WO2020061908A1 - Power supply cell and power supply system using the same - Google Patents

Power supply cell and power supply system using the same Download PDF

Info

Publication number
WO2020061908A1
WO2020061908A1 PCT/CN2018/107986 CN2018107986W WO2020061908A1 WO 2020061908 A1 WO2020061908 A1 WO 2020061908A1 CN 2018107986 W CN2018107986 W CN 2018107986W WO 2020061908 A1 WO2020061908 A1 WO 2020061908A1
Authority
WO
WIPO (PCT)
Prior art keywords
low
pass filter
conversion circuit
power supply
power conversion
Prior art date
Application number
PCT/CN2018/107986
Other languages
French (fr)
Inventor
Kuenfaat YUEN
Tinho LI
Kai TIAN
Original Assignee
Abb Schweiz Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb Schweiz Ag filed Critical Abb Schweiz Ag
Priority to CN201880097721.5A priority Critical patent/CN112715000A/en
Priority to PCT/CN2018/107986 priority patent/WO2020061908A1/en
Priority to EP18935408.7A priority patent/EP3857695A4/en
Publication of WO2020061908A1 publication Critical patent/WO2020061908A1/en
Priority to US17/212,656 priority patent/US20210211051A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the invention relates to conversion of DC power input into DC power output, and more particularly to DC to DC power conversion without intermediate conversion into AC power.
  • DC power supply cells are electrically switched between series connection and parallel connection are provided.
  • the process of converting can achieve a relatively wide range of voltage output or current output. Consequently, the cost spent on the power supply is reduced.
  • This is particular useful in the technology area of electrical vehicle (EV) charging.
  • the EV charging voltage is getting higher and higher to increase the charging power.
  • some super EV or bus may need to the charging voltage up to 1000V. Therefore, to cover most of the EVs charging requirement, the charging voltage range now is going to be from 200V to 1000V.
  • Patent CN 204 538 972 U discloses a wide range output switching power supply, having power source module connected with switch circuit, and sub power source module connected with end of positive pole, where switch circuit is connected with power supply.
  • the output voltage and current range can be enlarged.
  • the output current of the system is extended to be the sum of all connected power modules.
  • the system voltage is enlarged with series connecting of power modules.
  • the constant output power (CP) range of the conventional system cannot be attained by the switching between series and parallel connection because the conventional power supply system’s maximum output current has a step drop when the connection of the power modules is changed from parallel to series for increasing the voltage.
  • the power supply cell includes a first power conversion circuit operative to output a first DC voltage across its first positive terminal and first negative terminal, a second power conversion circuit operative to output a second DC voltage across its second positive terminal and second negative terminal, a first controllable unidirectional semiconductor switch operative to generate a first conduction path from the first positive terminal of the first power conversion circuit to the second negative terminal of the second power conversion circuit, a first unidirectional semiconductor switch operative to generate a second conduction path from the first positive terminal of the first power conversion circuit to the second positive terminal of the second power conversion circuit, a second unidirectional semiconductor switch operative to generate a third conduction path from the first negative terminal of the first power conversion circuit to the second negative terminal of the second power conversion circuit, a first low-pass filter, a second low-pass filter, a third low-pass filter and a controlling unit.
  • the controlling unit is operative to: issue turn-on signal to the first controllable unidirectional semiconductor switch so that the first power conversion circuit and the second power conversion circuit supply current to the first low-pass filter via the first conduction path, the second low-pass filter and the third low-pass filter; or issue turn-off signal to the first controllable unidirectional semiconductor switch so that the first power conversion circuit and the second power conversion circuit supply currents to the first low-pass filter in parallel via the second conduction path and the second low-pass filter together with the third conduction path and the third low-pass filter.
  • the first low-pass filter can help smooth an output voltage and current in order to achieve a relatively wide linearly constant output power range.
  • both output voltage across the first low-pass filter and current range of the power supply cell can be enlarged smoothly and linearly with the help of the first low-pass filter.
  • the first controllable unidirectional semiconductor switch is turned on, the second low-pass filter and the third low-pass filter are electrically coupled in series by the first controllable unidirectional semiconductor switch. Then, the circuit loop impedance is increased to the sum of the second low-pass filter and the third low-pass filter.
  • the filtering power of the filter circuit which formed by the second low-pass filter and the third low-pass filter is enhanced.
  • the proposed solution require less inductance of the inductors. It can reduce the size and cost of the required inductor in the circuit.
  • the first low-pass filter includes a first capacitive element inserted between the input port terminals
  • the second low-pass filter includes a first inductive element
  • the third low-pass filter includes a second inductive element.
  • the first low-pass filter includes a first capacitive element inserted between the input port terminals.
  • the first low-pass filter further includes output port terminals for supplying a third DC voltage.
  • the power supply system includes a first power supply cell, a second power supply cell, a second controllable unidirectional semiconductor switch operative to generate a fourth conduction path from the positive output port terminal of the first power supply cell to the negative output port terminal of the second power supply cell, a fourth unidirectional semiconductor switch operative to generate a fifth conduction path from the positive output port terminal of the first power supply cell to the positive output port terminal of the second power supply cell, a fifth unidirectional semiconductor switch operative to generate a sixth conduction path from the negative output port terminal of the first power supply cell to the negative output port terminal of the second power supply cell, a fourth low-pass filter, a fifth low-pass filter and a sixth low-pass filter and a central controlling unit.
  • the central controlling unit is operative to: issue turn-on signal to the second controllable unidirectional semiconductor switch so that the first power supply cell and the second power supply cell supply current to the fourth low-pass filter via the fourth conduction path, the fifth low-pass filter and the sixth low-pass filter; or issue turn-off signal to the second controllable unidirectional semiconductor switch so that the first power supply cell and the second power supply cell supply currents to the fourth low-pass filter in parallel via the fifth conduction path and the fifth low-pass filter together with the sixth conduction path and the sixth low-pass filter.
  • the power supply cell can be used as a sub module to from an even wider output voltage and constant power range power supply system.
  • Figure 1 is a schematic circuit block diagram illustrating a power supply cell according to an embodiment of the present invention
  • FIGS. 2A and 2B show two operation modes of the apparatus according to an embodiment of present invention
  • Figure 3A shows V-I curve according to the power conversion circuit supplying DC voltage
  • Figure 3B shows V-I curve according to an exemplified operation of the prior art solution using the power conversion circuits from figure 3A;
  • Figure 3C shows V-I curve according to an exemplified operation of the solution according to present invention using the power conversion circuits from figure 3A;
  • Figures 4A and 4B respectively show electrical waveforms involving the components of the power supply cell supplying constant power of 30kW at two output DC voltage levels respectively at 600V and 700V according to present invention.
  • Figure 5 is a schematic circuit block diagram illustrating a power supply system using the power supply cell according to an embodiment of the present invention.
  • FIG. 1 is a schematic circuit block diagram illustrating a power supply cell according to an embodiment of the present invention.
  • the power supply cell 1 comprises a first power conversion circuit 10, a second power conversion circuit 11, a first controllable unidirectional semiconductor switch 12, a first unidirectional semiconductor switch 13, a second unidirectional semiconductor switch 14, a first low-pass filter 15, a second low-pass filter 16, a third low-pass filter 17 and a controlling unit 18.
  • the first power conversion circuit 10 By the first power conversion circuit 10, its input voltage is converted into a first DC voltage V1 behaving like a DC voltage source.
  • the first power conversion circuit 10 comprises a first output positive terminal 100 and a first output negative terminal 101.
  • the second power conversion circuit 11 By the second power conversion circuit 11, its input voltage is converted into a second DC voltage V2 behaving like a DC voltage source.
  • the second power conversion circuit 11 comprises a second output positive terminal 110 and a second output negative terminal 111.
  • either of the first power conversion circuit 10 and the second power conversion circuit 11 may be an AC to DC power converter using conventional AC to DC power conversion circuit topology, such like an AC to DC power converter with transformer isolation.
  • they can be two separated AC to DC power converters each without transformer isolation but electrically coupled to respective secondary side windings of a transformer and the transformer has primary side winding electrically coupled to the AC power source.
  • Their input AC voltages may be supplied from an AC power source or respectively two AC power sources directly or through one or two AC to AC power converter and converted into AC bus voltages, which in turn is/are electrically supplied to the input terminals of the respective first power conversion circuit 10 and the second power conversion circuit 11.
  • either of the first power conversion circuit 10 and the second power conversion circuit 11 may be a DC to DC power converter using conventional DC to DC power conversion circuit topology, such like a DC to DC power converter with transformer isolation.
  • they can be two separated DC to DC power converters each without transformer isolation but their input sides are electrically isolated.
  • Their input DC voltages may be supplied from a DC power source or respectively two DC power sources directly or through one or two DC to DC power converter and converted into DC bus voltages, which in turn is/are electrically supplied to the input terminals of the respective first power conversion circuit 10 and the second power conversion circuit 11.
  • the power converter circuit being electrically coupled to either an AC power source or a DC power source, and convert the AC voltage or the DC voltage into the AC or DC bus voltage.
  • the first controllable unidirectional semiconductor switch 12 is operative to generate a first conduction path P1 from the first output positive terminal 100 of the first power conversion circuit 10 to the second output negative terminal 111 of the second power conversion circuit 11.
  • the first controllable unidirectional semiconductor switch 12 may be power MOSFET or IGBT, whose state is dependent on not only its external power circuit, but also the signal on its driving terminal (this terminal is known as the gate or base) .
  • MOSFET MOSFET
  • IGBT collector and emitter are respectively electrically coupled to the first output positive terminal 100 of the first power conversion circuit 10 to the second output negative terminal 111 of the second power conversion circuit 11.
  • the controlling unit 18 may issue turn-on signal or turn-off signal to the first controllable unidirectional semiconductor switch 12.
  • the first unidirectional semiconductor switch 13 is operative to generate a second conduction path P2 from the first output positive terminal 100 of the first power conversion circuit 10 to the second output positive terminal 110 of the second power conversion circuit 11.
  • the first unidirectional semiconductor switch 13 may be power diode, body diode of power MOSFET, or a freewheeling diode of IGBT, state is completely dependent on the external power circuit to which it is connected. Forward voltage conducts the first unidirectional semiconductor switch 13, while reverse voltage blocks it. Where a power diode is used, its anode and cathode are respectively electrically coupled to the first output positive terminal 100 of the first power conversion circuit 10 and the second output positive terminal 110 of the second power conversion circuit 11.
  • body diode of power MOSFET or a freewheeling diode of IGBT is used, its anode and cathode are respectively electrically coupled to the first output positive terminal 100 of the first power conversion circuit 10 and the second output positive terminal 110 of the second power conversion circuit 11, as well.
  • the second unidirectional semiconductor switch 14 is operative to generate a third conduction path P3 from the first output negative terminal 101 of the first power conversion circuit 10 to the second output negative terminal 111 of the second power conversion circuit 11.
  • the second unidirectional semiconductor switch 14 may be power diode, body diode of power MOSFET, or a freewheeling diode of IGBT, state is completely dependent on the external power circuit to which it is connected. Forward voltage conducts the second unidirectional semiconductor switch 14, while reverse voltage blocks it. Where a power diode is used, its anode and cathode are respectively electrically coupled to the first output negative terminal 101 of the first power conversion circuit 10 to the second output negative terminal 111 of the second power conversion circuit 11.
  • body diode of power MOSFET or a freewheeling diode of IGBT is used, its anode and cathode are respectively electrically coupled to the first output negative terminal 101 of the first power conversion circuit 10 and the second output negative terminal 111 of the second power conversion circuit 11, as well.
  • the first low-pass filter 15 has input port terminals for receiving the current supplied from the first power conversion circuit 10 and the second power conversion circuit 11.
  • the first low-pass filter 15 is operative to pass signals with a frequency lower than a selected cut-off frequency and attenuates signals with frequencies higher than the cut-off frequency.
  • the cut-off frequency may be set based on the requirement of the quality for the DC voltage output.
  • the first low-pass filter 15 may be LC filter and LCL filter. In this embodiment, it uses an LC filter, having a first capacitive element 150 inserted between its input port terminals.
  • the first low-pass filter 15 may further include an output port for supplying a third DC voltage V3 across a positive output port terminal and a negative output port terminal.
  • the second low-pass filer 16 and output side of the first power conversion circuit 10 are electrically coupled in series.
  • the first unidirectional semiconductor switch 13 is electrically coupled to the series-coupled second low-pass filer 16 and first power conversion circuit 10 in series at a first coupling point.
  • the first coupling point is electrically coupled to one terminal of the first controllable unidirectional semiconductor switch 12.
  • the series-coupling of the first unidirectional semiconductor switch 13, the second low-pass filter 16 and the first power conversion circuit 10 is electrically coupled across the input port terminals of the first low-pass filter 15.
  • the second low-pass filter 16 has input port terminal for receiving the current supplied from the first power conversion circuit 10.
  • the second low-pass filter 16 is operative to pass signals with a frequency lower than a selected cut-off frequency and attenuates signals with frequencies higher than the cut-off frequency.
  • the cut-off frequency may be set based on the requirement of the quality for the DC voltage output.
  • the second low-pass filter 16 may be L filter, having a first inductive element between its input port terminal and output port terminal.
  • the input terminal of the second low-pass filter 16 is electrically coupled to the first output positive terminal 100 of the first power conversion circuit 10, the output terminal of the second low-pass filter 16 is electrically coupled to anode of the first unidirectional semiconductor switch 13 (power diode) .
  • the first coupling point is electrically coupled to collector/drain of the first controllable unidirectional semiconductor switch 12 (IGBT/Power MOSFET) .
  • the cathode of the first unidirectional semiconductor switch 13 and the first output negative terminal 101 of the first power conversion circuit 10 are respectively electrically coupled to input port terminals of the first low-pass filter 15.
