WO2020129773A1 - Light-condensing solar power generation unit, light-condensing solar power generation module, light-condensing solar power generation panel, light-condensing solar power generation device, and method for manufacturing light-condensing solar power generation unit - Google Patents

Light-condensing solar power generation unit, light-condensing solar power generation module, light-condensing solar power generation panel, light-condensing solar power generation device, and method for manufacturing light-condensing solar power generation unit Download PDF

Info

Publication number
WO2020129773A1
WO2020129773A1 PCT/JP2019/048478 JP2019048478W WO2020129773A1 WO 2020129773 A1 WO2020129773 A1 WO 2020129773A1 JP 2019048478 W JP2019048478 W JP 2019048478W WO 2020129773 A1 WO2020129773 A1 WO 2020129773A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
lens
solar power
cell
light
Prior art date
Application number
PCT/JP2019/048478
Other languages
French (fr)
Japanese (ja)
Inventor
永井 陽一
充 稲垣
斉藤 健司
塁 三上
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2020129773A1 publication Critical patent/WO2020129773A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present disclosure relates to a concentrating solar power generation unit, a concentrating solar power generation module, a concentrating solar power generation panel, a concentrating solar power generation device, and a method for manufacturing a concentrating solar power generation unit.
  • the unit forming an optical system basic unit in the concentrating solar power generation device includes, for example, a primary lens that condenses sunlight, a power generation element, and a secondary lens arranged between the primary lens and the power generation element. I have something to prepare.
  • the secondary lens is provided so as to guide the condensed light condensed by the primary lens to the power generation element, and is arranged at a position relatively close to the power generation element.
  • a predetermined gap (space) is provided between the secondary lens and the power generation element, and the space is filled with a resin material having optical transparency such as silicone resin (sealing portion). ) Is provided (for example, see Patent Document 1).
  • the sealing portion protects the power generation element from the external environment by sealing the space.
  • the concentrating solar power generation unit is provided at a position that coincides with a primary lens that collects incident sunlight and the optical axis of the primary lens when directly facing the sun.
  • Is provided at a predetermined position on the optical axis between the primary lens and the cell that generates power by being irradiated with the condensed light that has been condensed, and that forms a gap between the cell and the primary lens.
  • the secondary lens and a sealing portion which is provided in the gap and seals the cell with a resin material having a light-transmitting property.
  • the focal position of light is located on the primary lens side with respect to the intersection of the cell side portion of the secondary lens surface and the optical axis.
  • a method for manufacturing a concentrating solar power generation unit that is another embodiment is provided in a position that coincides with a primary lens that collects incident sunlight and an optical axis of the primary lens when directly facing the sun.
  • a method of manufacturing a concentrating photovoltaic power generation unit comprising: a secondary lens provided in a space between the secondary lens and a sealing part that is provided in the gap and seals the cell with a resin material having light transparency.
  • the focus position of the ultraviolet light of the condensed light condensed by the primary lens is located on the primary lens side with respect to the intersection point where the cell side portion of the secondary lens surface and the optical axis intersect. Including the step of setting.
  • FIG. 1 is a perspective view of one example of a concentrating solar power generation device viewed from the light receiving surface side.
  • FIG. 2 is a perspective view showing the attitude of the array facing the sun.
  • FIG. 3 is a perspective view showing an example of the configuration of the concentrating solar power generation module.
  • FIG. 4 is a sectional view showing an example of a concentrating solar power generation unit as a basic configuration of a concentrating power generation optical system that constitutes a module.
  • FIG. 5 is an enlarged view of the light receiving portion in FIG.
  • FIG. 6 is a diagram showing the relationship between the focal position of ultraviolet light and each part.
  • FIG. 7 is a diagram showing the relationship between the focal position of ultraviolet light and each part.
  • FIG. 8 is an enlarged sectional view of the primary lens.
  • FIG. 9 is a diagram showing three types of modules used in the verification test.
  • (a) is a module (unit) related to the comparative example product
  • (b) is a module (unit) related to the example product 1.
  • (c) shows the cross section of the module (unit) according to the example product 2.
  • FIG. 10 is a diagram showing the focal positions of ultraviolet light of the comparative example product and the example products 1 and 2.
  • FIG. 11A is a diagram showing the measurement results of the comparative example product.
  • FIG. 11B is a diagram showing the measurement results of Example product 1.
  • FIG. 11C is a diagram showing the measurement results of Example product 2.
  • FIG. 12 is an enlarged view of a light receiving unit according to a modification.
  • the sealing portion is filled between the secondary lens and the power generating element, condensed light passes through.
  • a chemically stable material is selected for the resin material forming the encapsulation part.
  • the sealing material made of resin is generated by the ultraviolet light contained in the condensed light. There is a risk that the stopper will disassemble and discolor, reducing the amount of power generation.
  • the present disclosure has been made in view of such circumstances, and an object thereof is to provide a technique capable of suppressing decomposition and discoloration of a sealing portion.
  • the concentrating solar power generation unit is provided at a position that coincides with a primary lens that collects incident sunlight and an optical axis of the primary lens when directly facing the sun, A cell that generates power by being irradiated with the condensed light condensed by the primary lens, and is located at a predetermined position on the optical axis between the primary lens and the cell and forms a gap with the cell.
  • a secondary lens provided, and a sealing portion which is provided in the gap and seals the cell with a resin material having a light-transmitting property.
  • the focal position of the ultraviolet light is located closer to the primary lens than the intersection where the cell side portion of the surface of the secondary lens and the optical axis intersect.
  • the focus position of the ultraviolet light can be set to a position outside the sealing section. Therefore, it is possible to prevent the energy of the ultraviolet light passing through the resin material forming the sealing portion from being dispersed and to increase the energy density, and to suppress the decomposition and discoloration of the sealing portion made of the resin material.
  • the focal position of the ultraviolet light is a lens position between the primary lens and the secondary lens, and the irradiation range of the ultraviolet light is the secondary lens. It is preferable to be located on the cell side with respect to the inter-lens position, which is the maximum size within the outer shape range. In this case, since the irradiation range of the ultraviolet light can be set within the range of the outer shape of the secondary lens, the condensed light can be guided to the secondary lens without waste.
  • the focal position of the ultraviolet light is located between the inter-lens position and the secondary lens when the ambient temperature is room temperature, and is the above when the ambient temperature is 55° C. It is preferably located in the secondary lens. In this case, even if the unit is manufactured at room temperature, it is possible to set the focal position of the ultraviolet light to an appropriate position in a use environment that is higher than room temperature.
  • the focus position of the ultraviolet light is located in the secondary lens when the ambient temperature is room temperature and 55°C. Also in this case, even if the unit is manufactured at room temperature, the focus position of the ultraviolet light in a use environment higher than room temperature can be set to an appropriate position.
  • a focal position of the ultraviolet light is located on an intersection where a portion of the secondary lens surface on the primary lens side and the optical axis intersect.
  • the irradiation range of the ultraviolet light can be more surely contained within the range of the outer shape of the secondary lens. Therefore, it is possible to guide the condensed light to the secondary lens without waste while suppressing the division and discoloration of the sealing portion. You can
  • the secondary lens has a shape including at least one of a spherical surface, an ellipsoidal surface, a conical surface, and an aspherical surface.
  • the secondary lens is made of transparent glass or transparent ceramic.
  • the primary lens includes a sheet-shaped sheet portion, and a pattern portion formed on one surface of the sheet portion and including a plurality of ridges forming a lens pattern. It is a Fresnel lens, and the thickness of the sheet portion may be thinner than the thickness of the pattern portion. In this case, by making the thickness of the sheet portion relatively thin, more ultraviolet light can be guided to the cell, more energy can be used for power generation, and the amount of power generation can be increased.
  • the sealing portion since it is possible to protect the sealing portion by making the focal point position of the ultraviolet light off the sealing portion, even if more ultraviolet light is guided to the cell, the sealing portion is It is possible to suppress decomposition and discoloration of the constituent resin material.
  • the concentrating solar power generation unit further includes a housing that houses the cell, the secondary lens, and the sealing portion, and the housing includes a bottom plate to which the cell is fixed, and the bottom plate. And a frame body in which the primary lens is fixed to the tip end portion and is arranged on the optical axis with the primary lens and the cell being separated from each other, and the frame body is a PBT, PP, And PET.
  • the focus position of the ultraviolet light changes depending on the change of the ambient temperature.
  • the frame body of either PBT, PP, or PET, the focus position of the ultraviolet light changes due to the change of the ambient temperature.
  • the expansion and contraction of the material of the frame body can offset each other.
  • a concentrating solar power generation module is formed by arranging a plurality of the above concentrating solar power generation units.
  • a concentrating solar power generation panel according to another embodiment is formed by arranging a plurality of the above concentrating solar power generation modules.
  • the concentrating solar power generation panel and the concentrating solar power generation panel face the direction of the sun and track the movement of the sun. And a driving device that is driven to operate.
  • a primary lens that collects incident sunlight and a position that coincides with the optical axis of the primary lens when directly facing the sun. And a cell that is provided on the optical axis and generates electric power by being irradiated with the condensed light condensed by the primary lens, and a gap is formed between the cell and the primary lens on the optical axis.
  • Manufacturing of a concentrating solar power generation unit including a secondary lens provided at a predetermined position, and a sealing portion provided in the gap and sealing the cell with a resin material having light transparency.
  • the focal position of the ultraviolet light in the condensed light condensed by the primary lens is located on the primary lens side with respect to the intersection point where the cell side portion of the secondary lens surface intersects the optical axis. And the step of setting so that
  • FIG. 1 is a perspective view of one example of a concentrating solar power generation device viewed from the light receiving surface side.
  • the photovoltaic power generation device 100 includes an array (photovoltaic power generation panel) 1 that is continuous on the upper side and is divided into left and right sides on the lower side, and a supporting device 2 thereof.
  • the array 1 is configured by aligning a concentrating photovoltaic power generation module (hereinafter, also simply referred to as a module) 1M on a mount (not shown) on the back side.
  • the support device 2 includes a support 21, a foundation 22, a biaxial drive unit 23, and a horizontal shaft 24 (FIG. 2) serving as a drive shaft.
  • the column 21 has a lower end fixed to the foundation 22 and a biaxial drive unit 23 provided at the upper end.
  • the foundation 22 is firmly buried in the ground so that only the upper surface can be seen.
  • the support column 21 is vertical and the horizontal shaft 24 is horizontal.
  • the biaxial drive unit 23 can rotate the horizontal shaft 24 in two directions of an azimuth angle (angle with the column 21 as a central axis) and an elevation angle (angle with the horizontal shaft 24 as a central axis).
  • the array 1 also rotates in that direction.
  • FIG. 1 shows the supporting device 2 that supports the array 1 with one column 21, the structure of the supporting device 2 is not limited to this. In short, any support device that can support the array 1 so as to be movable in two axes (azimuth and elevation) may be used.
  • FIG. 2 is a perspective view showing the attitude of the array 1 facing the sun as an example. Also, for example, at the time of south-central time near the equator, the array 1 is in a horizontal posture with its light-receiving surface facing the sun. At night, for example, the light receiving surface of the array 1 is in a horizontal posture with the light receiving surface facing the ground.
  • FIG. 3 is a perspective view showing an example of the configuration of the concentrating solar power generation module 1M.
  • the module 1M includes, as a physical form in appearance, a rectangular flat-bottom container-shaped casing 11 made of, for example, metal or resin, and a condensing unit 12 mounted thereon like a lid. There is.
  • the housing 11 is configured to include a rectangular bottom plate 11b and a frame body 11a provided upright from the peripheral edge of the bottom plate 11b.
  • one elongated flexible printed wiring board 13 is arranged so as to be aligned while changing the direction as shown in the drawing.
  • the flexible printed wiring board 13 has a relatively wide portion and a relatively narrow portion.
  • a cell (not shown) is mounted in a wide area. The cell is arranged at a position corresponding to each optical axis of the primary lens 12f. Note that, here, only the flexible printed wiring board 13 is shown as a component provided on the bottom plate 11b, and other components are omitted.
  • the light condensing unit 12 is configured, for example, by attaching a resin-made primary lens (Fresnel lens) 12f to the back surface of one light-transmissive glass plate 12a.
  • a resin-made primary lens Fresnel lens
  • each of the divisions of the illustrated square (the number is 14 ⁇ 10 in this example, but the number is just an example for explanation) is the primary lens 12f and focuses the sunlight on the focus position. be able to.
  • FIG. 4 is a cross-sectional view showing an example of a concentrating solar power generation unit 1U as a basic configuration of a concentrating power generation optical system that constitutes the module 1M. It should be noted that the respective parts shown in FIG. 4 are appropriately enlarged and drawn for the sake of structural description, and are not necessarily proportional to the actual dimensions (the same applies to FIG. 4 and the subsequent figures).
  • the concentrating solar power generation unit 1U (hereinafter, also simply referred to as the unit 1U) faces the sun and the incident angle of the sunlight is 0 degree, it is on the optical axis Ax of the primary lens 12f.
  • the secondary lens 30 and the cell 38 of the light receiving section R There is the secondary lens 30 and the cell 38 of the light receiving section R, and the condensed light condensed by the primary lens 12f is taken into the secondary lens 30 of the light receiving section R and guided to the cell 38.
  • the light condensing unit 12 is fixed to the tip portion 11a1 of the frame body 11a.
  • the frame 11a separates the light condensing unit 12 (primary lens 12f) and the light receiving unit R (cell 38) from each other and arranges them on the optical axis Ax. Therefore, the distance between the primary lens 12f and the light receiving portion R is determined by the frame body 11a.
  • FIG. 5 is an enlarged view of the light receiving unit R in FIG. 4 and 5, the light receiving part R includes a secondary lens 30, a support part 32, a package 34, a shielding plate 36, a cell 38, a lead frame (P side) 40, a wire 42, a lead frame (N side) 44, And a sealing portion 46.
  • the light receiving section R is mounted on the flexible printed wiring board 13.
  • the secondary lens 30 is, for example, a ball lens made of transparent glass.
  • the secondary lens 30 is supported by the inner peripheral edge 36 e of the shielding plate 36 arranged on the end surface of the support portion 32 so that a gap in the optical axis Ax direction is formed between the secondary lens 30 and the cell 38.
  • the support portion 32 is provided so as to surround the cell 38 around the optical axis Ax.
  • the support portion 32 has a cylindrical shape or a rectangular tube shape, and is made of resin. The support portion 32 is fixed on the package 34.
  • the shield plate 36 arranged on the end surface of the support portion 32 is a member formed in an annular plate shape corresponding to the end surface of the support portion 32.
  • the shield plate 36 shields the light that has left the secondary lens 30 from directly irradiating the support portion 32 and the package 34.
  • the package 34 is made of resin and holds the cells 38 and the lead frames 40 and 44.
  • the output of the cell 38 is drawn to the lead frame 40 on the P side and to the lead frame 44 on the N side via the wire 42, respectively.
  • the sealing portion 46 is a silicone resin having a light transmitting property.
  • the sealing portion 46 is configured by filling a silicone resin into the space surrounded by the inner surface of the support portion 32, the secondary lens 30, and the cell 38.
  • the sealing portion 46 is provided in the gap between the secondary lens 30 and the cell 38 and seals the cell 38.
  • the cell 38 is, for example, a power generation element made of a compound semiconductor.
  • the cell 38 has a rectangular plate shape.
  • the cell 38 is irradiated with the condensed light from the primary lens 12f that has passed through the secondary lens 30.
  • the cells 38 generate power by being irradiated with the condensed light.
  • the size of the cell 38 is preferably in the range of 1 mm to 4 mm on one side. If one side of the cell 38 is larger than 4 mm, the required amount of semiconductor increases, which causes a cost increase. By setting the side of the cell 38 to be 4 mm or less, the required amount of semiconductor can be reduced, and the cost can be reduced. If one side of the cell 38 is smaller than 1 mm, it becomes difficult to make condensed light enter. Therefore, the size of the cell 38 is preferably 1 mm or more on each side.
  • the two-dot chain line in FIGS. 4 and 5 indicates the optical path of the ultraviolet light in the condensed light condensed by the primary lens 12f.
  • the ultraviolet light means near-ultraviolet light having a wavelength of 300 to 400 nm.
  • the focal position F of the ultraviolet light in the condensed light condensed by the primary lens 12f is higher than the first intersection 30a where the cell side portion of the surface of the secondary lens 30 and the optical axis Ax intersect. It is located on the primary lens 12f side. That is, the focus position F of the ultraviolet light is located closer to the primary lens 12f than the cell side portion of the surface of the secondary lens 30 that contacts the sealing portion 46.
  • the cell side portion of the surface of the secondary lens 30 is a portion of the surface of the secondary lens 30 that faces the cell 38 side.
  • the focus position F of the ultraviolet light is located at the second intersection 30b where the primary lens side portion of the surface of the secondary lens 30 and the optical axis Ax intersect.
  • the primary lens side portion of the surface of the secondary lens 30 is a portion of the surface of the secondary lens 30 that faces the primary lens 12f side.
  • the focal position F of the ultraviolet light can be set to a position outside the sealing portion 46. Therefore, it is possible to prevent the energy of the ultraviolet light passing through the silicone resin forming the sealing portion 46 from being dispersed and to increase the energy density, and to suppress the decomposition and discoloration of the sealing portion 46 made of the silicone resin. ..
