WO2020093121A1 - Equipamento e método de análise de um fluído - Google Patents

Equipamento e método de análise de um fluído Download PDF

Info

Publication number
WO2020093121A1
WO2020093121A1 PCT/BR2019/050381 BR2019050381W WO2020093121A1 WO 2020093121 A1 WO2020093121 A1 WO 2020093121A1 BR 2019050381 W BR2019050381 W BR 2019050381W WO 2020093121 A1 WO2020093121 A1 WO 2020093121A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
analysis
optical
control unit
pneumatic
Prior art date
Application number
PCT/BR2019/050381
Other languages
English (en)
French (fr)
Inventor
Rogério Baptista AUAD
Original Assignee
Auad Rogerio Baptista
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Auad Rogerio Baptista filed Critical Auad Rogerio Baptista
Priority to EP19882447.6A priority Critical patent/EP3879258B1/en
Priority to JP2021525299A priority patent/JP7388801B2/ja
Priority to US17/292,082 priority patent/US11835448B2/en
Priority to CA3121383A priority patent/CA3121383A1/en
Publication of WO2020093121A1 publication Critical patent/WO2020093121A1/pt

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • G01N21/253Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/15Preventing contamination of the components of the optical system or obstruction of the light path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/32Paints; Inks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N2021/0193Arrangements or apparatus for facilitating the optical investigation the sample being taken from a stream or flow to the measurement cell
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/15Preventing contamination of the components of the optical system or obstruction of the light path
    • G01N2021/152Scraping; Brushing; Moving band
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N2021/3155Measuring in two spectral ranges, e.g. UV and visible
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8411Application to online plant, process monitoring
    • G01N2021/8416Application to online plant, process monitoring and process controlling, not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • G01N2035/00534Mixing by a special element, e.g. stirrer

