WO2021000447A1 - 一种浸渍型氧化钪掺杂铼钨多相混合基扩散阴极及制备方法 - Google Patents

一种浸渍型氧化钪掺杂铼钨多相混合基扩散阴极及制备方法 Download PDF

Info

Publication number
WO2021000447A1
WO2021000447A1 PCT/CN2019/110918 CN2019110918W WO2021000447A1 WO 2021000447 A1 WO2021000447 A1 WO 2021000447A1 CN 2019110918 W CN2019110918 W CN 2019110918W WO 2021000447 A1 WO2021000447 A1 WO 2021000447A1
Authority
WO
WIPO (PCT)
Prior art keywords
tungsten
rhenium
cathode
scandium oxide
oxide doped
Prior art date
Application number
PCT/CN2019/110918
Other languages
English (en)
French (fr)
Inventor
王金淑
杨韵斐
刘伟
王亦曼
周帆
吴浩
李世磊
张小可
周文元
Original Assignee
北京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京工业大学 filed Critical 北京工业大学
Publication of WO2021000447A1 publication Critical patent/WO2021000447A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F3/26Impregnating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/002Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J19/00Details of vacuum tubes of the types covered by group H01J21/00
    • H01J19/02Electron-emitting electrodes; Cathodes
    • H01J19/04Thermionic cathodes
    • H01J19/06Thermionic cathodes characterised by the material
    • H01J19/066Thermionic cathodes characterised by the material with metals or alloys as an emissive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/04Manufacture of electrodes or electrode systems of thermionic cathodes
    • H01J9/042Manufacture, activation of the emissive part
    • H01J9/047Cathodes having impregnated bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment

Definitions

  • the invention belongs to the field of rare earth refractory metals and electron emission materials, and is a method for preparing an impregnated scandium oxide doped tungsten rhenium alloy-based diffusion cathode.
  • the cathode is the electron source of the electric vacuum device and is known as the heart of the device.
  • electro-vacuum devices the requirements for the electron emission capability of the cathode of the devices continue to increase, especially the high-power terahertz radiation sources and micro-focus X-ray tubes that are currently in research hotspots, which are of great significance to future science and technology All devices have extremely high requirements on the electron emission capability of the cathode.
  • the impregnated scandium oxide-doped tungsten-based cathode is a kind of cathode with excellent electron emission capability, especially the scandium oxide-doped tungsten-based cathode is currently the cathode with the strongest electron emission capability among the hot cathodes.
  • the cathode due to the many uncertainties of the cathode, it has not been widely promoted in practical applications.
  • rhenium As an additive element, rhenium has significantly improved the mechanical processing performance and high temperature strength of tungsten. Therefore, rhenium-tungsten alloys are widely used in science and technology and industry. The electron emission capability of the alloy cathode prepared by adding rhenium to tungsten is also significantly improved than that of pure tungsten. Some studies have shown that the electron emission ability of the tungsten-rhenium-based diffusion cathode formed by adding rhenium to the tungsten-rhenium diffusion cathode will also be significantly improved. However, the current research on the effect of adding rhenium to the impregnated scandium oxide-doped tungsten-based cathode is insufficient.
  • the addition of rhenium to tungsten-based cathodes has a positive effect on the improvement of cathode emission performance, and it is very important for the performance of the entire vacuum electronic device to obtain a cathode with outstanding electron emission ability by improving its addition method.
  • the invention provides a preparation method of an impregnated scandium oxide doped tungsten-rhenium multiphase mixed-base diffusion cathode, which uses solid-liquid, solid-solid, liquid-solid, slurry and other mixing methods to mix rhenium-tungsten and scandium oxide raw materials, using Step-by-step thermal reduction method to obtain scandium oxide doped tungsten rhenium multiphase alloy powder, and then obtain the dilute scandium oxide doped tungsten rhenium multiphase alloy matrix by powder metallurgy, and finally obtain scandium oxide doped by impregnating active barium salt and surface treatment Doped rhenium-tungsten multiphase alloy based diffusion cathode. There is no research report on this material and this method.
  • An impregnated scandium oxide doped rhenium-tungsten multiphase mixed base diffusion cathode of the present invention is characterized in that tungsten and rhenium form multiple alloy phases in different proportions, and the mass content of rhenium in the matrix is 0.5%-99 %, the mass proportion of scandium oxide is 0.05%-15%, the mass proportion of tungsten element is 0.45-99%; the impregnating material is active salt, and the mass proportion of active salt is 0.1%-25%.
  • Tungsten and rhenium exist in the powder in at least two forms: tungsten element, rhenium element, tungsten rhenium solid solution, tungsten rhenium intermetallic compound; for example, ReW, ReW3, Re3W, W, Re, etc. are selected. Generally, elemental tungsten and elemental rhenium do not exist at the same time.
  • Active salts mainly include active salts made from alkaline earth oxides such as barium oxide, calcium oxide, strontium oxide, and one or more of alumina, zirconium oxide, silicon oxide, and tungsten oxide after high-temperature firing. This is a conventional technology .
  • the specific preparation process includes the following steps:
  • Step 1 Preparation of scandium oxide doped tungsten rhenium multiphase alloy powder
  • Step 2 Press molding and sintering the powder from Step 1 to prepare a cathode matrix with pores, wherein the through holes account for 1%-30% of the volume of the cathode matrix;
  • Step 3 Immerse the cathode matrix prepared in Step 2 to emit active salt
  • Step 4 Treat the cathode surface according to the cleanliness of the cathode surface.
  • the treatment method is water washing, acid washing, alkaline washing, etc., or mechanical processing and other physical treatment methods; then annealing treatment.
  • the preparation of scandium oxide doped tungsten-rhenium multiphase alloy powder includes the following steps: mechanically mixing analytically pure ammonium salt containing tungsten, ammonium salt containing rhenium, and scandium nitrate, and using deionization respectively Water, ethanol, ethylene glycol and other liquids are used as blending agents.
  • the solid raw materials are made into a slurry and fully stirred, and the amount of blending agent added is constantly adjusted to improve the uniformity of the raw materials; after drying the slurry at 100-200°C , Decomposition and reduction of hydrogen atmosphere. Decomposition and reduction are processed in multiple steps.
