间的倒数第一个时隙的结尾的3个符号,而X=minimum K0=1,则第一DCI所在符号的结束符号与第一DCI所在时隙n的下一个时隙的起始符号之间没有时间间隔,自然UE无法在时隙n+1的起始时刻完成DCI译码。此时,UE译码第一DCI的时间也超过了第一不连续接收激活时间,根据如上描述的其中一个方法,例如,确定第一时间段时长为X-y个时隙,其中y=1,所以第一时间段时长为0,并不能解决由于DCI译码时间超过当前不连续接收激活时间造成网络设备和UE对第一时间段是否处于不连续接收激活时间理解不一致的问题。
为了避免此问题,可以约定,如果DCI位于一个时隙的结尾的S个符号位置,或者如果DCI不是位于一个时隙开始的S个符号位置(S=1或2或3),则规定第一时间段的时长为X+1-y个时隙,其中,X和y如之前描述,此处不再赘述。或者,规定第一时间段的时长为X个时隙,X如之前描述,此处不再赘述。
如图14所示,本申请实施例提供一种通信方法,该方法包括:
S1401:第一通信设备在第一不连续接收激活时间内从网络设备接收到第一DCI,第一DCI用于指示新的上行或下行数据传输。
相应的,网络设备在第一不连续接收激活时间内向第一通信设备发送第一DCI。
S1402:第一通信设备在第一DCI所在时隙的时隙编号与X之和所对应的时隙的起始时刻启动或重启不连续接收非激活定时器,X为大于等于0的整数。
相应的,网络设备在第一DCI所在时隙的时隙编号与X之和所对应的时隙的起始时刻启动或重启不连续接收非激活定时器。
其中,第一DCI所在时隙的时隙编号与X之和所对应的时隙的起始时刻为第一DCI所在时隙的时隙编号与X之和所对应的时隙的开始符号。
其中,X=minimum K0,或者X=Z,或者X=max(minimum K0,Z),minimum K0表示PDCCH与PDSCH之间的时隙间隔的最小值,Z表示第一常数值。
此外,第一通信设备和网络设在第一DCI所在时隙的时隙编号与X之和所对应的时隙的起始时刻启动或重启不连续接收非激活定时器,还可等价描述为:第一通信设备和网络设在第一DCI所在时隙的时隙编号与X-1之和所对应的时隙的结束时刻(或结束符号)启动或重启不连续接收非激活定时器。
示例性地,图15中,X=minimum K0=0,图16中,X=minimum K0=1,图17中,X=minimum K0=2,图中虽然画出了DCI的译码时间,但是本申请实施例并不限制DCI的译码时间。
在图15中,UE在译码DCI成功之后启动drx-InactivityTimer,该定时器的初始值要从PDCCH所在时隙的开始符号算起,也就是UE在启动drx-InactivityTimer时的计时值要扣除从PDCCH所在时隙的起始位置到DCI译码成功之间的时间长度。
图16中,网络设备和UE都在n+1时隙的起始时刻启动drx-InactivityTimer,所以on duration之后的时隙n+1是不连续接收激活时间,不会造成网络设备和UE对该时间段是否处于不连续接收激活时间理解不一致。
图17中,网络设备和UE都在n+1时隙的结束时刻启动drx-InactivityTimer,所以on duration之后的时隙n+1不是不连续接收激活时间,不会造成网络设备和UE对该时间段是否处于不连续接收激活时间理解不一致。
应理解的是,针对X的三种可能取值的说明可以参考上述如图7所示的实施例,重复之处不再赘述。
另外,X的取值也可以是X=max(minimum K0,1),这样,当minimum K0=0时,网络设备和UE启动drx-InactivityTimer的时刻可以不是第一DCI所在时隙的起始时刻,而是第一DCI所在时隙的下一个时隙的起始时刻。这样就不会出现图15中当minimum K0=0时,drx-InactivityTimer的启动时刻是发生在PDCCH之前的情况。
采用上述实施例,通过修改drx-InactivityTimer的启动时间,网络设备和UE都在UE已经译码DCI成功后同时启动或重启drx-InactivityTimer,可以避免网络设备和UE对不连续接收激活时间的理解不一致的问题。
应理解的是,上述时隙的符号可以为正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。当一个符号的时间长度可以忽略时,一个符号可以称为是一 个时间段的时刻,例如是起始时刻或结束时刻;当一个符号的时间长度不可忽略时,当描述一个时刻为一个符号时,描述的是这个符号的起始时刻或结束时刻。例如,一个时隙的起始时刻为该时隙的开始符号的起始时刻。
可以理解的是,如上所描述的方法适用于PDCCH位于一个时隙的最开始的几个符号的情况,例如位于一个时隙的前S个符号,S=1,或S=2,或S=3。该方法也适用于PDCCH位于一个时隙的中间的符号位置或结尾的符号位置的情况。当一个PDCCH位于一个时隙的中间符号或结尾符号时,即PDCCH的盲检搜索空间出现在一个时隙的中间符号或结尾符号时,可以基于UE实现调整DCI的译码速度,使DCI译码仍然在n+X时隙之前完成。
但是,有些情况下,并不能保证在n+X时隙之前完成DCI译码。例如,指示新的上行或下行数据传输的第一DCI位于第一不连续接收时间的倒数第一个时隙的结尾的3个符号,而X=minimum K0=1,则第一DCI所在符号的结束符号与第一DCI所在时隙n的下一个时隙的起始符号之间没有时间间隔,自然UE无法在时隙n+1的起始时刻完成DCI译码。此时,UE译码第一DCI的时间也超过了第一不连续接收激活时间,根据如上描述的其中一个方法,例如,确定drx-InactivityTimer在n+minimum K0时隙的起始时刻启动或重启,并不能解决由于DCI译码时间超过当前不连续接收激活时间造成网络设备和UE对不连续接收激活时间的理解不一致的问题。
