WO2020259534A1 - 高导热铝合金材料及其制备方法 - Google Patents

高导热铝合金材料及其制备方法 Download PDF

Info

Publication number
WO2020259534A1
WO2020259534A1 PCT/CN2020/097913 CN2020097913W WO2020259534A1 WO 2020259534 A1 WO2020259534 A1 WO 2020259534A1 CN 2020097913 W CN2020097913 W CN 2020097913W WO 2020259534 A1 WO2020259534 A1 WO 2020259534A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
thermal conductivity
high thermal
alloy material
conductivity aluminum
Prior art date
Application number
PCT/CN2020/097913
Other languages
English (en)
French (fr)
Inventor
王榕
胡锐
杨劼人
孙智刚
罗昭
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020259534A1 publication Critical patent/WO2020259534A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys

Definitions

  • This application relates to the field of aluminum alloy materials, and more specifically to a high thermal conductivity aluminum alloy material.
  • Die-casting aluminum alloy is a metal material widely used in the production of complex-shaped shells of electronic and communication equipment products and compact structures of end products. Due to its excellent properties, die-cast aluminum alloys are often used to prepare structural parts such as filter cavities for base stations, transmitter housings, notebooks or mobile phone mid-boards and shells.
  • structural parts such as filter cavities for base stations, transmitter housings, notebooks or mobile phone mid-boards and shells.
  • the power consumption of terminal products continues to rise, which places higher demands on the heat dissipation capability of terminal hardware.
  • die castings have a direct impact on the overall heat dissipation performance of the end product.
  • the thermal conductivity of die-casting parts is also greatly affected by the prepared materials.
  • the thermal conductivity of die-casting parts is to be improved, the research on the thermal conductivity of die-casting materials becomes a key link.
  • the thermal conductivity of ordinary die-cast aluminum alloys is about 100 W/m ⁇ K, and die-casting parts prepared from the die-cast aluminum alloys cannot play a good thermal conductivity effect in the end product.
  • the present application provides a high thermal conductivity aluminum alloy material to solve the problem that the die-cast aluminum alloy cannot have both high thermal conductivity and strength.
  • a high thermal conductivity aluminum alloy material is provided, the main components of the high thermal conductivity aluminum alloy material are silicon, magnesium, iron, copper, manganese, strontium, composite rare earth, and aluminum, and the
  • the aluminum alloy material includes the following components: silicon: 6.0%-8.0%; magnesium: 0.25%-0.5%; iron: 0.5%-0.8%; copper: 0-0.1%; manganese: 0-0.04%; strontium: 0- 0.1%; composite rare earth 0-0.2%; the balance is aluminum.
  • the high thermal conductivity aluminum alloy material includes the following components: silicon: 7.0%-7.2%; magnesium: 0.25%-0.40%; iron :0.5%-0.6%; copper: 0.05%-0.10%; manganese: 0.03%-0.04%; strontium: 0-0.02%; composite rare earth 0-0.15%; the balance is aluminum.
  • the composite rare earth includes cerium and lanthanum, and the mass percentage of the cerium and lanthanum is 3:2.
  • the high thermal conductivity aluminum alloy material includes the following components: silicon: 7.0%; magnesium: 0.25%; iron: 0.6%; copper: 0.1%; manganese: 0.04%; strontium: 0.015%; cerium: 0.06%; lanthanum: 0.04%; the balance is aluminum.
  • the high thermal conductivity aluminum alloy material includes the following components: silicon: 7.0%; magnesium: 0.35%; iron: 0.57%; copper: 0.06%; manganese: 0.03%; strontium: 0.02%; cerium: 0.072%; lanthanum: 0.048%; the balance is aluminum.
  • the high thermal conductivity aluminum alloy material includes the following components: silicon: 7.2%; magnesium: 0.4%; iron: 0.5%; copper: 0.05%; manganese: 0.03%; strontium: 0.02%; cerium: 0.09%; lanthanum: 0.06%; the balance is aluminum.
  • the aluminum alloy material further includes an impurity element, and the mass percentage of each impurity element is less than 0.015%, and the impurity element includes at least one of the following : Zinc, zirconium, titanium, boron, vanadium, cadmium, beryllium, chromium, nickel, lead, tin, antimony.
  • the high thermal conductivity aluminum alloy material is prepared by resistance melting.
  • inert gas or nitrogen is introduced into the melting equipment.
  • the high thermal conductivity aluminum alloy material is used to prepare a die-cast structural part by means of pressure casting.
  • a method for preparing a high thermal conductivity aluminum alloy material including: configuring raw materials according to the components of the high thermal conductivity aluminum alloy material as described in any implementation manner of the first aspect; The raw materials are smelted, and an alloy melt is obtained; the alloy melt is poured into a metal mold to obtain an alloy ingot.
  • a die-cast structure is provided, which is formed by die-casting the high thermal conductivity aluminum alloy material as described in any implementation manner in the first aspect.
  • the high thermal conductivity aluminum alloy material provided by the embodiments of the present application, by designing the composition of the aluminum alloy material, the aluminum alloy material has both good mechanical properties and high thermal conductivity, so that the die-casting structural parts prepared therefrom have good The thermal conductivity and mechanical properties.
  • FIG. 1 is a schematic flow chart of the preparation process of a high thermal conductivity aluminum alloy material provided by an embodiment of the present application.
  • Die-casting parts are pressure-casting parts. Through the pressure-casting mechanical die-casting machine equipped with the casting mold, the liquid copper, zinc, aluminum or aluminum alloy is poured into the inlet of the die-casting machine. The die casting machine is used for die casting to cast copper, zinc, aluminum parts or aluminum alloy parts of the shape and size restricted by the mold. The aforementioned parts are usually called die castings. Die castings can also be called die casting parts, pressure castings, die castings, die casting aluminum, die casting zinc, die casting copper, zinc die casting, aluminum die casting, aluminum die alloy casting, aluminum alloy die casting parts, etc.
  • ADC12 alloy Also known as No. 12 aluminum, it is Al-Si-Cu alloy, a die-cast aluminum alloy, suitable for the preparation of cylinder head covers, sensor brackets, cylinder blocks, etc.
  • ADC12 alloy is a Japanese brand, which is equivalent to the Chinese-made alloy code YL113, and the alloy brand is YZAlSi11Cu 3 , which implements the standard GB/T 15115-2009.
  • the corresponding American grade is 384.