  • the first step is 150-450°C and the temperature is kept for 0.1-10 hours.
  • the second step is 550-850°C, holding for 0.5-5 hours
  • the third step is 970-1700°C, holding for 0.5-5 hours, and finally a multiphase mixture of scandium oxide doped with rhenium and tungsten is obtained.
  • the sintering temperature in step two is 1300-1800°C, and the time is 1 minute to 5 hours.
  • the annealing temperature in step four is 850-1700°C, and the time is 10 minutes to 2 hours.
  • the patented invention has simple preparation method, strong operability, high sample strength, suitable for large-scale industrial preparation, and excellent cathode emission performance. Its electron emission performance exceeds the current existing diffusion cathode several times, and can be used in devices. Lower temperature operation greatly prolongs the service life of the device, and is suitable for high-frequency, high-power electric vacuum devices and electron beam sources that require high current density.
  • Figure 2 Surface morphology of scandium oxide doped tungsten-rhenium multiphase mixed base cathode
  • Figure 3 Emission performance curve of scandium oxide-doped tungsten-rhenium multiphase hybrid cathode, and scandium oxide doped tungsten-rhenium multiphase hybrid cathode emission performance at 900°C.
  • Example 1 107.96g of ammonium perrhenate, 33.51g of ammonium metatungstate and 13.4g of scandium nitrate were mixed in a solid phase mechanically, 100ml of deionized water and 50ml of ethanol were added to the mixed powder, and stirred into a slurry. The chemical powder is dried at 200°C to prepare a mixed precursor powder. The precursor powder is decomposed and reduced in a hydrogen atmosphere.
  • the temperature in the first step is 450°C and the holding time is 2h; the reduction temperature in the second step is 800°C and the holding time is 2h, the reduction temperature in the third step is 1100°C, and the holding time is 2h, to obtain a rhenium-tungsten alloy mixed alloy powder with a scandium oxide content of 4% , As shown in Figure 2 to obtain powder XRD.
  • the powder is pressed into a shape by molding, the pressure is 700Mpa, and the pressure holding time is 120 seconds.
  • the compacted body is sintered into a cathode base body at a sintering temperature of 1550° C. and a heat preservation time of 3 hours.
  • the final base body porosity is 35%.
  • the matrix is impregnated with barium calcium aluminate 411 salt, and the amount of active salt impregnation is 19%.
  • the residual salt on the surface of the cathode was cleaned and annealed at a temperature of 1200°C for 1 hour.
  • Figure 2 shows the SEM of the cathode surface
  • Figure 3 shows the electron emission performance of the cathode and the cathode prepared in subsequent examples.
  • Example 2 107.96g of ammonium perrhenate, 33.51g of ammonium metatungstate and 16.75g of scandium nitrate were dissolved in deionized water to form a solution, and the precursor powder was prepared by a sol-gel method.
  • the precursor powder is decomposed and reduced in a hydrogen atmosphere.
  • the temperature in the first step is 450°C and the holding time is 2h;
  • the reduction temperature in the second step is 700°C and the holding time is 2h;
  • the reduction temperature in the third step is 1300°C and the holding time is 2h to obtain a rhenium-tungsten alloy mixed powder with a scandium oxide content of 5%.
  • the powder is pressed into a shape by isostatic pressing method, the pressure is 600Mpa, and the pressure holding time is 300 seconds.
  • the pressed body is sintered into a cathode base body at a sintering temperature of 1700°C for 20 minutes, and the final base body porosity is 33%.
  • the substrate is impregnated with barium calcium aluminate 612 salt, and the amount of active salt impregnation is 15%.
  • the residual salt on the cathode surface was cleaned and annealed at a temperature of 1200°C for 0.5 hours.
  • the emission performance is shown in Figure 3.
  • Example 3 62.43g of rhenium heptaoxide, 60.54g of tungsten trioxide and 13.4g of scandium nitrate were mixed in a solid phase mechanically, and then water was added to make the powder into a paste and a dehydrating agent was added to heat and dehydrate.
  • the obtained precursor powder is decomposed and reduced in a hydrogen atmosphere.
  • the temperature in the first step is 250°C and the holding time is 2h; the reduction temperature in the second step is 600°C and the holding time is 2h; the reduction temperature in the third step is 1100°C and the holding time is 2h to obtain tungsten rhenium alloy powder with a scandium oxide content of 1%.
  • the powder is pressed and sintered with an isostatic pressure of 800Mpa, a sintering temperature of 1500°C, and a sintering time of 2 hours, impregnated with barium calcium aluminate 411 salt, and the impregnation amount is 9%.
  • the residual salt on the surface of the cathode is cleaned, and an annealing treatment is carried out.
  • the annealing temperature is 1000° C. and the time is 1 hour.
  • the launch performance is shown in Figure 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Solid Thermionic Cathode (AREA)

