WO2020085522A1 - V2x 통신 장치 및 그의 다중 채널 혼잡 제어 방법 - Google Patents

V2x 통신 장치 및 그의 다중 채널 혼잡 제어 방법 Download PDF

Info

Publication number
WO2020085522A1
WO2020085522A1 PCT/KR2018/012553 KR2018012553W WO2020085522A1 WO 2020085522 A1 WO2020085522 A1 WO 2020085522A1 KR 2018012553 W KR2018012553 W KR 2018012553W WO 2020085522 A1 WO2020085522 A1 WO 2020085522A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
cbr
congestion control
multiple channels
observation window
Prior art date
Application number
PCT/KR2018/012553
Other languages
English (en)
French (fr)
Inventor
백종섭
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to PCT/KR2018/012553 priority Critical patent/WO2020085522A1/ko
Priority to US17/285,383 priority patent/US12022317B2/en
Publication of WO2020085522A1 publication Critical patent/WO2020085522A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • H04W28/0236Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0289Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria

Definitions

  • the present invention relates to a V2X communication device and a multi-channel congestion control method thereof, and particularly to a multi-channel congestion control method considering an influence / problem of adjacent channel interference (ACI) in a multi-channel environment.
  • ACI adjacent channel interference
  • V2X Vehicle to Everything
  • Connectivity can be implemented using various V2X communication technologies such as European ITS-G5, US WAVE, and NR (New Radio).
  • NR may include new inter-vehicle communication technologies developed in the future, including cellular V2X, such as LTE-V2X and 5G-V2X.
  • MCO multi-channel operation
  • the present invention considers the ACI effect / problem that occurs because the transmission / reception band filter of each channel is not ideal in multi-channel operation, and proposes a method for efficiently controlling the multi-channel traffic congestion problem in consideration of the ACI effect. .
  • a multi-channel congestion control method considering ACI (Adjacent Channel Interference) is disclosed.
  • a multi-channel congestion control method includes setting an interference observation window based on ACI of a transmission channel; Obtaining channel busy ratio (CBR) information for multiple channels covered by the interference observation window; Setting a reference CBR for congestion control based on CBR information for the multiple channels; And performing congestion control on the transmission channel based on the reference CBR.
  • CBR channel busy ratio
  • setting the reference CBR further includes setting a reference channel for congestion control, wherein the reference channel is a multiple covered by the interference interception window It may correspond to one of the channels.
  • a channel having the maximum CBR among the multiple channels is set as the reference channel, and the reference The CBR of the channel may be set as the reference CBR.
  • a channel having a higher priority among the multiple channels may be set as the reference channel, and a CBR of the reference channel may be set as the reference CBR.
  • the channel having the maximum CBR among the multiple channels is set as the reference channel, and the CBR of the reference channel can be set as the reference CBR.
  • the interference observation window covers the transmission channel and at least one adjacent channel.
  • the influence of ACI is taken into consideration in multi-channel operation, and thus the transmission / use efficiency for the entire channel can be improved compared to congestion control considering only the transmission channel.
  • FIG. 1 shows a reference architecture of an Intelligent Transport System (ITS) station according to an embodiment of the present invention.
  • ITS Intelligent Transport System
  • FIG. 2 shows an ITS access layer according to an embodiment of the present invention.
  • FIG. 3 shows a multi-channel allocation used in ITS system operation according to an embodiment of the present invention.
  • FIG. 4 shows a channel coordination mode of multi-channel operation according to an embodiment of the present invention.
  • FIG. 5 shows a traffic congestion control method according to an embodiment of the present invention.
  • FIG. 6 shows ACI effect of a single channel according to an embodiment of the present invention.
  • FIG. 7 illustrates ACI effect when a service is transmitted using multiple channels according to an embodiment of the present invention.
  • FIG. 9 shows a first congestion control reference channel selection method according to an embodiment of the present invention.
  • FIG. 10 shows a second congestion control reference channel selection method according to an embodiment of the present invention.
  • FIG. 11 is a flowchart illustrating a second congestion control reference channel selection method according to an embodiment of the present invention.
  • FIG. 12 shows a DCC state machine and a method for controlling channel congestion according to an embodiment of the present invention.
  • FIG. 13 illustrates a configuration of a V2X communication device according to an embodiment of the present invention.
  • FIG. 14 shows a multi-channel congestion control method of a V2X communication device according to an embodiment of the present invention.
  • the present invention relates to a V2X communication device, the V2X communication device is included in the Intelligent Transport System (ITS) system, and may perform all or some functions of the ITS system.
  • the V2X communication device can perform communication with a vehicle and a vehicle, a vehicle and an infrastructure, a vehicle and a bicycle, and a mobile device.
  • the V2X communication device may also be abbreviated as a V2X device.
  • the V2X device may correspond to an Onboard Unit (OBU) of a vehicle, or may be included in the OBU.
  • OBU may also be referred to as OBE (On Board Equipment).
  • the V2X device may correspond to an infrastructure roadside unit (RSU) or may be included in the RSU.
  • RSU infrastructure roadside unit
  • RSU may also be referred to as RSE (RoadSide Equipment).
  • V2X communication device may correspond to the ITS station or may be included in the ITS station. Any OBU, RSU, and mobile equipment that performs V2X communication may be referred to as an ITS station or a V2X communication device.
  • FIG. 1 shows a reference architecture of an Intelligent Transport System (ITS) station according to an embodiment of the present invention.
  • ITS Intelligent Transport System
  • two end-of-vehicle / users can communicate the communication network, and such communication can be performed through the functionality of each layer of the architecture of FIG.
  • communication can be performed through the functionality of each layer of the architecture of FIG.
  • data is transmitted through each layer down one layer in the transmitting vehicle and its ITS system, and data is passed through each layer up one layer in the receiving vehicle and its ITS system.
  • Description of each layer of the architecture of Figure 1 is as follows.
  • the application layer can implement and support various use cases.
  • the application may provide road safety, efficient traffic information, and other application information.
  • the facility layer can support to effectively realize various use cases defined in the application layer.
  • the facility layer may perform application support, information support, and session / communication support.
  • the network / transport layer can configure a network for vehicle communication between homogenous / heterogeneous networks by using various transport protocols and network protocols.
  • the network / transport layer can provide Internet access and routing using Internet protocols such as TCP / UDP + IPv6.
  • the network / transport layer may configure a vehicle network using a geographical position-based protocol such as Basic Transport Protocol (BTP) / GeoNetworking.
  • BTP Basic Transport Protocol
  • the access layer may transmit the message / data received from the upper layer through a physical channel.
  • the access layer includes a communication technology based on IEEE 802.11 and / or 802.11p standards, a ITS-G5 wireless communication technology based on the physical transport technology of IEEE 802.11 and / or 802.11p standards, and a satellite / wideband wireless mobile communication.
  • the ITS architecture may further include a management layer and a security layer.
  • FIG. 2 shows an ITS access layer according to an embodiment of the present invention.
  • FIG. 2 shows the ITS Access Layer of the ITS system shown in FIG. 1 in more detail.
  • the access layer of FIG. 2 may include a data link layer, a physical layer, and layer management.
  • the access layer of FIG. 2 has similar or identical characteristics to the OSI 1 layer (physical layer) and the OSI second layer (data link layer).
  • the data link layer includes a logical link control (LLC) sub-layer, a medium access control (MAC) sub-layer, and a multi-channel operation (MCO) sub-layer. can do.
  • LLC logical link control
  • MAC medium access control
  • MCO multi-channel operation
  • the physical layer may include a physical layer convergence protocol (PLCP) sublayer and a physical medium access (PMD) sublayer.
  • PLCP physical layer convergence protocol
  • PMD physical medium access
  • the data link layer can convert a noisy adjacent node (or vehicle-to-vehicle) physical circuit into a communication channel without transmission errors for use by a higher network layer.
  • the data link layer transmits / transports / transmits a three-layer protocol, a framing function that groups the data to be transmitted into packets (or frames) as a transmission unit, and compensates the speed difference between the sending and receiving sides.
  • Flow Control function detects transmission errors and corrects or retransmits them.
  • the data link layer provides a sequence number to packets and ACK signals to avoid confusing packets or ACK signals, and establishes, maintains, shorts, and transmits data links between network entities. Perform the control function.
  • the data link layer may include a logical link control (LLC) sublayer and a medium access control (MAC) sublayer based on the IEEE 802 standard.
  • LLC logical link control
  • MAC medium access control
  • the main function of the LLC sublayer is to enable the use of several different sub-MAC sublayer protocols to enable communication regardless of the network topology.
  • the MAC sub-layer may control collision / conflict between vehicles for use of shared media by multiple vehicles (or nodes or vehicles and peripherals).
  • the MAC sublayer may format the packet transmitted from the upper layer to match the frame format of the physical network.
  • the MAC sub-layer may perform a function of adding and identifying a sender address / recipient address, carrier detection, collision detection, and failure detection on a physical medium.
  • the physical layer is the lowest layer in the ITS layer structure, and defines an interface between a node and a transmission medium, and can perform modulation, coding, and mapping of a transport channel to a physical channel for bit transmission between data link layer entities. .
  • the physical layer performs a function of informing whether the wireless medium is in use (busy or idle) to the MAC sublayer through carrier sensing and clear channel assessment (CCA).
  • the physical layer may include a physical layer convergence protocol (PLCP) sublayer and a physical medium access (PMD) sublayer based on the IEEE standard.
  • PLCP physical layer convergence protocol
  • PMD physical medium access
  • the PLCP sublayer connects the MAC sublayer and the data frame.
  • the PLCP sublayer adds a header to the received data so that the MAC sublayer operates regardless of physical characteristics. Therefore, the format of the PLCP frame may be defined differently according to various different wireless LAN physical layer standards.
  • the main function of the PMD sublayer is to perform transmission to a wireless medium according to standards related to transmission / reception after receiving / transmitting a frame received from a PLCP sublayer after carrier / communication modulation (carrier modulation, or communication modulation).
  • Layer management serves to manage and service information related to the operation and security of the access layer.
  • Information and services are delivered and shared in both directions through an MI (inte communicationace between management entity and access layer, or MI-SAP) and an SI (inte communicationace between security entity and access layer, or SI-SAP).
  • MI-SAP integer communicationace between management entity and access layer
  • SI-SAP infrastructure-specific API
  • Bidirectional information and service delivery between the access layer and the network / transport layer is performed by IN (or IN-SAP).
  • the MCO sublayer can provide a variety of services, such as safety services and other services other than safety services, that is, non-safety services using multiple frequency channels.
  • the MCO sublayer effectively distributes traffic loads in a specific frequency channel to other channels, thereby minimizing collision / contention when communicating between vehicles in each frequency channel.
  • FIG. 3 shows a multi-channel allocation used in ITS system operation according to an embodiment of the present invention.
  • FIG. 3 (a) shows US spectrum allocation for ITS
  • FIG. 3 (b) shows EP spectrum allocation for ITS.
  • CCH control channel
  • SCH service channels
  • the use of the ITS-G63 band is considered in addition to the upper frequency band based on 5.9 GHz to provide time-sensitive and large data capacity services, and the ITS-G5 band is used as the lower frequency band. Use is being considered. In this environment, it is necessary to develop an efficient multi-channel operation method to provide high-quality services by appropriately allocating services to various multi-channels.
  • the control channel represents a radio channel used for exchanging management frames and / or WAVE messages.
  • the WAVE message may be a WAVE short message (WSM).
  • the service channel is a radio channel used for service provision, and represents an arbitrary channel, not a control channel.
  • the control channel may be used for communication of a Wave Short Message Protocol (WSMP) message or a system management message such as WAVE Service Advertisement (WSA).
  • WSMP Wave Short Message Protocol
  • WSA WAVE Service Advertisement
  • the SCH may be used for general-purpose application data communication, and communication of the general-purpose application data may be coordinated by service related information such as WSA.
  • WSA may also be referred to as service advertisement information below.
  • the WSA may provide information including an announcement of the availability of the application-service.
  • WSA messages may identify and describe application services and channels to which the service is accessible.
  • the WSA may include header, service information, channel information, and WAVE routing propaganda information.
  • the service advertisement information for accessing the service may be a periodic message.
  • Co-operative Awareness Messages may be periodic messages. CAMs may be periodically broadcast by the facility layer.
  • Decentralized environmental notification messages may be event messages. Event messages can be sent triggered by the detection of an event. Service messages may be sent to manage the session. In the following embodiments, the event message may include a safety message / information. And the service message may include a non-safe message / information.
  • the V2X communication device may broadcast a Cooperative Awareness Message (CAM) or a Decentralized Enviriomental Notification Message (DENM).
  • CAM Cooperative Awareness Message
  • DENM Decentralized Enviriomental Notification Message
  • CAM is distributed in the ITS network, and provides information on at least one of the presence, location, or communication status of the ITS station.
  • DENM provides information on detected events.
  • DENM may provide information on any driving situation or event detected by the ITS station.
  • DENM can provide information on situations such as emergency electronic brakes, vehicle accidents, vehicle problems, traffic conditions, and the like.
  • FIG. 4 shows a channel coordination mode of multi-channel operation according to an embodiment of the present invention.
  • Figure 4 is a channel coordination mode of multi-channel operation (a) (b) continuous (continuous) mode, (b) altering (alternating) mode, (c) extended (extended) mode and (d) immediate (immediate) mode Shows.
  • the channel coordination mode may indicate how the V2X device accesses the CCH and SCH.
  • the V2X device can access at least one channel.
  • a single-radio device may monitor the CCH and exchange data on the SCH (via).
  • the channel interval must be specified, and FIG. 4 shows such a channel interval, i.e., time slot assignment.
  • Radio channel altering may be operated based on a synchronized interval associated with a common time base.
  • the sync interval may include a plurality of time slots.
  • a plurality of time slots may correspond to a CCH interval and a SCH interval.
  • the sync interval may include a CCH interval and a SCH interval.
  • traffic can be exchanged on the CCH.
  • Single-radio devices participating in the application-service may switch to the SCH during the SCH interval.
  • Each of the CCH interval and the SCH interval may include a guard interval. Each interval may start with a guard interval.
  • the exchange of multi-channel operation information and safety-related service information may be performed on the CCH during the CCH interval.
  • negotiation for information exchange between the service provider and the user may be performed on the CCH during the CCH interval.
  • the hardware timing operation for channel change of the V2X device may be initiated by a synchronization signal obtained by Universal Time Coordinated (UTC) estimation.
  • UTC Universal Time Coordinated
  • Channel synchronization may be performed for each 1 PPS (Pulse Per second) interval based on UTC.
  • FIG. 4 is a multi-channel operation (MCO) channel coordination method described in IEEE 1609.4, wherein two MAC layers in one physical layer divide time and alternately use CCH and different channel modes. Shows.
  • MCO multi-channel operation
  • the continuous mode is a mode in which each vehicle or all vehicles operate regardless of time division criteria such as the time slot / CCH interval / SCH interval of FIG. 4.
  • the V2X device may continuously receive multi-channel operation information and safety-related service information on a designated CCH or SCH, or perform information exchange between a service provider and a user.
  • each vehicle or all vehicles receive multi-channel operation information and safety-related services / information during a CCH interval, or perform a negotiation process for exchanging information between service providers / users. You can.
  • each vehicle or all vehicles perform service / information exchange between the service provider and the user during the SCH interval.
  • the V2X device may alternately communicate through the CCH and SCH during the set CCH interval and SCH interval.
  • (d) Extended mode In the extended mode, communication of the CCH interval and the SCH interval may be performed as in the change mode. However, the service / information exchange of the SCH interval may be performed in the CCH interval. As an embodiment, the V2X device in the extended mode may transmit and receive control information during the CCH interval and maintain the SCH interval until the service / information exchange ends when entering the SCH interval.
  • (e) Immediate mode In the immediate mode, communication of the V2X device can be performed as in the change mode and / or the extended mode. However, when the negotiation for information exchange is completed during the CCH interval, the V2X device in the immediate mode may start information exchange by switching the channel directly to the designated SCH instead of waiting for the end of the CCH interval. As shown in Fig. 4, the extended mode and the immediate mode can be used together.
  • information exchange and negotiation for providing management information and service of multiple channels may be performed only on the CCH during the CCH interval.
  • negotiation for receiving safety-related services and information or for exchanging information between service providers and users may also be performed only on the CCH during the CCH interval.
  • a guard interval may be included between the CCH interval and the SCH interval.
  • the guard interval can secure a time required for synchronization when a communication device changes a frequency and changes a channel.
  • the hardware timer operation may be started by a synchronization signal obtained by Coordinated Universal Time (UTC) estimation.
  • UTC Coordinated Universal Time
  • the channel synchronization can match the channel synchronization for each 1PPS (Pulse Per Second) section using UTC as a reference signal.
  • the synchronization interval may include a CCH interval and a SCH interval. That is, one sync interval may include two time slots, and each of the CCH interval and the SCH interval may correspond to timeslot 0 and timeslot 1.
  • the start of the sync interval may coincide with the start of the second in common time.
  • An integer multiple of a sync interval for 1 second time may be included.
  • the V2X communication device can communicate using a multichannel operation (MCO) technology using multiple antennas.
  • MCO multichannel operation
  • ETSI MCO design described in ETSI TS 102 646-4-2 is designed considering mainly the following items.
  • a channel access (CA) method capable of effectively using channel resources using multiple antennas in multiple channels should be provided.
  • a mechanism for a V2X device to effectively receive a service advertisement message / SAM (Service Announcement Message) providing V2X service information and to move to a channel in which the corresponding service is provided should be provided.
  • SAM Service Announcement Message
  • a mechanism should be provided to minimize interference effects between adjacent channels that may occur when V2X transmission and reception using two or more multiple antennas and adjacent channels are performed simultaneously in the same vehicle.
  • Control Channel is a basic channel that provides messages related to traffic safety such as Cooperative Awareness Message (CAM), Decentralized Environmental Notification Message (DENM), TOPO (Topology), and MAP.
  • Safety messages that are not sufficiently provided in the CCH may be provided through the SCH.
  • the added safety message may be provided in the SCH.
  • V2X service provided through a service channel is announced through a SAM, and the SAM can be provided through a well-known reference channel.
  • V2X service information provided in a channel band such as ITS-G5A / B / D may be provided through SAM in a reference CCH.
  • V2X service information provided in each channel band may be provided through SAM in an alternate reference SCH (SCH) arbitrarily designated in the channel band.
  • CBR Channel Busy Ratio
  • CBR information is traffic load / load status information defined as a ratio of a channel's busy section to an observation section.
  • CBR information can be used to determine the channel occupancy status for vehicles in the same network.
  • the CBR information may indicate a time-dependent value of 0 or more and 1 or less indicating a fraction of time when a corresponding channel is busy.