  • ZL101A aluminum alloy The material name is ZalSi 7 MgA, and its main constituent elements and element mass percentages are shown in Table 1.
  • ZL102 alloy The main constituent elements and the mass percentage content of the elements are shown in Table 2.
  • the main elements added and the purpose are mainly: silicon element: improve the fluidity of aluminum alloy and make it have good casting performance; alloy elements such as copper and magnesium: improve the mechanical properties of aluminum alloy; iron and manganese elements: ensure die casting The finished aluminum alloy is smoothly drawn out; alloy refiner: mainly includes titanium and boron, refines the grains, improves the alloy structure, and improves the mechanical properties of the aluminum alloy.
  • the addition amount of each element needs to be controlled within an appropriate content range, for example, if the content of each additional element is too large or the additional element Too many types of aluminum alloys will cause severe lattice distortion of the aluminum alloy, which will seriously damage the electrical conductivity and thermal conductivity of the aluminum alloy.
  • ADC12 alloy which is most widely used in die-casting aluminum alloy, the content of silicon in this alloy is 9.5-11.5wt.%, but its thermal conductivity is only 96W/(m ⁇ K). In fact, generally speaking, the strength and thermal conductivity of die-cast aluminum alloys have a mutually restrictive relationship.
  • the embodiments of the present application provide a die-cast aluminum alloy, which has high thermal conductivity and good mechanical properties by designing the composition of each element in the aluminum alloy.
  • silicon is an element that is very useful for improving the fluidity of the alloy, but the addition of silicon will reduce the thermal conductivity of the aluminum alloy. Therefore, in order to ensure the high thermal conductivity of the die-cast aluminum alloy, the embodiments of the present application reduce or control the mass percentage of silicon in the alloy material to 6.0%-8.0% on the premise that the alloy material has a certain fluidity.
  • magnesium and copper are the main strengthening elements in aluminum-silicon alloys. After heat treatment, magnesium and silicon can form a Mg 2 Si precipitation phase, which improves the strength of the alloy after aging and the thermal conductivity of the alloy.
  • the mass percentage of magnesium can be 0.25%-0.5%; copper has a strong solid solution strengthening effect, which can also effectively improve the strength and hardness of the alloy, especially the room temperature strengthening effect is better .
  • the copper element has a greater impact on the electrical conductivity and thermal conductivity of the alloy.
  • the influence of elements on the properties of the alloy greatly reduces the content of copper.
  • the upper limit of the copper content is controlled to be 0.1wt.% or less, and a higher Mg content design is adopted.
  • the die-cast aluminum alloy has high thermal conductivity while also having high mechanical properties.
  • it is also designed to add an appropriate mass percentage of strontium, where the content of strontium may be 0.1% or less, for example.
  • the embodiments of the present application mainly add a small amount of composite rare earth, for example, the total composite rare earth is less than or equal to 0.2 wt.%.
  • the composite rare earth may be cerium and lanthanum, and preferably, the ratio of the mass percentage of cerium and lanthanum is 3:2.
  • cerium and lanthanum can form Al 4 Ce, Al 4 La and Al 8 Cu 4 Ce phases in aluminum alloys, forming nucleation particles, through modification to refine the ⁇ -Al structure, improve the thermal conductivity of the alloy and the process of casting aluminum alloy die casting
  • the fluidity of aluminum alloy makes the vacuum fluidity of the new alloy equal to or even better than ADC12 alloy.
  • the addition of the composite rare earth can avoid the linear trace defects that are easily formed in the anodized surface treatment of the aluminum alloy that traditionally uses the refiner composed of titanium and boron, so that the alloy has good anodizable characteristics.
  • the high thermal conductivity aluminum alloy materials provided in the embodiments of this application strictly control the addition of impurity elements.
  • the impurity elements are mainly zinc, zirconium, titanium, boron, Vanadium, cadmium, beryllium, chromium, nickel, lead, tin, etc., and the mass percentage of each impurity element needs to be controlled below 0.015%.
  • a high thermal conductivity aluminum alloy material is provided, the main constituent elements of which are silicon, magnesium, iron, copper, manganese, strontium, cerium, and lanthanum, and the rest are aluminum and inevitable Trace impurity elements, where the mass percentages of each element are: silicon: 6.0%-8.0%, magnesium: 0.25%-0.50%, iron: 0.5%-0.8%, copper: 0-0.1%, manganese: 0-0.04 %, strontium: 0-0.1%, composite rare earth less than or equal to 0.2%, the balance is aluminum and trace impurities.
  • the composite rare earth of the high thermal conductivity aluminum alloy material provided in this implementation mode may include cerium and lanthanum, and the mass percentage ratio of cerium and lanthanum may be 3:2, that is, the percentage of cerium is 0.12%, and the percentage of lanthanum is 0.08%.
  • a high thermal conductivity aluminum alloy material is provided, the main constituent elements of which are silicon, magnesium, iron, copper, manganese, strontium, cerium, and lanthanum, and the rest are aluminum and inevitable Among the trace impurity elements, the mass percentages of each element are: silicon: 7.0%-7.2%, magnesium: 0.25%-0.40%, iron: 0.5%-0.6%, copper: 0.05%-0.10%, manganese: 0.03 %-0.04%, strontium: 0-0.02%, composite rare earth less than or equal to 0.15%, the balance is aluminum and trace impurities.
  • the composite rare earth of the high thermal conductivity aluminum alloy material provided in this implementation mode may include cerium and lanthanum, and the mass percentage of cerium and lanthanum may be It is 3:2, that is, the percentage of cerium is 0.09%, and the percentage of lanthanum is 0.06%.
  • a high thermal conductivity aluminum alloy material is provided, the main constituent elements of which are silicon, magnesium, iron, copper, manganese, strontium, cerium, and lanthanum, and the rest are aluminum and inevitable Among the trace impurity elements, the mass percentages of each element are: silicon: 7.0%; magnesium: 0.25%; iron: 0.6%; copper: 0.1%; manganese: 0.04%; strontium: 0.015%; cerium: 0.06%; Lanthanum: 0.04%; the balance is aluminum and trace impurities.
