WO2020169037A1 - 一种放电电路和电子设备 - Google Patents

一种放电电路和电子设备 Download PDF

Info

Publication number
WO2020169037A1
WO2020169037A1 PCT/CN2020/075784 CN2020075784W WO2020169037A1 WO 2020169037 A1 WO2020169037 A1 WO 2020169037A1 CN 2020075784 W CN2020075784 W CN 2020075784W WO 2020169037 A1 WO2020169037 A1 WO 2020169037A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
port
coupled
voltage
switch
Prior art date
Application number
PCT/CN2020/075784
Other languages
English (en)
French (fr)
Inventor
汪会
郑志勇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20758812.0A priority Critical patent/EP3905477A4/en
Publication of WO2020169037A1 publication Critical patent/WO2020169037A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter

Definitions

  • This application relates to the field of integrated circuits, in particular to a discharge circuit and an electronic device.
  • the series battery solution will gradually be adopted by manufacturers due to the advantage of low charging heat.
  • the chip withstand voltage range of mobile phone electronic products is matched with the voltage of single-cell lithium battery, generally ⁇ 5.5V (the highest voltage of lithium battery is generally around 4.4V).
  • the battery output voltage is up to about 8.8V, and the voltage range exceeds the current chip withstand voltage range, so it needs to be used for step-down.
  • step-down there are many ways to step-down, such as step-down through Buck circuit, the advantage is output The voltage is constant, but the efficiency is low; or through the charge pump circuit (Charge Pump) chip to step down, the advantage is high efficiency, the disadvantage is that the output voltage changes with the input voltage, and the battery power cannot be fully utilized.
  • charge pump circuit Charge Pump
  • the embodiment of the present application provides a discharge circuit, which is beneficial to improve the discharge efficiency of the battery and enables the battery power to be fully utilized.
  • embodiments of the present application provide a discharge circuit, which is used inside an electronic device to supply power to a load circuit inside the electronic device, and includes: a detection circuit, a Buck circuit, a charge pump circuit, and a control circuit;
  • the input port of the Buck circuit is coupled with the input port of the charge pump circuit.
  • the input port of the Buck circuit and the input port of the charge pump circuit are the input ports of the discharge circuit; the output port of the charge pump circuit is coupled with the output port of the Buck circuit.
  • the output port of the pump circuit and the output port of the Buck circuit are the output ports of the discharge circuit; the output port of the discharge circuit is coupled with the input port of the load circuit inside the electronic device; the first port of the detection circuit is coupled to the input port of the discharge circuit to detect The second port of the circuit is coupled to the first port of the control circuit, the second port and the third port of the control circuit are respectively coupled to the enable port of the Buck circuit and the enable port of the charge pump circuit; the detection circuit is used to detect the detection circuit The voltage of the first port; the control circuit is used to control the Buck circuit and the charge pump circuit to discharge according to the voltage of the first port of the detection circuit.
  • the use of a charge pump circuit to discharge is beneficial to improve the discharge efficiency of the battery.
  • the Buck circuit is used to discharge the battery so that the battery power can be fully utilized. Taking into account the discharge efficiency and utilization of the battery.
  • the control circuit controls the Buck circuit and the charge pump circuit to discharge according to the voltage of the first port of the detection circuit, including: if the voltage of the first port of the detection circuit is greater than the first threshold, the control circuit controls the charge pump The circuit discharges; if the voltage of the first port of the detection circuit is less than the second threshold, the control circuit controls the Buck circuit to discharge; wherein the first threshold is greater than or equal to the second threshold.
  • the electronic device further includes a battery, wherein the negative pole of the battery is coupled to the ground, and the positive pole of the battery is coupled to the input port of the discharge circuit.
  • the control circuit also determines the switching voltage V according to the voltage of the battery and the battery condition; If the voltage V is greater than the third threshold, the control circuit controls the charge pump circuit to discharge; if the switching voltage V is less than the fourth threshold, the control circuit controls the Buck circuit to discharge; wherein the third threshold is greater than or equal to the fourth threshold.
  • the electronic device further includes a battery and a charging circuit; wherein the first port of the detection circuit is coupled to the positive electrode of the battery or the first output port of the charging circuit; the negative electrode of the battery is coupled to the ground, and the positive electrode of the battery is coupled To the second output port of the charging circuit.
  • the Buck circuit and the charge pump circuit are integrated.
  • the integration of the first conversion circuit and the second conversion circuit includes: a first switch, a second switch, a third switch, a fourth switch, a seventh switch, an inductor, an external capacitor And an output capacitor; wherein the first port of the first switch is the input port of the charge pump circuit and the input port of the Buck circuit, and the second port of the first switch is coupled with the first port of the second switch, The second port of the second switch is coupled with the first port of the third switch, the second port of the third switch is coupled with the first port of the fourth switch, and the second port of the fourth switch is The port is coupled to the ground, the first port of the external capacitor is coupled with the first port of the second switch, and the second port of the external capacitor is coupled with the second port of the third switch.
  • the first port of the inductor is coupled to the first port of the third switch, the second port of the inductor is coupled to the first port of the output capacitor, and the second port of the output capacitor is coupled to ground.
  • the first port of the seventh switch is coupled to the first port of the inductor, the second port of the seventh switch is coupled to the second port of the inductor, and the first port of the output capacitor is the output port of the charge pump circuit And the input port of the circuit.
  • the embodiments of the present application provide another discharge circuit, including: a Buck chip and a charge pump chip; wherein the input port of the Buck chip is coupled with the input port of the charge pump chip, and the output port of the Buck chip is coupled to the charge pump chip.
  • the output port is coupled, the input port of the Buck chip is the input port of the discharge circuit, and the output port of the Buck chip is the output port of the discharge circuit;
  • Both the Buck chip and the charge pump chip detect the output voltage of the output port of the discharge circuit.
  • the charge pump chip discharges and the Buck chip detects When the output voltage to the output port of the discharge circuit is greater than the configuration voltage of the Buck chip, it enters a low power consumption state;
  • the charge pump chip is working, if the output voltage of the output port of the discharge circuit is less than the configuration voltage of the Buck chip, the Buck chip performs When the charge pump chip detects that the output voltage of the output port of the discharge circuit is greater than the output voltage of the charge pump chip, the charge pump chip enters a low power consumption state.
  • the high output voltage of Buck chip and charge pump chip is used to supply power to the load circuit connected to the output port, taking into account the discharge efficiency and utilization of the battery.
  • the Buck chip includes a voltage configuration circuit, a first logic control circuit, a first voltage detection circuit, and a first conversion circuit;
  • the charge pump chip includes a second logic control circuit, a second voltage detection circuit, and a second Conversion circuit; voltage configuration circuit, used to set the configuration voltage for the Buck chip;
  • the first voltage detection circuit and the second voltage detection circuit are respectively used to detect the output voltage of the discharge circuit
  • the first logic control circuit determines that the configuration voltage is greater than the output voltage of the discharge circuit, the first logic control circuit controls the operation of the first conversion circuit, and the second logic control circuit determines that the output voltage of the second conversion circuit is less than The output voltage of the discharge circuit is controlled to stop the voltage conversion by the second conversion circuit;
  • the second logic control circuit determines that the output voltage of the second conversion circuit is greater than the output voltage of the discharge circuit, it controls the operation of the second conversion circuit.
  • the first logic control circuit determines that the output voltage of the discharge circuit is greater than the configured voltage , The first logic control circuit controls the first conversion circuit to stop the voltage conversion.
  • the integration of the first conversion circuit and the second conversion circuit includes: a first switch, a second switch, a third switch, a fourth switch, a seventh switch, an inductor, an external capacitor And an output capacitor; wherein the first port of the first switch is the input port of the charge pump circuit and the input port of the Buck circuit, and the second port of the first switch is coupled with the first port of the second switch, The second port of the second switch is coupled with the first port of the third switch, the second port of the third switch is coupled with the first port of the fourth switch, and the second port of the fourth switch is The port is coupled to the ground, the first port of the external capacitor is coupled to the first port of the second switch, the second port of the external capacitor is coupled to the second port of the third switch, and the first port of the inductor One port is coupled to the first port of the third switch, the second port of the inductor is coupled to the first port of the output capacitor, the second port of the output capacitor is coupled to ground, and the The first port is coupled to the
  • an embodiment of the present application provides an electronic device, including: a load circuit and the discharge circuit of the first aspect or the second aspect.
  • the discharge circuit used in the embodiment of the present application combines the advantages of the Buck circuit (or Buck chip) and the charge pump circuit (or charge pump chip), and fully and efficiently utilizes the energy of the battery.
  • FIG. 1a is a schematic diagram of a discharge circuit provided by an embodiment of the application.
  • FIG. 1b is a schematic diagram of another discharge circuit provided by an embodiment of the application.
  • FIG. 2 is a schematic diagram of another discharge circuit provided by an embodiment of the application.
  • FIG. 3 is a schematic circuit diagram of a charge pump circuit according to an embodiment of the application.
  • FIG. 4 is a schematic circuit diagram of a Buck circuit provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of an integrated circuit of a charge pump circuit and a Buck circuit provided by an embodiment of the application;
  • FIG. 6 is a schematic circuit diagram of another charge pump circuit provided by an embodiment of the application.
  • FIG. 7 is a schematic circuit diagram of another Buck circuit provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of an integrated circuit of another charge pump circuit and Buck circuit provided by an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of an electronic device provided by an embodiment of the application.
  • the electronic device adopts a dual-cell series battery solution.
  • the battery output voltage is up to about 8.8V, and the voltage range exceeds the current chip withstand voltage range. Therefore, it needs to be used for step-down.
  • the embodiment of the present application provides a discharge circuit for power The voltage drops to the range required by the internal chip of the electronic device.