  • the CBR value may be referred to as CBR.
  • FIG. 5 shows a traffic congestion control method according to an embodiment of the present invention.
  • FIG. 5 (a) shows a channel congestion control method for a single channel
  • FIG. 5 (b) shows a channel congestion control method for multiple channels.
  • the V2X communication device acquires CBR information for a transport channel (a-S5010), and performs channel congestion control using the CBR of the transport channel (a-S5020). After measuring the CBR in the service transmission channel, the V2X communication device performs channel congestion control using the measured CBR value.
  • the V2X communication device sets the size (W) of the interference observation window (b-S5010).
  • the V2X communication device acquires CBR information for multiple channels of the interference observation window (b-S5020).
  • the V2X communication device selects the congestion control reference channel from the interference observation window and sets the congestion control reference CBR (b-S5030).
  • the V2X communication device performs transmission channel congestion control using the congestion control reference CBR (b-S5040).
  • multi-channel CBR information is obtained using the interference observation window as compared to FIG. 5 (a), and a congestion control reference channel selection and congestion control reference CBR setting process required for channel congestion are additionally performed.
  • a congestion control reference channel selection and congestion control reference CBR setting process required for channel congestion are additionally performed. The operation of FIG. 5 (b) will be described in detail below.
  • FIG. 6 shows ACI effect of a single channel according to an embodiment of the present invention.
  • ACI is caused by interaction between adjacent channels.
  • communication of the transmission channel 3 may act as inter-channel interference on adjacent channels, channels 1, 2, 4, and 5.
  • communication of channels 2 and 4 may interfere with communication of channel 3.
  • V2X communication device selects only one channel to transmit and receive a service, interference from an adjacent channel may not exist. Therefore, the V2X communication device can perform channel traffic congestion control using only CBR information for a corresponding channel.
  • FIG. 7 illustrates ACI effect when a service is transmitted using multiple channels according to an embodiment of the present invention.
  • the service is provided by multiple channels. Accordingly, there is interference with adjacent channels (CH1, CH2, CH4, and CH5) from channel 3, which is a transmission channel, and interference with a transmission channel of an adjacent channel.
  • adjacent channels CH1, CH2, CH4, and CH5
  • channel 3 which is a transmission channel
  • ACI affects CBR, an index indicating channel congestion according to the amount of interference.
  • CCA can be used as a threshold value for determining the idle (IDLE) state and the occupied (BUSY) state of the channel.
  • RSSI received signal strength indication
  • FIG. 7 (b) shows the effect of ACI on the transport channel CBR and the adjacent channel CBR.
  • the channel 3 which is a transmission channel
  • surrounding vehicles using adjacent channels CH2 and CH4 within the communication range of the same network are affected by ACI from the channel 3. Therefore, if the amount of ACI is greater than CCA, the channel is determined as BUSY, and as a result, the CBR of the adjacent channel increases. That is, in order to effectively perform service provision and congestion control using multiple channels, the influence of ACI must be considered.
  • an interference observation window may be used as a method of obtaining CBR information.
  • the size of the interference observation window may be set to include adjacent channels based on the service transmission channel.
  • the interference observation window acquires CBR information for each channel in the window to analyze ACI effects between channels.
  • the size of the interference observation window may be determined or adjusted in consideration of the ACI effect of a service transmission channel on an adjacent channel.
  • FIG. 8 (a) shows an embodiment of the interference observation window having a width / size of 2
  • FIG. 8 (b) shows an embodiment of an interference observation window having a width / size of 3
  • FIG. 8 (c) shows the width / size of an interference observation window.
  • 8 shows an embodiment of the interference observation window
  • FIG. 8 (d) shows an embodiment of the interference observation window having a width / size of 5, respectively.
  • the width / size of the interference observation window may be set in units of channels. That is, in a multi-channel environment as shown in FIG. 3, the width / size of the interference observation window covering one channel may be indicated by 1, and the width / size of the interference observation window covering n channels may be indicated by n.
  • the CBR of the adjacent channel as well as the CBR of the adjacent channel increases together. Therefore, service transmission should be performed considering the effect on the adjacent channel CBR. For example, if the CBR for the transport channel is low but the CBR for the adjacent channel is high, if there is no tendency of ACI, the channel utilization rate can be increased by using CBR information in the transport channel. On the other hand, if there is an influence of ACI, an increase in channel utilization causes a CBR increase in an adjacent channel, and as a result, decreases a service transmission rate in an adjacent channel.
  • the channel utilization / service transmission rate can be controlled by controlling the number of service transmissions or the service transmission period.
  • the channel utilization may be increased by increasing the number of service transmissions (service transmission rate) or decreasing the service transmission period.
  • service transmission rate service transmission rate
  • a problem in which the target CBR is exceeded may occur due to service transmission of an adjacent channel.
  • the service transmission rate in the transmission channel should be determined in consideration of the CBR of the adjacent channel.
  • the present invention proposes various methods of setting a congestion control reference channel and a congestion control reference CBR, which are the criteria for determining a service transmission rate in a transmission channel in an interference observation window.
  • the congestion control reference channel and the service control channel may be the same or different.
  • a channel that has not been used or has not been used for a certain period of time within the interference window is considered a nulling channel, and may be excluded from the congestion control reference channel selection process regardless of the observed CBR value.
  • the congestion control reference channel In the first method of selecting the congestion control reference channel, it is assumed that the priority of each channel is the same, and the CBR value of each channel in the interference observation window is the same. In the first method, a channel having the maximum CBR value is selected as the congestion control reference channel, and the CBR value of the corresponding channel can be set as the congestion control reference CBR.
  • the first method may be expressed as Equation 1 below.
  • CBRj represents the CBR value of the j-th channel.
  • CBRref represents the congestion control reference CBR value. A channel with CBRref is selected / determined as a congestion control reference channel. When there are a plurality of channels having the same maximum CBR value, one channel may be randomly selected as the congestion control reference channel.
  • FIG. 9 shows a first congestion control reference channel selection method according to an embodiment of the present invention.
  • the size of the interference observation window is 3.
  • the transport channel is CBR1
  • the channel having the largest CBR value of 2 becomes the congestion control reference channel (CBRref)
  • each channel has a different priority, and each channel has a different target CBR for each priority.
  • a priority channel or a control channel is regarded as the highest priority channel, and other channels are regarded as lower priority channels.
  • the channel having the highest priority is selected as the congestion control reference channel, and the CBR of the corresponding channel may be determined as the congestion control reference CBR.
  • a channel having a maximum CBR value may be selected as a congestion control reference channel.
  • one randomly selected channel may be a congestion control reference channel.
  • FIG. 10 shows a second congestion control reference channel selection method according to an embodiment of the present invention.
  • the size of the interference observation window is 3.
  • a primary channel / CCH is included in an adjacent channel of a transport channel. Therefore, the primary channel / CCH channel is selected as the congestion control reference channel. Then, the CBR value (CBR2) of the congestion control reference channel becomes the congestion control reference CBR value.
  • FIG. 11 is a flowchart illustrating a second congestion control reference channel selection method according to an embodiment of the present invention.
  • the V2X communication device sets the size (W) of the interference observation window (S11010).
  • the V2X communication device acquires CBR information for multiple channels through a set interference observation window (S11020).
  • the V2X communication device selects the corresponding channel as the congestion control reference channel, and the CBR of the corresponding channel as the congestion control reference CBR. Can be set (S11040).
  • the V2X communication device performs transmission channel congestion control using the congestion control reference CBR (S11050).
  • the V2X communication device selects a congestion control reference channel and can set the CBR of the channel as the congestion control reference CBR. Yes (S11060). If there is no primary channel or CCH channel, the V2X communication device may set the reference channel and the reference CBR based on the first congestion control reference channel selection method described above. In addition, the V2X communication device performs congestion control of the transmission channel using the congestion control reference CBR (S11070).
  • a channel having a maximum CBR among weighted CBRs is selected as a congestion control criterion in consideration of a channel priority, and a weighted CBR or a CBR of the corresponding channel may be set as the congestion control criterion CBR.
  • the weight may be set differently according to the priority of the channel.
  • Different target CBRs may be set for the case where the congestion control reference channel selected in the interference observation window is the same as the service transmission channel and for other cases. For example, when the primary channel is selected as the congestion control reference channel in the interference observation window, when the congestion control reference channel and the service transmission channel are the same, a high CBR value is set, and the congestion control reference channel and the service transmission channel are different. In the case, a low CBR value may be set. This is to prevent or limit the increase in the CBR value of the primary channel due to the service transmission of the adjacent channel with low priority.
  • a channel having the smallest or largest error between the target CBR and the measured CBR may be selected as the congestion control reference channel.
  • the congestion control reference channel may be determined by Equation (2).
  • the average CBR for multiple channels may be set as the congestion control reference CBR.
  • the congestion control reference channel may not be selected.
  • the congestion control reference channel may be determined by Equation (3).
  • the channel having the minimum CBR value is selected as the congestion control reference channel, and the CBR value of the corresponding channel can be set as the congestion control reference CBR. .
  • the congestion control reference channel may be determined by Equation (4).
  • the weighted CBR for the CBR of the congestion control reference channel may be selected as the congestion control reference CBR.
  • the weight is indicated by ⁇ in equation (4).
  • the purpose of using a weighted CBR is to mitigate that the service rate determination in the transport channel is entirely dependent on the CBR of the adjacent channel.
  • the reference channel may be selected by the second method of selecting the congestion control reference channel.
  • a method of controlling a service transmission rate in a transport channel using a congestion control criterion CBR set according to the above-described method will be described.
  • a congestion control method and an adaptive transfer rate control method using a decentralized congestion control (DCC) state-machine technique will be described.
  • FIG. 12 shows a DCC state machine and a method for controlling channel congestion thereof according to an embodiment of the present invention.
  • the channel when the CBR value measured for 1 second is less than 0.15, the channel is determined to be in an idle / relaxed state, and transmission is performed based on transmission parameters defined in the idle state.
  • the channel is determined to be in an active / active state, and transmission is performed based on transmission parameters defined in the active state.
  • the channel is determined to be in a restricted / restrictive state, and transmission is performed based on transmission parameters defined in the restricted state.
  • the DCC state machine using the CBRref in FIG. 12 is similar to the control method described in ETSI TS 102 687, but when the service transmission channel and the congestion control reference channel are different, the CBR value used in the service transmission channel indicates the CBR information of the adjacent channel. The difference is that it works.
  • the adaptive transmission rate control method may be performed as shown in Equation 5 below.
  • CRBtarget represents the target CBR of the congestion control reference channel
  • CBRref represents the congestion control reference CBR.
  • the adaptive transmission rate control method is similar to the existing technology, but has a difference in that when the service transmission channel and the congestion control reference channel are different, the transmission rate of the service transmission channel is operated using CBRtarget and CBRref of the adjacent channel.
  • FIG. 13 illustrates a configuration of a V2X communication device according to an embodiment of the present invention.
  • the V2X communication device 13000 may include a communication unit 13010, a processor 1320 and a memory 1230.
  • the communication unit 13010 may be connected to the processor 1320 to transmit / receive wireless signals.
  • the communication unit 13010 may upconvert data received from the processor 1320 into a transmission / reception band to transmit a signal or downconvert a received signal.
  • the communication unit 13010 may implement an operation of at least one of a physical layer or an access layer.
  • the communication unit 13010 may include a plurality of sub RF units to communicate according to a plurality of communication protocols.
  • the communication unit 13010 includes DSG (Dedicated Short Range Communication), ITS-G5 wireless communication technology based on IEEE 802.11 and / or 802.11p standard physical transmission technology, and satellite / wideband wireless mobile communication. Data communication can be performed based on / 3G / 4G (LTE) / 5G wireless cellular communication technology, broadband terrestrial digital broadcasting technology such as DVB-T / T2 / ATSC, GPS technology, IEEE WAVE technology, and the like.
  • the communication unit 13010 may include a plurality of transceivers implementing each communication technology. In addition, one of the plurality of transceivers may access the control channel, and the other transceiver may access the service channel.
  • the processor 1320 may be connected to the communication unit 13010 to implement operations of layers according to the ITS system or the WAVE system.
  • the processor 1320 may be configured to perform operations according to various embodiments of the present invention according to the above-described drawings and descriptions.
  • at least one of modules, data, programs, or software for implementing the operation of the V2X communication device 13000 according to various embodiments of the present invention described above is stored in the memory 1230 and can be executed by the processor 1320. have.
  • the memory 1230 is connected to the processor 1320 and stores various information for driving the processor 1320.
  • the memory 1230 may be included in the processor 1320 or installed outside the processor 1320 to be connected to the processor 1320 by known means.
  • the processor 1320 of the V2X communication device 13000 may perform the multi-channel congestion control operation described in the present invention.
  • the multi-channel congestion control operation of the V2X communication device 13000 will be described below.
  • FIG. 14 shows a multi-channel congestion control method of a V2X communication device according to an embodiment of the present invention.
  • the V2X communication device may set an interference observation window (S14010).
  • the V2X communication device may set an interference observation window based on ACI of a transmission channel or multi-channel.
  • the size of the interference observation window may be set based on the width of one channel among the preset multi-channels. For example, when one channel bandwidth of multiple channels is 10 MHz, the size of the interference observation window is represented by a natural number, and in this case, the size of the window may correspond to the product of the bandwidth and the natural number.
  • the interference observation window may cover a transmission channel and at least one adjacent channel.
  • the V2X communication device may acquire CBR information for multiple channels covered by the interference observation window (S14020).
  • CBR information for multiple channels may include CBR values for each of at least one channel covered by the interference observation window. That is, when the size of the interference observation window is 3, CBR information for multiple channels may include CBR values for 3 channels.
  • the V2X communication device may set a reference CBR for congestion control (S14030).
  • the V2X communication device may set a reference CBR based on CBR information for multiple channels. That is, the setting of the reference CBR may further include setting a reference channel for congestion control.
  • the reference channel may correspond to one of multiple channels covered by the interference interpolation window.
  • the reference channel may be a transmission channel or an adjacent channel of the transmission channel.
  • the V2X communication device may set a reference channel based on CBR information for multiple channels, and may set a reference CBR based on the reference channel.
  • the setting of at least one of the reference channel or the reference CBR may be performed as described above. For example, when the target CBR of the multiple channels covered by the interference observation window is the same, a channel having the maximum CBR among the multiple channels may be set as a reference channel, and the CBR of the reference channel may be set as the reference CBR. As another example, a channel having a higher priority among multiple channels may be set as a reference channel, and a CBR of the reference channel may be set as a reference CBR. As another example, when the priority of multiple channels is the same, a channel having a maximum CBR among multiple channels may be set as a reference channel, and a CBR of the reference channel may be set as the reference CBR.
  • the V2X communication device may perform congestion control for the transmission channel based on the reference CBR (S14040).
  • the V2X communication device performs congestion control on a transmission channel by adjusting at least one of transmission power (TxPower), reception sensitivity (RxSensitivity), transmission frequency (Frequency), or transmission data rate (PHYRate). can do.
  • TxPower transmission power
  • RxSensitivity reception sensitivity
  • Frequency transmission frequency
  • PHYRate transmission data rate
  • the interference observation window may be set to include channels adjacent to both sides based on a service (or message) transmission channel.
  • the interference observation window is operated for the purpose of observing and acquiring CBR (Channel Busy Ratio) for the service transmission channel and CBR information for the adjacent channel.
  • CBR Channel Busy Ratio
  • Selecting a reference channel for multichannel traffic congestion control using a CBR information for multiple channels observed in an interference observation window (reference channel for multichannel congestion control) and a reference CBR (congestion control criterion CBR: reference CBR for multichannel congestion control) can be set.
  • the congestion control reference channel and the service transmission channel may be the same or different.
  • Channels that have not been used or have not been used for a certain period of time within the interference observation window are considered nulling channels and can be excluded from the congestion control reference channel selection process regardless of the observed CBR value.
  • the multi-channel traffic congestion control function is performed using the congestion control criterion CBR set in the service transmission channel.
  • the channel having the maximum CBR value is selected as the congestion control reference channel, and the CBR value in the corresponding channel is the congestion control reference CBR Can be set to
  • one channel may be randomly selected as a congestion control reference channel.
  • a channel having a high priority eg, a primary channel, a control channel
  • a channel having a high priority is selected as the congestion control reference channel, and the CBR in the channel may be set as the congestion control reference CBR.
  • a channel having a maximum CBR value may be selected as a congestion control reference channel.
  • one channel may be randomly selected as a congestion control reference channel.
  • Various congestion control reference channel selection method techniques that can be derived based on the congestion control reference channel selection method -1/2 may be additionally operated.
  • the multi-channel traffic congestion control function may be performed using the congestion control reference CBR set in the service transmission channel of the interference channel window.
  • Traffic congestion control in the service transmission channel can be operated using the congestion control technique using the state-machine technique described in the existing standard and the congestion control technique using the adaptive technique.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • one embodiment of the invention includes one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code can be stored in memory and driven by a processor.
  • the memory is located inside or outside the processor, and can exchange data with the processor by various known means.
  • the present invention is used in a series of vehicle communication fields.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