Definitions

  • the present invention patent describes an equipment and method of analyzing a fluid, suspension, solution, dispersion or fluid emulsion. More specifically, it comprises equipment that automatically analyzes the characteristic properties of fluid samples, such as paints, enamels and dyes, among others, so that adjustments can be made to the fluid to achieve optical properties, such as color, opacity, hue, saturation (tinting power), coverage and luminosity, using a spectrometric measurement technique by analyzing the transmission of a irradiated fixed thickness film, in the range of 50 to 1000 microns.
  • fluid samples such as paints, enamels and dyes, among others
  • optical properties such as color, opacity, hue, saturation (tinting power), coverage and luminosity
  • ink can be conceptualized as a liquid, pasty or solid pigmented composition that, when applied in a thin layer (film) on an appropriate surface, in the state in which it is supplied or after dilution, is convertible, after time, in a solid, colored, translucent or opaque film.
  • the main constituents of a paint are: (a) resin, which is usually a translucent or transparent medium, where its main function is to promote the adhesion of the paint film on the substrate, which is also responsible for wetting the pigments, aspects of brightness, chemical resistance, physical resistance, among others; (b) pigments and fillers that promote color development, film opacity, resistance to radiation, optical properties, among others; (c) additives that give the film physical, chemical, rheological properties, among others; (d) solvents or thinners that are used primarily to adjust the viscosity characteristics and applicability of the paint on the substrate, evaporating at the end of this process and enabling the curing / drying of the formed film.
  • Pigments unlike dyes, can be described as solid substances, finely divided and practically insoluble in the vehicle, which are used in the preparation of paints with the purpose of giving them color, opacity or other special characteristics. That is, they are used in order to modify the optical properties of a paint, as well as the properties of products incorporated in it.
  • a relevant property that characterizes pigments is their ability to obtain the colors to be imitated, and their presence may also be necessary to obtain opacity, since most paints are used to cover surfaces to which they are applied.
  • spectrophotometers are used that measure the physical properties of the reflected light (% of reflectance) along the visible spectrum, between 400 to 700 nanometers.
  • the generated graph having the wavelength as the axis of the abscissa and the percentage of reflection obtained on the axis of the ordinate, effectively characterizes the color of the ink film, becoming like the equivalent of a digital impression ”of that color.
  • Factory Paint (facfory pack), where these paints are produced directly at the factories and already delivered in the final packaging, and all their properties have already been adjusted during the manufacturing process, such as color, coverage, density, viscosity, among others;
  • the two methods of preparing paints have a very large conceptual difference, considering that the product obtained through the “factory pack” process admits that the components that make up the product formulation, such as resins, pastes pigments, bases, among others, do not need to be previously adjusted, as there will be a later stage of adjustment / control of quality, a step that will compensate and adjust the characteristics of the final product, while paints produced through Commercial Tinting Systems must mandatorily have the quality parameters strictly controlled for the components, so that the final product, without being tested, reaches all desired properties.
  • the components that make up the product formulation such as resins, pastes pigments, bases, among others
  • the bases and / or pastes of pigments in Tinting Systems need to be adjusted in advance for their subsequent dosage, considering that the variability of raw materials provided by manufacturers (pigments / fillers / etc.), associated even the variations in vehicles and the manufacturing process of these bases, does not allow an acceptable reproducibility that eliminates the need for analysis and adjustments.
  • the measurement of the “strengh”, for analysis and adjustment of colored pigments, is usually made using a standardized and calibrated white base, produced with T ⁇ 02 pigment (Titanium Dioxide).
  • T ⁇ 02 pigment Tianium Dioxide
  • standardized and calibrated bases are usually used, produced from black or green pigments.
  • the technique of analyzing and adjusting a particular dyeing consists of weighing a predefined amount of a standardized base and another predefined amount of the pigment paste to be analyzed / adjusted.
  • the product generated from the mixture of these constituents is applied to a substrate, cured or dried under pre-established conditions and compared with a physical pattern, by visual technique or a spectrophotometric pattern, through the reflection curve obtained.
  • this technique adds additional variability related to errors related to the weighing of the paint components; surface preparation method; pressure of the spray used to apply the paint to the surface; applied layer thickness; drying / curing temperature; relative humidity; base stability (pigment flocculation / re-agglomeration); evaporation losses with consequent concentration of standards; human factors, among others.
  • the pigment base or paste is contained between two surfaces permeable to radiation (optical windows) in the visible spectrum, illuminated on one side by a light source and observed through a spectrophotometer on the opposite side.
  • the equipment allows the distance (optical path) to be varied between the two optical windows, reducing the thickness of the film until a thickness is obtained in which the light radiation can pass through the irradiated film, obtaining the spectral curve of the emerging radiation through the opposite optical window.
  • the document BR9612756 describes a fluid analysis system, intended to analyze a specified physical characteristic of the fluid, and a method for it, said system having a film forming device to form a fluid film with a specified thickness. , a film irradiation device adapted to irradiate the film with electromagnetic radiation to produce an interaction radiation containing information associated with the specified physical characteristic of the fluid, a receiver, to receive the interaction radiation, and a detector, associated with the receiver, to detect interaction radiation.
  • the film forming device comprises a sampling region defined between opposite surfaces in contact with the fluid, said sampling region being in communications with a fluid to allow the fluid to be fed to it, to form the fluid film with its thickness defined by the distance between the opposite surfaces of contact with the fluid, at least one of the opposite surfaces of contact with the fluid being permeable to electromagnetic radiation.
  • BRPI9801 134 describes an apparatus for continuous preparation of a fluid, such as paints, enamels and dyes, to produce a resulting fluid that has desired predefined physical properties, such as color, opacity, hue, saturation, luminosity, density and / or particular viscosity, with automatic adjustment of the physical characteristics of the fluid; and that is able to measure the properties of the concentrates and bases, determining the ingredients and their quantities required to correct any variations in the physical properties required of the concentrate or base, automatically providing the correct amount of ingredients necessary to make the correction, ensuring that the product final product has properties that are within the specified limits for the fluid.
  • the apparatus of the invention is characterized by the fact that, while said detected physical characteristic of the fluid is different from said desired physical characteristic, the outlet medium and the inlet medium of the mixing medium are interconnected to allow said fluid to return to the said mixer means.
  • US2008273204 describes an apparatus and method for measuring the spectral properties of an ink, dye, enamel or other opaque fluid, both in transmission and reflection, in which a blocking amplifier is used to substantially increase the signal-to-ratio transmission noise components of electromagnetic radiation passing through the fluid, thus allowing the transmittance measurements are made on the order of 0.0001% or less of the incident electromagnetic radiation, thereby avoiding sample dilution, which generates measurement uncertainties or using very thin films of the fluid to increase transmittance, which may have as an inconvenience the fact that the radiation does not interact sufficiently with the fluid to provide a spectrum of transmissibles.
  • US20080273204 describes a device and method for measuring the transmission and remission of a liquid sample, in particular an ink or other opaque liquid, comprising a referenced light source, a beam splitter ("switch"), a measuring cell adjustable measuring clearance, at least one receiving optics and at least one plug-in detector and amplifier.
  • a beam splitter can divide the light flux from the light source through a glass fiber, so simultaneous or separate measurement of remission and transmission is possible. By shifting the position of the beam splitter, the lighting angles and thus the remission angle can also be adjusted.
  • the second transmitted electromagnetic radiation can be detected at an angle of 45 °.
  • Document W020050G3740 describes reflectance sensors comprising an optical unit, a sample analyzer unit and a control unit, a method for measuring the reflectance of a sample in the form of a liquid pigment preparation or a solid pigmented surface and the use of a reflectance sensor to measure the reflectance of liquid pigment preparations at different process stages during the production, further processing and application of said liquid pigment preparations.
  • WO2013173401 relates to a method for measuring one or more properties of a liquid, comprising the preparation of a thin film of a fluid sample with a predetermined film thickness in the range of 0.05 mm to 2 mm ; a circular flat disc having a first surface and a second disc surface on opposite sides of the flat circular disc, the flat circular disc being connected to a rotating axis connected to a rotationally symmetrical axis of the flat circular disc, perpendicular to the disc surfaces, for allow the rotation of the circular flat disk; a structure that positions the circular flat disk and the axis of rotation; a thickness control element including a film coupling edge connected to a liquid return passage and at least one frame connection and a movable element connected to the rotating shaft to allow rotation of the rotating shaft and a movement control element to control the speed of rotation, direction of rotation or a combination of the two rotating elements.
  • EP0932829 describes a system for analyzing the physical properties of paints, pigment pastes or similar systems, which consists of a device for forming a film of paints, pigment pastes and similar systems with a specific thickness, a light source to irradiate the ink to be examined or constructed pigment paste or similar systems to be examined, in which an interaction between light and ink occurs, the pigment paste or similar systems, in which a measurement signal is generated; and a device for receiving the measurement signal and a detector connected to the device for receiving the measurement signal.
  • the object of the present invention patent is an equipment and method that allows the analysis of fluid through a variable dilution between a paste and / or dispersion of pigments, mineral fillers, or even a dye solution with a vehicle.
  • transparent or controlled opacity producing a homogeneous mixture that can be analyzed using the spectroscopy technique by the transmission method, with a defined optical path (fixed thickness of irradiated film), with the ability to measure properties such as "strengb" tinting power, coverage and other colorimetric characteristics of a base or pigment paste.
  • Figure 1 shows the schematic representation of the constituent modules of the fluid analysis equipment.
  • Figure 2A shows the perspective view of the equipment object of the present invention patent and figure 2B shows the top view, showing the positioning of the modules.
  • Figure 3A shows the perspective view of the selector valve (V se ⁇ 1) and (V sei2 ); figure 3B shows the rear view of the selector valve, showing the rotary pneumatic actuator; Figure 3G shows the rear view of the selector valve, showing the pneumatic rotary actuator that drives the valve and the four stop points; the 3D figure shows the longitudinal section view; figure 3E shows a sectional view of the selector valve body and the housing of the rotating valve head, with the channels for directing the material flow to be distributed among the three different positions; and figure 3F shows the rear of the selector valve with the three connection points for inputs and outputs.
  • Figure 4A shows the perspective view of the Dosing Module (Mdos)
  • Figure 4B shows the longitudinal section view
  • Figure 4C shows the section detail of the dosing volumetric syringe.
  • Figure 5A shows the perspective view of the Module Mixer (M mist )
  • figure 5B shows the longitudinal section view
  • figure 5G shows a perspective view with a detail section of the variable homogenization chamber