  • Fig. 1a is a schematic circuit diagram of a discharging circuit provided by an embodiment of the application, and the discharging circuit is applied to an electronic device.
  • the discharge circuit includes: a detection circuit 101, a Buck circuit 102, a charge pump circuit 103, and a control circuit 104; wherein the input port of the Buck circuit 102 and the input port of the charge pump circuit are coupled to the input of the discharge circuit Port, the voltage of the input port of the discharge circuit is Vin, the output port of the charge pump circuit 103 and the output port of the Buck circuit 102 are the output ports of the discharge circuit, and the voltage of the output port is Vout.
  • the discharge circuit supplies power to the internal circuit of the electronic device (ie, the load circuit) through the output port.
  • the electronic device may be a portable electronic device, such as a mobile phone, a tablet computer, a wearable device (such as a smart watch), a vehicle-mounted device, and the like.
  • the electronic device has a charging circuit
  • the charging circuit has a first output port and a second output port
  • the first output port of the charging circuit is coupled to the positive electrode of the battery
  • the input port of the discharging circuit can be coupled to the charging circuit of the electronic device.
  • the second output port when the charging circuit is connected to the external charger for charging, the external charger provides the input voltage to the discharge circuit, or the external charger and the battery provide the input voltage; when the charging circuit is not connected to the external charger When connected, the battery provides the input voltage.
  • the input port of the discharging circuit can be directly coupled to the positive electrode of the battery, or coupled to the positive electrode of the battery through a part of the charging circuit (such as a switch).
  • the output voltages of the two output ports of the charging circuit are the same or close, so when the charging circuit or the battery provides the input voltage of the discharging circuit, the input voltage Vin of the input port of the discharging circuit is equal to or close to the battery voltage. If the first port of the detection circuit 101 is directly coupled with the input port of the amplifying circuit, the voltage Vin' detected by the detection circuit is equal to Vin, and Vin' is equal to or close to the battery voltage Vbat. If the first port of the detection circuit 101 is directly coupled with the first output port of the charging circuit, that is, the positive electrode of the battery, the voltage Vin' detected by the detection circuit is equal to the battery voltage Vbat.
  • the first port of the detection circuit is directly coupled to the input port of the discharge circuit or the positive electrode of the battery can be regarded as the first port of the detection circuit coupled with the input port of the discharge circuit.
  • the input port of the discharge circuit can also be directly coupled to the positive electrode of the battery, and the negative electrode of the battery is coupled to the ground. (Not shown in the figure)
  • the first port of the detection circuit 101 is directly coupled with the input port of the amplifier circuit, and the voltage Vin' detected by the detection circuit is equal to Vin, that is, equal to the battery voltage Vbat.
  • the battery can be a dual-cell series battery solution, that is, two lithium batteries are connected in series to form a battery.
  • the first port of the detection circuit 101 is directly coupled to the input port of the discharge circuit or the positive electrode of the battery, and is used to detect the voltage of the input port of the discharge circuit or the voltage of the battery.
  • the detection circuit 101 may be an ADC detection circuit. Therefore, according to the coupling object of the first port of the detection circuit 101, the voltage Vin' detected by the detection circuit 101 is equal to or close to Vin, or Vin' is equal to or close to the voltage of the battery.
  • the second port of the detection circuit 101 is coupled to the first port of the control circuit 104, so that the control circuit 104 obtains the detected voltage.
  • the second port and the third port of the control circuit 104 are coupled to the enable port of the Buck circuit 102 and the enable port of the charge pump circuit 103, respectively.
  • the control circuit 104 controls the Buck circuit 102 and the charge pump circuit 103 to discharge according to Vin'.
  • the discharge circuit specifically uses the Buck circuit 102 and the charge pump circuit (Charge Pump) 103 to be connected in parallel to supply power to the internal circuit (ie, the load circuit) of the electronic device.
  • control circuit 104 controls the Buck circuit 102 and the charge pump circuit 103 to discharge according to the voltage Vin' detected by the detection circuit 101, including:
  • control circuit 104 controls the charge pump circuit 103 to discharge; if Vin' is less than the second threshold, the control circuit 104 controls the Buck circuit 102 to discharge; wherein the first threshold is greater than or equal to the second threshold.
  • the third port of the control circuit 104 generates an enable signal to control the charge pump circuit 103 to supply power to the load circuit, that is, the control circuit 104 uses The charge pump circuit 103 supplies power to the load circuit, and the Buck circuit 102 does not supply power to the load circuit. This ensures that the power supply to the load circuit is in a state of higher efficiency; if Vin' is less than the second threshold Vth2, the second port of the control circuit 104 generates an enable signal to control the discharge of the Buck circuit 102, that is, the control circuit 104 adopts a Buck circuit Supply power to the load circuit. Although this method is low in efficiency, it can stabilize the output voltage and ensure the normal operation of the load circuit.
  • the control circuit 104 determines whether Vin' is greater than the first threshold Vth1 (for example, 7.2V). If Vin' is greater than the first threshold Vth1, the third port of the control circuit 104 generates an enable signal to control the charge pump circuit 103 to discharge, that is, the control circuit 104 uses the charge pump circuit 103 to supply power to the load circuit. And the second port of the control circuit 104 generates an enable signal to control the Buck circuit 102 to stop supplying power to the load circuit. When the control circuit 104 controls the charge pump circuit 103 to supply power to the load circuit, the control circuit 104 determines whether Vin' is less than the second threshold Vth2 (for example, 7V).
  • Vth1 for example, 7.2V
  • Vth1 can be configured to be equal to Vth2, or Vth1 is greater than Vth2.
  • the first threshold and the second threshold are not equal to avoid switching from the Buck circuit 102 to the charge pump circuit 103 or from the charge pump circuit 103 to the Buck circuit 102 due to slight fluctuations in Vin'. In short, it is to avoid repeated switching.
  • the Buck circuit 102 and the charge pump circuit 103 simultaneously supply power to the load circuit during the switching process, and only one of them can be used to supply power to the load circuit after the switching is completed.
  • the Buck circuit needs to be switched to a charge pump circuit, first start the charge pump circuit to supply power, and then control the Buck circuit to stop power supply; similarly, when the charge pump circuit needs to be switched to a Buck circuit, first start the Buck circuit to supply power, and then control The charge pump circuit stops supplying power.
  • the detection circuit 101, the Buck circuit 102, the charge pump circuit 103, and the control circuit 104 may be integrated together.
  • the control circuit 104 may be a processor inside the electronic device, or a power management chip.
  • the output voltage of the charge pump circuit 103 can be half of its input voltage, or it can be set according to other ratios. Specifically, it can be set according to the input voltage of the charge pump circuit and the load circuit connected to the output port of the charge pump circuit. The input voltage requirements are set.
  • Figure 1b is a schematic circuit diagram of a discharging circuit provided by an embodiment of the application.
  • the electronic device in which the discharging circuit is located has a battery and a charging circuit inside, and the discharging circuit is the first port and the battery of the detection circuit in Figure 1a.
  • the discharge circuit includes: a detection circuit 101, a Buck circuit 102, a charge pump circuit 103, and a control circuit 104.
  • the negative pole of the battery is coupled to the ground
  • the positive pole Vbat of the battery is coupled to the first port of the charging circuit 105
  • the second port Vsys of the charging circuit 105 is coupled to the first port of the Buck circuit 102 and the first port of the charge pump circuit 103.
  • Port, the second port of the charge pump circuit 103 and the second port of the Buck circuit 102 are the output ports of the discharge circuit. If the discharge circuit is used to supply power to the internal circuit (ie, load circuit) of the electronic device where it is located.
  • the voltage Vsys of the first port of the Buck circuit 102 and the first port of the charge pump circuit 103, that is, the input port, is the same as or close to Vbat.
  • the first port of the detection circuit 101 is coupled to the positive electrode of the battery for detecting the positive electrode voltage Vbat of the battery.
  • the detection circuit 101 may be an ADC detection circuit.
  • the second port of the detection circuit 101 is coupled to the first port of the control circuit 104, so that the control circuit 104 obtains the battery voltage Vbat.
  • the second port and the third port of the control circuit 104 are coupled to the enable port of the Buck circuit 102 and the enable port of the charge pump circuit 103, respectively.
  • the control circuit 104 is used to control the Buck circuit 102 and the charge pump circuit 103 to discharge according to the voltage of the battery.
  • control circuit 104 controls the Buck circuit 102 and the charge pump circuit 103 to discharge according to the battery voltage Vbat detected by the detection circuit, including:
  • control circuit 104 controls the charge pump circuit 103 to discharge; if Vbat is less than the second threshold, the control circuit 104 controls the Buck circuit 102 to discharge; wherein the first threshold is greater than or equal to the second threshold.
  • the third port of the control circuit 104 generates an enable signal to control the charge pump circuit 103 to supply power to the load circuit, that is, the control circuit 104 uses a charge
  • the pump circuit 103 supplies power to the load circuit. This ensures that the power supply of the load circuit is at a higher efficiency state; if Vbat is less than the second threshold Vth2, the second port of the control circuit 104 generates an enable signal to control the discharge of the Buck circuit 102, that is, the control circuit 104 uses the Buck circuit to supply the load. Circuit power supply. Although this method is low in efficiency, it can stabilize the output voltage and ensure the normal operation of the load circuit.
  • the control circuit 104 determines whether Vbat is greater than the first threshold Vth1 (for example, 7.2V). If Vbat is greater than the first threshold Vth1, the third port of the control circuit 104 generates an enable signal to control the charge pump circuit 103 to discharge, that is, the control circuit 104 uses the charge pump circuit 103 to supply power to the load circuit. And the second port of the control circuit 104 generates an enable signal to control the Buck circuit 102 to stop supplying power to the load circuit. When the control circuit 104 controls the charge pump circuit 103 to supply power to the load circuit, the control circuit 104 determines whether Vbat is less than the second threshold Vth2 (for example, 7V).
  • Vbat is greater than the first threshold Vth1 (for example, 7.2V). If Vbat is greater than the first threshold Vth1, the third port of the control circuit 104 generates an enable signal to control the charge pump circuit 103 to discharge, that is, the control circuit 104 uses the charge pump circuit 103 to supply power to the load circuit. And the second port of the control
  • Vbat is less than the second threshold Vth2
  • the second port of the control circuit 104 generates an enable signal to control the Buck circuit 102 to discharge, that is, the control circuit 104 uses the Buck circuit 102 to supply power to the load circuit.