ACI(Adjacent Channel Interference) 고려한 다중 채널 혼잡 제어 방법이 개시된다. 다중 채널 혼잡 제어 방법은, 전송 채널의 ACI에 기초하여 간섭 관찰 윈도우를 설정하는 단계; 상기 간섭 관찰 윈도우가 커버하는 다중 채널에 대한 CBR(Channel Busy Ratio) 정보를 획득하는 단계; 상기 다중 채널에 대한 CBR 정보에 기초하여 혼잡 제어를 위한 기준 CBR을 설정하는 단계; 및 상기 기준 CBR에 기초하여 전송 채널에 대한 혼잡 제어를 수행하는 단계를 포함한다.

Description

V2X 통신 장치 및 그의 다중 채널 혼잡 제어 방법
V2X 통신 장치 및 그의 다중 채널 혼잡 제어 방법에 대한 것으로, 특히 다중 채널 환경에서 인접 채널간 간섭(ACI: Adjacent Channel Interference) 영향/문제를 고려한 다중 채널 혼잡 제어 방법에 대한 것이다.
최근 차량(vehicle)은 기계 공학 중심에서 전기, 전자, 통신 기술이 융합된 복합적인 산업 기술의 결과물이 되어 가고 있으며, 이러한 면에서 차량은 스마트카라고도 불린다. 스마트카는 운전자, 차량, 교통 인프라 등을 연결하여 교통 안전/복잡 해소와 같은 전통적인 의미의 차량 기술뿐 아니라 다양한 사용자 맞춤형 이동 서비스를 제공하게 되었다. 이러한 연결성은 V2X(Vehicle to Everything) 통신 기술을 사용하여 구현될 수 있다. 연결성은 유럽 ITS-G5, 미국 WAVE, NR(New Radio)와 같은 다양한 V2X 통신 기술을 사용하여 구현될 수 있다. NR은 LTE-V2X, 5G-V2X와 같은 셀룰러 V2X를 포함하는 향후 개발되는 새로운 차량간 통신 기술을 포함할 수 있다.
나아가 다양한 V2X 서비스 제공 및 V2X traffic load 분산을 위해 다수의 채널을 이용하는 다중 채널 운용 (MCO: Multi-Channel Operation) 방안 설계가 활발히 진행되고 있다. 특히, 각 채널의 트래픽 부하/로드(traffic load), 각 채널의 품질, 제공되는 서비스 타입 및 우선순위(priority)등을 고려한 채널 선정 (selection), 채널 관리 (management), 채널 운용 (operation) 방법에 관한 연구가 중요시 되고 있다.
종래의 진행되었거나 진행되고 있는 대다수의 다중 채널 운용 방안은 인접 채널을 사용할 경우 야기될 수 있는 여러 가지 문제점들을 고려하고 있지 않거나 인접 채널간 문제가 야기되지 않은 다중 채널 운용 방안을 고려하고 있다. 이에 본 발명에서는 다중 채널 운용시 각 채널의 송수신 대역필터가 이상적이지 않기 때문에 발생하는 ACI 영향/문제를 고려하며, ACI 영향을 고려하여 다중 채널 트래픽 혼잡 문제를 효율적으로 제어할 수 있는 방안을 제안한다.
상술한 기술적 과제를 해결하기 위하여, ACI(Adjacent Channel Interference) 고려한 다중 채널 혼잡 제어 방법이 개시된다. 본 발명의 실시예에 따른 다중 채널 혼잡 제어 방법은, 전송 채널의 ACI에 기초하여 간섭 관찰 윈도우를 설정하는 단계; 상기 간섭 관찰 윈도우가 커버하는 다중 채널에 대한 CBR(Channel Busy Ratio) 정보를 획득하는 단계; 상기 다중 채널에 대한 CBR 정보에 기초하여 혼잡 제어를 위한 기준 CBR을 설정하는 단계; 및 상기 기준 CBR에 기초하여 전송 채널에 대한 혼잡 제어를 수행하는 단계를 포함한다.
본 발명의 실시예에 따른 다중 채널 혼잡 제어 방법에 있어서, 기준 CBR을 설정하는 단계는, 혼잡 제어를 위한 기준 채널을 설정하는 단계를 더 포함하고, 상기 기준 채널은 상기 간섭 간찰 윈도우가 커버하는 다중 채널 중 하나에 해당할 수 있다.
본 발명의 실시예에 따른 다중 채널 혼잡 제어 방법에 있어서, 상기 간섭 관찰 윈도우가 커버하는 다중 채널의 목표 CBR이 동일한 경우, 상기 다중 채널 중 최대 CBR을 갖는 채널이 상기 기준 채널로 설정되고, 상기 기준 채널의 CBR이 상기 기준 CBR로 설정될 수 있다.
본 발명의 실시예에 따른 다중 채널 혼잡 제어 방법에 있어서, 상기 다중 채널 중 우선순위가 높은 채널이 상기 기준 채널로 설정되고, 상기 기준 채널의 CBR이 상기 기준 CBR로 설정될 수 있다.
본 발명의 실시예에 따른 다중 채널 혼잡 제어 방법에 있어서,
상기 다중 채널의 우선순위가 동일한 경우, 상기 다중 채널 중 최대 CBR을 갖는 채널이 상기 기준 채널로 설정되고, 상기 기준 채널의 CBR이 상기 기준 CBR로 설정될 수 있다.
본 발명의 실시예에 따른 다중 채널 혼잡 제어 방법에 있어서, 상기 간섭 관찰 윈도우는, 상기 전송 채널 및 적어도 하나의 인접 채널을 커버한다.
본 발명에 따르면, 다중 채널 운용시 ACI의 영향이 고려되어, 전송 채널만 고려하는 혼잡 제어에 비해 전체 채널에 대한 전송/사용 효율이 향상될 수 있다.
본 발명에 대해 더욱 이해하기 위해 포함되며 본 출원에 포함되고 그 일부를 구성하는 첨부된 도면은 본 발명의 원리를 설명하는 상세한 설명과 함께 본 발명의 실시예를 나타낸다.
도 1은 본 발명의 실시예에 따른 ITS(Intelligent Transport System) 스테이션의 레퍼런스 아키텍처를 나타낸다.
도 2는 본 발명의 실시예에 따른 ITS 액세스 레이어를 나타낸다.
도 3은 본 발명의 실시예에 따른 ITS 시스템 운용(operation)에 사용되는 다중 채널 배치(allocation)을 나타낸다.
도 4는 본 발명의 실시예에 따른 다중 채널 운용(multi-channel operation)의 채널 코디네이션(channel coordination) 모드를 나타낸다.
도 5는 본 발명의 실시예에 따른 트래픽 혼잡 제어 방법을 나타낸다.
도 6은 본 발명의 실시예에 따른 단일 채널의 ACI 영향을 나타낸다.
도 7은 본 발명의 실시예에 따른 다수의 채널을 사용하여 서비스를 전송하는 경우 ACI 영향을 나타낸다.
도 8은 본 발명의 실시예에 따른 간섭 관찰 윈도우를 나타낸다.
도 9는 본 발명의 실시예에 따른 제 1 혼잡 제어 기준 채널 선정 방법을 나타낸다.
도 10은 본 발명의 실시예에 따른 제 2 혼잡 제어 기준 채널 선정 방법을 나타낸다.
도 11은 본 발명의 실시예에 따른 제 2 혼잡 제어 기준 채널 선정 방법을 나타내는 순서도이다.
도 12는 본 발명의 실시예에 따른 DCC 스테이트 머신 및 그의 체널 혼잡 제어 방법을 나타낸다.
도 13은 본 발명의 실시예에 따른 V2X 통신 장치의 구성을 나타낸다.
도 14는 본명의 실시예에 따른 V2X 통신 장치의 다중 채널 혼잡 제어 방법을 나타낸다.
본 발명의 바람직한 실시예에 대해 구체적으로 설명하며, 그 예는 첨부된 도면에 나타낸다. 첨부된 도면을 참조한 아래의 상세한 설명은 본 발명의 실시예에 따라 구현될 수 있는 실시예만을 나타내기보다는 본 발명의 바람직한 실시예를 설명하기 위한 것이다. 다음의 상세한 설명은 본 발명에 대한 철저한 이해를 제공하기 위해 세부 사항을 포함하지만, 본 발명이 이러한 세부 사항을 모두 필요로 하는 것은 아니다. 본 발명은 이하에서 설명되는 실시예들은 각각 따로 사용되어야 하는 것은 아니다. 복수의 실시예 또는 모든 실시예들이 함께 사용될 수 있으며, 특정 실시예들은 조합으로서 사용될 수도 있다.
본 발명에서 사용되는 대부분의 용어는 해당 분야에서 널리 사용되는 일반적인 것들에서 선택되지만, 일부 용어는 출원인에 의해 임의로 선택되며 그 의미는 필요에 따라 다음 설명에서 자세히 서술한다. 따라서 본 발명은 용어의 단순한 명칭이나 의미가 아닌 용어의 의도된 의미에 근거하여 이해되어야 한다.
본 발명은 V2X 통신 장치에 대한 것으로, V2X 통신 장치는 ITS(Intelligent Transport System) 시스템에 포함되어, ITS 시스템의 전체 또는 일부 기능들을 수행할 수 있다. V2X 통신 장치는 차량과 차량, 차량과 인프라, 차량과 자전거, 모바일 기기 등과의 통신을 수행할 수 있다. V2X 통신 장치는 V2X 장치라고 약칭될 수도 있다. 실시예로서 V2X 장치는 차량의 온보드유닛(OBU; On Board Unit)에 해당하거나, OBU에 포함될 수도 있다. OBU는 OBE(On Board Equipment)라고 치칭될 수도 있다. V2X 장치는 인프라스트럭처의 RSU(Road Side Unit)에 해당하거나, RSU에 포함될 수도 있다. RSU는 RSE(RoadSide Equipment)라고 지칭될 수도 있다. 또는, V2X 통신 장치는 ITS 스테이션에 해당하거나, ITS 스테이션에 포함될 수 있다. V2X 통신을 수행하는 임의의 OBU, RSU 및 모바일 장비 등을 모두 ITS 스테이션 또는 V2X 통신 장치라고 지칭할 수도 있다.
도 1은 본 발명의 실시예에 따른 ITS(Intelligent Transport System) 스테이션의 레퍼런스 아키텍처를 나타낸다.
도 1의 아키텍처에서, 2개의 종단 차량/사용자가 통신 네트워크를 통신할 수 있으며, 이러한 통신은 도 1의 아키텍처의 각 레이어의 기능을 통해 수행될 수 있다. 예를 들어, 차량간 메세지가 통신되는 경우, 송신 차량 및 그의 ITS 시스템에서는 한 레이어씩 아래로 각 레이어을 통과하여 데이터가 전달되고, 수신 차량 및 그의 ITS 시스템에서는 한 레이어씩 위로 각 레이어를 통과하여 데이터가 전달될 수 있다. 도 1의 아키텍처의 각 레이어에 대한 설명은 아래와 같다.
어플리케이션(application) 레이어: 어플리케이션 레이어는 다양한 사용예(use case)를 구현 및 지원할 수 있다. 예를 들면, 어플리케이션은 도로 안전(Road Safety), 효율적 교통 정보(Efficient Traffic Information), 기타 애플리케이션 정보(Other application)를 제공할 수 있다.
퍼실리티(facilities) 레이어: 퍼실리티 레이어는 어플리케이션 레이어에서 정의된 다양한 사용예를 효과적으로 실현할 수 있도록 지원할 수 있다. 예를 들면, 퍼실리티 레이어는 어플리케이션 지원(application support), 정보 지원(information support), 세션/통신 지원(session/communication support)을 수행할 수 있다.
네트워크 및 트랜스포트(Networking & Transport) 레이어: 네트워크/트랜스포트 레이어는 다양한 트랜스포트 프로토콜 및 네트워크 프로토콜을 사용함으로써 동종(homogenous)/이종(heterogeneous) 네트워크 간의 차량 통신을 위한 네트워크를 구성할 수 있다. 예를 들면, 네트워크/트랜스포트 레이어는 TCP/UDP+IPv6 등 인터넷 프로토콜을 사용한 인터넷 접속과 라우팅을 제공할 수 있다. 또는, 네트워크/트랜스포트 레이어는 BTP(Basic Transport Protocol)/지오네트워킹(GeoNetworking) 등 지정학적 위치 정보(Geographical position) 기반 프로토콜을 사용하여 차량 네트워크를 구성할 수 있다.
액세스(Access) 레이어: 액세스 레이어는 상위 레이어에서 수신한 메세지/데이터를 물리적 채널을 통해 전송할 수 있다. 예를 들면, 액세스 레이어는 IEEE 802.11 및/또는 802.11p 표준 기반 통신 기술, IEEE 802.11 및/또는 802.11p 표준의 피지컬 전송 기술에 기초하는 ITS-G5 무선 통신 기술, 위성/광대역 무선 이동 통신을 포함하는 2G/3G/4G(LTE)/5G 무선 셀룰러 통신 기술, DVB-T/T2/ATSC 등 광대역 지상파 디지털 방송 기술, GPS 기술, IEEE 1609 WAVE(Wireless Access in Vehicular Environments) 기술 등에 기초하여 데이터 통신을 수행/지원할 수 있다.
ITS 아키텍처는 추가로 매니지먼트(Management) 레이어 및 시큐리티(security) 레이어를 더 포함할 수 있다.
도 2는 본 발명의 실시예에 따른 ITS 액세스 레이어를 나타낸다.
도 2는 도 1에서 나타낸 ITS 시스템의 액세스 레이어(ITS Access Layer)를 더 상세히 나타낸다. 도 2의 액세스 레이어는 데이터 링크 레이어(Data Link Layer), 피지컬 레이어(Physical Layer) 및 레이어 매니지먼트(Layer Management)를 포함할 수 있다. 도 2의 액세스 레이어는 OSI 1 레이어(피지컬 레이어) 및 OSI 제 2 레이어(데이터 링크 레이어)와 유사 또는 동일한 특징을 갖는다.
데이터 링크 레이어(Data Link Layer)는 LLC(Logical Link Control) 서브레이어(LLC sub-layer), MAC(Medium Access Control) 서브레이어(MAC sub-layer) 및 MCO(Multi-channel operation) 서브레이어를 포함할 수 있다. 피지컬 레이어는 PLCP(Physical Layer Convergence Protocol) 서브레이어 및 PMD(Physical Medium Access) 서브레이어를 포함할 수 있다.
데이터 링크 레이어는 잡음이 있는 인접 노드간 (또는 차량간)의 물리적인 회선을 상위 네트워크계층이 사용할 수 있도록 전송 에러가 없는 통신 채널로 변환시킬 수 있다. 데이터 링크 레이어는 3-레이어 프로토콜을 전송/운반/전달하는 기능, 전송할 데이터를 전송단위로서의 패킷(또는 프레임)으로 나누어 그룹화하는 프레이밍(Framing) 기능, 보내는 측과 받는 측간의 속도차를 보상하는 흐름제어 (Flow Control) 기능, 전송 오류를 검출하고 이것을 수정 또는 재전송하는 기능 등을 수행한다. 또한, 데이터 링크 레이어는 패킷이나 ACK 신호를 잘못 혼동하는 것을 피하기 위해 패킷과 ACK 신호에 시퀀스 번호(sequence number)를 부여하는 기능, 그리고 네트워크 엔티티 간에 데이터 링크의 설정, 유지, 단락 및 데이타 전송 등을 제어하는 기능을 수행한다. 나아가 이러한 데이터 링크 레이어는 IEEE 802 표준에 근거하여 LLC(logical link control) 서브레이어 및 MAC(medium access control) 서브레이어를 포함할 수 있다.
LLC 서브레이어의 주요 기능은 여러 상이한 하위 MAC 서브레이어 프로토콜을 사용할 수 있게 하여 망의 토폴로지에 관계없는 통신이 가능토록 하는 것이다.