Abstract

一种浸渍型氧化钪掺杂铼钨多相混合基扩散阴极及制备方法,属于难熔金属阴极技术领域。阴极基体是氧化钪掺杂的铼与钨形成的多相合金粉通过粉末冶金的方法制备而成的多孔体,之后向基体中浸渍活性盐并对阴极表面后处理形成具有电子发射能力的阴极。该方法所制备的阴极具有发射电流密度大,可重复性好等特点,适用于对电流密度要求较高的电真空器件以及电子束源。

Description

一种浸渍型氧化钪掺杂铼钨多相混合基扩散阴极及制备方法 技术领域
本发明属于稀土难熔金属与电子发射材料领域,一种浸渍型氧化钪掺杂钨铼合金基扩散阴极的制备方法。
背景技术
阴极是电真空器件的电子源,被誉为器件的心脏。近年来,随着电真空器件的不断发展,器件对阴极的电子发射能力要求不断提高,尤其是现在处于研究热点的大功率太赫兹辐射源、微焦点X射线管等对未来科技有着重要意义的器件都对阴极的电子发射能力提出了极其高的要求。
浸渍型氧化钪掺杂钨基阴极是一类具有优异电子发射能力的阴极,尤其是氧化钪掺杂钨基阴极是热阴极中目前电子发射能力最强的阴极。但是由于该阴极存在诸多的不确定性导致其一直无法在实际应用中得到广泛的推广。
铼作为添加元素对钨的机械加工性能、高温强度等很多方面性能都有着明显的提升,因此铼钨合金在科技、工业中有着广泛的应用。将铼添加到钨中制备而成的合金阴极较纯钨的电子发射能力也有着明显的提升。部分研究表明将铼添加的钨基扩散阴极中形成钨铼基扩散阴极其电子发射能力也会有明显的提升。但是目前对于将铼添加到浸渍型氧化钪掺杂钨基阴极中的作用的研究尚不充分,仅有研究表明通过覆膜的方式在含钪阴极表层制备发射活性层对阴极发射性能性能的提高有着非常明显的作用,但是该方法可重复性非常差,无法稳定的制备出高性能的阴极。
综上所述,将铼添加在钨基阴极中对阴极发射性能的提升有着积极作用,通过改进其添加方式获得电子发射能力杰出的阴极对于整个真空电子器件的性能有着非常重要的意义。
发明内容
本发明提供了一种浸渍型氧化钪掺杂钨铼多相混合基扩散阴极的制备方法,使用固液、固固、液固、浆化等混合方式将铼钨以及氧化钪原料进行混合,采用分步热还原方法得到氧化钪掺杂钨铼多相合金粉体,之后通过粉末冶金的方法获得稀氧化钪掺杂钨铼多相合金基体,最后通过浸渍活性钡盐以及表面处理获得氧化钪掺杂铼钨多相合金基扩散阴极。目前尚未见该材料以及该方法的研究报道。
本发明一种浸渍型氧化钪掺杂铼钨多相混合基扩散阴极,其特征在于,钨与铼形成多种不同比例的合金相,铼元素在基体中的质量含量占比为0.5%-99%,氧化钪的质量占比为0.05%-15%,钨元素质量占比为0.45-99%;浸渍物质为活性盐,活性盐质量占比为0.1%-25%。
钨和铼以钨单质、铼单质、钨铼固溶体、钨铼金属间化合物等至少两种形式存在于粉体中;如选ReW、ReW3、Re3W、W、Re等。一般钨单质、铼单质不同时存在。
活性盐主要包括氧化钡、氧化钙、氧化锶等碱土族氧化物与氧化铝、氧化锆、氧化硅、氧化钨中的一种或几种经过高温烧制而成的活性盐,此为常规技术。
具体制备过程包括如下步骤:
步骤一:制备氧化钪掺杂钨铼多相合金粉末;
步骤二:将步骤一粉末进行压制成型和烧结,制备产生具有孔隙的阴极基体,其中通孔占阴极基体体积大小为1%-30%;
步骤三:将步骤二制备的阴极基体浸渍发射活性盐;
步骤四:根据阴极表面洁净度不同对阴极表面进行处理,处理方式为水洗、酸洗、碱洗等清洗方式,或机械加工等物理处理方法;然后进行退火处理。