  • figure 5D shows the detail of the variable chamber in homogenization mode
  • the figure 5E shows the detail of the variable chamber in the product expulsion mode
  • Figure 8A shows the perspective view of the Fluid Analysis Module (M amphiu ); figure 6B shows the sectional view; figure 6G shows the cross-section of the internal elements; figure 6D shows a cross-sectional view of the reading chamber in the cleaning / product admission mode; Figure 6E shows a sectional view of the reading chamber with the 'optical windows' in the fixed analytical spacing for reading the properties of the analysis fluid; Figure 6F shows the top view of the internal part of the reading chamber showing the centralized positioning of the measuring “optical window” and also the two cleaning vanes on the surfaces of the reading “optical windows”; figure 6G shows a perspective view of the measuring chamber; figure 6H shows the side view of the mechanical cleaning arm of the optical windows; figure 6I shows the perspective view of the mechanical cleaning arm of the optical windows and figure 6J shows a sectional detail of the interior of the measuring cell cavity with emphasis on the cleaning vanes of the optical windows.
  • M amphiu Fluid Analysis Module
  • Figure 7A shows the perspective view of the Optical Calibration Module (M falls )
  • Figure 7B shows the longitudinal section view
  • Figure 7C shows the section detail of the internal elements.
  • the term “analysis fluid” includes pastes and / or dispersions of pigments or mineral fillers;
  • the term “transparent and / or controlled opacity vehicle” comprises a varnish and / or a mixture of solvents and / or resins and / or liquid vehicles with controlled opacity and / or combinations thereof, and may be presented in the context of the present invention as “vehicle”;
  • the term “analytical package” is used, for simplification purposes, to designate the mixture of analysis fluid and vehicle.
  • the fluid analysis equipment object of the present invention patent, comprises a set of modules connected in series controlled by a Computational Control Unit (U cont ) that comprises a programmable microprocessor connected to a microcomputer, whose schematic representation is shown in figure 1.
  • U cont Computational Control Unit
  • the equipment for analyzing a fluid sample, a suspension, dispersion, dye solution or a fluid emulsion features a First Se! Etora Valve (V seM ) where the analysis fluid, vehicle and solvent, respectively stored in containers (G1) and (C2) and (G3) are directed to the Dosing Module (M dos ).
  • V seM First Se! Etora Valve
  • M dos Dosing Module
  • Containers (C1) and (G2) are provided with recirculating pumps (B), independently operated, which pressurize the intake points of the First Se! Etora Valve (V if n) and, therefore, feed a high-precision “dosing syringe” in the Dosing Module (M dos ) through control by computer system of the Control Unit (U cont ) that, through algorithms, establishes the ratio between the analysis fluid and the vehicle to be admitted into the dosing syringe of the Dosing Module (M dos ).
  • a Second Selector Valve (V sei2 ) is provided that, in the operation of transferring the dosing syringe components from the Dosing Module (M dos ) to the Mixing Module (M mist ), is switched by the Control Unit (U CQnt ) to keep the intake point in the “unlocked” position, allowing directional flow into the Mixing Module (M mist ), returning to the “block” position ends the flow transfer.
  • the total charge of the content of the dosing syringe of the Dosing Module (M dos ) (analysis fluid + vehicle or “analytical package”), after being discharged inside, is homogenized in a chamber mixer equipped with a helical conical profile rotor connected to a high speed pneumatic motor, controlled by the Control Unit (U cont ). After the programmed mixing time ends , the entire contents of the mixing chamber are expelled into the fluid analysis module (M amphiu ) by displacing the movable wall (plunger type) of the mixing chamber, connected to a pneumatic actuator. , controlled by the Control Unit (U CQnt ).
  • a film of the homogenized fluid is formed in the Mixer Module (M mist ), said film irradiated through a light source (F ! um ) and analyzed by a spectrophotometer (Esp), using the spectroscopy technique by the transmission method, in the region of the spectrum between 100 and 6000 nanometers (from the radiation contained in the Ultra Violet region) up to the radiation range contained in the Infra Red region), thus providing a precise determination of the characteristics related to the concentration and / or energy absorption index in the defined spectral region and / or transparency and / or coverage and / or tintorial power (strengh) and other colorimetric characteristics, providing information to adjust these properties.
  • an Optical Calibration Module (M drops ) is provided that introduces into the sample channel a set of “neutral optical filters” of known attenuation, which block part of the light radiation that reaches the spectrophotometer detector , avoiding its “saturation” during the calibration phase.
  • This methodology applied to samples with extremely high absorption of light radiation also provides that, during the sample analysis phase, the attenuator filter is removed automatically, causing the the incident light radiation has extremely high intensity (multiplied by the filter attenuation factor), thus obtaining an amount of radiation emerging from the sample at optimal levels of energy for the detector, where the signal / noise ratio is very low , thus providing measurements at optimal levels, where the measurement data collected by the spectrophotometer, through a subsequent mathematical treatment, are then divided by the “index attenuation of the neutral optical filter ”at each wavelength, thus obtaining the actual transmission data, which may have extremely low values, but with very high precision.
  • the first Selector Valve (V if n) has a rotating flange (17) with movement performed by means of a rotary pneumatic actuator (12), said rotating flange (17) which has four stop positions (14a), (14b), (14c) and (14d), with positioning controlled by the Control Unit (U cont ), where each stop position implies a set of commands previously programmed in the Control Unit (U cont ).
  • the stop points (14a) and (14d) are specific and adjustable stops of the rotary pneumatic actuator (12) while the stop positions (14b) and (14c) are defined by stops controlled by two auxiliary pneumatic actuators (1 1) .
  • a first stop position (14a) allows the admission of the analysis fluid deposited in the G1 container at the intake point (18a) of the First Selection Valve (V if n)
  • a second stop position allows the vehicle to be deposited in the C2 container at the intake point (18b) of the First Selection Valve (V se! 1
  • a third stop position allows the admission of the cleaning solvent stored in the G3 container at the intake point (18c) of the First Selection Valve (V sei1 )
  • a fourth stop position promotes the blocking of the fluid flow in all directions.
  • the control unit (u ⁇ p » when identifying the first stop position (14a) through sensors installed on the rotary pneumatic actuator (12), aligns the exit of the G1 container with the point inlet (18a) of the first Selector Valve (V if n), admitting the entry of the analysis fluid in the admission point of the first selector valve (V if n), in the proportion defined by the Control Unit (U cont ) in order to direct the analysis fluid into the dosing syringe of the Dosing Module (M dos ).
  • a linear positioner (21) is provided, actuated by a motor (20) which recedes said plunger ( 24) until the volume of analysis fluid defined by the computer program installed in the control unit processor (U CQl ⁇ ) is reached , the content of the analysis fluid being admitted, measured indirectly through a linear transducer (23), connected to the plunger (24)
  • the control unit (U CO1t ) when identifying the second stop position (14b) through the rotation of the rotary pneumatic actuator (12), aligns the outlet of the C2 container with the admission point of the First Selector Valve ( V seii ) allowing the vehicle to enter the admission point (18b) of the first selector valve (V seii ), in the proportion defined by the Control Unit (U cont ) in order to route the vehicle into the dosing syringe of the Dosing Module (M dos ).
  • a linear positioner (21) is provided, actuated by a motor (20) that pulls back the plunger of said syringe (24) until the vehicle volume defined by the installed computer program is reached on the processor of the control (U ⁇ nt ), the content of the admitted vehicle being measured indirectly through a linear transducer (23), connected to the plunger (24), thus completing the total volume of the syringe, called “analytical package” and with high volumetric precision.
  • the Control Unit (U COflt ) then starts the motor (20) which moves the plunger (24) of the dosing syringe (25) forward, in order to expel the total contents of the “analytical package” stored inside the syringe (25) towards the inner chamber (39) of the Module Mixer (M mist ), which will be in (expanded chamber) mode, as shown in figure 5D, with all this fluid displacement being monitored through the linear transducer (23) connected to the plunger (24) of the dosing syringe (25).
  • M mist Module Mixer
  • the Control Unit (U cont ) after detecting the blocking of the Second Selector Valve (V if i2), controls the pneumatic motor (30) which, through an axis (35), connected on one side to the pneumatic motor (30) and on the other hand to a helical conical agitator (38), performing the rotation in high rotation for a predetermined time interval, enough time to promote the complete homogenization of the contents of the mixing chamber (39 ).
  • Control Unit (U cont ) commands the expulsion of the contents of the mixing chamber (39) directly into the properties measurement cell (49) of the Fluid Analysis Module (Manfiu) .
  • the helical conical agitator (38) acts as a spring, being completely compressed without opposing or creating any restriction on the integral expulsion of the material contained in the mixing chamber (39).
  • the Control Unit (U CO 1t ) monitors the positioning of the interior of the analytical chamber (49a), and during the entire transfer step, the analytical chamber (49a) must be in expanded mode, as figure 6D, and for that purpose, the pneumatic positioning actuator (45) must be fully recessed, allowing maximum spacing between the static optical window (46) and the moving optical window (47), with no resistance of the fluid in completely fill the reading cell cavity (49a), expelling the sample from the “analytical package” of the previous analysis cycle.
  • the sample of fluid material contained between the optical windows (46) and (47) is irradiated through the electromagnetic radiation produced by the light source (F lum ) in the region of 100 to 6000 nanometers, being conducted by the bundle of optical fibers (44).
  • the electromagnetic radiation conducted by the optical fiber bundle (44) then passes through the moving optical window (47), interacting with the sample of analysis fluid contained between the optical windows (46) and (47) and emerging on the opposite side irradiation.
  • the double-beam spectrophotometer (Esp) in this type of application may be qualified for analysis from the ultraviolet range to the infrared range (100 to 6000 nanometers), providing great analytical versatility for the equipment and analytical method described here, generating information associated with the referred physical characteristic of the fluid that is sent to the control unit where the microprocessor processes the spectrophotometric measurements by transmission analysis which, through mathematical processing, presents the results of the analysis on the microcomputer
  • Control Unit (U Cont ) must perform the decontamination of the optical windows (46) and (47), before the next reading cycle, and for this purpose the Control Unit (U cont ), will initially control the retreat of the pneumatic actuator for positioning the optical windows (45)
  • the mechanical cleaning arms (49) are redundant and their pneumatic actuators (40) provide a rotary scraping of vanes (49b), made from a special elastomer, which are guided through the cleaning arms (49) on the surface of the optical windows (46) and (47)
  • the pneumatic actuators (40), cleaning arm actuators (49), have a cycle with electronic interlock commanded by the Control Unit (U cont ).
  • an Optical Calibration Module (M drops ) is provided, commanded by the Control Unit (U COnt ) s which introduces in the spectrophotometer sample channel (Esp), a set of neutral optical filters (56a), (56b) and (56c), of known attenuation, fixed to a positioning block (55), which block part of the light radiation that reaches the spectrophotometer detector, preventing its “saturation” during the calibration
  • the position sensors (53) provide position confirmation information from the “neutral optical filters” (56a), (56b) and (56c), for the Control Unit (U CO ⁇ 1t ).
  • the Control Unit For cleaning the equipment and in order to clean the surfaces for the analysis of a different product, the Control Unit (U CQnt ) switches the Second Selector Valve (n ! 2) to the third position, allowing the admission of the cleaning solvent stored in container G3 at the intake point (18c) of the First Selection Valve (VseM), and the Second Selector Valve (Vsel2) can also be activated to pass the solvent through all the equipment.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