为了避免此问题,可以约定,如果DCI位于一个时隙的结尾的S个符号位置,或者如果DCI不是位于一个时隙开始的S个符号位置(S=1或2或3),则规定drx-InactivityTimer在n+X+1时隙的起始时刻启动或重启,其中,X如之前描述,此处不再赘述。
如图18所示,本申请实施例提供一种通信方法,该方法包括:
S1801:第一通信设备在第一不连续接收激活时间内从网络设备接收第一DCI,第一DCI用于指示新的上行或下行数据传输。
相应的,网络设备在第一不连续接收激活时间内向第一通信设备发送第一DCI。
S1802:第一通信设备在第一DCI所在符号之后的第Z1+1个符号的起始时刻启动或重启不连续接收非激活定时器,Z1为第二常数值,Z1为大于等于1的整数。
相应的,网络设备在第一DCI所在符号之后的第Z1+1个符号的起始时刻启动或重启不连续接收非激活定时器。
其中,第二常数值Z1与子载波间隔关联,第一子载波间隔对应的第二常数值大于或等于第二子载波间隔对应的第二常数值,其中,第一子载波间隔大于第二子载波间隔。
具体地,可以预先定义一个第二常数值Z1,该第二常数值Z1代表符号个数,表示UE译码DCI的时间长度。
第二常数值Z1可以是标准预先定义好的,也可以是网络设备配置给第一通信设备的(例如通过RRC信令),或者是第一通信设备通过RRC信令上报给网络设备的,例如,承载在UE上报的能力信息(UE capability information)中或者辅助信息(UE assistance information)中。示例性地,第二常熟值Z1的取值如表3或表4所示。
表3
Figure PCTCN2020105483-appb-000001
表4
Figure PCTCN2020105483-appb-000002
采用上述实施例,通过修改drx-InactivityTimer的启动时间,网络设备和UE都在UE已经译码DCI成功后同时启动或重启drx-InactivityTimer,可以避免网络设备和UE对不连续接收激活时间的理解不一致的问题。
如图19所示,本申请实施例提供一种通信方法,该方法包括:
S1901:第一通信设备在第一不连续接收激活时间之后的第三时间段内监听PDCCH;第三时间段的起始时刻为第一不连续接收激活时间的结束时刻。
S1902:若第一通信设备在第三时间段结束时处于第二不连续接收激活时间,第一通信设备在第三时间段之后继续监听PDCCH;若第一通信设备在第三时间段结束时未处于第二不连续接收激活时间,第一通信设备在第三时间段之后不监听PDCCH。
在一种可能的设计中,第三时间段的长度为X-y个时隙;其中,第一通信设备在第一不连续接收激活时间内的第二时间段从网络设备接收到至少一个第一DCI,其中,第一DCI通过PDCCH承载,用于指示新的上行或下行数据传输,且第一通信设备在第一不连续接收激活时间内的倒数第X个时隙未从网络设备接收到第一DCI;X为整数,X=minimum K0,或者X=Z,或者X=max(minimum K0,Z),minimum K0表示PDCCH与PDSCH之间的时隙间隔的最小值,Z表示第一常数值,Z为正整数;第二时间段的起始时刻为第一不连续接收激活时间内的倒数第X-1个时隙的起始时刻,第二时间段的结束时刻为第一不连续接收激活时间的结束时刻;第一通信设备在第二时间段内接收到的第一个第一DCI所在时隙为第一不连续接收激活时间内的倒数第y个时隙,y<X,y为正整数;
在另一种可能的设计中,第三时间段的长度为M个时隙,M=minimum K0-1,或者 M=Z-1,或者M=max(minimum K0,Z)-1,其中,minimum K0表示PDCCH与PDSCH之间的时隙间隔的最小值,Z为第一常数值。
其中,第一常数值Z与子载波间隔关联,第一子载波间隔对应的第一常数值大于或等于第二子载波间隔对应的第一常数值,其中,第一子载波间隔大于第二子载波间隔。
如图20所示,若minimum K0=2,第三时间段的长度为M=minimum K0-1=1个时隙,第三时间段的起始时刻是on duration的结束位置,第一不连续接收激活时间为on duration的时间段,在on duration内,网络设备没有通过PDCCH调度新的上行或下行数据传输,UE在on duration之后的第三时间段仍然监听PDCCH。UE在第三时间段之后不监听PDCCH。
如图21所示,若minimum K0=2,第三时间段的长度为M=minimum K0-1=1个时隙,第三时间段的起始时刻是on duration的结束位置,第一不连续接收激活时间为on duration的时间段,网络设备在on duration的倒数第一个时隙通过PDCCH调度了新的下行数据传输,但是UE译码DCI的时间持续到了on duration之后的第一个时隙的结尾(即n+1时隙结尾),UE在第三时间段仍然监听PDCCH。这样,网络设备在第三时间段内也可以发送PDCCH,可以减少数据时延。在第三时间段结尾时,UE由于启动了drx-InactivityTimer重新进入不连续接收激活时间,即第二不连续接收激活时间,所以UE在第三时间段之后继续监听PDCCH。