  • the focal point position F of the ultraviolet light may be located closer to the primary lens 12f side than the first intersection 30a, so that the focal point position F of the ultraviolet light is, for example, as shown in FIG. It may be located in the vicinity of the first intersection 30a. If the focus position F of the ultraviolet light is located on the cell 38 side of the limit position 33 (interlens position) between the primary lens 12f and the secondary lens 30 shown in FIG. It does not have to be located inside. As shown in FIG. 7, the limit position 33 is a position on the optical axis Ax, and the irradiation range of the ultraviolet light when the focus position F is located at the limit position 33 is the outer shape range of the secondary lens 30. It is the position where the maximum size is within. The limit position 33 in FIG.
  • the irradiation range of the ultraviolet light when the focal position F is located at the limit position 33 is viewed in plan along the optical axis Ax, the irradiation range of the ultraviolet light is the outer shape of the secondary lens 30. It is a position that almost coincides with.
  • the focal position F of the ultraviolet light is located on the cell 38 side of the limit position 33, the irradiation range of the ultraviolet light can be kept within the outer shape of the secondary lens 30, and thus the primary lens The condensed light from 12f can be guided to the secondary lens 30 without waste.
  • the focal point position F of the ultraviolet light may be located within the range H from the first intersection 30a to the limit position 33, as shown in FIG.
  • the focal position F of the ultraviolet light satisfies the above conditions and is located in a range in which the distance from the first intersection 30a to the primary lens 12f side is 3 mm or more and 7.5 mm or less.
  • the focal length of the primary lens 12f used in this embodiment may increase by about 0.9 mm for every 10° C. increase, for example. Therefore, if the focal point position F of the ultraviolet light is at a position spaced by 3 mm or more from the first intersection 30a to the primary lens 12f side when the ambient temperature is room temperature, it is assumed that the ambient temperature becomes a high temperature of about 55°C. Also, it is possible to prevent the focal point position F of the ultraviolet light from moving to the sealing portion 46. Therefore, it is preferable that the focus position F of the ultraviolet light is a position of 3 mm or more from the first intersection 30a to the primary lens 12f side.
  • the room temperature is 25° C. here.
  • the distance between the focal point position F of the ultraviolet light and the first intersection 30a is larger than 7.5 mm, for example, when the size of the secondary lens 30 is 5 mm in diameter, the irradiation range of the ultraviolet light is the secondary lens 30.
  • the size is larger than the size, and the condensed light is wasted. Therefore, it is preferable that the distance between the focal position F of the ultraviolet light and the first intersection 30a is 7.5 mm or less.
  • the focal length of the primary lens 12f may increase by about 0.9 mm for every 10° C. increase, and when the ambient temperature rises from room temperature to 55° C., the focal length of the primary lens 12f increases by about 3 mm. I know in advance. Therefore, the focus position F of the ultraviolet light when the ambient temperature is room temperature is set to the limit position 33 and the secondary lens 30 so that the focus position F of the ultraviolet light when the ambient temperature is 55° C. is located inside the secondary lens 30. You can also adjust between.
  • the focus position F of the ultraviolet light of the unit 1U obtained by adjusting in this way is located between the limit position 33 and the secondary lens 30 when the ambient temperature is room temperature, and the secondary position when the ambient temperature is 55° C. Located within lens 30. In this case, even if the unit 1U is manufactured at room temperature, the focus position F of the ultraviolet light in a use environment higher than room temperature can be set to an appropriate position.
  • the focus position F of the ultraviolet light when the ambient temperature is room temperature is set in the secondary lens 30 so that the focus position F of the ultraviolet light when the ambient temperature is 55° C. is located in the secondary lens 30. It can also be adjusted.
  • the focus position F of the ultraviolet light of the unit 1U obtained by adjusting in this way is located inside the secondary lens 30 when the ambient temperature is room temperature and 55°C. Also in this case, even if the unit 1U is manufactured at room temperature, the focus position F of the ultraviolet light can be set to an appropriate position in a use environment that is higher than room temperature.
  • the position of the focal point position F of the ultraviolet light can be adjusted by adjusting the height of the frame body 11a of the housing 11.
  • the frame 11a (housing 11) is preferably formed of any one of PBT ((Poly Butyrene Terephthalate), PP (Polypropylene), and PET (Poly Ethylene Terephthalate).
  • PBT Poly Butyrene Terephthalate
  • PP Polypropylene
  • PET Poly Ethylene Terephthalate
  • These resins have a large coefficient of thermal expansion as compared with aluminum alloys and the like.
  • the coefficient of thermal expansion is 190 ⁇ 10 ⁇ 6 /° C.
  • the height of the frame 11a is about 120 mm. It will be about 0.7 mm longer. Therefore, if the frame 11a is formed by using these resins, the change in the focal point position F of the ultraviolet light due to the change in ambient temperature can be offset by the expansion and contraction of the material of the frame 11a.
  • the condensing magnification of the primary lens 12f is preferably in the range of 500 times to 1200 times.
  • the condensing magnification of the primary lens 12f is less than 500 times, the number of required cells per unit area increases, which causes a cost increase.
  • the condensing magnification of the primary lens 12f is larger than 1200 times, the temperature of the cell 38 is excessively increased, the power generation performance of the cell 38 is deteriorated, and the power generation efficiency may be deteriorated.
  • the size of the primary lens 12f is preferably in the range of 40 mm to 80 mm on each side.
  • the F value of the primary lens 12f is preferably around 2.
  • the F value is larger than 2, the height of the housing of the module 1M that defines the distance between the primary lens 12f (light condensing unit 12) and the bottom plate becomes high, which makes the module 1M bulky and increases the cost.
  • the F value is smaller than 2, the focal length becomes relatively short, and the allowable range for the variation in the position of the condensed light in each of the primary lens 12f, the secondary lens 30, and the cell 38 becomes small, and the cell 38 There is a possibility that the condensed light cannot be properly guided, for example, the amount of the condensed light that is not radiated to the inside increases.
  • by setting the F value of the primary lens 12f to around 2, it is possible to appropriately guide the condensed light to the cell 38 while suppressing the cost increase.
  • FIG. 8 is an enlarged cross-sectional view of the primary lens 12f.
  • the primary lens 12f is provided on the back surface of the glass plate 12a as described above.
  • the primary lens 12f is formed in a sheet shape using a silicone resin, and includes a sheet-shaped sheet portion 50, and a pattern portion 52 formed on the one surface 50a of the sheet portion 50 and including a plurality of ridges 52a. There is.
  • the large number of ridges 52a form a lens pattern as a Fresnel lens. Therefore, the pattern portion 52 has a function as a Fresnel lens that collects sunlight.
  • the sheet portion 50 has a function as a base material on which the pattern portion 52 is formed.
  • the seat portion 50 can function as a filter that transmits sunlight. For example, if the thickness T1 of the sheet portion 50 is made sufficiently thick, it can function as a filter for removing the ultraviolet light included in sunlight. However, if the sheet portion 50 removes the ultraviolet light, the energy of the ultraviolet light
  • the thickness T1 of the sheet portion 50 is thinner than the thickness T2 of the pattern portion 52.
  • the focal point F of the ultraviolet light can be set to a position deviated from the sealing portion 46 to protect the sealing portion 46. Therefore, even if more ultraviolet light is guided to the cell 38, the sealing is performed. It is possible to suppress decomposition and discoloration of the silicone resin forming the portion 46.
  • the focus position F of the ultraviolet light is set to a position deviated from the sealing portion 46 so as to protect the sealing portion 46. Therefore, by guiding a larger amount of ultraviolet light, the sealing is performed. It is possible to increase the amount of power generation while suppressing the decomposition and discoloration of the silicone resin forming the portion 46.
  • the thickness T2 of the pattern portion 52 is preferably in the range of 0.1 mm to 1 mm. If the thickness T2 of the pattern portion 52 is smaller than 0.1 mm, it is necessary to narrow the pitch of the ridges 52a forming the Fresnel lens to increase the number, but in this case, the radius of curvature of the tip of the ridge 52a becomes large, The light collection loss at the tip of the ridge 52a increases. Therefore, the thickness T2 of the pattern portion 52 is preferably 0.1 mm or more. Moreover, if the thickness T2 of the pattern portion 52 exceeds 1 mm, the cost is increased due to an increase in the amount of silicone resin used. Therefore, the thickness T2 of the pattern portion 52 is preferably 1 mm or less.
  • the thickness T1 of the sheet portion 50 is preferably thinner than the thickness T2 of the pattern portion 52 and is in the range of 0.02 mm to 0.5 mm.
  • the thickness T1 of the sheet portion 50 is smaller than 0.02 mm, the amount of the silicone resin is small, and the possibility that air bubbles will be generated in the sheet portion 50 during formation is increased.
  • the thickness T1 of the seat portion 50 is preferably 0.02 mm or more.
  • the thickness T1 of the seat portion 50 is preferably 0.5 mm or less.
  • the size of the secondary lens 30 needs to be larger than the size of the cell 38. This is because the condensed light from the primary lens 12f is guided to the cell 38 via the secondary lens 30.
  • the size of the secondary lens 30 is preferably larger than the size of the cell 38 and has a diameter in the range of 2 mm to 8 mm. If the size of the secondary lens 30 is smaller than 2 mm, the condensed light cannot be properly guided to the cell 38, and when the secondary lens 30 is positioned inside the secondary lens 30, the focus position F of the ultraviolet light changes with temperature. There is a possibility that the focus position F may deviate from the inside of the secondary lens 30 when it fluctuates due to such factors.
  • the size of the secondary lens 30 By setting the size of the secondary lens 30 to 2 mm or more, the condensed light can be appropriately guided to the cell 38. If the size of the secondary lens 30 is larger than 8 mm, the cost of the secondary lens 30 will increase. Therefore, the size of the secondary lens 30 is preferably 8 mm or less.
  • the secondary lens 30 can be formed using transparent ceramics in addition to transparent glass.
  • the transparent glass and the transparent ceramic have a sufficiently high melting point as compared with the silicone resin, and the absorptance of ultraviolet light is smaller than that of the silicone resin. Therefore, even if the focal position F of the ultraviolet light is inside the secondary lens 30, the secondary lens 30 is not significantly decomposed or discolored.
  • FIG. 9 is a diagram showing three types of modules used in the verification test.
  • three types of modules comparative example product, example product 1, and example product 2 were used.
  • (a) is a module (unit) according to the comparative example product
  • (b) is a module (unit) according to the example product 1
  • (c) is a cross section of the module (unit) according to the example product 2. Shows.
  • the comparative example product and the example product are different only in the value of the height W of the frame 11a, and the other configurations are the same and are the same as the module 1M (unit 1U) shown in the above embodiment. ..
  • the set values of the sizes and arrangements of the primary lens 12f, the secondary lens 30, the cells 38, etc. are shown below.
  • Size of primary lens 12f Fresnel lens: square with 60 mm on one side Cell 38 size: square with 2.5 mm on one side
  • the primary lens 12f used was such that the focus position F of the ultraviolet light at room temperature was located at the second intersection 30b when the height W of the frame 11a was 120 mm.
  • the height W of the frame 11a of the comparative example product and the example products 1 and 2 was set as shown below. Comparative example product: 115 mm Example product 1: 120 mm Example product 2: 130 mm
  • FIG. 10 is a diagram showing the focus position F of the ultraviolet light of the comparative example product and the example products 1 and 2.
  • the height W of the frame 11a of the example product 1 is 120 mm. Therefore, the focal position F of the ultraviolet light in the example product 1 is located at the second intersection 30b.
  • the focal position F of the ultraviolet light in the example product 2 is located at a position with a distance of 10 mm from the second intersection 30b toward the primary lens 12f side at room temperature.
  • the focus position F of the ultraviolet light in the comparative example product is located at a position spaced from the first intersection 30a by 0.5 mm toward the cell 38 at room temperature. Therefore, the focal position F of the ultraviolet light of the comparative example product is located inside the sealing portion 46 at room temperature.
  • the output measurement by pseudo sunlight As the test method, using the comparative example product and the example products 1 and 2, the output measurement by pseudo sunlight, the energy density distribution measurement of the ultraviolet light in the sealing portion 46, and the acceleration related to the discoloration of the sealing portion 46 were performed. The test was conducted. In the output measurement by the pseudo sunlight, the pseudo sunlight corresponding to the direct solar radiation amount of 1000 W/m 2 was irradiated at room temperature and the output at that time was measured.
  • the energy density of the ultraviolet light was calculated by simulation.
  • the energy density in the sealing portion 46 the energy density on the plane orthogonal to the optical axis Ax was obtained at the midpoint between the first intersection 30a and the cell 38, and the energy density distribution was obtained.
  • the intermediate point between the first intersection 30a and the cell 38 corresponds to the focus position F of the ultraviolet light of the comparative example product.
  • the sealing portion 46 after heating the bottom plate 11b to 150° C. and irradiating the pseudo sunlight corresponding to the direct solar radiation amount of 1000 W/m 2 along the optical axis Ax for 100 hours, the sealing portion 46. was visually observed.
  • Example product 2 As a result of the output measurement by the pseudo sunlight, the output measurement result of the comparative example product and the example product 1 was 180 W, whereas the output measurement result of the example product 2 was 135 W.
  • Example product 2 the focal point position F of the ultraviolet light is largely shifted to the primary lens 12f side, and the irradiation range of the ultraviolet light and the condensed light is larger than the outer shape range of the secondary lens 30. Therefore, it is considered that a loss occurs when the condensed light from the primary lens 12f is applied to the secondary lens 30, and the output is reduced as compared with the comparative example product and the example product 1.
  • FIG. 11A is a diagram showing the measurement result of the comparative example product
  • FIG. 11B is a diagram showing the measurement result of the example product 1
  • FIG. 11C is a diagram showing the measurement result of the example product 2.
  • 11A, 11B, and 11C show a state in which the energy density is higher as the color approaches black to white. The maximum value of energy density is shown below.
  • Comparative example product 0.41 W/mm 2
  • Example product 1 0.10 W/mm 2
  • Example product 2 0.07 W/mm 2
  • the energy density is concentrated in the center in the comparative example product, while no strong concentration is observed in the example products 1 and 2.
  • the maximum value of the energy density is also highest in the comparative example product, and the example products 1 and 2 show lower values than the comparative example product. From this result, it can be seen that the example products 1 and 2 can suppress the increase in the energy density of the ultraviolet light passing through the sealing portion 46.
  • Comparative example product Sealing part 46 is discolored, and module output is reduced by 20%.
  • Example product 1 No sealing part 46 is discolored, and module output is not decreased.
  • Example product 2 Discoloration is generated in the sealing part 46. No module output reduction
  • the sealing portion 46 was discolored, but in the example products 1 and 2, the sealing portion 46 was not discolored.
  • the energy density of the ultraviolet light passing through the sealing portion 46 can be suppressed from increasing, and the discoloration of the sealing portion 46 can be suppressed. It became clear.
  • FIG. 12 is a sectional view showing a light receiving unit Ra according to a modification of the embodiment.
  • This modified example is different from the light receiving unit R of the above-described embodiment in the configuration of the light receiving unit Ra, and other points are common to the above-described embodiment.
  • the light receiving unit R according to the above-described embodiment includes the support unit 32 and the shield plate 36, the support unit 32 and the shield plate 36 are not essential configurations in implementing the present disclosure.
  • the supporting unit 32 and the shielding plate 36 may not be provided, and the secondary lens 300 may be supported by the sealing unit 460.
  • the light receiving unit Ra includes the secondary lens 300, the package 34, the cell 38, the lead frame (P side) 40, the wire 42, the lead frame (N side) 44, and the sealing unit 460.
  • the light receiving part Ra is mounted on the flexible printed wiring board 13.
  • the sealing portion 460 is a light-transmissive silicone resin.
  • the sealing portion 460 is provided in the gap between the secondary lens 300 and the cell 38 and seals the cell 38. Further, the sealing portion 460 supports the secondary lens 300 by contacting the cell side portion of the surface of the secondary lens 300.
  • the chain double-dashed line in FIG. 12 indicates the optical path of ultraviolet light in the condensed light condensed by the primary lens 12f, as in FIG.
  • the focal position F of the ultraviolet light in the condensed light condensed by the primary lens 12f is higher than the first intersection 300a where the cell side portion of the surface of the secondary lens 300 and the optical axis Ax intersect. It is located on the primary lens 12f side. That is, the focal position F of the ultraviolet light is located closer to the primary lens 12f than the cell side portion of the surface of the secondary lens 300 that contacts the sealing portion 460. More specifically, the focal position F of the ultraviolet light is located at the second intersection 300b where the primary lens side portion of the surface of the secondary lens 300 and the optical axis Ax intersect.
  • the focus position F of the ultraviolet light can be set to a position outside the sealing portion 460. Therefore, it is possible to prevent the energy of ultraviolet light passing through the silicone resin forming the sealing portion 460 from being dispersed and to increase the energy density, and to suppress the decomposition and discoloration of the sealing portion 460 containing the silicone resin. ..
  • the embodiments disclosed this time are exemplifications in all points and not restrictive.
  • the secondary lens 30 is not limited to a ball lens, and may be, for example, an aspherical lens. That is, the secondary lens 30 may have a shape including at least one of at least one of a spherical surface, an ellipsoidal surface, a conical surface, and an aspherical surface.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention is provided with: a primary lens that condenses incoming solar light; a cell that is provided at a position aligned with the optical axis, of the primary lens, directly opposing the sun and that generates power when the cell is irradiated with the light condensed by the primary lens; a secondary lens that is provided to a prescribed position on the optical axis, between the primary lens and the cell, so as to form a gap with respect to the cell; and a sealing part that is provided to the gap and that seals the cell by means of a light-transmitting resin material, wherein the focal position of ultraviolet light of the light condensed by the primary lens is positioned closer to the primary lens side than the point of intersection between the optical axis and the cell side part of the secondary lens surface.