É descrito um equipamento e método de análise de um fluído, suspensão, solução, dispersão ou emulsão fluída que analisa automaticamente as propriedades características de amostras de fluídos, tais como tintas, esmaltes e corantes, entre outros, para que ajustes possam ser feitos no fluido para atingir as propriedades ópticas, tais como cor, opacidade, matiz, saturação (poder tintorial), cobertura e luminosidade, a partir de técnica de medição espectrométrica por análise de transmissão de um filme de espessura fixa irradiada.

Description

EQUIPAMENTO E MÉTODO DE ANÁLISE DE UM FLUÍDO CAMPO DA INVENÇÃO
[01] A presente patente de invenção descreve um equipamento e método de análise de um fluído, suspensão, solução, dispersão ou emulsão fluída. Mais especificamente compreende um equipamento que analisa automaticamente as propriedades características de amostras de fluídos, tais como tintas, esmaltes e corantes, entre outros, para que ajustes possam ser feitos no fluido para atingir as propriedades ópticas, tais como cor, opacidade, matiz, saturação (poder tintorial), cobertura e luminosidade, a partir de técnica de medição espectrométrica por análise de transmissão de um filme de espessura fixa irradiada, na faixa de 50 a 1000 micra.
ANTECEDENTES DA INVENÇÃO
[02] O termo tinta pode ser conceituado como sendo uma composição pigmentada líquida, pastosa ou sólida que, quando aplicada em camada fina (filme) sobre uma superfície apropriada, no estado em que é fornecida ou após diluição, é convertível, ao fim de certo tempo, numa película sólida, colorida, translúcida ou opaca.
[03] Os principais constituintes de uma tinta são: (a) resina, que é normalmente um meio translúcido ou transparente, onde sua principal função é promover a aderência da película da tinta sobre o substrato, responsável ainda pela umectação dos pigmentos, aspectos de brilho, resistência química, resistência física, entre outras; (b) pigmentos e cargas que promovem o desenvolvimento da cor, opacidade do filme, resistência a radiações, propriedades óticas, entre outras; (c) aditivos que conferem ao filme propriedades físicas, químicas, reológicas, entre outras; (d) solventes ou diluentes que são utilizados basicamente para ajustar as características de viscosidade e aplicabilidade da tinta sobre o substrato, evaporando ao final desse processo e possibilitando a cura/secagem do filme formado.
[04] Os pigmentos, diferentemente dos corantes, podem ser descritos como substâncias sólidas, finamente divididas e praticamente insolúveis no veículo, que são usadas na preparação de tintas com a finalidade de lhes conferir cor, opacidade ou outras características especiais. Ou seja, são utilizados com o intuito de modificar as propriedades ópticas de uma tinta, bem como as propriedades de produtos nela incorporados. Uma propriedade relevante que caracteriza os pigmentos é a capacidade que possuem para permitir a obtenção das cores que se deseja imitar, podendo a sua presença também ser necessária para obter opacidade, visto que as tintas, na sua grande maioria, são utilizadas para cobrir as superfícies nas quais são aplicadas.
[05] Num processo de produção de tinta, esmalte ou bases de pigmentos, as matérias-primas são misturadas em diferentes proporções para produzir um fluido com um conjunto de propriedades físicas desejadas. Um problema inerente a esse processo está associado às variações das matérias-primas utilizadas e a variabilidade do próprio processo de fabricação. Esses motivos inviabilizam que uma simples mistura em proporções pré-definidas dos constituintes atinja, de forma direta, as especificações requeridas.
[06] É necessário, portanto, para que sejam atingidas as especificações desejadas, que durante o processo de fabricação, várias propriedades físicas desse fluido sejam medidas e diversos ajustes sejam realizados, o que acaba por representar variações nas proporções dos constituintes da fórmula, lote a lote, de produto fabricado. [07] Entre as diversas propriedades de uma tinta, as propriedades ópticas, tal como cor, brilho e poder de cobertura são extremamente relevantes. Nesse caso, técnicas visuais ou espectrofotométricas são atualmente usadas para a análise. Em ambas as técnicas, a tinta é aplicada na forma de um filme uniforme sobre um substrato de teste para observar a sua cor, opacidade, brilho, entre outros. Após seca ou curada, a tinta é analisada e comparada com um padrão. Com o uso de técnica espectrofotométrica, suas características colorimétricas e óticas podem ser medidas com precisão.
[08] Em ambos os tipos de análises, devido aos procedimentos relacionados à preparação, aplicação, cura/secagem, entre outros, o período de análise pode demorar horas ou até dias, dependendo do caso.
[09] Para a simples análise das características relacionadas exclusivamente a cor de uma tinta, torna-se fundamental que o filme aplicado sobre o substrato possua cobertura (opacidade) total pois, caso contrário, a cor do substrato irá influenciar diretamente na mensuração da cor final observada, tanto por método visual como espectrofotométrico.
[010] Para medição das cores de forma equivalente à da observada pelo olho humano, são utilizados espectrofotômetros que medem as propriedades físicas da luz refletida {% de refletância) ao longo do espectro visível, compreendido entre 400 a 700 nanõmetros. Nesse caso, o gráfico gerado, tendo como eixo da abscissa o comprimento de onda e no eixo da ordenada o percentual de reflexão obtida, caracteriza de forma efetiva a cor do filme de tinta, tornando-se como o equivalente a uma impressão digital” daquela cor.
[011] Do ponto de vista comercial, atualmente existem duas formas de comercialização de tintas, a saber:
[012] Tinta de Fábrica ( facfory pack ), onde essas tintas são produzidas diretamente nas fábricas e já entregues nas embalagens finais, sendo que todas as suas propriedades já foram ajustadas durante o processo de fabricação, tais como a cor, a cobertura, a densidade, a viscosidade entre outras;
[013] Sistemas Tintométricos Comerciais, onde as tintas, comercializadas através desse método são obtidas através de misturas de pastas de pigmentos com bases previamente ajustadas, dosadas em “Máquinas Tintométricas”, diretamente nos pontos de venda
[014] No caso de tintas produzidas por Máquinas Tintométricas, como não existe nenhuma análise de controle de qualidade posterior para a tinta comercializada através desse método, torna-se vital que todas as características, tanto das bases ajustadas como também das pastas de pigmentos, estejam rigorosamente controladas para que possam ser dosadas com precisão e gerem um produto totalmente dentro das especificações
[015] Esse método pressupõe que todos os componentes que serão utilizados estejam perfeitos em suas propriedades para que a tinta obtida ao final da mistura atinja todas as suas especificações tais como a cor, a cobertura, a densidade, a viscosidade, entre outros.
[016] Dessa forma, os dois métodos de preparação de tintas possuem uma diferença conceituai muito grande, tendo em vista que o produto obtido através do processo“factory pack” admite que os componentes que compõem a formulação do produto, tais como resinas, pastas de pigmentos, bases, entre outros, não necessitem ser previamente ajustados, pois haverá uma etapa posterior de ajuste/controle de qualidade, etapa essa que irá compensar e ajustar as características do produto final, enquanto as tintas produzidas através de Sistemas Tintométricos Comerciais obrigatoriamente deverão ter os parâmetros de qualidade rigorosamente controlados dos componentes, para que o produto final, sem ser testado, atinja as todas as propriedades desejadas.
[017] Conforme mencionado, as bases e/ou pastas de pigmentos em Sistemas Tintométricos necessitam ser ajustadas previamente para a sua posterior dosagem, tendo em vista que a variabilidade das matérias-primas fornecidas pelos fabricantes (pigmentos / cargas / etc.), associado ainda as variações nos veículos e ao próprio processo de fabricação dessas bases, não permite uma reprodutibilidade aceitável que dispense a necessidade de análises e ajustes.
[018] Nesse caso, para efeito de ajustes, uma simples observação da cor nessas bases ou pastas de pigmentos, tanto por método visual ou espectrofotométrico, não traduzem o que irá acontecer quando essas bases forem misturadas para a preparação de uma tinta, pois encontram-se em um estado que se denomina de“saturação plena”.
[019] Nesse estado, como essas técnicas não possuem sensibilidade para identificar diferenças entre amostras, é então adotado o método de“dessatu ração” ou “corte”, através de uma diluição padrão com uma base pigmentada previamente calibrada.
[020] O resultado dessa mistura, dentro de proporções previamente determinada, permite a mensuração de uma propriedade denominada de“poder tintorial” ou“poder de tingimento” ou ainda simplesmente “ strengh”.
[021] A mensuração do“ strengh ", para análise e ajuste de pastas de pigmentos coloridos, usualmente é feita utilizando uma base branca padronizada e calibrada, produzida com pigmento de TΊ02 (Dióxido de Titânio) Já para análise e ajuste de bases brancas, usualmente se utilizam bases padronizadas e calibradas, produzidas a partir de pigmentos preto ou verde.
[022] Nesse caso, a técnica de análise e ajuste de um determinado tingimento consiste em pesar uma quantidade pré-definida de uma base padronizada e uma outra quantidade também pré-definida da pasta de pigmento que se pretende analisar/ajustar. O produto gerado a partir da mistura desses constituintes é aplicado em um substrato, curado ou secado em condições pré-estabelecidas e comparado com um padrão físico, por técnica visual ou um padrão espectrofotométrico, através da curva de reflexão obtida.
[023] De forma simplificada, caso a cor obtida através dessa técnica esteja mais intensa que a do padrão, isso indica que a pasta de pigmento em análise deverá sofrer uma diluição com o veículo transparente original dessa pasta, até ser atingido o resultado esperado. Caso esteja menos intensa, isso significa que deverá ser utilizada uma maior concentração de pigmentos na mistura para se atinja o resultado.
[024] Essa mesma técnica é válida e utilizada tanto para pastas de pigmentos coloridos como para as pastas ou bases brancas.
[025] Vale salientar, entretanto, que essa técnica de medição e ajuste do “ strengh ", independentemente do modo de estimar as diferenças entre padrão e amostra (visual ou com espectrofotômetros), traz por si só uma variabilidade temporal extremamente relevante ligada a calibração dos padrões.
[026] Como exemplo, podemos imaginar que um padrão preto utilizado para calibrar um padrão branco, teve como origem um padrão branco anterior, o qual também foi calibrado por um padrão preto anterior e assim sucessivamente“ad infínitum Isso acaba por introduzir uma degradação permanente e continuada nas características colorimétricas dos padrões, comparável a se fazer fotocópias de fotocópias de forma reiterada, ocorrendo, assim, uma degradação nas características e na qualidade de cada documento sucessivo.
[027] Além desse problema, soma-se a essa técnica variabilidades adicionais relacionadas a erros relacionados a pesagem dos componentes da tinta; método de preparação da superfície; pressão do spray usado para aplicar a tinta na superfície; espessura da camada aplicada; temperatura de secagem/cura; umidade relativa do ar; estabilidade das bases (floculação/reaglomeração dos pigmentos); perdas por evaporação com consequente concentração dos padrões; fatores humanos, entre outros.
[028] Todos esses fatores, de forma conjunta, produzem uma variabilidade extremamente relevante para os fabricantes de tinta, o que gera, além da complexidade operacional, diversos outros custos associados, tais como: custos da“não qualidade”, estoques elevados, “iead time" de análises e ajustes, perda de capacidade operacional, entre outros.
[029] Mais recentemente, o estado da técnica descreve um equipamento que mede o espectro de transmissão de fluídos com diferentes índices de retração através de um dispositivo com controle automático da espessura do filme, alternativamente à técnica de “dessatu ração” convencional.
[030] Nesse caso, a base ou pasta de pigmentos é contida entre duas superfícies permeáveis à radiação (janelas óticas) no espectro visível, iluminada por um lado através de uma fonte luminosa e observada através de um espectrofotômetro pelo lado oposto.
[031] O equipamento permite que se varie a distância (caminho ótico), entre as duas janelas óticas, diminuindo a espessura do filme até que seja obtida uma espessura na qual a radiação luminosa consiga atravessar o filme irradiado, sendo obtida a curva espectral da radiação emergente através da janela ótica oposta.
[032] Nessa metodologia é obtida uma“visão pura” das características colorimétricas do pigmento em análise, enquanto que na técnica convencional de dessaturação é obtido algo que representa o efeito que a pasta de pigmento gera quando misturada a um pigmento branco, ou seja, o equivalente a deformação na curva espectral do pigmento branco padrão quando se adiciona a pasta de pigmento em análise, em uma determinada concentração.
[033] O documento BR9612756 descreve um sistema de análise de fluidos, destinado a analisar uma característica física especificada do fluido, e um método para o mesmo, dito sistema possuindo um dispositivo de formação de filme para formar um filme de fluido com uma espessura especificada, um dispositivo de irradiação de filme adaptado para irradiar o filme com uma radiação eletromagnética para produzir uma radiação de interação contendo informação associada com a característica física especificada do fluido, um receptor, para receber a radiação de interação, e um detector, associado com o receptor, para detectar a radiação de interação. O dispositivo de formação de filme compreende uma região de amostragem definida entre superfícies opostas de contato com o fluido, a referida região de amostragem encontrando-se em comunicações com uma entrada de fluido para permitir a alimentação do fluido para a mesma, para formar o filme de fluido com sua espessura definida pela distância entre as superfícies opostas de contato com o fluído, pelo menos uma das superfícies opostas de contato com o fluido sendo permeável à radiação eletromagnética.