进一步优选步骤一:氧化钪掺杂钨铼多相合金粉末的制备,包括以下步骤:将分析纯的含有钨元素的铵盐、含有铼元素的铵盐、硝酸钪进行机械混合,分别使用去离子水、乙醇、乙二醇等液体作为调和剂,将固体原料制成浆液并进行充分搅拌,并不断调节调和剂添加量以此提高原料的混合均匀性;将浆液在100-200℃烘干之后,进行氢气气氛的分解和还原。分解和还原采用多步进行处理,第一步为150-450℃,保温0.1-10小时。第二步为550-850℃,保温0.5-5小时,第三步为970-1700℃,保温0.5-5小时,最终获得氧化钪掺杂铼钨多相混合。
进一步优选步骤二烧结温度为1300-1800℃,时间为1分钟-5小时。
进一步优选步骤四退火的温度为850-1700℃,时间为10分钟-2小时。
本发明专利制备方法简单,可操作性强,制备样品强度高,适合大规模工业制备,且制备阴极发射性能优异,其电子发射性能超过了目前现有的扩散阴极数倍,能够在器件中以更低的温度工作,极大的延长了器件使用寿命,适用于对电流密度要求较高的高频、大功率电真空器件以及电子束源。
附图说明
为了更详实地表述该发明实施例的技术方案,以下对实施例描述中所使用的附图作简单介绍。显然,以下描述中的附图仅为本发明的一些实施例的附图,对于该领域普通技术人员来讲,在未付诸创造性劳动的前提下,还可依据此类附图获得其它的附图。
图1阴极制备工艺路线图;
图2氧化钪掺杂钨铼多相混合基阴极表面形貌;
图3氧化钪掺杂钨铼多相混合基阴极发射性能曲线,氧化钪掺杂钨铼多相混合 基阴极900℃发射性能。
具体实施方法
下面结合实施例对本发明进行进一步说明,但本发明不限于以下实施示例。
实施例1:分别将107.96g高铼酸铵,33.51g偏钨酸铵和13.4g硝酸钪进行固相机械混合,向混合粉末中添加100ml去离子水和50ml乙醇,搅拌成浆状,将浆化粉末置于200℃烘干,制成混合前驱粉。将前驱粉末在氢气气氛中分解还原。第一步温度为450℃,保温2h;第二步还原温度为800℃,保温2h,第三步还原温度为1100℃,保温时间2h,获得氧化钪含量为4%的铼钨合金混合合金粉末,如图2所示为获得粉体XRD。采用模压方式将粉体压制成型,压力为700Mpa,保压时间为120秒。将压制坯体进行烧结成阴极基体,烧结温度为1550℃,保温3小时,最终基体空隙率为35%。对基体浸渍铝酸钡钙411盐,活性盐浸渍量为19%。清洗阴极表面残盐,进行退火处理,退火温度为1200℃,时间1小时,如图2所示为获得阴极表面SEM,图3所示为该阴极以及后续实施事例所制备阴极的电子发射性能。
实施例2:分别将107.96g高铼酸铵,33.51g偏钨酸铵和16.75g硝酸钪在去离子水中溶解成溶液,采用溶胶凝胶方法制备获得前驱粉。将前驱粉末在氢气气氛中分解还原。第一步温度为450℃,保温2h;第二步还原温度为700℃,保温2h,第三步还原温度为1300℃,保温时间2h,获得氧化钪含量为5%的铼钨合金混合粉末。采用等静压方法将粉体压制成型,压力为600Mpa,保压时间为300秒。将压制坯体进行烧结成阴极基体,烧结温度为1700℃,,时间20分钟,最终基体空隙率为33%。对基体浸渍铝酸钡钙612盐,活性盐浸渍量为15%。清洗阴极表面残盐,进行退火处理,退火温度为1200℃,时间0.5小时,发射性能见图3。
实施例3:分别将62.43g七氧化二铼,60.54g三氧化钨和13.4g硝酸钪进行固相机械混合,之后加水将粉体制成膏状并加入脱水剂,加热脱水。将得到的前驱粉末在氢气气氛中分解还原。第一步温度为250℃,保温2h;第二步还原温度为600℃,保温2h,第三步还原温度为1100℃,保温时间2h,获得氧化钪含量为1%的钨铼合金粉。对粉体进行压制烧结,等静压压力为800Mpa,烧结温度1500℃,烧结时间为2小时,浸渍铝酸钡钙411盐,浸渍量为9%。清洗阴极表面残盐,进行退火处理,退火温度为1000℃,时间1小时。发射性能见图3。