MAC 서브레이어는 여러 차량(또는 노드들 또는 차량과 주변 기기들)들이 공유 매체 사용에 대한 차량 간 충돌/경합 발생을 제어할 수 있다. MAC 서브레이어는 상위 레이어에서 전달된 패킷을 물리적인 네트워크의 프레임 포맷에 맞도록 포매팅할 수 있다. MAC 서브레이어는 송신자 주소/수신자 주소의 부가 및 식별 기능, 반송파 검출, 충돌 감지, 물리 매체 상의 장애 검출을 수행할 수 있다.
피지컬 레이어: 피지컬 레이어는 ITS 계층 구조상의 최하위 계층으로 노드와 전송매체 사이의 인터페이스를 정의하고, 데이터 링크 계층 엔터티 간의 비트 전송을 위해 변조, 코딩, 전송 채널의 물리 채널로의 매핑을 수행할 수 있다. 또한, 피지컬 레이어는 반송파 감지(Carrier Sense), 빈 채널 평가(CCA: Clear Channel Assessment)를 통해 무선매체가 사용 중인지 여부(busy 또는 idle)를 MAC 부계층에게 알려는 기능을 수행한다. 나아가 이러한 피지컬 레이어는 IEEE 표준에 근거하여 PLCP(physical layer convergence protocol) 서브레이어 및 PMD(physical medium access) 서브레이어를 포함할 수 있다.
PLCP 서브레이어는 MAC 서브레이어와 데이터 프레임을 연결하는 역할을 수행한다. PLCP 서브레이어는 수신 데이터에 헤더를 덧붙임으로써 MAC 서브레이어가 물리적 특성에 관계없이 동작하도록 한다. 따라서, PLCP 프레임은 여러 다른 무선 LAN 물리계층 표준에 따라 그 포맷이 다르게 정의될 수 있다.
PMD 서브레이어의 주요 기능은 PLCP 서브레이어로부터 받은 프레임을 캐리어/통신 변조 (carrier modulation, 또는 통신 modulation) 후 송수신 전송 관련 표준에 따라 무선매체에 전송을 수행할 수 있다.
레이어 매니지먼트(layer management)는 액세스 계층의 운영 및 보안과 관련된 정보를 관리 및 서비스해 주는 역할을 수행한다. 정보 및 서비스는 MI (inte통신ace between management entity and access 계층, 또는 MI-SAP) 와 SI (inte통신ace between security entity and access 계층, 또는 SI-SAP)를 통해 양방향으로 전달 및 공유된다. 액세스 계층과 네트워크/트랜스포트 계층간의 양방향 정보 및 서비스 전달은 IN (또는 IN-SAP)에 의해 수행된다.
MCO 서브레이어는 복수의 주파수 채널을 사용하여 안전 서비스(safety service) 및 안전 서비스 이외의 기타 서비스 즉 비-안전 서비스(non-safety service)와 같은 다양한 서비스를 제공할 수 있다. MCO 서브레이어는 특정 주파수 채널에서의 트래픽 가중(traffic load)를 다른 채널로 효과적으로 분산함으로써 각 주파수 채널에서의 차량간 통신 시 충돌/경합을 최소화할 수 있다.
도 3은 본 발명의 실시예에 따른 ITS 시스템 운용(operation)에 사용되는 다중 채널 배치(allocation)을 나타낸다.
도 3(a)는 ITS를 위한 US 스펙트럼 배치(allocation)을, 도 3(b)는 ITS를 위한 EP 스펙트럼 배치(allocation)을 나타낸다.
도 3에서, 미국 및 유럽은 5.9GHz 대역(5.855~5.925GHz)에서 7개의 주파수(각 주파수 대역폭: 10MHz)를 갖는다. 7개의 주파수는 1개의 CCH(Control Channel) 및 6개의 SCH(Service Channel)을 포함할 수 있다. 도 3(a)에서와 같이 미국의 경우 CCH가 채널 번호 178에 할당되며, 도 3(b)에서와 같이 유럽의 경우 CCH가 채널번호 180에 할당된다.
유럽의 경우 타임-센서티브(time-sensitive)하며 데이터 용량이 큰 서비스 제공을 위해 5.9 GHz를 기준으로 상위 주파수 대역에 추가적으로 ITS-G63 대역의 사용이 고려되고 있으며, 하위 주파수 대역으로 ITS-G5 대역의 사용이 고려되고 있다. 이러한 환경에서 서비스를 다양한 멀티 채널에 적절하게 할당함으로써 고품질의 서비스를 제공하기 위해, 효율적인 멀티 채널 운용 방안의 개발이 필요하다.
컨트롤 채널(CCH)은 매니지먼트 프레임 및/또는 WAVE 메세지 교환에 사용되는 라디오 채널을 나타낸다. WAVE 메세지는 WSM(WAVE short message)가 될 수 있다. 서비스 채널(SCH)은 서비스 제공에 사용되는 라디오 채널로, 컨트롤 채널이 아닌 임의의 채널을 나타낸다. 실시예로서, 컨트롤 채널은 WSMP(Wave Short Message Protocol) 메세지의 통신 또는 WSA(WAVE Service Advertisement)와 같은 시스템 매니지먼트 메세지의 통신에 사용될 수 있다. SCH는 범용(general-purpose) 애플리케이션 데이터 통신에 사용될 수 있으며, 이러한 범용 애플리케이션 데이터의 통신은 WSA와 같은 서비스 관련 정보에 의해 코디네이트될 수 있다.
WSA는 이하에서 서비스 선전 정보로 지칭할 수도 있다. WSA는 애플리케이션-서비스의 가용성의 선언(announcement)를 포함하는 정보를 제공할 수 있다. WSA 메세지는 애플리케이션 서비스 및 서비스가 접속가능한(accessible) 채널을 식별(identify) 및 기술(describe)할 수 있다. 실시예로서, WSA는 헤더, 서비스 정보, 채널 정보 및 WAVE 라우팅 선전 정보를 포함할 수 있다.
서비스 접속을 위한 서비스 선전 정보는 주기적(periodic) 메세지가 될 수 있다. 실시예로서, CAM(Co-operative Awareness Messages)는 주기적 메세지가 될 수 있다. CAM들은 퍼실리티 레이어에 의해 주기적으로 방송될 수 있다.
DENM(Decentralized Environmental Notification Messages)은 이벤트 메세지가 될 수 있다. 이벤트 메세지는 이벤트의 발견(detection)에 의해 트리거링되어 전송될 수 있다. 서비스 메세지는 세션을 매니징하기 위해 전송될 수 있다. 이하의 실시예에서, 이벤트 메세지는 안전 메세지/정보를 포함할 수 있다. 그리고 서비스 메세지는 비-안전 메세지/정보를 포함할 수 있다.
V2X 통신 디바이스는 CAM(Cooperative Awareness Message) 또는 DENM(Decentralized Enviriomental Notification Message)를 방송할 수 있다.
CAM은 ITS 네트워크에서 분배(distribute)되며, ITS 스테이션의 존재(presence), 위치 또는 통신 상태 중 적어도 하나에 대한 정보를 제공한다. DENM은 감지된 이벤트에 대한 정보를 제공한다. DENM은 ITS 스테이션이 감지한 임의의 주행 상황 또는 이벤트에 대한 정보를 제공할 수 있다. 예를 들면, DENM은 비상 전자 브레이크 등, 차량 사고, 차량 문제, 교통 컨디션, 등과 같은 상황에 대한 정보를 제공할 수 있다.
도 4는 본 발명의 실시예에 따른 다중 채널 운용(multi-channel operation)의 채널 코디네이션(channel coordination) 모드를 나타낸다.
도 4는 다중채널 운영의 채널 코디네이션 모드로서 (a)(b) 연속(continuous) 모드, (b) 변경(alternating) 모드, (c) 확장(extended) 모드 및 (d) 즉시(immediate) 모드를 나타낸다. 채널 코디네이션 모드는 V2X 장치가 CCH 및 SCH에 접속하는 방법을 지시할 수 있다.
V2X 장치는 적어도 하나의 채널에 액세스할 수 있다. 실시예로서, 단일-라디오 장치는 CCH를 모니터링하고, SCH에서(via) 데이터를 교환할 수 있다. 이런 목적을 위해 채널 인터벌이 명시되어야 하며, 도 4는 이러한 채널 인터벌 즉 타임 슬롯 할당을 나타낸다. 라디오 채널 변경(altering)은 커먼 타임(common time) 베이스와 연관되어 동기화된 인터벌에 기초하여 운영될 수 있다. 동기(sync) 인터벌은 복수의 타임 슬롯을 포함할 수 있다. 그리고 복수의 타임 슬롯은 CCH 인터벌 및 SCH 인터벌에 해당할 수 있다. 이러한 경우, 동기(sync) 인터벌은 CCH 인터벌 및 SCH 인터벌을 포함할 수 있다. CCH 인터벌 동안, 트래픽은 CCH에서 교환될 수 있다. 애플리케이션-서비스에 참여하는 싱글-라디오 장치는 SCH 인터벌 동안 SCH로 스위칭할 수 있다. CCH 인터벌 및 SCH 인터벌 각각은 가드 인터벌을 포함할 수 있다. 각 인터벌은 가드 인터벌로 시작할 수도 있다.
실시예로서, 다중 채널 운용 정보 및 안전 관련 서비스 정보의 교환은 CCH 인터벌 동안 CCH 에서 수행될 수 있다. 또한, 서비스 제공자 및 사용자 간의 정보 교환을 위한 협상은 CCH 인터벌 동안 CCH에서 수행될 수 있다. V2X 장치의 채널 변경을 위한 하드웨어 타이밍 동작은 UTC(Universal Time Coordinated) 추정으로 획득한 동기 신호에 의해 개시될 수 있다. 채널 동기는 UTC에 기초하여 1 PPS(Pulse Per second) 구간마다 수행될 수 있다.
실시예로서, 도 4는 IEEE 1609.4에 기술된 다중채널 운영(MCO)의 채널 코디네이션 방법으로서, 하나의 물리 레이어에서 두개의 MAC 레이어가 시간을 분할하여 CCH 및 각기 다른 채널 모드를 번갈아 사용하는 방법을 나타낸다.
(a)&(b) 연속(continuous) 모드: 연속 모드는 각 차량 또는 모든 차량이 도 4의 타임 슬롯/CCH 인터벌/SCH 인터벌과 같은 시분할 기준과 상관없이 동작하는 모드이다. 연속 모드에서, V2X 장치는 지정된 CCH 또는 SCH에서 지속적으로 다중채널의 운용 정보 및 안전 관련 서비스 정보를 수신하거나 서비스 제공자와 사용자 간의 정보 교환을 수행할 수 있다.
(c) 변경(altering) 모드: 변경 모드에서, 각 차량 또는 모든 차량은 CCH 인터벌 동안 다중 채널의 운용 정보 및 안전 관련 서비스/정보를 수신하거나 서비스 제공자/사용자 간의 정보 교환을 위한 협상 과정을 수행할 수 있다. 변경 모드에서, 각 차량 또는 모든 차량은 SCH 인터벌 동안 서비스 제공자와 사용자 간의 서비스/정보 교환을 수행한다. 변경 모드에서, V2X 장치는 설정된 CCH 인터벌과 SCH 인터벌 동안 교대로 CCH 및 SCH를 통해 통신할 수 있다.
(d) 확장(extended) 모드: 확장 모드에서, CCH 인터벌 및 SCH 인터벌의 통신은 변경 모드와 같이 수행될 수 있다. 다만, SCH 인터벌의 서비스/정보 교환은 CCH 인터벌에서도 수행될 수 있다. 실시예로서, 확장 모드에서의 V2X 장치는 CCH 인터벌 동안 컨트롤 정보를 송수신하고, SCH 인터벌에 진입하면 서비스/정보의 교환이 종료될 때까지 SCH 인터벌을 유지할 수 있다.
(e) 즉시(immediate) 모드: 즉시 모드에서 V2X 장치의 통신은 변경 모드 및/또는 확장 모드에서와 같이 수행될 수 있다. 다만, 즉시 모드에서의 V2X 장치는 CCH 인터벌 동안 정보 교환을 위한 협상이 완료되면 CCH 인터벌의 종료를 기다리는 대신 지정된 SCH로 바로 채널을 스위칭하여 정보 교환을 개시할 수 있다. 도 4에서 나타낸 바와 같이, 확장 모드 및 즉시 모드는 함께 사용될 수 있다.
도 4에서 나타낸 채널 코디네이션 모드들의 경우, 다중 채널의 매니지먼트 정보 및 서비스 제공을 위한 정보 교환 및 협상은 CCH 인터벌 동안 CCH에서만 수행될 수 있다. 안전 관련 서비스 및 정보를 수신하거나 서비스 제공자와 사용자 간의 정보 교환을 위한 협상 또한 CCH 인터벌 동안 CCH에서만 수행될 수 있다.
CCH 인터벌과 SCH 인터벌 사이에 가드 인터벌이 포함될 수 있다. 가드 인터벌은 통신 장치가 주파수 변경 및 채널 변경 시 동기에 필요한 시간을 확보해줄 수 있다. 채널 변경시 하드웨어 타이머 동작은 UTC(Coordinated Universal Time) 추정으로 획득한 동기 신호에 의해 시작될 수 있다. 채널 동기는 UTC를 기준 신호로 하여 1PPS(Pulse Per Second) 구간마다 채널 동기를 맞출 수 있다.
실시예로서, 동기 인터벌(Sync Interval)은 CCH 인터벌 및 SCH 인터벌을 포함할 수 있다. 즉, 하나의 동기 인터벌은 2개의 타임 슬롯을 포함할 수 있으며, CCH 인터벌 및 SCH 인터벌 각각은 타임슬롯 0 및 타임슬롯 1에 해당할 수 있다. 동기(Sync) 인터벌의 시작은 커먼 타임 기준 초의 시작과 일치할 수 있다. 1초 시간 동안 정수배의 sync 인터벌이 포함될 수 있다.
V2X 통신 장치는 다중안테나를 사용한 MCO(Multichannel Operation) 기술을 사용하여 통신할 수 있다. 실시예로서, ETSI TS 102 646-4-2에 기술된 ETSI MCO 설계는 아래와 같은 항목들을 주로 고려하여 설계된다.
다중 채널에서 다중 안테나를 사용하여 채널 자원을 효과적으로 사용할 수 있는 채널 액세스(CA; Channel Access) 방법이 제공되어야 한다.
V2X 장치가 V2X 서비스 정보를 제공하는 서비스 광고 메세지/SAM(Service Announcement Message)을 효과적으로 수신하고, 해당 서비스가 제공되는 채널로 이동하기 위한 메커니즘이 제공되어야 한다.
동일 차량에서 2개 이상의 다중 안테나와 인접 채널을 사용한 V2X 송수신이 동시에 수행되는 경우 발생될 수 있는 인접 채널 간 간섭 영향을 최소화하는 메커니즘이 제공되어야 한다.
CCH(Control Channel)는 CAM(Cooperative Awareness Message), DENM(Decentralized Environmental Notification Message), TOPO(Topology), MAP등 트래픽(traffic) 안전(safety)과 관련된 메세지가 제공되는 기본적인 채널이다. CCH에서 충분히 제공되지 못한 안전 메세지는 SCH를 통해 제공될 수도 있다. 새로운 타입의 안전 메세지가 추가되는 경우, 추가되는 안전 메세지는 SCH에서 제공될 수도 있다.
SCH(Service Channel)을 통해 제공되는 V2X 서비스는 SAM을 통해 공표(announce)되며, SAM은 잘 알려진 참조 채널(reference Channel)을 통해 제공될 수 있다. 예를 들면, ITS-G5A/B/D 등 채널 밴드에서 제공되는 V2X 서비스 정보는 참조 CCH(reference CCH)에서 SAM을 통해 제공될 수 있다. 다만, CCH를 통한 V2X 서비스 제공이 안전 메세지 제공에 영향을 미칠 수 있으므로, CCH에서 서비스는 제공되지 않을 수도 있다. 각 채널 밴드에서 제공되는 V2X 서비스 정보는 채널 밴드 내에서 임의로 지정된 대안 참조 SCH(alternate reference SCH)에서 SAM을 통해 제공될 수도 있다.