  • a high thermal conductivity aluminum alloy material is provided, the main constituent elements of which are silicon, magnesium, iron, copper, manganese, strontium, cerium, and lanthanum, and the rest are aluminum and inevitable Among the trace impurity elements, the mass percentages of each element are: silicon: 7.0%; magnesium: 0.35%; iron: 0.57%; copper: 0.06%; manganese: 0.03%; strontium: 0.02%; cerium: 0.072%; Lanthanum: 0.048%; the balance is aluminum and trace impurities.
  • a high thermal conductivity aluminum alloy material is provided, the main constituent elements of which are silicon, magnesium, iron, copper, manganese, strontium, cerium, and lanthanum, and the rest are aluminum and inevitable Among the trace impurity elements, the mass percentages of each element are: silicon: 7.2%; magnesium: 0.4%; iron: 0.5%; copper: 0.05%; manganese: 0.03%; strontium: 0.02%; cerium: 0.09%; Lanthanum: 0.06%; the balance is aluminum and trace impurities.
  • the aforementioned trace impurity elements in the aluminum alloy are mainly zinc, zirconium, titanium, boron, vanadium, cadmium, beryllium, chromium, nickel, lead, tin, antimony, etc., and the mass percentage of each impurity element It needs to be controlled below 0.015%. It should be understood that in order to control the content of impurity elements within the required range, raw materials with higher purity, that is, raw materials with lower impurity elements, can be used when selecting raw materials for preparing alloy ingots.
  • the thermal conductivity test and the mechanical property test are performed on the aluminum alloys provided in the third to fifth embodiments.
  • the thermal conductivity test is carried out according to the standard ASTM E1461. Specifically, the upper surface of the aluminum alloy ingots of different compositions provided in the above-mentioned Examples 3 to 5 is cut from the original sheet with a diameter of 12.7 mm and a thickness of 3.0 mm. For the test sample, the thermal conductivity of each test sample is detected by a laser thermal conductivity meter, and the thermal conductivity is calculated.
  • the thermal conductivity of the alloy shown in Table 3 is the data obtained after the T5 heat treatment of the test sample. Specifically, the test sample is subjected to T5 heat treatment at 170°C, where the incomplete artificial aging time is 2-4h .
  • the test samples in Example 3 to Example 5 are marked as Sample 1 to Sample 3, respectively.
  • the as-cast aluminum alloys in Examples 3 to 5 are processed and tested for mechanical tensile specimens.
  • the specimens used for mechanical tensile test are those that have passed 170 °C T5 heat-treated sample, in which the artificial aging time during T5 heat treatment is 2-4h.
  • the mechanical test data is shown in Table 4.
  • the average length of the casting fluidity sample of the high thermal conductivity aluminum alloy material provided by the examples of this application is 649.60mm
  • the thermal conductivity can reach 186.2W/(m ⁇ K)
  • the tensile strength can reach 297Mpa
  • the elongation can reach 2.0%.
  • the flow length of the alloys in Examples 3 to 5 can reach 95% of the ADC12 alloy flow length after the experiment is conducted under the same degree of superheat.
  • the average of sample 1 to sample 3 The flow length can reach 649.60 mm.
  • the flow length of the sample 1 can be as high as 685 mm. Therefore, the high thermal conductivity aluminum alloy material provided in the embodiments of the present application has good flow properties.
  • the alloy has the following main properties: (1) The die-cast room temperature thermal conductivity of the aluminum alloy 170 ⁇ 185W/m ⁇ K (see Table 3); (2) Good mechanical properties, such as tensile strength, yield strength, elongation and reduction of area (see Table 4); (3) Good fluidity (See Table 5) and stickiness.
  • the embodiment of the present application also provides a preparation method of the above-mentioned high thermal conductivity aluminum alloy material.
  • the preparation method includes the following steps.
  • S101 Configure raw materials according to the designed composition, and use resistance melting equipment to melt the raw materials to obtain alloy melt. Among them, during the smelting process, inert gas or nitrogen can be filled into the smelting equipment to avoid alloy oxidation.
  • the resistance melting equipment may be, for example, a resistance melting furnace.
  • S102 pour the alloy melt into a mold to obtain an alloy ingot.
  • the alloy melt is poured into a metal mold cavity or a tensile sample metal mold to obtain an alloy ingot, wherein the size and shape of the alloy ingot depends on the metal mold cavity or the tensile sample metal mold.
  • the size of the metal mold cavity may be, for example, 80 ⁇ 20 ⁇ 15 mm
  • the size of the tensile specimen metal mold may be, for example, a cylindrical mold with a diameter of 15 mm and a length of 120 mm. It should be understood that a test specimen for testing thermal conductivity and tensile test can be prepared by hydraulically pressing the alloy melt into the metal mold of the tensile specimen.
  • the cast aluminum alloy fluidity test platform can also be used to test the fluidity and stickiness of the alloy under different superheats.
  • step S103 may also be performed, that is, the alloy ingot is melted and then subjected to pressure casting to prepare a die-cast structure.
  • the obtained aluminum alloy has a density of about 2.68g/cm 3 , a melting point of about 612-616°C, and a die-cast thermal conductivity of 170-185W/(m ⁇ K), and after T5 treatment at 170°C for 2-4 hours, the strength of the aluminum alloy can reach 180-200Mpa.
  • the casting fluidity length of the prepared aluminum alloy at the same superheat or the same pouring temperature is equivalent to, or even better than, ADC12 alloy, and its stickiness is equivalent to ADC12.
  • the aluminum alloy of the composition provided in the embodiments of the present application has both high thermal conductivity and good mechanical properties, and is suitable for preparing precision die-cast parts with complex structures for terminals.
  • the embodiment of the present application also provides a die-casting structural component, which is formed by die-casting the high thermal conductivity aluminum alloy material provided in the above-mentioned embodiment of the present application. Since the high thermal conductivity aluminum alloy material provided by the embodiments of the present application can have both high thermal conductivity and good mechanical properties, the structural parts prepared therefrom also have high thermal conductivity and excellent mechanical properties, and are suitable for end products, such as Die-casting structural parts of products such as small indoor and outdoor customer-premises equipment (CPE), mobile phone terminals, and family terminal tablet computers (portable android devices, PAD) for end home users.
  • CPE customer-premises equipment
  • PAD portable android devices