Claims (7)

  1. 一种浸渍型氧化钪掺杂铼钨多相混合基扩散阴极,其特征在于,钨与铼形成多种不同比例的合金相,铼元素在基体中的质量含量占比为0.5%-99%,氧化钪的质量占比为0.05%-15%,钨元素质量占比为0.45-99%;浸渍物质为活性盐,活性盐质量占比为0.1%-25%。
  2. 按照权利要求1所述的一种浸渍型氧化钪掺杂铼钨多相混合基扩散阴极,其特征在于,钨和铼以钨单质、铼单质、钨铼固溶体、钨铼金属间化合物等至少两种形式存在于粉体中,钨单质、铼单质不同时存在。
  3. 按照权利要求1所述的一种浸渍型氧化钪掺杂铼钨多相混合基扩散阴极,其特征在于,活性盐主要包括氧化钡、氧化钙、氧化锶等碱土族氧化物与氧化铝、氧化锆、氧化硅、氧化钨中的一种或几种经过高温烧制而成的活性盐。
  4. 权利要求1-3任一项所述的一种浸渍型氧化钪掺杂铼钨多相混合基扩散阴极的制备方法,其特征在于,具体制备过程包括如下步骤:
    步骤一:制备氧化钪掺杂钨铼多相合金粉末;
    步骤二:将步骤一粉末进行压制成型和烧结,制备产生具有孔隙的阴极基体,其中通孔占阴极基体体积大小为1%-30%;
    步骤三:将步骤二制备的阴极基体浸渍发射活性盐;
    步骤四:根据阴极表面洁净度不同对阴极表面进行处理,处理方式为水洗、酸洗、碱洗等清洗方式,或机械加工等物理处理方法;然后进行退火处理。
  5. 按照权利要求4所述的方法,其特征在于,步骤一:氧化钪掺杂钨铼多相合金粉末的制备,包括以下步骤:将分析纯的含有钨元素的铵盐、含有铼元素的铵盐、硝酸钪进行机械混合,分别使用去离子水、乙醇、乙二醇等液体作为调和剂,将固体原料制成浆液并进行充分搅拌,并不断调节调和剂添加量以此提高原料的混合均匀性;将浆液在100-200℃烘干之后,进行氢气气氛的分解和还原。分解和还原采用多步进行处理,第一步为150-450℃,保温0.1-10小时。第二步为550-850℃,保温0.5-5小时,第三步为970-1700℃,保温0.5-5小时,最终获得氧化钪掺杂铼钨多相混合。
  6. 按照权利要求4所述的方法,其特征在于,步骤二烧结温度为1300-1800℃,时间为10分钟-3小时。
  7. 按照权利要求4所述的方法,其特征在于,步骤四退火的温度为850-1700℃,时间为10分钟-2小时。
PCT/CN2019/110918 2019-07-01 2019-10-14 一种浸渍型氧化钪掺杂铼钨多相混合基扩散阴极及制备方法 WO2021000447A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910585566.8 2019-07-01
CN201910585566.8A CN110303165B (zh) 2019-07-01 2019-07-01 一种浸渍型氧化钪掺杂铼钨多相混合基扩散阴极及制备方法

Publications (1)

Publication Number Publication Date
WO2021000447A1 true WO2021000447A1 (zh) 2021-01-07

Family

ID=68078184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110918 WO2021000447A1 (zh) 2019-07-01 2019-10-14 一种浸渍型氧化钪掺杂铼钨多相混合基扩散阴极及制备方法

Country Status (2)

Country Link
CN (1) CN110303165B (zh)
WO (1) WO2021000447A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110303165B (zh) * 2019-07-01 2020-11-20 北京工业大学 一种浸渍型氧化钪掺杂铼钨多相混合基扩散阴极及制备方法
CN111036914A (zh) * 2020-01-03 2020-04-21 北京工业大学 一种钨基扩散阴极的增材制造制备方法
AT17391U1 (de) * 2020-07-31 2022-03-15 Plansee Se Hochtemperaturkomponente
CN112635275B (zh) * 2020-12-09 2022-04-26 武汉联影医疗科技有限公司 平板发射体及x射线管
CN114054768B (zh) * 2022-01-11 2022-04-08 西安稀有金属材料研究院有限公司 一种含钪锶的超细钨铼复合粉末制备方法及应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5007874A (en) * 1990-10-15 1991-04-16 The United States Of America As Represented By The Secretary Of The Army Method of making a cathode from tungsten and iridium powders using a reaction product from reacting a group III A metal with barium peroxide as an impregnant
CN1402291A (zh) * 2002-09-29 2003-03-12 北京工业大学 稀土钪钨基高电流密度电子发射体材料及其制备方法
CN101386076A (zh) * 2008-10-24 2009-03-18 北京科技大学 一种制备纳米级氧化物弥散强化金属用预合金粉末的方法
CN101764006A (zh) * 2010-01-08 2010-06-30 北京工业大学 一种浸渍型钪钨扩散式阴极材料的制备方法
CN102628136A (zh) * 2012-04-13 2012-08-08 北京工业大学 一种铼钨基阴极材料及其制备方法
CN103769581A (zh) * 2014-02-21 2014-05-07 北京矿冶研究总院 多元复合稀土电子发射材料及其制备方法
CN109390195A (zh) * 2018-11-29 2019-02-26 北京工业大学 一种亚微米结构顶层含钪阴极及其制备方法
CN110303165A (zh) * 2019-07-01 2019-10-08 北京工业大学 一种浸渍型氧化钪掺杂铼钨多相混合基扩散阴极及制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19828729B4 (de) * 1998-06-29 2010-07-15 Philips Intellectual Property & Standards Gmbh Scandat-Vorratskathode mit Barium-Calcium-Aluminat-Schichtabfolge und korrespondierende elektrische Entladungsröhre
CN104299869B (zh) * 2014-09-26 2017-01-11 北京工业大学 一种浸渍型Re3W-Sc2O3混合基阴极材料及其制备方法
CN105803285B (zh) * 2016-03-21 2017-08-11 合肥工业大学 一种超细晶Sc2O3掺杂W基复合材料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5007874A (en) * 1990-10-15 1991-04-16 The United States Of America As Represented By The Secretary Of The Army Method of making a cathode from tungsten and iridium powders using a reaction product from reacting a group III A metal with barium peroxide as an impregnant
CN1402291A (zh) * 2002-09-29 2003-03-12 北京工业大学 稀土钪钨基高电流密度电子发射体材料及其制备方法
CN101386076A (zh) * 2008-10-24 2009-03-18 北京科技大学 一种制备纳米级氧化物弥散强化金属用预合金粉末的方法
CN101764006A (zh) * 2010-01-08 2010-06-30 北京工业大学 一种浸渍型钪钨扩散式阴极材料的制备方法
CN102628136A (zh) * 2012-04-13 2012-08-08 北京工业大学 一种铼钨基阴极材料及其制备方法
CN103769581A (zh) * 2014-02-21 2014-05-07 北京矿冶研究总院 多元复合稀土电子发射材料及其制备方法
CN109390195A (zh) * 2018-11-29 2019-02-26 北京工业大学 一种亚微米结构顶层含钪阴极及其制备方法
CN110303165A (zh) * 2019-07-01 2019-10-08 北京工业大学 一种浸渍型氧化钪掺杂铼钨多相混合基扩散阴极及制备方法