[034] O documento BRPI9801 134 descreve um aparelho para preparação contínua de um fluido, tal como tintas, esmaltes e corantes, para produzir um fluido resultante que tenha propriedades físicas predefinidas desejadas, tais como cor, opacidade, matiz, saturação, luminosidade, densidade e/ou viscosidade particulares, com ajuste automático das características físicas do fluído; e que é capaz de medir as propriedades dos concentrados e bases, determinando os ingredientes e suas quantidades requeridas para corrigir quaisquer variações das propriedades físicas requeridas do concentrado ou base, fornecendo automaticamente a quantidade correta de ingredientes necessários para fazer a correção, garantindo que o produto final tenha propriedades que estejam dentro dos limites especificados para o fluido. O aparelho da invenção caracteriza-se pelo fato de que, enquanto a dita característica física detectada do fluido for diferente da dita característica física desejada, o meio de saída e o meio de entrada do meio misturador estão interconectados para permitir que o dito fluido retorne ao dito meio misturador.
[035] O documento US2008273204 descreve um aparelho e método para medir as propriedades espectrais de uma tinta, corante, esmalte ou outro fluido opaco, tanto na transmissão como na reflexão, em que um amplificador de bloqueio é usado para aumentar substancialmente a relação sinal-ruído de transmissão componentes da radiação eletromagnética passando através do fluido, permitindo assim que as medições de transmitância sejam feitas na ordem de 0,0001 % ou menos da radiação eletromagnética incidente, evitando, com isso, a diluição da amostra, que gera incertezas na medição ou utilizar filmes muito finos do fluido para aumentar a transmitância, o que pode ter como inconveniente o fato da radiação não interagir suficientemente com o fluido para proporcionar um espectro de transmissíveis.
[036] O documento US20080273204 descreve um dispositivo e um método para medir a transmissão e remissão de uma amostra líquida, em particular uma tinta ou outro líquido opaco, compreendendo uma fonte de luz referenciada, um divisor de feixe ("comutador"), uma célula de medição folga de medição ajustável, pelo menos uma óptica de recepção e pelo menos um detector e um amplificador de encaixe. Um divisor de feixe pode dividir o fluxo luminoso proveniente da fonte de luz através de uma fibra de vidro, pelo que é possível uma medição simultânea ou separada da remissão e transmissão. Deslocando a posição do divisor de feixe, os ângulos de iluminação e assim também o ângulo de remissão pode ser ajustado. Da mesma forma, a segunda radiação eletromagnética transmitida pode ser detectada em um ângulo de 45°.
[037] O documento W020050G3740 descreve sensores de refletância compreendendo uma unidade óptica, uma unidade analisadora de amostra e uma unidade de controle, um método para medir a refletância de uma amostra na forma de uma preparação de pigmento líquido ou uma superfície pigmentada sólida e o uso de uma sensor de reflectância para medir a reflectância de preparações de pigmentos líquidos em diferentes etapas processuais durante a produção, processamento adicional e aplicação das referidas preparações de pigmento líquido. [038] O documento WO2013173401 refere-se a um método para medir uma ou mais propriedades de um líquido, compreendendo a preparação de uma película fina de uma amostra do fluído com uma espessura de película predeterminada na gama de 0,05 mm a 2 mm; um disco plano circular tendo uma primeira superfície e uma segunda superfície de disco em lados opostos do disco circular plano, estando o disco circular plano ligado a um eixo rotativo ligado a um eixo rotacionalmente simétrico do disco circular plano, perpendicular às superfícies do disco, para permitir a rotação do disco plano circular; uma estrutura que posiciona o disco plano circular e o eixo de rotação; um elemento de controle de espessura incluindo um bordo de engate de película ligado a uma passagem de retorno de líquido e pelo menos uma ligação de quadro e um elemento móvel ligado ao veio rotativo para permitir a rotação do veio rotativo e um elemento de controle do movimento para controlar a velocidade de rotação, direção de rotação ou uma combinação dos dois elementos rotativos.
[039] O documento EP0932829 descreve um sistema de análise das propriedades físicas de tintas, pastas de pigmentos ou sistemas semelhantes, que consiste num dispositivo para formar um filme de tintas, pastas de pigmentos e sistemas similares com uma espessura específica, uma fonte de luz para irradiar a tinta a ser examinada ou pasta de pigmento construída ou sistemas semelhantes a serem examinados, em que ocorre uma interação entre a luz e a tinta, a pasta de pigmento ou sistemas semelhantes, em que é gerado um sinal de medição; e um dispositivo para receber o sinal de medição e um detector conectado ao dispositivo para receber o sinal de medição.
[040] No entanto, estes equipamentos do estado da técnica são complexos, e como objetivam a medição das propriedades com o produto “in natura”, tendo em vista a altíssima absorção e o espalhamento da radiação iluminante do filme irradiado, provocada pelas partículas de pigmento, necessitam operar com espessuras de filme ínfimas, podendo chegar na casa de 2 a 3 micras, requerendo lâmpadas de alta potência, o que produz o aquecimento da amostra, alterando sua densidade e, por conseguinte, a estabilidade e precisão daquilo que se pretende medir
[041] Soma-se ainda outros efeitos que são observados quando se busca operar com a espessura de filmes de forma variável para efetuar medições colorimétricas pela técnica de transmissão, tal como: (a) efeitos relacionados à pressão e temperatura do meio, os quais provocam dilatações e flexões mecânicas nos dispositivos de medição, conduzindo a desvios em resultados de transmitância, limitando o uso do equipamento; (b) instabilidade na calibração e na manutenção da “espessura zero” entre as superfícies óticas de irradiação (janelas óticas), tendo em vista que a medição de espessura é efetuada de forma indireta, através de um micrômetro apalpador digital conectado a uma haste de medição indireta, com comprimento milhares de vezes superior que a espessura que se está tentando mensurar, produzindo alterações nos dados da medição de espessura, tanto por fatores térmicos relacionados ao coeficiente de dilatação linear do material da haste como por aspectos de flexão mecânicos.
[042] Dessa forma, é objeto da presente patente de invenção um equipamento e método que possibilita a análise de fluido através de uma diluição variável entre uma pasta e/ou dispersão de pigmentos, cargas minerais, ou ainda uma solução de corantes com um veículo transparente ou ainda de opacidade controlada, produzindo uma mistura homogénea que possa ser analisada através de técnica de espectroscopia pelo método de transmissão, com caminho ótico definido (espessura fixa de filme irradiado), com capacidade de mensurar propriedades como, poder de tingimento “strengb”, cobertura e demais características colorimétricas de uma base ou pasta de pigmentos.
BREVE DESCRIÇÃO DAS FIGURAS
[043] A figura 1 apresenta a representação esquemática dos módulos constituintes do equipamento de análise de fluído.
[044] A figura 2A apresenta a vista em perspectiva do equipamento objeto da presente patente de invenção e a figura 2B apresenta a vista superior, evidenciando o posicionamento dos módulos.
[045] A figura 3A apresenta a vista em perspectiva da válvula seletora ( Vseí 1 ) e (Vsei2); a figura 3B apresenta a vista posterior da válvula seletora evidenciando o atuador pneumático rotativo; a figura 3G apresenta a vista posterior da válvula seletora evidenciando o atuador pneumático rotativo acionador da válvula e os quatro pontos de batentes; a figura 3D apresenta a vista em corte longitudinal; a figura 3E apresenta uma perspectiva em corte do corpo da válvula seletora e o alojamento do cabeçote rotativo da válvula, com os canais de direcionamento de fluxo de material a ser distribuído pelas três posições distintas; e a figura 3F apresenta a parte posterior da válvula seletora com os três pontos de conexão de entradas e saídas.
[046] A figura 4A apresenta a vista em perspectiva do Módulo Dosador (Mdos) , a figura 4B apresenta a vista em corte longitudinal e a figura 4C apresenta o detalhamento em corte da seringa volumétrica dosadora.
[047] A figura 5A apresenta a vista em perspectiva do Módulo Misturador (Mmist), a figura 5B apresenta a vista em corte longitudinal, a figura 5G apresenta uma vista em perspectiva com um corte de detalhamento da câmara variável de homogeneização, a figura 5D apresenta o detalhe da câmara variável no modo homogeneização e a figura 5E apresenta o detalhe da câmara variável no modo expulsão do produto
[048] A figura 8A apresenta a vista em perspectiva do Módulo de Análise de Fluídos (Manfiu); a figura 6B apresenta a vista em corte; a figura 6G apresenta o detalhamento em corte dos elementos internos; a figura 6D apresenta uma vista em corte da câmara de leitura no modo limpeza/admissão de produto; a figura 6E apresenta uma vista em corte da câmara de leitura com as “janelas óticas’ no espaçamento analítico fixo para leitura de propriedades do fluido de análise; a figura 6F apresenta a vista superior da parte interna da câmara de leitura apresentando o posicionamento centralizado da “janela ótica” medição e ainda as duas palhetas limpadoras das superfícies das“janelas óticas” de leitura; a figura 6G apresenta uma vista em perspectiva da câmara de medição; a figura 6H apresenta a vista lateral do braço de limpeza mecânica das janelas óticas; a figura 6I apresenta a vista em perspectiva do braço de limpeza mecânica das janelas óticas e a figura 6J apresenta detalhe em corte do interior da cavidade da célula de medição com ênfase às palhetas limpadoras das janela óticas.
[049] A figura 7A apresenta a vista em perspectiva do Módulo de Calibração Óptica (Mcai), a figura 7B apresenta a vista em corte longitudinal e a figura 7C apresenta o detalhamento em corte dos elementos internos.
DESCRIÇÃO DETALHADA DA INVENÇÃO [050] Para fins da presente invenção e por simplificação, o termo “fluído de análise” compreende pastas e/ou dispersões de pigmentos ou cargas minerais; o termo“veículo transparente e/ou de opacidade controlada” compreende um verniz e/ou uma mistura de solventes e/ou resinas e/ou veículos líquidos com opacidade controlada e/ou combinações dessas, podendo ser apresentado no contexto da presente invenção como “veículo”; o termo “pacote analítico” é utilizado, para fins de simplificação, para designar a mistura de fluído de análise e veículo.
[051] O equipamento de análise de um fluído, objeto da presente patente de invenção, compreende um conjunto de módulos ligados em série controlados por uma Unidade de Controle computacional (Ucont) que compreende um microprocessador programável ligado a um microcomputador, cuja representação esquemática é apresentada na figura 1.
[052] O equipamento de análise de uma amostra de fluído, de uma suspensão, dispersão, solução de corantes ou uma emulsão fluída apresenta uma Primeira Válvula Se!etora (VseM) onde o fluido de análise, o veículo e solvente, respectivamente armazenados em contentores (G1 ) e (C2) e (G3) são direcionados para o Módulo de Dosagem (Mdos).
[053] Os contentores (C1 ) e (G2) são providos de bombas (B) de recirculação, de acionamento independente, que pressurizam os pontos de admissão da Primeira Válvula Se!etora (Vsen) e que, por conseguinte, alimentam uma“seringa dosadora” de alta precisão no Módulo de Dosagem (Mdos) mediante controle por sistema computacional da Unidade de Controle (Ucont) que, através de algoritmos, estabelece a proporção entre o fluido de análise e o veículo a ser admitido para o interior da seringa dosadora do Módulo Dosador (Mdos).
[054] O fluído de análise e o veículo admitidos na seringa dosadora mediante sucção, em uma proporção pré-definida pelo sistema computacional, são deslocados para o Módulo de Mistura (Mmist) mediante movimentação do êmbolo da seringa dosadora através do acionamento do motor do posicionador linear.
[055] Entre o Módulo de Dosagem (Mdos) e o Módulo de Mistura (Mmjst) é prevista uma Segunda Válvula Seletora {Vsei2) que, na operação de transferência dos componentes da seringa dosadora do Módulo Dosador {Mdos) para o Módulo de Mistura (Mmist), é comutada pela Unidade de Controle (UCQnt) para manter o ponto de admissão na posição de“desbloqueio”, permitindo o fluxo direcional para o interior do Módulo de Mistura (Mmist), retornando à posição de“bloqueio” finda a transferência do fluxo.
[056] No Módulo de Mistura (Mmist) a carga total do conteúdo da seringa dosadora do Módulo Dosador (Mdos) (fluído de análise + veículo ou“pacote analítico”), após descarregado para seu interior, é homogeneizada em uma câmara de mistura dotada de um rotor de perfil cónico helicoidal conectado a um motor pneumático de alta rotação, controlado pela Unidade de Controle (Ucont). Findo o tempo programado de mistura, o conteúdo total da câmara de mistura é expelido para o interior do módulo de análise de fluido (Manfiu) mediante o deslocamento da parede móvel (tipo êmbolo), da câmara de mistura, conectada a um atuador pneumático, controlado pela Unidade de Controle (UCQnt).
[057] No Módulo de Análise de Fluido (Manfiu) é formado um filme do fluido homogeneizado no Módulo Misturador (Mmist), dito filme irradiado através de uma fonte luminosa (F!um) e analisado por um espectrofotômetro (Esp), através de técnica de espectroscopia pelo método de transmissão, na região do espectro compreendida entre 100 e 6000 nanômetros (desde a radiação contida na região do Ultra Violeta até a faixa de radiação contida na região do Infra Vermelho), proporcionando, dessa forma, a determinação com precisão das características relacionadas à concentração e/ou índice de absorção de energia na região espectral definida e/ou transparência e/ou cobertura e/ou poder tintorial ( strengh ) e demais características colorimétricas, fornecendo informações para ajustes dessas propriedades.