이하에서는 ACI 영향을 고려한 다중채널 트래픽 혼잡 제어 방법에 대해 설명한다. 이하에서 1) 간섭 관찰 윈도우(IOW; Inteference Observation Window)를 운용하는 방법, 2) 간섭 관철 윈도우에서 관찰되는 다중 채널 CBR 정보를 사용한 혼잡 제어 기준 채널 선택 방법 및 혼잡 제어 기준 CBR 설정 방법, 3) 혼잡 제어 기준 CBR을 사용한 전송 채널 혼잡 제어 방법에 대해 설명한다.
CBR(Channel Busy Ratio) 정보는 채널의 점유(busy) 구간 대 관찰 구간 비율로 정의되는 트래픽 로드/부하(load) 상태 정보이다. CBR 정보는 동일 네트워크 내의 차량들에 대한 채널 점유 상태를 판단하는데 사용될 수 있다. CBR 정보는 해당 채널이 사용중(busy)인 시간의 부분(fraction)을 나타내는 0이상 1이하의 시간-의존(time-dependent) 값을 나타낼 수 있다. 이하에서 CBR 값은 CBR로 지칭될 수도 있다.
도 5는 본 발명의 실시예에 따른 트래픽 혼잡 제어 방법을 나타낸다.
도 5(a)는 단일 채널에 대한 채널 혼잡 제어 방법을 나타내고, 도 5(b)는 다중 채널에 대한 채널 혼잡 제어 방법을 나타낸다.
도 5(a)에서, V2X 통신 장치는 전송 채널에 대한 CBR 정보를 획득하고(a-S5010), 전송 채널의 CBR을 사용하여 채널 혼잡 컨트롤을 수행한다(a-S5020). V2X 통신 장치는 서비스 전송 채널에서 CBR을 측정한 후, 측정된 CBR 값을 사용하여 채널 혼잡 컨트롤을 수행한다.
도 5(b)에서, V2X 통신 장치는 간섭 관찰 윈도우(Interference observation window)의 크기(W)를 설정한다(b-S5010). V2X 통신 장치는 간섭 관찰 윈도우의 다중 채널에 대한 CBR 정보를 획득한다(b-S5020). V2X 통신 장치는 간섭 관찰 윈도우로부터 혼잡 제어 기준 채널을 선택하고 혼잡 제어 기준 CBR을 설정한다(b-S5030). V2X 통신 장치는 혼잡 제어 기준 CBR을 사용하여 전송 채널 혼잡 컨트롤을 수행한다(b-S5040).
도 5(b)의 경우 도 5(a)에 비해 간섭 관찰 윈도우를 사용하여 다중 채널 CBR 정보를 획득하고, 채널 혼잡에 필요한 혼잡 제어 기준 채널 선택 및 혼잡 제어 기준 CBR 설정 과정이 추가로 수행된다. 도 5(b)의 동작에 대해서는 이하에서 상세히 설명한다.
도 6은 본 발명의 실시예에 따른 단일 채널의 ACI 영향을 나타낸다.
ACI는 인접 채널간 상호 작용으로 발생된다. 도 6에서와 같이, 전송 채널 3(CH3)의 통신이 인접 채널들인 채널 1, 2, 4, 5에 채널간 간섭으로 작용할 수 있다. 그리고 채널 2, 채널 4의 통신이 채널 3의 통신에게 간섭으로 작용할 수 있다.
도 6은 단일 채널 통신의 경우의 ACI 영향에 대한 설명이다. 즉 V2X 통신 장치가 하나의 채널만 선택하여 서비스를 송수신하는 경우, 인접 채널로부터의 간섭은 존재하지 않을 수 있다. 따라서 V2X 통신 장치는 해당 채널에 대한 CBR 정보만을 사용하여 채널 트래픽 혼잡 컨트롤을 수행할 수 있다.
도 7은 본 발명의 실시예에 따른 다수의 채널을 사용하여 서비스를 전송하는 경우 ACI 영향을 나타낸다.
도 7(a)의 경우, 다중 채널로 서비스가 제공된다. 따라서 전송 채널인 채널 3으로부터 인접한 채널들(CH1, CH2, CH4, CH5)에 대한 간섭과 인접 채널의 전송 채널에 대한 간섭이 존재한다. CCA(Channel Clear Assessment)를 사용한 센싱 기반의 V2X 통신 시스템에서, ACI는 간섭량에 따라서 채널 혼잡 상태를 나타내는 지표인 CBR에 영향을 미친다.
CCA는 채널의 유휴(IDLE) 상태와 점유(BUSY) 상태를 결정하는 임계값으로 사용될 수 있다. V2X 통신 장치는 각 채널에서 측정된 RSSI(Received Signal Strength Indication)가 CCA보다 크면 채널을 BUSY 상태로 판단하고, 측정된 RSSI가 CCA보다 작으면 채널을 IDLE 상태로 판단한다.
도 7(b)는 ACI가 전송 채널 CBR과 인접 채널 CBR에 미치는 영향을 나타낸다. 전송 채널인 채널 3에서 서비스가 전송되는 경우, 같은 네트워크의 통신 범위 내에 있는 인접 채널(CH2, CH4)을 사용하는 주변 차량은 채널 3으로부터 ACI 영향을 받는다. 따라서 ACI의 양이 CCA보다 크면 채널은 BUSY로 판단되고, 결과적으로 인접 채널의 CBR이 증가한다. 즉, 다중 채널을 사용한 서비스 제공 및 혼잡 제어를 효과적으로 수행하기 위해서는 ACI의 영향이 반드시 고려되어야만 한다.
이하에서는 간섭 관찰 윈도우의 운용 방법에 대해 설명한다.
도 8은 본 발명의 실시예에 따른 간섭 관찰 윈도우를 나타낸다.
상술한 바와 같이 다중 채널 트래픽 혼잡을 효과적으로 제어하기 이해서는 인접 채널에 대한 CBR 정보가 필요하며, CBR 정보의 획득 방법으로서 간섭 관찰 윈도우가 사용될 수 있다. 간섭 관찰 윈도우의 크기는 서비스 전송 채널을 기준으로 인접 채널들이 포함되도록 설정될 수 있다. 간섭 관찰 윈도우는 채널간 ACI 영향 분석을 위해 윈도우 내의 각 채널에 대한 CBR 정보를 획득한다. 간섭 관찰 윈도우의 크기는 서비스 전송 채널이 인접한 채널에 미치는 ACI 영향을 고려하여 결정되거나 조정될 수 있다.
도 8(a)는 넓이/사이즈가 2인 간섭 관찰 윈도우의 실시예를, 도 8(b)는 넓이/사이즈가 3인 간섭 관찰 윈도우의 실시예를, 도 8(c)는 넓이/사이즈가 4인 간섭 관찰 윈도우의 실시예를, 도 8(d)는 넓이/사이즈가 5인 간섭 관찰 윈도우의 실시예를 각각 나타낸다.
도 8(a)는 W=2인 간섭 관찰 윈도우의 실시예로서, CCA를 초과하는 ACI가 인접한 1개의 채널로부터 야기되는 경우를 나타낸다. 도 8(b)는 W=3인 간섭 관찰 윈도우의 실시예로서, CCA를 초과하는 ACI가 서비스 전송 채널의 양쪽에 인접한 2개의 채널로부터 야기되는 경우를 나타낸다. 도 8(c)는 W=4인 간섭 관찰 윈도우의 실시예로서, CCA를 초과하는 ACI가 서비스 전송 채널의 양쪽에 인접한 3개의 채널로부트 야기되는 경우를 나타낸다. 도 8(d)는 W=5인 간섭 관찰 윈도우의 실시예로서, CCA를 초과하는 ACI가 서비스 전송 채널의 양쪽에 인접한 4개의 채널로부터 야기되는 경우를 나타낸다.
간섭 관찰 윈도우의 넓이/사이즈는 채널 단위로 설정될 수 있다. 즉, 도 3과 같은 멀티 채널 환경에서, 한 채널을 커버하는 간섭 관찰 윈도우의 넓이/사이즈를 1로, n개의 채널을 커버하는 간섭 관찰 윈도우의 넓이/사이즈를 n으로 지시할 수 있다.
이하에서는 간섭 관찰 윈도우에서 관찰되는 다중 채널 CBR 정보를 사용한 혼잡 제어 기준 채널 선택 방법 및 혼잡 제어 기준 CBR 설정 방법에 대해 설명한다.
상술한 바와 같이, 서비스 전송 시 ACI의 형향으로 전송 채널의 CBR 뿐만 아니라 인접 채널의 CBR도 함께 증가한다. 따라서 서비스 전송은 인접 채널 CBR에 대한 영향을 고려하여 수행되어야 한다. 예를 들면 전송 채널에 대한 CBR은 낮지만 인접 채널에 대한 CBR이 높은 경우, ACI의 경향이 없다면 전송 채널에서 CBR 정보를 사용하여 채널 사용률을 높일 수 있다. 반면에 ACI의 영향이 있다면 채널 사용률 증가는 인접 채널의 CBR 상승을 초래하며, 결과적으로 인접 채널에서의 서비스 전송률을 감소 시킨다. 채널 사용률/서비스 전송률은 서비스 전송 회수 또는 서비스 전송 주기를 컨트롤함으로써 컨트롤될 수 있다. 예를 들면, 서비스 전송 횟수(서비스 전송률)를 증가하거나 서비스 전송 주기를 감소시킴으로써 채널 사용률이 증가될 수 있다. 그리고 각 채널에 대한 목표 CBR이 있는 경우(또는 최대 허용 CBR이 있는 경우), 인접 채널의 서비스 전송으로 인해 목표 CBR이 초과되는 문제가 발생할 수도 있다.
결과적으로 다중 채널 사용에 있어서 공평함(fairness)을 제공하기 위해서는 전송 채널에서의 서비스 전송률이 인접 채널의 CBR을 고려하여 결정되어야한다. 본 발명은 간섭 관찰 윈도우에서 전송 채널에서의 서비스 전송률을 결정하는데 기준이 되는 혼잡 제어 기준 채널 및 혼잡 제어 기준 CBR을 설정하는 다양한 방법을 제안한다. 혼잡 제어 기준 채널과 서비스 제어 채널은 동일하거나, 상이할 수도 있다. 간섭 관철 윈도우 내에서 일정 시간 동안 서비스 전송을 하지 않거나 사용되지 안은 채널은 널링(nulling) 채널로 간주되어, 관찰되는 CBR값과 무관하게 혼잡 제어 기준 채널 선정 과정에서 제외될 수도 있다.
1. 혼잡 제어 기준 채널을 선정하는 제 1 방법
혼잡 제어 기준 채널을 선정하는 제 1 방법에 있어서, 각 채널의 우선순위(priority)는 동일하고, 간섭 관찰 윈도우에서 각 채널의 CBR 값은 동일한 것으로 가정한다. 제 1 방법에 있어서, 최대 CBR 값을 갖는 채널이 혼잡 제어 기준 채널로 선택되고, 해당 채널의 CBR 값이 혼잡 제어 기준 CBR로 설정될 수 있다. 제 1 방법은 아래 수학식 1과 같이 표현될 수도 있다.
Figure PCTKR2018012553-appb-M000001
수학식 1에서, j는 간섭 관찰 윈도우 내의 j번째 채널을 나타낸다. 윈도우 내의 채널의 순서는 j=0에서 j=W-1까지 순차적으로 증가한다. CBRj는 j번째 채널의 CBR 값을 나타낸다. CBRref는 혼잡 제어 기준 CBR 값을 나타낸다. CBRref를 갖는 채널이 혼잡 제어 기준 채널로 선정/결정된다. 동일한 최대 CBR 값을 갖는 채널이 복수개인 경우, 랜덤하게 하나의 채널이 혼잡 제어 기준 채널로 선정될 수 있다.
도 9는 본 발명의 실시예에 따른 제 1 혼잡 제어 기준 채널 선정 방법을 나타낸다.
도 9에서 간섭 관찰 윈도우의 크기는 3이다. 도 9에서, 전송 채널은 CBR1이고, 인접 채널들의 CBR은 각각 CBR=0, CBR=2이다. 수학식 1 및 상술한 바와 같이, CBR 값이 2로서 가장 큰 채널이 혼잡 제어 기준 채널(CBRref)이 되고, 해당 채널의 CBR 값(CBR=2)이 혼잡 제어 기준 CBR 값이 된다.
2. 혼잡 제어 기준 채널을 선정하는 제 2 방법
혼잡 제어 기준 채널을 선정하는 제 2 방법에 있어서, 각 채널의 우선순위(priority)는 상이하고, 각 채널은 우선순위 별로 서로 다른 목표 CBR을 갖는 것으로 가정한다. 예를 들면, 우선순위 채널(priority channel)이나 컨트롤 채널은 우선순위가 가장 높은 채널로 간주되고, 이외의 채널은 우선순위가 낮은 채널로 간주된다.
제 2 방법에 있어서, 우선순위가 가장 높은 채널이 혼잡 제어 기준 채널로 선택되고, 해당 채널의 CBR이 혼잡 제어 기준 CBR로 결정될 수 있다. 동일한 우선순위를 갖는 채널이 2개 이상 존재하는 경우, 최대 CBR 값을 갖는 채널이 혼잡 제어 기준 채널로 선택될 수 있다. 동일한 우선순위를 갖는 복수의 채널들이 동일한 CBR을 갖는 경우, 랜덤하게 선택된 하나의 채널이 혼잡 제어 기준 채널이 될 수 있다.
도 10은 본 발명의 실시예에 따른 제 2 혼잡 제어 기준 채널 선정 방법을 나타낸다.
도 10에서 간섭 관찰 윈도우의 크기는 3이다. 도 10에서, 전송 채널의 인접 채널에 Primary 채널/CCH가 포함된다. 따라서, Primary 채널/CCH인 채널이 혼잡 제어 기준 채널로 선택된다. 그리고, 혼잡 제어 기준 채널의 CBR 값(CBR2)이 혼잡 제어 기준 CBR 값이 된다.
도 11은 본 발명의 실시예에 따른 제 2 혼잡 제어 기준 채널 선정 방법을 나타내는 순서도이다.
V2X 통신 장치는 간섭 관찰 윈도우의 크기(W)를 설정한다(S11010). V2X 통신 장치는 설정된 간섭 관찰 윈도우를 통해 다중 채널에 대한 CBR 정보를 획득한다(S11020).
간섭 윈도우에 포함된 채널들 중 프라이머리(Primary) 채널 또는 CCH 채널이 존재하는 경우(S11030), V2X 통신 장치는 해당 채널을 혼잡 제어 기준 채널로 선택하고, 해당 채널의 CBR을 혼잡 제어 기준 CBR로 설정할 수 있다(S11040). V2X 통신 장치는 혼잡 제어 기준 CBR을 사용하여 전송 채널 혼잡 제어를 수행한다(S11050).
간섭 윈도우에 포함된 채널들 중 프라이머리(Primary) 채널 또는 CCH 채널이 존재하지 않는 경우(S11030), V2X 통신 장치는 혼잡 제어 기준 채널을 선택하고, 해당 채널의 CBR을 혼잡 제어 기준 CBR로서 설정할 수 있다(S11060). V2X 통신 장치는 프라이머리(Primary) 채널 또는 CCH 채널이 존재하지 않는 경우, 상술한 제 1 혼잡 제어 기준 채널 선정 방법에 기초하여 기준 채널 및 기준 CBR을 설정할 수 있다. 그리고 V2X 통신 장치는 혼잡 제어 기준 CBR을 사용하여 전송 채널 혼잡 제어를 수행한다(S11070).
3. 혼잡 제어 기준 채널을 선정하는 부가적인 방법들
이하에서는 상술한 제 1 방법 및 제 2 방법을 기반으로 동작할 수 있는 다양한 혼잡 제어 기준 채널 선정 방법에 대해 설명한다.
실시예로서, 채널의 우선순위를 고려하여 가중된 CBR 중 최대 CBR을 갖는 채널이 혼잡 제어 기준으로 선택되고, 가중된 CBR 또는 해당 채널의 CBR이 혼잡 제어 기준 CBR로 설정될 수 있다. 가중치는 채널의 우선순위에 따라서 다르게 설정될 수 있다.
간섭 관찰 윈도우에서 선택된 혼잡 제어 기준 채널이 서비스 전송 채널과 같은 경우 및 다른 경우에 대해 각각 다른 목표 CBR이 설정될 수 있다. 예를 들어, 간섭 관찰 윈도우에서 프라이머리 채널이 혼잡 제어 기준 채널로 선택된 경우로서, 혼잡 제어 기준 채널과 서비스 전송 채널이 같은 경우에는 높은 CBR 값이 설정되고, 혼잡 제어 기준 채널과 서비스 전송 채널이 다른 경우에는 낮은 CBR 값이 설정될 수 있다. 이는 낮은 우선순위를 갖는 인접한 채널의 서비스 전송으로 인해 프라이머리 채널의 CBR 값이 증가하는 것을 방지 또는 제한하기 위함이다.
실시예로서, 간섭 관찰 윈도우에서 각 채널의 목표 CBR이 동일하지 않은 경우, 목표 CBR과 측정된 CBR의 오차가 가장 작거나 또는 큰 채널이 혼잡 제어 기준 채널로 선택될 수도 있다.
실시예로서, 혼잡 제어 기준 채널은 수학식 2와 같이 결정될 수도 있다.
Figure PCTKR2018012553-appb-M000002
간섭 관찰 윈도우에서 각 채널의 목표 CBR이 동일한 경우, 수학식 2에서와 같이, 다중 채널에 대한 평균 CBR이 혼잡 제어 기준 CBR로 설정될 수 있다. 이 경우 혼잡 제어 기준 채널은 선택되지 않을 수도 있다.
실시예로서, 혼잡 제어 기준 채널은 수학식 3과 같이 결정될 수도 있다.
Figure PCTKR2018012553-appb-M000003
간섭 관찰 윈도우에서 각 채널의 목표 CBR이 동일한 경우, 수학식 3에서와 같이, 최소 CBR 값을 갖는 채널이 혼잡 제어 기준 채널로 선택되고, 해당 채널의 CBR 값이 혼잡 제어 기준 CBR로 설정될 수 있다.
실시예로서, 혼잡 제어 기준 채널은 수학식 4와 같이 결정될 수도 있다.
Figure PCTKR2018012553-appb-M000004
간섭 관찰 윈도우에서 혼잡 제어 기준 채널로 선택된 채널과 서비스 전송 채널이 다른 경우, 혼잡 제어 기준 채널의 CBR에 대해 가중된 CBR이 혼잡 제어 기준 CBR로 선택될 수 있다. 가중치는 수학식 4에서 β로 지시된다. 가중된 CBR을 사용하는 목적은, 전송 채널에서의 서비스 전송률 결정이 인접 채널의 CBR에 전적으로 의존되는 것을 완화하기 위해서이다. 간섭 관찰 윈도우에서 혼잡 제어 기준 채널로 선택된 채널과 서비스 전송 채널이 같은 경우에는, 상술한 혼잡 제어 기준 채널 선정 제 2 방법에 의해 기준 채널이 선택될 수 있다.
이하에서는 상술한 방법에 따라서 설정된 혼잡 제어 기준 CBR을 사용하여 전송 채널에서의 서비스 전송률을 제어하는 방법에 대해 설명한다. 서비스 전송 채널에서 트래픽 혼잡을 제어하는 기술로서, DCC(Decentralized congestion control) 스테이트-머신(state-machine) 기술을 사용한 혼잡 제어 방법과 적응형 전송률 제어 방법에 대해 설명한다.
도 12는 본 발명의 실시예에 따른 DCC 스테이트 머신 및 그의 채널 혼잡 제어 방법을 나타낸다.
도 12는 CBRref를 사용한 DCC 스테이트 머신의 동작 및 각 스테이트/상태에서 정의된 채널 상태에 대한 설명이다.
도 12의 예에서, 1초동안 측정된 CBR 값이 0.15보다 작으면 채널은 유휴/릴렉스드("relaxed") 상태로 판단되고, 유휴 상태에서 정의된 전송 파라미터에 기초하여 전송이 수행된다. 유휴 상태에서 정의된 전송 파라미터는 전송 전력(TxPower)=33dBm, 수신감도(RxSensitivity)=95dBm, 전송주기(Frequency)=25Hz, 전송 데이터율(PHYRate)=3Mbps이다.
도 12의 예에서, 1초동안 측정된 CBR 값이 0.15 이상이고 0.4보다 작으면 채널은 활동/액티브("Active") 상태로 판단되고, 활동 상태에서 정의된 전송 파라미터에 기초하여 전송이 수행된다. 활동 상태에서 정의된 전송 파라미터는 전송 전력(TxPower)=23dBm, 수신감도(RxSensitivity)=85dBm, 전송주기(Frequency)=2Hz, 전송 데이터율(PHYRate)=6Mbps이다.
도 12의 예에서, 1초동안 측정된 CBR 값이 0.4 이상이면 채널은 제한/리스트릭티브("restrictive") 상태로 판단되고, 제한 상태에서 정의된 전송 파라미터에 기초하여 전송이 수행된다. 제한 상태에서 정의된 전송 파라미터는 전송 전력(TxPower)=10dBm, 수신감도(RxSensitivity)=65dBm, 전송주기(Frequency)=1Hz, 전송 데이터율(PHYRate)=12Mbps이다.
도 12에서, CBR 상태가 유휴=>활동=>제한 으로 변경될수록 채널 상태가 열악해지고, 따라서 전송 전력, 수신 감도, 메세지 전송 주기, 전송 데이터율이 감소된다. 반면에 5초동안 측정된 CBR 상태가 제한=>활동=>유휴 로 변경될수록 채널 상태가 개선되고, 따라서 전송 전력, 수신 감도, 메세지 전송 주기, 전송 데이터율이 증가된다.
도 12에서의 CBRref를 사용한 DCC 스테이트 머신은 ETSI TS 102 687에서 기술된 제어 방법과 유사하지만, 서비스 전송 채널과 혼잡 제어 기준 채널이 다른 경우 서비스 전송 채널에서 사용하는 CBR 값이 인접 채널의 CBR 정보를 사용하여 동작된다는 차이가 있다.
적응형 전송률 제어 방법은 이하의 수학식 5와 같이 수행될 수도 있다.
Figure PCTKR2018012553-appb-M000005
수학식 5에서, CRBtarget은 혼잡 제어 기준 채널의 목표 CBR을 나타내고, CBRref는 혼잡 제어 기준 CBR을 나타낸다. 적응형 전송률 제어 방법은 기존의 기술과 유사한 반면에 서비스 전송 채널과 혼잡 제어 기준 채널이 다를 경우, 서비스 전송 채널의 전송률이 인접 채널의 CBRtarget과 CBRref를 이용하여 동작된다는 점에서 차이점이 있다.
도 13은 본 발명의 실시예에 따른 V2X 통신 장치의 구성을 나타낸다.
도 13에서, V2X 통신 장치(13000)는 통신 유닛(13010), 프로세서(13020) 및 메모리(13030)을 포함할 수 있다.
통신 유닛(13010)은 프로세서(13020)와 연결되어 무선 신호를 송신/수신할 수 있다. 통신 유닛(13010)은 프로세서(13020)로부터 수신된 데이터를 송수신 대역으로 업컨버팅하여 신호를 전송하거나, 수신 신호를 다운컨버팅할 수 있다. 통신 유닛(13010)은 피지컬 레이어 또는 액세스 레이어 중 적어도 하나의 동작을 구현할 수 있다.
통신 유닛(13010)은 복수의 통신 프로토콜에 따라 통신하기 위해 복수의 서브 RF 유닛을 포함할 수도 있다. 실시예로서, 통신 유닛(13010)은 DSRC(Dedicated Short Range Communication), IEEE 802.11 및/또는 802.11p 표준의 피지컬 전송 기술에 기초하는 ITS-G5 무선 통신 기술, 위성/광대역 무선 이동 통신을 포함하는 2G/3G/4G(LTE)/5G 무선 셀룰러 통신 기술, DVB-T/T2/ATSC 등 광대역 지상파 디지털 방송 기술, GPS 기술, IEEE WAVE 기술 등에 기초하여 데이터 통신을 수행할 수 있다. 통신 유닛(13010)은 각 통신 기술을 구현하는 복수의 트랜스시버를 포함할 수도 있다. 그리고 복수의 트랜스시버 중 하나의 트랜스시버는 컨트롤 채널에 액세스하고, 다른 하나의 트랜스시버는 서비스 채널에 액세스할 수 있다.
프로세서(13020)는 통신 유닛(13010)과 연결되어 ITS 시스템 또는 WAVE 시스템에 따른 레이어들의 동작을 구현할 수 있다. 프로세서(13020)는 상술한 도면 및 설명에 따른 본 발명의 다양한 실시예에 따른 동작을 수행하도록 구성될 수 있다. 또한, 상술한 본 발명의 다양한 실시예에 따른 V2X 통신 장치(13000)의 동작을 구현하는 모듈, 데이터, 프로그램 또는 소프트웨어 중 적어도 하나가 메모리(13030)에 저장되고, 프로세서(13020)에 의하여 실행될 수 있다.
메모리(13030)는 프로세서(13020)와 연결되어, 프로세서(13020)를 구동하기 위한 다양한 정보를 저장한다. 메모리(13030)는 프로세서(13020)의 내부에 포함되거나 또는 프로세서(13020)의 외부에 설치되어 프로세서(13020)와 공지의 수단에 의해 연결될 수 있다.
V2X 통신 장치(13000)의 프로세서(13020)는 본 발명에서 설명한 다중 채널 혼잡 제어 동작을 수행할 수 있다. V2X 통신 장치(13000)의 다중 채널 혼잡 제어 동작에 대해서는 이하에서 설명한다.
도 14는 본명의 실시예에 따른 V2X 통신 장치의 다중 채널 혼잡 제어 방법을 나타낸다.
V2X 통신 장치는 간섭 관찰 윈도우를 설정할 수 있다(S14010).
V2X 통신 장치는 도 6 내지 도 8에서 설명한 바와 같이, 전송 채널 또는 멀티 채널의 ACI에 기초하여 간섭 관찰 윈도우를 설정할 수 있다. 간섭 관찰 윈도우의 사이즈는 기설정된 멀티 채널 중 한 채널의 넓이를 기준으로 설정될 수 있다. 예를 들면, 다중 채널의 한 채널 대역폭이 10MHz인 경우, 간섭 관찰 윈도우의 사이즈는 자연수로 표시되고, 이 경우 윈도우의 사이즈는 대역폭과 자연수의 곱에 해당할 수 있다. 간섭 관찰 윈도우는 전송 채널 및 적어도 하나의 인접 채널을 커버할 수 있다.
V2X 통신 장치는 간섭 관찰 윈도우가 커버하는 다중 채널에 대한 CBR 정보를 획득할 수 있다(S14020).
다중 채널에 대한 CBR 정보는 간섭 관찰 윈도우가 커버하는 적어도 하나의 채널 각각에 대한 CBR 값을 포함할 수 있다. 즉, 다중 채널에 대한 CBR 정보는 간섭 관찰 윈도우의 사이즈가 3인 경우, 3개 채널에 대한 CBR 값들을 포함할 수 있다.
V2X 통신 장치는 혼잡 제어를 위한 기준 CBR을 설정할 수 있다(S14030).
V2X 통신 장치는 다중 채널에 대한 CBR 정보에 기초하여 기준 CBR을 설정할 수 있다. 즉, 기준 CBR을 설정 단계는 혼잡 제어를 위한 기준 채널을 설정하는 단계를 더 포함할 수 있다. 기준 채널은 간섭 간찰 윈도우가 커버하는 다중 채널 중 하나에 해당할 수 있다. 기준 채널은 전송 채널이 되거나, 전송 채널의 인접 채널이 될 수도 있다.
V2X 통신 장치는 다중 채널에 대한 CBR 정보에 기초하여 기준 채널을 설정하고, 기준 채널에 기초하여 기준 CBR을 설정할 수도 있다. 기준 채널 또는 기준 CBR 중 적어도 하나의 설정은, 상술한 바와 같이 수행될 수 있다. 예를 들면, 상기 상기 간섭 관찰 윈도우가 커버하는 다중 채널의 목표 CBR이 동일한 경우, 다중 채널 중 최대 CBR을 갖는 채널이 기준 채널로 설정되고, 기준 채널의 CBR이 기준 CBR로 설정될 수 있다. 다른 예로서, 다중 채널 중 우선순위가 높은 채널이 기준 채널로 설정되고, 기준 채널의 CBR이 기준 CBR로 설정될 수 있다. 또 다른 예로서, 다중 채널의 우선순위가 동일한 경우, 다중 채널 중 최대 CBR을 갖는 채널이 기준 채널로 설정되고, 기준 채널의 CBR이 상기 기준 CBR로 설정될 수 있다.
V2X 통신 장치는 기준 CBR에 기초하여 전송 채널에 대한 혼잡 제어를 수행할 수 있다(S14040).
V2X 통신 장치는 도 12에서 설명한 바와 같이, 전송 전력(TxPower), 수신감도(RxSensitivity), 전송주기(Frequency), 또는 전송 데이터율(PHYRate) 중 적어도 하나를 조정함으로써 전송 채널에 대한 혼잡 제어를 수행할 수 있다.
이하는 상술한 ACI 영향을 고려한 다중 채널 혼잡 제어 방법에 대한 요약이다.
(i) 간섭 관찰 원도우 (IOW: Interference Observation Window) 운용
간섭 관찰 윈도우는 서비스 (또는 메시지) 전송 채널을 기준으로 양쪽에 인접한 채널들이 포함되도록 설정될 수 있다.
간섭 관찰 윈도우는 서비스 전송 채널에 대한 CBR (채널 사용률: Channel Busy Ratio)과 인접한 채널에 대한 CBR 정보를 관찰 및 획득을 목적으로 운용된다.
간섭 관찰 원도우에서 관찰되는 다중 채널에 대한 CBR 정보를 이용하여 다중 채널 트래픽 혼잡 제어를 위한 기준 채널 (혼잡 제어 기준 채널: reference channel for multichannel congestion control) 선택과 기준 CBR (혼잡 제어 기준 CBR: reference CBR for multichannel congestion control)이 설정될 수 있다.
다중 채널 트래픽 혼잡 제어 동작 과정에서 혼잡 제어 기준 채널과 서비스 전송 채널은 같거나 다를 수 있다.
간섭 관찰 윈도우내에 일정 시간 동안 서비스 전송을 하지 않거나 사용되지 않은 채널은 nulling 채널로 간주하여 관찰되는 CBR 값과 상관없이 혼잡 제어 기준 채널 선정 과정에서 제외될 수 있다.
서비스 전송 채널에서 설정된 혼잡 제어 기준 CBR을 이용하여 다중 채널 트래픽 혼잡 제어 기능을 수행한다.
(ii-a) 혼잡 제어 기준 채널 선정 방법-1:
간섭 관찰 윈도우에서 각 채널의 목표 CBR (target CBR) (또는 최대 허용되는 CBR) 값이 동일한 경우, 최대 CBR 값을 가지는 채널은 혼잡 제어 기준 채널로 선택되며, 해당 채널에서 CBR 값은 혼잡 제어 기준 CBR로 설정될 수 있다.
동일한 최대 CBR을 가지는 채널이 2개 이상 존재할 경우 랜덤하게 하나의 채널을 혼잡 제어 기준 채널로 선정될 수 있다.
(ii-b) 혼잡 제어 기준 채널 선정 방법-2:
간섭 관찰 윈도우에서 priority가 높은 채널 (예, primary 채널, control channel)이 존재할 경우, priority가 높은 채널을 혼잡 제어 기준 채널로 선택하며, 해당 채널에서 CBR은 혼잡 제어 기준 CBR로 설정될 수 있다.
동일한 priority를 가지는 채널이 2개 이상 존재할 경우, 최대 CBR 값을 가지는 채널을 혼잡 제어 기준 채널로 선택될 수 있다.
2개 이상의 동일한 priority를 가지는 채널에 대한 CBR이 동일한 경우, 랜덤하게 하나의 채널을 혼잡 제어 기준 채널로 선택될 수 있다.
(ii-c) 혼잡 제어 기준 채널 선정 방법-3:
혼잡 제어 기준 채널 선정 방법-1/2를 기반으로 파생될 수 있는 다양한 혼잡 제어 기준 채널 선정 방법 기술이 추가적을 동작될 수 있다.
간섭 채널 윈도우의 서비스 전송 채널에서 설정된 혼잡 제어 기준 CBR을 이용하여 다중 채널 트래픽 혼잡 제어 기능이 수행될 수 있다.
서비스 전송 채널에서 트래픽 혼잡 제어는 기존 표준에서 기술하고 있는 state-machine 기법을 이용한 혼잡 제어 기법과 적응형 기법을 이용한 혼잡 제어 기법을 이용하여 동작 될 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명의 사상이나 범위를 벗어나지 않고 본 발명에서 다양한 변경 및 변형이 가능함은 당업자에게 이해된다. 따라서, 본 발명은 첨부된 청구항 및 그 동등 범위 내에서 제공되는 본 발명의 변경 및 변형을 포함하는 것으로 의도된다.
본 명세서에서 장치 및 방법 발명이 모두 언급되고, 장치 및 방법 발명 모두의 설명은 서로 보완하여 적용될 수 있다.
다양한 실시예가 본 발명을 실시하기 위한 최선의 형태에서 설명되었다.
본 발명은 일련의 차량 통신 분야에서 이용된다.
본 발명의 사상이나 범위를 벗어나지 않고 본 발명에서 다양한 변경 및 변형이 가능함은 당업자에게 자명하다. 따라서, 본 발명은 첨부된 청구항 및 그 동등 범위 내에서 제공되는 본 발명의 변경 및 변형을 포함하는 것으로 의도된다.

