WO2020051851A1 - 光传送网中的数据传输方法及装置 - Google Patents

光传送网中的数据传输方法及装置 Download PDF

Info

Publication number
WO2020051851A1
WO2020051851A1 PCT/CN2018/105569 CN2018105569W WO2020051851A1 WO 2020051851 A1 WO2020051851 A1 WO 2020051851A1 CN 2018105569 W CN2018105569 W CN 2018105569W WO 2020051851 A1 WO2020051851 A1 WO 2020051851A1
Authority
WO
WIPO (PCT)
Prior art keywords
opuc
instance
frame
frames
opucn
Prior art date
Application number
PCT/CN2018/105569
Other languages
English (en)
French (fr)
Inventor
苏伟
维塞斯·马腾
吴秋游
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2018/105569 priority Critical patent/WO2020051851A1/zh
Priority to CN201880090543.3A priority patent/CN111989933B/zh
Publication of WO2020051851A1 publication Critical patent/WO2020051851A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems

Definitions

  • one or more OPUC instance frames in the n OPUC instance frames include first indication information, and the first indication information is used to indicate a timeslot multiplexing structure used by the corresponding OPUC instance frame.
  • the device receiving the OPUCn frame determines the time slot multiplexing structure adopted by the OPUC instance frame in the OPUCn frame in order to extract service data.
  • the implementation of the first OPUC may include: time slot division of 20 5G time slots in the second OPUC, each 5G time slot is divided into two 2.5 The G time slot is changed to 40 2.5G time slots to obtain the fourth OPUC.
  • Method 2 The time slot is divided into the payload area of the OPUC.
  • the OPUCn provided in the embodiment of the present application introduces mixed slot granularity, including multiple OPUCs. Therefore, when transmitting service data, the transmitting end can perform mapping according to the actual service rate. For example, service data with a bit rate of 1.25G can be mapped into a 1.25G time slot of the first OPUC. On the one hand, this approach improves network bandwidth utilization. On the other hand, the business does not need to go through multiple levels of mapping, which simplifies the complexity of the mapping.
  • one or more OPUCs in the n OPUCs include first indication information, and the first indication information is used to indicate a timeslot multiplexing structure adopted by the corresponding OPUC.
  • “one or more OPUCs” means “one or more OPUCs”
  • the first indication information is used to indicate a time slot multiplexing structure used by all OPUCs in the corresponding way.
  • a device receiving OPUCn can determine a time slot multiplexing structure adopted by OPUC in OPUCn, so as to extract service data.
  • the device receiving OPUCn can determine the occupancy of the time slot in OPUC in OPUCn, so as to extract service data.
  • the first indication information and the second indication information may both be placed in a payload structure indicator (payload structure identifier) (PSI) overhead position.
  • PSI payload structure indicator
  • the bytes carrying the PSI in each OPUC are located in row 4 and column 15 in OPUC (see Figure 6).
  • 256 OPUCs in one OPUC carry a complete PSI information.
  • the first indication information may occupy one or more of the 256 bytes.
  • the second indication information may include M sub-indication information, where the m-th sub-instruction information is used to indicate the occupancy of the m-th time slot in all OPUCs in one OPUC.
  • One sub-indication message can occupy one or more of the 256 bytes.
  • M is the total number of time slots included in each OPUC in the OPUC of the channel.
  • the first instruction information and the second instruction information are exemplarily described below by taking the second channel OPUC and the third channel OPUC in FIG. 7 as examples.
  • the first indication information may be recorded as PTsub.
  • the PTsub included in the second OPUC and the third OPUC may be located in PSI [1].
  • the PTsub indicates that the time slot multiplexing structure used by all OPUCs in the second OPUC is 80 * 1.25G time slots.
  • the value of the PTsub included in the third OPUC may be 0x24, and the time slot multiplexing structure corresponding to the PTsub is 4 * 25G time slots.
  • the PTsub indicates that the time slot multiplexing structure used by all OPUCs in the third OPUC is 4 *. 25G time slot.
  • PSI [r] refers to the r-th byte of 256 bytes, where r is an integer greater than or equal to 0 and less than or equal to 255.
  • the timeslot multiplexing structure of multiple OPUCs may be the same.