Description

集光型太陽光発電ユニット、集光型太陽光発電モジュール、集光型太陽光発電パネル、集光型太陽光発電装置、及び集光型太陽光発電ユニットの製造方法Concentrating solar power generation unit, concentrating solar power generation module, concentrating solar power generation panel, concentrating solar power generation device, and method for manufacturing concentrating solar power generation unit
 本開示は、集光型太陽光発電ユニット、集光型太陽光発電モジュール、集光型太陽光発電パネル、集光型太陽光発電装置、及び集光型太陽光発電ユニットの製造方法に関する。
 本出願は、2018年12月20日出願の日本出願第2018-237993号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
The present disclosure relates to a concentrating solar power generation unit, a concentrating solar power generation module, a concentrating solar power generation panel, a concentrating solar power generation device, and a method for manufacturing a concentrating solar power generation unit.
This application claims priority based on Japanese application No. 2018-237993 filed on Dec. 20, 2018, and incorporates all the contents described in the Japanese application.
 集光型太陽光発電装置において光学系基本単位を成すユニットには、例えば、太陽光を集光する一次レンズと、発電素子と、一次レンズ及び発電素子の間に配置された二次レンズとを備えたものがある。 The unit forming an optical system basic unit in the concentrating solar power generation device includes, for example, a primary lens that condenses sunlight, a power generation element, and a secondary lens arranged between the primary lens and the power generation element. I have something to prepare.
 二次レンズは、一次レンズが集光した集光光を発電素子に導くように設けられており、発電素子に対して比較的近接した位置に配置される。
 二次レンズと発電素子との間には所定の隙間(空間)が設けられており、その空間には、シリコーン樹脂等の光透過性を有する樹脂材料を充填してなるシール部(封止部)が設けられている(例えば、特許文献1参照)。
 この封止部は、前記空間を封止することで発電素子を外部環境から保護する。
The secondary lens is provided so as to guide the condensed light condensed by the primary lens to the power generation element, and is arranged at a position relatively close to the power generation element.
A predetermined gap (space) is provided between the secondary lens and the power generation element, and the space is filled with a resin material having optical transparency such as silicone resin (sealing portion). ) Is provided (for example, see Patent Document 1).
The sealing portion protects the power generation element from the external environment by sealing the space.
特開2017-34116号公報JP, 2017-34116, A
 一実施形態である集光型太陽光発電ユニットは、入射する太陽光を集光する一次レンズと、太陽と正対したときの前記一次レンズの光軸と一致する位置に設けられ、前記一次レンズが集光した集光光が照射されることで発電するセルと、前記光軸上で前記一次レンズと前記セルとの間にあって、前記セルとの間に隙間を形成する所定位置に設けられた二次レンズと、前記隙間に設けられ、光透過性を有する樹脂材料により前記セルを封止している封止部と、を備え、前記一次レンズによって集光される集光光のうちの紫外光の焦点位置が、前記二次レンズ表面のセル側部分と前記光軸とが交差する交差点よりも前記一次レンズ側に位置する。 The concentrating solar power generation unit according to one embodiment is provided at a position that coincides with a primary lens that collects incident sunlight and the optical axis of the primary lens when directly facing the sun. Is provided at a predetermined position on the optical axis between the primary lens and the cell that generates power by being irradiated with the condensed light that has been condensed, and that forms a gap between the cell and the primary lens. The secondary lens and a sealing portion which is provided in the gap and seals the cell with a resin material having a light-transmitting property. The focal position of light is located on the primary lens side with respect to the intersection of the cell side portion of the secondary lens surface and the optical axis.
 他の実施形態である集光型太陽光発電ユニットの製造方法は、入射する太陽光を集光する一次レンズと、太陽と正対したときの前記一次レンズの光軸と一致する位置に設けられ、前記一次レンズが集光した集光光が照射されることで発電するセルと、前記光軸上で前記一次レンズと前記セルとの間にあって、前記セルとの間に隙間を形成する所定位置に設けられた二次レンズと、前記隙間に設けられ、光透過性を有する樹脂材料により前記セルを封止している封止部と、を備える集光型太陽光発電ユニットの製造方法であって、前記一次レンズによって集光される集光光のうちの紫外光の焦点位置を、前記二次レンズ表面のセル側部分と前記光軸とが交差する交差点よりも前記一次レンズ側となるように設定する工程を含む。 A method for manufacturing a concentrating solar power generation unit that is another embodiment is provided in a position that coincides with a primary lens that collects incident sunlight and an optical axis of the primary lens when directly facing the sun. A cell that generates power by being irradiated with the condensed light condensed by the primary lens, and a predetermined position on the optical axis that is between the primary lens and the cell and that forms a gap between the cell and A method of manufacturing a concentrating photovoltaic power generation unit, comprising: a secondary lens provided in a space between the secondary lens and a sealing part that is provided in the gap and seals the cell with a resin material having light transparency. The focus position of the ultraviolet light of the condensed light condensed by the primary lens is located on the primary lens side with respect to the intersection point where the cell side portion of the secondary lens surface and the optical axis intersect. Including the step of setting.
図1は、1基分の、集光型の太陽光発電装置の一例を、受光面側から見た斜視図である。FIG. 1 is a perspective view of one example of a concentrating solar power generation device viewed from the light receiving surface side. 図2は、太陽に正対しているアレイの姿勢を示す斜視図である。FIG. 2 is a perspective view showing the attitude of the array facing the sun. 図3は、集光型太陽光発電モジュールの構成の一例を示す斜視図である。FIG. 3 is a perspective view showing an example of the configuration of the concentrating solar power generation module. 図4は、モジュールを構成する集光型発電の光学系の基本構成としての集光型太陽光発電ユニットの一例を示す断面図である。FIG. 4 is a sectional view showing an example of a concentrating solar power generation unit as a basic configuration of a concentrating power generation optical system that constitutes a module. 図5は、図4中、受光部の拡大図である。FIG. 5 is an enlarged view of the light receiving portion in FIG. 図6は、紫外光の焦点位置と各部との関係を示す図である。FIG. 6 is a diagram showing the relationship between the focal position of ultraviolet light and each part. 図7は、紫外光の焦点位置と各部との関係を示す図である。FIG. 7 is a diagram showing the relationship between the focal position of ultraviolet light and each part. 図8は、一次レンズを拡大した断面図である。FIG. 8 is an enlarged sectional view of the primary lens. 図9は、検証試験に用いた3種類のモジュールを示す図であり、図9中の(a)は比較例品に係るモジュール(ユニット)、(b)は実施例品1に係るモジュール(ユニット)、(c)は実施例品2に係るモジュール(ユニット)の断面を示している。FIG. 9 is a diagram showing three types of modules used in the verification test. In FIG. 9, (a) is a module (unit) related to the comparative example product, and (b) is a module (unit) related to the example product 1. ), (c) shows the cross section of the module (unit) according to the example product 2. 図10は、比較例品及び実施例品1,2の紫外光の焦点位置を示す図である。FIG. 10 is a diagram showing the focal positions of ultraviolet light of the comparative example product and the example products 1 and 2. 図11Aは比較例品の測定結果を示す図である。FIG. 11A is a diagram showing the measurement results of the comparative example product. 図11Bは実施例品1の測定結果を示す図である。FIG. 11B is a diagram showing the measurement results of Example product 1. 図11Cは実施例品2の測定結果を示す図である。FIG. 11C is a diagram showing the measurement results of Example product 2. 図12は、一変形例に係る受光部の拡大図である。FIG. 12 is an enlarged view of a light receiving unit according to a modification.
[発明が解決しようとする課題]
 上記封止部は、二次レンズと発電素子との間に充填されているため、集光光が通過する。封止部を構成する樹脂材料には、化学的に安定な材料が選ばれるが、エネルギー密度が高い集光光が封止部を通過すると、集光光に含まれる紫外光によって樹脂からなる封止部が分解、変色し、発電量を減少させるおそれが生じる。
[Problems to be Solved by the Invention]
Since the sealing portion is filled between the secondary lens and the power generating element, condensed light passes through. A chemically stable material is selected for the resin material forming the encapsulation part. However, when condensed light with high energy density passes through the encapsulation part, the sealing material made of resin is generated by the ultraviolet light contained in the condensed light. There is a risk that the stopper will disassemble and discolor, reducing the amount of power generation.
 また、紫外光をフィルター等で除去し、紫外光を減少させて集光することで封止部の分解、変色を防止することも考えられるが、そうすると、紫外光が有するエネルギーをロスすることとなり、この場合も結果的に発電量を減少させるおそれが生じる。 It is also possible to prevent the decomposition and discoloration of the sealing part by removing the ultraviolet light with a filter or the like and condensing it by reducing the ultraviolet light, but then, the energy of the ultraviolet light will be lost. In this case, too, there is a risk that the amount of power generation will eventually decrease.
 このため、封止部の分解、変色を抑制することができる技術が望まれる。本開示はこのような事情に鑑みてなされたものであり、封止部の分解、変色を抑制することができる技術を提供することを目的とする。 Therefore, a technology that can suppress the decomposition and discoloration of the sealing part is desired. The present disclosure has been made in view of such circumstances, and an object thereof is to provide a technique capable of suppressing decomposition and discoloration of a sealing portion.
[発明の効果]
 本開示によれば、封止部の分解、変色を抑制することができる。
[Effect of the invention]
According to the present disclosure, it is possible to suppress decomposition and discoloration of the sealing portion.
[本開示の実施形態の説明]
 最初に実施形態の内容を列記して説明する。
(1)一実施形態である集光型太陽光発電ユニットは、入射する太陽光を集光する一次レンズと、太陽と正対したときの前記一次レンズの光軸と一致する位置に設けられ、前記一次レンズが集光した集光光が照射されることで発電するセルと、前記光軸上で前記一次レンズと前記セルとの間にあって、前記セルとの間に隙間を形成する所定位置に設けられた二次レンズと、前記隙間に設けられ、光透過性を有する樹脂材料により前記セルを封止している封止部と、を備え、前記一次レンズによって集光される集光光のうちの紫外光の焦点位置が、前記二次レンズ表面のセル側部分と前記光軸とが交差する交差点よりも前記一次レンズ側に位置する。
[Description of Embodiments of the Present Disclosure]
First, the contents of the embodiment will be listed and described.
(1) The concentrating solar power generation unit according to one embodiment is provided at a position that coincides with a primary lens that collects incident sunlight and an optical axis of the primary lens when directly facing the sun, A cell that generates power by being irradiated with the condensed light condensed by the primary lens, and is located at a predetermined position on the optical axis between the primary lens and the cell and forms a gap with the cell. A secondary lens provided, and a sealing portion which is provided in the gap and seals the cell with a resin material having a light-transmitting property. The focal position of the ultraviolet light is located closer to the primary lens than the intersection where the cell side portion of the surface of the secondary lens and the optical axis intersect.
 上記構成の集光型太陽光発電ユニットによれば、紫外光の焦点位置を封止部から外れた位置にすることができる。よって、封止部を構成する樹脂材料を通過する紫外光のエネルギーが分散し、エネルギー密度が高くなるのを抑制でき、樹脂材料からなる封止部の分解、変色を抑制することができる。 According to the concentrating solar power generation unit with the above configuration, the focus position of the ultraviolet light can be set to a position outside the sealing section. Therefore, it is possible to prevent the energy of the ultraviolet light passing through the resin material forming the sealing portion from being dispersed and to increase the energy density, and to suppress the decomposition and discoloration of the sealing portion made of the resin material.
(2)上記集光型太陽光発電ユニットにおいて、前記紫外光の焦点位置は、前記一次レンズ及び前記二次レンズの間のレンズ間位置であって、前記紫外光の照射範囲が前記二次レンズの外形の範囲内に収まる最大の大きさとなる前記レンズ間位置よりもセル側に位置することが好ましい。
 この場合、紫外光の照射範囲を二次レンズの外形の範囲内に収めることができるので、集光光を無駄なく二次レンズに導くことができる。
(2) In the concentrating solar power generation unit, the focal position of the ultraviolet light is a lens position between the primary lens and the secondary lens, and the irradiation range of the ultraviolet light is the secondary lens. It is preferable to be located on the cell side with respect to the inter-lens position, which is the maximum size within the outer shape range.
In this case, since the irradiation range of the ultraviolet light can be set within the range of the outer shape of the secondary lens, the condensed light can be guided to the secondary lens without waste.
(3)上記集光型太陽光発電ユニットにおいて、前記紫外光の焦点位置は、周囲温度が室温の時に前記レンズ間位置と二次レンズとの間に位置し、周囲温度が55℃の時に前記二次レンズ内に位置することが好ましい。
 この場合、室温で当該ユニットを製造したとしても、室温よりもより高温な使用環境における紫外光の焦点位置を適切な位置にすることができる。
(3) In the concentrating solar power generation unit, the focal position of the ultraviolet light is located between the inter-lens position and the secondary lens when the ambient temperature is room temperature, and is the above when the ambient temperature is 55° C. It is preferably located in the secondary lens.
In this case, even if the unit is manufactured at room temperature, it is possible to set the focal position of the ultraviolet light to an appropriate position in a use environment that is higher than room temperature.
(4)また、上記集光型太陽光発電ユニットにおいて、前記紫外光の焦点位置は、周囲温度が室温の時、及び55℃の時に前記二次レンズ内に位置することが好ましい。
 この場合も、室温で当該ユニットを製造したとしても、室温よりもより高温な使用環境における紫外光の焦点位置を適切な位置にすることができる。
(4) Further, in the concentrating solar power generation unit, it is preferable that the focus position of the ultraviolet light is located in the secondary lens when the ambient temperature is room temperature and 55°C.
Also in this case, even if the unit is manufactured at room temperature, the focus position of the ultraviolet light in a use environment higher than room temperature can be set to an appropriate position.
(5)また、上記集光型太陽光発電ユニットにおいて、前記紫外光の焦点位置は、前記二次レンズ表面の一次レンズ側部分と前記光軸とが交差する交差点上に位置することが好ましい。
 この場合、紫外光の照射範囲を二次レンズの外形の範囲内により確実に収めることができるので、封止部の分割、変色を抑制しつつ、集光光を無駄なく二次レンズに導くことができる。
(5) Further, in the concentrating solar power generation unit, it is preferable that a focal position of the ultraviolet light is located on an intersection where a portion of the secondary lens surface on the primary lens side and the optical axis intersect.
In this case, the irradiation range of the ultraviolet light can be more surely contained within the range of the outer shape of the secondary lens. Therefore, it is possible to guide the condensed light to the secondary lens without waste while suppressing the division and discoloration of the sealing portion. You can
(6)上記集光型太陽光発電ユニットにおいて、前記二次レンズは、少なくとも一部に球面、楕円体面、錐面、非球面のいずれか1つ以上を含む形状であることが好ましい。 (6) In the concentrating solar power generation unit, it is preferable that the secondary lens has a shape including at least one of a spherical surface, an ellipsoidal surface, a conical surface, and an aspherical surface.
(7)上記集光型太陽光発電ユニットにおいて、前記二次レンズは、透明ガラス、又は透明セラミックによって形成されていることが好ましい。 (7) In the concentrating solar power generation unit, it is preferable that the secondary lens is made of transparent glass or transparent ceramic.
(8)上記集光型太陽光発電ユニットにおいて、前記一次レンズは、シート状のシート部と、前記シート部の一面に形成されレンズパターンを構成する多数の凸条からなるパターン部と、を含むフレネルレンズであり、前記シート部の厚みが、前記パターン部の厚みよりも薄くてもよい。
 この場合、シート部の厚みを相対的に薄くすることで、より多くの紫外光をセルへ導くことができ、より多くのエネルギーを発電に利用でき、発電量を増加させることができる。一方、本実施形態では、紫外光の焦点位置を封止部から外れた位置にして封止部を保護することができるので、より多くの紫外光をセルへ導いたとしても、封止部を構成する樹脂材料の分解や、変色を抑制することができる。
(8) In the concentrating solar power generation unit, the primary lens includes a sheet-shaped sheet portion, and a pattern portion formed on one surface of the sheet portion and including a plurality of ridges forming a lens pattern. It is a Fresnel lens, and the thickness of the sheet portion may be thinner than the thickness of the pattern portion.
In this case, by making the thickness of the sheet portion relatively thin, more ultraviolet light can be guided to the cell, more energy can be used for power generation, and the amount of power generation can be increased. On the other hand, in the present embodiment, since it is possible to protect the sealing portion by making the focal point position of the ultraviolet light off the sealing portion, even if more ultraviolet light is guided to the cell, the sealing portion is It is possible to suppress decomposition and discoloration of the constituent resin material.
(9)上記集光型太陽光発電ユニットにおいて、前記セル、前記二次レンズ及び前記封止部を収容する筐体をさらに備え、前記筐体は、前記セルが固定される底板と、前記底板から立設されるとともに先端部に前記一次レンズが固定され、前記一次レンズと前記セルとを離間して前記光軸上に配置する枠体と、を含み、前記枠体は、PBT、PP、及びPETのいずれかによって形成されていてもよい。
 この場合、周囲温度の変化によって、紫外光の焦点位置は変化するが、枠体をPBT、PP、及びPETのいずれかで形成することで、周囲温度の変化による紫外光の焦点位置の変化を、枠体の材質の膨張収縮で相殺することができる。
(9) The concentrating solar power generation unit further includes a housing that houses the cell, the secondary lens, and the sealing portion, and the housing includes a bottom plate to which the cell is fixed, and the bottom plate. And a frame body in which the primary lens is fixed to the tip end portion and is arranged on the optical axis with the primary lens and the cell being separated from each other, and the frame body is a PBT, PP, And PET.
In this case, the focus position of the ultraviolet light changes depending on the change of the ambient temperature. However, by forming the frame body of either PBT, PP, or PET, the focus position of the ultraviolet light changes due to the change of the ambient temperature. The expansion and contraction of the material of the frame body can offset each other.
(10)他の実施形態である集光型太陽光発電モジュールは、上記集光型太陽光発電ユニットを複数個並べて成る。
(11)また、他の実施形態である集光型太陽光発電パネルは、上記集光型太陽光発電モジュールを複数個並べて成る。
(12)また、他の実施形態である集光型太陽光発電装置は、上記集光型太陽光発電パネルと、当該集光型太陽光発電パネルが太陽の方向を向いて太陽の動きに追尾動作するように駆動する駆動装置とを備えている。