Claims (12)

  1. ACI(Adjacent Channel Interference) 고려한 다중 채널 혼잡 제어 방법에 있어서,
    전송 채널의 ACI에 기초하여 간섭 관찰 윈도우를 설정하는 단계;
    상기 간섭 관찰 윈도우가 커버하는 다중 채널에 대한 CBR(Channel Busy Ratio) 정보를 획득하는 단계;
    상기 다중 채널에 대한 CBR 정보에 기초하여 혼잡 제어를 위한 기준 CBR을 설정하는 단계; 및
    상기 기준 CBR에 기초하여 전송 채널에 대한 혼잡 제어를 수행하는 단계를 포함하는, 다중 채널 혼잡 제어 방법.
  2. 제 1 항에 있어서,
    기준 CBR을 설정하는 단계는,
    혼잡 제어를 위한 기준 채널을 설정하는 단계를 더 포함하고,
    상기 기준 채널은 상기 간섭 간찰 윈도우가 커버하는 다중 채널 중 하나에 해당하는, 다중 채널 혼잡 제어 방법.
  3. 제 2 항에 있어서,
    상기 간섭 관찰 윈도우가 커버하는 다중 채널의 목표 CBR이 동일한 경우, 상기 다중 채널 중 최대 CBR을 갖는 채널이 상기 기준 채널로 설정되고, 상기 기준 채널의 CBR이 상기 기준 CBR로 설정되는, 다중 채널 혼잡 제어 방법.
  4. 제 2 항에 있어서,
    상기 다중 채널 중 우선순위가 높은 채널이 상기 기준 채널로 설정되고, 상기 기준 채널의 CBR이 상기 기준 CBR로 설정되는, 다중 채널 혼잡 제어 방법.
  5. 제 2 항에 있어서,
    상기 다중 채널의 우선순위가 동일한 경우, 상기 다중 채널 중 최대 CBR을 갖는 채널이 상기 기준 채널로 설정되고, 상기 기준 채널의 CBR이 상기 기준 CBR로 설정되는, 다중 채널 혼잡 제어 방법.
  6. 제 1 항에 있어서,
    상기 간섭 관찰 윈도우는, 상기 전송 채널 및 적어도 하나의 인접 채널을 커버하는, 다중 채널 혼잡 제어 방법.
  7. V2X 통신 장치에 있어서,
    데이터를 저장하는 메모리;
    무선 신호를 송수신하는 통신 유닛; 및
    상기 메모리 및 상기 통신 유닛을 제어하는 프로세서를 포함하고,
    상기 프로세서는,
    전송 채널의 ACI(Adjacent Channel Interference)에 기초하여 간섭 관찰 윈도우를 설정하고,
    상기 간섭 관찰 윈도우가 커버하는 다중 채널에 대한 CBR(Channel Busy Ratio) 정보를 획득하고,
    상기 다중 채널에 대한 CBR 정보에 기초하여 혼잡 제어를 위한 기준 CBR을 설정하고, 및
    상기 기준 CBR에 기초하여 전송 채널에 대한 혼잡 제어를 수행하는, V2X 통신 장치.
  8. 제 7 항에 있어서,
    기준 CBR을 설정은, 혼잡 제어를 위한 기준 채널의 설정을 더 포함하고,
    상기 기준 채널은 상기 간섭 간찰 윈도우가 커버하는 다중 채널 중 하나에 해당하는, V2X 통신 장치.
  9. 제 8 항에 있어서,
    상기 간섭 관찰 윈도우가 커버하는 다중 채널의 목표 CBR이 동일한 경우, 상기 다중 채널 중 최대 CBR을 갖는 채널이 상기 기준 채널로 설정되고, 상기 기준 채널의 CBR이 상기 기준 CBR로 설정되는, V2X 통신 장치.
  10. 제 8 항에 있어서,
    상기 다중 채널 중 우선순위가 높은 채널이 상기 기준 채널로 설정되고, 상기 기준 채널의 CBR이 상기 기준 CBR로 설정되는, V2X 통신 장치.
  11. 제 8 항에 있어서,
    상기 다중 채널의 우선순위가 동일한 경우, 상기 다중 채널 중 최대 CBR을 갖는 채널이 상기 기준 채널로 설정되고, 상기 기준 채널의 CBR이 상기 기준 CBR로 설정되는, V2X 통신 장치.
  12. 제 7 항에 있어서,
    상기 간섭 관찰 윈도우는, 상기 전송 채널 및 적어도 하나의 인접 채널을 커버하는, V2X 통신 장치.
PCT/KR2018/012553 2018-10-23 2018-10-23 V2x 통신 장치 및 그의 다중 채널 혼잡 제어 방법 WO2020085522A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2018/012553 WO2020085522A1 (ko) 2018-10-23 2018-10-23 V2x 통신 장치 및 그의 다중 채널 혼잡 제어 방법
US17/285,383 US12022317B2 (en) 2018-10-23 2018-10-23 V2X communication device and multi-channel congestion control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2018/012553 WO2020085522A1 (ko) 2018-10-23 2018-10-23 V2x 통신 장치 및 그의 다중 채널 혼잡 제어 방법