应理解的是,本申请实施例不限制UE的DCI译码时间,也不限制UE何时启动或重启drx-InactivityTimer。比如,图21中,UE也可能在n+minimum K0-1时隙结尾之前即完成了DCI译码,比如在第三时间段中间完成了DCI译码。
此外,网络设备在第三时间段向第一通信设备发送第二DCI包括但不限于以下几种可能的场景:
第一种可能的场景:网络设备在第三时间段向第一通信设备发送第二DCI,第二DCI通过PDCCH承载,第二DCI不用于指示新的上行或下行数据传输。
其中,第二DCI用于指示重传上行或下行数据,或者第二DCI的DCI格式是非调度类型的DCI格式。例如DCI格式(DCI format)为DCI format 2_0/2_1/2_2/2_3等,或传输功率节省信号的DCI格式,该功率节省信号包括指示UE工作的最大多输入多输出(multiple-input multiple-output,MIMO)层数(包括上行和下行),或用于指示切换minimum K0和/或K2的值,或专门用于指示部分带宽(Bandwidth part,BWP)切换等。
第二种可能的场景:若网络设备在第一不连续接收激活时间内的第二时间段向第一通信设备发送第一DCI,其中,第一DCI通过PDCCH承载,用于指示新的上行或下行数据传输;网络设备在第三时间段向第一通信设备发送第一DCI。
其中,第二时间段的起始时刻为第一不连续接收激活时间内的倒数第X-1个时隙的起始时刻,第二时间段的结束时刻为第一不连续接收激活时间的结束时刻;X=minimum K0,或者X=Z,或者X=max(minimum K0,Z),minimum K0表示PDCCH与PDSCH之间的时隙间隔的最小值,Z表示第一常数值。
此外,如果网络在第一不连续接收激活时间的最后的M+1个时隙没有发送用于指示新的上行或下行数据传输的PDCCH,则网络设备在第一不连续接收激活时间之后的第三时间段也不会发送用于指示新的上行或下行数据传输的PDCCH。
如图20所示,minimum K0=2,M=minimum K0-1=1。如果网络设备在on duration内 的最后2个时隙没有通过PDCCH调度新的上行或下行数据传输,则网络设备也不会在on duration之后的第三时间段调度新的上行或下行数据传输,即使UE在第三时间段仍然在监听PDCCH。
如图22所示,minimum K0=3,M=minimum K0-1=2。如果网络设备在on duration内的最后2个时隙没有通过PDCCH调度新的数据传输,但是在on duration之后的第三时间段调度了新的上行或下行数据传输,则网络设备在第三时间段之后的下一个时隙仍然不能继续发送PDCCH,因为UE可能需要到第三时间段之后的下一个时隙的结尾才对PDCCH-1传输的DCI译码成功,从而得知网络设备调度了新的上行或下行数据传输。所以,这又造成了网络设备和UE对第三时间段之后的下一个时隙是否处于不连续接收激活时间的理解不一致的问题。
因此,如果网络设备在第一不连续接收激活时间最后的M+1个时隙没有发送用于指示新的上行或下行数据传输的PDCCH,而是网络设备在第三时间段发送了用于指示新的上行或下行数据传输的PDCCH,则网络设备在第四时间段不发送PDCCH,第四时间段的起始时刻是第三时间段的结束位置。在第四时间段之后,网络设备可以继续发送PDCCH。
第四时间段的时长为:X-y个时隙。其中,X=M+1。如果M=minimum K0-1,X=minimum K0;如果M=Z-1,X=Z;如果M=max(minimum K0,Z)-1,X=max(minimum K0,Z)。其中,y表示第三时间段内的第一个用于指示新的上行或下行数据传输的PDCCH所在的时隙是第三时间段的倒数第y个时隙。
如图22,若M=minimum K0-1,Minimum K0=3,M=2,第三时间段的时长为M=2个时隙。网络设备在第一不连续接收激活时间(也就是on duration)内没有发送用于指示新的下行数据传输的PDCCH,UE在第三时间段内继续监听PDCCH。网络设备在第三时间段内发送的PDCCH-1和PDCCH-2均指示了用于指示新的下行数据传输的PDCCH,其中PDCCH-1是第三时间段内的第一个用于指示新的下行数据传输的PDCCH,该PDCCH-1位于第三时间段的倒数第2个时隙,所以y=2。由X=M+1得知X=3,所以第四时间段时长为X-y=1个时隙,第四时间段的起始位置为第三时间段的结束位置。UE在第四时间段不监听PDCCH,而网络设备在第四时间段也不发送PDCCH。UE针对PDCCH-1传输的DCI译码成功之后会启动drx-InactivityTimer,此后UE重新进入不连续接收激活时间,即第二不连续接收激活时间。所以UE在第四时间段后继续监听PDCCH,网络设备也可以在第四时间段后继续发送PDCCH。
采用上述实施例,一旦网络设备在第一不连续接收激活时间的结尾(比如第一不连续接收激活时间的倒数第一个时隙)通过PDCCH调度了新的上行或下行数据传输,则网络设备在第一不连续接收激活时间之后就可以连续调度UE,UE在第一不连续接收激活时间之后的第三时间段继续监听PDCCH,所以UE并不会漏掉任何的PDCCH检测,这样既避免了网络设备和UE对第一不连续接收激活时间之后可能存在的一个时间段是否处于不连续接收激活时间理解不一致的问题,同时,在有数据收发时,网络设备也可以尽快的调度UE,减少了调度数据的时延。