  • the series-coupled second low-pass filer 16 and first power conversion circuit 10 can be switched around so that the first output positive terminal 100 of the first power conversion circuit 10 is electrically to the first coupling joint point, the first output negative terminal 101 of the first power conversion circuit 10 is electrically coupled to one terminal of the second low-pass filter 16, and the other terminal of the second low-pass filter 16 is electrically coupled to one of the input port terminals of the first low-pass filter 15.
  • the third low-pass filer 17 and output side of the second power conversion circuit 11 are electrically coupled in series.
  • the second unidirectional semiconductor switch 14 is electrically coupled to the series-coupled third low-pass filer 17 and second power conversion circuit 11 in series at a second coupling point.
  • the second coupling point is electrically coupled to another terminal of the first controllable unidirectional semiconductor switch 12.
  • the series-coupling of the second unidirectional semiconductor switch 14, the third low-pass filter 17 and the second power conversion circuit 11 is electrically coupled across the input port terminals of the first low-pass filter 15.
  • the third low-pass filter 17 has input port terminal for receiving the current supplied from the second power conversion circuit 11.
  • the third low-pass filter 17 is operative to pass signals with a frequency lower than a selected cut-off frequency and attenuates signals with frequencies higher than the cut-off frequency.
  • the cut-off frequency may be set based on the requirement of the quality for the DC voltage output.
  • the third low-pass filter 17 may be L filter, having a first inductive element between its input port terminal and output port terminal.
  • the input port terminal of the third low-pass filter 17 is electrically coupled to the second output positive terminal 110 of the second power conversion circuit 11.
  • the second coupling point is electrically coupled to emitter/source of the first controllable unidirectional semiconductor switch 12 (IGBT/Power MOSFET) , the second output negative terminal 111 of the second power conversion circuit 11 and cathode of the second unidirectional semiconductor switch 14 (Power Diode) .
  • the output terminal of the third low-pass filter 17 and the anode of the second unidirectional semiconductor switch 14 are respectively electrically coupled to input port terminals of the first low-pass filter 15.
  • the series-coupled third low-pass filer 17 and second power conversion circuit 11 can be switched around so that the second output positive terminal 110 of the second power conversion circuit 11 is electrically to one of the input port terminals of the first low-pass filter 15 and one terminal of the third low-pass filter 17 is electrically coupled to the second coupling point.
  • the controlling unit 18 may control the first controllable unidirectional semiconductor switch 12 so that the first power conversion circuit 10 and the second power conversion circuit 11 supply current to the first low-pass filter 15 via the first conduction path P1, the second low-pass filter 16 and the third low-pass filter 17.
  • the controlling unit 18 may control the first controllable unidirectional semiconductor switch 12 so that the first power conversion circuit 10 and the second power conversion circuit 11 supply currents to the first low-pass filter 15 in parallel via the second conduction path P2 and the second low-pass filter 16 together with the third conduction path P3 and the third low-pass filter 17.
  • Figures 2A and 2B show two operation modes of the apparatus according to an embodiment of present invention.
  • the controlling unit 18 issues control signal PWM to the first controllable unidirectional semiconductor switch 12.
  • the controlling unit 18 is further operative to issue control signal to the first power conversion circuit 10 and the second power conversion circuit 11 so that the first DC voltage V1 is substantially equal to the second DC voltage V2.
  • the magnitudes of the first DC voltage V1 and the second DC voltage V2 are regulated equal to V.
  • the apparatus 1 By switching the first controllable unidirectional semiconductor switch 12 between ON and OFF with a ratio (PWM method) , the apparatus 1 is able to regulate the third DC voltage V3 between V to 2V with the help of the first low-pass filter 15.
  • a power conversion circuit to output a DC voltage has to be used here because PWM modulation requires power input from DC voltage source.
  • the first low-pass filter 15 works to smooth the third DC voltage V3 as an output voltage and current in order to achieve a relatively wide linearly constant output power range.
  • both output voltage (the third DC voltage V3 across the first low-pass filter 15 and current range of the power supply cell can be enlarged smoothly and linearly with the help of the first low-pass filter 15.
  • the first power conversion circuit 10 and the second power conversion circuit 11 there is no modification required for the first power conversion circuit 10 and the second power conversion circuit 11.
  • the first controllable unidirectional semiconductor switch 12 when the first controllable unidirectional semiconductor switch 12 is turned on, the second low-pass filter 16 and the third low-pass filter 17 are electrically coupled in series by the first controllable unidirectional semiconductor switch 12. Then, the circuit loop impedance is increased to the sum of the second low-pass filter 16 and the third low-pass filter 17. It follows that the filtering power of the filter circuit which formed by the second low-pass filter 16 and the third low-pass filter 17 is enhanced.
  • the proposed solution require less inductance of the inductors. It can reduce the size and cost of the required inductor in the circuit.
  • Figure 3A shows V-I curve according to the power conversion circuit supplying DC voltage. It is assumed that the two power conversion circuits each has the parameters and both of them operate outputting DC output voltages with substantially the same amplitude:
  • Its output voltage can be adjusted continuously in the range from 200 V to 500 V, while the maximum output power is 15 kW and the maximum output current is 40 A.
  • Figure 3B shows V-I curve according to an exemplified operation of the prior art solution using the power conversion circuits from figure 3A.
  • the two power conversion circuits supplying two DC output voltages switched between series-connection and paralleling-connection but their supplying powers feed to the load without passing through a low-pass filter having an inductive element.
  • Its output voltage can be adjusted continuously in the range from 200 V to 1000 V while the maximum output power is rated at 30 kW (15kW *2) and the maximum current is rated at 80 A (40 A *2) .
  • the two power conversion circuits In order the output the DC voltage at a maximum amplitude, 1000 V, the two power conversion circuits have to be electrically coupled in series by appropriately setting the ON and OFF mode of the switching mechanism. For example, if the load resistance is reduced, while the output voltage reference is still set to 1000 V, the operating point can be changed from points A1 (1000 V, 0 A) to B1 (1000 V, 30 A) . If the load resistance continues to decrease, the maximum output power of 30 kW and the maximum current of 40 A have to be complied with, since there is no low-pass filter having an inductive element inserted between the output sides of the power conversion circuits and the load, and thus the operating point should be changed from points B1 (1000 V, 30 A) to C1 (750 V, 40 A) .
  • the load resistance keeps decreasing, the maximum current for each power conversion circuit, 40 A, imposes limitation for moving the operating point in the direction along the increase of current.
  • the electrical coupling relationship has to be changed from series-connection to paralleling-connection, and the operating point is changed from points C1 (750 V, 40 A) to D1 (500 V, 40 A) .
  • the operating point can be changed from D1 (500 V, 40 A) to E1 (500 V, 60 A) .
  • the operating point can continue to move along the curve along the current increase direction with power output constantly at the maximum output power of 30 kW, here the operating point can move from E1 (500 V, 60 A) to F1 (375 V, 80 A) .
  • F1 (375 V, 80 A) if the load resistance increases, the operating point can shift from F1 (375 V, 80 A) to G1 (200 V, 80 A) , and further from G1 (200 V, 80 A) to H1 (200 V, 0 A) along the direction of current decrease.
  • the operating point moving direction can be changed where for each of the potions of the V-I curve their situations are changed, for example the load resistance changes from decrease to increase, or the electrical coupling relationship changes from paralleling-connection to series-connection.
  • the operating point can reach any of the points enclosed by the I-V curve by changing the output DC voltage/output current from the power conversion circuit.
  • figure 3C shows V-I curve according to an exemplified operation of the solution according to present invention using the power conversion circuits from figure 3A.
  • the two power conversion circuits 10, 11 supplying two DC output voltages are switched between series-connection and paralleling-connection with their supplying powers fed to the load passing through the second low-pass filter 16 having a first inductive element 160 and the third low-pass filter having a second inductive element 170.
  • the key principle is the tendency of the inductive element to resist changes in current by creating and destroying a magnetic field.
  • the electrical coupling relationship between the power conversion circuits 10, 11 can be switched between series-connection and paralleling connection by consistently applying control signal of PWM to the control terminal of the controllable unidirectional semiconductor switch 12.
  • the inductive element 150 will not discharge fully in between charging stages, and the load will always see a voltage greater than that of the power conversion circuit 10, 11 when the switch 12 is opened. Also while the switch 12 is closed, the capacitive element 151 in parallel with the load is charged to the combined voltage of the output voltage of the power conversion circuit 10, 11 and the voltage induced across the inductive element 150. When the switch is then open, the capacitive element 151 is therefore able to provide the voltage and energy to the load. During this time, the blocking diode 13, 14 prevents the capacitive element 151 from discharging through the switch 12. The switch must of course be opened again fast enough to prevent the capacitive element 151 from discharging too much.
  • the two power conversion circuits In order to maintain the output DC voltage at a maximum amplitude, 1000 V, the two power conversion circuits have to be electrically coupled in series by appropriately setting the ON and OFF mode of the switching mechanism. For example, if the load resistance is reduced, while the output voltage reference is still set to 1000 V, the operating point can be changed from points A2 (1000 V, 0 A) to B2 (1000 V, 30 A) .
  • the maximum output power of 30 kW and the maximum current of 40 A have to be complied with. Since there is a low-pass filter 15 having an inductive element 150 and the capacitive element 151 inserted between the output sides of the power conversion circuits 10, 11 and the load, the operating point can be smoothly changed from points B2 (1000 V, 30 A) to F2 (375 V, 80 A) with frequent switching the electrically coupling relationship between the power conversion circuits 10, 11 by consistently applying control signal of PWM to the control terminal of the controllable unidirectional semiconductor switch 12.
  • the skilled person should understand that the switching frequency of PWM is relatively high, and its duty ratio varies from 0 to 1, which meets the technical requirement as discussed above.
  • the operating point can shift from F2 (375 V, 80 A) to G2 (200 V, 80 A) , and further from G2 (200 V, 80 A) to H2 (200 V, 0 A) along the direction of current decrease.
  • the operating point moving direction can be changed where for each of the potions of the V-I curve their situations are changed, for example the load resistance changes from decrease to increase, or the electrical coupling relationship changes from paralleling-connection to series-connection.
  • the operating point can reach any of the points enclosed by the I-V curve by changing the output DC voltage/output current from the power conversion circuit.
  • the power supply cell By using the power supply cell according to present invention, it can be observed that it is able to provide continuous constant full power (CP) , 30kW from 375V to 1000V output. In contrast, if the conventional is used, it losses the constant full power output at the range from 500V to 750V.
  • CP continuous constant full power
  • Figures 4A and 4B respectively show electrical waveforms involving the components of the power supply cell supplying constant power of 30kW at two output DC voltage levels respectively at 600V and 700V according to present invention.
  • the output voltage from either of the two power conversion circuits of the power supply cell has to be DC voltage. Otherwise, if the power conversion circuit does not behave like a DC voltage source, but for example a DC current source.
  • the ratio of the PWM signal applied to the first controllable unidirectional semiconductor switch 12 the output voltage of the power supply cell can be controlled with the constant power output. For example, for the constant output power, the PWM signal at ratio of 0.5 gets the output voltage at 600V, and the PWM signal at ratio of 0.75 gets the output voltage at 700 V.
  • the apparatus 1 has a third unidirectional semiconductor switch 19 electrically connected with the first controllable unidirectional semiconductor switch 12 in anti-parallel.
  • the third unidirectional semiconductor switch 19 can be a power diode or a body diode of a power MOSFET of the first controllable unidirectional semiconductor switch 12.
  • FIG. 5 is a schematic circuit block diagram illustrating a power supply system using the power supply cell according to an embodiment of the present invention.
  • the power supply cell can be used as a sub module to from an even wider output voltage and constant power range power supply system.
  • the power supply system 4 has a similar topology to the power supply cell according to figure 1 except that the first power conversion circuit 10 and the second power conversion circuit 11 of the power supply cell 1 are respectively replaced by two power supply cells each using the topology according to figure 1.
  • the power supply system 4 includes a first power supply cell 40 and a second power supply cell 41. Either of the two cells can use the one according to figure 1.
  • the power supply system 4 further includes a second controllable unidirectional semiconductor switch 42 operative to generate a fourth conduction path P4 from the positive output port terminal of the first power supply cell 40 to the negative output port terminal of the second power supply cell 41, a fourth unidirectional semiconductor switch 43 operative to generate a fifth conduction path P5 from the positive output port terminal of the first power supply cell 40 to the positive output port terminal of the second power supply cell 41, and a fifth unidirectional semiconductor switch 44 operative to generate a sixth conduction path P6 from the negative output port terminal of the first power supply cell 40 to the negative output port terminal of the second power supply cell 41, a fourth low-pass filter 45, a fifth low-pass filter 46, a sixth low-pass filter 47, and a central controlling unit 48.
  • a second controllable unidirectional semiconductor switch 42 operative to generate a fourth conduction path P4 from the positive output port terminal of the first power supply cell 40 to the negative output port terminal of the second power supply cell 41
  • a fourth unidirectional semiconductor switch 43
  • the central controlling unit 48 is operative to: issue turn-on signal to the second controllable unidirectional semiconductor switch so that the first power supply cell and the second power supply cell supply current to the fourth low-pass filter via the fourth conduction path, the fifth low-pass filter and the sixth low-pass filter; or issue turn-off signal to the second controllable unidirectional semiconductor switch so that the first power supply cell and the second power supply cell supply currents to the fourth low-pass filter in parallel via the fifth conduction path and the fifth low-pass filter together with the sixth conduction path and the sixth low-pass filter.
  • the power supply system it is able to output the voltage from V to 4V by changing the status of the switches with constant output power.
  • the power supply system 4 further includes a sixth unidirectional semiconductor switch 49 electrically connected with the second controllable unidirectional semiconductor switch 42 in anti-parallel.
  • the central controlling unit is further operative to issue control signal to the first power supply cell and the second power supply cell so that DC output voltage from the first power supply cell is substantially equal to DC output voltage from the second power supply cell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

It is therefore an objective of the invention to provide a power supply cell of a power supply system and a power supply system using the same. The power supply cell includes a first power conversion circuit operative to output a first DC voltage across its first positive terminal and first negative terminal, a second power conversion circuit operative to output a second DC voltage across its second positive terminal and second negative terminal, a first controllable unidirectional semiconductor switch operative to generate a first conduction path from the first positive terminal of the first power conversion circuit to the second negative terminal of the second power conversion circuit, a first unidirectional semiconductor switch operative to generate a second conduction path from the first positive terminal of the first power conversion circuit to the second positive terminal of the second power conversion circuit, a second unidirectional semiconductor switch operative to generate a third conduction path from the first negative terminal of the first power conversion circuit to the second negative terminal of the second power conversion circuit, a first low-pass filter, a second low-pass filter, a third low-pass filter and a controlling unit. The controlling unit is operative to: issue turn-on signal to the first controllable unidirectional semiconductor switch so that the first power conversion circuit and the second power conversion circuit supply current to the first low-pass filter via the first conduction path, the second low-pass filter and the third low-pass filter; or issue turn-off signal to the first controllable unidirectional semiconductor switch so that the first power conversion circuit and the second power conversion circuit supply currents to the first low-pass filter in parallel via the second conduction path and the second low-pass filter together with the third conduction path and the third low-pass filter. The first low-pass filter can help smooth an output voltage and current in order to achieve a relatively wide linearly constant output power range. By controlling the ratio of series and parallel connection in a switching cycle of the switching frequency by the switching arrangement, both output voltage across the first low-pass filter and current range of the power supply cell can be enlarged smoothly and linearly with the help of the first low-pass filter. In addition, when the first controllable unidirectional semiconductor switch is turned on, the second low-pass filter and the third low-pass filter are electrically coupled in series by the first controllable unidirectional semiconductor switch. Then, the circuit loop impedance is increased to the sum of the second low-pass filter and the third low-pass filter. It follows that the filtering power of the filter circuit which formed by the second low-pass filter and the third low-pass filter is enhanced. In the other word, to achieve the same filtering power as the normal LC filter (no series or parallel connection of the inductors), the proposed solution require less inductance of the inductors. It can reduce the size and cost of the required inductor in the circuit

Description

POWER SUPPLY CELL AND POWER SUPPLY SYSTEM USING THE SAME Technical Field
The invention relates to conversion of DC power input into DC power output, and more particularly to DC to DC power conversion without intermediate conversion into AC power.
Background Art
For reducing cost and power loss and increasing efficiency of a power supply, DC power supply cells are electrically switched between series connection and parallel connection are provided. By the series-parallel configurable switching cell using a relatively low rate of power switching devices, the process of converting can achieve a relatively wide range of voltage output or current output. Consequently, the cost spent on the power supply is reduced. This is particular useful in the technology area of electrical vehicle (EV) charging. The EV charging voltage is getting higher and higher to increase the charging power. For some super EV or bus may need to the charging voltage up to 1000V. Therefore, to cover most of the EVs charging requirement, the charging voltage range now is going to be from 200V to 1000V. To output such a wide range voltage, the traditional topology like single LLC, phase shift topology need to sacrifice its power efficiency a lot because they are operating more far away from its optimal operation point under the wide output voltage range regulation. The conventional solution for extending the output voltage range is to apply the modular series or parallel connection method to two or more isolated/individual power modules (power supply cell) . For example, Patent CN 204 538 972 U discloses a wide range output switching power supply, having power source module connected with switch circuit, and sub power source module connected with end of positive pole, where switch circuit is connected with power supply. By using relay of power switches to change the power modules connecting manner, series or parallel, the output voltage and current range can be enlarged. When the power modules are connected in parallel, the output current of the system is extended to be the sum of all connected power modules. The system voltage is enlarged with series connecting of power modules.
Brief Summary of the Invention
However, the constant output power (CP) range of the conventional system cannot be attained by the switching between series and parallel connection because the conventional power supply system’s maximum output current has a step drop when the connection of the power modules is changed from parallel to series for increasing the voltage.
Therefore, there is a need of providing a power supply cell and a power supply system using the same to broaden the constant output power range by linearly extending the output voltage and current range for wide output range applications.
It is therefore an objective of the invention to provide a power supply cell of a power supply system. The power supply cell includes a first power conversion circuit operative to output a first DC voltage across its first positive terminal and first negative terminal, a second power conversion circuit operative to output a second DC voltage across its second positive terminal and second negative terminal, a first controllable unidirectional semiconductor switch operative to generate a first conduction path from the first positive terminal of the first power conversion circuit to the second negative terminal of the second power  conversion circuit, a first unidirectional semiconductor switch operative to generate a second conduction path from the first positive terminal of the first power conversion circuit to the second positive terminal of the second power conversion circuit, a second unidirectional semiconductor switch operative to generate a third conduction path from the first negative terminal of the first power conversion circuit to the second negative terminal of the second power conversion circuit, a first low-pass filter, a second low-pass filter, a third low-pass filter and a controlling unit. The controlling unit is operative to: issue turn-on signal to the first controllable unidirectional semiconductor switch so that the first power conversion circuit and the second power conversion circuit supply current to the first low-pass filter via the first conduction path, the second low-pass filter and the third low-pass filter; or issue turn-off signal to the first controllable unidirectional semiconductor switch so that the first power conversion circuit and the second power conversion circuit supply currents to the first low-pass filter in parallel via the second conduction path and the second low-pass filter together with the third conduction path and the third low-pass filter.
The first low-pass filter can help smooth an output voltage and current in order to achieve a relatively wide linearly constant output power range. By controlling the ratio of series and parallel connection in a switching cycle of the switching frequency by the switching arrangement, both output voltage across the first low-pass filter and current range of the power supply cell can be enlarged smoothly and linearly with the help of the first low-pass filter. In addition, when the first controllable unidirectional semiconductor switch is turned on, the second low-pass filter and the third low-pass filter are electrically coupled in series by the first controllable unidirectional semiconductor switch. Then, the circuit loop impedance is increased to the sum of the second low-pass filter and the third low-pass filter. It follows that the filtering power of the filter circuit which formed by the second low-pass filter and the third low-pass filter is enhanced. In the other word, to achieve the same filtering power as the normal LC filter (no series or parallel connection of the inductors) , the proposed solution require less inductance of the inductors. It can reduce the size and cost of the required inductor in the circuit.
Preferably, the first low-pass filter includes a first capacitive element inserted between the input port terminals, the second low-pass filter includes a first inductive element and the third low-pass filter includes a second inductive element.
Preferably, the first low-pass filter includes a first capacitive element inserted between the input port terminals.
Preferably, the first low-pass filter further includes output port terminals for supplying a third DC voltage.
According to another objective of present invention, it provides a power supply system. The power supply system includes a first power supply cell, a second power supply cell, a second controllable unidirectional semiconductor switch operative to generate a fourth conduction path from the positive output port terminal of the first power supply cell to the negative output port terminal of the second power supply cell, a fourth unidirectional semiconductor switch operative to generate a fifth conduction path from the positive output port terminal of the first power supply cell to the positive output port terminal of the second power supply cell, a fifth unidirectional semiconductor switch operative to generate a sixth conduction path from the negative output port terminal of the first power supply cell to the negative output port terminal of the second power supply cell, a fourth low-pass filter, a fifth low-pass filter and a sixth low-pass filter and a central controlling unit. The central controlling unit is operative to: issue turn-on signal to the second controllable unidirectional semiconductor switch so that the first power supply cell and the second power supply cell  supply current to the fourth low-pass filter via the fourth conduction path, the fifth low-pass filter and the sixth low-pass filter; or issue turn-off signal to the second controllable unidirectional semiconductor switch so that the first power supply cell and the second power supply cell supply currents to the fourth low-pass filter in parallel via the fifth conduction path and the fifth low-pass filter together with the sixth conduction path and the sixth low-pass filter. The power supply cell can be used as a sub module to from an even wider output voltage and constant power range power supply system.
Brief Description of the Drawings
The subject matter of the invention will be explained in more detail in the following text with reference to preferred exemplary embodiments which are illustrated in the drawings, in which:
Figure 1 is a schematic circuit block diagram illustrating a power supply cell according to an embodiment of the present invention;
Figures 2A and 2B show two operation modes of the apparatus according to an embodiment of present invention;
Figure 3A shows V-I curve according to the power conversion circuit supplying DC voltage;
Figure 3B shows V-I curve according to an exemplified operation of the prior art solution using the power conversion circuits from figure 3A;
Figure 3C shows V-I curve according to an exemplified operation of the solution according to present invention using the power conversion circuits from figure 3A;
Figures 4A and 4B respectively show electrical waveforms involving the components of the power supply cell supplying constant power of 30kW at two output DC voltage levels respectively at 600V and 700V according to present invention; and
Figure 5 is a schematic circuit block diagram illustrating a power supply system using the power supply cell according to an embodiment of the present invention.
The reference symbols used in the drawings, and their meanings, are listed in summary form in the list of reference symbols. In principle, identical parts are provided with the same reference symbols in the figures.
Preferred Embodiments of the Invention
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the present invention as defined by the appended claims. Note, the headings are for organizational purposes only and are not meant to be used to limit or interpret the description or claims. Furthermore, note that the word "may" is used throughout this application in a permissive sense (i.e., having the potential to, being able to) , not a mandatory sense (i.e., must) . " The term "include" , and derivations thereof, mean "including, but not limited to" . The term "connected" means "directly or indirectly connected" , and the term "coupled" means "directly or indirectly connected" .
Figure 1 is a schematic circuit block diagram illustrating a power supply cell according to an embodiment of the present invention. As shown in Figure 1, the power supply cell 1 comprises a first power conversion circuit 10, a second power conversion circuit 11, a first controllable unidirectional semiconductor switch 12, a first unidirectional semiconductor switch 13, a second unidirectional semiconductor switch 14, a first low-pass filter 15, a second low-pass filter 16, a third low-pass filter 17 and a controlling unit 18.
By the first power conversion circuit 10, its input voltage is converted into a first DC voltage V1 behaving like a DC voltage source. The first power conversion circuit 10 comprises a first output positive terminal 100 and a first output negative terminal 101. By the second power conversion circuit 11, its input voltage is converted into a second DC voltage V2 behaving like a DC voltage source. The second power conversion circuit 11 comprises a second output positive terminal 110 and a second output negative terminal 111. For example, if their input voltage are AC voltages, either of the first power conversion circuit 10 and the second power conversion circuit 11 may be an AC to DC power converter using conventional AC to DC power conversion circuit topology, such like an AC to DC power converter with transformer isolation. Alternatively, they can be two separated AC to DC power converters each without transformer isolation but electrically coupled to respective secondary side windings of a transformer and the transformer has primary side winding electrically coupled to the AC power source. Their input AC voltages may be supplied from an AC power source or respectively two AC power sources directly or through one or two AC to AC power converter and converted into AC bus voltages, which in turn is/are electrically supplied to the input terminals of the respective first power conversion circuit 10 and the second power conversion circuit 11. As an alternatively, if their input voltage are DC voltages, either of the first power conversion circuit 10 and the second power conversion circuit 11 may be a DC to DC power converter using conventional DC to DC power conversion circuit topology, such like a DC to DC power converter with transformer isolation. Alternatively, they can be two separated DC to DC power converters each without transformer isolation but their input sides are electrically isolated. Their input DC voltages may be supplied from a DC power source or respectively two DC power sources directly or through one or two DC to DC power converter and converted into DC bus voltages, which in turn is/are electrically supplied to the input terminals of the respective first power conversion circuit 10 and the second power conversion circuit 11. The power converter circuit being electrically coupled to either an AC power source or a DC power source, and convert the AC voltage or the DC voltage into the AC or DC bus voltage.
The first controllable unidirectional semiconductor switch 12 is operative to generate a first conduction path P1 from the first output positive terminal 100 of the first power conversion circuit 10 to the second output negative terminal 111 of the second power conversion circuit 11. For example, the first controllable unidirectional semiconductor switch 12 may be power MOSFET or IGBT, whose state is dependent on not only its external power circuit, but also the signal on its driving terminal (this terminal is known as the gate or base) . Where MOSFET is used, its drain and source are respectively electrically coupled to the first output positive terminal 100 of the first power conversion circuit 10 to the second output negative terminal 111 of the second power conversion circuit 11; where IGBT is used, its collector and emitter are respectively electrically coupled to the first output positive terminal 100 of the first power conversion circuit 10 to the second output negative terminal 111 of the second power conversion circuit 11. The controlling unit 18 may issue turn-on signal or turn-off signal to the first controllable unidirectional semiconductor switch 12.
The first unidirectional semiconductor switch 13 is operative to generate a second conduction path P2 from the first output positive terminal 100 of the first power conversion  circuit 10 to the second output positive terminal 110 of the second power conversion circuit 11. For example, the first unidirectional semiconductor switch 13 may be power diode, body diode of power MOSFET, or a freewheeling diode of IGBT, state is completely dependent on the external power circuit to which it is connected. Forward voltage conducts the first unidirectional semiconductor switch 13, while reverse voltage blocks it. Where a power diode is used, its anode and cathode are respectively electrically coupled to the first output positive terminal 100 of the first power conversion circuit 10 and the second output positive terminal 110 of the second power conversion circuit 11. Where body diode of power MOSFET or a freewheeling diode of IGBT is used, its anode and cathode are respectively electrically coupled to the first output positive terminal 100 of the first power conversion circuit 10 and the second output positive terminal 110 of the second power conversion circuit 11, as well.
The second unidirectional semiconductor switch 14 is operative to generate a third conduction path P3 from the first output negative terminal 101 of the first power conversion circuit 10 to the second output negative terminal 111 of the second power conversion circuit 11. For example, the second unidirectional semiconductor switch 14 may be power diode, body diode of power MOSFET, or a freewheeling diode of IGBT, state is completely dependent on the external power circuit to which it is connected. Forward voltage conducts the second unidirectional semiconductor switch 14, while reverse voltage blocks it. Where a power diode is used, its anode and cathode are respectively electrically coupled to the first output negative terminal 101 of the first power conversion circuit 10 to the second output negative terminal 111 of the second power conversion circuit 11. Where body diode of power MOSFET or a freewheeling diode of IGBT is used, its anode and cathode are respectively electrically coupled to the first output negative terminal 101 of the first power conversion circuit 10 and the second output negative terminal 111 of the second power conversion circuit 11, as well.
The first low-pass filter 15 has input port terminals for receiving the current supplied from the first power conversion circuit 10 and the second power conversion circuit 11. The first low-pass filter 15 is operative to pass signals with a frequency lower than a selected cut-off frequency and attenuates signals with frequencies higher than the cut-off frequency. The cut-off frequency may be set based on the requirement of the quality for the DC voltage output. For example, the first low-pass filter 15 may be LC filter and LCL filter. In this embodiment, it uses an LC filter, having a first capacitive element 150 inserted between its input port terminals. The first low-pass filter 15 may further include an output port for supplying a third DC voltage V3 across a positive output port terminal and a negative output port terminal.
The second low-pass filer 16 and output side of the first power conversion circuit 10 are electrically coupled in series. The first unidirectional semiconductor switch 13 is electrically coupled to the series-coupled second low-pass filer 16 and first power conversion circuit 10 in series at a first coupling point. The first coupling point is electrically coupled to one terminal of the first controllable unidirectional semiconductor switch 12. The series-coupling of the first unidirectional semiconductor switch 13, the second low-pass filter 16 and the first power conversion circuit 10 is electrically coupled across the input port terminals of the first low-pass filter 15.
In this embodiment, the second low-pass filter 16 has input port terminal for receiving the current supplied from the first power conversion circuit 10. The second low-pass filter 16 is operative to pass signals with a frequency lower than a selected cut-off frequency and attenuates signals with frequencies higher than the cut-off frequency. The cut-off frequency may be set based on the requirement of the quality for the DC voltage output. For example, the second low-pass filter 16 may be L filter, having a first inductive element between its  input port terminal and output port terminal. The input terminal of the second low-pass filter 16 is electrically coupled to the first output positive terminal 100 of the first power conversion circuit 10, the output terminal of the second low-pass filter 16 is electrically coupled to anode of the first unidirectional semiconductor switch 13 (power diode) . The first coupling point is electrically coupled to collector/drain of the first controllable unidirectional semiconductor switch 12 (IGBT/Power MOSFET) . The cathode of the first unidirectional semiconductor switch 13 and the first output negative terminal 101 of the first power conversion circuit 10 are respectively electrically coupled to input port terminals of the first low-pass filter 15. As an alternative, for the series-coupled second low-pass filer 16 and first power conversion circuit 10, they can be switched around so that the first output positive terminal 100 of the first power conversion circuit 10 is electrically to the first coupling joint point, the first output negative terminal 101 of the first power conversion circuit 10 is electrically coupled to one terminal of the second low-pass filter 16, and the other terminal of the second low-pass filter 16 is electrically coupled to one of the input port terminals of the first low-pass filter 15.
The third low-pass filer 17 and output side of the second power conversion circuit 11 are electrically coupled in series. The second unidirectional semiconductor switch 14 is electrically coupled to the series-coupled third low-pass filer 17 and second power conversion circuit 11 in series at a second coupling point. The second coupling point is electrically coupled to another terminal of the first controllable unidirectional semiconductor switch 12. The series-coupling of the second unidirectional semiconductor switch 14, the third low-pass filter 17 and the second power conversion circuit 11 is electrically coupled across the input port terminals of the first low-pass filter 15.
In this embodiment, the third low-pass filter 17 has input port terminal for receiving the current supplied from the second power conversion circuit 11. The third low-pass filter 17 is operative to pass signals with a frequency lower than a selected cut-off frequency and attenuates signals with frequencies higher than the cut-off frequency. The cut-off frequency may be set based on the requirement of the quality for the DC voltage output. For example, the third low-pass filter 17 may be L filter, having a first inductive element between its input port terminal and output port terminal. The input port terminal of the third low-pass filter 17 is electrically coupled to the second output positive terminal 110 of the second power conversion circuit 11. The second coupling point is electrically coupled to emitter/source of the first controllable unidirectional semiconductor switch 12 (IGBT/Power MOSFET) , the second output negative terminal 111 of the second power conversion circuit 11 and cathode of the second unidirectional semiconductor switch 14 (Power Diode) . The output terminal of the third low-pass filter 17 and the anode of the second unidirectional semiconductor switch 14 are respectively electrically coupled to input port terminals of the first low-pass filter 15. As an alternative, for the series-coupled third low-pass filer 17 and second power conversion circuit 11, they can be switched around so that the second output positive terminal 110 of the second power conversion circuit 11 is electrically to one of the input port terminals of the first low-pass filter 15 and one terminal of the third low-pass filter 17 is electrically coupled to the second coupling point.
By issuing the turn-on signal to the first controllable unidirectional semiconductor switch 12, the controlling unit 18 may control the first controllable unidirectional semiconductor switch 12 so that the first power conversion circuit 10 and the second power conversion circuit 11 supply current to the first low-pass filter 15 via the first conduction path P1, the second low-pass filter 16 and the third low-pass filter 17. By issuing the turn-off signal to the first controllable unidirectional semiconductor switch 12, the controlling unit 18 may control the first controllable unidirectional semiconductor switch 12 so that the first power conversion  circuit 10 and the second power conversion circuit 11 supply currents to the first low-pass filter 15 in parallel via the second conduction path P2 and the second low-pass filter 16 together with the third conduction path P3 and the third low-pass filter 17.
Figures 2A and 2B show two operation modes of the apparatus according to an embodiment of present invention. According to the first DC voltage V1 and the second DC voltage V2, the controlling unit 18 issues control signal PWM to the first controllable unidirectional semiconductor switch 12. Preferably, the controlling unit 18 is further operative to issue control signal to the first power conversion circuit 10 and the second power conversion circuit 11 so that the first DC voltage V1 is substantially equal to the second DC voltage V2. For example, the magnitudes of the first DC voltage V1 and the second DC voltage V2 are regulated equal to V. As shown in figure 2A, when the first controllable unidirectional semiconductor switch 12 is turned on, the first unidirectional semiconductor switch 13 and the second unidirectional semiconductor switch 14 are OFF due to reverse bias, then the outputs of the first power conversion circuit 10 and the second power conversion circuit 11 are connected in series by the first controllable unidirectional semiconductor switch 12. As shown in figure 2B, when the first controllable unidirectional semiconductor switch 12 is turned off, the outputs of the first power conversion circuit 10 and the second power conversion circuit 11 are connected in parallel through the forward biased first unidirectional semiconductor switch 13 and the second unidirectional semiconductor switch 14. By switching the first controllable unidirectional semiconductor switch 12 between ON and OFF with a ratio (PWM method) , the apparatus 1 is able to regulate the third DC voltage V3 between V to 2V with the help of the first low-pass filter 15. A power conversion circuit to output a DC voltage has to be used here because PWM modulation requires power input from DC voltage source. The first low-pass filter 15 works to smooth the third DC voltage V3 as an output voltage and current in order to achieve a relatively wide linearly constant output power range. By controlling the ratio of series and parallel connection in a switching cycle of the switching frequency by the switching arrangement, both output voltage (the third DC voltage V3 across the first low-pass filter 15 and current range of the power supply cell can be enlarged smoothly and linearly with the help of the first low-pass filter 15. Besides, there is no modification required for the first power conversion circuit 10 and the second power conversion circuit 11. In addition, when the first controllable unidirectional semiconductor switch 12 is turned on, the second low-pass filter 16 and the third low-pass filter 17 are electrically coupled in series by the first controllable unidirectional semiconductor switch 12. Then, the circuit loop impedance is increased to the sum of the second low-pass filter 16 and the third low-pass filter 17. It follows that the filtering power of the filter circuit which formed by the second low-pass filter 16 and the third low-pass filter 17 is enhanced. In the other word, to achieve the same filtering power as the normal LC filter (no series or parallel connection of the inductors) , the proposed solution require less inductance of the inductors. It can reduce the size and cost of the required inductor in the circuit.
Figure 3A shows V-I curve according to the power conversion circuit supplying DC voltage. It is assumed that the two power conversion circuits each has the parameters and both of them operate outputting DC output voltages with substantially the same amplitude:
power capacity: 15kW;
output voltage range: 200V to 500V;
maximum output current 40A.
Its output voltage can be adjusted continuously in the range from 200 V to 500 V, while the maximum output power is 15 kW and the maximum output current is 40 A.
Figure 3B shows V-I curve according to an exemplified operation of the prior art solution using the power conversion circuits from figure 3A. According to the prior art, the two power conversion circuits supplying two DC output voltages switched between series-connection and paralleling-connection but their supplying powers feed to the load without passing through a low-pass filter having an inductive element. Its output voltage can be adjusted continuously in the range from 200 V to 1000 V while the maximum output power is rated at 30 kW (15kW *2) and the maximum current is rated at 80 A (40 A *2) .
In order the output the DC voltage at a maximum amplitude, 1000 V, the two power conversion circuits have to be electrically coupled in series by appropriately setting the ON and OFF mode of the switching mechanism. For example, if the load resistance is reduced, while the output voltage reference is still set to 1000 V, the operating point can be changed from points A1 (1000 V, 0 A) to B1 (1000 V, 30 A) . If the load resistance continues to decrease, the maximum output power of 30 kW and the maximum current of 40 A have to be complied with, since there is no low-pass filter having an inductive element inserted between the output sides of the power conversion circuits and the load, and thus the operating point should be changed from points B1 (1000 V, 30 A) to C1 (750 V, 40 A) . If the load resistance keeps decreasing, the maximum current for each power conversion circuit, 40 A, imposes limitation for moving the operating point in the direction along the increase of current. Thus, the electrical coupling relationship has to be changed from series-connection to paralleling-connection, and the operating point is changed from points C1 (750 V, 40 A) to D1 (500 V, 40 A) . Starting from the operating point D1 (500 V, 40 A) , with the decrease of the load resistance, the operating point can be changed from D1 (500 V, 40 A) to E1 (500 V, 60 A) . When reaching E1 (500 V, 60 A) and with the decrease of the load resistance, the operating point can continue to move along the curve along the current increase direction with power output constantly at the maximum output power of 30 kW, here the operating point can move from E1 (500 V, 60 A) to F1 (375 V, 80 A) . When reaching F1 (375 V, 80 A) , if the load resistance increases, the operating point can shift from F1 (375 V, 80 A) to G1 (200 V, 80 A) , and further from G1 (200 V, 80 A) to H1 (200 V, 0 A) along the direction of current decrease. The skilled person shall understand that the operating point moving direction can be changed where for each of the potions of the V-I curve their situations are changed, for example the load resistance changes from decrease to increase, or the electrical coupling relationship changes from paralleling-connection to series-connection. Besides, the operating point can reach any of the points enclosed by the I-V curve by changing the output DC voltage/output current from the power conversion circuit.
In contrast, figure 3C shows V-I curve according to an exemplified operation of the solution according to present invention using the power conversion circuits from figure 3A. According to the embodiment of present invention as shown in figure 1, the two power conversion circuits 10, 11 supplying two DC output voltages are switched between series-connection and paralleling-connection with their supplying powers fed to the load passing through the second low-pass filter 16 having a first inductive element 160 and the third low-pass filter having a second inductive element 170. The key principle is the tendency of the inductive element to resist changes in current by creating and destroying a magnetic field. The electrical coupling relationship between the power conversion circuits 10, 11 can be switched between series-connection and paralleling connection by consistently applying control signal of PWM to the control terminal of the controllable unidirectional semiconductor switch 12. When the electrical coupling relationship is changed from paralleling connection to series connection, current flows through the first inductive element 160 and the second inductive element 170 in clockwise direction and the inductive elements 160, 170 stores some energy by generating a magnetic field. Polarity of the lower sides of  the inductors 160, 170 is positive. Where the electrical coupling relationship is changed from series connection to paralleling connection, a reversed voltage will be applied across the inductive elements 160, 170. The magnetic field previously created will be destroyed to maintain the current towards the load. Thus the polarity will be reversed (means lower sides of inductors will be negative now) . As a result, the inductive elements 160, 170 each will be in series causing a higher voltage to charge the capacitive element 151 of the first low-pass filter 15.
If the controllable unidirectional semiconductor switch 12 is cycled fast enough, like by PWM, the inductive element 150 will not discharge fully in between charging stages, and the load will always see a voltage greater than that of the power conversion circuit 10, 11 when the switch 12 is opened. Also while the switch 12 is closed, the capacitive element 151 in parallel with the load is charged to the combined voltage of the output voltage of the power conversion circuit 10, 11 and the voltage induced across the inductive element 150. When the switch is then open, the capacitive element 151 is therefore able to provide the voltage and energy to the load. During this time, the blocking  diode  13, 14 prevents the capacitive element 151 from discharging through the switch 12. The switch must of course be opened again fast enough to prevent the capacitive element 151 from discharging too much.
In order to maintain the output DC voltage at a maximum amplitude, 1000 V, the two power conversion circuits have to be electrically coupled in series by appropriately setting the ON and OFF mode of the switching mechanism. For example, if the load resistance is reduced, while the output voltage reference is still set to 1000 V, the operating point can be changed from points A2 (1000 V, 0 A) to B2 (1000 V, 30 A) .
If the load resistance continues to decrease, the maximum output power of 30 kW and the maximum current of 40 A have to be complied with. Since there is a low-pass filter 15 having an inductive element 150 and the capacitive element 151 inserted between the output sides of the power conversion circuits 10, 11 and the load, the operating point can be smoothly changed from points B2 (1000 V, 30 A) to F2 (375 V, 80 A) with frequent switching the electrically coupling relationship between the power conversion circuits 10, 11 by consistently applying control signal of PWM to the control terminal of the controllable unidirectional semiconductor switch 12. The skilled person should understand that the switching frequency of PWM is relatively high, and its duty ratio varies from 0 to 1, which meets the technical requirement as discussed above. When reaching F2 (375 V, 80 A) , if the load resistance increases, the operating point can shift from F2 (375 V, 80 A) to G2 (200 V, 80 A) , and further from G2 (200 V, 80 A) to H2 (200 V, 0 A) along the direction of current decrease. The skilled person shall understand that the operating point moving direction can be changed where for each of the potions of the V-I curve their situations are changed, for example the load resistance changes from decrease to increase, or the electrical coupling relationship changes from paralleling-connection to series-connection. Besides, the operating point can reach any of the points enclosed by the I-V curve by changing the output DC voltage/output current from the power conversion circuit.
By comparing the prior art solution and that according to present invention, it can be observed that with the increase of the output voltage, there is an abrupt drop of output current from 60 A to 40 A where the output voltage reaches 500 V, and the output voltage is maintained at 500 V until the output current increases to 60 A according to figure 3B. In contrast according to figure 3C, because the first low-pass filter 15 works to smooth the output voltage (the third DC voltage V3, as a result of PWM modulation of the first DC voltage V1 and the second DC voltage V2) and output current according to present invention, the portion of the output V-I curve between the output currents at 40 A and 60 A becomes  more smooth and thus it can be observed that a relatively constant output power can be achieved. By using the power supply cell according to present invention, it can be observed that it is able to provide continuous constant full power (CP) , 30kW from 375V to 1000V output. In contrast, if the conventional is used, it losses the constant full power output at the range from 500V to 750V.
Figures 4A and 4B respectively show electrical waveforms involving the components of the power supply cell supplying constant power of 30kW at two output DC voltage levels respectively at 600V and 700V according to present invention. As shown in figures 4A and 4B, the output voltage from either of the two power conversion circuits of the power supply cell has to be DC voltage. Otherwise, if the power conversion circuit does not behave like a DC voltage source, but for example a DC current source. Besides, by varying the ratio of the PWM signal applied to the first controllable unidirectional semiconductor switch 12, the output voltage of the power supply cell can be controlled with the constant power output. For example, for the constant output power, the PWM signal at ratio of 0.5 gets the output voltage at 600V, and the PWM signal at ratio of 0.75 gets the output voltage at 700 V.
Moreover, the apparatus 1 has a third unidirectional semiconductor switch 19 electrically connected with the first controllable unidirectional semiconductor switch 12 in anti-parallel. The third unidirectional semiconductor switch 19 can be a power diode or a body diode of a power MOSFET of the first controllable unidirectional semiconductor switch 12.
Figure 5 is a schematic circuit block diagram illustrating a power supply system using the power supply cell according to an embodiment of the present invention. The power supply cell can be used as a sub module to from an even wider output voltage and constant power range power supply system. As shown in figure 5, the power supply system 4 has a similar topology to the power supply cell according to figure 1 except that the first power conversion circuit 10 and the second power conversion circuit 11 of the power supply cell 1 are respectively replaced by two power supply cells each using the topology according to figure 1. The power supply system 4 includes a first power supply cell 40 and a second power supply cell 41. Either of the two cells can use the one according to figure 1. The power supply system 4 further includes a second controllable unidirectional semiconductor switch 42 operative to generate a fourth conduction path P4 from the positive output port terminal of the first power supply cell 40 to the negative output port terminal of the second power supply cell 41, a fourth unidirectional semiconductor switch 43 operative to generate a fifth conduction path P5 from the positive output port terminal of the first power supply cell 40 to the positive output port terminal of the second power supply cell 41, and a fifth unidirectional semiconductor switch 44 operative to generate a sixth conduction path P6 from the negative output port terminal of the first power supply cell 40 to the negative output port terminal of the second power supply cell 41, a fourth low-pass filter 45, a fifth low-pass filter 46, a sixth low-pass filter 47, and a central controlling unit 48. The central controlling unit 48 is operative to: issue turn-on signal to the second controllable unidirectional semiconductor switch so that the first power supply cell and the second power supply cell supply current to the fourth low-pass filter via the fourth conduction path, the fifth low-pass filter and the sixth low-pass filter; or issue turn-off signal to the second controllable unidirectional semiconductor switch so that the first power supply cell and the second power supply cell supply currents to the fourth low-pass filter in parallel via the fifth conduction path and the fifth low-pass filter together with the sixth conduction path and the sixth low-pass filter. By using the power supply system, it is able to output the voltage from V to 4V by changing the status of the switches with constant output power.
Moreover, the power supply system 4 further includes a sixth unidirectional semiconductor switch 49 electrically connected with the second controllable unidirectional semiconductor  switch 42 in anti-parallel.
Moreover, the central controlling unit is further operative to issue control signal to the first power supply cell and the second power supply cell so that DC output voltage from the first power supply cell is substantially equal to DC output voltage from the second power supply cell.
Though the present invention has been described on the basis of some preferred embodiments, those skilled in the art should appreciate that those embodiments should by no way limit the scope of the present invention. Without departing from the spirit and concept of the present invention, any variations and modifications to the embodiments should be within the apprehension of those with ordinary knowledge and skills in the art, and therefore fall in the scope of the present invention which is defined by the accompanied claims.

Claims (12)

  1. A power supply cell of a power supply system, including:
    a first low-pass filter, a second low-pass filter and a third low-pass filter;
    a first power conversion circuit operative to output a first DC voltage across its first positive terminal and first negative terminal;
    a second power conversion circuit operative to output a second DC voltage across its second positive terminal and second negative terminal;
    a first controllable unidirectional semiconductor switch operative to generate a first conduction path from the first positive terminal of the first power conversion circuit to the second negative terminal of the second power conversion circuit;
    a first unidirectional semiconductor switch operative to generate a second conduction path from the first positive terminal of the first power conversion circuit to the second positive terminal of the second power conversion circuit; and
    a second unidirectional semiconductor switch operative to generate a third conduction path from the first negative terminal of the first power conversion circuit to the second negative terminal of the second power conversion circuit;
    a controlling unit operative to:
    issue turn-on signal to the first controllable unidirectional semiconductor switch so that the first power conversion circuit and the second power conversion circuit supply current to the first low-pass filter via the first conduction path, the second low-pass filter and the third low-pass filter; or
    issue turn-off signal to the first controllable unidirectional semiconductor switch so that the first power conversion circuit and the second power conversion circuit supply currents to the first low-pass filter in parallel via the second conduction path and the second low-pass filter together with the third conduction path and the third low-pass filter.
  2. The power supply cell according to claim 1, wherein:
    the first low-pass filter has input port terminals for receiving the current supplied from the first power conversion circuit and the second power conversion circuit.
  3. The power supply cell according to claim 2, wherein:
    the second low-pass filer and output side of the first power conversion circuit are electrically coupled in series;
    the first unidirectional semiconductor switch is electrically coupled to the series-coupled second low-pass filer and first power conversion circuit in series at a first coupling point;
    the first coupling point is electrically coupled to one terminal of the first controllable unidirectional semiconductor switch; and
    the series-coupling of the first unidirectional semiconductor switch, the second low-pass filter and the first power conversion circuit is electrically coupled across the input port terminals of the first low-pass filter.
  4. The power supply cell according to claim 2 or 3, wherein:
    the third low-pass filer and output side of the second power conversion circuit are electrically coupled in series;
    the second unidirectional semiconductor switch is electrically coupled to the series-coupled third low-pass filer and second power conversion circuit in series at a second coupling point;
    the second coupling point is electrically coupled to another terminal of the first controllable unidirectional semiconductor switch; and
    the series-coupling of the third low-pass filter, the second power conversion circuit and the second unidirectional semiconductor switch is electrically coupled the input port terminals of the first low-pass filter.
  5. The power supply cell according to any of the preceding claims, wherein:
    the first low-pass filter includes a first capacitive element inserted between the input port terminals.
  6. The power supply cell according to claim 5, wherein:
    the first low-pass filter further includes output port terminals for supplying a third DC voltage.
  7. The power supply cell according to any of the preceding claims, further includes:
    a third unidirectional semiconductor switch electrically connected with the first controllable unidirectional semiconductor switch in anti-parallel.
  8. The power supply cell according to any of the preceding claims, wherein:
    the second low-pass filter includes a first inductive element; and
    the third low-pass filter includes a second inductive element.
  9. The power supply cell according to any of the preceding claims, wherein:
    the controlling unit is further operative to issue control signal to the first power conversion circuit and the second power conversion circuit so that the first DC voltage is substantially equal to the second DC voltage
  10. A power supply system, including:
    a first power supply cell according to claim 6;
    a second power supply cell according to claim 6;
    a second controllable unidirectional semiconductor switch operative to generate a fourth conduction path from the positive output port terminal of the first power supply cell to the negative output port terminal of the second power supply cell;
    a fourth unidirectional semiconductor switch operative to generate a fifth conduction path from the positive output port terminal of the first power supply cell to the positive output port terminal of the second power supply cell;
    a fifth unidirectional semiconductor switch operative to generate a sixth conduction path from the negative output port terminal of the first power supply cell to the negative output port terminal of the second power supply cell;
    a fourth low-pass filter, a fifth low-pass filter and a sixth low-pass filter; and
    a central controlling unit operative to:
    issue turn-on signal to the second controllable unidirectional semiconductor switch so that the first power supply cell and the second power supply cell supply current to the fourth low-pass filter via the fourth conduction path, the fifth low-pass filter and the sixth low-pass filter; or
    issue turn-off signal to the second controllable unidirectional semiconductor switch so that the first power supply cell and the second power supply cell supply currents to the fourth low-pass filter in parallel via the fifth conduction path and the fifth low-pass filter together with the sixth conduction path and the sixth low-pass filter.
  11. The power supply system according to claim 10, further includes
    a sixth unidirectional semiconductor switch electrically connected with the second controllable unidirectional semiconductor switch in anti-parallel.
  12. The power supply system according to any of claims 6 to 8, wherein:
    the central controlling unit is further operative to issue control signal to the first power supply cell and the second power supply cell so that DC output voltage from the first power supply cell is substantially equal to DC output voltage from the second power supply cell.
PCT/CN2018/107986 2018-09-27 2018-09-27 Power supply cell and power supply system using the same WO2020061908A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880097721.5A CN112715000A (en) 2018-09-27 2018-09-27 Power supply unit and power supply system using the same
PCT/CN2018/107986 WO2020061908A1 (en) 2018-09-27 2018-09-27 Power supply cell and power supply system using the same
EP18935408.7A EP3857695A4 (en) 2018-09-27 2018-09-27 Power supply cell and power supply system using the same
US17/212,656 US20210211051A1 (en) 2018-09-27 2021-03-25 Power supply cell and power supply system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/107986 WO2020061908A1 (en) 2018-09-27 2018-09-27 Power supply cell and power supply system using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/212,656 Continuation US20210211051A1 (en) 2018-09-27 2021-03-25 Power supply cell and power supply system using the same

Publications (1)

Publication Number Publication Date
WO2020061908A1 true WO2020061908A1 (en) 2020-04-02

Family

ID=69949492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/107986 WO2020061908A1 (en) 2018-09-27 2018-09-27 Power supply cell and power supply system using the same

Country Status (4)

Country Link
US (1) US20210211051A1 (en)
EP (1) EP3857695A4 (en)
CN (1) CN112715000A (en)
WO (1) WO2020061908A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112753159A (en) * 2018-09-27 2021-05-04 Abb瑞士股份有限公司 Power supply unit and power supply system using the same
CN114285136B (en) * 2021-12-29 2024-02-06 英华达(上海)科技有限公司 Dual-battery power management system and battery controller and control method thereof

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0594908A1 (en) 1991-10-29 1994-05-04 Tai-Her Yang Multiple-voltage control circuit of battery or multiple independent DC power
US5483433A (en) 1992-08-28 1996-01-09 Yang; Tai-Her Voltage control circuit for a multiple stage DC power supply, and applications thereof
US6140799A (en) 1999-06-29 2000-10-31 Thomasson; Mark J. Switched battery-bank assembly for providing incremental voltage control
US20080054870A1 (en) 2006-09-05 2008-03-06 Nissan Motor Co., Ltd. Power supply system and power supply system control method
US20080174274A1 (en) 2007-01-18 2008-07-24 Nissan Motor Co., Ltd. Battery unit
US20080208272A1 (en) 2004-12-08 2008-08-28 Koninklijke Philips Electronics N.V. Dual Battery Arrangement for an Automatic External Defibrillator
US20100013312A1 (en) 2008-07-16 2010-01-21 International Business Machines Corporation Dc ups with auto-ranging backup voltage capability
WO2012063385A1 (en) 2010-11-12 2012-05-18 Three Eye Co., Ltd. Motor-driving apparatus capable of charging vehicle battery
US20120187755A1 (en) * 2011-01-21 2012-07-26 Honda Motor Co., Ltd. Power unit for electric vehicle
US20120217811A1 (en) * 2011-02-25 2012-08-30 Vasco Data Security, Inc. Parallel-serial battery switching and voltage regulating circuit and method for strong authentication tokens
US20130342151A1 (en) 2012-06-20 2013-12-26 Honda Motor Co., Ltd Electric power supply apparatus
US20140265605A1 (en) * 2011-10-24 2014-09-18 Toyota Jidosha Kabushiki Kaisha Control device and control method for power converter
CN204538972U (en) 2015-02-05 2015-08-05 深圳奥特迅电力设备股份有限公司 A kind of Switching Power Supply of wide range output
US20170117804A1 (en) * 2014-03-18 2017-04-27 Toyota Jidosha Kabushiki Kaisha Electrical source system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3173301D1 (en) * 1980-08-06 1986-02-06 Terry Roy Jackson Electrical power supply having a variable output
US10944329B2 (en) * 2018-01-15 2021-03-09 Queen's University At Kingston Power converter topologies and control methods for wide input and output voltage ranges
CN112753159A (en) * 2018-09-27 2021-05-04 Abb瑞士股份有限公司 Power supply unit and power supply system using the same

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0594908A1 (en) 1991-10-29 1994-05-04 Tai-Her Yang Multiple-voltage control circuit of battery or multiple independent DC power
US5483433A (en) 1992-08-28 1996-01-09 Yang; Tai-Her Voltage control circuit for a multiple stage DC power supply, and applications thereof
US6140799A (en) 1999-06-29 2000-10-31 Thomasson; Mark J. Switched battery-bank assembly for providing incremental voltage control
US20080208272A1 (en) 2004-12-08 2008-08-28 Koninklijke Philips Electronics N.V. Dual Battery Arrangement for an Automatic External Defibrillator
US20080054870A1 (en) 2006-09-05 2008-03-06 Nissan Motor Co., Ltd. Power supply system and power supply system control method
US20080174274A1 (en) 2007-01-18 2008-07-24 Nissan Motor Co., Ltd. Battery unit
US20100013312A1 (en) 2008-07-16 2010-01-21 International Business Machines Corporation Dc ups with auto-ranging backup voltage capability
WO2012063385A1 (en) 2010-11-12 2012-05-18 Three Eye Co., Ltd. Motor-driving apparatus capable of charging vehicle battery
US20120187755A1 (en) * 2011-01-21 2012-07-26 Honda Motor Co., Ltd. Power unit for electric vehicle
US20120217811A1 (en) * 2011-02-25 2012-08-30 Vasco Data Security, Inc. Parallel-serial battery switching and voltage regulating circuit and method for strong authentication tokens
US20140265605A1 (en) * 2011-10-24 2014-09-18 Toyota Jidosha Kabushiki Kaisha Control device and control method for power converter
US20130342151A1 (en) 2012-06-20 2013-12-26 Honda Motor Co., Ltd Electric power supply apparatus
US20170117804A1 (en) * 2014-03-18 2017-04-27 Toyota Jidosha Kabushiki Kaisha Electrical source system
CN204538972U (en) 2015-02-05 2015-08-05 深圳奥特迅电力设备股份有限公司 A kind of Switching Power Supply of wide range output

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3857695A4

Also Published As

Publication number Publication date
CN112715000A (en) 2021-04-27
EP3857695A1 (en) 2021-08-04
EP3857695A4 (en) 2022-04-27
US20210211051A1 (en) 2021-07-08

Similar Documents

Publication Publication Date Title
US9431824B2 (en) DC-DC converter comprising DC power sources to be connected in parallel or in series
WO2018141092A1 (en) Dc-dc converter and control method
US9438115B2 (en) Power supply system
US9197135B2 (en) Bi-directional DC/DC converter with frequency control change-over
US20220140651A1 (en) Circuit for Battery Charging and System Supply, Combining Capacitive and Inductive Charging
US20210211051A1 (en) Power supply cell and power supply system using the same
US20100164435A1 (en) MultiChannel DC Controller Operating Independently of Output Power in Critical Conduction Mode
KR101314903B1 (en) Bidirectional dc/dc converter
US20230040992A1 (en) Circuits and methods for controlling bidirectional cllc converters
US9906148B2 (en) Method for controlling a full-bridge DC-dc converter
JP7446260B2 (en) power converter
Bahrami et al. Analysis, design, and implementation of DC–DC IBBC-DAHB converter with voltage matching to improve efficiency
US11990749B2 (en) Power supply cell and power supply system using the same
CN115833575A (en) Energy storage converter, control method of balancing circuit and energy storage system
US20230299669A1 (en) Resonant switched capacitor direct current/direct current converter and power system
Oh et al. A 3-bridge LLC resonant converter operating with a wide output voltage control range using morphing control for mode transitions
CN114665720A (en) Bidirectional series resonant converter and improved intermittent sinusoidal modulation method thereof
Lu et al. Switch-Multiplexed Quasi-two-stage Isolated Bidirectional Buck-DAB Converter with full load ZVS Range
JP2023502975A (en) direct power converter
Gupta et al. Phase-shedding control scheme for wide voltage range operation of extended-duty-ratio boost converter
Gu et al. Hybrid PWM Control of Bidirectional DC/DC Resonant Converter for Low-Current-Ripple and Wide-Voltage-Gain Application
EP4336718A1 (en) Switching converter using partial power processing
EP3930164A1 (en) Direct-current voltage conversion circuit and switching power source device
McNeill et al. Fundamental Comparison of Efficiencies of Voltage Source Converter Phase-Leg Configurations with Super-Junction MOSFETs
CN104795998A (en) DC/DC converter, and controller thereof and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018935408

Country of ref document: EP

Effective date: 20210428