Publications (1)

Publication Number Publication Date
WO2020085522A1 true WO2020085522A1 (ko) 2020-04-30

Family

ID=70330626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/012553 WO2020085522A1 (ko) 2018-10-23 2018-10-23 V2x 통신 장치 및 그의 다중 채널 혼잡 제어 방법

Country Status (2)

Country Link
US (1) US12022317B2 (ko)
WO (1) WO2020085522A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020147968A1 (en) * 2019-01-18 2020-07-23 Telefonaktiebolaget Lm Ericsson (Publ) Service information for v2x service coordination in other frequency spectrum
US11902950B2 (en) * 2021-02-11 2024-02-13 Qualcomm Incorporated Channel occupancy time (COT) aware autonomous sensing for sidelink
EP4109997A1 (en) * 2021-06-22 2022-12-28 INTEL Corporation Methods and devices for protecting v2x communications from near-band interference
US20230117788A1 (en) * 2021-10-15 2023-04-20 Cypress Semiconductor Corporation Systems, methods, and devices for channel interference detection in wireless devices
CN114422979A (zh) * 2021-12-27 2022-04-29 吉林大学 信息发送频率控制方法、装置及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120236736A1 (en) * 2011-03-18 2012-09-20 Motorola Mobility, Inc. Method and Apparatus for Multi-Radio Coexistence with a System on an Adjacent Frequency Band Having a Time-Dependent Configuration
US20170272971A1 (en) * 2015-06-08 2017-09-21 Nec Europe Ltd. Method for multi-channel operation in a vehicular network and vehicular network
WO2017176098A1 (ko) * 2016-04-07 2017-10-12 엘지전자 주식회사 무선 통신 시스템에서 레이턴시 요구를 만족시키는 범위 내에서 v2x 통신을 수행할 자원을 선택하는 방법 및 상기 방법을 이용하는 단말
US20180184442A1 (en) * 2013-11-29 2018-06-28 Hyundai Mobis Co., Ltd. Communication apparatus and method for performing inter-vehicular communication

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9154260B2 (en) * 2010-03-26 2015-10-06 Qualcomm Incorporated Method and apparatus for reliable transmission of control information in a wireless communication network
US11357015B2 (en) * 2017-12-22 2022-06-07 Qualcomm Incorporated Sidelink signal measurement and resource selection in vehicle-to-everything communications
EP3725126B1 (en) * 2018-01-15 2023-11-29 Huawei Technologies Co., Ltd. Devices and methods for managing communication in a v2x communication network
US11510104B2 (en) * 2018-06-28 2022-11-22 Lg Electronics Inc. Method of transmitting data and apparatus thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120236736A1 (en) * 2011-03-18 2012-09-20 Motorola Mobility, Inc. Method and Apparatus for Multi-Radio Coexistence with a System on an Adjacent Frequency Band Having a Time-Dependent Configuration
US20180184442A1 (en) * 2013-11-29 2018-06-28 Hyundai Mobis Co., Ltd. Communication apparatus and method for performing inter-vehicular communication
US20170272971A1 (en) * 2015-06-08 2017-09-21 Nec Europe Ltd. Method for multi-channel operation in a vehicular network and vehicular network
WO2017176098A1 (ko) * 2016-04-07 2017-10-12 엘지전자 주식회사 무선 통신 시스템에서 레이턴시 요구를 만족시키는 범위 내에서 v2x 통신을 수행할 자원을 선택하는 방법 및 상기 방법을 이용하는 단말

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YI, WONJAE: "A New Congestion Control Algorithm for Vehicle to Vehicle Safety Communications", JOURNAL OF THE KOREA ACADEMIA-INDUSTRIAL COOPERATION SOCIETY, vol. 18, no. 5, 31 May 2017 (2017-05-31), pages 125 - 132, XP055616879, DOI: 10.5762/KAIS.2017.18.5.125 *

Also Published As

Publication number Publication date
US12022317B2 (en) 2024-06-25
US20210345156A1 (en) 2021-11-04

Similar Documents

Publication Publication Date Title
WO2020085522A1 (ko) V2x 통신 장치 및 그의 다중 채널 혼잡 제어 방법
WO2019074348A1 (ko) 무선 통신 시스템에서 단말의 사이드링크 메시지 전송 방법 및 상기 방법을 이용하는 단말
WO2020004688A1 (ko) V2x 통신 장치 및 그의 데이터 전송 방법
WO2018131947A1 (ko) 무선 통신 시스템에서 v2x 단말에 의해 수행되는 v2x 통신 수행 방법 및 상기 방법을 이용하는 단말
WO2017048109A1 (ko) 무선 통신 시스템에서 단말의 v2x 동작을 위한 자원 선택 방법 및 상기 방법을 이용하는 단말
WO2017171529A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 v2x 전송 자원 선택 방법 및 상기 방법을 이용하는 단말
WO2017034247A1 (ko) 유연한 프레임 구조 기반 셀룰라 통신 방법 및 그 장치
WO2016182293A1 (ko) 무선 통신 시스템에서 v2x 통신을 수행하는 단말의 전송 전력 결정 방법 및 상기 방법을 이용하는 단말
WO2018182263A1 (ko) 무선 통신 시스템에서 단말의 v2x 통신 방법 및 상기 방법을 이용하는 단말
WO2019022470A1 (en) METHOD AND APPARATUS FOR REALIZING LATERAL LINK TRANSMISSIONS ON MULTIPLE CARRIERS IN A WIRELESS COMMUNICATION SYSTEM
WO2021086004A1 (ko) 사이드링크를 지원하는 무선통신시스템에서 단말이 빔 관리 동작을 수행하는 방법 및 이를 위한 장치
WO2019022477A1 (en) CARRIER SELECTION METHOD AND APPARATUS FOR LATERAL LINK TRANSMISSION IN A WIRELESS COMMUNICATION SYSTEM
WO2019022504A1 (en) CARRIER SELECTION METHOD, AND DEVICE SUPPORTING THE METHOD
WO2018225883A1 (ko) V2x 통신 장치 및 그의 멀티 채널 운용 방법
WO2021040352A1 (ko) 사이드링크를 지원하는 무선통신시스템에서 장치가 cpm을 송수신하는 방법 및 이를 위한 장치
WO2018199728A1 (ko) 무선 통신 시스템에서 단말의 v2x 동작 방법 및 상기 방법을 이용하는 단말
WO2018203671A1 (ko) 무선 통신 시스템에서 단말의 물리 사이드링크 제어 채널의 블라인드 디코딩 수행 방법 및 상기 방법을 이용하는 단말
WO2018038565A1 (ko) 무선 통신 시스템에서 v2x 단말에 의해 수행되는 v2x 통신 수행 방법 및 상기 방법을 이용하는 단말
WO2018110729A1 (ko) V2x 통신을 위한 장치 및 방법
WO2021034167A1 (ko) 사이드링크를 지원하는 무선통신시스템에서 단말이 사이드링크 신호를 송수신하는 방법 및 이를 위한 장치
WO2017135580A1 (ko) 차량 통신 제어 방법 및 그 장치
WO2019117369A1 (ko) V2x 통신 장치 및 그의 통신 방법
WO2019070104A1 (en) METHOD AND APPARATUS FOR SUPPORTING CARRIER RESELECTION BASED ON CHANNEL OCCUPANCY RATE IN WIRELESS COMMUNICATION SYSTEM
WO2021091320A1 (ko) 사이드링크를 지원하는 무선통신시스템에서 단말이 피드백 정보를 송수신하는 방법 및 이를 위한 장치
WO2021150089A1 (ko) 사이드링크를 지원하는 무선통신시스템에서 v2x 차량이 가상 v2x 메시지를 전송하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18937713

Country of ref document: EP

Kind code of ref document: A1