(10) A concentrating solar power generation module according to another embodiment is formed by arranging a plurality of the above concentrating solar power generation units.
(11) Further, a concentrating solar power generation panel according to another embodiment is formed by arranging a plurality of the above concentrating solar power generation modules.
(12) Further, in a concentrating solar power generation device according to another embodiment, the concentrating solar power generation panel and the concentrating solar power generation panel face the direction of the sun and track the movement of the sun. And a driving device that is driven to operate.
(13)他の実施形態である集光型太陽光発電ユニットの製造方法は、入射する太陽光を集光する一次レンズと、太陽と正対したときの前記一次レンズの光軸と一致する位置に設けられ、前記一次レンズが集光した集光光が照射されることで発電するセルと、前記光軸上で前記一次レンズと前記セルとの間にあって、前記セルとの間に隙間を形成する所定位置に設けられた二次レンズと、前記隙間に設けられ、光透過性を有する樹脂材料により前記セルを封止している封止部と、を備える集光型太陽光発電ユニットの製造方法であって、前記一次レンズによって集光される集光光のうちの紫外光の焦点位置を、前記二次レンズ表面のセル側部分と前記光軸とが交差する交差点よりも前記一次レンズ側となるように設定する工程を含む。 (13) In a method for manufacturing a concentrating solar power generation unit according to another embodiment, a primary lens that collects incident sunlight and a position that coincides with the optical axis of the primary lens when directly facing the sun. And a cell that is provided on the optical axis and generates electric power by being irradiated with the condensed light condensed by the primary lens, and a gap is formed between the cell and the primary lens on the optical axis. Manufacturing of a concentrating solar power generation unit including a secondary lens provided at a predetermined position, and a sealing portion provided in the gap and sealing the cell with a resin material having light transparency. In the method, the focal position of the ultraviolet light in the condensed light condensed by the primary lens is located on the primary lens side with respect to the intersection point where the cell side portion of the secondary lens surface intersects the optical axis. And the step of setting so that
[本開示の実施形態の詳細]
 以下、好ましい実施形態について図面を参照しつつ説明する。
 なお、以下に記載する実施形態の少なくとも一部を任意に組み合わせてもよい。
[Details of the embodiment of the present disclosure]
Hereinafter, preferred embodiments will be described with reference to the drawings.
Note that at least a part of the embodiments described below may be arbitrarily combined.
〔太陽光発電装置〕
 図1は、1基分の、集光型の太陽光発電装置の一例を、受光面側から見た斜視図である。
 図1において、この太陽光発電装置100は、上部側で連続し、下部側で左右に分かれた形状のアレイ(太陽光発電パネル)1と、その支持装置2とを備えている。アレイ1は、背面側の架台(図示せず)に集光型太陽光発電モジュール(以下、単にモジュールともいう。)1Mを整列させて構成されている。図1の例では、左右のウイングを構成する(96(=12×8)×2)個と、中央の渡り部分の8個との、合計200個のモジュール1Mの集合体として、アレイ1が構成されている。
[Solar generator]
FIG. 1 is a perspective view of one example of a concentrating solar power generation device viewed from the light receiving surface side.
In FIG. 1, the photovoltaic power generation device 100 includes an array (photovoltaic power generation panel) 1 that is continuous on the upper side and is divided into left and right sides on the lower side, and a supporting device 2 thereof. The array 1 is configured by aligning a concentrating photovoltaic power generation module (hereinafter, also simply referred to as a module) 1M on a mount (not shown) on the back side. In the example of FIG. 1, the array 1 is an assembly of a total of 200 modules 1M including (96 (=12×8)×2) which constitute the left and right wings and eight in the central crossover portion. It is configured.
 支持装置2は、支柱21と、基礎22と、2軸駆動部23と、駆動軸となる水平軸24(図2)とを備えている。支柱21は、下端が基礎22に固定され、上端に2軸駆動部23を備えている。 The support device 2 includes a support 21, a foundation 22, a biaxial drive unit 23, and a horizontal shaft 24 (FIG. 2) serving as a drive shaft. The column 21 has a lower end fixed to the foundation 22 and a biaxial drive unit 23 provided at the upper end.
 図1において、基礎22は、上面のみが見える程度に地中に堅固に埋設される。基礎22を地中に埋設した状態で、支柱21は鉛直となり、水平軸24は水平となる。2軸駆動部23は、水平軸24を、方位角(支柱21を中心軸とした角度)及び仰角(水平軸24を中心軸とした角度)の2方向に回動させることができる。水平軸24が方位角又は仰角の方向に回動すれば、アレイ1もその方向に回動する。 In FIG. 1, the foundation 22 is firmly buried in the ground so that only the upper surface can be seen. With the foundation 22 buried in the ground, the support column 21 is vertical and the horizontal shaft 24 is horizontal. The biaxial drive unit 23 can rotate the horizontal shaft 24 in two directions of an azimuth angle (angle with the column 21 as a central axis) and an elevation angle (angle with the horizontal shaft 24 as a central axis). When the horizontal axis 24 rotates in the azimuth or elevation direction, the array 1 also rotates in that direction.
 なお、図1では1本の支柱21でアレイ1を支える支持装置2を示したが、支持装置2の構成は、これに限られるものではない。要するに、アレイ1を、2軸(方位角、仰角)で可動なように支持できる支持装置であればよい。 Although FIG. 1 shows the supporting device 2 that supports the array 1 with one column 21, the structure of the supporting device 2 is not limited to this. In short, any support device that can support the array 1 so as to be movable in two axes (azimuth and elevation) may be used.
 図1のようにアレイ1が鉛直になっているのは、通常、夜明け及び日没前である。
 日中は、アレイ1の受光面が常に太陽に正対する姿勢となるよう、2軸駆動部23が動作し、アレイ1は太陽の追尾動作を行う。
 図2は、一例として、太陽に正対しているアレイ1の姿勢を示す斜視図である。また、例えば赤道付近の南中時刻であれば、アレイ1は受光面を太陽に向けて水平な姿勢となる。夜間は、例えば、アレイ1の受光面を地面に向けて水平な姿勢となる。
The vertical position of the array 1 as shown in FIG. 1 is usually before dawn and before sunset.
During the daytime, the biaxial drive unit 23 operates so that the light-receiving surface of the array 1 always faces the sun, and the array 1 performs the sun tracking operation.
FIG. 2 is a perspective view showing the attitude of the array 1 facing the sun as an example. Also, for example, at the time of south-central time near the equator, the array 1 is in a horizontal posture with its light-receiving surface facing the sun. At night, for example, the light receiving surface of the array 1 is in a horizontal posture with the light receiving surface facing the ground.
〔集光型太陽光発電モジュールの構成例〕
 図3は、集光型太陽光発電モジュール1Mの構成の一例を示す斜視図である。
 モジュール1Mは、外観上の物理的な形態としては、例えば金属製又は樹脂製で長方形の平底容器状の筐体11と、その上に蓋のように取り付けられる集光部12と、を備えている。
 筐体11は、矩形板状の底板11bと、底板11bの周縁から立設された枠体11aとを含んで構成されている。
[Example of configuration of concentrating solar power generation module]
FIG. 3 is a perspective view showing an example of the configuration of the concentrating solar power generation module 1M.
The module 1M includes, as a physical form in appearance, a rectangular flat-bottom container-shaped casing 11 made of, for example, metal or resin, and a condensing unit 12 mounted thereon like a lid. There is.
The housing 11 is configured to include a rectangular bottom plate 11b and a frame body 11a provided upright from the peripheral edge of the bottom plate 11b.
 底板11bの内側面上には、例えば筐体11の左半分・右半分の各々において、1本の細長いフレキシブルプリント配線板13が図示のように方向転換しながら整列するように配置されている。フレキシブルプリント配線板13には相対的に幅広な部位と幅狭な部位とがある。セル(図示せず。)が実装されるのは幅広な部位である。セルは一次レンズ12fの各々の光軸に対応する位置に配置される。なお、ここでは、底板11bに設けられた構成要素としてフレキシブルプリント配線板13のみ示し、他の構成要素は省略している。 On the inner surface of the bottom plate 11b, for example, in each of the left and right halves of the housing 11, one elongated flexible printed wiring board 13 is arranged so as to be aligned while changing the direction as shown in the drawing. The flexible printed wiring board 13 has a relatively wide portion and a relatively narrow portion. A cell (not shown) is mounted in a wide area. The cell is arranged at a position corresponding to each optical axis of the primary lens 12f. Note that, here, only the flexible printed wiring board 13 is shown as a component provided on the bottom plate 11b, and other components are omitted.
 集光部12は、例えば1枚の光透過性のガラス板12aの裏面に樹脂製の一次レンズ(フレネルレンズ)12fが貼り付けられて構成されている。例えば図示の正方形(この例では14個×10個であるが、数量は説明上の一例に過ぎない。)の区画の1つ1つが、一次レンズ12fであり、太陽光を焦点位置に収束させることができる。 The light condensing unit 12 is configured, for example, by attaching a resin-made primary lens (Fresnel lens) 12f to the back surface of one light-transmissive glass plate 12a. For example, each of the divisions of the illustrated square (the number is 14×10 in this example, but the number is just an example for explanation) is the primary lens 12f and focuses the sunlight on the focus position. be able to.
〔集光型太陽光発電ユニットの構成例〕
 図4は、モジュール1Mを構成する集光型発電の光学系の基本構成としての集光型太陽光発電ユニット1Uの一例を示す断面図である。なお、図4に示す各部は、構造説明の都合上、適宜拡大して描いており、必ずしも実際の寸法に比例した図ではない(図4以降も同様である。)。
[Example of configuration of concentrating solar power generation unit]
FIG. 4 is a cross-sectional view showing an example of a concentrating solar power generation unit 1U as a basic configuration of a concentrating power generation optical system that constitutes the module 1M. It should be noted that the respective parts shown in FIG. 4 are appropriately enlarged and drawn for the sake of structural description, and are not necessarily proportional to the actual dimensions (the same applies to FIG. 4 and the subsequent figures).
 図4において、集光型太陽光発電ユニット1U(以下、単にユニット1Uともいう。)が、太陽と正対し、太陽光の入射角が0度であると、一次レンズ12fの光軸Ax上に、受光部Rの二次レンズ30及びセル38があり、一次レンズ12fにより集光される集光光は、受光部Rの二次レンズ30に取り込まれ、セル38へ導かれる。 In FIG. 4, when the concentrating solar power generation unit 1U (hereinafter, also simply referred to as the unit 1U) faces the sun and the incident angle of the sunlight is 0 degree, it is on the optical axis Ax of the primary lens 12f. There is the secondary lens 30 and the cell 38 of the light receiving section R, and the condensed light condensed by the primary lens 12f is taken into the secondary lens 30 of the light receiving section R and guided to the cell 38.
 図4に示すように集光部12は、枠体11aの先端部11a1に固定されている。これにより、枠体11aは、集光部12(一次レンズ12f)と受光部R(セル38)とを離間して光軸Ax上に配置する。
 よって、一次レンズ12fと、受光部Rとの距離は、枠体11aによって定まる。
As shown in FIG. 4, the light condensing unit 12 is fixed to the tip portion 11a1 of the frame body 11a. As a result, the frame 11a separates the light condensing unit 12 (primary lens 12f) and the light receiving unit R (cell 38) from each other and arranges them on the optical axis Ax.
Therefore, the distance between the primary lens 12f and the light receiving portion R is determined by the frame body 11a.
 図5は、図4中、受光部Rの拡大図である。
 図4及び図5において、受光部Rは、二次レンズ30、支持部32、パッケージ34、遮蔽板36、セル38、リードフレーム(P側)40、ワイヤー42、リードフレーム(N側)44、及び封止部46を含む。受光部Rは、フレキシブルプリント配線板13上に実装されている。
FIG. 5 is an enlarged view of the light receiving unit R in FIG.
4 and 5, the light receiving part R includes a secondary lens 30, a support part 32, a package 34, a shielding plate 36, a cell 38, a lead frame (P side) 40, a wire 42, a lead frame (N side) 44, And a sealing portion 46. The light receiving section R is mounted on the flexible printed wiring board 13.
 二次レンズ30は、例えば、透明ガラスにより形成されたボールレンズである。
 二次レンズ30は、支持部32の端面に配置された遮蔽板36の内周エッジ36eにより、セル38との間に光軸Ax方向の隙間が形成されるように支持されている。
 支持部32は、光軸Ax周りにセル38を囲むように設けられている。支持部32は、円筒状又は角筒状であり、樹脂によって形成される。支持部32は、パッケージ34上に固着されている。
The secondary lens 30 is, for example, a ball lens made of transparent glass.
The secondary lens 30 is supported by the inner peripheral edge 36 e of the shielding plate 36 arranged on the end surface of the support portion 32 so that a gap in the optical axis Ax direction is formed between the secondary lens 30 and the cell 38.
The support portion 32 is provided so as to surround the cell 38 around the optical axis Ax. The support portion 32 has a cylindrical shape or a rectangular tube shape, and is made of resin. The support portion 32 is fixed on the package 34.
 支持部32の端面に配置された遮蔽板36は、支持部32の端面に対応して円環板状に形成された部材である。遮蔽板36は、二次レンズ30を外れた光が直接支持部32やパッケージ34に照射されるのを遮蔽する。
 パッケージ34は、樹脂製であり、セル38、リードフレーム40,44を保持する。
 セル38の出力は、P側がリードフレーム40に、N側がワイヤー42を介してリードフレーム44に、それぞれ引き出される。
The shield plate 36 arranged on the end surface of the support portion 32 is a member formed in an annular plate shape corresponding to the end surface of the support portion 32. The shield plate 36 shields the light that has left the secondary lens 30 from directly irradiating the support portion 32 and the package 34.
The package 34 is made of resin and holds the cells 38 and the lead frames 40 and 44.
The output of the cell 38 is drawn to the lead frame 40 on the P side and to the lead frame 44 on the N side via the wire 42, respectively.
 封止部46は、光透過性を有するシリコーン樹脂である。封止部46は、シリコーン樹脂を、支持部32の内側面、二次レンズ30、及びセル38によって囲まれる空間内に充填することで構成されている。封止部46は、二次レンズ30とセル38との隙間に設けられ、セル38を封止する。 The sealing portion 46 is a silicone resin having a light transmitting property. The sealing portion 46 is configured by filling a silicone resin into the space surrounded by the inner surface of the support portion 32, the secondary lens 30, and the cell 38. The sealing portion 46 is provided in the gap between the secondary lens 30 and the cell 38 and seals the cell 38.
 セル38は、例えば、化合物半導体からなる発電素子である。セル38は矩形板状である。セル38には、二次レンズ30を通過した一次レンズ12fからの集光光が照射される。集光光が照射されることで、セル38は発電する。
 セル38のサイズは、一辺が1mmから4mmの範囲であることが好ましい。セル38の一辺が4mmより大きいと、半導体の必要量が増え、コストを増加させる要因となる。セル38の一辺を4mm以下とすることで、半導体の必要量を減らすことができ、低コスト化が可能となる。セル38の一辺が1mmより小さいと集光光を入射させることが困難となる。このため、セル38のサイズは、一辺が1mm以上であることが好ましい。
The cell 38 is, for example, a power generation element made of a compound semiconductor. The cell 38 has a rectangular plate shape. The cell 38 is irradiated with the condensed light from the primary lens 12f that has passed through the secondary lens 30. The cells 38 generate power by being irradiated with the condensed light.
The size of the cell 38 is preferably in the range of 1 mm to 4 mm on one side. If one side of the cell 38 is larger than 4 mm, the required amount of semiconductor increases, which causes a cost increase. By setting the side of the cell 38 to be 4 mm or less, the required amount of semiconductor can be reduced, and the cost can be reduced. If one side of the cell 38 is smaller than 1 mm, it becomes difficult to make condensed light enter. Therefore, the size of the cell 38 is preferably 1 mm or more on each side.
 図4及び図5中の2点鎖線は、一次レンズ12fによって集光される集光光のうちの紫外光の光路を示している。なお、本実施形態において、紫外光とは、波長が300~400nmの近紫外線をいう。
 本実施形態では、一次レンズ12fによって集光される集光光のうちの紫外光の焦点位置Fが、二次レンズ30表面のセル側部分と光軸Axとが交差する第1交差点30aよりも一次レンズ12f側に位置している。
 つまり、紫外光の焦点位置Fは、封止部46に接触する二次レンズ30表面のセル側部分よりも一次レンズ12f側に位置している。なお、二次レンズ30表面のセル側部分とは、二次レンズ30表面において、セル38側に向く部分である。
The two-dot chain line in FIGS. 4 and 5 indicates the optical path of the ultraviolet light in the condensed light condensed by the primary lens 12f. In the present embodiment, the ultraviolet light means near-ultraviolet light having a wavelength of 300 to 400 nm.
In the present embodiment, the focal position F of the ultraviolet light in the condensed light condensed by the primary lens 12f is higher than the first intersection 30a where the cell side portion of the surface of the secondary lens 30 and the optical axis Ax intersect. It is located on the primary lens 12f side.
That is, the focus position F of the ultraviolet light is located closer to the primary lens 12f than the cell side portion of the surface of the secondary lens 30 that contacts the sealing portion 46. The cell side portion of the surface of the secondary lens 30 is a portion of the surface of the secondary lens 30 that faces the cell 38 side.
 より具体的に、紫外光の焦点位置Fは、二次レンズ30表面の一次レンズ側部分と光軸Axとが交差する第2交差点30bに位置している。なお、二次レンズ30表面の一次レンズ側部分とは、二次レンズ30表面において、一次レンズ12f側に向く部分である。 More specifically, the focus position F of the ultraviolet light is located at the second intersection 30b where the primary lens side portion of the surface of the secondary lens 30 and the optical axis Ax intersect. The primary lens side portion of the surface of the secondary lens 30 is a portion of the surface of the secondary lens 30 that faces the primary lens 12f side.
 この構成によれば、紫外光の焦点位置Fを封止部46から外れた位置にすることができる。よって、封止部46を構成するシリコーン樹脂を通過する紫外光のエネルギーが分散し、エネルギー密度が高くなるのを抑制でき、シリコーン樹脂からなる封止部46の分解、変色を抑制することができる。 With this configuration, the focal position F of the ultraviolet light can be set to a position outside the sealing portion 46. Therefore, it is possible to prevent the energy of the ultraviolet light passing through the silicone resin forming the sealing portion 46 from being dispersed and to increase the energy density, and to suppress the decomposition and discoloration of the sealing portion 46 made of the silicone resin. ..
 なお、紫外光の焦点位置Fは、第1交差点30aよりも一次レンズ12f側に位置していればよいので、例えば、図6に示すように、紫外光の焦点位置Fは、二次レンズ30内であって第1交差点30a近傍に位置していてもよい。
 また、紫外光の焦点位置Fは、図7に示す一次レンズ12fと二次レンズ30との間の限度位置33(レンズ間位置)よりもセル38側に位置していれば、二次レンズ30内に位置していなくてもよい。
 なお、限度位置33は、図7に示すように、光軸Ax上の位置であり、焦点位置Fが当該限度位置33に位置するときの紫外光の照射範囲が二次レンズ30の外形の範囲内に収まる最大の大きさとなる位置である。図7における限度位置33は、焦点位置Fが当該限度位置33に位置するときの紫外光の照射範囲を光軸Axに沿って平面視したとき、紫外光の照射範囲が二次レンズ30の外形とほぼ一致する位置である。