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本申请提供了一种高导热铝合金材料及其制备方法,涉及铝合金材料领域。该高导热铝合金的主要成分为硅、镁、铁、铜、锰、锶、铈、镧以及铝,且按照质量百分比计,所述铝合金材料包括以下组分:硅:6.0%-8.0%;镁:0.25%-0.5%;铁:0.5%-0.8%;铜:0-0.1%;锰:0-0.04%;锶:0-0.1%;复合稀土0-0.2%;余量为铝和杂质元素,其中,每种杂质元素质量百分含量需控制在0.015%以下。本申请实施例通过对铝合金的组分进行设计,获得的高导热铝合金能够兼具高导热性和良好的力学性能,适用于制备应用于终端产品的精密复杂的压铸结构件。

Description

高导热铝合金材料及其制备方法
本申请要求在2019年6月26日提交中国国家知识产权局、申请号为201910561132.4的中国专利申请的优先权,发明名称为“高导热铝合金材料及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及铝合金材料领域领域,更具体地涉及一种高导热铝合金材料。
背景技术
压铸铝合金是一种广泛用于生产电子及通讯设备产品的复杂造型外壳以及终端产品紧密结构件的金属材料。压铸铝合金以其优良的性能,常用于制备如基站用滤波器腔体、发射器壳体、笔记本或者手机中板和外壳等结构件。然而,随着智能终端的发展,终端产品的使用功耗不断攀升,对终端硬件散热能力提出了更高的需求。而压铸件作为终端产品结构件的重要组成部分,其导热性能的好坏,直接影响了终端产品的整体散热性能。而压铸件导热性能又受到制备材料的重要影响,因此,若要实现压铸件的导热性能的提高,对压铸材料的导热性能的研究成为关键的一个环节。目前,普通的压铸铝合金的导热系数为100W/m·K左右,由该压铸铝合金制备而成的压铸件并不能在终端产品中起到良好的导热作用。
因此,研发具有高导热性能和优良机械性能的铝合金材料成为亟待解决的问题。
发明内容
本申请提供一种高导热铝合金材料,以解决压铸铝合金的高导热性能与强度无法兼具的问题。
第一方面,提供了一种高导热铝合金材料,所述高导热铝合金材料的主要成分为硅、镁、铁、铜、锰、锶、复合稀土以及铝,且按照质量百分比计,所述铝合金材料包括以下组分:硅:6.0%-8.0%;镁:0.25%-0.5%;铁:0.5%-0.8%;铜:0-0.1%;锰:0-0.04%;锶:0-0.1%;复合稀土0-0.2%;余量为铝。
结合第一方面,在第一方面的某些实现方式中,按照质量百分比计,所述高导热铝合金材料包括以下组分:硅:7.0%-7.2%;镁:0.25%-0.40%;铁:0.5%-0.6%;铜:0.05%-0.10%;锰:0.03%-0.04%;锶:0-0.02%;复合稀土0-0.15%;余量为铝。
结合第一方面,在第一方面的某些实现方式中,所述复合稀土包括铈和镧,且所述铈和镧的质量百分比为3:2。
结合第一方面,在第一方面的某些实现方式中,按照质量百分比计,所述高导热铝合金材料包括以下组分:硅:7.0%;镁:0.25%;铁:0.6%;铜:0.1%;锰:0.04%;锶:0.015%;铈:0.06%;镧:0.04%;余量为铝。
结合第一方面,在第一方面的某些实现方式中,按照质量百分比计,所述高导热铝合金材料包括以下组分:硅:7.0%;镁:0.35%;铁:0.57%;铜:0.06%;锰:0.03%;锶: 0.02%;铈:0.072%;镧:0.048%;余量为铝。
结合第一方面,在第一方面的某些实现方式中,按照质量百分比计,所述高导热铝合金材料包括以下组分:硅:7.2%;镁:0.4%;铁:0.5%;铜:0.05%;锰:0.03%;锶:0.02%;铈:0.09%;镧:0.06%;余量为铝。
结合第一方面,在第一方面的某些实现方式中,所述铝合金材料还包括杂质元素,且每种杂质元素的质量百分含量为0.015%以下,所述杂质元素包括以下至少一种:锌、锆、钛、硼、钒、镉、铍、铬、镍、铅、锡、锑。
结合第一方面,在第一方面的某些实现方式中,所述高导热铝合金材料通过电阻熔炼方式制备。
结合第一方面,在第一方面的某些实现方式中,所述通过电阻熔炼方式制备所述高导热铝合金材料的过程中,向熔炼设备中通入惰性气体或者氮气。
结合第一方面,在第一方面的某些实现方式中,所述高导热铝合金材料用于通过压力铸造方式制备压铸结构件。
第二方面,提供了一种高导热铝合金材料的制备方法,包括:根据如第一方面中任一实现方式所述的高导热铝合金材料的组分配置原料;通过电阻熔炼设备对所述原料进行熔炼,并获取合金熔液;将所述合金熔液浇注入金属模具中,获得合金锭。
第三方面,提供了一种压铸结构件,所述压铸结构件采用如第一方面中任一实现方式所述的高导热铝合金材料压铸而成。
根据本申请实施例提供的高导热铝合金材料,通过对铝合金材料的成分进行设计,使得该铝合金材料兼具良好的力学性能和高导热性,从而使得采用其制备的压铸结构件具有良好的导热性能和力学性能。
附图说明
图1本申请实施例提供的一种高导热铝合金材料制备过程的示意性流程图。
具体实施方式
下面将结合具体实施例,对本申请中的技术方案进行描述。显然,所面熟的实施例仅仅是本申请的技术方案的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为便于理解,首先对本申请可能涉及到的一些概念进行简单介绍。
压铸件:压铸件是一种压力铸造的零件,通过装好铸件模具的压力铸造机械压铸机,将加热为液态的铜、锌、铝或铝合金等金属浇入压铸机的入料口,经压铸机压铸,铸造出模具限制的形状和尺寸的铜、锌、铝零件或者铝合金零件,前述这些零件通常被称为压铸件。压铸件又可以叫做压铸零件、压力铸件、压铸件、压铸铝、压铸锌件、压铸铜件、锌压铸件、铝压铸件、铝压合金铸件、铝合金压铸零件等。
ADC12合金:又称12号铝料,为Al-Si-Cu合金,是一种压铸铝合金,适用于气缸盖罩盖、传感器支架、缸体类等的制备材料。ADC12合金为日本牌号,相当于中国国产的合金代号YL113,合金牌号为YZAlSi11Cu 3,执行标准GB/T 15115-2009。对应的美国牌号为384。