可以理解的是,如上所描述的方法适用于PDCCH位于一个时隙的最开始的几个符号的情况,例如位于一个时隙的前S个符号,S=1,或S=2,或S=3。该方法也适用于PDCCH位于一个时隙的中间的符号位置或结尾的符号位置的情况。当一个PDCCH位于一个时隙的中间符号或结尾符号时,即PDCCH的盲检搜索空间出现在一个时隙的中间符号或结尾 符号时,可以基于UE实现调整DCI的译码速度,使DCI译码仍然在n+X时隙之前完成。
但是,有些情况下,并不能保证在n+X时隙之前完成DCI译码。例如,指示新的上行或下行数据传输的第一DCI位于第一不连续接收时间的倒数第一个时隙的结尾的3个符号,而X=minimum K0=1,则第一DCI所在符号的结束符号与第一DCI所在时隙n的下一个时隙的起始符号之间没有时间间隔,自然UE无法在时隙n+1的起始时刻完成DCI译码。此时,UE译码第一DCI的时间也超过了第一不连续接收激活时间,根据如上描述的其中一个方法,例如,确定第三时间段的长度为X-y个时隙,其中y=1,所以第三时间段时长为0,并不能解决由于DCI译码时间超过当前不连续接收激活时间造成网络设备和UE对不连续接收激活时间的理解不一致的问题,也不能使网络设备在有数据收发时尽快的调度UE。
为了避免此问题,可以约定,如果DCI位于一个时隙的结尾的S个符号位置,或者如果DCI不是位于一个时隙开始的S个符号位置(S=1或2或3),则规定第三时间段的时长为X+1-y个时隙,其中,X和y如之前描述,此处不再赘述。或者,规定第三时间段的时长为X个时隙,X如之前描述,此处不再赘述。
上述本申请提供的实施例中,分别从各个网元本身、以及从各个网元之间交互的角度对本申请实施例提供的通信方法的各方案进行了介绍。可以理解的是,各个网元,例如网络设备和终端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
与上述构思相同,如图23所示,本申请实施例还提供一种装置2300,该装置2300包括收发单元2302和处理单元2301。
一示例中,装置2300用于实现上述方法中第一通信设备的功能。该装置可以是终端设备,也可以是终端设备中的装置,例如芯片***。
其中,收发单元2302在第一不连续接收激活时间内从网络设备接收到第一下行控制信息DCI,所述第一DCI用于指示新的上行或下行数据传输;
处理单元2301在所述第一不连续接收激活时间之后的第一时间段内不期待从所述网络设备接收物理下行控制信道PDCCH,所述第一时间段的起始时刻为所述第一不连续接收激活时间的结束时刻,所述第一时间段的结束时刻位于第二不连续接收激活时间之内;
收发单元2302在所述第一时间段之后监听所述PDCCH。
一示例中,装置2300用于实现上述方法中第一通信设备的功能。该装置可以是终端设备,也可以是终端设备中的装置,例如芯片***。
其中,收发单元2302在第一不连续接收激活时间内从网络设备接收到第一DCI,所述第一DCI用于指示新的上行或下行数据传输;
处理单元2301在所述第一DCI所在时隙的时隙编号与X之和所对应的时隙的起始时刻启动或重启不连续接收非激活定时器,X为大于等于0的整数。
一示例中,装置2300用于实现上述方法中第一通信设备的功能。该装置可以是终端 设备,也可以是终端设备中的装置,例如芯片***。
其中,收发单元2302在第一不连续接收激活时间之后的第三时间段内监听PDCCH;所述第三时间段的起始时刻为所述第一不连续接收激活时间的结束时刻;
若处理单元2301确定在所述第三时间段结束时处于第二不连续接收激活时间,收发单元2302在所述第三时间段之后继续监听所述PDCCH;
若处理单元2301确定在所述第三时间段结束时未处于第二不连续接收激活时间,收发单元2302在所述第三时间段之后不监听所述PDCCH。
一示例中,装置2300用于实现上述方法中第一通信设备的功能。该装置可以是终端设备,也可以是终端设备中的装置,例如芯片***。
其中,收发单元2302在第一不连续接收激活时间内从网络设备接收第一DCI,所述第一DCI用于指示新的上行或下行数据传输;
处理单元2301在所述第一DCI所在符号之后的第Z1+1个符号的起始时刻启动或重启不连续接收非激活定时器,Z1为第二常数值,Z1为大于等于1的整数。
一示例中,装置2300用于实现上述方法中网络设备的功能。该装置可以是网络设备,也可以是网络设备中的装置。
其中,处理单元2301调用收发单元2302在第一不连续接收激活时间向第一通信设备发送第一DCI,所述第一DCI用于指示新的上行或下行数据传输;
处理单元2301调用收发单元2302在所述第一不连续接收激活时间之后的第一时间段内不向所述第一通信设备发送PDCCH;
处理单元2301调用收发单元2302在所述第一时间段之后向所述第一通信设备发送所述PDCCH;
所述第一时间段的起始时刻为所述第一不连续接收激活时间的结束时刻,所述第一时间段的结束时刻位于第二不连续接收持续时间之内。
一示例中,装置2300用于实现上述方法中网络设备的功能。该装置可以是网络设备,也可以是网络设备中的装置。
其中,收发单元2302在第一不连续接收激活时间内向第一通信设备发送第一DCI,所述第一DCI用于指示新的上行或下行数据传输;
处理单元2301在所述第一DCI所在时隙的时隙编号与X之和所对应的时隙的起始时刻启动或重启不连续接收非激活定时器,X为大于等于0的整数。
一示例中,装置2300用于实现上述方法中网络设备的功能。该装置可以是网络设备,也可以是网络设备中的装置。