The focal point position F of the ultraviolet light may be located closer to the primary lens 12f side than the first intersection 30a, so that the focal point position F of the ultraviolet light is, for example, as shown in FIG. It may be located in the vicinity of the first intersection 30a.
If the focus position F of the ultraviolet light is located on the cell 38 side of the limit position 33 (interlens position) between the primary lens 12f and the secondary lens 30 shown in FIG. It does not have to be located inside.
As shown in FIG. 7, the limit position 33 is a position on the optical axis Ax, and the irradiation range of the ultraviolet light when the focus position F is located at the limit position 33 is the outer shape range of the secondary lens 30. It is the position where the maximum size is within. The limit position 33 in FIG. 7 is such that, when the irradiation range of the ultraviolet light when the focal position F is located at the limit position 33 is viewed in plan along the optical axis Ax, the irradiation range of the ultraviolet light is the outer shape of the secondary lens 30. It is a position that almost coincides with.
 このように、紫外光の焦点位置Fが限度位置33よりもセル38側に位置していれば、紫外光の照射範囲を二次レンズ30の外形の範囲内に収めることができるので、一次レンズ12fからの集光光を無駄なく二次レンズ30へ導くことができる。 In this way, if the focal position F of the ultraviolet light is located on the cell 38 side of the limit position 33, the irradiation range of the ultraviolet light can be kept within the outer shape of the secondary lens 30, and thus the primary lens The condensed light from 12f can be guided to the secondary lens 30 without waste.
 以上のように、紫外光の焦点位置Fは、図7に示すように、第1交差点30aから限度位置33までの範囲H内に位置していればよい。 As described above, the focal point position F of the ultraviolet light may be located within the range H from the first intersection 30a to the limit position 33, as shown in FIG.
 なお、紫外光の焦点位置Fは、上記各条件を満たしかつ、第1交差点30aから一次レンズ12f側への間隔が3mm以上、7.5mm以下となる範囲に位置することが好ましい。
 本実施形態で用いる一次レンズ12fの焦点距離は、例えば、10℃上昇するごとに約0.9mm長くなる場合がある。よって、周囲温度が室温下において、紫外光の焦点位置Fが第1交差点30aから一次レンズ12f側へ3mm以上の間隔を置いた位置である場合、周囲温度が55℃程度の高温になったとしても紫外光の焦点位置Fが封止部46にまで移動するのを抑制することができる。このため、紫外光の焦点位置Fは、第1交差点30aから一次レンズ12f側へ3mm以上の位置であることが好ましい。なお、ここでは、室温は25℃とする。
It is preferable that the focal position F of the ultraviolet light satisfies the above conditions and is located in a range in which the distance from the first intersection 30a to the primary lens 12f side is 3 mm or more and 7.5 mm or less.
The focal length of the primary lens 12f used in this embodiment may increase by about 0.9 mm for every 10° C. increase, for example. Therefore, if the focal point position F of the ultraviolet light is at a position spaced by 3 mm or more from the first intersection 30a to the primary lens 12f side when the ambient temperature is room temperature, it is assumed that the ambient temperature becomes a high temperature of about 55°C. Also, it is possible to prevent the focal point position F of the ultraviolet light from moving to the sealing portion 46. Therefore, it is preferable that the focus position F of the ultraviolet light is a position of 3 mm or more from the first intersection 30a to the primary lens 12f side. The room temperature is 25° C. here.
 また、紫外光の焦点位置Fと第1交差点30aとの間隔が7.5mmより大きくなると、例えば、二次レンズ30のサイズが直径5mmであると、紫外光の照射範囲が二次レンズ30のサイズよりも大きくなり、集光光に無駄が生じる。このため、紫外光の焦点位置Fと第1交差点30aとの間隔は7.5mm以内であることが好ましい。 Further, when the distance between the focal point position F of the ultraviolet light and the first intersection 30a is larger than 7.5 mm, for example, when the size of the secondary lens 30 is 5 mm in diameter, the irradiation range of the ultraviolet light is the secondary lens 30. The size is larger than the size, and the condensed light is wasted. Therefore, it is preferable that the distance between the focal position F of the ultraviolet light and the first intersection 30a is 7.5 mm or less.
 上述のように、一次レンズ12fの焦点距離は、10℃上昇するごとに約0.9mm長くなる場合があり、周囲温度が室温から55℃まで上昇すると一次レンズ12fの焦点距離は3mm程度長くなることが予め判っている。
 よって、周囲温度が55℃の時の紫外光の焦点位置Fが二次レンズ30内に位置するように、周囲温度が室温時の紫外光の焦点位置Fを限度位置33と二次レンズ30との間で調整することもできる。
As described above, the focal length of the primary lens 12f may increase by about 0.9 mm for every 10° C. increase, and when the ambient temperature rises from room temperature to 55° C., the focal length of the primary lens 12f increases by about 3 mm. I know in advance.
Therefore, the focus position F of the ultraviolet light when the ambient temperature is room temperature is set to the limit position 33 and the secondary lens 30 so that the focus position F of the ultraviolet light when the ambient temperature is 55° C. is located inside the secondary lens 30. You can also adjust between.
 このように調整することで得られるユニット1Uの紫外光の焦点位置Fは、周囲温度が室温の時に限度位置33と二次レンズ30との間に位置し、周囲温度が55℃の時に二次レンズ30内に位置する。
 この場合、室温で当該ユニット1Uを製造したとしても、室温よりもより高温な使用環境における紫外光の焦点位置Fを適切な位置にすることができる。
The focus position F of the ultraviolet light of the unit 1U obtained by adjusting in this way is located between the limit position 33 and the secondary lens 30 when the ambient temperature is room temperature, and the secondary position when the ambient temperature is 55° C. Located within lens 30.
In this case, even if the unit 1U is manufactured at room temperature, the focus position F of the ultraviolet light in a use environment higher than room temperature can be set to an appropriate position.
 また、同様に、周囲温度が55℃の時の紫外光の焦点位置Fが二次レンズ30内に位置するように、周囲温度が室温時の紫外光の焦点位置Fを二次レンズ30内で調整することもできる。 Similarly, the focus position F of the ultraviolet light when the ambient temperature is room temperature is set in the secondary lens 30 so that the focus position F of the ultraviolet light when the ambient temperature is 55° C. is located in the secondary lens 30. It can also be adjusted.
 このように調整することで得られるユニット1Uの紫外光の焦点位置Fは、周囲温度が室温の時、及び55℃の時に二次レンズ30内に位置する。
 この場合も、室温で当該ユニット1Uを製造したとしても、室温よりもより高温な使用環境における紫外光の焦点位置Fを適切な位置にすることができる。
The focus position F of the ultraviolet light of the unit 1U obtained by adjusting in this way is located inside the secondary lens 30 when the ambient temperature is room temperature and 55°C.
Also in this case, even if the unit 1U is manufactured at room temperature, the focus position F of the ultraviolet light can be set to an appropriate position in a use environment that is higher than room temperature.
 なお、紫外光の焦点位置Fの位置調整は、筐体11の枠体11aの高さを調整することで行うことができる。 The position of the focal point position F of the ultraviolet light can be adjusted by adjusting the height of the frame body 11a of the housing 11.
 枠体11a(筐体11)は、PBT((Poly Butylene Terephtalate)、PP(Polyepropylene)、及びPET(Poly Ethylene Terephthalate)のいずれかによって形成されることが好ましい。 The frame 11a (housing 11) is preferably formed of any one of PBT ((Poly Butyrene Terephthalate), PP (Polypropylene), and PET (Poly Ethylene Terephthalate).
 これら樹脂は、熱膨張率が、アルミニウム合金等と比較して大きい。例えば、PBTを用いて枠体11aを形成した場合、熱膨張率が190×10-6/℃であり、室温から55℃まで上昇すると、枠体11aの高さが約120mmであるとすると、0.7mm程度長くなることとなる。
 よって、これら樹脂を用いて枠体11aを形成すれば、周囲温度の変化による紫外光の焦点位置Fの変化を、枠体11aの材質の膨張収縮で相殺することができる。
These resins have a large coefficient of thermal expansion as compared with aluminum alloys and the like. For example, when the frame 11a is formed using PBT, the coefficient of thermal expansion is 190×10 −6 /° C., and when the temperature is increased from room temperature to 55° C., the height of the frame 11a is about 120 mm. It will be about 0.7 mm longer.
Therefore, if the frame 11a is formed by using these resins, the change in the focal point position F of the ultraviolet light due to the change in ambient temperature can be offset by the expansion and contraction of the material of the frame 11a.
 一次レンズ12fの集光倍率は、500倍から1200倍の範囲であることが好ましい。一次レンズ12fの集光倍率が500倍よりも小さいと、単位面積当たりの必要セル数が増え、コストを増加させる要因となる。また、一次レンズ12fの集光倍率が1200倍よりも大きいと、セル38の過度な温度上昇を招き、セル38の発電性能を低下させ、発電効率が低下するおそれが生じる。
 本実施形態では、一次レンズ12fの集光倍率を500倍から1200倍の間に設定することで、コスト増加を抑制しつつ発電効率の低下を抑制することができる。
 また、一次レンズ12fのサイズは、一辺が40mmから80mmの範囲であることが好ましい。
The condensing magnification of the primary lens 12f is preferably in the range of 500 times to 1200 times. When the condensing magnification of the primary lens 12f is less than 500 times, the number of required cells per unit area increases, which causes a cost increase. If the condensing magnification of the primary lens 12f is larger than 1200 times, the temperature of the cell 38 is excessively increased, the power generation performance of the cell 38 is deteriorated, and the power generation efficiency may be deteriorated.
In the present embodiment, by setting the condensing magnification of the primary lens 12f between 500 times and 1200 times, it is possible to suppress a cost increase and a decrease in power generation efficiency.
The size of the primary lens 12f is preferably in the range of 40 mm to 80 mm on each side.
 一次レンズ12fのF値は2前後であることが好ましい。F値が2よりも大きくなると、一次レンズ12f(集光部12)と底板との間の距離を画定するモジュール1Mの筐体高さが高くなり、モジュール1Mがかさばるとともにコスト増を招く。また、F値が2よりも小さくなると、焦点距離が相対的に短くなり、一次レンズ12f、二次レンズ30、及びセル38それぞれにおける集光光の位置のばらつきに対する許容範囲が小さくなり、セル38に照射されない集光光が増加する等、集光光を適切に導くことができなくなるおそれが生じる。
 本実施形態では、一次レンズ12fのF値は2前後とすることで、コスト増加を抑制しつつセル38に集光光を適切に導くことができる。
The F value of the primary lens 12f is preferably around 2. When the F value is larger than 2, the height of the housing of the module 1M that defines the distance between the primary lens 12f (light condensing unit 12) and the bottom plate becomes high, which makes the module 1M bulky and increases the cost. When the F value is smaller than 2, the focal length becomes relatively short, and the allowable range for the variation in the position of the condensed light in each of the primary lens 12f, the secondary lens 30, and the cell 38 becomes small, and the cell 38 There is a possibility that the condensed light cannot be properly guided, for example, the amount of the condensed light that is not radiated to the inside increases.
In the present embodiment, by setting the F value of the primary lens 12f to around 2, it is possible to appropriately guide the condensed light to the cell 38 while suppressing the cost increase.
 図8は、一次レンズ12fを拡大した断面図である。
 一次レンズ12fは、上述のように、ガラス板12aの裏面に設けられている。一次レンズ12fは、シリコーン樹脂を用いてシート状に形成されており、シート状のシート部50と、シート部50の一面50aに形成された多数の凸条52aからなるパターン部52とを含んでいる。
 多数の凸条52aは、フレネルレンズとしてのレンズパターンを構成している。よって、パターン部52は、太陽光を集光するフレネルレンズとしての機能を有する。
 シート部50は、パターン部52が形成される基材としての機能を有する。また、シート部50は、太陽光を透過させるフィルターとして機能させることができる。例えば、シート部50の厚みT1を十分に厚くすれば、太陽光に含まれる紫外光を除去するフィルターとして機能させることができる。しかし、シート部50が紫外光を除去すると、紫外光が有するエネルギーをロスすることとなる。
FIG. 8 is an enlarged cross-sectional view of the primary lens 12f.
The primary lens 12f is provided on the back surface of the glass plate 12a as described above. The primary lens 12f is formed in a sheet shape using a silicone resin, and includes a sheet-shaped sheet portion 50, and a pattern portion 52 formed on the one surface 50a of the sheet portion 50 and including a plurality of ridges 52a. There is.
The large number of ridges 52a form a lens pattern as a Fresnel lens. Therefore, the pattern portion 52 has a function as a Fresnel lens that collects sunlight.
The sheet portion 50 has a function as a base material on which the pattern portion 52 is formed. In addition, the seat portion 50 can function as a filter that transmits sunlight. For example, if the thickness T1 of the sheet portion 50 is made sufficiently thick, it can function as a filter for removing the ultraviolet light included in sunlight. However, if the sheet portion 50 removes the ultraviolet light, the energy of the ultraviolet light will be lost.
 この点、本実施形態では、シート部50の厚みT1が、パターン部52の厚みT2よりも薄い。このように、シート部50の厚みT1を相対的に薄くすれば、シート部50におけるフィルターとしての機能が抑圧される。このため、より多くの紫外光をセル38へ導くことができ、この結果、発電量を増加させることができる。
 本実施形態では、紫外光の焦点位置Fを封止部46から外れた位置にして封止部46を保護することができるので、より多くの紫外光をセル38へ導いたとしても、封止部46を構成するシリコーン樹脂の分解や、変色を抑制することができる。
In this respect, in the present embodiment, the thickness T1 of the sheet portion 50 is thinner than the thickness T2 of the pattern portion 52. In this way, if the thickness T1 of the seat portion 50 is relatively thin, the function of the seat portion 50 as a filter is suppressed. Therefore, more ultraviolet light can be guided to the cell 38, and as a result, the amount of power generation can be increased.
In this embodiment, the focal point F of the ultraviolet light can be set to a position deviated from the sealing portion 46 to protect the sealing portion 46. Therefore, even if more ultraviolet light is guided to the cell 38, the sealing is performed. It is possible to suppress decomposition and discoloration of the silicone resin forming the portion 46.
 言い換えると、本実施形態では、紫外光の焦点位置Fを封止部46から外れた位置にして封止部46を保護するように構成したので、より多くの紫外光を導くことで、封止部46を構成するシリコーン樹脂の分解や、変色を抑制しつつ、発電量を増加させることができる。 In other words, in the present embodiment, the focus position F of the ultraviolet light is set to a position deviated from the sealing portion 46 so as to protect the sealing portion 46. Therefore, by guiding a larger amount of ultraviolet light, the sealing is performed. It is possible to increase the amount of power generation while suppressing the decomposition and discoloration of the silicone resin forming the portion 46.
 パターン部52の厚みT2は、0.1mmから1mmの範囲であることが好ましい。パターン部52の厚みT2が0.1mmより小さいと、フレネルレンズを構成する凸条52aのピッチを狭くし数を増加させる必要があるが、この場合、凸条52a先端の曲率半径が大きくなり、凸条52aの先端における集光ロスが増える。このため、パターン部52の厚みT2は0.1mm以上であることが好ましい。
 また、パターン部52の厚みT2が1mmを超えると、シリコーン樹脂の使用量の増加によってコストを増加させることとなる。このため、パターン部52の厚みT2は1mm以下であることが好ましい。
The thickness T2 of the pattern portion 52 is preferably in the range of 0.1 mm to 1 mm. If the thickness T2 of the pattern portion 52 is smaller than 0.1 mm, it is necessary to narrow the pitch of the ridges 52a forming the Fresnel lens to increase the number, but in this case, the radius of curvature of the tip of the ridge 52a becomes large, The light collection loss at the tip of the ridge 52a increases. Therefore, the thickness T2 of the pattern portion 52 is preferably 0.1 mm or more.
Moreover, if the thickness T2 of the pattern portion 52 exceeds 1 mm, the cost is increased due to an increase in the amount of silicone resin used. Therefore, the thickness T2 of the pattern portion 52 is preferably 1 mm or less.
 また、シート部50の厚みT1は、パターン部52の厚みT2よりも薄くかつ0.02mmから0.5mmの範囲であることが好ましい。
 シート部50の厚みT1が0.02mmより小さいと、シリコーン樹脂の量が少なく、形成時にシート部50内に気泡が生じる可能性が高まる。シート部50の厚みT1を0.02mm以上とすることで、適切にシート部50を形成できる。このため、シート部50の厚みT1は、0.02mm以上であることが好ましい。
 また、シート部50の厚みT1を0.5mmより大きくすると、シリコーン樹脂の使用量の増加によってコストを増加させることとなる。このため、シート部50の厚みT1は0.5mm以下であることが好ましい。
The thickness T1 of the sheet portion 50 is preferably thinner than the thickness T2 of the pattern portion 52 and is in the range of 0.02 mm to 0.5 mm.
When the thickness T1 of the sheet portion 50 is smaller than 0.02 mm, the amount of the silicone resin is small, and the possibility that air bubbles will be generated in the sheet portion 50 during formation is increased. By setting the thickness T1 of the seat portion 50 to 0.02 mm or more, the seat portion 50 can be appropriately formed. Therefore, the thickness T1 of the seat portion 50 is preferably 0.02 mm or more.
Further, if the thickness T1 of the seat portion 50 is larger than 0.5 mm, the cost is increased due to an increase in the amount of silicone resin used. Therefore, the thickness T1 of the seat portion 50 is preferably 0.5 mm or less.
 二次レンズ30のサイズは、セル38のサイズよりも大きい必要がある。一次レンズ12fからの集光光が二次レンズ30を介してセル38へ導かれるからである。二次レンズ30のサイズは、セル38のサイズよりも大きくかつ、直径2mmから8mmの範囲であることが好ましい。二次レンズ30のサイズが2mmより小さいと、集光光を適切にセル38へ導くことができず、また、二次レンズ30内に位置させた場合において、紫外光の焦点位置Fが温度変化等によって変動したときに焦点位置Fが二次レンズ30内から外れてしまうおそれがある。二次レンズ30のサイズを2mm以上とすることで、集光光を適切にセル38へ導くことができる。
 また、二次レンズ30のサイズを8mmより大きくすると、二次レンズ30のコストを増加させることとなる。このため、二次レンズ30のサイズは8mm以下であることが好ましい。
The size of the secondary lens 30 needs to be larger than the size of the cell 38. This is because the condensed light from the primary lens 12f is guided to the cell 38 via the secondary lens 30. The size of the secondary lens 30 is preferably larger than the size of the cell 38 and has a diameter in the range of 2 mm to 8 mm. If the size of the secondary lens 30 is smaller than 2 mm, the condensed light cannot be properly guided to the cell 38, and when the secondary lens 30 is positioned inside the secondary lens 30, the focus position F of the ultraviolet light changes with temperature. There is a possibility that the focus position F may deviate from the inside of the secondary lens 30 when it fluctuates due to such factors. By setting the size of the secondary lens 30 to 2 mm or more, the condensed light can be appropriately guided to the cell 38.
If the size of the secondary lens 30 is larger than 8 mm, the cost of the secondary lens 30 will increase. Therefore, the size of the secondary lens 30 is preferably 8 mm or less.