  • multiple OPUCs belonging to the same OPUC may share a multiframe indication.
  • the three OPUCs can share the multi-frame indication included in the OPUC. If the 80-frame multi-frame of OPUC includes 80 OPUC # 2, 80 OPUC # 2 (denoted as OPUC # 2 1 to OPUC # 2 80 ) are one of the three OPUCs. Referring to FIG.
  • multi-channel OPUCs of the same type of OPUC share a multi-frame indication. Compared with the multi-frame indication included in each OPUC, the amount of information carried in OPUCn can be reduced. In addition, the receiving end resolves multiple OPUCs by processing a multi-frame indication, which can reduce the processing complexity of the receiving end.
  • the embodiments of the present application provide a data transmission method, device, and system in an optical transmission network.
  • the OPUCn in the method may be any one of the OPUCn provided in the foregoing embodiments. As shown in Figure 11, it includes:
  • the service data can be ODU, for example: ODU0, ODU1, ODU2, ODU2e (dedicated ODU frames used to carry 10 Gigabit Ethernet (10GE) services), ODU3, ODU4, ODUflex, or directly customers Business data.
  • ODU0 ODU0
  • ODU1 ODU2, ODU2e (dedicated ODU frames used to carry 10 Gigabit Ethernet (10GE) services)
  • ODU3, ODU4, ODUflex or directly customers
  • Business data for example: Ethernet services, common public radio interface (CPRI) services, enhanced common public radio interface (eCPRI) services, fiber channel (FC) services, and dedicated line services.
  • CPRI common public radio interface
  • eCPRI enhanced common public radio interface
  • FC fiber channel
  • dedicated line services dedicated line services.
  • the multiple OPUCs include at least two of the following three types of OPUCs: OPUCs containing 80 * 1.25G time slots (that is, the first OPUC), and OPUCs containing 20 * 5G time slots (that is, the second OPUC). OPUC), which contains 4 * 25G timeslots (that is, the third OPUC).
  • OPUCs containing 80 * 1.25G time slots that is, the first OPUC
  • OPUCs containing 20 * 5G time slots that is, the second OPUC
  • OPUC which contains 4 * 25G timeslots
  • the multiple OPUCs include an OPUC including 80 time slots with a timeslot rate of 1.25G, and an OPUC including 80 time slots with a timeslot rate of 1.25G is obtained by increasing the rate of the OPU4 frame.
  • an OPUC including 80 time slots with a timeslot rate of 1.25G is obtained by increasing the rate of the OPU4 frame.
  • OPU instance frames there may be one or more types of OPU instance frames corresponding to one-way service data.
  • the mapping method adopted by the transmitting end may be GMP.
  • One channel of service data can be mapped into the corresponding type of OPU instance frame.
  • step 11) in specific implementation includes: when the sending end determines that the bit rate of the service data is an integer multiple of the slot rate of the time slot included in one or more OPUCs, determining the one or more OPUC is the type of OPUC corresponding to service data. By mapping the service data to one or more OPUCs of the corresponding OPUC type, bandwidth waste can be avoided.
  • the sender can determine the OPUC corresponding to ODUflex1.
  • the type is the first OPUC, or 2.5G is twice the slot rate of 2.5G of the time slot included in the OPUC in the fourth type of OPUC. Therefore, the transmitting end may also determine that the type of the OPUC corresponding to ODUflex1 is the first.
  • the transmitting end may also determine the number of occupied time slots according to the bit rate of the service data and the type of the corresponding OPUC. Based on the previous example, when the type of OPUC corresponding to ODUflex1 is the first OPUC, the sender can also determine that the number of timeslots occupied by service data is 2. When the type of OPUC corresponding to ODUflex1 is the fourth OPUC, send The end may also determine that the number of time slots occupied by the service data is one.
  • step 12 taking OP1n including n1 first OPUCs (denoted as OPUCn1) and n2 second OPUCs (denoted as OPUCn2) as examples, the implementation process of step 12) is exemplarily described.
  • the transmitting end can map ODUflex1 to ODUflexi to two time slots in OPUCn1 respectively.
  • the bit rate of ODUflex (i + 1) to ODUflexj is 5G
  • the transmitting end can map ODUflex (i + 1) to ODUflexj to 1 slot in OPUCn2 respectively.