ZL101A铝合金:材料名称为ZalSi 7MgA,其主要的组成元素和元素质量百分数含量如表1所示。
表1
杂质元素
6.5%-7.5% 0.25%-0.45% 0.08%-0.20% 0-0.20% ≤0.7% 余量
ZL102合金:主要组成元素及元素的质量百分数含量如表2所示。
表2
杂质元素
10.0%-13.0% 0-0.1% 0-0.20% 0-0.70% ≤2.0% 余量
在目前主流的压铸铝合金中,为了满足不同方面的性能要求,往往向铝合金中添加多种元素。其中,添加的主要元素以及目的主要为:硅元素:提高铝合金的流动性,使其具有良好的铸造性能;铜、镁等合金元素:提高铝合金的力学性能;铁、锰元素:保证压铸完成后的铝合金出模顺畅;合金细化剂:主要包括钛元素和硼元素,细化晶粒,改善合金组织,以提高铝合金的力学性能。但是,利用添加硅或硼或其他合金元素改善铝合金组织或各项性能的过程中,各个元素的添加量需要控制在合适的含量范围内,例如,若各个添加元素的含量过多或者添加元素的种类过多,会导致铝合金发生较严重的晶格畸变,进而严重破坏该铝合金的导电性能和导热率。以压铸铝合金中应用最为广泛的ADC12合金来说,该合金中的硅元素含量为9.5-11.5wt.%,但其热导率仅为96W/(m·K)。实际上,通常来说,压铸铝合金的强度和热导率之间有相互制约的关系,其原因是为了获得高导热率,就需要控制合金元素的添加量,但合金元素的减少却会导致合金强度下降,如ZL101A铝合金,其铸态热导率为151W/(m·K),但其抗拉强度约为130MPa;或者,ZL102铝合金,其铸态热导率为121W/(m·K),但其抗拉强度同样也约为130Mpa。因此,目前主流的压铸铝合金的成分组成并不能使得该铝合金兼具高导热性和良好的力学性能,由其制备的的结构件也不能满足终端产品对散热性能和力学性能的要求。
针对上述问题,本申请实施例提供了一种压铸铝合金,通过设计铝合金中各个元素的组分,使其具有高导热性能和良好的力学性能。
应理解,硅元素是对改善合金流动性十分有益的一种元素,但是硅元素的添加会降低铝合金的导热性能。因此,为保证压铸铝合金的高导热性能,本申请实施例在保证合金材料具有一定流动性的前提下,降低或者控制合金材料中硅元素的质量百分含量在6.0%-8.0%。此外,镁元素和铜元素为铝-硅合金中的主要强化元素,镁与硅经过热处理能够形成Mg 2Si沉淀相,提高合金时效后的强度,并提高合金的导热性,因此,设计添加较多的镁元素,例如可以添加镁元素的质量百分含量为0.25%-0.5%;而铜的固溶强化作用较强,也能够有效的提高合金的强度和硬度,尤其是室温强化效果更优。但是,另外一方面,鉴于过多的添加元素会导致合金中出现严重的晶格畸变,进而影响合金的导热率,特别是铜元素对合金电导率和热导率的影响较大,综合考虑添加元素对合金各项性能的影响,本申请实施例设计的压铸铝合金中大幅度降低铜元素的含量,例如控制铜元素的上限含量为0.1wt.%以下,同时,采用了较高Mg含量设计,以保证压铸铝合金在拥有高导热性的同时也具有较高的力学性能。此外,为了控制铝合金中共晶硅的尺寸,还设计添加适当质量百分含量的锶,其中,锶的含量例如可以在0.1%以下。
还应理解,针对提高压铸铝合金的铸造流动性,本申请实施例主要通过添加少量复合稀土,例如复合稀土总量小于或者等于0.2wt.%。示例性的,该复合稀土例如可以是铈和镧,优选地,铈、镧质量百分比的比值为:3:2。由于铈、镧在铝合金中能够形成Al 4Ce、Al 4La和Al 8Cu 4Ce相,形成形核质点,通过变质细化α-Al组织,提高合金导热率和铸造铝合金压铸过程中铝合金的流动性,使新合金的真空流动性与ADC12合金相当甚至优于ADC12合金。同时,复合稀土的加入可以避免传统上采用钛和硼组合成的细化剂的铝合金在阳极化表面处理是容易形成的线状痕迹缺陷,使合金具有良好的可阳极化特性。
此外,由于杂质将会严重降低铝合金的实际导热率,为此,本申请实施例提供的高导热铝合金材料严格控制杂质元素的加入,其中,杂质元素主要为锌、锆、钛、硼、钒、镉、铍、铬、镍、铅、锡等,并且每种杂质元素的质量百分含量需要控制在0.015%以下。
以下结合具体实施例对本申请实施例提供的压铸铝合金进行详细地介绍。
在本申请实施例的一种实现方式中,提供了一种高导热铝合金材料,其主要组成元素为硅、镁、铁、铜、锰、锶、铈、镧,其余为铝和不可避免的微量杂质元素,其中,各个元素的质量百分比分别为:硅:6.0%-8.0%,镁:0.25%-0.50%,铁:0.5%-0.8%,铜:0-0.1%,锰:0-0.04%,锶:0-0.1%,复合稀土小于等于0.2%,余量为铝和微量杂质。此外,为了使高导热铝合金材料具有更优的力学性能和导热性能,本实现方式中提供的高导热铝合金材料的复合稀土可以包括铈和镧,且铈和镧的质量百分比的比例可以是3:2,也即铈元素的百分比为0.12%,镧元素的百分比为0.08%。
在本申请实施例的另一种实现方式中,提供了一种高导热铝合金材料,其主要组成元素为硅、镁、铁、铜、锰、锶、铈、镧,其余为铝和不可避免的微量杂质元素,其中,各个元素的质量百分比分别为:硅:7.0%-7.2%,镁:0.25%-0.40%,铁:0.5%-0.6%,铜:0.05%-0.10%,锰:0.03%-0.04%,锶:0-0.02%,复合稀土小于等于0.15%,余量为铝和微量杂质。此外,为了使高导热铝合金材料具有更优的力学性能和导热性能,本实现方式中提供的高导热铝合金材料的的复合稀土可以包括铈和镧,且铈和镧的质量百分比的比例可以是3:2,也即铈元素的百分比为0.09%,镧元素的百分比为0.06%。
在本申请实施例的又一种实现方式中,提供了一种高导热铝合金材料,其主要组成元素为硅、镁、铁、铜、锰、锶、铈、镧,其余为铝和不可避免的微量杂质元素,其中,各个元素的质量百分比分别为:硅:7.0%;镁:0.25%;铁:0.6%;铜:0.1%;锰:0.04%;锶:0.015%;铈:0.06%;镧:0.04%;余量为铝和微量杂质。