 なお、二次レンズ30は、透明ガラスの他、透明セラミックを用いて形成することができる。透明ガラス及び透明セラミックは、シリコーン樹脂と比較して融点が十分高く、紫外光の吸収率がシリコーン樹脂よりも小さい。このため、紫外光の焦点位置Fを二次レンズ30内としても二次レンズ30に分解や変色等は顕著に生じない。 Note that the secondary lens 30 can be formed using transparent ceramics in addition to transparent glass. The transparent glass and the transparent ceramic have a sufficiently high melting point as compared with the silicone resin, and the absorptance of ultraviolet light is smaller than that of the silicone resin. Therefore, even if the focal position F of the ultraviolet light is inside the secondary lens 30, the secondary lens 30 is not significantly decomposed or discolored.
〔検証試験について〕
 次に、上記実施形態に係るユニット1Uによる封止部46の変色抑制効果を検証するための試験結果について説明する。
 図9は、検証試験に用いた3種類のモジュールを示す図である。
 検証試験には、図9に示すように、3種類のモジュール(比較例品、実施例品1、及び実施例品2)を用いた。図9中の(a)は比較例品に係るモジュール(ユニット)、(b)は実施例品1に係るモジュール(ユニット)、(c)は実施例品2に係るモジュール(ユニット)の断面を示している。
[About verification test]
Next, a test result for verifying the discoloration suppressing effect of the sealing portion 46 by the unit 1U according to the above embodiment will be described.
FIG. 9 is a diagram showing three types of modules used in the verification test.
In the verification test, as shown in FIG. 9, three types of modules (comparative example product, example product 1, and example product 2) were used. In FIG. 9, (a) is a module (unit) according to the comparative example product, (b) is a module (unit) according to the example product 1, and (c) is a cross section of the module (unit) according to the example product 2. Shows.
 上記比較例品及び実施例品は、枠体11aの高さWの値が異なるのみで、他の構成は、同一であり、上記実施形態にて示したモジュール1M(ユニット1U)と同様である。下記に一次レンズ12f、二次レンズ30、セル38等のサイズや配置の設定値を示す。
 一次レンズ12f(フレネルレンズ)のサイズ:一辺が60mmの正方形
 セル38のサイズ             :一辺が2.5mmの正方形
 二次レンズ30(ボールレンズ)のサイズ  :直径4.5mm
 セル38と、二次レンズ30との間隔    :1mm
The comparative example product and the example product are different only in the value of the height W of the frame 11a, and the other configurations are the same and are the same as the module 1M (unit 1U) shown in the above embodiment. .. The set values of the sizes and arrangements of the primary lens 12f, the secondary lens 30, the cells 38, etc. are shown below.
Size of primary lens 12f (Fresnel lens): square with 60 mm on one side Cell 38 size: square with 2.5 mm on one side Secondary lens 30 (ball lens) size: 4.5 mm in diameter
Distance between cell 38 and secondary lens 30: 1 mm
 また、一次レンズ12fは、枠体11aの高さWが120mmのときに室温における紫外光の焦点位置Fが第2交差点30bに位置するように設定されたものを用いた。
 比較例品、及び実施例品1,2の枠体11aの高さWは下記に示すように設定した。
  比較例品 :115mm
  実施例品1:120mm
  実施例品2:130mm
Further, the primary lens 12f used was such that the focus position F of the ultraviolet light at room temperature was located at the second intersection 30b when the height W of the frame 11a was 120 mm.
The height W of the frame 11a of the comparative example product and the example products 1 and 2 was set as shown below.
Comparative example product: 115 mm
Example product 1: 120 mm
Example product 2: 130 mm
 図10は、比較例品及び実施例品1,2の紫外光の焦点位置Fを示す図である。
 実施例品1の枠体11aの高さWは120mmである。よって、実施例品1における紫外光の焦点位置Fは、第2交差点30bに位置する。
 実施例品2における紫外光の焦点位置Fは、室温において第2交差点30bから一次レンズ12f側へ10mmの間隔を置いた位置に位置する。
 比較例品における紫外光の焦点位置Fは、室温において第1交差点30aからセル38側へ0.5mmの間隔を置いた位置に位置する。よって、比較例品の紫外光の焦点位置Fは、室温において封止部46内に位置する。
FIG. 10 is a diagram showing the focus position F of the ultraviolet light of the comparative example product and the example products 1 and 2.
The height W of the frame 11a of the example product 1 is 120 mm. Therefore, the focal position F of the ultraviolet light in the example product 1 is located at the second intersection 30b.
The focal position F of the ultraviolet light in the example product 2 is located at a position with a distance of 10 mm from the second intersection 30b toward the primary lens 12f side at room temperature.
The focus position F of the ultraviolet light in the comparative example product is located at a position spaced from the first intersection 30a by 0.5 mm toward the cell 38 at room temperature. Therefore, the focal position F of the ultraviolet light of the comparative example product is located inside the sealing portion 46 at room temperature.
 試験方法としては、上記比較例品及び実施例品1,2を用い、疑似太陽光による出力測定、封止部46における紫外光のエネルギー密度の分布測定、及び、封止部46の変色に関する加速試験を行った。
 疑似太陽光による出力測定は、室温下において直達日射量1000W/m相当の疑似太陽光を照射しそのときの出力を測定した。
As the test method, using the comparative example product and the example products 1 and 2, the output measurement by pseudo sunlight, the energy density distribution measurement of the ultraviolet light in the sealing portion 46, and the acceleration related to the discoloration of the sealing portion 46 were performed. The test was conducted.
In the output measurement by the pseudo sunlight, the pseudo sunlight corresponding to the direct solar radiation amount of 1000 W/m 2 was irradiated at room temperature and the output at that time was measured.
 紫外光のエネルギー密度の分布測定については、上記比較例品及び実施例品1,2それぞれについて、室温下において直達日射量1000W/mの太陽光が入射したときの封止部46における波長400nmの紫外光のエネルギー密度をシミュレーションにより求めた。
 封止部46におけるエネルギー密度については、第1交差点30aとセル38との中間地点において光軸Axと直交する平面上のエネルギー密度を求め、エネルギー密度の分布を取得した。なお、第1交差点30aとセル38との中間地点は、比較例品の紫外光の焦点位置Fに相当する。
Regarding the distribution measurement of the energy density of the ultraviolet light, the wavelength of 400 nm in the sealing portion 46 when the direct sunlight of 1000 W/m 2 of the sunlight is incident on the comparative example product and the example products 1 and 2 respectively at room temperature. The energy density of the ultraviolet light was calculated by simulation.
Regarding the energy density in the sealing portion 46, the energy density on the plane orthogonal to the optical axis Ax was obtained at the midpoint between the first intersection 30a and the cell 38, and the energy density distribution was obtained. The intermediate point between the first intersection 30a and the cell 38 corresponds to the focus position F of the ultraviolet light of the comparative example product.
 封止部46の変色に関する加速試験については、底板11bを150℃まで加熱し、直達日射量1000W/m相当の疑似太陽光を100時間光軸Axに沿って照射した後、封止部46を目視観察した。 Regarding the accelerated test regarding the discoloration of the sealing portion 46, after heating the bottom plate 11b to 150° C. and irradiating the pseudo sunlight corresponding to the direct solar radiation amount of 1000 W/m 2 along the optical axis Ax for 100 hours, the sealing portion 46. Was visually observed.
 下記に疑似太陽光による出力測定を示す。
   比較例品 :180W
   実施例品1:180W
   実施例品2:135W
The output measurement by pseudo sunlight is shown below.
Comparative example product: 180W
Example product 1: 180 W
Example product 2: 135 W
 疑似太陽光による出力測定の結果、比較例品及び実施例品1の出力測定結果は180Wであるのに対し、実施例品2の出力測定結果は135Wであった。
 実施例品2では、紫外光の焦点位置Fが一次レンズ12f側へ大きくずれており、紫外光及び集光光の照射範囲が二次レンズ30の外形の範囲よりも大きくなっている。このため、一次レンズ12fによる集光光を二次レンズ30へ与える際にロスが生じ、比較例品及び実施例品1と比較して出力が低下していると考えられる。
As a result of the output measurement by the pseudo sunlight, the output measurement result of the comparative example product and the example product 1 was 180 W, whereas the output measurement result of the example product 2 was 135 W.
In Example product 2, the focal point position F of the ultraviolet light is largely shifted to the primary lens 12f side, and the irradiation range of the ultraviolet light and the condensed light is larger than the outer shape range of the secondary lens 30. Therefore, it is considered that a loss occurs when the condensed light from the primary lens 12f is applied to the secondary lens 30, and the output is reduced as compared with the comparative example product and the example product 1.
 次に、紫外光のエネルギー密度の分布測定の結果を示す。
 図11Aは比較例品の測定結果、図11Bは実施例品1の測定結果、図11Cは実施例品2の測定結果を示す図である。図11A、図11B、及び図11Cでは、黒から白へ近づくほどエネルギー密度が高い状態を示している。また、下記にエネルギー密度の最大値を示す。
   比較例品 :0.41W/mm
   実施例品1:0.10W/mm
   実施例品2:0.07W/mm
Next, the results of measurement of the distribution of energy density of ultraviolet light will be shown.
11A is a diagram showing the measurement result of the comparative example product, FIG. 11B is a diagram showing the measurement result of the example product 1, and FIG. 11C is a diagram showing the measurement result of the example product 2. 11A, 11B, and 11C show a state in which the energy density is higher as the color approaches black to white. The maximum value of energy density is shown below.
Comparative example product: 0.41 W/mm 2
Example product 1: 0.10 W/mm 2
Example product 2: 0.07 W/mm 2
 図11A、図11B、及び図11Cに示すように、比較例品ではエネルギー密度が中央に集中している一方、実施例品1,2では強い集中が見られない。
 エネルギー密度の最大値も比較例品が最も高く、実施例品1,2は、比較例品よりも低い値を示している。
 この結果から、実施例品1,2によれば、封止部46を通過する紫外光のエネルギー密度が高くなるのを抑制できることが判る。
As shown in FIG. 11A, FIG. 11B, and FIG. 11C, the energy density is concentrated in the center in the comparative example product, while no strong concentration is observed in the example products 1 and 2.
The maximum value of the energy density is also highest in the comparative example product, and the example products 1 and 2 show lower values than the comparative example product.
From this result, it can be seen that the example products 1 and 2 can suppress the increase in the energy density of the ultraviolet light passing through the sealing portion 46.
 次に、封止部46の変色に関する加速試験の結果を下記に示す。
   比較例品 :封止部46が変色し、モジュールの出力が20%低下
   実施例品1:封止部46に変色はなく、モジュールの出力低下もなし
   実施例品2:封止部46に変色はなく、モジュールの出力低下もなし
Next, the result of the accelerated test regarding the discoloration of the sealing portion 46 is shown below.
Comparative example product: Sealing part 46 is discolored, and module output is reduced by 20%. Example product 1: No sealing part 46 is discolored, and module output is not decreased. Example product 2: Discoloration is generated in the sealing part 46. No module output reduction
 上記のように、比較例品では封止部46に変色が生じるが、実施例品1,2では封止部46に変色は生じなかった。 As described above, in the comparative example product, the sealing portion 46 was discolored, but in the example products 1 and 2, the sealing portion 46 was not discolored.
 このように、検証試験の結果から、実施例品1,2によれば、封止部46を通過する紫外光のエネルギー密度が高くなるのを抑制でき、封止部46の変色を抑制できることが明らかとなった。 As described above, according to the results of the verification test, according to the example products 1 and 2, the energy density of the ultraviolet light passing through the sealing portion 46 can be suppressed from increasing, and the discoloration of the sealing portion 46 can be suppressed. It became clear.
〔変形例〕
 以上、本開示の実施形態について説明したが、本開示は前述した形態以外にも種々の変更を行うことが可能である。以下、本開示の実施形態に係る変形例について説明する。以下の変形例において、実施形態と同様の構成については、同じ符号を付して説明を省略する。
[Modification]
Although the embodiments of the present disclosure have been described above, the present disclosure can be modified in various ways other than the above-described embodiments. Hereinafter, modified examples according to the embodiment of the present disclosure will be described. In the following modified examples, the same components as those in the embodiment are designated by the same reference numerals and the description thereof will be omitted.
 図12は、実施形態の一変形例に係る受光部Raを示す断面図である。本変形例は、受光部Raの構成に関して上記の実施形態の受光部Rと相違し、その他の点は上記の実施形態と共通する。上記の実施形態に係る受光部Rは、支持部32及び遮蔽板36を有するが、本開示の実施において支持部32及び遮蔽板36は必須の構成ではない。本変形例に係る受光部Raのように、支持部32及び遮蔽板36を有さず、封止部460により二次レンズ300を支持するように構成してもよい。 FIG. 12 is a sectional view showing a light receiving unit Ra according to a modification of the embodiment. This modified example is different from the light receiving unit R of the above-described embodiment in the configuration of the light receiving unit Ra, and other points are common to the above-described embodiment. Although the light receiving unit R according to the above-described embodiment includes the support unit 32 and the shield plate 36, the support unit 32 and the shield plate 36 are not essential configurations in implementing the present disclosure. Unlike the light receiving unit Ra according to this modification, the supporting unit 32 and the shielding plate 36 may not be provided, and the secondary lens 300 may be supported by the sealing unit 460.
 受光部Raは、二次レンズ300、パッケージ34、セル38、リードフレーム(P側)40、ワイヤー42、リードフレーム(N側)44、及び封止部460を含む。受光部Raは、フレキシブルプリント配線板13上に実装されている。 The light receiving unit Ra includes the secondary lens 300, the package 34, the cell 38, the lead frame (P side) 40, the wire 42, the lead frame (N side) 44, and the sealing unit 460. The light receiving part Ra is mounted on the flexible printed wiring board 13.
 封止部460は、光透過性を有するシリコーン樹脂である。封止部460は、二次レンズ300とセル38との隙間に設けられ、セル38を封止する。また、封止部460は、二次レンズ300表面のセル側部分と接触することで、二次レンズ300を支持する。 The sealing portion 460 is a light-transmissive silicone resin. The sealing portion 460 is provided in the gap between the secondary lens 300 and the cell 38 and seals the cell 38. Further, the sealing portion 460 supports the secondary lens 300 by contacting the cell side portion of the surface of the secondary lens 300.
 図12中の2点鎖線は、図5と同様に、一次レンズ12fによって集光される集光光のうちの紫外光の光路を示している。本変形例では、一次レンズ12fによって集光される集光光のうちの紫外光の焦点位置Fが、二次レンズ300表面のセル側部分と光軸Axとが交差する第1交差点300aよりも一次レンズ12f側に位置している。つまり、紫外光の焦点位置Fは、封止部460に接触する二次レンズ300表面のセル側部分よりも一次レンズ12f側に位置している。より具体的には、紫外光の焦点位置Fは、二次レンズ300表面の一次レンズ側部分と光軸Axとが交差する第2交差点300bに位置している。 The chain double-dashed line in FIG. 12 indicates the optical path of ultraviolet light in the condensed light condensed by the primary lens 12f, as in FIG. In this modification, the focal position F of the ultraviolet light in the condensed light condensed by the primary lens 12f is higher than the first intersection 300a where the cell side portion of the surface of the secondary lens 300 and the optical axis Ax intersect. It is located on the primary lens 12f side. That is, the focal position F of the ultraviolet light is located closer to the primary lens 12f than the cell side portion of the surface of the secondary lens 300 that contacts the sealing portion 460. More specifically, the focal position F of the ultraviolet light is located at the second intersection 300b where the primary lens side portion of the surface of the secondary lens 300 and the optical axis Ax intersect.
 この構成によれば、紫外光の焦点位置Fを封止部460から外れた位置にすることができる。よって、封止部460を構成するシリコーン樹脂を通過する紫外光のエネルギーが分散し、エネルギー密度が高くなるのを抑制でき、シリコーン樹脂を含む封止部460の分解、変色を抑制することができる。 With this configuration, the focus position F of the ultraviolet light can be set to a position outside the sealing portion 460. Therefore, it is possible to prevent the energy of ultraviolet light passing through the silicone resin forming the sealing portion 460 from being dispersed and to increase the energy density, and to suppress the decomposition and discoloration of the sealing portion 460 containing the silicone resin. ..
〔その他〕
 なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。
 上記実施形態では、二次レンズ30にボールレンズを用いた場合を例示した。しかしながら、二次レンズ30は、ボールレンズに限られず、例えば非球面レンズであってもよい。すなわち、二次レンズ30は、少なくとも一部に球面、楕円体面、錐面、非球面のいずれか1つ以上を含む形状であればよい。
[Other]
It should be understood that the embodiments disclosed this time are exemplifications in all points and not restrictive.
In the above embodiment, the case where the ball lens is used as the secondary lens 30 is illustrated. However, the secondary lens 30 is not limited to a ball lens, and may be, for example, an aspherical lens. That is, the secondary lens 30 may have a shape including at least one of at least one of a spherical surface, an ellipsoidal surface, a conical surface, and an aspherical surface.
 本開示の範囲は請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。 The scope of the present disclosure is indicated by the claims, and is intended to include meanings equivalent to the claims and all modifications within the scope.
 1 アレイ
 1M 集光型太陽光発電モジュール
 1U 集光型太陽光発電ユニット
 2 支持装置
 11 筐体
 11b 底板
 11a 枠体
 11a1 先端部
 12 集光部
 12a ガラス板
 12f 一次レンズ
 13 フレキシブルプリント配線板
 21 支柱
 22 基礎
 23 軸駆動部
 24 水平軸
 30、300 二次レンズ
 30a、300a 第1交差点
 30b、300b 第2交差点
 32 枠体
 33 限度位置(レンズ間位置)
 34 パッケージ
 36 遮蔽板
 36e 内周エッジ
 38 セル
 40 リードフレーム
 42 ワイヤー
 44 リードフレーム
 46、460 封止部
 50 シート部
 50a 一面
 52 パターン部
 52a 凸条
 100 太陽光発電装置
 R、Ra 受光部
DESCRIPTION OF SYMBOLS 1 array 1M concentrating solar power generation module 1U concentrating solar power generation unit 2 supporting device 11 housing 11b bottom plate 11a frame 11a1 tip part 12 condensing part 12a glass plate 12f primary lens 13 flexible printed wiring board 21 prop 22 Basic 23 Axis drive unit 24 Horizontal axis 30,300 Secondary lens 30a, 300a First intersection 30b, 300b Second intersection 32 Frame body 33 Limit position (position between lenses)
34 Package 36 Shielding Plate 36e Inner Edge 38 Cell 40 Lead Frame 42 Wire 44 Lead Frame 46, 460 Sealing Part 50 Sheet Part 50a One Surface 52 Pattern Part 52a Convex 100 Solar Power Generation Device R, Ra Light Receiving Part