  • the third port of the control circuit 104 generates an enable signal to control the charge pump circuit 103 to stop supplying power to the load circuit.
  • Vth1 can be configured to be equal to Vth2, or Vth1 is greater than Vth2.
  • the first threshold and the second threshold are not equal to avoid switching from the Buck circuit 102 to the charge pump circuit 103 or from the charge pump circuit 103 to the Buck circuit 102 due to slight fluctuations in Vbat. In short, it is to avoid repeated switching.
  • the first threshold described in FIG. 1b may be the same or different from the first threshold described in FIG. 1a, and the second threshold described in FIG. 1b may be the same or different from the second threshold described in FIG. 1a.
  • control circuit 104 can control the Buck circuit 102 and the charge pump circuit 103 to discharge according to the condition of the battery, which can specifically be:
  • the control circuit 104 determines the switching voltage V according to the battery voltage, battery internal resistance, battery aging, load circuit current, and battery temperature; if the switching voltage V is greater than the third threshold, the control circuit 104 controls the charge pump circuit 103 to discharge; if When the switching voltage V is less than the fourth threshold, the control circuit 104 controls the Buck circuit 102 to discharge.
  • the third threshold is greater than or equal to the fourth threshold.
  • the third threshold may be equal to or not equal to the first threshold.
  • the fourth threshold may be equal to or not equal to the second threshold.
  • the control circuit does not directly use the battery voltage to compare with the threshold, but calculates the switching voltage based on the battery voltage and battery condition and compares it with the threshold.
  • the control circuit 104 determines the switching voltage V according to the voltage of the battery, the internal resistance of the battery, the degree of aging of the battery, and the current of the load circuit, including:
  • the internal resistance of the battery is related to the temperature of the battery.
  • the internal resistance of the battery can be determined by measuring the temperature of the battery. Therefore, the internal resistance of the battery can be expressed as R(T).
  • control circuit 104 may determine the switching voltage V according to at least one of the internal resistance of the battery, the aging degree of the battery, the load circuit current, and the battery temperature, and the voltage of the battery.
  • control circuit 104 can control the Buck circuit 102 and the charge pump circuit 103 to discharge according to the condition of the battery, and can also be:
  • the control circuit 104 determines the fifth threshold and the sixth threshold according to at least one of the battery's internal resistance, battery aging, load circuit current, and battery temperature; if the voltage detected by the detection circuit (as shown in Figure 1a) If Vbat or Vin, Vbat in FIG. 1b) is greater than the fifth threshold, the control circuit 104 controls the charge pump circuit 103 to discharge; if the voltage detected by the detection circuit is less than the sixth threshold, the control circuit 104 controls the Buck circuit 102 to discharge.
  • the fifth threshold is greater than or equal to the sixth threshold.
  • the control circuit controls the Buck circuit and the charge pump circuit to discharge according to the comparison of the battery voltage with the calculated fifth and sixth thresholds.
  • the detection circuit 101 and the charging circuit 105 are integrated together.
  • the detection circuit 101 and the control circuit 104 are integrated together.
  • the charging circuit 105, the detection circuit 101, the Buck circuit 102, the charge pump circuit 103 and the control circuit 104 are integrated together.
  • the Buck circuit 102 and the charge pump circuit 103 are integrated together.
  • the first port and the second port of the charging circuit 105 may be directly coupled or coupled via some electronic devices.
  • the charging circuit 105 When the charging circuit 105 is connected to an external charger and the battery is fully charged, the current at the input ports of the Buck circuit 102 and the charge pump circuit 103 is provided by the charging circuit 105.
  • part of the current of the charging circuit 105 is supplied to the Buck circuit 102 or the charge pump circuit 103 to supply power to the load circuit, and a part of the current is supplied to the battery to charge the battery.
  • the charging circuit 105 when the charging circuit 105 is working or not working, the voltages of the first port and the second port of the charging circuit 105 are approximately equal, so the first port of the detection circuit 101 can also be coupled to the second port of the charging circuit 105 .
  • FIG. 2 is a schematic circuit diagram of another discharging circuit provided in an embodiment of the application.
  • the discharging circuit includes a battery, a Buck chip 20 and a charge pump chip 21;
  • the input port of the Buck chip 20 and the input port of the charge pump chip 21 are connected as the input port of the discharge circuit, and can be coupled to the positive electrode of the battery or an output port of the charging circuit, and the voltage of the input port of the discharge circuit is Vin.
  • the output port of the charge pump chip 21 and the output port of the Buck chip are the output ports of the discharge circuit, and the output voltage of the output port of the discharge circuit is Vout. If the discharge circuit is used for the discharge circuit to supply power to the internal circuit (ie, load circuit) of the electronic device where it is located. Discharge circuit
  • the Buck chip 20 includes a voltage configuration circuit 201, a first logic control circuit 202, a first voltage detection circuit 203, and a first conversion circuit 204 (that is, a Buck circuit).
  • the charge pump chip 21 includes a second logic control circuit 211, a second voltage detection circuit 212, and a second conversion circuit 213 (ie, a charge pump circuit).
  • the configuration port of the voltage configuration circuit 201 is coupled to the first port of the first logic control circuit, the second port of the first logic control circuit 202 is coupled to the first port of the first voltage detection circuit 203, and the first logic control circuit
  • the third port of 202 is coupled to the first port of the first conversion circuit 204, and the second port of the first voltage detection circuit 203 is coupled to the output port of the Buck chip 20.
  • the third port of the first conversion circuit 204 is the input port of the Buck chip 20, and the second port of the first conversion circuit 204 is the output port of the Buck chip 20.
  • the first port of the second logic control circuit 211 is coupled to the first port of the second voltage detection circuit 212
  • the second port of the second logic control circuit 211 is coupled to the first port of the second conversion circuit 213, and the second voltage detection circuit
  • the second port of 203 is coupled to the output port of the charge pump chip 21.
  • the third port of the second conversion circuit 213 is the input port of the charge pump chip 21, and the second port of the second conversion circuit 213 is the output port of the charge pump chip 21.
  • the voltage configuration circuit 201 sets the configuration voltage for the Buck chip 20 to control the output voltage of the Buck chip to the configuration voltage.
  • the first voltage detection circuit 203 is used to detect Vout in real time
  • the second voltage detection circuit 212 is used to detect Vout in real time.
  • the real-time detection here can be understood as detection in a short period of time.
  • the first voltage detection circuit and the second voltage detection circuit can be implemented by a comparison circuit.
  • One input of the comparison circuit is the output voltage Vout of the discharge circuit, and the other input is It is the voltage to be compared, such as the configuration voltage, or the voltage to be output by the second conversion circuit.
  • the first conversion circuit 204 works, its output voltage is the output voltage of the Buck chip 20, that is, the output voltage Vout of the discharge circuit.
  • the second conversion circuit 213 works, its output voltage is the charge pump chip.
  • the output voltage of 21 that is, the output voltage Vout of the discharge circuit.
  • the Buck chip and the charge pump chip may discharge at the same time.
  • the output voltage Vout of the discharge circuit is the output voltage of the Buck chip and the output of the charge pump chip. The one with the higher voltage.
  • the first logic control circuit 202 determines that the configuration voltage is greater than the output voltage Vout of the discharge circuit detected by the first voltage detection circuit 203 (this time is the output voltage of the second conversion circuit 213) .
  • the first logic control circuit 202 controls the operation of the first conversion circuit 204, and the output voltage of the first conversion circuit 204 is the configuration voltage when the first conversion circuit 204 works.
  • the output voltage Vout of the discharge circuit is the output voltage of the first conversion circuit 204, and the second logic control circuit determines that the output voltage of the second conversion circuit is less than that of the discharge circuit at this time according to the output voltage Vout of the discharge circuit detected by the second voltage detection circuit.
  • the output voltage Vout controls the charge pump chip 21 to be in a low power consumption state or the second conversion circuit 213 to stop conversion.
  • the second logic control circuit 211 determines that the output voltage of the second conversion circuit 213 is greater than the output voltage Vout of the discharge circuit (in this case, the output voltage of the first conversion circuit 204), the second logic control circuit 211 starts The conversion circuit 213 works.
  • the second conversion circuit works, since the output voltage of the second conversion circuit 213 is greater than the output voltage of the first conversion circuit, the output voltage Vout of the discharge circuit at this time is the output voltage of the second conversion circuit.
  • a logic control circuit determines that the output voltage Vout of the discharge circuit is greater than the configured voltage, and the first logic control circuit 202 controls the Buck chip 20 to be in a low power consumption state or the first conversion circuit 204 stops conversion.
  • the output voltage of the charge pump chip is related to the input voltage Vin.
  • the output voltage of the charge pump circuit chip can be pre-designed to be one-half of the input voltage Vin (the actual output voltage may slightly deviate from one-half of the input voltage Vin. )
  • the second logic control circuit 211 determines that the output voltage (Vin/2) of the second conversion circuit 213 is greater than the output voltage of the Buck chip
  • the charge pump chip 21 is activated as the load circuit Power is supplied
  • the first logic control circuit 202 determines that the output voltage of the discharge circuit is greater than the configured voltage, and controls the Buck chip 20 to be in a low power consumption state.
  • the Buck chip and the charge pump chip have fast transient response and will not affect the power supply to the load circuit when the two are switched. And when one chip supplies power to the load circuit, the other chip will not greatly affect the power supply of the load circuit, that is, the current supplied by one chip to the load circuit will not or only a small part of it flows to the other chip.
  • FIG. 3 is a schematic circuit diagram of a charge pump circuit provided by an embodiment of the application, which can be applied to the charge pump circuit of FIGS. 1a and 1b, and the second conversion circuit 213 of FIG.
  • a charge pump circuit (charge pump) is a DC-DC (direct current-direct current) conversion circuit that uses capacitor energy storage for voltage conversion (see https://en.wikipedia.org/wiki/Charge_pump).
  • the charge pump circuit includes a first switch SW1, a second switch SW2, a third switch SW3, a fourth switch SW4, an external capacitor CFLY, and a first output capacitor COUT1.
  • the first port of the first switch SW1 is the input port of the charge pump circuit
  • the second port of the first switch SW1 is coupled to the first port of the second switch SW2
  • the second port of the second switch SW2 is The first port of the switch SW3 is coupled
  • the second port of the third switch SW3 is coupled to the first port of the fourth switch SW4, and the second port of the fourth switch SW4 is coupled to the ground.
  • the first port of the external capacitor CFLY is coupled with the first port of the second switch SW2.
  • the second port of the external capacitor CFLY is coupled with the second port of the third switch.
  • the first port of the first output capacitor COUT1 is coupled to the second port of the second switch SW2, and the second port of the first output capacitor COUT1 is coupled to the ground.
  • the first port of the first output capacitor COUT1 is the output port of the charge pump circuit.
  • FIG. 4 is a schematic circuit diagram of a Buck circuit provided by an embodiment of the application, which can be used in the Buck circuit in FIGS. 1a and 1b, and the first conversion circuit 204 in FIG. Buck circuit (ie Buck converter) is a DC-DC (direct current-direct current) conversion circuit, the output voltage is lower than the input voltage (see https://en.wikipedia.org/wiki/Buck_converter).
  • the Buck circuit includes a fifth switch, a sixth switch, an inductor, and a second output capacitor COUT2.
  • the first port of the fifth switch SW5 is the input port of the Buck circuit
  • the second port of the fifth switch SW5 is coupled to the first port of the sixth switch SW6, and the second port of the sixth switch SW6 is coupled to the ground.
  • the second port of the fifth switch SW5 is coupled to the first port of the inductor
  • the second port of the inductor is coupled to the first port of the second output capacitor COUT2
  • the second port of the second output capacitor COUT2 is coupled to ground.
  • the first port of the second output capacitor COUT2 is the output port of the Buck circuit.
  • both the charge pump circuit and the Buck circuit have switches, and the two (that is, the charge pump circuit and the Buck circuit) are integrated in one chip, and the switches can be shared, which can achieve cost reduction purposes.
  • the circuit in which the charge pump circuit and the Buck circuit are integrated can be called an integrated circuit.
  • FIG. 5 is a schematic diagram of an integrated circuit of a charge pump circuit and a Buck circuit.
  • the integrated circuit includes a first switch SW1, a second switch SW2, a third switch SW3, a fourth switch SW4, a seventh switch SW7, an inductor, an external capacitor CFLY, and an output capacitor COUT.
  • the first port of the first switch SW1 is the input port of the integrated circuit (that is, the input port of the charge pump circuit and the input port of the Buck circuit), the second port of the first switch SW1 and the first port of the second switch SW2
  • the second port of the second switch SW2 is coupled to the first port of the third switch SW3, the second port of the third switch SW3 is coupled to the first port of the fourth switch SW4, and the second port of the fourth switch SW4
  • the port is coupled to ground.
  • the first port of the external capacitor CFLY is coupled with the first port of the second switch SW2, and the second port of the external capacitor CFLY is coupled with the second port of the third switch SW3.
  • the first port of the inductor is coupled to the first port of the third switch SW3, the second port of the inductor is coupled to the first port of the output capacitor COUT, and the second port of the output capacitor COUT is coupled to ground.
  • the first port of the seventh switch SW7 is coupled to the first port of the inductor, and the second port of the seventh switch SW7 is coupled to the second port of the inductor.
  • the first port of the output capacitor COUT is the output port of the integrated circuit (that is, the output port of the charge pump circuit and the input port of the Buck circuit).
  • the circuit formed by the first switch SW1 and the second switch SW2 in series in the integrated circuit shown in FIG. 5 can be equivalent to the fifth switch SW5 in the Buck circuit.
  • the circuit formed by the series connection of the third switch SW3 and the fourth switch SW4 can be equivalent to the sixth switch SW6 in the Buck circuit.
  • the seventh switch SW7 When used as a Buck circuit, the seventh switch SW7 is open; when used as a charge pump circuit, the seventh switch SW7 is closed.
  • the switches in Figure 3-5 all have a control terminal, which is connected to the control and drive module, and the control and drive module controls the switch to close.
  • switches in Figures 3 and 4 can be implemented by MOS transistors. Simply put, the switches in Figures 3 and 4 can be replaced with MOS transistors.
  • FIG. 6 is a schematic circuit diagram of another charge pump circuit provided by an embodiment of the application.
  • the charge pump circuit includes a first control and drive module, a first MOS tube MOS1, a second MOS tube MOS2, a third MOS tube MOS3, a fourth MOS tube MOS4, an external capacitor CFLY, and a first output capacitor. COUT1.
  • the drain of the first MOS transistor MOS1 is the input port of the charge pump circuit
  • the source of the first MOS transistor MOS1 is coupled to the drain of the second MOS transistor MOS2
  • the source of the second MOS transistor MOS2 is connected to the third MOS.
  • the drain of the transistor MOS3 is coupled
  • the source of the third MOS transistor MOS3 is coupled to the drain of the fourth MOS transistor MOS4, and the source of the fourth MOS transistor MOS4 is coupled to the ground.
  • the first port of the external capacitor CFLY is coupled with the drain of the second MOS transistor MOS2.
  • the second port of the external capacitor CFLY is coupled with the source of the third MOS transistor MOS3.
  • the first port of the first output capacitor COUT1 is coupled to the source of the second MOS transistor MOS2, and the second port of the first output capacitor COUT1 is coupled to the ground.
  • the first port of the first output capacitor COUT1 is the output port of the charge pump circuit.
  • the gate of the first MOS tube MOS1, the gate of the second MOS tube MOS2, the gate of the third MOS tube MOS3, and the gate of the fourth MOS tube MOS4 are all connected to the first control and drive module.
  • the first control and drive module realizes MOS by controlling the voltage of the gate of the first MOS transistor MOS1, the gate of the second MOS transistor MOS2, the gate of the third MOS transistor MOS3, and the gate of the fourth MOS transistor MOS4. Conduction and disconnection of the tube.
  • MOS transistors and the first control and driving module shown in FIG. 6 can be integrated in one chip.
  • FIG. 7 is a schematic circuit diagram of another Buck circuit provided by an embodiment of the application.
  • the Buck circuit includes a second control and driving module, a fifth MOS transistor MOS5, a sixth MOS transistor MOS6, an inductor, and a second output capacitor COUT2.
  • the drain of the fifth MOS transistor MOS5 is the input port of the Buck circuit, the source of the fifth MOS transistor MOS5 is coupled to the drain of the sixth MOS transistor MOS6, and the drain of the sixth MOS transistor MOS6 is coupled to the ground.
  • the source of the fifth MOS transistor MOS5 is coupled to the first port of the inductor, the second port of the inductor is coupled to the first port of the second output capacitor COUT2, and the second port of the second output capacitor COUT2 is coupled to the ground.
  • the first port of the second output capacitor COUT2 is the output port of the Buck circuit.
  • the gates of the fifth MOS transistor MOS5 and the sixth MOS transistor MOS6 are both connected to the second control and driving module.
  • the second control and driving module controls the voltages of the gates of the fifth MOS transistor MOS5 and the sixth MOS transistor MOS6 to realize the on and off of the MOS transistors.
  • MOS transistors and the second control and driving module shown in FIG. 7 can be integrated in one chip.
  • switches in FIGS. 5 and 6 can be realized by MOS transistors. Simply put, the switches in Figures 5 and 6 can be replaced with MOS transistors.
  • FIG. 8 is a schematic diagram of an integrated circuit of another charge pump circuit and Buck circuit.
  • the integrated circuit includes a first MOS tube MOS1, a second MOS tube MOS2, a third MOS tube MOS3, a fourth MOS tube MOS4, a seventh MOS tube MOS7, an inductor, an external capacitor CFLY and an output capacitor COUT.
  • the drain of the first MOS transistor MOS1 is the input port of the integrated circuit (that is, the input port of the charge pump circuit and the input port of the Buck circuit), and the source of the first MOS transistor MOS1 is coupled to the drain of the second MOS transistor MOS2 ,
  • the source of the second MOS transistor MOS2 is coupled with the drain of the third MOS transistor MOS3, the source of the third MOS transistor MOS3 is coupled with the drain of the fourth MOS transistor MOS4, and the source of the fourth MOS transistor MOS4 Coupled to ground.
  • the first port of the external capacitor CFLY is coupled with the drain of the second MOS transistor MOS2, and the second port of the external capacitor CFLY is coupled with the source of the third MOS transistor MOS3.
  • the first port of the inductor is coupled to the source of the second MOS transistor MOS2, the second port of the inductor is coupled to the first port of the output capacitor COUT, and the second port of the output capacitor COUT is coupled to the ground.
  • the drain of the seventh MOS transistor MOS7 is coupled to the first port of the inductor, and the source of the seventh MOS transistor MOS7 is coupled to the second port of the inductor.
  • the first port of the output capacitor COUT is the output port of the integrated circuit (that is, the output port of the charge pump circuit and the input port of the Buck circuit).
  • the voltage of the gate of the first MOS tube MOS1, the gate of the second MOS tube MOS2, the gate of the third MOS tube MOS3, the gate of the fourth MOS tube MOS4 and the gate of the seventh MOS tube MOS7 are all set by the third Control and drive module to control.
  • the third control and drive module controls the gate of the first MOS tube MOS1, the gate of the second MOS tube MOS2, the gate of the third MOS tube MOS3, the gate of the fourth MOS tube MOS4, and the seventh MOS tube MOS7.
  • the voltage of the gate of the MOS tube is turned on and off.
  • the circuit composed of the first MOS transistor MOS1 and the second MOS transistor MOS2 in series in the integrated circuit shown in FIG. 8 can be equivalent to the fifth MOS transistor MOS5 in the Buck circuit, as shown in FIG. 8
  • the circuit formed by the third MOS tube MOS3 and the fourth MOS tube MOS4 in series in the integrated circuit can be equivalent to the sixth MOS tube MOS6 in the Buck circuit.
  • the seventh MOS tube When used as a Buck circuit, the seventh MOS tube is disconnected and current is transmitted from the inductor; when used as a charge pump circuit, the seventh MOS tube short-circuits the inductor.
  • FIG. 9 is a schematic circuit diagram of an electronic device provided by an embodiment of the application.
  • the electronic device includes a charging circuit 901, a discharging circuit 902, a load circuit 903, and a battery 904 (such as a battery connected in parallel with two lithium batteries).
  • the output port of the discharging circuit 902 is coupled with the input port of the load circuit 903, and the input port of the discharging circuit 902 is connected to an output port of the charging circuit 901 to realize that the discharging circuit supplies power to the load circuit, and the other output port of the charging circuit 901 is connected to the battery 904.
  • the external charger When the charging circuit 901 is connected to an external charger for charging through the interface, the external charger provides input voltage to the discharging circuit 902 via the charging circuit or the external charger via the charging circuit together with the battery 904.
  • the battery 904 When the charging circuit 901 is not connected to the external charging When the device is connected, the battery 904 provides input voltage to the discharge circuit 902.
  • the load circuit 903 is a power consuming circuit inside the electronic device. If the electronic device is a mobile phone, the load circuit is a circuit composed of power consuming devices.
  • the power consuming devices include CPU, memory, display screen, sensor, baseband chip, radio frequency circuit, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请公开了一种放电电路以及包含该放电电路的电子设备,放电电路包括:检测电路(101)、Buck电路(102)、电荷泵电路(103)和控制电路(104);其中,检测电路检测检测电路的第一端口的电压;若检测电路的第一端口的电压大于第一阈值,则控制电路控制电荷泵电路放电;若检测电路的第一端口的电压小于第二阈值,则控制电路控制Buck电路放电。采用本申请实施例有利于提高电池的放电效率,使得电池电量能被充分利用。

Description

一种放电电路和电子设备
本申请要求在2019年2月23日提交中国国家知识产权局、申请号为201910135723.5、发明名称为“一种放电电路和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及集成电路领域,尤其涉及一种放电电路以及一种电子设备。
背景技术
随着手机等消费电子产品对充电速度要求越来越高,串联电池方案因充电发热小的优势,会逐渐被厂家采用。目前手机类电子产品的芯片耐压范围都是和单电芯锂电池电压相匹配,一般是<5.5V(锂电池最高电压一般在4.4V左右)。采用双电芯串联电池方案,电池输出电压最高8.8V左右,电压范围超过当前芯片耐压范围,所以要进行降压使用,降压方式有多种,比如通过Buck电路进行降压,优点是输出电压恒定,但效率低;或者通过电荷泵电路(Charge Pump)芯片进行降压,优点是效率高,缺点是输出电压随输入电压变化,电池电量不能充分利用。
发明内容
本申请实施例提供一种放电电路,有利于提高电池的放电效率,并使得电池电量能被充分利用。
第一方面,本申请实施例提供一种放电电路,该放电电路用于电子设备内部,为该电子设备内部的负载电路供电,包括:检测电路、Buck电路、电荷泵电路和控制电路;
其中,Buck电路的输入端口与电荷泵电路的输入端口耦合,Buck电路的输入端口和电荷泵电路的输入端口为放电电路的输入端口;电荷泵电路的输出端口与Buck电路的输出端口耦合,电荷泵电路的输出端口和Buck电路的输出端口为放电电路的输出端口;放电电路的输出端口与电子设备内部的负载电路的输入端口耦合;检测电路的第一端口耦合到放电电路的输入端口,检测电路的第二端口耦合到控制电路的第一端口,控制电路的第二端口和第三端口分别耦合到Buck电路的使能端口和电荷泵电路的使能端口;检测电路,用于检测检测电路的第一端口的电压;控制电路,用于根据检测电路的第一端口的电压控制Buck电路和电荷泵电路放电。
在放电电路输入端口电压较高时,采用电荷泵电路放电,有利于提高电池的放电效率,当放电电路输入端口电压不高时采用Buck电路放电使得电池电量能被充分利用。兼顾了电池的放电效率和利用率。
在一个可行的实施例中,控制电路根据检测电路的第一端口的电压控制Buck电路和电荷泵电路放电,包括:若检测电路的第一端口的电压大于第一阈值,则控制电路控制电荷泵电路放电;若检测电路的第一端口的电压小于第二阈值,则控制电路控制Buck电路放电; 其中,第一阈值大于或者等于第二阈值。
在一个可行的实施例中,电子设备还包括电池,其中电池的负极耦合到地,电池的正极耦合到放电电路的输入端口,控制电路还根据电池的电压、电池状况确定切换电压V;若切换电压V大于第三阈值,则控制电路控制电荷泵电路放电;若切换电压V小于第四阈值,则控制电路控制Buck电路放电;其中,第三阈值大于或者等于第四阈值。
在一个可行的实施例中,切换电压V为:V=Vbat-I*η*R(T),Vbat为电池的电压,R(T)为电池的内阻,T为电池的温度,η为电池的老化程度,I为负载的电流。
在一个可行的实施例中,电子设备还包括电池和充电电路;其中,检测电路的第一端口耦合到电池的正极或者充电电路的第一输出端口;电池的负极耦合到地,电池的正极耦合到充电电路的第二输出端口。
在一个可行的实施例中,Buck电路和电荷泵电路是集成在一起的。
在一个可行的实施例中,所述第一转换电路和所述第二转换电路集成在一起包括:第一开关、第二开关、第三开关、第四开关、第七开关、电感、外部电容和输出电容;其中,所述第一开关的第一端口为电荷泵电路的输入端口和Buck电路的输入端口,所述第一开关的第二端口与所述第二开关的第一端口耦合,所述第二开关的第二端口与所述第三开关的第一端口耦合,所述第三开关的第二端口与所述第四开关的第一端口耦合,所述第四开关的第二端口耦合到地,所述外部电容的第一端口与所述第二开关的第一端口耦合,所述外部电容的第二端口与所述第三开关的第二端口耦合。所述电感的第一端口与所述第三开关的第一端口耦合,所述电感的第二端口与所述输出电容的第一端口耦合,所述输出电容的第二端口耦合到地,所述第七开关的第一端口耦合到电感的第一端口,所述第七开关的第二端口耦合到所述电感的第二端口,所述输出电容的第一端口为电荷泵电路的输出端口和电路的输入端口。该集成方式可以减少开关的个数,简化电路。
第二方面,本申请实施例提供另一种放电电路,包括:Buck芯片和电荷泵芯片;其中,Buck芯片的输入端口和电荷泵芯片的输入端口耦合,Buck芯片的输出端口和电荷泵芯片的输出端口耦合,Buck芯片的输入端口为放电电路的输入端口,Buck芯片的输出端口为放电电路的输出端口;
Buck芯片和电荷泵芯片均检测放电电路的输出端口的输出电压,在Buck芯片工作时,若电荷泵芯片的待输出电压大于放电电路的输出端口的输出电压,则电荷泵芯片放电,Buck芯片检测到放电电路的输出端口的输出电压大于Buck芯片的配置电压,则进入低功耗状态;在电荷泵芯片工作时,若放电电路的输出端口的输出电压小于Buck芯片的配置电压时,Buck芯片进行放电,电荷泵芯片检测到放电电路的输出端口的输出电压大于电荷泵芯片的输出电压,则电荷泵芯片进入低功耗状态。
Buck芯片和电荷泵芯片的输出电压高的用于给输出端口连的负载电路供电,兼顾了电池的放电效率和利用率。
在一个可行的实施例中,Buck芯片包括电压配置电路、第一逻辑控制电路、第一电压检测电路和第一转换电路;电荷泵芯片包括第二逻辑控制电路、第二电压检测电路和第二转换电路;电压配置电路,用于为Buck芯片设置配置电压;
第一电压检测电路和第二电压检测电路,分别用于检测放电电路的输出电压;
当第二转换电路工作时,若第一逻辑控制电路确定配置电压大于放电电路的输出电压,第一逻辑控制电路控制第一转换电路工作,第二逻辑控制电路确定第二转换电路的输出电压小于放电电路的输出电压,则控制第二转换电路停止电压转换;
当第一转换电路工作时,若第二逻辑控制电路确定第二转换电路能够输出电压大于放电电路的输出电压,控制第二转换电路工作,第一逻辑控制电路确定放电电路的输出电压大于配置电压,第一逻辑控制电路控制第一转换电路停止电压转换。
在一个可行的实施例中,所述第一转换电路和所述第二转换电路集成在一起包括:第一开关、第二开关、第三开关、第四开关、第七开关、电感、外部电容和输出电容;其中,所述第一开关的第一端口为电荷泵电路的输入端口和Buck电路的输入端口,所述第一开关的第二端口与所述第二开关的第一端口耦合,所述第二开关的第二端口与所述第三开关的第一端口耦合,所述第三开关的第二端口与所述第四开关的第一端口耦合,所述第四开关的第二端口耦合到地,所述外部电容的第一端口与所述第二开关的第一端口耦合,所述外部电容的第二端口与所述第三开关的第二端口耦合,所述电感的第一端口与所述第三开关的第一端口耦合,所述电感的第二端口与所述输出电容的第一端口耦合,所述输出电容的第二端口耦合到地,所述第七开关的第一端口耦合到电感的第一端口,所述第七开关的第二端口耦合到所述电感的第二端口,所述输出电容的第一端口为电荷泵电路的输出端口和电路的输入端口。该集成方式可以减少开关的个数,简化电路。
第三方面,本申请实施例提供了一种电子设备,包括:负载电路和第一方面或者第二方面的放电电路。
可以看出,本申请实施例采用的放电电路结合了Buck电路(或者Buck芯片)和电荷泵电路(或者电荷泵芯片)的优势,充分高效地利用了电池的能量。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a为本申请实施例提供的一种放电电路的示意图;
图1b为本申请实施例提供的另一种放电电路的示意图;
图2为本申请实施例提供的另一种放电电路的示意图;
图3为本申请实施例提供的一种电荷泵电路的电路示意图;
图4为本申请实施例提供的一种Buck电路的电路示意图;
图5为本申请实施例提供的一种电荷泵电路和Buck电路的集成电路示意图;
图6为本申请实施例提供的另一种电荷泵电路的电路示意图;
图7为本申请实施例提供的另一种Buck电路的电路示意图;
图8为本申请实施例提供的另一种电荷泵电路和Buck电路的集成电路示意图;
图9为本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
下面结合附图对本申请的实施例进行描述。
电子设备采用双电芯串联电池方案,电池输出电压最高8.8V左右,电压范围超过当前芯片耐压范围,所以要进行降压使用,本申请的实施例提供了一种放电电路,用于将电源电压降至电子设备内部芯片需要的范围。
参见图1a,图1a为本申请实施例提供的一种放电电路的电路示意图,该放电电路应用于电子设备中。如图1a所示,该放电电路包括:检测电路101、Buck电路102、电荷泵电路103和控制电路104;其中,Buck电路102的输入端口和电荷泵电路的输入端口耦合到该放电电路的输入端口,放电电路的输入端口的电压为Vin,该电荷泵电路103的输出端口和Buck电路102的输出端口为该放电电路的输出端口,输出端口的电压为Vout。该放电电路通过该输出端口为电子设备的内部电路(即负载电路)供电。
可以理解地,该电子设备可以为便携式电子设备,诸如手机、平板电脑、可穿戴设备(如智能手表)、车载设备等。
如图1a,电子设备具有充电电路,充电电路具有第一输出端口和第二输出端口,充电电路的第一输出端口与电池正极耦合,该放电电路的输入端口可以耦合到电子设备的充电电路的第二输出端口,当充电电路与外部充电器连接进行充电时,由外部充电器给该放电电路提供输入电压,或者由外部充电器和电池一起给提供输入电压;当充电电路不与外部充电器连接时,由电池提供输入电压,此时该放电电路的输入端口可以直接耦合到电池的正极,或者通过充电电路的部分电路(如开关等)耦合到电池正极。充电电路的两个输出端口的输出电压相同或者接近,所以充电电路或者电池提供放电电路的输入电压时,该放电电路的输入端口的输入电压Vin等于或者接近电池电压。若检测电路101的第一端口与放大电路的输入端口直接耦合,检测电路检测到的电压Vin’等于Vin,Vin’等于或接近电池电压Vbat。若检测电路101的第一端口与充电电路的第一输出端口,即电池正极直接耦合,检测电路检测到的电压Vin’等于电池电压Vbat。
本申请的实施例中检测电路的第一端口直接耦合放电电路的输入端口或者电池的正极都可视为检测电路的第一端口与放电电路的输入端口耦合。
该放电电路的输入端口也可以直接耦合到电池的正极,电池的负极耦合到地。(未在图中示出)检测电路101的第一端口与放大电路的输入端口直接耦合,检测电路检测到的电压Vin’等于Vin,即等于电池电压Vbat。
该电池可以为采用双电芯串联电池方案,即两个锂电池串联形成电池。
检测电路101的第一端口直接耦合到该放电电路的输入端口或者电池的正极,用于检测该放电电路的输入端口的电压或者电池的电压。检测电路101可以是ADC检测电路。因此根据检测电路101的第一端口的耦合对象,检测电路101检测到的电压Vin’等于或接近Vin,或者Vin’等于或者接近电池的电压。该检测电路101的第二端口耦合到控制电路104的第一端口,使得控制电路104得到检测到的电压。该控制电路104的第二端口和第三端口分别耦合到Buck电路102的使能端口和电荷泵电路103的使能端口。控制电路104根据Vin’控制Buck电路102和电荷泵电路103放电。
在此需要说明的是,放电电路具体是采用将Buck电路102与电荷泵电路(Charge Pump)103进行并联的方式给电子设备的内部电路(即负载电路)供电。
在一个可行的实施例中,控制电路104根据检测电路101检测到的电压Vin’控制Buck电路102和电荷泵电路103放电,包括:
若Vin’大于第一阈值,则控制电路104控制电荷泵电路103放电;若Vin’小于第二阈值,则控制电路104控制Buck电路102放电;其中,第一阈值大于或者等于第二阈值。
具体地,在初始化(如首次开机)时,若Vin’大于第一阈值Vth1,则控制电路104的第三端口产生使能信号,以控制电荷泵电路103给负载电路供电,即控制电路104采用电荷泵电路103给负载电路供电,Buck电路102不给负载电路供电。这样保证给负载电路供电处在较高效率的状态;若Vin’小于第二阈值Vth2,则控制电路104的第二端口产生使能信号,以控制Buck电路102放电,即控制电路104采用Buck电路给负载电路供电。这种方式虽然效率低,但可以使输出电压稳定,保证负载电路正常运行。
在控制电路104控制Buck电路给负载电路供电时,控制电路104判断Vin’是否大于第一阈值Vth1(比如7.2V)。若Vin’大于第一阈值Vth1,则控制电路104的第三端口产生使能信号,以控制电荷泵电路103放电,即控制电路104采用电荷泵电路103给负载电路供电。且控制电路104的第二端口产生使能信号,以控制Buck电路102停止给负载电路供电。在控制电路104控制电荷泵电路103给负载电路供电时,控制电路104判断Vin’是否小于第二阈值Vth2(比如7V)。若Vin’小于第二阈值Vth2,控制电路104的第二端口产生使能信号,以控制Buck电路102放电,即控制电路104采用Buck电路102给负载电路供电。且控制电路104的第三端口产生使能信号,以控制电荷泵电路103停止给负载电路供电。其中Vth1可配置与Vth2相等,或者Vth1大于Vth2。
需要说明的是,第一阈值与第二阈值不相等是为了避免由于Vin’的轻微波动导致从Buck电路102放电切换到电荷泵电路103放电或者从电荷泵电路103放电切换到Buck电路102放电。简而言之,就是避免反复切换。
需要说明的是,在图1a所示的实施例中,Buck电路102和电荷泵电路103在切换过程中同时为负载电路供电,切换完成后只能使用其中一个为负载电路供电。在切换过程中,Buck电路需要切换为电荷泵电路时,先启动电荷泵电路供电,再控制Buck电路停止供电;类似地,电荷泵电路需要切换为Buck电路时,先启动Buck电路供电,再控制电荷泵电路停止供电。
可选地,检测电路101、Buck电路102、电荷泵电路103和控制电路104可集成在一起。
控制电路104可以为电子设备内部的处理器,或者电源管理芯片。
需要说明的是,电荷泵电路103的输出电压可以为其输入电压的一半,也可以按照其他比例进行设置,具体地可以根据电荷泵电路的输入电压和电荷泵电路的输出端口所连接的负载电路的输入电压的需求进行设置。
参见图1b,图1b为本申请实施例提供的一种放电电路的电路示意图,该放电电路所在的电子设备内部具有电池、充电电路,该放电电路为图1a中检测电路的第一端口与电池 正极耦合的情况。如图1b所示,该放电电路包括:检测电路101、Buck电路102、电荷泵电路103和控制电路104。其中,电池的负极耦合到地,该电池的正极Vbat耦合到充电电路105的第一端口,该充电电路105的第二端口Vsys耦合到Buck电路102的第一端口和电荷泵电路103的第一端口,该电荷泵电路103的第二端口和Buck电路102的第二端口为该放电电路的输出端口。若该放电电路用于给其所在的电子设备的内部电路(即负载电路)供电。Buck电路102的第一端口和电荷泵电路103的第一端口,即输入端口,其电压Vsys与Vbat相同或接近。
检测电路101的第一端口耦合到电池的正极,用于检测电池的正极电压Vbat。检测电路101可以是ADC检测电路。该检测电路101的第二端口耦合到控制电路104的第一端口,使得控制电路104得到电池的电压Vbat。该控制电路104的第二端口和第三端口分别耦合到Buck电路102的使能端口和电荷泵电路103的使能端口。控制电路104,用于根据电池的电压控制Buck电路102和电荷泵电路103放电。
其中,控制电路104根据检测电路检测到的电池电压Vbat控制Buck电路102和电荷泵电路103放电,包括:
若Vbat大于第一阈值,则控制电路104控制电荷泵电路103放电;若Vbat小于第二阈值,则控制电路104控制Buck电路102放电;其中,第一阈值大于或者等于第二阈值。
具体地,在初始化(如首次开机)时,若Vbat大于第一阈值Vth1,则控制电路104的第三端口产生使能信号,以控制电荷泵电路103给负载电路供电,即控制电路104采用电荷泵电路103给负载电路供电。这样保证负载电路供电处在较高效率的状态;若Vbat小于第二阈值Vth2,则控制电路104的第二端口产生使能信号,以控制Buck电路102放电,即控制电路104采用Buck电路给负载电路供电。这种方式虽然效率低,但可以使输出电压稳定,保证负载电路正常运行。
在控制电路104控制Buck电路给***供电时,控制电路104判断Vbat是否大于第一阈值Vth1(比如7.2V)。若Vbat大于第一阈值Vth1,则控制电路104的第三端口产生使能信号,以控制电荷泵电路103放电,即控制电路104采用电荷泵电路103给负载电路供电。且控制电路104的第二端口产生使能信号,以控制Buck电路102停止给负载电路供电。在控制电路104控制电荷泵电路103给负载电路供电时,控制电路104判断Vbat是否小于第二阈值Vth2(比如7V)。若Vbat小于第二阈值Vth2,控制电路104的第二端口产生使能信号,以控制Buck电路102放电,即控制电路104采用Buck电路102给负载电路供电。且控制电路104的第三端口产生使能信号,以控制电荷泵电路103停止给负载电路供电。其中Vth1可配置与Vth2相等,或者Vth1大于Vth2。
需要说明的是,第一阈值与第二阈值不相等是为了避免由于Vbat的轻微波动导致从Buck电路102放电切换到电荷泵电路103放电或者从电荷泵电路103放电切换到Buck电路102放电。简而言之,就是避免反复切换。
图1b中描述的第一阈值与图1a中描述的第一阈值可以相同或不同,图1b中描述的第二阈值与图1a中描述的第二阈值可以相同或不同。
由于电池在使用过程中,由于老化或者温度等,电池的性能会发生变化。可选地,控 制电路104可根据电池的状况控制Buck电路102和电荷泵电路103放电,具体可以是:
控制电路104根据电池的电压、电池的内阻、电池的老化程度、负载电路电流、电池温度确定切换电压V;若切换电压V大于第三阈值,则控制电路104控制电荷泵电路103放电;若切换电压V小于第四阈值,则控制电路104控制Buck电路102放电。控制电路104控制过程参考图1a和图1b中的相关描述,此处不再赘述。其中,第三阈值大于或者等于第四阈值。第三阈值可以等于第一阈值,也可以不等于第一阈值。第四阈值可以等于第二阈值,也可以不等于第二阈值。
控制电路不直接使用电池电压与阈值进行比较,而是根据电池电压以及电池状况计算出切换电压后再与阈值比较。
其中,控制电路104根据电池的电压、电池的内阻、电池的老化程度及负载电路电流确定切换电压V,包括:
控制电路104根据预设公式及电池的电压,电池的内阻,电池的老化程度及负载电路的电流、电池温度确定切换电压V;其中,预设公式为:V=Vbat-I*η*R(T),Vbat为电池的电压,R(T)为电池的内阻,T为电池的温度,η为电池的老化程度,I为负载电路的电流。
需要说明的是,电池的内阻与电池的温度相关,可通过测量电池的温度来确定电池的内阻,因此可将电池的内阻表示为R(T)。
可选地,控制电路104可根据电池的内阻、电池的老化程度、负载电路电流、和电池温度中的至少一个,及电池的电压确定切换电压V。
可选地,控制电路104可根据电池的状况控制Buck电路102和电荷泵电路103放电,还可以是:
控制电路104根据电池的内阻、电池的老化程度、负载电路电流、和电池温度等电池状况中的至少一个确定第五阈值和第六阈值;若检测电路检测到的电压(如图1a中的Vbat或者Vin,图1b中的Vbat)大于第五阈值,则控制电路104控制电荷泵电路103放电;若检测电路检测到的电压小于第六阈值,则控制电路104控制Buck电路102放电。控制电路104控制过程参考图1a和图1b中的相关描述,此处不再赘述。其中,第五阈值大于或者等于第六阈值。第五阈值可以根据第一阈值以及电池状况计算得出,例如第五阈值Vth5=Vth1-I*η*R(T)。第六阈值可以根据第一阈值以及电池状况计算得出,例如第六阈值Vth6=Vth2-I*η*R(T)。
即第五阈值和第六阈值会随着电池状况变化而变化,控制电路根据电池电压与计算出的第五阈值和第六阈值的比较控制Buck电路和电荷泵电路放电。
可选地,检测电路101与充电电路105集成在一起。
可选地,检测电路101与控制电路104集成在一起。
可选地,充电电路105、检测电路101、Buck电路102、电荷泵电路103和控制电路104集成在一起。
可选地,、Buck电路102、电荷泵电路103集成在一起。
在充电电路105不工作时,充电电路105的第一端口和第二端口可以是直接耦合的,或者经由一些电子器件耦合的。在充电电路105外接充电器且电池已充满电时,Buck电路 102和电荷泵电路103输入端口的电流是由充电电路105提供的。在充电电路105外接充电器,且电池未充满时,充电电路105的一部分电流给Buck电路102或电荷泵电路103,以给负载电路供电,一部分电流给电池,以对电池进行充电。
需要说明的是,在充电电路105工作或者不工作时,充电电路105的第一端口和第二端口的电压近似相等,因此检测电路101的第一端口也可耦合到充电电路105的第二端口。
参见图2,图2为本申请实施例提供另一种放电电路的电路示意图。如图2所示,该放电电路包括:电池、Buck芯片20和电荷泵芯片21;
其中,Buck芯片20的输入端口和电荷泵芯片21的输入端口连接作为放电电路的输入端口,可以耦合到电池正极或者充电电路的一个输出端口,放电电路的输入端口的电压为Vin。该电荷泵芯片21的输出端口和Buck芯片的输出端口为放电电路的输出端口,放电电路的输出端口的输出电压为Vout。若该放电电路用于放电电路为其所在的电子设备的内部电路(即负载电路)供电。放电电路
具体地,Buck芯片20包括电压配置电路201、第一逻辑控制电路202、第一电压检测电路203和第一转换电路204(即Buck电路)。电荷泵芯片21包括第二逻辑控制电路211、第二电压检测电路212和第二转换电路213(即电荷泵电路)。
其中,电压配置电路201的配置端口耦合到第一逻辑控制电路的第一端口,该第一逻辑控制电路202的第二端口耦合到第一电压检测电路203的第一端口,第一逻辑控制电路202的第三端口耦合到第一转换电路204的第一端口,第一电压检测电路203的第二端口耦合到Buck芯片20的输出端口。第一转换电路204的第三端口为Buck芯片20的输入端口,第一转换电路204的第二端口为Buck芯片20的输出端口。
第二逻辑控制电路211的第一端口耦合到第二电压检测电路212的第一端口,第二逻辑控制电路211的第二端口耦合到第二转换电路213的第一端口,第二电压检测电路203的第二端口耦合到电荷泵芯片21的输出端口。第二转换电路213的第三端口为电荷泵芯片21的输入端口,第二转换电路213的第二端口为电荷泵芯片21的输出端口。
电压配置电路201为Buck芯片20设置配置电压,用于控制Buck芯片的输出电压为配置电压,第一电压检测电路203用于实时检测Vout,同理第二电压检测电路212用于实时检测Vout,此处的实时检测可以理解为以很短周期进行检测,第一电压检测电路和第二电压检测电路可以通过比较电路实现,比较电路的一个输入端为放电电路的输出电压Vout,另外一个输入端为待比较的电压,比如配置电压,或者第二转换电路待输出的电压。在此需要解释的是当第一转换电路204工作时,其输出电压为Buck芯片20的输出电压,即放电电路的输出电压Vout,当第二转换电路213工作时,其输出电压为电荷泵芯片21的输出电压,即放电电路的输出电压Vout,在放电过程中可能存在Buck芯片和电荷泵芯片同时放电的情况,此时放电电路的输出电压Vout为Buck芯片的输出电压和电荷泵芯片的输出电压中高的那一个。在电荷泵芯片21为负载电路供电时,若第一逻辑控制电路202确定配置电压大于第一电压检测电路203检测到的放电电路的输出电压Vout(此时为第二转换电路213的输出电压),第一逻辑控制电路202控制第一转换电路204工作,第一转换电路204工作时输出电压为配置电压,由于第一转换电路204的输出电压高于第二转换电路的输出电压,则此时放电电路的输出电压Vout为第一转换电路204的输出电压,第二逻辑控 制电路根据第二电压检测电路检测到的放电电路的输出电压Vout确定第二转换电路的输出电压小于此时放电电路的输出电压Vout,则控制电荷泵芯片21处于低功耗状态或者第二转换电路213停止转换。在Buck芯片20为负载电路供电时,若第二逻辑控制电路211确定第二转换电路213可输出电压大于放电电路的输出电压Vout(此时为第一转换电路204的输出电压),启动第二转换电路213工作,第二转换电路工作时,由于第二转换电路213输出电压大于第一转换电路的输出电压,则此时放电电路的输出电压Vout为第二转换电路的输出电压,此时第一逻辑控制电路确定放电电路的输出电压Vout大于配置电压,则第一逻辑控制电路202控制Buck芯片20处于低功耗状态或者第一转换电路204停止转换。电荷泵芯片的输出电压与输入电压Vin相关,例如电荷泵电路的芯片的输出电压可以预先设计为输入电压Vin的二分之一(实际输出电压可能与输入电压Vin的二分之一稍有偏差),则在Buck芯片20为负载电路供电时,若第二逻辑控制电路211确定第二转换电路213可输出电压(Vin/2)大于Buck芯片的输出电压,则启动电荷泵芯片21为负载电路供电,而第一逻辑控制电路202确定放电电路的输出电压大于配置电压,则控制Buck芯片20处于低功耗状态。
需要说明的是,Buck芯片和电荷泵芯片瞬态响应快,在两者进行切换时不会影响为负载电路供电。并且其中一个芯片为负载电路供电时,另外一个芯片不会对负载电路供电产生很大影响,即一个芯片提供给负载电路的电流,不会或者只有很小的部分流向另一个芯片。
参见图3,图3为本申请实施例提供的一种电荷泵电路的电路示意图,可以应用于上述图1a和图1b的电荷泵电路,图2的第二转换电路213。电荷泵电路(charge pump)是一种DC-DC(直流-直流)转换电路,是利用电容储能来进行电压变换(参见https://en.wikipedia.org/wiki/Charge_pump)。
如图3所示,该电荷泵电路包括第一开关SW1、第二开关SW2、第三开关SW3、第四开关SW4、外部电容CFLY和第一输出电容COUT1。
其中,第一开关SW1的第一端口为电荷泵电路的输入端口,该第一开关SW1的第二端口与第二开关SW2的第一端口耦合,该第二开关SW2的第二端口与第三开关SW3的第一端口耦合,该第三开关SW3的第二端口与第四开关SW4的第一端口耦合,该第四开关SW4的第二端口耦合到地。外部电容CFLY的第一端口与第二开关SW2的第一端口耦合。该外部电容CFLY的第二端口与第三开关的第二端口耦合。第一输出电容COUT1的第一端口与第二开关SW2的第二端口耦合,该第一输出电容COUT1的第二端口耦合到地。第一输出电容COUT1的第一端口为电荷泵电路输出端口。
参见图4,图4为本申请实施例提供的一种Buck电路的电路示意图,可以用于上述图1a和1b的Buck电路,图2的第一转换电路204。Buck电路(即Buck转换器)是一种DC-DC(直流-直流)转换电路,输出电压低于输入电压(参见https://en.wikipedia.org/wiki/Buck_converter)。如图4所示,该Buck电路包括第五开关、第六开关、电感和第二输出电容COUT2。
其中,第五开关SW5的第一端口为Buck电路的输入端口,该第五开关SW5的第二端口与第六开关SW6的第一端口耦合,该第六开关SW6的第二端口耦合到地。第五开关SW5的第二端口与电感的第一端口耦合,该电感的第二端口与第二输出电容COUT2的第一端口耦合,该第二输出电容COUT2的第二端口耦合到地。该第二输出电容COUT2的第一端口为Buck电路的输出端口。
由图3和图4可知,电荷泵电路和Buck电路都存在开关,两者(即电荷泵电路和Buck电路)集成在一个芯片中,开关可以共用,可以达成降成本目的。电荷泵电路和Buck电路集成在一起的电路可称为集成电路。
参见图5,图5为电荷泵电路和Buck电路的集成电路示意图。如图5所示,该集成电路包括第一开关SW1、第二开关SW2、第三开关SW3、第四开关SW4、第七开关SW7、电感、外部电容CFLY和输出电容COUT。
其中,第一开关SW1的第一端口为集成电路的输入端口(即电荷泵电路的输入端口和Buck电路的输入端口),该第一开关SW1的第二端口与第二开关SW2的第一端口耦合,该第二开关SW2的第二端口与第三开关SW3的第一端口耦合,该第三开关SW3的第二端口与第四开关SW4的第一端口耦合,该第四开关SW4的第二端口耦合到地。外部电容CFLY的第一端口与第二开关SW2的第一端口耦合,外部电容CFLY的第二端口与第三开关SW3的第二端口耦合。电感的第一端口与第三开关SW3的第一端口耦合,该电感的第二端口与输出电容COUT的第一端口耦合,该输出电容COUT的第二端口耦合到地。第七开关SW7的第一端口耦合到电感的第一端口,该第七开关SW7的第二端口耦合到电感的第二端口。输出电容COUT的第一端口为集成电路的输出端口(即电荷泵电路的输出端口和Buck电路的输入端口)。
需要说明的是,对于Buck电路,图5所示集成电路中由第一开关SW1和第二开关SW2串联成的电路可以等效成Buck电路中的第五开关SW5,图5所示集成电路中由第三开关SW3和第四开关SW4串联成的电路可以等效成Buck电路中的第六开关SW6。
作为Buck电路时,第七开关SW7打开;作为电荷泵电路时,第七开关SW7闭合。
图3-5中的开关均具有控制端,连接到控制与驱动模块上,由控制与驱动模块控制开关闭合。
需要说明的是,图3和图4中的开关的功能可由MOS管来实现。简单来说,可以将图3和图4中的开关替换为MOS管。
参见图6,图6为本申请实施例提供的另一种电荷泵电路的电路示意图。如图6所示,该电荷泵电路包括第一控制与驱动模块、第一MOS管MOS1、第二MOS管MOS2、第三MOS管MOS3、第四MOS管MOS4、外部电容CFLY和第一输出电容COUT1。
其中,第一MOS管MOS1的漏极为电荷泵电路的输入端口,该第一MOS管MOS1的源极与第二MOS管MOS2的漏极耦合,该第二MOS管MOS2的源极与第三MOS管MOS3的漏极耦合,该第三MOS管MOS3的源极与第四MOS管MOS4的漏极耦合,该第四MOS管MOS4的源极耦合到地。外部电容CFLY的第一端口与第二MOS管MOS2的漏极耦合。该外部电容CFLY的第二端口与第三MOS管MOS3的源极耦合。第一输出电容COUT1的第一端口与第二MOS管MOS2的源极耦合,该第一输出电容COUT1的第二端 口耦合到地。第一输出电容COUT1的第一端口为电荷泵电路输出端口。
第一MOS管MOS1的栅极、第二MOS管MOS2的栅极、第三MOS管MOS3的栅极、和第四MOS管MOS4的栅极均与第一控制与驱动模块相连接。该第一控制与驱动模块通过控制第一MOS管MOS1的栅极、第二MOS管MOS2的栅极、第三MOS管MOS3的栅极、和第四MOS管MOS4的栅极的电压来实现MOS管的导通和断开。
需要说明的是,图6中所示的所有MOS管和第一控制及驱动模块可以集成在一块芯片内的。
参见图7,图7为本申请实施例提供的另一种Buck电路的电路示意图。如图7所示,该Buck电路包括第二控制与驱动模块、第五MOS管MOS5、第六MOS管MOS6、电感和第二输出电容COUT2。
其中,第五MOS管MOS5的漏极为Buck电路的输入端口,该第五MOS管MOS5的源极与第六MOS管MOS6的漏极耦合,该第六MOS管MOS6的第漏极耦合到地。第五MOS管MOS5的源极与电感的第一端口耦合,该电感的第二端口与第二输出电容COUT2的第一端口耦合,该第二输出电容COUT2的第二端口耦合到地。该第二输出电容COUT2的第一端口为Buck电路的输出端口。
第五MOS管MOS5和第六MOS管MOS6的栅极均与第二控制与驱动模块相连接。该第二控制与驱动模块通过控制第五MOS管MOS5和第六MOS管MOS6的栅极的电压来实现MOS管的导通和断开。
需要说明的是,图7中所示的所有MOS管和第二控制及驱动模块可集成在一块芯片内的。
需要说明的是,图5和图6中的开关的功能可由MOS管来实现。简单来说,可以将图5和图6中的开关替换为MOS管。
参见图8,图8为另一种电荷泵电路和Buck电路的集成电路示意图。如图8所示,该集成电路包括第一MOS管MOS1、第二MOS管MOS2、第三MOS管MOS3、第四MOS管MOS4、第七MOS管MOS7、电感、外部电容CFLY和输出电容COUT。
其中,第一MOS管MOS1的漏极为集成电路的输入端口(即电荷泵电路的输入端口和Buck电路的输入端口),该第一MOS管MOS1的源极与第二MOS管MOS2的漏极耦合,该第二MOS管MOS2的源极与第三MOS管MOS3的漏极耦合,该第三MOS管MOS3的源极与第四MOS管MOS4的漏极耦合,该第四MOS管MOS4的源极耦合到地。外部电容CFLY的第一端口与第二MOS管MOS2的漏极耦合,外部电容CFLY的第二端口与第三MOS管MOS3的源极耦合。电感的第一端口与第二MOS管MOS2的源极耦合,该电感的第二端口耦合到输出电容COUT的第一端口,该输出电容COUT的第二端口耦合到地。第七MOS管MOS7的漏极耦合到电感的第一端口,该第七MOS管MOS7的源极耦合到电感的第二端口。该输出电容COUT的第一端口为集成电路的输出端口(即电荷泵电路的输出端口和Buck电路的输入端口)。
第一MOS管MOS1的栅极、第二MOS管MOS2的栅极、第三MOS管MOS3的栅极、第四MOS管MOS4的栅极和第七MOS管MOS7的栅极的电压均由第三控制与驱动模块来 控制。该第三控制与驱动模块通过控制第一MOS管MOS1的栅极、第二MOS管MOS2的栅极、第三MOS管MOS3的栅极、第四MOS管MOS4的栅极和第七MOS管MOS7的栅极的电压来实现MOS管的导通和断开。
需要说明的是,对于Buck电路,图8所示集成电路中由第一MOS管MOS1和第二MOS管MOS2串联成的电路可以等效成Buck电路中的第五MOS管MOS5,图8所示集成电路中由第三MOS管MOS3和第四MOS管MOS4串联成的电路可以等效成Buck电路中的第六MOS管MOS6。
作为Buck电路时,第七MOS管断开,电流从电感传输;作为电荷泵电路时,第七MOS管将电感短路。
需要说明的是,本申请所描述的放电电路用于电子设备内部,为电子设备内部的负载电路供电。参见图9,图9为本申请实施例提供的一种电子设备的电路示意图。如图9所示,电子设备包括充电电路901、放电电路902、负载电路903和电池904(如两个锂电池并联的电池)。该放电电路902的输出端口与负载电路903的输入端口耦合,放电电路902的输入端口与充电电路901的一个输出端口,以实现放电电路为负载电路供电,充电电路901的另一个输出端口连接电池904。当充电电路901通过接口和外部充电器连接进行充电时,由外部充电器经由充电电路、或者外部充电器经由充电电路与电池904一起给放电电路902提供输入电压,当充电电路901不与外部充电器连接时,由电池904给放电电路902提供输入电压。
负载电路903为电子设备内部的耗电电路,若电子设备为手机,负载电路为耗电器件组成的电路,耗电器件包括CPU、存储器、显示屏、传感器、基带芯片、射频电路等。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上上述,本说明书内容不应理解为对本申请的限制。