在本申请实施例的又一种实现方式中,提供了一种高导热铝合金材料,其主要组成元素为硅、镁、铁、铜、锰、锶、铈、镧,其余为铝和不可避免的微量杂质元素,其中,各个元素的质量百分比分别为:硅:7.0%;镁:0.35%;铁:0.57%;铜:0.06%;锰:0.03%;锶:0.02%;铈:0.072%;镧:0.048%;余量为铝和微量杂质。
在本申请实施例的又一种实现方式中,提供了一种高导热铝合金材料,其主要组成元素为硅、镁、铁、铜、锰、锶、铈、镧,其余为铝和不可避免的微量杂质元素,其中,各个元素的质量百分比分别为:硅:7.2%;镁:0.4%;铁:0.5%;铜:0.05%;锰:0.03%;锶:0.02%;铈:0.09%;镧:0.06%;余量为铝和微量杂质。
其中,上述所说的铝合金中的微量杂质元素主要为锌、锆、钛、硼、钒、镉、铍、铬、镍、铅、锡、锑等,并且每种杂质元素的质量百分含量需要控制在0.015%以下。应理解,为了使得杂质元素的含量控制在要求范围之内,在选用制备合金锭的原料时可以采用纯度 较高的原料,也即杂质元素较低的原料。
为进一步说明本申请实施例提供的铝合金能够兼具高导热性和良好的力学性能,对实施例三至实施例五中提供的铝合金进行导热率测试以及力学性能测试。其中,导热率测试根据标准ASTM E1461进行的,具体地,在上述实施例三至实施例五提供的不同组分的铝合金铸锭的上表面切取直径为12.7mm、厚度为3.0mm的原片测试试样,通过激光导热仪对各个测试试样的导热系数进行检测,并计算获得导热率。其中,表3所示的合金导热率为对测试试样进行T5热处理后检测获得的数据,具体地,对测试试样进行170℃下的T5热处理,其中,不完全人工时效时间为2-4h。为方便描述,将实施例三至实施例五中的测试试样分别记为试样1至试样3。
表3
Figure PCTCN2020097913-appb-000001
此外,按照国际标准GB/T 228,对实施例三至实施例五中的铸态铝合金进行力学拉伸试样的加工和测试,其中,用于做力学拉伸试验的试样为经过170℃T5热处理态试样,其中T5热处理过程中的人工时效时间为2-4h。力学检测数据如表4所示。
表4
Figure PCTCN2020097913-appb-000002
此外,为测定本申请实施例提供的不同组分的铝合金的流动性,对实施例三至实施例五提供的铝合金进行真空流动性试验,并将ADC12合金作为对比材料,通过对比流动长度,分析其流动性,进而获得其铸造性能。其中,各个铝合金材料的真空流动性实验测得的结果如表5所示。
表5
Figure PCTCN2020097913-appb-000003
Figure PCTCN2020097913-appb-000004
结合表3至表5可以看出,本申请实施例提供的高导热铝合金材料铸造流动性试样长度平均为649.60mm,导热率可以达到186.2W/(m·K),抗拉强度可以达到297Mpa,延伸率可以达到2.0%。其中,由表5可见,在相同的过热度下进行实验后,实施例三至实施例五中合金的流动长度能够达到ADC12合金流动长度的95%,其中,试样1至试样3的平均流动长度可以达到649.60mm,特别地,试样1的流动长度可以高达685mm,因此,本申请实施例提供的高导热铝合金材料具有良好的流动性能。
根据本申请实施例提供的高导热铝合金材料,通过对铝合金各种元素的设计搭配及其比例的优化,使得合金具有以下主要性能:(1)铝合金的压铸态室温热导率为170~185W/m·K(参见表3);(2)具有良好的力学性能,如抗拉强度、屈服强度、延伸率和断面收缩率(参见表4);(3)具有良好的流动性(参见表5)和粘模性。
本申请实施例还提供了上述高导热铝合金材料的制备方法,示例性的,如图1所示,该制备方法包括以下步骤。
S101,根据设计的成分进行原料配置,并采用电阻熔炼设备对该原料进行熔炼,获取合金熔液。其中,在熔炼过程中可以向熔炼设备中充入惰性气体或者氮气等,以避免合金氧化。电阻熔炼设备例如可以是电阻熔炼炉。
S102,将合金熔液浇注至模具获得合金锭。具体地,采用浇注方式将合金熔液浇注至金属模腔中或者拉伸试样金属模中以获得合金锭,其中,合金锭的尺寸和形状取决于金属模腔或者拉伸试样金属模。示例性的,金属模腔的尺寸例如可以是80×20×15mm,拉伸试样金属模的尺寸例如可以是直径为15mm,长度为120mm的圆柱形模具。应理解,通过将合金熔液压入拉伸试样金属模可以制得用于测试热导率和拉伸试验的测试试样。
此外,当制得合金锭后,还可以采用铸造铝合金流动性测试平台测试该合金不同过热度下的流动性和粘模性。
其中,当获得力学性能和导热性均满足需求的铝合金材料后,还可以进行步骤S103,也即,将合金锭熔化后经过压力铸造制备压铸结构件。
根据本申请实施例提供的高导热铝合金材料的制备方法,获取的铝合金密度约为2.68g/cm 3,熔点约为612-616℃,压铸态导热率可以达到170-185W/(m·K),并且在经过170℃下2-4h的T5处理后,该铝合金的强度可以达到180-200Mpa。此外,所制备的铝合金在同一过热度或者同一浇注温度下的铸造流动性长度与ADC12合金相当,甚至优于ADC12合金,其粘模性与ADC12相当。
换句话说,本申请实施例提供的组分的铝合金兼具高导热性与良好的力学性能,适用于制备终端用结构复杂的精密压铸零部件。
本申请实施例还提供了一种压铸结构件,该压铸结构件采用上文所说的本申请实施例提供的高导热铝合金材料压铸而成。由于本申请实施例提供的高导热铝合金材料可以同时具备高导热性和良好的力学性能,因而使得由其制备的结构件也兼具高导热性和优良的力 学性能,适用于终端产品,如终端家庭用户的室内外小型客户前置设备(customer-premises equipment,CPE)、手机终端、家庭终端的平板电脑(portable android device,PAD)等产品的压铸结构件。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (12)