其中,收发单元2302在第一不连续接收激活时间之后的第三时间段内向第一通信设备发送PDCCH;所述第三时间段的起始时刻为所述第一不连续接收激活时间的结束时刻;若处理单元2301确定在所述第三时间段结束时处于第二不连续接收激活时间,收发单元2302在所述第三时间段之后向所述第一通信设备发送所述PDCCH;若处理单元2301确定在所述第三时间段结束时未处于第二不连续接收激活时间,收发单元2302在所述第三时间段之后不向所述第一通信设备发送所述PDCCH。
一示例中,装置2300用于实现上述方法中网络设备的功能。该装置可以是网络设备,也可以是网络设备中的装置。
其中,收发单元2302在第一不连续接收激活时间内向第一通信设备发送第一DCI,所 述第一DCI用于指示新的上行或下行数据传输;处理单元2301在所述第一DCI所在符号之后的第Z1+1个符号的起始时刻启动或重启不连续接收非激活定时器,Z1为第二常数值,Z1为大于等于1的整数。
关于处理单元2301、收发单元2302的具体执行过程,可参见上方法实施例中的记载。本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
作为另一种可选的变形,该装置可以为芯片***。本申请实施例中,芯片***可以由芯片构成,也可以包含芯片和其他分立器件。示例性地,该装置包括处理器和接口,该接口可以为输入/输出接口。其中,处理器完成上述处理单元2301的功能,接口完成上述收发单元2302的功能。该装置还可以包括存储器,存储器用于存储可在处理器上运行的程序,处理器执行该程序时实现上述各个实施例的方法。
与上述构思相同,如图24所示,本申请实施例还提供一种装置2400。该装置2400中包括:通信接口2401、至少一个处理器2402、至少一个存储器2403。通信接口2401,用于通过传输介质和其它设备进行通信,从而用于装置2400中的装置可以和其它设备进行通信。存储器2403,用于存储计算机程序。处理器2402调用存储器2403存储的计算机程序,通过通信接口2401收发数据实现上述实施例中的方法。
示例性地,当该装置为网络设备时,存储器2403用于存储计算机程序;处理器2402调用存储器2403存储的计算机程序,通过通信接口2401执行上述实施例中网络设备执行的方法。当该装置为第一通信设备时,存储器2403用于存储计算机程序;处理器2402调用存储器2403存储的计算机程序,通过通信接口2401执行上述实施例中终端设备执行的方法。
在本申请实施例中,通信接口2401可以是收发器、电路、总线、模块或其它类型的通信接口。处理器2402可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。存储器2403可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置。存储器2403和处理器2402耦合。本申请实施例中的耦合是装置、单元或模块之间的间隔耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。作为另一种实现,存储器2403还可以位于装置2400之外。处理器2402可以和存储器2403协同操作。处理器2402可以执行存储器2403中存储的程序指令。所述至少一个存储器2403中的至少一个也可以包括于处理器2402中。本申请实施例中不限定上述通信接口2401、处理器2402以及存储器2403之间的连接介质。例如,本申请实施例在图24中以存储器2403、处理器2402以及通信接口2401之间可以 通过总线连接,所述总线可以分为地址总线、数据总线、控制总线等。
可以理解的,上述图23所示实施例中的装置可以以图24所示的装置2400实现。具体的,处理单元2301可以由处理器2402实现,收发单元2302可以由通信接口2401实现。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序在计算机上运行时,使得计算机执行上述各个实施例所示的方法。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD))、或者半导体介质(例如,固态硬盘Solid State Disk SSD)等。
以上所述,以上实施例仅用以对本申请的技术方案进行了详细介绍,但以上实施例的说明只是用于帮助理解本发明实施例的方法,不应理解为对本发明实施例的限制。本技术领域的技术人员可轻易想到的变化或替换,都应涵盖在本发明实施例的保护范围之内。

Claims (19)

  1. 一种通信方法,其特征在于,该方法包括:
    第一通信设备在第一不连续接收激活时间内从网络设备接收到第一下行控制信息DCI,所述第一DCI用于指示新的上行或下行数据传输;
    所述第一通信设备在所述第一不连续接收激活时间之后的第一时间段内不期待从所述网络设备接收物理下行控制信道PDCCH,所述第一时间段的起始时刻为所述第一不连续接收激活时间的结束时刻,所述第一时间段的结束时刻位于第二不连续接收激活时间之内;
    所述第一通信设备在所述第一时间段之后监听所述PDCCH。
  2. 如权利要求1所述的方法,其特征在于,第一通信设备在第一不连续接收激活时间内接收到第一DCI,包括:
    所述第一通信设备在所述第一不连续接收激活时间内的第二时间段从所述网络设备接收到至少一个第一DCI,且所述第一通信设备在所述第一不连续接收激活时间内的倒数第X个时隙未从所述网络设备接收到所述第一DCI;
