WO2020140711A1 - 加热装置 - Google Patents

加热装置 Download PDF

Info

Publication number
WO2020140711A1
WO2020140711A1 PCT/CN2019/124656 CN2019124656W WO2020140711A1 WO 2020140711 A1 WO2020140711 A1 WO 2020140711A1 CN 2019124656 W CN2019124656 W CN 2019124656W WO 2020140711 A1 WO2020140711 A1 WO 2020140711A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating device
radome
electromagnetic
antenna
radiating antenna
Prior art date
Application number
PCT/CN2019/124656
Other languages
English (en)
French (fr)
Inventor
王海娟
赵坤坤
牟森
曹东强
Original Assignee
海尔智家股份有限公司
青岛海尔特种制冷电器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海尔智家股份有限公司, 青岛海尔特种制冷电器有限公司 filed Critical 海尔智家股份有限公司
Priority to AU2019418922A priority Critical patent/AU2019418922B2/en
Priority to ES19907787T priority patent/ES2937985T3/es
Priority to EP19907787.6A priority patent/EP3902374B1/en
Priority to US17/420,497 priority patent/US20220104318A1/en
Publication of WO2020140711A1 publication Critical patent/WO2020140711A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/46Dielectric heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • H05B6/688Circuits for monitoring or control for thawing
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/001Details of apparatus, e.g. for transport, for loading or unloading manipulation, pressure feed valves
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/005Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by heating using irradiation or electric treatment
    • A23L3/01Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by heating using irradiation or electric treatment using microwaves or dielectric heating
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/36Freezing; Subsequent thawing; Cooling
    • A23L3/365Thawing subsequent to freezing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/46Dielectric heating
    • H05B6/62Apparatus for specific applications
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6402Aspects relating to the microwave cavity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/72Radiators or antennas
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the invention relates to kitchen utensils, in particular to an electromagnetic wave heating device.
  • the prior art In order to facilitate users to freeze and defrost foods, the prior art generally defrosts foods through electromagnetic wave devices.
  • An object of the present invention is to provide a heating device with simple assembly.
  • a further object of the present invention is to increase heating efficiency.
  • the present invention provides a heating device, including:
  • the metal cylinder is provided with an access port
  • the door body is provided at the access port for opening and closing the access port;
  • An electromagnetic generation module configured to generate electromagnetic wave signals
  • the radiating antenna is arranged to be electrically connected to the electromagnetic generating module to generate electromagnetic waves of corresponding frequencies according to the electromagnetic wave signal, and the heating device further includes:
  • a radome made of insulating material, is arranged to divide the internal space of the cylinder into a heating chamber and an electrical appliance room, wherein the object to be processed and the radiation antenna are respectively provided in the heating chamber and the electrical appliance room;
  • the radiating antenna is arranged to be fixedly connected to the radome.
  • the radome includes:
  • a baffle plate arranged to separate the heating chamber and the electrical appliance room
  • the skirt is provided to be fixedly connected to the inner wall of the barrel.
  • the radome is provided at the bottom of the barrel, and the radiating antenna is horizontally fixed to the lower surface of the partition.
  • the radiation antenna is arranged at a height of 1/3 to 1/2 of the barrel.
  • the heating device further includes:
  • the signal processing, measurement and control circuit is located in the electrical appliance room and is located on the rear side of the radiating antenna. It includes:
  • a detection unit connected in series between the electromagnetic generation module and the radiation antenna, and the detection unit is configured to detect specific parameters of the incident wave signal and the reflected wave signal passing therethrough;
  • a control unit configured to calculate the electromagnetic wave absorption rate of the object to be processed according to the specific parameter
  • a matching unit is connected in series between the electromagnetic generation module and the radiation antenna, and the matching unit is configured to adjust the load impedance of the electromagnetic generation module according to the electromagnetic wave absorption rate.
  • the signal processing, measurement and control circuit is integrated into a circuit board, and the circuit board is horizontally arranged.
  • the radiation antenna is arranged to be fixedly connected with the radome.
  • the radiation antenna is formed with a plurality of clamping holes
  • the radome is correspondingly formed with a plurality of buckles, and the plurality of buckles are configured to respectively buckle with the radiating antenna through the plurality of buckling holes;
  • the buckle is composed of two barbs spaced apart and mirror-symmetrical; or
  • the buckle is composed of a fixing portion perpendicular to the radiating antenna and hollow in the middle, and an elastic portion extending from the inner end edge of the fixing portion to the radiating antenna obliquely to the fixing portion.
  • the radiating antenna is configured to be fixed to the radome through an electroplating process.
  • the radome is made of non-transparent material.
  • the heating device of the present invention sets and fixes the radiating antenna through the radome cover, not only can separate the object to be processed and the radiating antenna, prevent the radiating antenna from being dirty or damaged by mistake, but also simplify the assembly process of the heating device and facilitate the radiating antenna Positioning installation.
  • the invention sets the radome at the height of 1/3 to 1/2 of the barrel, which not only avoids damage to the radome and radiating antenna due to the user placing too high objects to be processed, but also enables the electromagnetic waves in the heating chamber to have The higher energy density causes the object to be processed to be heated quickly.
  • the present invention adjusts the load impedance of the electromagnetic generation module through the matching unit, improves the matching degree of the output impedance of the electromagnetic generation module and the load impedance, and can place different fixed attributes (type, weight, volume, etc.) with different fixed properties in the heating chamber During the temperature change of food or food, more electromagnetic wave energy is radiated into the heating chamber.
  • FIG. 1 is a schematic structural diagram of a heating device according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the heating device shown in FIG. 1, wherein the electromagnetic generation module and the power supply module are omitted;
  • FIG. 3 is a schematic enlarged view of area A in FIG. 2;
  • FIG. 4 is a schematic structural diagram of an electrical appliance room according to an embodiment of the present invention.
  • FIG. 5 is a schematic enlarged view of area B in FIG. 4;
  • FIG. 6 is a schematic structural diagram of an electrical appliance room according to another embodiment of the present invention.
  • FIG. 7 is a schematic enlarged view of area C in FIG. 6.
  • FIG. 1 is a schematic structural diagram of a heating device 100 according to an embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional view of the heating device 100 shown in FIG. 1, wherein the electromagnetic generation module 161 and the power supply module 162 are omitted.
  • the heating device 100 may include a cylinder 110, a door 120, an electromagnetic generation module 161, a power supply module 162, and a radiation antenna 150.
  • the barrel 110 can be used for placing objects to be processed, and the front wall or the top wall can be provided with a pick-and-place port for picking and placing the objects.
  • the door 120 can be installed with the cylinder 110 by a suitable method, such as sliding rail connection, hinge connection, etc., for opening and closing the access opening.
  • the heating device 100 further includes a drawer 140 for carrying the object to be processed.
  • the front end plate of the drawer 140 is configured to be fixedly connected to the door 120, and the two lateral side plates are movably connected to the barrel 110 through slide rails. .
  • the cylinder body 110 and the door body 120 may be provided with electromagnetic shielding features, respectively, so that the door body 120 is electrically connected to the cylinder body 110 in the closed state to prevent electromagnetic leakage.
  • the power supply module 162 may be configured to be electrically connected to the electromagnetic generation module 161 to provide electrical energy to the electromagnetic generation module 161, so that the electromagnetic generation module 161 generates an electromagnetic wave signal.
  • the radiating antenna 150 may be disposed in the barrel 110 and electrically connected to the electromagnetic generation module 161 to generate electromagnetic waves of corresponding frequencies according to the electromagnetic wave signal to heat the object to be processed in the barrel 110.
  • the barrel 110 may be made of metal to serve as a receiver to receive electromagnetic waves generated by the radiating antenna 150.
  • the top wall of the cylinder 110 may be provided with a receiving plate to receive the electromagnetic wave generated by the radiating antenna 150.
  • FIGS. 4 and 6 are schematic structural diagram of an electrical appliance room 112 according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of an electrical appliance room 112 according to another embodiment of the present invention.
  • the periphery of the radiating antenna 150 may be formed by a smooth curve to make the distribution of electromagnetic waves in the barrel 110 more uniform, thereby improving the temperature uniformity of the object to be processed.
  • the smooth curve refers to the curve equation is a continuous curve of the first derivative. In engineering, it means that the periphery of the radiation antenna 150 has no sharp corners.
  • the heating device 100 may further include a radome 130 to divide the internal space of the barrel 110 into a heating chamber 111 and an electrical appliance chamber 112.
  • the to-be-processed object and the radiation antenna 150 may be respectively disposed in the heating chamber 111 and the electric appliance room 112 to separate the to-be-processed object and the radiation antenna 150 to prevent the radiation antenna 150 from being dirty or damaged by accidental touch.
  • the radome 130 may be made of an insulating material so that the electromagnetic waves generated by the radiating antenna 150 can pass through the radome 130 to heat the object to be processed. Further, the radome 130 may be made of a non-transparent material to reduce the electromagnetic loss of electromagnetic waves at the radome 130, thereby increasing the heating rate of the object to be treated.
  • the aforementioned non-transparent material is a translucent or opaque material.
  • the non-transparent material may be PP material, PC material or ABS material.
  • the radome 130 can also be used to fix the radiation antenna 150 to simplify the assembly process of the heating device 100 and facilitate the positioning and installation of the radiation antenna 150.
  • the radome 130 may include a partition 131 partitioning the heating chamber 111 and the electrical appliance chamber 112, and a skirt 132 fixedly connected to the inner wall of the barrel 110.
  • the radiation antenna 150 may be fixedly connected to the partition 131.
  • the radiating antenna 150 may be configured to be fixedly connected to the radome 130.
  • FIG. 5 is a schematic enlarged view of area B in FIG. 4. Referring to FIG. 5, the radiating antenna 150 may be formed with a plurality of snap holes 151, and the radome 130 may be correspondingly formed with a plurality of snaps 133, and the multiple snaps 133 are respectively disposed through the multiple snap holes 151 and the radiating antenna 150 card connection.
  • the buckle 133 may be composed of two barbs arranged at intervals and mirror-symmetrical.
  • the buckle 133 may be composed of a fixing portion perpendicular to the radiating antenna 150 and hollow in the middle, and an elastic portion whose inner end edge is inclined to the fixing portion and extends toward the antenna.
  • the radiating antenna 150 may be configured to be fixed to the radome 130 through an electroplating process.
  • the radome 130 may further include a plurality of reinforcing ribs, which are configured to connect the partition plate 131 and the skirt 132 to improve the structural strength of the radome 130.
  • the radome 130 may be disposed at the bottom of the barrel 110 to prevent the radome 130 from being damaged by the user placing too high a to-be-processed object.
  • the radiation antenna 150 may be horizontally fixed to the lower surface of the partition 131.
  • the radiating antenna 150 may be disposed at a height of 1/3 to 1/2 of the barrel 110, for example, 1/3, 2/5, or 1/2, so that the volume of the heating chamber 111 is large, and at the same time, the heating chamber 111
  • the electromagnetic wave has a high energy density, which in turn causes the object to be processed to be quickly heated.
  • FIG. 3 is a schematic enlarged view of area A in FIG. 2.
  • the heating device 100 may further include a signal processing and measurement and control circuit 170.
  • the signal processing and measurement and control circuit 170 may include a detection unit 171, a control unit 172, and a matching unit 173.
  • the detection unit 171 may be connected in series between the electromagnetic generation module 161 and the radiation antenna 150, and is configured to detect specific parameters of the incident wave signal and the reflected wave signal passing therethrough in real time.
  • the control unit 172 may be configured to acquire the specific parameter from the detection unit 171, and calculate the power of the incident wave and the reflected wave according to the specific parameter.
  • the specific parameter may be a voltage value and/or a current value.
  • the detection unit 171 may also be a power meter to directly measure the power of the incident wave and the reflected wave.
  • the control unit 172 may further calculate the electromagnetic wave absorption rate of the object to be processed according to the power of the incident wave and the reflected wave, and compare the electromagnetic wave absorption rate with the preset absorption threshold, and send the adjustment to the matching unit 173 when the electromagnetic wave absorption rate is less than the preset absorption threshold instruction.
  • the preset absorption threshold may be 60-80%, such as 60%, 70%, or 80%.
  • the matching unit 173 may be connected in series between the electromagnetic generation module 161 and the radiating antenna 150, and is configured to adjust the load impedance of the electromagnetic generation module 161 according to the adjustment instruction of the control unit 172, thereby improving the output impedance and load impedance of the electromagnetic generation module 161 Matching degree, to place food with different fixed properties (type, weight, volume, etc.) in the heating chamber 111, or during the temperature change of food, more electromagnetic wave energy is radiated in the heating chamber 111, thereby improving heating rate.
  • the heating device 100 may be used for thawing.
  • the control unit 172 may also be configured to calculate the change rate of the imaginary part of the dielectric coefficient of the object to be processed according to the power of the incident wave and the reflected wave, and compare the change rate of the imaginary part with a preset change threshold. When the change rate of the imaginary part is greater than or equal to the preset change threshold, a stop instruction is sent to the electromagnetic generation module 161 to stop the electromagnetic generation module 161 from working, and the defrosting program is terminated.
  • the preset change threshold can be obtained by testing the change rate of the imaginary part of the dielectric constant of foods with different fixed properties at -3 ⁇ 0 °C, so that the food has a better shear strength. For example, when the object to be processed is raw beef, the preset change threshold may be set to 2.
  • the control unit 172 can also be configured to receive user instructions and control the electromagnetic generation module 161 to start working according to the user instructions, wherein the control unit 172 is configured to be electrically connected to the power supply module 162 to obtain power from the power supply module 162 and remain in a standby state all the time.
  • the signal processing and measurement and control circuit 170 may be integrated into a circuit board and horizontally disposed in the electrical room 112 to facilitate the electrical connection of the radiation antenna 150 and the matching module.
  • the radome 130 and the barrel 110 may be respectively provided with heat dissipation holes 190 at positions corresponding to the matching units 173, so that the heat generated when the matching unit 173 works is discharged through the heat dissipation holes 190.
  • the signal processing and measurement and control circuit 170 may be disposed on the rear side of the radiation antenna 150.
  • the heat dissipation hole 190 may be opened in the rear wall of the radome 130 and the barrel 110.
  • the metal cylinder 110 may be set to be grounded to discharge the electric charge thereon, thereby improving the safety of the heating device 100.
  • the heating device 100 may further include a metal bracket 180.
  • the metal bracket 180 may be configured to connect the circuit board and the barrel 110 to support the circuit board and discharge the charge on the circuit board through the barrel 110.
  • the metal bracket 180 may be composed of two parts perpendicular to each other.
  • the electromagnetic generation module 161 and the power supply module 162 may be disposed outside the barrel 110.
  • a part of the metal bracket 180 may be provided at the rear of the circuit board and extend vertically in the lateral direction, and it may be provided with two wiring ports, so that the wiring terminals of the detection unit 171 (or matching unit 173) protrude from one wiring port
  • the electromagnetic generation module 161 is electrically connected, and the connection terminal of the control unit 172 extends from the other connection port and is electrically connected to the electromagnetic generation module 161 and the power supply module 162.
  • the heating device 100 may be provided in the storage compartment of the refrigerator to facilitate the user to defrost food.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Electric Ovens (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Control And Other Processes For Unpacking Of Materials (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Abstract

一种加热装置(100),包括开设有取放口的金属筒体(110)、用于开闭取放口的门体(120)、产生电磁波信号的电磁发生模块(161)以及辐射天线(150)。辐射天线(150)设置为与电磁发生模块(161)电连接,以根据电磁波信号产生相应频率的电磁波。加热装置(100)还包括由绝缘材料制成天线罩(130)。天线罩(130)设置为将筒体(110)的内部空间分隔为加热室(111)和电器室(112),其中待处理物和辐射天线(150)分别设置于加热室(111)和电器室(112),且辐射天线(150)设置为与天线罩(130)固定连接。加热装置(100)通过天线罩(130)罩设并固定辐射天线(150),不仅可将待处理物和辐射天线(150)分隔开,防止辐射天线(150)脏污或误触损坏,还可简化加热装置(100)的装配流程、便于辐射天线(150)的定位安装。

Description

加热装置 技术领域
本发明涉及厨房用具,特别是涉及一种电磁波加热装置。
背景技术
食物在冷冻的过程中,食物的品质得到了保持,然而冷冻的食物在加工或食用前需要解冻。为了便于用户冷冻和解冻食物,现有技术一般通过电磁波装置来解冻食物。
然而,不仅不同属性的食物的介电系数不同,相同属性的食物在解冻过程中随着温度的变化其介电系数也会发生变化,从而导致食物对电磁波的吸收率上下波动。综合考虑,在设计上需要一种装配简单且加热效率高的加热装置。
发明内容
本发明的一个目的是要提供一种装配简单的加热装置。
本发明一个进一步的目的是要提高加热效率。
特别地,本发明提供了一种加热装置,包括:
金属筒体,开设有取放口;
门体,设置于所述取放口处,用于开闭所述取放口;
电磁发生模块,配置为产生电磁波信号;和
辐射天线,设置为与所述电磁发生模块电连接,以根据所述电磁波信号产生相应频率的电磁波,其特征在于,所述加热装置还包括:
天线罩,由绝缘材料制成,设置为将所述筒体的内部空间分隔为加热室和电器室,其中待处理物和所述辐射天线分别设置于所述加热室和电器室;且
所述辐射天线设置为与所述天线罩固定连接。
可选地,所述天线罩包括:
隔板,设置为分隔所述加热室和电器室;和
裙部,设置为与所述筒体的内壁固定连接。
可选地,所述天线罩设置于所述筒体的底部,且所述辐射天线水平地固 定于所述隔板的下表面。
可选地,所述辐射天线设置于所述筒体的1/3~1/2高度处。
可选地,所述加热装置还包括:
信号处理及测控电路,设置于所述电器室内并位于所述辐射天线的后侧,其包括:
检测单元,串联在所述电磁发生模块与辐射天线之间,且所述检测单元配置为检测经过其的入射波信号和反射波信号的特定参数;
控制单元,配置为根据所述特定参数计算待处理物的电磁波吸收率;和
匹配单元,串联在所述电磁发生模块与辐射天线之间,且所述匹配单元配置为根据所述电磁波吸收率调节所述电磁发生模块的负载阻抗。
可选地,所述信号处理及测控电路集成于一块电路板,且该电路板水平设置。
可选地,所述辐射天线设置为与所述天线罩卡固连接。
可选地,所述辐射天线形成有多个卡接孔;且
所述天线罩对应地形成有多个卡扣,所述多个卡扣设置为分别穿过所述多个卡接孔与所述辐射天线卡接;其中
所述卡扣由间隔设置且镜像对称的两个倒勾组成;或
所述卡扣由垂直于所述辐射天线并中部中空的固定部、和自所述固定部的内端缘倾斜于固定部向辐射天线延伸的弹性部组成。
可选地,所述辐射天线设置为通过电镀工艺固定于所述天线罩。
可选地,所述天线罩由非透明材料制成。
本发明的加热装置通过天线罩罩设并固定辐射天线,不仅可将待处理物和辐射天线分隔开,防止辐射天线脏污或误触损坏,还可简化加热装置的装配流程、便于辐射天线的定位安装。
进一步地,本发明将天线罩设置在筒体的1/3~1/2高度处,不仅可避免因用户放置过高的待处理物损坏天线罩和辐射天线,还可以使加热室内的电磁波具有较高的能量密度,进而使待处理物被快速地加热。
进一步地,本发明通过匹配单元对电磁发生模块的负载阻抗进行调节,提高电磁发生模块的输出阻抗和负载阻抗的匹配度,可在加热室内放置有固定属性(种类、重量、体积等)不同的食物、或食物在温度变化过程中均有较多的电磁波能量被辐射在加热室内。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的加热装置的示意性结构图;
图2是图1所示加热装置的示意性剖视图,其中电磁发生模块和供电模块被省略;
图3是图2中区域A的示意性放大视图;
图4是本发明一个实施例的电器室的示意性结构图;
图5是图4中区域B的示意性放大视图;
图6是本发明另一个实施例的电器室的示意性结构图;
图7是图6中区域C的示意性放大视图。
具体实施方式
图1是根据本发明一个实施例的加热装置100的示意性结构图;图2是图1所示加热装置100的示意性剖视图,其中电磁发生模块161和供电模块162被省略。参见图1和图2,加热装置100可包括筒体110、门体120、电磁发生模块161、供电模块162、和辐射天线150。
筒体110可用于放置待处理物,且其前壁或顶壁可开设有取放口,用于取放待处理物。
门体120可通过适当方法与筒体110安装在一起,例如滑轨连接、铰接等,用于开闭取放口。在图示实施例中,加热装置100还包括用于承载待处理物的抽屉140,抽屉140的前端板设置为与门体120固定连接,两个横向侧板通过滑轨与筒体110活动连接。
在一些实施例中,筒体110和门体120可分别设置有电磁屏蔽特征,使门体120在关闭状态时与筒体110导电连接,以防止电磁泄露。
供电模块162可设置为与电磁发生模块161电连接,以为电磁发生模块161提供电能,进而使电磁发生模块161产生电磁波信号。辐射天线150可设置于筒体110内并与电磁发生模块161电连接,以根据电磁波信号产生相 应频率的电磁波,对筒体110内的待处理物进行加热。
在一些实施例中,筒体110可由金属制成,以作为接收极接收辐射天线150产生的电磁波。在另一些实施例中,筒体110的顶壁可设置有接收极板,以接收辐射天线150产生的电磁波。
图4是本发明一个实施例的电器室112的示意性结构图;图6是本发明另一个实施例的电器室112的示意性结构图。参见图4和图6,辐射天线150的周缘可由平滑曲线构成,以使筒体110内电磁波的分布更加均匀,进而提高待处理物的温度均匀性。其中,平滑曲线指曲线方程为一阶导数连续的曲线。在工程中意味着辐射天线150的周缘无尖角。
参见图2和图4,加热装置100还可包括天线罩130,以将筒体110的内部空间分隔为加热室111和电器室112。待处理物和辐射天线150可分别设置于加热室111和电器室112,以将待处理物和辐射天线150分隔开,防止辐射天线150脏污或误触损坏。
在一些实施例中,天线罩130可由绝缘材料制成,以使辐射天线150产生的电磁波可穿过天线罩130加热待处理物。进一步地,天线罩130可由非透明材料制成,以减少电磁波在天线罩130处的电磁损耗,进而提高对待处理物的加热速率。前述非透明材料为半透明或不透明的材料。非透明材料可为PP材料、PC材料或ABS材料等。
天线罩130还可用于固定辐射天线150,以简化加热装置100的装配流程、便于辐射天线150的定位安装。具体地,天线罩130可包括分隔加热室111和电器室112的隔板131、以及与筒体110内壁固定连接的裙部132。其中,辐射天线150可设置为与隔板131固定连接。
在一些实施例中,辐射天线150可设置为与天线罩130卡固连接。图5是图4中区域B的示意性放大视图。参见图5,辐射天线150可形成有多个卡接孔151,天线罩130可对应地形成有多个卡扣133,多个卡扣133设置为分别穿过多个卡接孔151与辐射天线150卡接。
在本发明的一个实施例中,卡扣133可由间隔设置且镜像对称的两个倒勾组成。
图7是图6中区域C的示意性放大视图。参见图7,在本发明的另一个实施例中,卡扣133可由垂直于辐射天线150并中部中空的固定部和自固定部的内端缘倾斜于固定部向天线延伸的弹性部组成。
在另一些实施例中,辐射天线150可设置为通过电镀工艺固定于天线罩130。
天线罩130还可包括多个加强筋,该加强筋设置为连接隔板131和裙部132,以提高天线罩130的结构强度。
在一些实施例中,天线罩130可设置于筒体110的底部,以避免因用户放置过高的待处理物损坏天线罩130。辐射天线150可水平地固定于隔板131的下表面。
辐射天线150可设置于筒体110的1/3~1/2高度处,例如1/3、2/5或1/2,以使加热室111的容积较大的同时,使加热室111内的电磁波具有较高的能量密度,进而使待处理物被快速地加热。
图3是图2中区域A的示意性放大视图。参见图1至图3,加热装置100还可包括信号处理及测控电路170。具体地,信号处理及测控电路170可包括检测单元171、控制单元172、和匹配单元173。
检测单元171可串联在电磁发生模块161与辐射天线150之间,并配置为实时检测经过其的入射波信号和反射波信号的特定参数。
控制单元172可配置为从检测单元171获取该特定参数,根据该特定参数计算入射波和反射波的功率。在本发明中,特定参数可为电压值和/或电流值。检测单元171也可为功率计,以直接测得入射波和反射波的功率。
控制单元172可进一步根据入射波和反射波的功率计算待处理物的电磁波吸收率,并将电磁波吸收率与预设吸收阈值比较,当电磁波吸收率小于预设吸收阈值时向匹配单元173发送调节指令。预设吸收阈值可为60~80%,例如60%、70%、或80%。
匹配单元173可串联在电磁发生模块161与辐射天线150之间,并配置为根据控制单元172的调节指令对电磁发生模块161的负载阻抗进行调节,提高电磁发生模块161的输出阻抗和负载阻抗的匹配度,以在加热室111内放置有固定属性(种类、重量、体积等)不同的食物、或食物在温度变化过程中均有较多的电磁波能量被辐射在加热室111内,进而提高加热速率。
在一些实施例中,加热装置100可用于解冻。控制单元172还可配置为根据入射波和反射波的功率计算待处理物的介电系数的虚部变化率,并将虚部变化率与预设变化阈值比较,当待处理物介电系数的虚部变化率大于等于预设变化阈值时向电磁发生模块161发送停止指令,使电磁发生模块161停 止工作,解冻程序终止。
预设变化阈值可通过测试不同固定属性的食物在-3~0℃时的介电系数的虚部变化率获得,以使食物具有较好的剪切强度。例如当待处理物为生牛肉时,预设变化阈值可设置为2。
控制单元172还可配置为接收用户指令并根据用户指令控制电磁发生模块161开始工作,其中控制单元172配置为与供电模块162电连接,以从供电模块162获取电能并一直处于待机状态。
在一些实施例中,信号处理及测控电路170可集成于一块电路板,并水平地设置于电器室112内,以便于辐射天线150与匹配模块的电连接。
天线罩130与筒体110对应匹配单元173的位置处可分别开设有散热孔190,以使匹配单元173工作时产生的热量经散热孔190排出。在一些实施例中,信号处理及测控电路170可设置于辐射天线150的后侧。散热孔190可开设于天线罩130和筒体110的后壁。
在一些实施例中,金属筒体110可设置为接地,以将其上的电荷导出,提高加热装置100的安全性。
加热装置100还可包括金属支架180。金属支架180可设置为连接电路板与筒体110,以支撑电路板并将电路板上的电荷经由筒体110导出。在一些实施例中,金属支架180可由互相垂直的两部分组成。
在一些实施例中,电磁发生模块161和供电模块162可设置于筒体110外侧。一部分金属支架180可设置于电路板的后部并沿横向方向竖直延伸,且其可开设有两个接线口,使检测单元171(或匹配单元173)的接线端子自一个接线口伸出与电磁发生模块161电连接,控制单元172的接线端子自另一个接线口伸出与电磁发生模块161和供电模块162电连接。
在一些实施例中,加热装置100可设置于冰箱的储物间室,以便于用户解冻食材。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种加热装置,包括:
    金属筒体,开设有取放口;
    门体,设置于所述取放口处,用于开闭所述取放口;
    电磁发生模块,配置为产生电磁波信号;和
    辐射天线,设置为与所述电磁发生模块电连接,以根据所述电磁波信号产生相应频率的电磁波;其中,所述加热装置还包括:
    天线罩,由绝缘材料制成,设置为将所述筒体的内部空间分隔为加热室和电器室,其中待处理物和所述辐射天线分别设置于所述加热室和电器室;且
    所述辐射天线设置为与所述天线罩固定连接。
  2. 根据权利要求1所述的加热装置,其中,所述天线罩包括:
    隔板,设置为分隔所述加热室和电器室;和
    裙部,设置为与所述筒体的内壁固定连接。
  3. 根据权利要求2所述的加热装置,其中,
    所述天线罩设置于所述筒体的底部,且所述辐射天线水平地固定于所述隔板的下表面。
  4. 根据权利要求3所述的加热装置,其中,
    所述辐射天线设置于所述筒体的1/3~1/2高度处。
  5. 根据权利要求3所述的加热装置,还包括:
    信号处理及测控电路,设置于所述电器室内并位于所述辐射天线的后侧,其包括:
    检测单元,串联在所述电磁发生模块与辐射天线之间,且所述检测单元配置为检测经过其的入射波信号和反射波信号的特定参数;
    控制单元,配置为根据所述特定参数计算待处理物的电磁波吸收率;和匹配单元,串联在所述电磁发生模块与辐射天线之间,且所述匹配单元配置为根据所述电磁波吸收率调节所述电磁发生模块的负载阻抗。
  6. 根据权利要求5所述的加热装置,其中,
    所述信号处理及测控电路集成于一块电路板,且该电路板水平设置。
  7. 根据权利要求1所述的加热装置,其中,
    所述辐射天线设置为与所述天线罩卡固连接。
  8. 根据权利要求7所述的加热装置,其中,
    所述辐射天线形成有多个卡接孔;且
    所述天线罩对应地形成有多个卡扣,所述多个卡扣设置为分别穿过所述多个卡接孔与所述辐射天线卡接;其中
    所述卡扣由间隔设置且镜像对称的两个倒勾组成;或
    所述卡扣由垂直于所述辐射天线并中部中空的固定部、和自所述固定部的内端缘倾斜于固定部向辐射天线延伸的弹性部组成。
  9. 根据权利要求1所述的加热装置,其中,
    所述辐射天线设置为通过电镀工艺固定于所述天线罩。
  10. 根据权利要求1所述的加热装置,其中,
    所述天线罩由非透明材料制成。
PCT/CN2019/124656 2019-01-04 2019-12-11 加热装置 WO2020140711A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2019418922A AU2019418922B2 (en) 2019-01-04 2019-12-11 Heating device
ES19907787T ES2937985T3 (es) 2019-01-04 2019-12-11 Dispositivo de calentamiento
EP19907787.6A EP3902374B1 (en) 2019-01-04 2019-12-11 Heating device
US17/420,497 US20220104318A1 (en) 2019-01-04 2019-12-11 Heating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201920013904.6U CN209897307U (zh) 2019-01-04 2019-01-04 加热装置
CN201920013904.6 2019-01-04