[058] Para a calibração do espectrofotômetro, é previsto um Módulo de Calibração Óptica (Mcai) que introduz no canal de amostra um conjunto de “filtros óticos neutros” de atenuação conhecida, que bloqueiam parte da radiação luminosa que chega ao detector do espectrofotômetro, evitando a sua “saturação” durante a fase de calibração. Essa metodologia aplicada a amostras de altíssima absorção de radiação luminosa (líquidos opacos e/ou altamente carregados em pigmentos ou partículas sólidas bloqueadoras) prevê ainda que, durante a fase de análise de amostras, o filtro atenuador seja removido de forma automática, fazendo com que a radiação luminosa incidente possua intensidade extremamente elevada (multiplicada pelo fator de atenuação do filtro), obtendo-se, dessa forma, uma quantidade de radiação emergente da amostra em níveis ótimos de energia para o detector, onde a relação sinal/ruído é muito baixa, propiciando dessa forma medições em níveis ótimos, onde os dados de medição coletados pelo espectrofotômetro, através de um tratamento matemático posterior, sejam então divididos pelo“índice de atenuação do filtro ótico neutro” em cada comprimento de onda, obtendo-se dessa forma os dados de transmissão reais, podendo os mesmos possuírem valores extremamente baixos, porém com altíssima precisão.
[059] Conforme apresentado nas figuras 3A a 3F, a primeira Válvula Seletora (Vsen) apresenta um flange giratório (17) com movimento executado por meio de um atuador pneumático rotativo (12), dito flange giratório (17) que apresenta quatro posições de parada (14a), (14b), (14c) e (14d), com posicionamento controlado pela Unidade de Controle (Ucont), onde cada posição de parada implica em um conjunto de comandos previamente programados na Unidade de Controle (Ucont). Os pontos de parada (14a) e (14d), são batentes próprios e reguláveis do atuador pneumático rotativo (12) enquanto as posições de parada (14b) e (14c) são definidas por batentes comandados por dois atuadores pneumáticos auxiliares (1 1 ).
[060] Nesta primeira Válvula de Seleção (Vsen), uma primeira posição de parada (14a) permite a admissão do fluído de análise depositado no contentor G1 no ponto de admissão (18a) da Primeira Válvula de Seleção (Vsen), uma segunda posição de parada permite a admissão do veículo depositado no contentor C2 no ponto de admissão (18b) da Primeira Válvula de Seleção (Vse!1), uma terceira posição de parada permite a admissão do solvente de limpeza armazenado no contentor G3 no ponto de admissão (18c) da Primeira Válvula de Seleção (Vsei1) e uma quarta posição de parada promove o bloqueio da passagem de fluído em todas as direções.
[061] A admissão dos fluídos no ponto de admissão da primeira Válvula Seletora ( Vseii ) é feita por sucção gerada a partir da pressurização realizada pelas bombas (B) dos contentores C1 e C2. [062] A posição de parada que permite a passagem de solvente será suficientemente detalhada no decorrer do presente descritivo
[063] Ao se iniciar o processo analítico, a unidade de controle (u¥p » ao identificar a primeira posição de parada (14a) através de sensores instalados no atuador pneumático rotativo (12), alinha a saída do contentor G1 com o ponto de admissão (18a) da primeira Válvula Seletora (Vsen), admitindo o ingresso do fluído de análise no ponto de admissão da primeira válvula seletora (Vsen), na proporção definida pela Unidade de Controle (Ucont) de forma a encaminhar o fluído de análise para o interior da seringa dosadora do Módulo Dosador (Mdos). No êmbolo (24) da seringa dosadora (25) é previsto um posicionador linear (21 ) atuado por um motor (20) que recua dito êmbolo (24) até ser atingido o volume de fluído de análise definido pelo programa de computador instalado no processador da unidade de controle (UCQlí), sendo o conteúdo do fluido de análise admitido, medido de forma indireta através de um transdutor linear (23), conectado ao embolo (24)
[064] A unidade de controle (UCO1t), ao identificar a segunda posição de parada (14b) por meio do giro do atuador pneumático rotativo (12), alinha a saída do contentor C2 com o ponto de admissão da Primeira Válvula Seletora (Vseii) admitindo o ingresso do veículo no ponto de admissão (18b) da primeira válvula seletora (Vseii), na proporção definida pela Unidade de Controle (Ucont) de forma a encaminhar o veículo para o interior da seringa dosadora do Módulo Dosador (Mdos). No êmbolo (24) da seringa dosadora (25) é previsto um posicionador linear (21 ), atuado por um motor (20) que recua o êmbolo da dita seringa (24) até ser atingido o volume de veículo definido pelo programa de computador instalado no processador da unidade de controle (U¥nt), sendo o conteúdo do veículo admitido medido de forma indireta através de um transdutor linear (23), conectado ao êmbolo (24), completando dessa forma o volume total da seringa, denominado de“pacote analítico” e com elevada precisão volumétrica.
[065] Quando os fluídos do“pacote analítico” estão sendo carregados para o interior da seringa dosadora (25) do Módulo Dosador (Mdos), a Unidade de Controle (Ucont) mantém a posição de parada da dita Segunda Válvula Seletora (Vseí2) na posição de bloqueio (14d), impedindo a passagem ou vazamentos de fluído para o Módulo Misturador (Mmist).
[066] Uma vez transferido para o interior da seringa dosadora (25) os componentes da formulação fluida (pacote analítico), a Unidade de Controle (UCOnt) aciona o atuador pneumático rotativo (12) da Primeira Válvula Seletora (Vsen) até a quarta posição de parada (14d), bloqueando totalmente a passagem de fluido para o Módulo Dosador
(^dos) ·
[067] Ao ser bloqueada a passagem de fluído para o Módulo Dosador (Mdos) através do posicionamento da Primeira Válvula Seletora (Vseí1) para o ponto de parada (14d), a Unidade de Controle (Ucont) posiciona então a Válvula Seletora (Vsei2), através do Atuador Pneumático Rotativo (12) para a posição de conexão direta entre o Modulo Dosador (Mdos) e o Módulo Misturador (Mmist), de forma similar aos procedimentos já descritos anteriormente para a Primeira Válvula Seletora (Vseil ).
[668] A Unidade de Controle (UCOflt) aciona então o motor (20) que desloca o êmbolo (24) da seringa dosadora (25) para frente, de forma a expulsar o conteúdo total do “pacote analítico” armazenado no interior da seringa (25) em direção a câmara interna (39) do Módulo Misturador (Mmist), a qual estará no modo (câmara expandida), conforme apresentado na figura 5D, sendo todo esse deslocamento de fluido monitorado através do transdutor linear (23) conectado ao êmbolo (24) da seringa dosadora (25).
[069] Findo o deslocamento do êmbolo (24) da seringa dosadora (25), ocasião em que a câmara de mistura (39) do Módulo de Mistura (Mmist) está totalmente preenchida, a Unidade de Controle (u ) comuta então a Segunda Válvula Seletora (Vsej2) para a posição de bloqueio (14 ), tal como descrito anteriormente.
[070] A próxima etapa do processo é descrita como a fase de mistura e homogeneização do “pacote analítico” no interior da câmara de mistura (39) do Módulo de Mistura (Mmist).
[071] Nessa etapa, a Unidade de Controle (Ucont) após detectar o bloqueio da Segunda Válvula Seletora (Vsei2), comanda o motor pneumático (30) que, através de um eixo (35), conectado por um lado ao motor pneumático (30) e por outro lado a um agitador cónico helicoidal (38), a efetuar o giro em alta rotação por um intervalo de tempo pré-determinado, tempo esse suficiente para promover a completa homogeneização do conteúdo da câmara de mistura (39).
[072] Finda a etapa de homogeneização, a Unidade de Controle (Ucont) comanda a expulsão do conteúdo da câmara de mistura (39) diretamente para dentro da célula de medição de propriedades (49) do Módulo de Análise de Fluidos (Manfiu) .
[073] Essa transferência do “pacote analítico” homogeneizado é realizada através do conector de saída (34) do Módulo de Mistura (MmjSt) qne se conecta através de tubulação específica ao conector de entrada (41 ) do Módulo de Análise de Fluidos (Manfiu).
[074] Durante esse ciclo de transferência para o interior do Módulo de Analise de Fluido (Mantiu), a Unidade de Controle (Ucont) acionará o atuador pneumático movímentador (32), que se encontra conectado à parede móvel da câmara interna (37) do Módulo de Mistura (Mmist), movimentando-o para frente até que todo conteúdo da câmara interna (39) seja expulso e transferido para o Módulo de Análise de Fluidos (Mantiu) , conforme evidenciando na figura 5E.
[075] Nessa etapa, o agitador do tipo cónico helicoidal (38) atua como sendo uma mola, sendo totalmente comprimido sem se opor ou criar qualquer restrição à expulsão integral do material contido na câmara de mistura (39).
[070] Na etapa subsequente, a Unidade de Controle (UCO 1t) monitora o posicionamento do interior da câmara analítica (49a), sendo que durante toda a etapa de transferência, a câmara analítica (49a) deve estar no modo expandido, conforme figura 6D, sendo que, para tal, o atuador pneumático de posicionamento (45) deve estar totalmente recuado, permitindo o máximo espaçamento entre a janela ótica estática (46) e a janela ótica móvel (47), não havendo qualquer resistência do fluido em preencher completamente a cavidade da célula de leitura (49a), expulsando ainda a amostra do “pacote analítico” do ciclo de análise anterior.
[077] Após o término da transferência do “pacote analítico” para o interior da câmara analítica (49a) do Módulo de Análise de Fluido (Mantiu), através da contração total do volume da câmara de mistura (39) do Módulo de Mistura (Mmisí), conforme detalhado na figura 5E, a Unidade de Controle (Ucont) comanda o acionamento do atuador pneumático (45) para o posicionamento das janelas óticas de leitura (46) e (47) para a espessura fixa de medição, conforme a figura 6E.
[078] Após a confirmação de posicionamento pela Unidade de Controle (Ucont), através dos sensores de posição desse atuador pneumático (45), é então iniciado o procedimento analítico.
[079] Durante a etapa de caracterização analítica, a amostra de material fluido contido entre as janelas óticas (46) e (47) é irradiada através da radiação eletromagnética produzida pela fonte luminosa (Flum) na região de 100 a 6000 nanômetros, sendo conduzida pelo feixe de fibras óticas (44).
[080] A radiação eletromagnética conduzida pelo feixe de fibras óticas (44) atravessa então a janela ótica móvel (47), interagindo com a amostra de fluido de análise contida entre as janelas óticas (46) e (47) e emergindo no lado oposto ao da irradiação.
[081] O produto da interação entre a radiação eletromagnética e a amostra atravessa então a janela ótica (46) e é coletada pelo feixe de fibras óticas de captura (43), sendo conduzida dessa forma até o espectrofotômetro de feixe duplo (Esp).
[082] O espectrofotômetro de feixe duplo (Esp) nesse tipo de aplicação poderá estar qualificado para análises desde a faixa do ultravioleta até a faixa do infravermelho (100 a 6000 nanômetros), fornecendo grande versatilidade analítica para o equipamento e método analítico aqui descrito, gerando informações associadas à referida característica física do fluido que são encaminhadas à unidade de controle onde o microprocessador processa as medições espectrofotométricas por analise de transmissão que através de processamento matemático, apresenta os resultados da análise no microcomputador
[083] Durante a próxima etapa de sequenciamento, a Unidade de Controle (UCont), deverá efetuar a descontaminação das janelas óticas (46) e (47), antes do próximo ciclo de leitura, sendo que para tal a Unidade de Controle (Ucont), comandará inicialmente o recuo do atuador pneumático de posicionamento das janelas óticas (45)
[084] Confirmada a posição de recuo e o afastamento das janelas óticas, através dos sensores de posição do atuador pneumático (45), os braços de limpeza mecânica (49), conectados aos atuadores pneumáticos (40), serão atuados pela Unidade de Controle (UCQlt).
[085] Os braços de limpeza mecânica (49) são redundantes e seus atuadores pneumáticos (40) proporcionam uma raspagem rotativa de palhetas (49b), fabricadas a partir de um elastõmero especial, as quais são conduzidas através dos braços de limpeza (49) sobre a superfície das janelas óticas (46) e (47)
[086] Os atuadores pneumáticos (40), acionadores dos braços de limpeza (49), possuem um ciclo com intertravamento eletrónico comandado pela Unidade de Controle (Ucont).
[087] Após essa etapa final, reinicia-se novamente o ciclo analítico já descrito anteriormente.
[088] Para a calibração do espectrofotômetro, é previsto um Módulo de Calibração Óptica (Mcai), comandado pela Unidade de Controle (UCOnt) s a qual introduz no canal de amostra do espectrofotômetro (Esp), um conjunto de filtros óticos neutros (56a), (56b) e (56c), de atenuação conhecida, fixados a um bloco de posicionamento (55), os quais bloqueiam parte da radiação luminosa que chega ao detector do espectrofotômetro, evitando a sua “saturação” durante a fase de calibração
[089] A movimentação dos“filtros óticos neutros” (56a), (56b) e (56c), é realizada através do atuador pneumático posicionador (50), sendo possíveis de posicionamento dos três filtros neutros citados, existindo ainda outros dois atuadores pneumáticos auxiliares (54), os quais introduzem batentes mecânicos nos postos de posicionamento dos “filtros óticos neutros” (56a), (56b) e (56c).
[090] Os sensores de posição (53) fornecem informações de confirmação de posição dos “filtros óticos neutros” (56a), (56b) e (56c), para a Unidade de Controle (UCOÍ1t).
[091] Para a limpeza do equipamento e a fim de limpar as superfícies para a análise de um produto distinto, a Unidade de Controle (UCQnt) comuta a Segunda Válvula Seletora (n !2) para a terceira posição, permitindo a admissão do solvente de limpeza armazenado no contentor G3 no ponto de admissão (18c) da Primeira Válvula de Seleção (VseM ), podendo também ser acionada a Segunda Válvula Seletora (Vsel2) para a passagem do solvente por todo o equipamento.