    其中,X为整数,X=minimum K0,或者X=Z,或者X=max(minimum K0,Z),minimum K0表示PDCCH与物理下行共享信道PDSCH之间的时隙间隔的最小值,Z表示第一常数值,Z为正整数;所述第二时间段的起始时刻为所述第一不连续接收激活时间内的倒数第X-1个时隙的起始时刻,所述第二时间段的结束时刻为所述第一不连续接收激活时间的结束时刻。
  3. 如权利要求2所述的方法,其特征在于,所述第一时间段的长度为X-y个时隙;
    其中,所述第一通信设备在所述第二时间段内接收到的第一个第一DCI所在时隙为所述第一不连续接收激活时间内的倒数第y个时隙,y<X,y为正整数。
  4. 如权利要求1或2所述的方法,其特征在于,所述第一时间段的长度为M个时隙;
    其中,M=minimum K0-1,或者M=Z-1,或者M=max(minimum K0,Z)-1,minimum K0表示PDCCH与PDSCH之间的时隙间隔的最小值,Z表示第一常数值,Z为正整数。
  5. 如权利要求2至4任一项所述的方法,其特征在于,所述第一常数值Z与子载波间隔关联,第一子载波间隔对应的第一常数值大于或等于第二子载波间隔对应的第一常数值,其中,所述第一子载波间隔大于所述第二子载波间隔。
  6. 一种通信方法,其特征在于,该方法包括:
    第一通信设备在第一不连续接收激活时间内从网络设备接收到第一DCI,所述第一DCI用于指示新的上行或下行数据传输;
    所述第一通信设备在所述第一DCI所在时隙的时隙编号与X之和所对应的时隙的起始时刻启动或重启不连续接收非激活定时器,X为大于等于0的整数。
  7. 如权利要求6所述的方法,其特征在于,X=minimum K0,或者X=Z,或者X=max(minimum K0,Z),minimum K0表示PDCCH与PDSCH之间的时隙间隔的最小值,Z表示第一常数值。
  8. 如权利要求7所述的方法,其特征在于,所述第一常数值Z与子载波间隔关联,第一子载波间隔对应的第一常数值大于或等于第二子载波间隔对应的第一常数值,其中,所述第一子载波间隔大于所述第二子载波间隔。
  9. 一种通信方法,其特征在于,该方法包括:
    网络设备在第一不连续接收激活时间向第一通信设备发送第一DCI,所述第一DCI用于指示新的上行或下行数据传输;
    所述网络设备在所述第一不连续接收激活时间之后的第一时间段内不向所述第一通信设备发送PDCCH;
    所述网络设备在所述第一时间段之后向所述第一通信设备发送所述PDCCH;
    所述第一时间段的起始时刻为所述第一不连续接收激活时间的结束时刻,所述第一时间段的结束时刻位于第二不连续接收持续时间之内。
  10. 如权利要求9所述的方法,其特征在于,网络设备在第一不连续接收激活时间向第一通信设备发送第一DCI,包括:
    所述网络设备在所述第一不连续接收激活时间内的第二时间段向所述第一通信设备发送至少一个第一DCI,且所述网络设备在所述第一不连续接收激活时间内的倒数第X个时隙不向所述第一通信设备发送所述第一DCI;
    其中,X为整数,X=minimum K0,或者X=Z,或者X=max(minimum K0,Z),minimum K0表示PDCCH与PDSCH之间的时隙间隔的最小值,Z表示第一常数值,Z为正整数;所述第二时间段的起始时刻为所述第一不连续接收激活时间内的倒数第X-1个时隙的起始时刻,所述第二时间段的结束时刻为所述第一不连续接收激活时间的结束时刻。
  11. 如权利要求10所述的方法,其特征在于,所述第一时间段的长度为X-y个时隙;
    其中,所述网络设备在所述第二时间段内发送的第一个第一DCI所在时隙为所述第一不连续接收激活时间内的倒数第y个时隙,y<X,y为正整数。
  12. 如权利要求9或10所述的方法,其特征在于,所述第一时间段的长度为M个时隙;
    其中,M=minimum K0-1,或者M=Z-1,或者M=max(minimum K0,Z)-1,minimum K0表示PDCCH与物理下行共享信道PDSCH之间的时隙间隔的最小值,Z表示第一常数值,Z为正整数。
  13. 如权利要求10至12任一项所述的方法,其特征在于,所述第一常数值Z与子载波间隔关联,第一子载波间隔对应的第一常数值大于或等于第二子载波间隔对应的第一常数值,其中,所述第一子载波间隔大于所述第二子载波间隔。
  14. 一种通信方法,其特征在于,该方法包括:
    网络设备在第一不连续接收激活时间内向第一通信设备发送第一DCI,所述第一DCI用于指示新的上行或下行数据传输;
    所述网络设备在所述第一DCI所在时隙的时隙编号与X之和所对应的时隙的起始时刻启动或重启不连续接收非激活定时器,X为大于等于0的整数。
  15. 如权利要求14所述的方法,其特征在于,X=minimum K0,或者X=Z,或者X=max(minimum K0,Z),minimum K0表示PDCCH与PDSCH之间的时隙间隔的最小值,Z表示第一常数值。
  16. 如权利要求15所述的方法,其特征在于,所述第一常数值Z与子载波间隔关联,第一子载波间隔对应的第一常数值大于或等于第二子载波间隔对应的第一常数值,其中,所述第一子载波间隔大于所述第二子载波间隔。