Claims (13)

  1.  入射する太陽光を集光する一次レンズと、
     太陽と正対したときの前記一次レンズの光軸と一致する位置に設けられ、前記一次レンズが集光した集光光が照射されることで発電するセルと、
     前記光軸上で前記一次レンズと前記セルとの間にあって、前記セルとの間に隙間を形成する所定位置に設けられた二次レンズと、
     前記隙間に設けられ、光透過性を有する樹脂材料により前記セルを封止している
    封止部と、を備え、
     前記一次レンズによって集光される集光光のうちの紫外光の焦点位置が、前記二次レンズ表面のセル側部分と前記光軸とが交差する交差点よりも前記一次レンズ側に位置する
    集光型太陽光発電ユニット。
    A primary lens that collects incoming sunlight,
    A cell provided at a position corresponding to the optical axis of the primary lens when facing the sun, and generating power by irradiating the condensed light condensed by the primary lens,
    A secondary lens provided between the primary lens and the cell on the optical axis and provided at a predetermined position to form a gap between the cell and the cell.
    A sealing portion which is provided in the gap and seals the cell with a resin material having a light-transmitting property,
    The focus position of the ultraviolet light of the condensed light condensed by the primary lens is located on the primary lens side with respect to the intersection point where the cell side portion of the secondary lens surface intersects the optical axis. Type solar power generation unit.
  2.  前記紫外光の焦点位置は、前記一次レンズと前記二次レンズとの間のレンズ間位置であって、前記紫外光の照射範囲が前記二次レンズの外形の範囲内に収まる最大の大きさとなる前記レンズ間位置よりもセル側に位置する
    請求項1に記載の集光型太陽光発電ユニット。
    The focal position of the ultraviolet light is a position between the lenses between the primary lens and the secondary lens, and the irradiation range of the ultraviolet light has a maximum size that falls within the range of the outer shape of the secondary lens. The concentrating solar power generation unit according to claim 1, wherein the concentrating solar power generation unit is located closer to the cell than the inter-lens position.
  3.  前記紫外光の焦点位置は、周囲温度が室温の時に前記レンズ間位置と二次レンズとの間に位置し、周囲温度が55℃の時に前記二次レンズ内に位置する
    請求項1又は請求項2に記載の集光型太陽光発電ユニット。
    The focus position of the ultraviolet light is located between the inter-lens position and the secondary lens when the ambient temperature is room temperature, and is located inside the secondary lens when the ambient temperature is 55° C. The concentrating solar power generation unit described in 2.
  4.  前記紫外光の焦点位置は、周囲温度が室温の時、及び55℃の時に前記二次レンズ内に位置する
    請求項1又は請求項2に記載の集光型太陽光発電ユニット。
    The concentrating solar power generation unit according to claim 1 or 2, wherein the focal position of the ultraviolet light is located in the secondary lens when the ambient temperature is room temperature and 55°C.
  5.  前記紫外光の焦点位置は、前記二次レンズ表面の一次レンズ側部分と前記光軸とが交差する交差点上に位置する
    請求項2に記載の集光型太陽光発電ユニット。
    The concentrating solar power generation unit according to claim 2, wherein the focus position of the ultraviolet light is located on an intersection where a portion of the secondary lens surface on the primary lens side and the optical axis intersect.
  6.  前記二次レンズは、少なくとも一部に球面、楕円体面、錐面、非球面のいずれか1つ以上を含む形状である
    請求項1から請求項5のいずれか一項に記載の集光型太陽光発電ユニット。
    The concentrating sun according to any one of claims 1 to 5, wherein the secondary lens has a shape including at least one of at least one of a spherical surface, an ellipsoidal surface, a conical surface, and an aspherical surface. Photovoltaic unit.
  7.  前記二次レンズは、透明ガラス、又は透明セラミックによって形成されている
    請求項1から請求項6のいずれか一項に記載の集光型太陽光発電ユニット。
    The concentrating solar power generation unit according to any one of claims 1 to 6, wherein the secondary lens is made of transparent glass or transparent ceramic.
  8.  前記一次レンズは、シート状のシート部と、前記シート部の一面に形成されレンズパターンを構成する多数の凸条からなるパターン部と、を含むフレネルレンズであり、
     前記シート部の厚みが、前記パターン部の厚みよりも薄い
    請求項1から請求項7のいずれか一項に記載の集光型太陽光発電ユニット。
    The primary lens is a Fresnel lens including a sheet-shaped sheet portion, and a pattern portion formed on one surface of the sheet portion and including a plurality of convex stripes forming a lens pattern,
    The concentrating solar power generation unit according to any one of claims 1 to 7, wherein a thickness of the sheet portion is thinner than a thickness of the pattern portion.
  9.  前記セル、前記二次レンズ及び前記封止部を収容する筐体をさらに備え、
     前記筐体は、
     前記セルが固定される底板と、
     前記底板から立設されるとともに先端部に前記一次レンズが固定され、前記一次レンズと前記セルとを離間して前記光軸上に配置する枠体と、を含み、
     前記枠体は、PBT、PP、及びPETのいずれかによって形成されている
    請求項1から請求項8のいずれか一項に記載の集光型太陽光発電ユニット。
    Further comprising a housing that houses the cell, the secondary lens, and the sealing portion,
    The housing is
    A bottom plate to which the cells are fixed,
    A frame that is erected from the bottom plate and has the primary lens fixed to a tip end thereof, and that is arranged on the optical axis while separating the primary lens and the cell from each other,
    The concentrating solar power generation unit according to any one of claims 1 to 8, wherein the frame body is formed of any one of PBT, PP, and PET.
  10.  請求項1から請求項9のいずれか一項に記載の集光型太陽光発電ユニットを複数個並べて成る集光型太陽光発電モジュール。 A concentrating solar power generation module comprising a plurality of the concentrating solar power generation units according to any one of claims 1 to 9.
  11.  請求項10に記載の集光型太陽光発電モジュールを複数個並べて成る集光型太陽光発電パネル。 A concentrating solar power generation panel comprising a plurality of the concentrating solar power generation modules according to claim 10.
  12.  請求項11に記載の集光型太陽光発電パネルと、
     前記集光型太陽光発電パネルが太陽の方向を向いて太陽の動きに追尾動作するように駆動する駆動装置と、
    を備える集光型太陽光発電装置。
    A concentrating solar power generation panel according to claim 11;
    A drive device for driving the concentrating solar power generation panel to face the direction of the sun so as to follow the movement of the sun.
    A concentrating solar power generation device.
  13.  入射する太陽光を集光する一次レンズと、
     太陽と正対したときの前記一次レンズの光軸と一致する位置に設けられ、前記一次レンズが集光した集光光が照射されることで発電するセルと、
     前記光軸上で前記一次レンズと前記セルとの間にあって、前記セルとの間に隙間を形成する所定位置に設けられた二次レンズと、
     前記隙間に設けられ、光透過性を有する樹脂材料により前記セルを封止している
    封止部と、を備える集光型太陽光発電ユニットの製造方法であって、
     前記一次レンズによって集光される集光光のうちの紫外光の焦点位置を、前記二次レンズ表面のセル側部分と前記光軸とが交差する交差点よりも前記一次レンズ側となるように設定する工程を含む
    集光型太陽光発電ユニットの製造方法。
    A primary lens that collects incoming sunlight,
    A cell provided at a position corresponding to the optical axis of the primary lens when facing the sun, and generating power by irradiating the condensed light condensed by the primary lens,
    A secondary lens provided between the primary lens and the cell on the optical axis and provided at a predetermined position to form a gap between the cell and the cell.
    A method for manufacturing a concentrating solar power generation unit, comprising: a sealing portion provided in the gap and sealing the cell with a resin material having a light-transmitting property,
    The focus position of the ultraviolet light of the condensed light condensed by the primary lens is set to be on the primary lens side with respect to the intersection point where the cell side portion of the secondary lens surface and the optical axis intersect. A method for manufacturing a concentrating solar power generation unit including a step of performing.
PCT/JP2019/048478 2018-12-20 2019-12-11 Light-condensing solar power generation unit, light-condensing solar power generation module, light-condensing solar power generation panel, light-condensing solar power generation device, and method for manufacturing light-condensing solar power generation unit WO2020129773A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-237993 2018-12-20
JP2018237993 2018-12-20