Claims (11)

  1. 一种放电电路,所述放电电路用于电子设备内部,为所述电子设备内部的负载电路供电,其特征在于,包括:检测电路、Buck电路、电荷泵电路和控制电路;
    其中,所述Buck电路的输入端口与所述电荷泵电路的输入端口耦合,所述Buck电路的输入端口和所述电荷泵电路的输入端口为所述放电电路的输入端口;所述电荷泵电路的输出端口与所述Buck电路的输出端口耦合,所述电荷泵电路的输出端口和所述Buck电路的输出端口为所述放电电路的输出端口;所述放电电路的输出端口与所述电子设备内部的负载电路的输入端口耦合;
    所述检测电路的第一端口耦合到所述放电电路的输入端口,所述检测电路的第二端口耦合到所述控制电路的第一端口,所述控制电路的第二端口和第三端口分别耦合到所述Buck电路的使能端口和所述电荷泵电路的使能端口;
    所述检测电路,用于检测所述检测电路的第一端口的电压;
    所述控制电路,用于根据所述检测电路的第一端口的电压控制所述Buck电路和所述电荷泵电路放电。
  2. 根据权利要求1所述的放电电路,其特征在于,所述控制电路根据所述检测电路的第一端口的电压控制所述Buck电路和所述电荷泵电路放电,包括:
    若所述检测电路的第一端口的电压大于第一阈值,则所述控制电路控制所述电荷泵电路放电;
    若所述检测电路的第一端口的电压小于第二阈值,则所述控制电路控制所述Buck电路放电;
    其中,所述第一阈值大于或者等于所述第二阈值。
  3. 根据权利要求1所述的放电电路,其特征在于,所述电子设备还包括电池,其中所述电池的负极耦合到地,所述电池的正极耦合到所述放电电路的输入端口,
    所述控制电路还根据所述电池的电压、电池的内阻、电池的老化程度及负载电路电流确定切换电压V;
    若所述切换电压V大于第三阈值,则所述控制电路控制所述电荷泵电路放电;
    若所述切换电压V小于第四阈值,则所述控制电路控制所述Buck电路放电;
    其中,所述第三阈值大于或者等于所述第四阈值。
  4. 根据权利要求3所述的放电电路,其特征在于,所述切换电压V为:
    V=Vbat-I*η*R(T),所述Vbat为所述电池的电压,所述R(T)为所述电池的内阻,所述T为所述电池的温度,所述η为所述电池的老化程度,所述I为负载电路的电流。
  5. 根据权利要求1-4任一项所述的放电电路,其特征在于,所述电子设备还包括电池和充电电路;
    其中,所述检测电路的第一端口耦合到所述电池的正极或者所述充电电路的第一输出 端口;所述电池的负极耦合到地,所述电池的正极耦合到所述充电电路的第二输出端口。
  6. 根据权利要求1-5任一项所述的放电电路,其特征在于,所述Buck电路和电荷泵电路是集成在一起的。
  7. 根据权利要求6所述的放电电路,其特征在于,所述Buck电路和电荷泵电路集成在一起包括:第一开关、第二开关、第三开关、第四开关、第七开关、电感、外部电容和输出电容;
    其中,所述第一开关的第一端口为电荷泵电路的输入端口和Buck电路的输入端口,所述第一开关的第二端口与所述第二开关的第一端口耦合,所述第二开关的第二端口与所述第三开关的第一端口耦合,所述第三开关的第二端口与所述第四开关的第一端口耦合,所述第四开关的第二端口耦合到地,所述外部电容的第一端口与所述第二开关的第一端口耦合,所述外部电容的第二端口与所述第三开关的第二端口耦合,所述电感的第一端口与所述第三开关的第一端口耦合,所述电感的第二端口与所述输出电容的第一端口耦合,所述输出电容的第二端口耦合到地,所述第七开关的第一端口耦合到电感的第一端口,所述第七开关的第二端口耦合到所述电感的第二端口,所述输出电容的第一端口为电荷泵电路的输出端口和电路的输入端口。
  8. 一种放电电路,其特征在于,包括:Buck芯片和电荷泵芯片;
    其中,所述Buck芯片的输入端口和所述电荷泵芯片的输入端口耦合,所述Buck芯片的输出端口和所述电荷泵芯片的输出端口耦合,所述Buck芯片的输入端口为所述放电电路的输入端口,所述Buck芯片的输出端口为所述放电电路的输出端口;
    所述Buck芯片和所述电荷泵芯片均检测所述放电电路的输出端口的输出电压,在所述Buck芯片工作时,若所述电荷泵芯片的待输出电压大于所述放电电路的输出端口的输出电压,则所述电荷泵芯片放电,所述Buck芯片检测到所述放电电路的输出端口的输出电压大于Buck芯片的配置电压,则进入低功耗状态;在所述电荷泵芯片工作时,若所述放电电路的输出端口的输出电压小于所述Buck芯片的配置电压时,所述Buck芯片进行放电,所述电荷泵芯片检测到所述放电电路的输出端口的输出电压大于所述电荷泵芯片的输出电压,则所述电荷泵芯片进入低功耗状态。
  9. 根据权利要求8所述的方法,其特征在于,所述Buck芯片包括电压配置电路、第一逻辑控制电路、第一电压检测电路和第一转换电路;所述电荷泵芯片包括第二逻辑控制电路、第二电压检测电路和第二转换电路;
    所述电压配置电路,用于为所述Buck芯片设置配置电压;
    所述第一电压检测电路和第二电压检测电路,分别用于检测所述放电电路的输出电压;
    当所述第二转换电路工作时,若所述第一逻辑控制电路确定配置电压大于所述放电电路的输出电压,所述第一逻辑控制电路控制第一转换电路工作,所述第二逻辑控制电路确定所述第二转换电路的输出电压小于所述放电电路的输出电压,则控制所述第二转换电路停止电压转换;
    当所述第一转换电路工作时,若所述第二逻辑控制电路确定所述第二转换电路能够输出电压大于所述放电电路的输出电压,控制所述第二转换电路工作,所述第一逻辑控制电路确定所述放电电路的输出电压大于所述配置电压,第一逻辑控制电路控制所述第一转换电路停止电压转换。
  10. 根据权利要求9所述的放电电路,其特征在于,所述第一转换电路和所述第二转换电路集成在一起包括:第一开关、第二开关、第三开关、第四开关、第七开关、电感、外部电容和输出电容;
    其中,所述第一开关的第一端口为电荷泵电路的输入端口和Buck电路的输入端口,所述第一开关的第二端口与所述第二开关的第一端口耦合,所述第二开关的第二端口与所述第三开关的第一端口耦合,所述第三开关的第二端口与所述第四开关的第一端口耦合,所述第四开关的第二端口耦合到地,所述外部电容的第一端口与所述第二开关的第一端口耦合,所述外部电容的第二端口与所述第三开关的第二端口耦合,所述电感的第一端口与所述第三开关的第一端口耦合,所述电感的第二端口与所述输出电容的第一端口耦合,所述输出电容的第二端口耦合到地,所述第七开关的第一端口耦合到电感的第一端口,所述第七开关的第二端口耦合到所述电感的第二端口,所述输出电容的第一端口为电荷泵电路的输出端口和电路的输入端口。
  11. 一种电子设备,其特征在于,包括:负载电路和如权利要求1-10任一项所述的放电电路。
PCT/CN2020/075784 2019-02-23 2020-02-19 一种放电电路和电子设备 WO2020169037A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20758812.0A EP3905477A4 (en) 2019-02-23 2020-02-19 DISCHARGE CIRCUIT AND ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910135723.5 2019-02-23
CN201910135723.5A CN109787318B (zh) 2019-02-23 2019-02-23 一种放电电路和电子设备

Publications (1)

Publication Number Publication Date
WO2020169037A1 true WO2020169037A1 (zh) 2020-08-27

Family

ID=66486899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075784 WO2020169037A1 (zh) 2019-02-23 2020-02-19 一种放电电路和电子设备

Country Status (3)

Country Link
EP (1) EP3905477A4 (zh)
CN (1) CN109787318B (zh)
WO (1) WO2020169037A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113507149A (zh) * 2021-06-29 2021-10-15 珠海智融科技有限公司 一种混合模式充电电路及充电方法
CN113725970A (zh) * 2021-08-30 2021-11-30 安徽华米信息科技有限公司 穿戴设备的供电方法,装置与存储介质
CN114498866A (zh) * 2022-04-19 2022-05-13 伏达半导体(合肥)有限公司 双电池充电装置、方法及其控制器

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109787318B (zh) * 2019-02-23 2021-09-03 华为技术有限公司 一种放电电路和电子设备
CN110401250A (zh) * 2019-08-21 2019-11-01 深圳英集芯科技有限公司 一种电池充放电的路径管理***及方法
CN112636401A (zh) * 2019-09-24 2021-04-09 北京小米移动软件有限公司 无线充电方法及装置、电子设备
CN113394833B (zh) * 2020-03-13 2023-05-02 北京小米移动软件有限公司 电子设备
EP4228120A4 (en) * 2020-11-06 2023-12-06 Huawei Technologies Co., Ltd. POWER SYSTEM, CHARGING METHOD AND DISCHARGE METHOD
CN113725958A (zh) * 2021-08-17 2021-11-30 珠海市魅族科技有限公司 电池电源调节电路、调节方法、充电线及终端设备
CN114069772B (zh) * 2021-10-27 2024-04-26 北京小米移动软件有限公司 供电电路、供电方法、装置及存储介质
CN114552975B (zh) * 2022-02-05 2022-11-08 上海伏达半导体有限公司 电源转换***、包括其的电子设备及集成电路
CN114142723B (zh) 2022-02-05 2022-04-26 伏达半导体(合肥)有限公司 电源转换结构及包括其的电子设备
CN116315919B (zh) * 2022-10-14 2023-11-03 江苏省医疗器械检验所(江苏省食品药品监督管理局医药包装材料容器产品质量监督检验站) 体模组件及测试***
US11621638B1 (en) 2022-12-23 2023-04-04 Nuvolta Technologies (Hefei) Co., Ltd. Power conversion system, electronic device including the same, and integrated circuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222176A (zh) * 2008-01-10 2008-07-16 晨星半导体股份有限公司 直流电源转换电路及模式切换方法
US9160166B2 (en) * 2012-12-19 2015-10-13 Silicon Laboratories Inc. Charge pump for low power consumption apparatus and associated methods
CN106532831A (zh) * 2016-11-30 2017-03-22 珠海市魅族科技有限公司 一种充电控制方法及装置
CN109787318A (zh) * 2019-02-23 2019-05-21 华为技术有限公司 一种放电电路和电子设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8515361B2 (en) * 2010-04-20 2013-08-20 Rf Micro Devices, Inc. Frequency correction of a programmable frequency oscillator by propagation delay compensation
CN109074145B (zh) * 2017-03-10 2021-01-15 华为技术有限公司 供电电路及供电方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222176A (zh) * 2008-01-10 2008-07-16 晨星半导体股份有限公司 直流电源转换电路及模式切换方法
US9160166B2 (en) * 2012-12-19 2015-10-13 Silicon Laboratories Inc. Charge pump for low power consumption apparatus and associated methods
CN106532831A (zh) * 2016-11-30 2017-03-22 珠海市魅族科技有限公司 一种充电控制方法及装置
CN109787318A (zh) * 2019-02-23 2019-05-21 华为技术有限公司 一种放电电路和电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3905477A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113507149A (zh) * 2021-06-29 2021-10-15 珠海智融科技有限公司 一种混合模式充电电路及充电方法
WO2023274002A1 (zh) * 2021-06-29 2023-01-05 珠海智融科技股份有限公司 一种混合模式充电电路及充电方法
CN113725970A (zh) * 2021-08-30 2021-11-30 安徽华米信息科技有限公司 穿戴设备的供电方法,装置与存储介质
CN114498866A (zh) * 2022-04-19 2022-05-13 伏达半导体(合肥)有限公司 双电池充电装置、方法及其控制器
US11509146B1 (en) 2022-04-19 2022-11-22 Nuvolta Technologies (Hefei) Co., Ltd. Dual-battery charging apparatus and control method

Also Published As

Publication number Publication date
CN109787318B (zh) 2021-09-03
EP3905477A4 (en) 2022-03-16
CN109787318A (zh) 2019-05-21
EP3905477A1 (en) 2021-11-03

Similar Documents

Publication Publication Date Title
WO2020169037A1 (zh) 一种放电电路和电子设备
US20200244161A1 (en) Switched-capacitor converter circuit, charging control system, and control method
US10038326B2 (en) Power bank with charging management including charging interface
US9477278B2 (en) Voltage regulator
CN101924383B (zh) 一种自动设置充电电流的移动终端及其实现方法
US20240055881A1 (en) Hybrid-mode charging circuit, and charging method
CN105762892A (zh) 一种锂电池降压输出及充放电保护***
WO2020124588A1 (zh) 电池供电电路、待充电设备及充电控制方法
WO2016015458A1 (zh) 一种充电控制方法、装置及一种pos终端
CN103825329A (zh) 一种双向电源转换电路
US11791721B2 (en) Multi-mode DC-to-DC power converter
US20150035369A1 (en) Charging control circuit, method and electronic device thereof
CN111900780A (zh) 移动电源快充协议转换装置及其控制方法
US20140077776A1 (en) Voltage regulator
TW201705661A (zh) 電源供應模組與其電源供應方法
CN104883057A (zh) 升压与线性充电共用功率器件的移动电源转换器
US9197129B2 (en) Boost converter topology for high efficiency and low battery voltage support
WO2023207706A1 (zh) 一种充电电路及电子设备
CN204633599U (zh) 功率电荷泵及使用该功率电荷泵的电源管理电路
US9857819B1 (en) System and methods for multi-input switching regulator
US20220329096A1 (en) System and method for wirelessly charging earphones
CN115347633A (zh) 一种耳机座舱的充放电管理方法、装置及***
CN204721218U (zh) 升压与线性充电共用功率器件的移动电源转换器
CN110676898B (zh) 待充电设备
WO2022188048A1 (zh) 充放电控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20758812

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020758812

Country of ref document: EP

Effective date: 20210730

NENP Non-entry into the national phase

Ref country code: DE