Claims

1 /5
REIVINDICAÇÕES:
1. EQUIPAMENTO DE ANÁLISE DE UM FLUÍDO que analisa automaticamente as propriedades características de amostras de fluídos, tais como tintas, esmaltes e corantes, entre outros, por meio de uma Unidade de Controle (Ucont), pa a que ajustes possam ser feitos no fluido para atingir as propriedades ópticas, tais como cor, opacidade, matiz, saturação (poder tintorial), cobertura e luminosidade, a partir de técnica de medição espectrométrica por análise de transmissão de um filme de espessura fixa irradiada, caracterizado por compreender:
a) uma Primeira Válvula Seletora (Vsen) que apresenta um flange giratório (17) com movimento executado por meio de um atuador pneumático rotativo (12) com sensores, dito flange giratório (17) que apresenta quatro posições de parada (14a), (14b), (14c) e (14d), com posicionamento controlado pela Unidade de Controle (Ucont) e por batentes comandados por dois atuadores pneumáticos auxiliares (1 1 );
b) um Módulo Dosador (Mdos) dotado de uma seringa dosadora (25) em cujo êmbolo (24) é previsto um posicionador linear (21 ) atuado por um motor (20) que recua dito êmbolo (24) até ser atingido o volume de fluído de análise definido pelo programa de computador instalado no processador da unidade de controle (Ucorit) sendo o conteúdo do fluido de análise admitido, medido de forma indireta através de um transdutor linear (23), conectado ao êmbolo (24).
c) Uma segunda Válvula Seletora (Vsel2) que apresenta um flange giratório (17) com movimento executado por meio de um atuador pneumático rotativo (12), dito flange giratório (17) 2/5 que apresenta quatro posições de parada (14a), (14b), (14c) e (14d), com posicionamento controlado pela Unidade de Controle (UCOnt) e por batentes comandados por dois atuadores pneumáticos auxiliares (1 1 );
d) Um Módulo de Mistura (Mmist) dotado de uma câmara de mistura (39) onde é disposto um agitador cónico helicoidal
(38) conectado a um eixo (35) que se conecta na extremidade oposta a um motor pneumático (30), dita câmara de mistura
(39) dotada de uma parede móvel (37) na qual se conecta um atuador pneumático movimentador (32) que expulsa o conteúdo da dita câmara de mistura (39) para o conector de saída (34);
e) Um Módulo de Análise de Fluidos (Manf!u) que apresenta um conector de entrada (41 ) que recebe o pacote analítico e direciona para a célula de medição de propriedades (49) dotada de uma câmara analítica (49a) com uma janela ótica estática (46) e uma janela ótica móvel (47) acionada por um atuador pneumático de posicionamento (45) para a definição da espessura do filme definida na Unidade de Controle (Ucont), com radiação eletromagnética produzida pela fonte luminosa (F|Um) na região de 100 a 6000 nanômetros conduzida pelo feixe de fibras óticas (44) atravessando a janela ótica móvel (47) e interagindo com a amostra de fluido de analise contida entre as janelas óticas (46) e (47) e emergindo no lado oposto ao da irradiação, sendo coletado pelo feixe de fibras óticas de captura (43) para envio ao espectrofotômetro de feixe duplo (Esp).
2. EQUIPAMENTO DE ANÁLISE DE UM FLUÍDO, de acordo com a 3/5 reivindicação 1 , caracterizado peio fato da admissão dos fluídos no ponto de admissão da primeira Válvula Seletora (Vsen) ser feita por sucção gerada a partir da pressurização realizada peias bombas (B) dos contentores C1 e G2.
3. EQUIPAMENTO DE ANÁLISE DE UM FLUÍDO, de acordo com a reivindicação 1 , caracterizado pelo fato da Primeira Válvula Seletora (Vsen) apresentar uma primeira posição de parada (14a) que permite a admissão do fluído de análise depositado no contentor G1 no ponto de admissão (18a) da Primeira Válvula de Seleção (Vsen), uma segunda posição de parada que permite a admissão do veículo depositado no contentor G2 no ponto de admissão (18b) da Primeira Válvula de Seleção (Vsei1), uma terceira posição de parada que permite a admissão do solvente de limpeza armazenado no contentor G3 no ponto de admissão (18c) da Primeira Válvula de Seleção (Vse!1) e uma quarta posição de parada que promove o bloqueio da passagem de fluído em todas as direções.
4, EQUIPAMENTO DE ANÁLISE DE UM FLUÍDO, de acordo com a reivindicação 1 , caracterizado pelo fato do espectrofotômetro de feixe duplo (Esp) estar qualificado para análises desde a faixa do ultravioleta até a faixa do Infravermelho (100 a 6000 nanômetros).
5, EQUIPAMENTO DE ANÁLISE DE UM FLUÍDO, de acordo com a reivindicação 1 , caracterizado por apresentar braços de limpeza mecânica (49) conectados a atuadores pneumáticos (40) atuados pela Unidade de Controle, ditos braços de limpeza (40) providos de palhetas elastoméricas (49b) para raspagem da superfície das janelas óticas (46) e (47).
6. EQUIPAMENTO DE ANÁLISE DE UM FLUÍDO, de acordo com a 4/5 reivindicação 1 , caracterizado por apresentar um Móduio de Calibração Óptíca (Mcai)> comandado pela Unidade de Controle (Ucont) , a qual introduz no canal de amostra do espectrofotômetro (Esp), um conjunto de filtros óticos neutros (56a), (56b) e (56c), de atenuação conhecida, fixados a um bloco de posicionamento (55) com sensores de posição (53) e movimentados por um atuador pneumático posicionador (50) e outros dois atuadores pneumáticos auxiliares (54) que introduzem batentes mecânicos nos postos de posicionamento dos“filtros óticos neutros” (56a), (56b) e (56c).
, MÉTODO DE ANÁLISE DE UM FLUÍDO utilizando o equipamento reivindicado em 1 , caracterizado por compreender as etapas de:
a) dosar em proporções distintas um percentual definido de uma pasta e/ou dispersão de pigmentos, cargas minerais ou solução de corantes, complementando a dosagem com um veículo diluente transparente e/ou de opacidade controlada, podendo ser um verniz e/ou uma mistura de solventes e/ou resinas e/ou veículos líquidos com opacidade controlada e/ou combinações dessas, a ser introduzido dentro de um Módulo Misturador (Mmist) em uma etapa seguinte;
b) promover a adequada homogeneização dessa mistura, nas exatas proporções originalmente dosadas peia etapa anterior dentro do misturador de volume fixo e após, através de uma contração programada em sua câmara de mistura, expulsar o material de seu interior para uma etapa seguinte;
c) formar um filme de fluido com uma espessura fixa com o material proveniente da etapa anterior dentro de uma célula 5/5 leitura especialmente projetada para esse fim e que possua superfícies internas de contenção permeáveis à radiação eletromagnéticas (janelas óticas de leitura), capazes de possibilitar medidas Espectrofotométricas por Análise de Transmissão;
d) irradiar o dito filme de fluido com radiação eletromagnética para produzir uma interação entre o filme a radiação;
e) receber a radiação resultante transmitida através do filme de fluido formado ao lado oposto a superfície irradiada em um detector espectrofotométrico;
f) detectar a referida radiação de interação recebida através do Método de Transmissão em um espectrofotômetro, gerando informações associadas à referida característica física do fluido;
g) após a leitura da etapa anterior, possibilitar a iimpeza/descontaminação das superfícies internas de contenção permeáveis a radiação eletromagnéticas (janelas óticas de leitura), através de uma raspagem superficial do material aderido ou adsorvido, através de limpadores basculantes acionados de forma automática;
h) após a descontaminação promovida na etapa anterior, possibilitar a renovação da amostra para análise, através da natural expulsão da anterior pela admissão da nova amostra a ser analisada, finalizando dessa forma essa sequência e reiniciando novo ciclo.
PCT/BR2019/050381 2018-11-08 2019-09-06 Equipamento e método de análise de um fluído WO2020093121A1 (pt)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19882447.6A EP3879258B1 (en) 2018-11-08 2019-09-06 Equipment and method for analysis of a fluid
JP2021525299A JP7388801B2 (ja) 2018-11-08 2019-09-06 流体の分析装置および方法
US17/292,082 US11835448B2 (en) 2018-11-08 2019-09-06 Equipment and method for analysis of a fluid
CA3121383A CA3121383A1 (en) 2018-11-08 2019-09-06 Equipment and method for analysis of a fluid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRBR1020180730223 2018-11-08
BR102018073022-3A BR102018073022B1 (pt) 2018-11-08 2018-11-08 Equipamento e método de análise de um fluído