  • OPUCn also includes n3 third OPUCs (referred to as OPUCn3), see FIG. 13. If the bit rate of ODUflex (j + 1) to ODUflexk is 25G, the sender can also change ODUflex (j + 1) to ODUflexk is mapped into one slot in OPUCn3.
  • an ODUflex can be mapped to one or more OPUCs.
  • step 12) specifically includes: 21) the sender adds the mapping overhead of the service data to the ODTU of one or more OPUCs belonging to the type of OPUC corresponding to the service data, and multiplexes the ODTU to one or more OPUCs in.
  • ODTU is an intermediate frame formed by one or more time slots of OPUC.
  • the service data may be mapped to an ODTU composed of multiple time slots in an OPUC belonging to the type of OPUC corresponding to the service data, and the ODTU may be multiplexed into the OPUC, or may be mapped to the corresponding data belonging to the service data.
  • the ODTU composed of multiple time slots in multiple OPUCs of the OPUC type is multiplexed into the multiple OPUCs.
  • the transmitting end may add mapping overhead from ODUflex1 to ODUflexi to an ODTU composed of one or more time slots of OPUCn1, and multiplex the ODTU into OPUCn1.
  • the combination of OPUCn1 and OPUCn2 is OPUCn.
  • the transmitting end may also directly multiplex the ODTU multiplexed to OPUCn1 and the ODTU multiplexed to OPUCn2 to obtain OPUCn.
  • the sending end sends OPUCn to the receiving end. Accordingly, the receiving end receives OPUCn from the transmitting end.
  • the transmitting end can add ODUOH to OPUCn to obtain ODUCn frames, and then add OTUOH to ODUCn frames to obtain OTUCn frames, and send OTUCn frames to the receiving end.
  • the receiving end may receive the OTUCn frame from the transmitting end, and obtain the OPUCn from the OTUCn frame.
  • the receiving end obtains service data from the time slots included in the n OPUCs.
  • OPUCn includes multiple OPUCs.
  • the transmitting end may select an appropriate OPUC for mapping according to the bit rate of the service data.
  • the bit rate is 1.25G Service data can be mapped into a 1.25G time slot of the first OPUC.
  • this approach improves network bandwidth utilization.
  • the business does not need to go through multiple levels of mapping, reducing the mapping complexity.
  • step 1103 in specific implementation includes: 31) the receiving end determines the first information, the first information is the number of timeslots and timeslot rate contained in the n OPUCs; 32) the receiving end determines the second information, the second information Time slot occupation of the time slots included in the n OPUCs; 33) the receiving end determines the third information, and the third information is a multiframe indication of the n OPUCs; 34) the receiving end according to the first information, the second information, and the third information The information is demultiplexed to OPUCn to obtain an ODTU; 35) The receiving end demaps service data from the ODTU.
  • one or more OPUCs in the n OPUCs include first indication information, and the first indication information is used to indicate a timeslot multiplexing structure adopted by the corresponding OPUC.
  • first indication information is used to indicate a timeslot multiplexing structure adopted by the corresponding OPUC.
  • step 31) in specific implementation may include: the receiving end determines the first information according to the first indication information included in one or more OPUCs of the n OPUCs.
  • each of the n OPUCs includes second indication information, and the information is used to indicate a slot occupation situation of the corresponding OPUC.
  • the optional method refer to the foregoing, and details are not described herein again.
  • step 32) in specific implementation may include: the receiving end determines the second information according to the second instruction information included in each OPUC of the n OPUCs.
  • the receiving end may determine whether the time slot in the OPUC is occupied and which service is occupied according to the acquired MSI carried in the OPUC.
  • the OPUCs belonging to the same type among the n OPUCs share a multiframe indication.
  • the optional method refer to the foregoing, and details are not described herein again.
  • step 33) in specific implementation may include: the receiving end determines the third information according to the multiframe indication included in at least one OPUC of the n OPUCs.
  • the receiving end may determine that the timeslot multiplexing structure of the multiple OPUCs is the same according to the first instruction information, and then according to one of the multiple ways
  • the multi-frame indication included in the OPUC determines the multi-frame indication of the multi-channel OPUC.