  17. 一种设备,其特征在于,所述设备包括收发器、处理器和存储器;所述存储器中 存储有程序指令;当所述程序指令被执行时,使得所述设备执行如权利要求1至16任一所述的方法。
  18. 一种芯片,其特征在于,所述芯片与电子设备中的存储器耦合,使得所述芯片在运行时调用所述存储器中存储的程序指令,实现如权利要求1至16任一所述的方法。
  19. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括程序指令,当所述程序指令在设备上运行时,使得所述设备执行如权利要求1至16任一项所述的方法。
PCT/CN2020/105483 2019-08-02 2020-07-29 一种通信方法及装置 WO2021023076A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20850023.1A EP4009713A4 (en) 2019-08-02 2020-07-29 COMMUNICATION METHOD AND DEVICE
US17/587,297 US20220151017A1 (en) 2019-08-02 2022-01-28 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910713049.4 2019-08-02
CN201910713049.4A CN112312523A (zh) 2019-08-02 2019-08-02 一种通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/587,297 Continuation US20220151017A1 (en) 2019-08-02 2022-01-28 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2021023076A1 true WO2021023076A1 (zh) 2021-02-11

Family

ID=74485205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105483 WO2021023076A1 (zh) 2019-08-02 2020-07-29 一种通信方法及装置

Country Status (4)

Country Link
US (1) US20220151017A1 (zh)
EP (1) EP4009713A4 (zh)
CN (1) CN112312523A (zh)
WO (1) WO2021023076A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022183488A1 (en) * 2021-03-05 2022-09-09 Lenovo (Beijing) Limited Ntn scheduling delay enhancement
WO2023118066A1 (en) * 2021-12-23 2023-06-29 Continental Automotive Technologies GmbH Power saving method and wireless communication system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021028437A1 (en) * 2019-08-15 2021-02-18 Telefonaktiebolaget Lm Ericsson (Publ) Wireless device-autonomous pdsch rx antenna adaptation
CN115334619A (zh) * 2021-05-10 2022-11-11 华为技术有限公司 一种数据传输方法和装置
CN117354900A (zh) * 2022-06-27 2024-01-05 华为技术有限公司 一种非连续接收的配置方法及装置
CN117793864A (zh) * 2022-09-29 2024-03-29 华为技术有限公司 数据传输方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106899941A (zh) * 2015-12-18 2017-06-27 普天信息技术有限公司 一种集群通信***中非连续监听控制信道的方法和装置
US20180368112A1 (en) * 2017-06-15 2018-12-20 Apple Inc. Control Channel for UE Power Saving
CN109429258A (zh) * 2017-07-17 2019-03-05 ***通信有限公司研究院 一种信道监听的指示方法、监听方法、终端及网络侧设备
CN109963339A (zh) * 2017-12-25 2019-07-02 维沃移动通信有限公司 控制信道配置及检测方法和装置、程序及介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106899941A (zh) * 2015-12-18 2017-06-27 普天信息技术有限公司 一种集群通信***中非连续监听控制信道的方法和装置
US20180368112A1 (en) * 2017-06-15 2018-12-20 Apple Inc. Control Channel for UE Power Saving