Publications (1)

Publication Number Publication Date
WO2020093121A1 true WO2020093121A1 (pt) 2020-05-14

Family

ID=70610975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2019/050381 WO2020093121A1 (pt) 2018-11-08 2019-09-06 Equipamento e método de análise de um fluído

Country Status (6)

Country Link
US (1) US11835448B2 (pt)
EP (1) EP3879258B1 (pt)
JP (1) JP7388801B2 (pt)
BR (1) BR102018073022B1 (pt)
CA (1) CA3121383A1 (pt)
WO (1) WO2020093121A1 (pt)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR102019005047B1 (pt) 2019-03-15 2021-04-13 Rogério Baptista Auad Sistema de produção de tinta com auto-ajuste automático de propriedades do produto final e respectivo método

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19618773C1 (de) * 1996-05-10 1997-11-06 Sbf Wasser Und Umwelt Zweignie Verfahren und Vorrichtung zur Probenvorbereitung und Messung des Elementgehaltes in eindampfbaren Flüssigkeiten
EP0932829A1 (en) 1996-10-15 1999-08-04 Renner Herrmann S.A. Fluid analysis system and method, for analysing characteristic properties of a fluid
JP2001074661A (ja) * 1999-09-08 2001-03-23 Shimadzu Corp グロー放電発光分光分析用試料
WO2005003740A1 (de) 2003-07-07 2005-01-13 Basf Coatings Ag Remissionssensor zur messung flüssiger pigmentpräparationen oder fester pigmentierter oberflächen
BR9801134A (pt) * 1998-03-26 2006-11-14 Renner Herrmann Sa aparelho e processo para preparação contìnua de um fluido com ajuste automático das suas propriedades
US20080273204A1 (en) 2004-05-25 2008-11-06 Renner Herrmann S.A. Apparatus and Method for Measuring the Spectral Properties of a Fluid
EP2161555A1 (en) * 2007-06-20 2010-03-10 Kansai Paint Co., Ltd Coating color database creating method, search method using the database, their system, program, and recording medium
WO2013173401A1 (en) 2012-05-16 2013-11-21 U.S. Coatings Ip Co. Llc Process for measuring liquid property and use thereof
CN104166154A (zh) * 2014-06-26 2014-11-26 中国核电工程有限公司 一种pig取样及监测***和方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3740156A (en) * 1971-08-11 1973-06-19 Exxon Research Engineering Co Photometric analyzer sampling cell
WO2000003578A2 (en) * 1998-07-16 2000-01-27 Renner Herrmann S.A. Fluid mixing device and fluid injection valve for use therewith
US7027147B2 (en) 2001-03-19 2006-04-11 E. I. Dupont De Nemours And Company Method and apparatus for measuring the color properties of fluids
US6888636B2 (en) 2001-03-19 2005-05-03 E. I. Du Pont De Nemours And Company Method and apparatus for measuring the color properties of fluids
US20040079417A1 (en) * 2001-04-23 2004-04-29 Auad Rogerio Batista Fluid mixing device and fluid injection valve for use therewith
EP1404378A4 (en) 2001-05-17 2004-12-08 Purepulse Technologies Inc METHODS AND APPARATUS ASSOCIATED WITH TREATMENT SYSTEMS USING LIGHT TO TREAT FLUIDIC PRODUCTS
US8049884B2 (en) 2006-10-06 2011-11-01 Shimadzu Corporation Spectrophotometer

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19618773C1 (de) * 1996-05-10 1997-11-06 Sbf Wasser Und Umwelt Zweignie Verfahren und Vorrichtung zur Probenvorbereitung und Messung des Elementgehaltes in eindampfbaren Flüssigkeiten
EP0932829A1 (en) 1996-10-15 1999-08-04 Renner Herrmann S.A. Fluid analysis system and method, for analysing characteristic properties of a fluid
BR9612756A (pt) 1996-10-15 1999-10-19 Renner Herrmann Sa Sistema e método de análise fr fluidos, para análise de propriedades caracterìsticas de um fluido
BR9801134A (pt) * 1998-03-26 2006-11-14 Renner Herrmann Sa aparelho e processo para preparação contìnua de um fluido com ajuste automático das suas propriedades
JP2001074661A (ja) * 1999-09-08 2001-03-23 Shimadzu Corp グロー放電発光分光分析用試料
WO2005003740A1 (de) 2003-07-07 2005-01-13 Basf Coatings Ag Remissionssensor zur messung flüssiger pigmentpräparationen oder fester pigmentierter oberflächen
US20080273204A1 (en) 2004-05-25 2008-11-06 Renner Herrmann S.A. Apparatus and Method for Measuring the Spectral Properties of a Fluid
EP2161555A1 (en) * 2007-06-20 2010-03-10 Kansai Paint Co., Ltd Coating color database creating method, search method using the database, their system, program, and recording medium
WO2013173401A1 (en) 2012-05-16 2013-11-21 U.S. Coatings Ip Co. Llc Process for measuring liquid property and use thereof
CN104166154A (zh) * 2014-06-26 2014-11-26 中国核电工程有限公司 一种pig取样及监测***和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3879258A4

Also Published As

Publication number Publication date
EP3879258A1 (en) 2021-09-15
US20210396653A1 (en) 2021-12-23
JP7388801B2 (ja) 2023-11-29
CA3121383A1 (en) 2020-05-14
US11835448B2 (en) 2023-12-05
BR102018073022B1 (pt) 2021-08-10
EP3879258B1 (en) 2024-07-10
BR102018073022A2 (pt) 2020-05-26
EP3879258A4 (en) 2022-08-17
JP2022507100A (ja) 2022-01-18

Similar Documents

Publication Publication Date Title
US10837898B2 (en) Sensor for a virtually simultaneous measurement of a transmission and/or forward scattering and/or remission and for a simultaneous measurement of the transmission and forward scattering or transmission and remission of a liquid sample
DE60222864T2 (de) Verfahren und vorrichtung zur untersuchung von fluiden
JPH11132851A (ja) 内部カラーのプローブ
US7027147B2 (en) Method and apparatus for measuring the color properties of fluids
US20020167663A1 (en) Method and apparatus for characterizing the color properties of fluids
AU2017343368A1 (en) A spectrometer apparatus for measuring spectra of a liquid sample using an integrating cavity
US20030004229A1 (en) Process for manufacturing transparent tints
WO2020093121A1 (pt) Equipamento e método de análise de um fluído
CA3133481A1 (en) Paint-production system with automatic self-adjustment of properties of the end product, and related method
EP1646858B1 (de) Remissionssensor zur messung flüssiger pigmentpräparationen oder fester pigmentierter oberflächen
WO2009076248A1 (en) Systems and methods for improving measurement of light transmittance through ink deposited on a substrate
EP1957949B1 (en) Probe apparatus for measuring a color property of a liquid
EP1957960B1 (en) System for measuring a property of a fluid using interrogating radiation
JPH0232232A (ja) 吸光光度計用セル
JP2000193587A (ja) 液体試料の濃度分析装置
Lee et al. Visible attenuated total reflection (ATR): a new technique for high-strength pigment analyses
JP3893700B2 (ja) 測色対象液体の散乱性測定方法、測色対象液体の散乱性測定装置、液体測色方法、及び液体測色装置
NZ752100B2 (en) A spectrometer apparatus for measuring spectra of a liquid sample using an integrating cavity
JP2000241246A (ja) 膜形成装置、液体測色装置及び液体測色方法
JPH08313352A (ja) 液体測色方法と装置、及びこれを用いた色合わせ方法と装置
JPH0245814B2 (ja) Hantomeibutsutainonaibushokusokuteihoho
EP2352986A1 (en) Uv-vis atr short pathlength spectroscopy of printing inks
JPH10213481A (ja) 液体測色装置および着色液の色修正方法
JPH10253458A (ja) 液体測色装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19882447

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021525299

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 3121383

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2019882447

Country of ref document: EP

Effective date: 20210608