  1. 一种高导热铝合金材料,其特征在于,所述高导热铝合金材料的主要成分为硅、镁、铁、铜、锰、锶、复合稀土以及铝,且按照质量百分比计,所述铝合金材料包括以下组分:
    硅:6.0%-8.0%;镁:0.25%-0.5%;铁:0.5%-0.8%;铜:0-0.1%;锰:0-0.04%;锶:0-0.1%;复合稀土0-0.2%;余量为铝。
  2. 根据权利要求1所述的高导热铝合金材料,其特征在于,按照质量百分比计,所述高导热铝合金材料包括以下组分:
    硅:7.0%-7.2%;镁:0.25%-0.40%;铁:0.5%-0.6%;铜:0.05%-0.10%;锰:0.03%-0.04%;锶:0-0.02%;复合稀土0-0.15%;余量为铝。
  3. 根据权利要求1或2所述的高导热铝合金材料,其特征在于,所述复合稀土包括铈和镧,且所述铈和镧的质量百分比为3:2。
  4. 根据权利要求3所述的高导热铝合金材料,其特征在于,按照质量百分比计,所述高导热铝合金材料包括以下组分:
    硅:7.0%;镁:0.25%;铁:0.6%;铜:0.1%;锰:0.04%;锶:0.015%;铈:0.06%;镧:0.04%;余量为铝。
  5. 根据权利要求3所述的高导热铝合金材料,其特征在于,按照质量百分比计,所述高导热铝合金材料包括以下组分:
    硅:7.0%;镁:0.35%;铁:0.57%;铜:0.06%;锰:0.03%;锶:0.02%;铈:0.072%;镧:0.048%;余量为铝。
  6. 根据权利要求3所述的高导热铝合金材料,其特征在于,按照质量百分比计,所述高导热铝合金材料包括以下组分:
    硅:7.2%;镁:0.4%;铁:0.5%;铜:0.05%;锰:0.03%;锶:0.02%;铈:0.09%;镧:0.06%;余量为铝。
  7. 根据权利要求1-6中任一项所述的高导热铝合金材料,其特征在于,所述铝合金材料还包括杂质元素,且每种杂质元素的质量百分含量为0.015%以下,所述杂质元素包括以下至少一种:
    锌、锆、钛、硼、钒、镉、铍、铬、镍、铅、锡、锑。
  8. 根据权利要求1-7中任一项所述的高导热铝合金材料,其特征在于,所述高导热铝合金材料通过电阻熔炼方式制备。
  9. 根据权利要求8所述的高导热铝合金材料,其特征在于,所述通过电阻熔炼方式制备所述高导热铝合金材料的过程中,向熔炼设备中通入惰性气体或者氮气。
  10. 根据权利要求1-9中任一项所述的高导热铝合金材料,其特征在于,所述高导热铝合金材料用于通过压力铸造方式制备压铸结构件。
  11. 一种高导热铝合金材料的制备方法,其特征在于,包括:
    根据如权利要求1至10中任一项所述的高导热铝合金材料的组分配置原料;
    通过电阻熔炼设备对所述原料进行熔炼,并获取合金熔液;
    将所述合金熔液浇注入金属模具中,获得合金锭。
  12. 一种压铸结构件,其特征在于,所述压铸结构件采用如权利要求1至10中任一项所述的高导热铝合金材料压铸而成。
PCT/CN2020/097913 2019-06-26 2020-06-24 高导热铝合金材料及其制备方法 WO2020259534A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910561132.4 2019-06-26
CN201910561132.4A CN110343918A (zh) 2019-06-26 2019-06-26 高导热铝合金材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2020259534A1 true WO2020259534A1 (zh) 2020-12-30

Family

ID=68183195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097913 WO2020259534A1 (zh) 2019-06-26 2020-06-24 高导热铝合金材料及其制备方法

Country Status (2)

Country Link
CN (1) CN110343918A (zh)
WO (1) WO2020259534A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110343918A (zh) * 2019-06-26 2019-10-18 华为技术有限公司 高导热铝合金材料及其制备方法
CN111041290B (zh) * 2019-12-20 2020-11-27 比亚迪汽车工业有限公司 一种铝合金及其应用
CN111270110A (zh) * 2019-12-20 2020-06-12 范卫忠 一种耐腐蚀高强高韧高导热铝合金材料及其制备方法
CN111254325B (zh) * 2020-01-22 2021-08-31 保定隆达铝业有限公司 一种薄壁结构件铸造用高性能铝合金及其制备方法
CN111733351A (zh) * 2020-04-07 2020-10-02 浙江顺虎铝业有限公司 一种导热和强度高的铝合金材料及其制备方法
CN111560543B (zh) * 2020-04-21 2021-09-17 北京联合大学 一种铝硅基精铸材料及其制备方法
CN111777867A (zh) * 2020-07-07 2020-10-16 安徽国风木塑科技有限公司 一种合金木塑型材的制备方法
CN113025855A (zh) * 2021-03-04 2021-06-25 卓尔博(宁波)精密机电股份有限公司 一种高散热型合金材料电机机壳
CN113136507B (zh) * 2021-03-24 2022-08-12 中铝材料应用研究院有限公司 一种高导热压铸铝合金材料及其制备方法
WO2022220534A1 (en) * 2021-04-13 2022-10-20 Lemon Metal Inc. Aluminum alloys
CN113088771A (zh) * 2021-04-14 2021-07-09 广东省科学院材料与加工研究所 一种亚共晶Al-Si合金及其制备方法
CN113293327A (zh) * 2021-05-26 2021-08-24 重庆慧鼎华创信息科技有限公司 一种高导热压铸铝合金及其制备方法
CN115198150B (zh) * 2022-06-24 2023-10-13 一汽解放汽车有限公司 铝硅合金及其制备方法和应用
CN114959375B (zh) * 2022-07-19 2022-11-08 浙江大华技术股份有限公司 面源黑体及其制备方法和装置
CN115948682B (zh) * 2023-02-22 2023-08-15 有研工程技术研究院有限公司 一种5g通讯大型散热腔体用高导热铝合金材料及其流变压铸成型方法
CN117127063B (zh) * 2023-07-26 2024-03-26 上海励益铝业有限公司 一种耐振动疲劳铝合金及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040062678A1 (en) * 2002-03-19 2004-04-01 Spx Corporation Aluminum alloy
CN105695809A (zh) * 2014-11-24 2016-06-22 华为技术有限公司 一种铝合金材料、铝合金成型件及其制备方法
CN108085541A (zh) * 2016-11-23 2018-05-29 比亚迪股份有限公司 一种导热铝合金及其应用
CN108559881A (zh) * 2017-11-02 2018-09-21 东莞市金羽丰知识产权服务有限公司 高导热压铸铝合金的配方及其冶炼关键技术
CN109750191A (zh) * 2019-01-31 2019-05-14 华为技术有限公司 一种压铸用高强高韧高导热铝合金
CN110343918A (zh) * 2019-06-26 2019-10-18 华为技术有限公司 高导热铝合金材料及其制备方法
KR20200023073A (ko) * 2018-08-24 2020-03-04 삼성전자주식회사 다이캐스팅용 알루미늄 합금 및 그 제조방법, 다이캐스팅 방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4633972B2 (ja) * 2001-07-17 2011-02-16 住友電気工業株式会社 耐摩耗性アルミニウム合金長尺体およびその製造方法ならびにカーエアコンディショナ用ピストン
CN104630576B (zh) * 2014-12-29 2017-01-11 江苏中色锐毕利实业有限公司 一种导热性能优异的亚共晶铝硅合金及其制备方法与应用
CN108546854A (zh) * 2018-04-28 2018-09-18 广州致远新材料科技有限公司 一种压铸铝合金材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040062678A1 (en) * 2002-03-19 2004-04-01 Spx Corporation Aluminum alloy
CN105695809A (zh) * 2014-11-24 2016-06-22 华为技术有限公司 一种铝合金材料、铝合金成型件及其制备方法
CN108085541A (zh) * 2016-11-23 2018-05-29 比亚迪股份有限公司 一种导热铝合金及其应用
CN108559881A (zh) * 2017-11-02 2018-09-21 东莞市金羽丰知识产权服务有限公司 高导热压铸铝合金的配方及其冶炼关键技术
KR20200023073A (ko) * 2018-08-24 2020-03-04 삼성전자주식회사 다이캐스팅용 알루미늄 합금 및 그 제조방법, 다이캐스팅 방법
CN109750191A (zh) * 2019-01-31 2019-05-14 华为技术有限公司 一种压铸用高强高韧高导热铝合金
CN110343918A (zh) * 2019-06-26 2019-10-18 华为技术有限公司 高导热铝合金材料及其制备方法

Also Published As

Publication number Publication date
CN110343918A (zh) 2019-10-18

Similar Documents

Publication Publication Date Title
WO2020259534A1 (zh) 高导热铝合金材料及其制备方法
CN103958708A (zh) 耐腐蚀性优异的黄铜
EP3647440B1 (en) Aluminum alloy and preparation method therefor
CN101191167B (zh) 一种含有稀土的镁合金及其制备方法
EP3954798B1 (en) Die-cast aluminum alloy, preparation method therefor, and structural member for communication product
JP2017538031A (ja) 耐食性が改善されたダイカスト用アルミニウム合金、周波数フィルタおよび通信機器部品の製造方法
EP4253584A1 (en) Aluminum alloy and aluminum alloy structural member
CN106811630A (zh) 一种铝合金及其制备方法和应用
WO2015135253A1 (zh) 铝硅系合金及其生产方法
WO2020088635A1 (zh) 铝合金材料、铝合金成型件及其制备方法和终端设备
CN111411267A (zh) 一种导电单丝材料及其制备方法
US20240011130A1 (en) Aluminum alloy, electronic device, and aluminum alloy preparation method
CN111979455B (zh) 一种压铸铝合金及其制备方法和应用
JP2956696B1 (ja) 高強度・高導電性銅合金およびその加工方法
CN112941372B (zh) 一种铝合金及其应用
CN114438375A (zh) 高强高导热高导电的高压铸造铝合金
JP4175920B2 (ja) 高力銅合金
CN109778030B (zh) 一种新的铝合金材料及其制备
CN115491558A (zh) 一种压铸镁合金及其制备方法和应用
CN112575234A (zh) 一种5g手机用高导热高强韧耐腐蚀的铝合金及制造方法
JP2022539416A (ja) アルミニウム合金、その製造方法及びアルミニウム合金の構造部材
WO2021128619A1 (zh) 铝合金及其制备方法和铝合金结构件
WO2024099373A1 (zh) 一种铝合金材料及其制备方法和应用
CN117821813B (zh) 一种汽车副车架铝合金材料及制备方法
JP2002226932A (ja) 強度及び熱伝導性に優れたヒートシンク用アルミニウム合金材及びその製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20832621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20832621

Country of ref document: EP

Kind code of ref document: A1