CN109429258A (zh) * 2017-07-17 2019-03-05 ***通信有限公司研究院 一种信道监听的指示方法、监听方法、终端及网络侧设备
CN109963339A (zh) * 2017-12-25 2019-07-02 维沃移动通信有限公司 控制信道配置及检测方法和装置、程序及介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4009713A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022183488A1 (en) * 2021-03-05 2022-09-09 Lenovo (Beijing) Limited Ntn scheduling delay enhancement
WO2023118066A1 (en) * 2021-12-23 2023-06-29 Continental Automotive Technologies GmbH Power saving method and wireless communication system

Also Published As

Publication number Publication date
EP4009713A1 (en) 2022-06-08
EP4009713A4 (en) 2022-10-26
CN112312523A (zh) 2021-02-02
US20220151017A1 (en) 2022-05-12

Similar Documents

Publication Publication Date Title
WO2021023076A1 (zh) 一种通信方法及装置
CN110351898B (zh) 非连续接收的通信方法、装置、通信设备和通信***
US9491702B2 (en) Discontinuous reception dynamic configuration method, terminal and base station
CN113347743B (zh) 在lte许可协助接入操作中的drx处理
US9992742B2 (en) Discontinuous reception in a wireless device for in-device coexistence
EP2921026B1 (en) Discontinuous reception (drx) for diverse traffic
US11206709B2 (en) Method for intercepting PDCCH and terminal device
KR20220140720A (ko) 이동국을 위한 전력 절감 방법
WO2021062612A1 (zh) 通信方法及装置
WO2021088087A1 (zh) 一种参考信号发送和接收的方法及装置
JP2023166462A (ja) 端末デバイスのウェイクアップ方法及び装置、ネットワーク・デバイス、並びに端末デバイス
WO2021004111A1 (zh) 进入睡眠的方法及装置、存储介质、用户设备
WO2020088612A1 (zh) 无线通信方法及终端设备
US20230146873A1 (en) Method for monitoring physical downlink control channel, user terminal and readable storage medium
CN111436085B (zh) 通信方法及装置
WO2022062685A1 (zh) 一种通信方法及设备
US20230217506A1 (en) Method and Apparatus for More Power Efficient Physical Downlink Control Channel Monitoring After a Random Access Transmission
JP2022549921A (ja) 信号監視方法および装置
US20220191964A1 (en) Search Space and DRX Cycle Linking and Modification
US20230048889A1 (en) Method and apparatus for timely scheduling
CN113056938B (zh) 用于通信的装置、方法和计算机可读介质
WO2023098574A1 (zh) 一种传输指示方法及通信装置
US20240080767A1 (en) Method and apparatus for monitoring physical downlink control channels
WO2023216837A1 (zh) 数据传输方法及装置
WO2024067294A1 (zh) 下行控制信息的传输方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20850023

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020850023

Country of ref document: EP

Effective date: 20220302