Publications (1)

Publication Number Publication Date
WO2020140711A1 true WO2020140711A1 (zh) 2020-07-09

Family

ID=69015691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124656 WO2020140711A1 (zh) 2019-01-04 2019-12-11 加热装置

Country Status (6)

Country Link
US (1) US20220104318A1 (zh)
EP (1) EP3902374B1 (zh)
CN (1) CN209897307U (zh)
AU (1) AU2019418922B2 (zh)
ES (1) ES2937985T3 (zh)
WO (1) WO2020140711A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209893774U (zh) * 2019-01-04 2020-01-03 青岛海尔股份有限公司 冷藏冷冻装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986002143A1 (en) * 1984-10-02 1986-04-10 Matsushita Electric Industrial Co. Ltd. High-frequency heater
CN2847095Y (zh) * 2005-09-29 2006-12-13 乐金电子(天津)电器有限公司 微波炉
CN101910731A (zh) * 2007-12-27 2010-12-08 松下电器产业株式会社 炊具
CN108916926A (zh) * 2018-08-31 2018-11-30 广东美的厨房电器制造有限公司 微波炉
CN109068432A (zh) * 2018-08-03 2018-12-21 深圳市安芯物联科技有限公司 微波处理方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918366A (ja) * 1982-07-20 1984-01-30 三洋電機株式会社 冷蔵庫
JPS6191482A (ja) * 1984-10-11 1986-05-09 松下冷機株式会社 高周波加熱装置付冷蔵庫
JP5131969B2 (ja) * 2007-12-19 2013-01-30 パナソニック株式会社 加熱調理器
GB201121436D0 (en) * 2011-12-14 2012-01-25 Emblation Ltd A microwave applicator and method of forming a microwave applicator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986002143A1 (en) * 1984-10-02 1986-04-10 Matsushita Electric Industrial Co. Ltd. High-frequency heater
CN2847095Y (zh) * 2005-09-29 2006-12-13 乐金电子(天津)电器有限公司 微波炉
CN101910731A (zh) * 2007-12-27 2010-12-08 松下电器产业株式会社 炊具
CN109068432A (zh) * 2018-08-03 2018-12-21 深圳市安芯物联科技有限公司 微波处理方法及装置
CN108916926A (zh) * 2018-08-31 2018-11-30 广东美的厨房电器制造有限公司 微波炉

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3902374A4 *

Also Published As

Publication number Publication date
EP3902374A4 (en) 2022-02-23
CN209897307U (zh) 2020-01-03
ES2937985T3 (es) 2023-04-03
US20220104318A1 (en) 2022-03-31
AU2019418922A1 (en) 2021-07-22
EP3902374B1 (en) 2022-12-07
EP3902374A1 (en) 2021-10-27
AU2019418922B2 (en) 2022-09-08

Similar Documents

Publication Publication Date Title
US20220120497A1 (en) Heating device and refrigerator with heating device
EP3905847B1 (en) Heating device and refrigerator having same
AU2019418577B2 (en) Refrigeration and freezing apparatus
CN209897304U (zh) 加热装置
WO2020140710A1 (zh) 电磁波发生***及具有该电磁波发生***的加热装置
WO2020140712A1 (zh) 加热装置
WO2020140989A1 (zh) 加热装置
WO2020140711A1 (zh) 加热装置
CN210042287U (zh) 电磁波加热装置及用于电磁波加热装置的加热盒
WO2020140988A1 (zh) 加热装置
WO2020140713A1 (zh) 电磁波发生***及具有该电磁波发生***的加热装置
WO2020151595A1 (zh) 加热装置及冰箱
CN210629896U (zh) 加热装置
RU2776309C1 (ru) Нагревательное устройство и холодильник с нагревательным устройством
CN211120207U (zh) 冷藏冷冻装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19907787

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019418922

Country of ref document: AU

Date of ref document: 20191211

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019907787

Country of ref document: EP

Effective date: 20210722