Publications (1)

Publication Number Publication Date
WO2020129773A1 true WO2020129773A1 (en) 2020-06-25

Family

ID=71100451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048478 WO2020129773A1 (en) 2018-12-20 2019-12-11 Light-condensing solar power generation unit, light-condensing solar power generation module, light-condensing solar power generation panel, light-condensing solar power generation device, and method for manufacturing light-condensing solar power generation unit

Country Status (1)

Country Link
WO (1) WO2020129773A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010118507A (en) * 2008-11-13 2010-05-27 Sharp Corp Solar cell, condenser solar power generating module, and method for manufacturing solar cell
US20100236603A1 (en) * 2009-02-09 2010-09-23 Etienne Menard Concentrator-Type Photovoltaic (CPV) Modules, Receiver and Sub-Receivers and Methods of Forming Same
US20120227796A1 (en) * 2011-03-09 2012-09-13 Greenvolts, Inc. Optics within a concentrated photovoltaic receiver containing a cpv cell
JP2013211487A (en) * 2012-03-30 2013-10-10 Sharp Corp Secondary lens, solar battery mounting body, condensing type photovoltaic power generation unit, and condensing type photovoltaic power generation module
JP2014220268A (en) * 2013-05-01 2014-11-20 大日本印刷株式会社 Condensed photovoltaic power generator and condenser lens member
JP2016181678A (en) * 2015-03-23 2016-10-13 パナソニックIpマネジメント株式会社 Solar cell
JP2017034106A (en) * 2015-08-03 2017-02-09 住友電気工業株式会社 Light-condensing type photovoltaic power generation unit, light-condensing type photovoltaic power generation module, light-condensing type photovoltaic power generation panel and light-condensing type photovoltaic power generator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010118507A (en) * 2008-11-13 2010-05-27 Sharp Corp Solar cell, condenser solar power generating module, and method for manufacturing solar cell
US20100236603A1 (en) * 2009-02-09 2010-09-23 Etienne Menard Concentrator-Type Photovoltaic (CPV) Modules, Receiver and Sub-Receivers and Methods of Forming Same
US20120227796A1 (en) * 2011-03-09 2012-09-13 Greenvolts, Inc. Optics within a concentrated photovoltaic receiver containing a cpv cell
JP2013211487A (en) * 2012-03-30 2013-10-10 Sharp Corp Secondary lens, solar battery mounting body, condensing type photovoltaic power generation unit, and condensing type photovoltaic power generation module
JP2014220268A (en) * 2013-05-01 2014-11-20 大日本印刷株式会社 Condensed photovoltaic power generator and condenser lens member
JP2016181678A (en) * 2015-03-23 2016-10-13 パナソニックIpマネジメント株式会社 Solar cell
JP2017034106A (en) * 2015-08-03 2017-02-09 住友電気工業株式会社 Light-condensing type photovoltaic power generation unit, light-condensing type photovoltaic power generation module, light-condensing type photovoltaic power generation panel and light-condensing type photovoltaic power generator

Similar Documents

Publication Publication Date Title
CN107851679B (en) Concentrating photovoltaic unit, concentrating photovoltaic module, concentrating photovoltaic panel, and concentrating photovoltaic device
WO2013147008A1 (en) Secondary lens, solar cell mounting body, light gathering solar energy unit, light gathering solar energy device, and light gathering solar energy module
US10608580B2 (en) Concentrator photovoltaic unit, concentrator photovoltaic module, concentrator photovoltaic panel, and concentrator photovoltaic apparatus
CN107851680B (en) Concentrating photovoltaic unit, concentrating photovoltaic module, concentrating photovoltaic panel, and concentrating photovoltaic device
WO2008041502A1 (en) Solar cell, light concentrating photovoltaic power generation module, light concentrating photovoltaic power generation unit, solar cell manufacturing method and solar cell manufacturing apparatus
JP2013211487A (en) Secondary lens, solar battery mounting body, condensing type photovoltaic power generation unit, and condensing type photovoltaic power generation module
WO2012160994A1 (en) Concentrator solar cell and method for manufacturing same
WO2020129773A1 (en) Light-condensing solar power generation unit, light-condensing solar power generation module, light-condensing solar power generation panel, light-condensing solar power generation device, and method for manufacturing light-condensing solar power generation unit
US20210367554A1 (en) Fresnel lens for concentrator photovoltaic apparatus, concentrator photovoltaic system, and method of manufacturing fresnel lens for concentrator photovoltaic apparatus
KR101412533B1 (en) Concentrating Photovoltaics Apparatus Having Non-Powered Solar Light Tracking Function
US11073306B2 (en) Lens, solar cell unit and joining method for a solar cell unit
US20120180847A1 (en) Method for improving solar energy condensation efficiency in solar energy condensation electric power facility
EP2996161A1 (en) Micro tracking solar collector
CN103208950B (en) A kind of based on the concentrating photovoltaic power generation device from axle Fresnel reflection condenser
TW201934937A (en) Concentrator photovoltaic module and concentrator photovoltaic device
US20120206826A1 (en) Light-collecting device and light-collecting method thereof
WO2019171935A1 (en) Light-receiving part for concentrated solar power generation unit, concentrated solar power generation module, and light-receiving part production method
JP2021040391A (en) Light condensation type photovoltaic generation module, light condensation type photovoltaic generation panel, and light condensation type photovoltaic generation device
ITPD20100300A1 (en) MODULAR CONCENTRATOR, PARTICULARLY FOR PHOTOVOLTAIC SOLAR PANELS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19898918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19898918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP