WO2020057498A1 - 多频天线和通信设备 - Google Patents

多频天线和通信设备 Download PDF

Info

Publication number
WO2020057498A1
WO2020057498A1 PCT/CN2019/106174 CN2019106174W WO2020057498A1 WO 2020057498 A1 WO2020057498 A1 WO 2020057498A1 CN 2019106174 W CN2019106174 W CN 2019106174W WO 2020057498 A1 WO2020057498 A1 WO 2020057498A1
Authority
WO
WIPO (PCT)
Prior art keywords
coupling
coupling branch
frequency
branch
balun
Prior art date
Application number
PCT/CN2019/106174
Other languages
English (en)
French (fr)
Inventor
白雪
王乃彪
谢国庆
肖伟宏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19862533.7A priority Critical patent/EP3843211B1/en
Publication of WO2020057498A1 publication Critical patent/WO2020057498A1/zh
Priority to US17/206,534 priority patent/US11563272B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/108Combination of a dipole with a plane reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/26Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/42Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more imbricated arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/45Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more feeds in association with a common reflecting, diffracting or refracting device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/48Combinations of two or more dipole type antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a multi-frequency antenna and a communication device.
  • a multi-frequency antenna is an antenna with multiple working frequency bands, including a reflection plate, at least one high-frequency unit, and at least one low-frequency unit, wherein each high-frequency unit includes a balun structure and a radiating arm structure.
  • the radiating arm structure is two symmetrically arranged radiating arms, and the ends of the two radiating arms that are close to each other are electrically connected to the balun structure respectively, and the radiating arm structure is used to radiate electromagnetic waves outward;
  • the balun structure balance-unbalance, balun
  • It is a transliteration of the English "balanced and unbalanced converter". It is a device used for signal connection to the antenna's radiating arm structure and cable.
  • the distance from the ground end of the balun structure to the connection end of the balun structure and the radiating arm structure, plus the arm length of a radiating arm of the radiating arm structure is a preset length value, and the preset length value is The working frequency band of the high-frequency unit is determined. Once the working frequency band of the high-frequency unit is determined, the preset length value is also a determined value.
  • the preset length value is close to a quarter of the wavelength of the low frequency unit, so that a balun structure of the high frequency unit and a radiating arm of the radiating arm structure can be equivalent to a working frequency close to that of the low frequency unit
  • a monopole antenna with a frequency that is, an antenna with a vertical radiating arm, and the arm length of the radiating arm is equal to a quarter of the wavelength corresponding to its operating frequency.
  • the above-mentioned equivalent monopole antenna will generate a low-frequency induced current under the influence of the electromagnetic wave of the low-frequency unit.
  • the low-frequency induced current causes the monopole antenna to radiate low-frequency electromagnetic waves to the outside.
  • the frequency is approximately equal to the frequency of the electromagnetic wave radiated by the low frequency unit, which causes interference to the signal transmitted by the low frequency unit.
  • embodiments of the present invention provide a multi-frequency antenna and a communication device.
  • the technical solution is as follows:
  • a multi-frequency antenna is provided. As shown in FIG. 1 and with reference to FIG. 2, the multi-frequency antenna includes a reflective plate 1, at least one high-frequency unit 2, and at least one low-frequency unit 3, as shown in FIG. 3, Each high-frequency unit 2 includes a balun structure 21, a coupling structure 22, and a radiating arm structure 23.
  • the balun structure 21 includes two balun substructures 211, the coupling structure 22 includes two coupling substructures 221, and the radiating arm structure 23 includes Two radiating arms 231, where: at least one high-frequency unit 2 and at least one low-frequency unit 3 are mounted on the reflection plate 1; in each high-frequency unit 2, each coupling substructure 221 and a balun substructure 211 are respectively A radiating arm 231 is electrically connected; a coupling substructure 221 is configured to transmit signals with a frequency higher than a preset threshold and block signals with a frequency lower than a preset threshold.
  • the high-frequency unit 2 and the low-frequency unit 3 can also be called dipoles.
  • the dipole antenna is also composed of a pair of symmetrically placed radiating arms. Antenna.
  • two high-frequency units 2 of a multi-frequency antenna may be arranged on the reflecting plate 1 in a cross manner, and two low-frequency units 3 may also be arranged in a cross-wise manner on each other.
  • the reflection plate 1 can further save the space of the multi-frequency antenna.
  • one high-frequency unit 2 can be used as an example.
  • each high-frequency unit 2 it includes not only the balun structure 21 and the radiating arm structure 23, but also a coupling structure 22 provided on the connection line between the balun structure 21 and the radiating arm structure 23.
  • the coupling structure 22 is used for high transmission frequencies.
  • each coupling substructure 221 is electrically connected to a balun substructure 211 and a radiating arm 231, respectively.
  • the transmission path of the signal may be: after the signal is transmitted to the balun substructure 211 via the feeder, it is then transmitted to the coupling substructure electrically connected to the balun substructure 211 221, when the signal is transmitted to the coupling substructure 221, since the coupling substructure 221 can transmit signals with a frequency higher than a preset threshold and block signals with a frequency lower than the preset threshold, signals with a signal frequency higher than the preset threshold can continue It is transmitted to the radiating arm 231 electrically connected to the coupling substructure 221, and then radiates outward in the form of electromagnetic waves, and the frequency of the emitted electromagnetic waves is higher than a preset threshold.
  • the balun structure 21 of the high-frequency unit 2 and one radiating arm 231 of the radiating arm structure 23 can be equivalent to a monopole antenna with an operating frequency close to the frequency of the low-frequency unit 3, So that the frequency of the electromagnetic wave generated by the equivalent monopole antenna is higher than a preset threshold (the frequency of the electromagnetic wave generated by the low-frequency unit 3 is lower than the preset threshold), and the frequency of the electromagnetic wave generated by the equivalent monopole antenna is avoided.
  • the working frequency band of the low-frequency unit 3 is opened, and further, the above-mentioned equivalent monopole antenna is prevented from causing interference to the signals radiated and transmitted by the low-frequency unit 3, and the normal operation of the low-frequency unit 3 is ensured.
  • the high-frequency unit 2 further includes a substrate 24 that is vertically disposed on the reflective plate 1; two radiating arms 231 are symmetrically disposed on an end of the substrate 24 that is far from the reflective plate 1; Two coupling substructures 221 are symmetrically disposed on the surface of the substrate 24, and two balun substructures 211 of the balun structure 21 are symmetrically disposed on the surface of the substrate 24.
  • the substrate 24 may also be referred to as a balun dielectric board, which is a circuit board for carrying the balun structure 21 and may be fixedly mounted on the reflective plate 1 vertically.
  • the two radiating arms 231 of the radiating arm structure 23 are disposed on one end of the substrate 24 away from the reflecting plate 1.
  • the two radiating arms 231 may be symmetrically or asymmetrically disposed.
  • the symmetrical and asymmetrical settings of 23 are mainly related to the pattern of the multi-frequency antenna.
  • the structures of the two radiating arms 231 may be the same or different, but for a dipole antenna, in general, the structures of the two radiating arms 231 are the same.
  • the specific structure of the radiation arm 231 may be a wire or a metal sheet structure.
  • the radiation arm 231 may be a straight wire, a quadrangular frame composed of a wire, or a quadrangular metal sheet.
  • two radiating arms 231 are symmetrically arranged in the following example.
  • the situation of asymmetrical setting is similar, so they will not be described one by one.
  • the two radiating arms 231 are symmetrically arranged, and the axis of symmetry is two radiating arms 231.
  • the central axis between the two is the central axis of the high-frequency unit 2.
  • the symmetry axis in the structure mentioned below is the center between the two radiating arms 231 unless otherwise specified.
  • the axis as shown by the dotted line in FIG. 3, is the central axis of the high-frequency unit 2.
  • the two balun substructures 211 of the balun structure 21 are disposed on the surface of the substrate 24. Based on the symmetrical arrangement of the two radiating arms 231, the two balun substructures 211 can also be symmetrically disposed at On the surface of the substrate 24, the axis of symmetry is the central axis of the high-frequency unit 2.
  • the structures of the two balun substructures 211 may be the same or different, and the shielding function described above may be implemented.
  • the two coupling substructures 221 of the coupling structure 22 are disposed on the surface of the substrate 24.
  • the two coupling substructures 221 can be symmetrically disposed on the substrate 24.
  • the axis of symmetry is the above-mentioned central axis.
  • the coupling substructure 221 has a filtering function, and can transmit signals with a frequency higher than a preset threshold, and block signals with a frequency lower than a preset threshold.
  • each high-frequency unit 2 the base plate 24 is mounted on the reflecting plate 1, and the two radiating arms 231 of the radiating arm structure 23 may be symmetrically disposed at one end of the base plate 24 away from the reflecting plate 1, and the balun structure 21 Both of the two balun substructures 211 and the two coupling substructures 221 of the coupling structure 22 may be symmetrically disposed on the surface of the substrate 24.
  • the central axis of the high-frequency unit 2 divides the high-frequency unit 2 into two sides, which may be recorded as a first side and a second side, a radiating arm 231, a balun substructure 211, and a coupling substructure.
  • the coupling substructure 221 is located on the first side of the high-frequency unit 2, and another radiation arm 231, another balun substructure 211, and another coupling sub-structure 221 are located on the second side of the high-frequency unit 2.
  • the coupling substructure 221 is electrically connected to the balun substructure 211 and the radiation arm 231 on the side, respectively.
  • the coupling substructure 221 includes a first coupling branch 2211 and a second coupling branch 2212 that are coupled.
  • the first coupling branch 2211, the second coupling branch 2212, and the corresponding balun substructure 211 are disposed at On the same surface of the substrate 24; the first coupling branch 2211 is electrically connected to the corresponding balun substructure 211, and the second coupling branch 2212 is electrically connected to the corresponding radiation arm 231.
  • the distance between the first coupling branch 2211 and the second coupling branch 2212 is smaller than a preset value.
  • the spacings at the respective positions of the first coupling branch 2211 and the second coupling branch 2212 are equal and smaller than a preset value.
  • the first coupling branch 2211, the second coupling branch 2212, and the corresponding balun substructure 211 are disposed on the same surface of the substrate 24.
  • the corresponding balun substructure 211 refers to the first coupling branch 2211 and the second coupling branch 2211.
  • the coupling branches 2212 are on the same side of the central axis as the balun substructure 211.
  • the corresponding balun substructure 211 refers to the balun substructure 211 on the same side of the central axis as the first coupling branch 2211;
  • the second The coupling branch 2212 is electrically connected to the corresponding radiation arm 231.
  • the corresponding radiation arm 231 refers to the radiation arm 231 on the same side as the central axis of the second coupling branch 2212.
  • the first coupling branch 2211 and the second coupling branch 2212 each have a split ring structure, and the split ring structure of the first coupling branch 2211 is located outside the split ring structure of the second coupling branch 2212.
  • the first coupling The gap between the split ring structure of the branch 2211 and the split ring structure of the second coupling branch 2212 is smaller than a preset value.
  • the first coupling branch 2211 and the second coupling branch 2212 may be bent to form a circular ring with an opening, or may be formed with an opening.
  • the split ring structure of the first coupling branch and the split ring structure of the second coupling branch have the same opening direction.
  • the opening direction of the first coupling branch 2211 and the opening direction of the second coupling branch 2212 are the same. If the opening directions are different, the coupling length of the coupling substructure 221 will be reduced by the length of one opening.
  • the coupling substructure 221 includes a first coupling branch 2211, a second coupling branch 2212, and a third coupling branch 2213.
  • First coupling branches 2211, second coupling branches 2212 and corresponding balun substructures 211 are disposed on the first surface of the substrate 24, and third coupling branches 2213 are disposed on the second surface of the substrate 24; first coupling The branch 2211 is electrically connected to the corresponding balun substructure 211 (located on the same side of the central axis as the first coupling branch 2211), and the second coupling branch 2212 and the corresponding radiation arm 231 (located on the central axis of the second coupling branch 2212) (The same side) is electrically connected.
  • the shape of the first coupling branch 2211, the second coupling branch 2212, and the third coupling branch 2213 can be arbitrarily set.
  • the shape can be curved, circular, or quadrilateral.
  • the quadrilateral coupling The branches occupy less space.
  • This embodiment and the drawings can be exemplified by quadrilateral coupling branches, and the situation of coupling branches of other shapes is similar.
  • the distance between the third coupling branch 2213 and the first coupling branch 2211 is corresponding. Less than the preset value, the distance between the third coupling branch 2213 and the second coupling branch 2212 is smaller than the preset value.
  • the thickness of the substrate 24 is less than a preset value, and the distance between the first coupling branch 2211 and the second coupling branch 2212 is greater than the preset value; the first portion of the third coupling branch 2213 is coupled to the first coupling.
  • the branches 2211 have the same structure and positions, and the second part of the third coupling branch 2213 and the second coupling sections 2212 have the same structure and positions.
  • the third coupling branch 2213 is respectively coupled to the first coupling branch 2211 and the second coupling branch 2212 through the substrate 24. Accordingly, the thickness of the substrate 24 is smaller than a preset value.
  • the third coupling branch 2213 cannot be coupled with the first coupling branch 2211 and the second coupling branch 2212. Accordingly, the first coupling branch 2211 and the first coupling branch 2212 cannot be coupled with each other.
  • the distance between the two coupling branches 2212 is greater than a preset value.
  • the first portion of the third coupling branch 2213 and the first coupling branch 2211 have the same structure and corresponding positions.
  • the second part of the third coupling branch 2213 has the same structure and position as the second coupling branch 2212.
  • the signal on the feeder is transmitted to the balun substructure 211 and then to the first coupling branch 2211, and the signal is then coupled to the first part of the third coupling branch 2213, and then The signal is transmitted along the connecting portion between the first and second parts of the third coupling branch 2213 to the second part of the third coupling branch 2213, and then the signal is coupled from the second part of the third coupling branch 2213 to the second
  • the coupling branch 2212 is finally transmitted to the radiating arm 231 which is electrically connected to the second coupling branch 2212.
  • the electrical connection is a direct electrical connection or a coupled electrical connection.
  • the foregoing electrical connection may be a direct electrical connection or a coupled electrical connection.
  • the coupled electrical connection may also be referred to as a gap electrical connection.
  • the two structures are not in direct contact. , But there is a gap smaller than the preset value.
  • the coupling length of the coupling substructure 221 is within a preset numerical range.
  • the structure that the coupling structure 22 implements its filtering function is mainly related to the coupling length.
  • the coupling length of the coupling structure 22 is set, and the coupling length of the coupling structure 22 can be set within a preset numerical range.
  • the preset value range is 0.15 to 0.45 times the wavelength corresponding to the middle frequency point of the working frequency band of the high-frequency unit 2.
  • the foregoing preset numerical range may be set at a wavelength corresponding to an intermediate frequency of the working frequency band of the high-frequency unit 2 from 0.15 to 0.45 times, thereby ensuring that the high-frequency unit 2 can work normally.
  • a communication device includes the multi-frequency antenna described above.
  • the multi-frequency antenna includes at least one high-frequency unit and at least one low-frequency unit.
  • Each high-frequency unit includes not only a balun structure and a radiating arm structure, but also a coupling structure.
  • the radiating arm structure includes two radiating elements.
  • the arm, balun structure includes two balun substructures, and the coupling structure includes two coupling substructures.
  • the coupling structure is disposed on the connection line between the balun structure and the radiating arm structure.
  • each coupling substructure is electrically connected to a balun substructure and a radiating arm, respectively.
  • the above coupling structure has the function of transmitting a signal with a frequency higher than a preset threshold and blocking a signal with a frequency lower than the preset threshold.
  • the frequency of the electromagnetic wave radiated by the equivalent monopole antenna is higher than a preset threshold (the electromagnetic wave generated by the low-frequency unit (The frequency is lower than the preset threshold), avoiding the working frequency band of the low-frequency unit, and further, the equivalent monopole antenna causes weak interference to the signal transmitted by the low-frequency unit, and does not even radiate the signal transmitted by the low-frequency unit.
  • a preset threshold the electromagnetic wave generated by the low-frequency unit (The frequency is lower than the preset threshold)
  • FIG. 1 is a schematic structural diagram of a multi-frequency antenna according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a multi-frequency antenna according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a high-frequency unit according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a high-frequency unit according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a high-frequency unit according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a high-frequency unit according to an embodiment of the present invention.
  • Coupler structure 231 Radiation arm
  • the first coupling branch 2212 The second coupling branch
  • An embodiment of the present invention provides a multi-frequency antenna, that is, an antenna having multiple operating frequency bands.
  • the multi-frequency antenna includes a reflection plate 1 and at least one high-frequency unit. 2 and at least one low-frequency unit 3, as shown in FIG.
  • each high-frequency unit 2 includes a balun structure 21, a coupling structure 22, and a radiation arm structure 23, and the balun structure 21 includes two balun substructures 211, a coupling structure 22 includes two coupling substructures 221, and the radiating arm structure 23 includes two radiating arms 231, where: at least one high-frequency unit 2 and at least one low-frequency unit 3 are mounted on the reflection plate 1; in each high-frequency unit 2,
  • Each coupling substructure 221 is electrically connected to a balun substructure 211 and a radiating arm 231 respectively; the coupling substructure 221 is used for transmitting signals with a frequency higher than a preset threshold and blocking signals with a frequency lower than a preset threshold .
  • the currently used antennas are mostly dipole antennas. Accordingly, the high-frequency unit 2 and the low-frequency unit 3 may also be referred to as dipoles.
  • a dipole antenna is also an antenna composed of a pair of symmetrically placed radiating arms, and two ends of two radiating arms which are close to each other are connected to a feeder respectively.
  • the balun structure is mainly introduced in the dipole antenna because, according to the antenna theory, the dipole antenna is a balanced antenna, and the coaxial cable is an unbalanced transmission line. If it is directly connected, the outer sheath of the coaxial cable is There is a high-frequency current flowing (according to the principle of coaxial cable transmission, high-frequency current should flow inside the coaxial cable, the sheath is a shield layer, there is no current), so that it will affect the radiation of the dipole antenna (It can be imagined that the shielding layer of the coaxial cable also participates in the radiation of electromagnetic waves). Therefore, it is necessary to add a balun between the dipole antenna and the coaxial cable to suppress the current flowing into the shielding layer of the coaxial cable, that is, to shield the coaxial cable from the radiation arm. Cut off the high-frequency current of the skin.
  • the two high-frequency units 2 of the multi-frequency antenna can be arranged on the reflecting plate 1 in a crossover relationship, and the two low-frequency units 3 can also be arranged in a crossing on the reflecting plate 1.
  • Multi-frequency antenna space in this embodiment, in order to introduce the structure of the high-frequency unit 2 conveniently, one high-frequency unit 2 can be used as an example.
  • each coupling substructure 221 is electrically connected to a balun substructure 211 and a radiating arm 231, respectively.
  • the preset threshold is set according to the operating frequency band of the high-frequency unit 2 and the operating frequency band of the low-frequency unit 3.
  • the preset threshold value is smaller than the lowest frequency in the operating frequency band of the high-frequency unit 2 and greater than the maximum frequency in the operating frequency band of the low-frequency unit 3. .
  • the transmission path of the signal may be: after the signal is transmitted to the balun substructure 211 via the feeder, it is then transmitted to the coupling substructure electrically connected to the balun substructure 211 221, when the signal is transmitted to the coupling substructure 221, since the coupling substructure 221 can transmit signals with a frequency higher than a preset threshold and block signals with a frequency lower than the preset threshold, signals with a signal frequency higher than the preset threshold can continue It is transmitted to the radiating arm 231 electrically connected to the coupling substructure 221, and then radiates outward in the form of electromagnetic waves, and the frequency of the emitted electromagnetic waves is higher than a preset threshold.
  • the balun structure 21 of the high-frequency unit 2 and one radiating arm 231 of the radiating arm structure 23 can be equivalent to a monopole antenna with an operating frequency close to that of the low-frequency unit 3, the existence of the coupling structure 22 So that the frequency of the electromagnetic wave generated by the equivalent monopole antenna is higher than a preset threshold (the frequency of the electromagnetic wave generated by the low-frequency unit 3 is lower than the preset threshold), and the frequency of the electromagnetic wave generated by the equivalent monopole antenna is avoided.
  • the operating frequency band of the low-frequency unit 3 is opened, and further, the equivalent monopole antenna causes weak interference to the signal transmitted by the low-frequency unit, and does not even cause interference to the signal transmitted by the low-frequency unit, so that the low-frequency unit 3 can normal work.
  • the high-frequency unit 2 further includes a substrate 24, which is vertically disposed on the reflective plate 1; two radiating arms 231 are symmetrically disposed on an end of the substrate 24 away from the reflective plate 1,
  • the two coupling substructures 221 are symmetrically disposed on the surface of the substrate 24, and the two balun substructures 211 of the balun structure 21 are symmetrically disposed on the surface of the substrate 24.
  • the substrate 24 may also be referred to as a balun dielectric board, which is a circuit board for carrying the balun structure 21 and may be fixedly mounted on the reflective plate 1 vertically.
  • the two radiating arms 231 of the radiating arm structure 23 are disposed on an end of the substrate 24 away from the reflecting plate 1, wherein the two radiating arms 231 may be symmetrically or asymmetrically disposed.
  • the asymmetric setting is mainly related to the pattern of the multi-frequency antenna.
  • the structures of the two radiating arms 231 may be the same or different, but for a dipole antenna, in general, the structures of the two radiating arms 231 are the same.
  • the specific structure of the radiation arm 231 may be a wire or a metal sheet structure.
  • the radiation arm 231 may be a straight wire, a quadrangular frame composed of a wire, or a quadrangular metal sheet.
  • two radiating arms 231 are symmetrically arranged in the following example.
  • the situation of asymmetrical setting is similar, so they will not be described one by one.
  • the two radiating arms 231 are symmetrically arranged, and the axis of symmetry is two radiating arms 231.
  • the central axis between the two is the central axis of the high-frequency unit 2.
  • the symmetry axis in the structure mentioned below is the center between the two radiating arms 231 unless otherwise specified.
  • the axis as shown by the dotted line in FIG. 3, is the central axis of the high-frequency unit 2.
  • the two balun substructures 211 of the balun structure 21 are disposed on the surface of the substrate 24. Based on the symmetrical arrangement of the two radiating arms 231, the two balun substructures 211 can also be symmetrically disposed at On the surface of the substrate 24, the axis of symmetry is the central axis of the high-frequency unit 2.
  • the structures of the two balun substructures 211 may be the same or different, and the shielding function described above may be implemented.
  • the two coupling substructures 221 of the coupling structure 22 are disposed on the surface of the substrate 24.
  • the two coupling substructures 221 can be symmetrically disposed on the substrate 24.
  • the axis of symmetry is the above-mentioned central axis.
  • the coupling substructure 221 has a filtering function, and can transmit signals with a frequency higher than a preset threshold, and block signals with a frequency lower than a preset threshold.
  • each high-frequency unit 2 the base plate 24 is mounted on the reflecting plate 1, and the two radiating arms 231 of the radiating arm structure 23 may be symmetrically disposed at one end of the base plate 24 away from the reflecting plate 1, and the balun structure 21 Both of the two balun substructures 211 and the two coupling substructures 221 of the coupling structure 22 may be symmetrically disposed on the surface of the substrate 24.
  • the central axis of the high-frequency unit 2 divides the high-frequency unit 2 into two sides, which may be recorded as a first side and a second side, a radiating arm 231, a balun substructure 211, and a coupling substructure.
  • the coupling substructure 221 is located on the first side of the high-frequency unit 2, and another radiation arm 231, another balun substructure 211, and another coupling sub-structure 221 are located on the second side of the high-frequency unit 2.
  • the coupling substructure 221 is electrically connected to the balun substructure 211 and the radiation arm 231 on the side, respectively.
  • the electrical connection may be a direct electrical connection or a coupled electrical connection.
  • the coupled electrical connection may also be referred to as a gap electrical connection.
  • the two structures are not directly in contact, but there is less than a preset between them. Numerical gap.
  • the structure that the coupling structure 22 implements its filtering function is mainly related to the coupling length.
  • the technician can use the working frequency band of the high-frequency unit 2 and the low-frequency unit 3.
  • Set the coupling length of the coupling structure 22, the coupling length of the coupling structure 22 can be set within a preset value range, for example, it can be set at a wavelength of 0.15 to 0.45 corresponding to the middle frequency point of the working frequency band of the high-frequency unit 2. Times.
  • the specific shape of the coupling structure 22 is not limited to the following cases. It can realize signals with a transmission frequency higher than a preset threshold and a blocking frequency lower than a preset threshold. The function of the signal is sufficient, and its shape is mainly set to save the space occupied by the coupling structure 22.
  • the coupling substructure 221 may include a first coupling branch 2211 and a second coupling branch 2212 that are coupled to each other.
  • the distance between the first coupling branch 2211 and the second coupling branch 2212 is smaller than the preset value
  • the distance between the first coupling branch 2211 and the second coupling branch 2212 is smaller than the preset value.
  • the distance between the first coupling branch 2211 and the second coupling branch 2212 at each position is equal to and less than a preset value.
  • One of the first coupling branch 2211 and the second coupling branch 2212 is electrically connected to the corresponding balun substructure 211, and the other is electrically connected to the corresponding radiation arm 231.
  • the first coupling branch 2211 and the corresponding balun The structure 211 located on the same side of the central axis as the first coupling branch 2211
  • the second coupling branch 2212 is electrically connected to the corresponding radiation arm 231 (located on the same side as the central axis of the second coupling branch 2212).
  • the first coupling branch 2211 and the second coupling branch 2212 may be disposed on the same surface of the substrate 24, or may be disposed on different surfaces, and the details may be as follows:
  • the balun substructure 211 is also provided on the surface of the substrate 24 on which the first coupling branch 2211 and the second coupling branch 2212 are located, that is, the first coupling branch 2211.
  • the second coupling branch 2212 and the corresponding balun substructure 211 are both disposed on the same surface of the substrate 24.
  • the coupling length of the coupling structure 22 under this structure may be the length at which the first coupling branch 2211 and the second coupling branch 2212 are coupled.
  • the first coupling branch 2211 and the second coupling branch 2212 are respectively disposed on different sides of the substrate 24, that is, the first coupling branch 2211 may be disposed on the first surface of the substrate 24, and the second coupling branch 2212 may be disposed on On the second surface of the substrate 24, the first surface is opposite to the second surface. Since one of the first coupling branch 2211 and the second coupling branch 2212 is electrically connected to the corresponding balun substructure 211, correspondingly, if the first coupling branch 2211 is electrically connected to the balun substructure 211, the first coupling branch 2211 2211 and the balun substructure 211 are located on the same surface of the substrate 24.
  • the second coupling branch 2212 is electrically connected to the balun substructure 211, the second coupling branch 2212 and the balun substructure 211 are located on the same surface of the substrate 24 .
  • the first coupling branch 2211 may be disposed on the first surface of the substrate 24, and when the second coupling branch 2212 is disposed on the second surface of the substrate 24, in order to realize the coupling between the two, the first coupling branch 2211 and The second coupling branches 2212 have the same structure and corresponding positions.
  • the coupling length of the coupling structure 22 under this structure may be the smallest of the perimeters of the first coupling branch 2211 and the second coupling branch 2212.
  • first coupling branch 2211 and the second coupling branch 2212 are directly arranged vertically on the base plate 24, which causes the coupling structure 22 to occupy more space on the base plate 24.
  • first coupling branch 2211 and the second coupling branch are correspondingly 2212 can be bent.
  • the first coupling branch 2211 and the second coupling branch 2212 both have a split ring structure.
  • the split ring structure of the first coupling branch 2211 is located outside the split ring structure of the second coupling branch 2212.
  • the gap between the split ring structure of one coupling branch 2211 and the split ring structure of the second coupling branch 2212 is smaller than a preset value.
  • the first coupling branch 2211 and the second coupling branch 2212 may be bent to form a circular ring with an opening, or may be bent to form an arc-shaped ring with an opening, or may be bent to form a quadrangular ring with an opening, etc. , But the quadrangular ring structure with an opening occupies less space than the circular ring structure with an opening.
  • the opening direction of the split ring structure of the first coupling branch 2211 and the opening direction of the split ring structure of the second coupling branch 2212 are the same. If the opening directions are different, the coupling length of the coupling substructure 221 will be reduced by the length of one opening.
  • the first coupling branch 2211 is disposed on the first surface of the substrate 24, and the second coupling branch 2212 is disposed on the second surface of the substrate 24. And the positions of the first coupling branch 2211 and the second coupling branch 2212 correspond to each other.
  • the first surface of the substrate 24 is opposite to the second surface, and the first coupling branch 2211 and the second coupling branch 2212 are coupled by the thickness of the substrate 24. In order to satisfy the coupling, the thickness of the substrate 24 is smaller than a preset value.
  • the balun substructure 211 is electrically connected to the first coupling branch 2211, the balun substructure 211 is disposed on the surface of the substrate 24 on which the first coupling branch 2211 is located, that is, on the first surface of the substrate 24.
  • the balun structure 211 is electrically connected to the second coupling branch 2212, and the balun structure 211 is disposed on the surface of the substrate 24 on which the second coupling branch 2212 is located, that is, on the second surface of the substrate 24.
  • the coupling structure 22 has a coupling length that is the smallest perimeter of the first coupling branch 2211 and the second coupling branch 2212. For example, if the structure of the first coupling branch 2211 and the second coupling branch 2212 are the same , Then the coupling length is the perimeter of the first coupling branch 2211 or the second coupling branch 2212. If the perimeter of the first coupling branch 2211 is smaller than the perimeter of the second coupling branch 2212, the coupling length is the circumference of the first coupling branch 2211. long.
  • the above-mentioned coupling structure 22 belongs to the case of first-level coupling, that is, the first-level coupling is coupling once.
  • the coupling structure 22 may also include two-level coupling or multi-level coupling. The following describes a two-level coupling coupling structure 22:
  • FIG. 5 is a structural schematic diagram of the first surface of the substrate 24, and FIG. 6 is a structural schematic diagram of the second surface of the substrate 24.
  • the coupling substructure 221 includes a first coupling branch 2211 and a second coupling.
  • the branch 2212 and the third coupling branch 2213, the third coupling branch 2213 are respectively coupled with the first coupling branch 2211, the second coupling branch 2212; the first coupling branch 2211, the second coupling branch 2212, and the corresponding balun substructure 211 are provided On the first surface of the substrate 24, a third coupling branch 2213 is disposed on the second surface of the substrate 24; the first coupling branch 2211 and the corresponding balun substructure 211 (located on the same side of the central axis as the first coupling branch 2211) ) Is electrically connected, and the second coupling branch 2212 is electrically connected to the corresponding radiation arm 231 (located on the same side of the central axis as the second coupling branch 2212).
  • the shape of the first coupling branch 2211, the second coupling branch 2212, and the third coupling branch 2213 can be arbitrarily set.
  • the shape can be curved, circular, or quadrilateral.
  • the quadrilateral coupling The branches occupy less space.
  • This embodiment and the drawings can be exemplified by quadrilateral coupling branches, and the situation of coupling branches of other shapes is similar.
  • the third coupling branch 2213 is respectively coupled to the first coupling branch 2211 and the second coupling branch 2212 through the substrate 24. Accordingly, the thickness of the substrate 24 is smaller than a preset value.
  • the third coupling branch 2213 cannot be coupled with the first coupling branch 2211 and the second coupling branch 2212. Accordingly, the first coupling branch 2211 and the first coupling branch 2212 cannot be coupled with each other.
  • the distance between the two coupling branches 2212 is greater than a preset value.
  • the first portion of the third coupling branch 2213 and the first coupling branch 2211 have the same structure and corresponding positions.
  • the second part of the third coupling branch 2213 has the same structure and corresponding position as the second coupling branch 2212.
  • A represents the first part of the third coupling branch 2213
  • B represents the second part of the third coupling branch 2213.
  • the signal on the feeder is transmitted to the balun substructure 211 and then to the first coupling branch 2211, and the signal is then coupled to the first part of the third coupling branch 2213, and The signal is transmitted along the connecting portion between the first and second parts of the third coupling branch 2213 to the second part of the third coupling branch 2213, and then the signal is coupled from the second part of the third coupling branch 2213 to the second
  • the coupling branch 2212 is finally transmitted to the radiating arm 231 which is electrically connected to the second coupling branch 2212.
  • the multi-frequency antenna includes at least one high-frequency unit and at least one low-frequency unit.
  • Each high-frequency unit includes not only a balun structure and a radiating arm structure, but also a coupling structure.
  • the radiating arm structure includes two radiating elements.
  • the arm, balun structure includes two balun substructures, and the coupling structure includes two coupling substructures.
  • the coupling structure is disposed on the connection line between the balun structure and the radiating arm structure.
  • each coupling substructure is electrically connected to a balun substructure and a radiating arm, respectively.
  • the above coupling structure has the function of transmitting a signal with a frequency higher than a preset threshold and blocking a signal with a frequency lower than the preset threshold.
  • the frequency of the electromagnetic wave radiated by the equivalent monopole antenna is higher than a preset threshold (the electromagnetic wave generated by the low-frequency unit (The frequency is lower than the preset threshold), avoiding the working frequency band of the low-frequency unit, and further, the equivalent monopole antenna causes weak interference to the signal transmitted by the low-frequency unit, and does not even radiate the signal transmitted by the low-frequency unit.
  • a preset threshold the electromagnetic wave generated by the low-frequency unit (The frequency is lower than the preset threshold)
  • An embodiment of the present invention further provides a communication device.
  • the communication device includes the multi-frequency antenna described above.
  • the multi-frequency antenna includes at least one high-frequency unit and at least one low-frequency unit.
  • Each high-frequency unit includes not only a balun structure.
  • the radiation arm structure also includes a coupling structure, the radiation arm structure includes two radiation arms, the balun structure includes two balun substructures, and the coupling structure includes two coupling substructures.
  • the coupling structure is disposed on the connection line between the balun structure and the radiating arm structure. Specifically, in each high-frequency unit, each coupling substructure is electrically connected to a balun substructure and a radiating arm, respectively.
  • the above coupling structure has the function of transmitting a signal with a frequency higher than a preset threshold and blocking a signal with a frequency lower than the preset threshold.
  • the frequency of the electromagnetic wave radiated by the equivalent monopole antenna is higher than a preset threshold (the electromagnetic wave generated by the low-frequency unit (The frequency is lower than the preset threshold), avoiding the working frequency band of the low-frequency unit, and further, the equivalent monopole antenna causes weak interference to the signal transmitted by the low-frequency unit, and does not even radiate the signal transmitted by the low-frequency unit.
  • a preset threshold the electromagnetic wave generated by the low-frequency unit (The frequency is lower than the preset threshold)

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

本发明实施例公开了一种多频天线和通信设备,属于通信技术领域。该多频天线包括反射板、至少一个高频单元和至少一个低频单元,每个高频单元包括巴伦结构、耦合结构和辐射臂结构,巴伦结构包括两个巴伦子结构,耦合结构包括两个耦合子结构,辐射臂结构包括两个辐射臂,其中:高频单元和低频单元安装在反射板上;每个耦合子结构分别与一个巴伦子结构、一个辐射臂电性连接;耦合子结构,用于传输频率高于预设阈值的信号,阻断频率低于预设阈值的信号。采用本发明,由于耦合结构的存在,使等效的单极子天线向外辐射的电磁波的频率高于预设阈值,避开了低频单元的工作频段,进而,等效的单极子天线不会对低频单元辐射传输的信号造成干扰。

Description

多频天线和通信设备
本申请要求于2018年09月20日提交的申请号为201811099935.4、发明名称为“多频天线和通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及一种多频天线和通信设备。
背景技术
多频天线也即是具有多个工作频段的天线,包括反射板、至少一个高频单元和至少一个低频单元,其中,每个高频单元包括巴伦结构和辐射臂结构。辐射臂结构是对称布置的两个辐射臂,两个辐射臂相互靠近的端部分别与巴伦结构电性连接,辐射臂结构用于向外辐射电磁波;巴伦结构(balance-unbalance,balun)是英文“平衡不平衡转换器”缩写的音译,是用于对天线的辐射臂结构和电缆进行信号连接的器件。其中,自巴伦结构的接地端到巴伦结构与辐射臂结构的连接端之间的距离,加上辐射臂结构的一个辐射臂的臂长为预设长度值,这一预设长度值由高频单元的工作频段所决定,一旦高频单元的工作频段确定,上述预设长度值也为确定值。而有些时候该预设长度值恰好接近于低频单元的波长的四分之一,使得高频单元的巴伦结构和辐射臂结构的一个辐射臂恰好可以等效成一个工作频率接近于低频单元的频率的单极子天线,单极子天线也即是一种具有竖直的辐射臂,且辐射臂的臂长等于其工作频率对应的波长的四分之一的天线。
在实现本申请的过程中,发明人发现相关技术至少存在以下问题:
当低频单元工作时,上述等效的单极子天线会在低频单元的电磁波的影响下产生低频的感应电流,该低频的感应电流使单极子天线向外辐射低频的电磁波,而该电磁波的频率近似等于低频单元辐射的电磁波的频率,对低频单元辐射传输的信号造成干扰。
发明内容
为了解决相关技术中存在的问题,本发明实施例提供了一种多频天线和通信设备。所述技术方案如下:
第一方面,提供了一种多频天线,如图1并参考图2所示,该多频天线包括反射板1、至少一个高频单元2和至少一个低频单元3,如图3所示,每个高频单元2包括巴伦结构21、耦合结构22和辐射臂结构23,巴伦结构21包括两个巴伦子结构211,耦合结构22包括两个耦合子结构221,辐射臂结构23包括两个辐射臂231,其中:至少一个高频单元2和至少一个低频单元3安装在反射板1上;在每个高频单元2中,每个耦合子结构221分别与一个巴伦子结构211、一个辐射臂231电性连接;耦合子结构221,用于传输频率高于预设阈值的信号,阻断频率低于预设阈值的信号。
其中,高频单元2和低频单元3也可以称为偶极子,偶极子天线也即是,由一对对称放置的辐射臂构成,两个辐射臂相互靠近的两端分别与馈电线相连的天线。
本发明实施例所示的方案,如图1并参考图2所示,多频天线的两个高频单元2可以相互交叉设置在反射板1上,两个低频单元3也可以相互交叉设置在反射板1上,进而,可以节约多频天线的空间。本实施例中为方便介绍高频单元2的结构,可以以一个高频单元2进行示例。对于每个高频单元2,不仅包括巴伦结构21和辐射臂结构23,还包括设置在巴伦结构21和辐射臂结构23的连接线路上的耦合结构22,耦合结构22用于传输频率高于预设阈值的信号,阻断频率低于预设阈值的信号。由于该多频天线属于偶极子天线,故辐射臂结构23包括两个辐射臂231,相应的,巴伦结构21也包括两个巴伦子结构211,耦合结构22也包括两个耦合子结构221,在电路连接关系上,在每个高频单元2中,每个耦合子结构221分别与一个巴伦子结构211、一个辐射臂231电性连接。
当高频单元2作为发射天线,向外发射信号时,信号的传输路径可以是,信号经过馈线传输至巴伦子结构211之后,再传输至与巴伦子结构211电性连接的耦合子结构221,信号传输至耦合子结构221时,由于耦合子结构221可以传输频率高于预设阈值的信号,阻断频率低于预设阈值的信号,故信号频率高于预设阈值的信号可以继续传输至与耦合子结构221电性连接的辐射臂231,之后以电磁波的形式向外辐射,且发射的电磁波的频率均高于预设阈值。
这样,即使高频单元2的巴伦结构21和辐射臂结构23的一个辐射臂231恰好可以等效成一个工作频率接近于低频单元3的频率的单极子天线,但是由于耦合结构22的存在,使得等效的单极子天线产生的电磁波的频率均高于预设阈值(低频单元3产生的电磁波的频率低于预设阈值),上述等效的单极子天线产生的电磁波的频率避开了低频单元3的工作频段,进而,避免了上述等效的单极子天线对低频单元3辐射传输的信号造成干扰,保证了低频单元3的正常工作。
在一种可能的实现方式中,高频单元2还包括基板24,基板24垂直设置在反射板1上;两个辐射臂231对称设置在基板24远离反射板1的一端,耦合结构22的两个耦合子结构221对称设置在基板24的表面上,巴伦结构21的两个巴伦子结构211对称设置在基板24的表面上。
其中,基板24也可以称为巴伦介质板,是用于承载巴伦结构21的线路板,可以垂直固定安装在反射板1上。
本发明实施例所示的方案,辐射臂结构23的两个辐射臂231设置在基板24远离反射板1的一端,其中,两个辐射臂231可以对称设置,也可以不对称设置,辐射臂结构23的对称设置与不对称设置主要与多频天线的方向图有关。两个辐射臂231的结构可以相同,也可以不相同,但对于偶极子天线,通常情况下,两个辐射臂231的结构相同。辐射臂231的具体结构可以是导线,也可以是金属片状的结构,例如,辐射臂231可以是直导线,可以是由导线组成的四边形框,还可以是四边形金属片等。
其中,为方便介绍下文将以两个辐射臂231对称设置示例,不对称设置的情况与之类似,便不再一一赘述,两个辐射臂231对称设置,其对称轴为两个辐射臂231之间的中心轴,该中心轴也即为高频单元2的中心轴,下文所提到的结构中的对称轴,在无特殊说明的情况下,均是两个辐射臂231之间的中心轴,如图3所示的点画线即为高频单元2的中心轴。
如图3所示,巴伦结构21的两个巴伦子结构211设置在基板24的表面上,在两个辐射臂231对称设置的基础上,两个巴伦子结构211也可以对称设置在基板24的表面上,其对称轴为高频单元2的中心轴,两个巴伦子结构211的结构可以相同,也可以不相同,能够实现上述屏蔽功能即可。
如图3所示,耦合结构22的两个耦合子结构221设置在基板24的表面上,同样在两个辐射臂231对称设置的基础上,两个耦合子结构221可以对称设置在基板24的表面上,其对称轴为上述的中心轴。耦合子结构221具有滤波作用,可以传输频率高于预设阈值的信号,阻断频率低于预设阈值的信号。
基于上述所述,在每个高频单元2中,基板24安装在反射板1上,辐射臂结构23的两个辐射臂231可以对称设置在基板24远离反射板1的一端,巴伦结构21的两个巴伦子结构211和耦合结构22的两个耦合子结构221均可以对称设置在基板24的表面上。如图3所示,高频单元2的中心轴将高频单元2划分为两侧,不妨记为第一侧和第二侧,一个辐射臂231、一个巴伦子结构211、一个耦合子结构221位于高频单元2的第一侧,另一个辐射臂231、另一个巴伦子结构211、另一个耦合子结构221位于高频单元2的第二侧。在高频单元2的每一侧(第一侧或者第二侧)中,耦合子结构221分别与该侧的巴伦子结构211、辐射臂231电性连接。
在一种可能的实现方式中,耦合子结构221包括相耦合的第一耦合枝节2211和第二耦合枝节2212,第一耦合枝节2211、第二耦合枝节2212和对应的巴伦子结构211设置在基板24的同一表面上;第一耦合枝节2211与对应的巴伦子结构211电性连接,第二耦合枝节2212与对应的辐射臂231电性连接。
本发明实施例所示的方案,为了实现第一耦合枝节2211和第二耦合枝节2212的相互耦合,相应的,第一耦合枝节2211和第二耦合枝节2212之间的间距小于预设数值。而又为了提高两者的耦合效果,第一耦合枝节2211和第二耦合枝节2212各个位置处的间距相等且小于预设数值。其中,第一耦合枝节2211、第二耦合枝节2212和对应的巴伦子结构211设置在基板24的同一表面上中,对应的巴伦子结构211是指,与第一耦合枝节2211、第二耦合枝节2212在中心轴同侧的巴伦子结构211。同样,第一耦合枝节2211与对应的巴伦子结构211电性连接中,对应的巴伦子结构211是指,与第一耦合枝节2211位于中心轴同侧的巴伦子结构211;第二耦合枝节2212与对应的辐射臂231电性连接,对应的辐射臂231是指,与第二耦合枝节2212在中心轴同侧的辐射臂231。
在一种可能的实现方式中,第一耦合枝节2211和第二耦合枝节2212均具有开口环结构,第一耦合枝节2211的开口环结构位于第二耦合枝节2212的开口环结构外侧,第一耦合枝节2211的开口环结构与第二耦合枝节2212的开口环结构之间的间距小于预设数值。
本发明实施例所示的方案,为了减少耦合子结构221的占用空间,相应的,第一耦合枝节2211和第二耦合枝节2212可以弯折,形成具有开口的圆形环,也可以形成具有开口的弧形环,还可以形成具有开口的四边形环等,但是具有开口的四边形环结构相比于具有开口的圆形环结构,其占用空间更少。
在一种可能的实现方式中,所述第一耦合枝节的开口环结构与所述第二耦合枝节的开口环结构的开口方向相同。
本发明实施例所示的方案,为了增加第一耦合枝节2211和第二耦合枝节2212之间的耦 合长度,相应的,第一耦合枝节2211的开口和第二耦合枝节2212的开口方向相同,如果开口方向不相同,则耦合子结构221的耦合长度将会减少一个开口的长度。
在一种可能的实现方式中,耦合子结构221包括第一耦合枝节2211、第二耦合枝节2212和第三耦合枝节2213,第三耦合枝节2213分别和第一耦合枝节2211、第二耦合枝节2212相耦合;第一耦合枝节2211、第二耦合枝节2212和对应的巴伦子结构211设置在基板24的第一表面上,第三耦合枝节2213设置在基板24的第二表面上;第一耦合枝节2211与对应的巴伦子结构211(与第一耦合枝节2211位于中心轴的同一侧)电性连接,第二耦合枝节2212与对应的辐射臂231(与第二耦合枝节2212位于中心轴的同一侧)电性连接。
其中,第一耦合枝节2211、第二耦合枝节2212和第三耦合枝节2213的形状可以任意设置,例如,可以是弧形的,可以是圆形的,还可以是四边形的,其中,四边形的耦合枝节的占用空间更少,本实施例以及附图可以以四边形的耦合枝节示例,其它形状的耦合枝节的情况至于类似。
本发明实施例所示的方案,为实现第三耦合枝节2213分别和第一耦合枝节2211、第二耦合枝节2212相耦合,相应的,第三耦合枝节2213与第一耦合枝节2211之间的间距小于预设数值,第三耦合枝节2213与第二耦合枝节2212之间的间距小于预设数值。
在一种可能的实现方式中,基板24的厚度小于预设数值,第一耦合枝节2211与第二耦合枝节2212之间的间距大于预设数值;第三耦合枝节2213的第一部分与第一耦合枝节2211具有相同的结构且位置相对应,第三耦合枝节2213的第二部分与第二耦合枝节2212具有相同的结构且位置相对应。
本发明实施例所示的方案,第三耦合枝节2213通过基板24分别与第一耦合枝节2211、第二耦合枝节2212相耦合,相应的,基板24的厚度小于预设数值。而为了防止第一耦合枝节2211与第二耦合枝节2212相耦合,而导致第三耦合枝节2213不能与第一耦合枝节2211、第二耦合枝节2212相耦合,相应的,第一耦合枝节2211与第二耦合枝节2212之间的距离大于预设数值。又为了使第三耦合枝节2213分别与第一耦合枝节2211、第二耦合枝节2212相耦合,相应的,第三耦合枝节2213的第一部分与第一耦合枝节2211具有相同的结构且位置相对应,第三耦合枝节2213的第二部分与第二耦合枝节2212具有相同的结构且位置相对应。
基于上述所述,以高频单元2向外发射信号示例,馈线上的信号传输至巴伦子结构211之后传输到第一耦合枝节2211,信号再耦合至第三耦合枝节2213的第一部分,然后信号沿着第三耦合枝节2213的第一部分与第二部分之间的连接部分传输至第三耦合枝节2213的第二部分,之后,信号再从第三耦合枝节2213的第二部分耦合至第二耦合枝节2212,最后,信号传输至与第二耦合枝节2212电性连接的辐射臂231。
在一种可能的实现方式中,电性连接是直接电性连接或者耦合电性连接。
本发明实施例所示的方案,上述的电性连接可以是直接电性连接,也可以是耦合电性连接,耦合电性连接,也可以称为间隙电性连接,两个结构不是直接相接触,而是之间有小于预设数值的间隙。
在一种可能的实现方式中,耦合子结构221的耦合长度在预设数值范围内。
本发明实施例所示的方案,耦合结构22实现其滤波作用的结构主要与耦合长度相关,耦合结构22的耦合长度越大,上述预设阈值越小,技术人员可以根据高频单元2的工作频段以及低频单元3的工作频段,设置耦合结构22的耦合长度,耦合结构22的耦合长度可以设置 在预设数值范围内。
在一种可能的实现方式中,上述预设数值范围为高频单元2的工作频段的中间频点对应的波长的0.15至0.45倍。
本发明实施例所示的方案,上述预设数值范围可以设置在高频单元2的工作频段的中间频点对应的波长的0.15至0.45倍,保证高频单元2可以正常工作。
第二方面,提供了一种通信设备,该通信设备包括上述所述的多频天线。
本发明实施例提供的技术方案带来的有益效果是:
在本发明实施例中,该多频天线包括至少一个高频单元和至少一个低频单元,每个高频单元不仅包括巴伦结构和辐射臂结构,还包括耦合结构,辐射臂结构包括两个辐射臂,巴伦结构包括两个巴伦子结构,耦合结构包括两个耦合子结构。其中,耦合结构设置于巴伦结构和辐射臂结构的连接线路上,具体的,在每个高频单元中,每个耦合子结构分别与一个巴伦子结构、一个辐射臂电性连接。上述耦合结构具有传输频率高于预设阈值的信号,阻断频率低于预设阈值的信号的作用,这样,即使高频单元的巴伦结构和辐射臂结构的一个辐射臂恰好可以等效成一个工作频率接近于低频单元的频率的单极子天线,但是由于耦合结构的存在,使得等效的单极子天线向外辐射的电磁波的频率均高于预设阈值(低频单元产生的电磁波的频率低于预设阈值),避开了低频单元的工作频段,进而,等效的单极子天线对低频单元辐射传输的信号造成的干扰程度较弱,甚至不会对低频单元辐射传输的信号造成干扰。
附图说明
图1是本发明实施例提供的一种多频天线的结构示意图;
图2是本发明实施例提供的一种多频天线的结构示意图;
图3是本发明实施例提供的一种高频单元的结构示意图;
图4是本发明实施例提供的一种高频单元的结构示意图;
图5是本发明实施例提供的一种高频单元的结构示意图;
图6是本发明实施例提供的一种高频单元的结构示意图。
图例说明
1、反射板                     2、高频单元
3、低频单元                   21、巴伦结构
22、耦合结构                  23、辐射臂结构
24、基板                      211、巴伦子结构
221、耦合子结构               231、辐射臂
2211、第一耦合枝节            2212、第二耦合枝节
2213、第三耦合枝节
具体实施方式
本发明实施例提供了一种多频天线,多频天线也即是具有多个工作频段的天线,如图1并参考图2所示,该多频天线包括反射板1、至少一个高频单元2和至少一个低频单元3,如图3所示,每个高频单元2包括巴伦结构21、耦合结构22和辐射臂结构23,巴伦结构21包括两个巴伦子结构211,耦合结构22包括两个耦合子结构221,辐射臂结构23包括两个辐射 臂231,其中:至少一个高频单元2和至少一个低频单元3安装在反射板1上;在每个高频单元2中,每个耦合子结构221分别与一个巴伦子结构211、一个辐射臂231电性连接;耦合子结构221,用于传输频率高于预设阈值的信号,阻断频率低于预设阈值的信号。
其中,目前常用的天线多是偶极子天线,相应的,高频单元2和低频单元3也可以称为偶极子。偶极子天线也即是,由一对对称放置的辐射臂构成,两个辐射臂相互靠近的两端分别与馈电线相连的天线。
在实施中,极子天线中引入巴伦结构主要是因为,按天线理论,偶极子天线属平衡型天线,而同轴电缆属不平衡传输线,若将其直接连接,则同轴电缆的外皮就有高频电流流过(按同轴电缆传输原理,高频电流应在同轴电缆内部流动,外皮是屏蔽层,是没有电流的),这样一来,就会影响偶极子天线的辐射(可以想象成同轴电缆的屏蔽层也参与了电磁波的辐射)。因此,就要在偶极子天线和同轴电缆之间加入平衡不平衡转换器,把流入同轴电缆的屏蔽层外部的电流扼制掉,也就是说把从辐射臂流过同轴电缆的屏蔽层外皮的高频电流截断。
如图1并参考图2所示,多频天线的两个高频单元2可以相互交叉设置在反射板1上,两个低频单元3也可以相互交叉设置在反射板1上,进而,可以节约多频天线的空间。本实施例中为方便介绍高频单元2的结构,可以以一个高频单元2进行示例。
如图3所示,对于每个高频单元2,不仅包括巴伦结构21和辐射臂结构23,还包括设置在巴伦结构21和辐射臂结构23的连接线路上的耦合结构22,耦合结构22用于传输频率高于预设阈值的信号,阻断频率低于预设阈值的信号。由于该多频天线属于偶极子天线,故辐射臂结构23包括两个辐射臂231,相应的,巴伦结构21也包括两个巴伦子结构211,耦合结构22也包括两个耦合子结构221,在电路连接关系上,在每个高频单元2中,每个耦合子结构221分别与一个巴伦子结构211、一个辐射臂231电性连接。
其中,预设阈值根据高频单元2的工作频段以及低频单元3的工作频段而设置,预设阈值小于高频单元2的工作频段中的最低频率,大于低频单元3的工作频段中的最大频率。
当高频单元2作为发射天线,向外发射信号时,信号的传输路径可以是,信号经过馈线传输至巴伦子结构211之后,再传输至与巴伦子结构211电性连接的耦合子结构221,信号传输至耦合子结构221时,由于耦合子结构221可以传输频率高于预设阈值的信号,阻断频率低于预设阈值的信号,故信号频率高于预设阈值的信号可以继续传输至与耦合子结构221电性连接的辐射臂231,之后以电磁波的形式向外辐射,且发射的电磁波的频率均高于预设阈值。
这样,即使高频单元2的巴伦结构21和辐射臂结构23的一个辐射臂231恰好可以等效成一个工作频率接近于低频单元3的频率的单极子天线,但是由于耦合结构22的存在,使得等效的单极子天线产生的电磁波的频率均高于预设阈值(低频单元3产生的电磁波的频率低于预设阈值),上述等效的单极子天线产生的电磁波的频率避开了低频单元3的工作频段,进而,等效的单极子天线对低频单元辐射传输的信号造成的干扰程度较弱,甚至不会对低频单元辐射传输的信号造成干扰,使低频单元3可以正常工作。
可选的,如图3所示,高频单元2还包括基板24,基板24垂直设置在反射板1上;两个辐射臂231对称设置在基板24远离反射板1的一端,耦合结构22的两个耦合子结构221对称设置在基板24的表面上,巴伦结构21的两个巴伦子结构211对称设置在基板24的表面上。
其中,基板24也可以称为巴伦介质板,是用于承载巴伦结构21的线路板,可以垂直固定安装在反射板1上。
在实施中,辐射臂结构23的两个辐射臂231设置在基板24远离反射板1的一端,其中,两个辐射臂231可以对称设置,也可以不对称设置,辐射臂结构23的对称设置与不对称设置主要与多频天线的方向图有关。两个辐射臂231的结构可以相同,也可以不相同,但对于偶极子天线,通常情况下,两个辐射臂231的结构相同。辐射臂231的具体结构可以是导线,也可以是金属片状的结构,例如,辐射臂231可以是直导线,可以是由导线组成的四边形框,还可以是四边形金属片等。
其中,为方便介绍下文将以两个辐射臂231对称设置示例,不对称设置的情况与之类似,便不再一一赘述,两个辐射臂231对称设置,其对称轴为两个辐射臂231之间的中心轴,该中心轴也即为高频单元2的中心轴,下文所提到的结构中的对称轴,在无特殊说明的情况下,均是两个辐射臂231之间的中心轴,如图3所示的点画线即为高频单元2的中心轴。
如图3所示,巴伦结构21的两个巴伦子结构211设置在基板24的表面上,在两个辐射臂231对称设置的基础上,两个巴伦子结构211也可以对称设置在基板24的表面上,其对称轴为高频单元2的中心轴,两个巴伦子结构211的结构可以相同,也可以不相同,能够实现上述屏蔽功能即可。
如图3所示,耦合结构22的两个耦合子结构221设置在基板24的表面上,同样在两个辐射臂231对称设置的基础上,两个耦合子结构221可以对称设置在基板24的表面上,其对称轴为上述的中心轴。耦合子结构221具有滤波作用,可以传输频率高于预设阈值的信号,阻断频率低于预设阈值的信号。
基于上述所述,在每个高频单元2中,基板24安装在反射板1上,辐射臂结构23的两个辐射臂231可以对称设置在基板24远离反射板1的一端,巴伦结构21的两个巴伦子结构211和耦合结构22的两个耦合子结构221均可以对称设置在基板24的表面上。如图2所示,高频单元2的中心轴将高频单元2划分为两侧,不妨记为第一侧和第二侧,一个辐射臂231、一个巴伦子结构211、一个耦合子结构221位于高频单元2的第一侧,另一个辐射臂231、另一个巴伦子结构211、另一个耦合子结构221位于高频单元2的第二侧。在高频单元2的每一侧(第一侧或者第二侧)中,耦合子结构221分别与该侧的巴伦子结构211、辐射臂231电性连接。
其中,电性连接可以是直接电性连接,也可以是耦合电性连接,耦合电性连接,也可以称为间隙电性连接,两个结构不是直接相接触,而是之间有小于预设数值的间隙。
在实施中,耦合结构22实现其滤波作用的结构主要与耦合长度相关,耦合结构22的耦合长度越大,上述预设阈值越小,技术人员可以根据高频单元2的工作频段以及低频单元3的工作频段,设置耦合结构22的耦合长度,耦合结构22的耦合长度可以设置在预设数值范围内,例如,可以设置在高频单元2的工作频段的中间频点对应的波长的0.15至0.45倍。
下面将详细介绍几种不同形状的耦合结构22,但是耦合结构22的具体形状并不局限于以下几种情况,能够实现传输频率高于预设阈值的信号,阻断频率低于预设阈值的信号的作用即可,其形状的设置主要是为了节约耦合结构22所占用的空间。
一种可能的情况可以是,如图3所示,耦合子结构221可以包括相互耦合的第一耦合枝节2211和第二耦合枝节2212,为了实现第一耦合枝节2211和第二耦合枝节2212的耦合, 相应的,第一耦合枝节2211和第二耦合枝节2212之间的间距小于预设数值,第一耦合枝节2211和第二耦合枝节2212之间的间距在小于预设数值的基础上,为了提高两者的耦合效果,第一耦合枝节2211和第二耦合枝节2212各个位置处的间距相等且小于预设数值。第一耦合枝节2211和第二耦合枝节2212中一个与对应的巴伦子结构211电性连接,另一个与对应的辐射臂231电性连接,例如,第一耦合枝节2211与对应的巴伦子结构211(与第一耦合枝节2211位于中心轴同一侧)电性连接,第二耦合枝节2212与对应的辐射臂231(与第二耦合枝节2212位于中心轴的同一侧)电性连接。
其中,第一耦合枝节2211和第二耦合枝节2212可以设置在基板24的同一表面上,也可以设置在不同的表面上,具体的可以如下:
对于第一耦合枝节2211和第二耦合枝节2212设置在基板24的同一表面的情况,由于第一耦合枝节2211和第二耦合枝节2212中一个与对应的巴伦子结构211电性连接,另一个与对应的辐射臂231电性连接,相应的,巴伦子结构211也设置在第一耦合枝节2211和第二耦合枝节2212所在的基板24的表面上,也即是,第一耦合枝节2211、第二耦合枝节2212和对应的巴伦子结构211(与耦合子结构221位于中心轴的同一侧)均设置在基板24的同一表面上。第一耦合枝节2211和第二耦合枝节2212位于基板24的同一表面的情况下,为了实现两者的耦合,相应的,第一耦合枝节2211和第二耦合枝节2212之间的间距小于预设数值,该结构下耦合结构22的耦合长度可以是第一耦合枝节2211和第二耦合枝节2212相耦合的长度。
对于第一耦合枝节2211和第二耦合枝节2212分别设置在基板24的异面的情况,也即是,第一耦合枝节2211可以设置在基板24的第一表面上,第二耦合枝节2212设置在基板24的第二表面上,其中,第一表面与第二表面相对。由于第一耦合枝节2211和第二耦合枝节2212中一个与对应的巴伦子结构211电性连接,相应的,如果第一耦合枝节2211与巴伦子结构211电性连接,则第一耦合枝节2211与巴伦子结构211位于基板24的同一表面上,如果第二耦合枝节2212与巴伦子结构211电性连接,则第二耦合枝节2212与巴伦子结构211位于基板24的同一表面上。第一耦合枝节2211可以设置在基板24的第一表面上,第二耦合枝节2212设置在基板24的第二表面上的情况下,为了实现两者的耦合,相应的,第一耦合枝节2211与第二耦合枝节2212具有相同的结构且位置相对应。第二耦合枝节2212设置在基板24的第二表面上的情况,可以节约耦合结构22占用基板24的空间面积。该结构下耦合结构22的耦合长度可以是第一耦合枝节2211的周长和第二耦合枝节2212的周长中最小的周长。
上述第一耦合枝节2211和第二耦合枝节2212直接竖直设置在基板24上,导致耦合结构22占用基板24的空间较多,为了节约空间,相应的,第一耦合枝节2211和第二耦合枝节2212可以弯折,如图4所示,第一耦合枝节2211和第二耦合枝节2212均具有开口环结构,第一耦合枝节2211的开口环结构位于第二耦合枝节2212的开口环结构外侧,第一耦合枝节2211的开口环结构与第二耦合枝节2212的开口环结构之间的间距小于预设数值。
在实施中,上述第一耦合枝节2211和第二耦合枝节2212可以弯折形成具有开口的圆环形,也可以弯折形成具有开口的弧形环,还可以弯折形成具有开口的四边形环等,但是具有开口的四边形环结构相比于具有开口的圆形环结构,其占用空间更少。为了增加第一耦合枝节2211和第二耦合枝节2212之间的耦合长度,相应的,第一耦合枝节2211的开口环结构的开口方向和第二耦合枝节2212的开口环结构的开口方向相同,如果开口方向不相同,则耦合 子结构221的耦合长度将会减少一个开口的长度。
可选的,为了进一步减少耦合结构22占用基板24的空间,相应的还可以是,第一耦合枝节2211设置在基板24的第一表面上,第二耦合枝节2212设置在基板24的第二表面上,且第一耦合枝节2211与第二耦合枝节2212的位置相对应。其中,基板24的第一表面与第二表面相对,第一耦合枝节2211和第二耦合枝节2212通过基板24的厚度相耦合,为了满足耦合,相应的,基板24的厚度小于预设数值。其中,如果巴伦子结构211与第一耦合枝节2211电性连接,则巴伦子结构211设置在第一耦合枝节2211所在的基板24的表面上,即基板24的第一表面上,如果巴伦子结构211与第二耦合枝节2212电性连接,则巴伦子结构211设置在第二耦合枝节2212所在的基板24的表面上,即基板24的第二表面上。
其中,耦合结构22在该结构下,其耦合长度为第一耦合枝节2211和第二耦合枝节2212中周长最小的周长,例如,如果第一耦合枝节2211和第二耦合枝节2212的结构相同,那么耦合长度为第一耦合枝节2211或者第二耦合枝节2212的周长,如果第一耦合枝节2211的周长小于第二耦合枝节2212的周长,则耦合长度为第一耦合枝节2211的周长。
上述耦合结构22属于一级耦合的情况,一级耦合也即是耦合一次,耦合结构22还可以包括两级耦合或者多级耦合,下面将介绍一种两级耦合的耦合结构22:
如图5并参考图6所示,图5是基板24的第一表面的结构示意图,图6是基板24的第二表面的结构示意图,耦合子结构221包括第一耦合枝节2211、第二耦合枝节2212和第三耦合枝节2213,第三耦合枝节2213分别和第一耦合枝节2211、第二耦合枝节2212相耦合;第一耦合枝节2211、第二耦合枝节2212和对应的巴伦子结构211设置在基板24的第一表面上,第三耦合枝节2213设置在基板24的第二表面上;第一耦合枝节2211与对应的巴伦子结构211(与第一耦合枝节2211位于中心轴的同一侧)电性连接,第二耦合枝节2212与对应的辐射臂231(与第二耦合枝节2212位于中心轴的同一侧)电性连接。
其中,第一耦合枝节2211、第二耦合枝节2212和第三耦合枝节2213的形状可以任意设置,例如,可以是弧形的,可以是圆形的,还可以是四边形的,其中,四边形的耦合枝节的占用空间更少,本实施例以及附图可以以四边形的耦合枝节示例,其它形状的耦合枝节的情况至于类似。
在实施中,第三耦合枝节2213通过基板24分别与第一耦合枝节2211、第二耦合枝节2212相耦合,相应的,基板24的厚度小于预设数值。而为了防止第一耦合枝节2211与第二耦合枝节2212相耦合,而导致第三耦合枝节2213不能与第一耦合枝节2211、第二耦合枝节2212相耦合,相应的,第一耦合枝节2211与第二耦合枝节2212之间的距离大于预设数值。又为了使第三耦合枝节2213分别与第一耦合枝节2211、第二耦合枝节2212相耦合,相应的,第三耦合枝节2213的第一部分与第一耦合枝节2211具有相同的结构且位置相对应,第三耦合枝节2213的第二部分与第二耦合枝节2212具有相同的结构且位置相对应,图6中A表示第三耦合枝节2213的第一部分,B表示第三耦合枝节2213的第二部分。
基于上述所述,以高频单元2向外发射信号示例,馈线上的信号传输至巴伦子结构211之后传输到第一耦合枝节2211,信号再耦合至第三耦合枝节2213的第一部分,然后信号沿着第三耦合枝节2213的第一部分与第二部分之间的连接部分传输至第三耦合枝节2213的第二部分,之后,信号再从第三耦合枝节2213的第二部分耦合至第二耦合枝节2212,最后,信号传输至与第二耦合枝节2212电性连接的辐射臂231。
在本发明实施例中,该多频天线包括至少一个高频单元和至少一个低频单元,每个高频单元不仅包括巴伦结构和辐射臂结构,还包括耦合结构,辐射臂结构包括两个辐射臂,巴伦结构包括两个巴伦子结构,耦合结构包括两个耦合子结构。其中,耦合结构设置于巴伦结构和辐射臂结构的连接线路上,具体的,在每个高频单元中,每个耦合子结构分别与一个巴伦子结构、一个辐射臂电性连接。上述耦合结构具有传输频率高于预设阈值的信号,阻断频率低于预设阈值的信号的作用,这样,即使高频单元的巴伦结构和辐射臂结构的一个辐射臂恰好可以等效成一个工作频率接近于低频单元的频率的单极子天线,但是由于耦合结构的存在,使得等效的单极子天线向外辐射的电磁波的频率均高于预设阈值(低频单元产生的电磁波的频率低于预设阈值),避开了低频单元的工作频段,进而,等效的单极子天线对低频单元辐射传输的信号造成的干扰程度较弱,甚至不会对低频单元辐射传输的信号造成干扰。
本发明实施例还提供了一种通信设备,该通信设备包括上述所述的多频天线,该多频天线包括至少一个高频单元和至少一个低频单元,每个高频单元不仅包括巴伦结构和辐射臂结构,还包括耦合结构,辐射臂结构包括两个辐射臂,巴伦结构包括两个巴伦子结构,耦合结构包括两个耦合子结构。其中,耦合结构设置于巴伦结构和辐射臂结构的连接线路上,具体的,在每个高频单元中,每个耦合子结构分别与一个巴伦子结构、一个辐射臂电性连接。上述耦合结构具有传输频率高于预设阈值的信号,阻断频率低于预设阈值的信号的作用,这样,即使高频单元的巴伦结构和辐射臂结构的一个辐射臂恰好可以等效成一个工作频率接近于低频单元的频率的单极子天线,但是由于耦合结构的存在,使得等效的单极子天线向外辐射的电磁波的频率均高于预设阈值(低频单元产生的电磁波的频率低于预设阈值),避开了低频单元的工作频段,进而,等效的单极子天线对低频单元辐射传输的信号造成的干扰程度较弱,甚至不会对低频单元辐射传输的信号造成干扰。
以上所述仅为本发明一个实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (11)

  1. 一种多频天线,其特征在于,所述多频天线包括反射板、至少一个高频单元和至少一个低频单元,每个高频单元包括巴伦结构、耦合结构和辐射臂结构,所述巴伦结构包括两个巴伦子结构,所述耦合结构包括两个耦合子结构,所述辐射臂结构包括两个辐射臂,其中:
    所述至少一个高频单元和所述至少一个低频单元安装在所述反射板上;
    在每个高频单元中,每个耦合子结构分别与一个巴伦子结构、一个辐射臂电性连接;
    所述耦合子结构,用于传输频率高于预设阈值的信号,阻断频率低于所述预设阈值的信号。
  2. 根据权利要求1所述的多频天线,其特征在于,所述高频单元还包括基板,所述基板垂直设置在所述反射板上;
    所述两个辐射臂对称设置在所述基板远离所述反射板的一端,所述耦合结构的两个耦合子结构对称设置在所述基板的表面上,所述巴伦结构的两个巴伦子结构对称设置在所述基板的表面上。
  3. 根据权利要求1或2所述的多频天线,其特征在于,所述耦合子结构包括相耦合的第一耦合枝节和第二耦合枝节,所述第一耦合枝节、所述第二耦合枝节和对应的巴伦子结构设置在所述基板的同一表面上;
    所述第一耦合枝节与对应的巴伦子结构电性连接,所述第二耦合枝节与对应的辐射臂电性连接。
  4. 根据权利要求1至3任一所述的多频天线,其特征在于,所述第一耦合枝节和所述第二耦合枝节均具有开口环结构,所述第一耦合枝节的开口环结构位于所述第二耦合枝节的开口环结构外侧,所述第一耦合枝节的开口环结构与所述第二耦合枝节的开口环结构之间的间距小于预设数值。
  5. 根据权利要求1至4任一所述的多频天线,其特征在于,所述第一耦合枝节的开口环结构与所述第二耦合枝节的开口环结构的开口方向相同。
  6. 根据权利要求2所述的多频天线,其特征在于,所述耦合子结构包括第一耦合枝节、第二耦合枝节和第三耦合枝节,所述第三耦合枝节分别和所述第一耦合枝节、所述第二耦合枝节相耦合;
    所述第一耦合枝节、所述第二耦合枝节和对应的巴伦子结构设置在所述基板的第一表面上,所述第三耦合枝节设置在所述基板的第二表面上;
    所述第一耦合枝节与对应的巴伦子结构电性连接,所述第二耦合枝节与对应的辐射臂电性连接。
  7. 根据权利要求6所述的多频天线,其特征在于,所述基板的厚度小于预设数值,所述第一耦合枝节与所述第二耦合枝节之间的间距大于所述预设数值;
    所述第三耦合枝节的第一部分与所述第一耦合枝节具有相同的结构且位置相对应,所述第三耦合枝节的第二部分与所述第二耦合枝节具有相同的结构且位置相对应。
  8. 根据权利要求1-7任一项所述的多频天线,其特征在于,所述电性连接是直接电性连接或者耦合电性连接。
  9. 根据权利要求1-8任一项所述的多频天线,其特征在于,所述耦合子结构的耦合长度在预设数值范围内。
  10. 根据权利要求9所述的多频天线,其特征在于,所述预设数值范围为所述高频单元的工作频段的中间频点对应的波长的0.15至0.45倍。
  11. 一种通信设备,其特征在于,所述通信设备包括权利要求1-10任一项所述的多频天线。
PCT/CN2019/106174 2018-09-20 2019-09-17 多频天线和通信设备 WO2020057498A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19862533.7A EP3843211B1 (en) 2018-09-20 2019-09-17 Multi-frequency antenna and communication device
US17/206,534 US11563272B2 (en) 2018-09-20 2021-03-19 Multi-band antenna and communications device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811099935.4A CN110931952B (zh) 2018-09-20 2018-09-20 多频天线和通信设备
CN201811099935.4 2018-09-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/206,534 Continuation US11563272B2 (en) 2018-09-20 2021-03-19 Multi-band antenna and communications device

Publications (1)

Publication Number Publication Date
WO2020057498A1 true WO2020057498A1 (zh) 2020-03-26

Family

ID=69856133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106174 WO2020057498A1 (zh) 2018-09-20 2019-09-17 多频天线和通信设备

Country Status (4)

Country Link
US (1) US11563272B2 (zh)
EP (1) EP3843211B1 (zh)
CN (1) CN110931952B (zh)
WO (1) WO2020057498A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4184716A4 (en) * 2020-07-15 2024-01-10 Huawei Technologies Co., Ltd. DUAL FREQUENCY ANTENNA AND ANTENNA ARRAY

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111313155B (zh) * 2018-12-11 2021-11-19 华为技术有限公司 天线和通信设备
CN112134016A (zh) * 2020-09-08 2020-12-25 京信通信技术(广州)有限公司 一种新型巴伦结构及其辐射单元、天线
CN112186345B (zh) * 2020-09-17 2022-02-15 华南理工大学 一种基于谐振器型偶极子的三阶滤波基站天线
CN112310661B (zh) * 2020-09-30 2023-07-28 中信科移动通信技术股份有限公司 一种多频天线阵列及基站***
CN112563733B (zh) * 2020-12-09 2023-08-08 广东通宇通讯股份有限公司 一种高频辐射单元及紧凑型双频带天线
WO2022140139A1 (en) * 2020-12-21 2022-06-30 John Mezzalingua Associates, LLC Decoupled dipole configuration for enabling enhanced packing density for multiband antennas
US20240213682A1 (en) * 2021-07-06 2024-06-27 The Florida International University Board Of Trustees Decoupled multi-band microstrip patch antennas
CN115425386B (zh) * 2022-11-03 2023-03-24 微网优联科技(成都)有限公司 一种srr加载双极化天线的共口径天线阵

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102868017A (zh) * 2012-08-31 2013-01-09 广东通宇通讯股份有限公司 辐射装置及基于辐射装置的阵列天线
CN103840254A (zh) * 2012-11-22 2014-06-04 安德鲁有限责任公司 超宽带双频带蜂窝基站天线
CN105960737A (zh) * 2015-12-03 2016-09-21 华为技术有限公司 一种多频通信天线以及基站
US20160285169A1 (en) * 2015-01-15 2016-09-29 Commscope Technologies Llc Low common mode resonance multiband radiating array

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19912465C2 (de) * 1999-03-19 2001-07-05 Kathrein Werke Kg Mehr-Bereichs-Antennenanlage
US9711871B2 (en) * 2013-09-11 2017-07-18 Commscope Technologies Llc High-band radiators with extended-length feed stalks suitable for basestation antennas
CN103730728B (zh) 2013-12-31 2016-09-07 上海贝尔股份有限公司 多频天线
CN109672015B (zh) * 2014-04-11 2021-04-27 康普技术有限责任公司 消除多频带辐射阵列中的共振的方法
WO2017035726A1 (zh) * 2015-08-31 2017-03-09 华为技术有限公司 一种用于多频天线双极化的天线振子
CN107134639B (zh) * 2017-05-26 2019-08-20 华南理工大学 高异频隔离宽带双频基站天线阵列
CN107359418B (zh) * 2017-05-31 2019-11-29 上海华为技术有限公司 一种多频天线***及控制多频天线***内异频干扰的方法
CN107546489B (zh) * 2017-08-16 2020-12-15 京信通信技术(广州)有限公司 一种消除耦合谐振的多频基站天线
CN112635988B (zh) * 2020-12-17 2024-02-09 立讯精密工业(滁州)有限公司 天线振子单元

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102868017A (zh) * 2012-08-31 2013-01-09 广东通宇通讯股份有限公司 辐射装置及基于辐射装置的阵列天线
CN103840254A (zh) * 2012-11-22 2014-06-04 安德鲁有限责任公司 超宽带双频带蜂窝基站天线
US20160285169A1 (en) * 2015-01-15 2016-09-29 Commscope Technologies Llc Low common mode resonance multiband radiating array
CN105960737A (zh) * 2015-12-03 2016-09-21 华为技术有限公司 一种多频通信天线以及基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3843211A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4184716A4 (en) * 2020-07-15 2024-01-10 Huawei Technologies Co., Ltd. DUAL FREQUENCY ANTENNA AND ANTENNA ARRAY

Also Published As

Publication number Publication date
EP3843211B1 (en) 2023-07-05
US11563272B2 (en) 2023-01-24
EP3843211A4 (en) 2021-10-20
US20210210854A1 (en) 2021-07-08
CN110931952A (zh) 2020-03-27
CN110931952B (zh) 2021-12-24
EP3843211A1 (en) 2021-06-30

Similar Documents

Publication Publication Date Title
WO2020057498A1 (zh) 多频天线和通信设备
WO2020011219A1 (zh) 天线装置及移动终端
JP5738437B2 (ja) 移動通信基地局用二重偏波アンテナ及びそれを使用する多重帯域アンテナシステム
CN104303362B (zh) 多天线***
WO2021073482A1 (zh) 共孔径天线及通信设备
TWI643405B (zh) 天線系統
WO2018064835A1 (zh) 一种喇叭天线
WO2020119657A1 (zh) 天线和通信设备
WO2021042862A1 (zh) 一种天线、天线阵列及通讯设备
CN112635988B (zh) 天线振子单元
WO2018103504A1 (zh) 馈电结构及基站天线
TW202025553A (zh) 微型高增益場型可重構天線
JP7451714B2 (ja) アンテナおよび電子デバイス
WO2021017777A1 (en) Antenna device and electronic device
WO2016138763A1 (zh) 双极化天线
CN106129593A (zh) 一种二维宽角度扫描的全金属相控阵雷达天线单元
CN205355251U (zh) 基于谐振式反射器的宽带定向天线
JP2007311935A (ja) 平面アンテナ
WO2016138650A1 (en) Multiple input multiple output wireless antenna structures and communication device
WO2024139689A1 (zh) 辐射单元和天线
US2297427A (en) Ultra-short wave directive antenna
CN115020990A (zh) 龙勃透镜天线
TWI559614B (zh) Dual - frequency directional antenna device and its array
CN208589522U (zh) 一种双极化辐射单元
CN112909530B (zh) 一种双频双馈天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019862533

Country of ref document: EP

Effective date: 20210324