Also Published As

Publication number Publication date
CN110303165B (zh) 2020-11-20
CN110303165A (zh) 2019-10-08

Similar Documents

Publication Publication Date Title
WO2021000447A1 (zh) 一种浸渍型氧化钪掺杂铼钨多相混合基扩散阴极及制备方法
US7722804B2 (en) Method of manufacturing a pressed scandate dispenser cathode
US7986508B2 (en) Niobium monoxide powder, niobium monoxide sintered body and capacitor using the sintered body
JPH0584032B2 (zh)
CN113634761A (zh) 一种稀土氧化物强化钨铜基复合材料的制备方法
US10020515B2 (en) Strontium magnesium molybdenum oxide material having double perovskite structure and method for preparing the same
CN110142415A (zh) 一种氧化物掺杂多合金相钨铼合金粉及制备方法
CN109650873B (zh) 一种Ca-W混合掺杂Bi2O3固体电解质的制备方法
CN109390195B (zh) 一种亚微米结构顶层含钪阴极及其制备方法
WO2019189701A1 (ja) 電解セル及び電解装置
Liu et al. In situ passivation of Fe nanoparticles exsolved from perovskite cathodes through zinc doping for CO 2 electrolysis
JPH0746610B2 (ja) 溶融炭酸塩燃料電池正極及びその製造方法
CN111269012B (zh) 一种浸渍扩散阴极用含钙的钪铝酸钡及其制备方法
WO2016038959A1 (ja) タングステンコンデンサ素子及びその製造方法
CN108878234B (zh) 一种ZrH2添加的Y2O3-W基次级发射体的制备方法
JP2014019584A (ja) 六ホウ化ランタン焼結体、その製造方法、六ホウ化ランタン膜及び有機半導体デバイス
CN105788996B (zh) 一种亚微米薄膜钪钨阴极及其制备方法
TW200417517A (en) Manufacturing method to improve oxygen ion conductivity
Liang et al. Microwave-plasma induced reconstruction of silver catalysts for highly efficient oxygen reduction
US3269804A (en) Dispenser cathode and method for the production thereof
CN109019647B (zh) 一种浸渍扩散阴极用铝酸盐的制备方法
WO2018036068A1 (zh) 碳化La2O3与Lu2O3复合掺杂Mo阴极材料及其制备方法
JP2016024909A (ja) 金属担持酸化物粒子の製造方法、金属担持酸化物粒子、電極用触媒、金属−空気二次電池、燃料電池
US3525135A (en) Thermionic cathode
CN113936981B (zh) 一种浸渍型钨铼锇三元混合基扩散阴极的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19936385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19936385

Country of ref document: EP

Kind code of ref document: A1