  • the receiving end can determine which OPUC is a multiframe according to the multiframe instruction, thereby demultiplexing OPUC into multiple ODTUs, extracting mapping overhead information (that is, the aforementioned Cm and CnD information) from multiple ODTUs, and demapping each service. .
  • An embodiment of the present application further provides an OPUCn, including: n OPUCs, each OPUC of the n OPUCs includes an 80 * 1.25G time slot, and n is an integer greater than 1.
  • OPUC is obtained by increasing the rate of the OPU4 frame.
  • rate improvement of the OPU4 frame refer to the description of the relevant part above, and will not be repeated here.
  • FIG. 14 illustrates a division manner of n OPUCs in this OPUCn, where a payload area of each OPUC in this OPUCn is divided into 80 * 1.25G time slots.
  • the sending end may add mapping overhead from ODUflex1 to ODUflexk to ODTUCn.ts in OPUCn (that is, an ODTU consisting of ts 1.25G time slots in OPUCn), and multiplex multiple ODTUCn.ts. Use OPUCn.
  • one ODUflex may be mapped to one or more OPUCs.
  • ODUflexi may add a mapping overhead to the first and last OPUCs in OPUCn.
  • the mapping method may be GMP.
  • OPUCs in the OPUCn provided in the embodiments of the present application all include 80 * 1.25G time slots. Because the granularity of time slot division is small, the bit rate is 1.25G compared to the OPUCn with 5G time slot division granularity.
  • the service data can be mapped to a 1.25G time slot in the OPUCn provided in the embodiment of the present application, and need not be mapped to a 5G time slot, which can improve bandwidth utilization.
  • FIG. 16 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication device may be a transmitting end or a receiving end in the above embodiments.
  • the communication device 160 includes a processing unit 1601 and a communication unit 1602, and may further include a storage unit 1603.
  • the communication unit 1602 may include a transmitting unit and a receiving unit. It should be noted that the sending unit or the receiving unit may be an optional unit.
  • the processing unit 1601 is configured to perform step 1101 in FIG. 11, and the communication unit 1602 is configured to perform step 1102 in FIG. 11.
  • the processing unit 1601 may include a mapping unit, step 1101 in FIG. 11 may be specifically performed by the mapping unit, and step 1102 in FIG. 11 may be specifically performed by a sending unit in the communication unit 1602.
  • the processing unit 1601 is configured to perform step 1103 in FIG. 11, and the communication unit 1602 is configured to perform step 1102 in FIG. 11.
  • the processing unit 1601 may include an obtaining unit, step 1103 in FIG. 11 may be specifically performed by the obtaining unit, and step 1102 in FIG. 11 may be specifically performed by a receiving unit in the communication unit 1602.
  • each unit may be located in a circuit board in the OTN hardware structure diagram shown in FIG. 2. This application does not place any restrictions on the location of the board where each unit is located.
  • processing unit may also be replaced with a processor, a transmitter, a receiver, and a communication interface (or transceiver).
  • transmitting unit may be an optical module having only a transmitting function or having two functions of transmitting and receiving
  • receiving unit may be an optical module having only a receiving function or having both functions of transmitting and receiving.
  • An embodiment of the present application further provides a chip, in which a circuit and one or more interfaces for implementing the functions of the processor are integrated.
  • the chip When a memory is integrated in the chip, the chip is connected to the optical module through the interface, so that the optical module is used to send the OPUCn mentioned in the above method embodiment to other communication devices, or to receive frames sent by other communication devices from the optical module.
  • the chip When no memory is integrated in the chip, it can be connected to the external memory through this interface, and the chip implements the internal execution of the communication device (sending or receiving end) in the above embodiment according to the program code stored in the external memory. And send and receive OPUCn by connecting the optical module to it.
  • the functions supported by the chip may include processing actions based on the sending end or the receiving end in the embodiment described in FIG. 11, and details are not described herein again.
  • the processing unit or processor may be a central processing unit, a general-purpose processor, an application-specific integrated circuit (ASIC), a microprocessor (digital processing processor, DSP), or a field programmable gate array (DSP). field programmable array (FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. Whether these functions are performed by hardware or software depends on the specific application and design constraints of the technical solution. Professionals can use different methods for each specific application.
  • An embodiment of the present application further provides a computer storage medium, including: computer instructions that, when the computer instructions run on the computer, cause the computer to execute any one of the methods in the foregoing embodiments.
  • An embodiment of the present application further provides a computer program product containing instructions, and when the instructions are run on a computer, the computer is caused to execute any one of the methods in the foregoing embodiments.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, the processes or functions according to the embodiments of the present application are wholly or partially generated.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website site, computer, server, or data center via a wired (for example, Coaxial cable, optical fiber, digital subscriber line (DSL), or wireless (such as infrared, wireless, microwave, etc.) to transmit to another website site, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including one or more servers, data centers, and the like that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)), or the like.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a DVD
  • a semiconductor medium for example, a solid state disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

本申请实施例提供了一种光传送网中的数据传输方法及装置,以提高带宽利用率。一个具体的数据传输方法包括:发送端将业务数据映射到光净荷单元Cn(OPUCn)帧中,OPUCn帧由n个光净荷单元C(OPUC)实例帧组成,n个OPUC实例帧包括多种OPUC实例帧,多种OPUC实例帧中的任意两种OPUC实例帧包含的时隙的时隙速率不同,n为大于1的整数;发送端向接收端发送OPUCn帧。通过在OPUCn中引入混合时隙粒度,可以提高网络带宽利用率,简化映射的复杂度。

Description

光传送网中的数据传输方法及装置 技术领域
本申请涉及光通信技术领域,尤其涉及一种光传送网中的数据传输方法及装置。
背景技术
光传送网(optical transport network,OTN)具备丰富的操作、管理与维护(operation administration and maintenance,OAM)能力、强大的串联连接监视(tandem connection monitoring,TCM)能力和带外前向错误纠正(forward error correction,FEC)能力,能够实现大容量业务的灵活调度和管理。
在OTN中,发送端可以将业务数据映射到光净荷单元Cn(OPUCn)帧中,再为OPUCn添加光数据单元Cn(optical data unit-Cn,ODUCn)开销和光传输单元Cn(optical transport unit-Cn,OTUCn)开销得到封装的OTUCn,将OTUCn向接收端发送。
在将业务数据映射到OPUCn的过程中,通常需要先将业务数据映射到ODU0、ODU1或ODUflex,再将ODU0、ODU1或比特速率不是5G整数倍的ODUflex业务映射到ODU2、ODU3或ODU4中,然后将ODU2、ODU3或ODU4映射到OPUCn的1个或多个5G时隙中。该过程会带来过多的复用处理,增加了发送端的处理复杂度。为了降低处理复杂度,可以直接将ODU0、ODU1或比特速率不是5G整数倍的ODUflex业务映射到OPUCn的1个或多个5G时隙中,但是这样会存在带宽的浪费。
发明内容
本申请实施例提供了一种光传送网中的数据传输方法及装置,以提高带宽利用率。
第一方面,提供了一种光传送网中的数据传输方法,包括:发送端将业务数据映射到OPUCn帧中,OPUCn帧由n个OPUC实例帧组成,n个OPUC实例帧包括多种OPUC实例帧,多种OPUC实例帧中的任意两种包含的时隙的时隙速率不同,n为大于1的整数;发送端向接收端发送OPUCn帧。第一方面提供的方法中,OPUCn帧包括多种OPUC实例帧,发送端在将业务数据映射到一个OPUCn帧的过程中,可以根据业务数据的比特速率选择合适的OPUC实例帧进行映射。一方面,这种方式提高了网络带宽利用率。另外一方面,业务无需经过多个层级的映射,降低映射复杂度。
在一种可能的实现方式中,业务数据为ODU0、ODU1、ODU2、ODU3、ODU4或ODUflex。
在一种可能的实现方式中,发送端将业务数据映射到OPUCn帧中,包括:发送端确定业务数据对应的OPUC实例帧的种类;发送端将业务数据映射到属于业务数据对应的OPUC实例帧的种类的一个或多个OPUC实例帧中。该种可能的实现方式,可以根据业务数据的比特速率选择合适的OPUC实例帧进行映射,从而提高带宽利用率。
在一种可能的实现方式中,发送端将业务数据映射到属于业务数据对应的OPUC实例帧的种类的一个或多个OPUC实例帧中,包括:发送端将业务数据添加映射开销 到属于业务数据对应的OPUC实例帧的种类的一个或多个OPUC实例帧的ODTU中,并将ODTU复用到一个或多个OPUC实例帧中。该种可能的实现方式,可以根据业务数据的比特速率选择合适的OPUC实例帧进行映射,从而提高带宽利用率。
在一种可能的实现方式中,多种OPUC实例帧中包括以下三种OPUC实例帧中的至少两种OPUC实例帧:包含80个时隙速率为1.25吉比特(Gbit)/秒(s)的时隙的OPUC实例帧,包含20个时隙速率为5Gbit/s的时隙的OPUC实例帧,包含4个时隙速率为25Gbit/s的时隙的OPUC实例帧。该种可能的实现方式,提供了多种可能的OPUCn帧,从而使得本申请实施例提供的OPUCn帧可以适应不同的应用场景。
在一种可能的实现方式中,n个OPUC实例帧中的一个或多个OPUC实例帧中包含第一指示信息,第一指示信息用于指示对应的OPUC实例帧所采用的时隙复用结构。该种可能的实现方式,通过在OPUC实例帧包含第一指示信息,使得接收OPUCn帧的设备确定OPUCn帧中的OPUC实例帧所采用的时隙复用结构,以便提取业务数据。
在一种可能的实现方式中,n个OPUC实例帧中的每个OPUC实例帧中包含第二指示信息,第二指示信息用于指示对应的OPUC实例帧的时隙的占用情况。该种可能的实现方式,通过在OPUC实例帧中包含第二指示信息,可以使得接收OPUCn帧的设备确定OPUCn帧中的OPUC实例帧中的时隙的占用情况,以便提取业务数据。
在一种可能的实现方式中,多种OPUC实例帧中包括包含80个时隙速率为1.25Gbit/s的时隙的OPUC实例帧,包含80个时隙速率为1.25Gbit/s的时隙的OPUC实例帧通过对OPU4帧进行速率提升得到。该种实现方式,针对包含80个时隙速率为1.25Gbit/s的时隙的OPUC实例帧,可以直接通过对OPU4帧进行速率提升得到,不需要重新对OPUC实例帧的净荷区进行划分,重用了现有处理流程,降低了实现复杂度。
在一种可能的实现方式中,n个OPUC实例帧中属于同一种的OPUC实例帧共用一个复帧指示。该种可能的实现方式,通过共用复帧指示,与在每个OPUC实例帧包含复帧指示相比,可以减少OPUCn中携带的信息量,从而提高OPUCn帧的传输效率。
第二方面,提供了一种光传送网中的数据传输方法,包括:接收端接收OPUCn帧,OPUCn帧由n个OPUC实例帧组成,n个OPUC实例帧包括多种OPUC实例帧,多种OPUC实例帧中的任意两种包含的时隙的时隙速率不同,n为大于1的整数;接收端从n个OPUC实例帧包含的时隙中获取业务数据。第二方面提供的方法,由于OPUCn帧包括多种OPUC实例帧,发送端在将业务数据映射到一个OPUCn帧的过程中,可以根据业务数据的比特速率选择合适的OPUC实例帧进行映射,接收端可以根据接收到的OPUCn帧获取业务数据。一方面,这种方式提高了网络带宽利用率。另外一方面,业务无需经过多个层级的映射,降低了映射的复杂度。
在一种可能的实现方式中,业务数据为ODU0、ODU1、ODU2、ODU3、ODU4或ODUflex。
在一种可能的实现方式中,接收端从n个OPUC实例帧包含的时隙中获取业务数据,包括:接收端确定第一信息,第一信息为n个OPUC实例帧包含的时隙数量和时隙速率;接收端确定第二信息,第二信息为n个OPUC实例帧包含的时隙的时隙占用情况;接收端确定第三信息,第三信息为n个OPUC实例帧的复帧指示;接收端根据第一信息、第二信息和第三信息对OPUCn帧解复用得到光数据支路单元ODTU;接 收端从ODTU中解映射出业务数据。该种可能的实现方式,使得接收端可以从OPUCn帧中获取业务数据。
在一种可能的实现方式中,n个OPUC实例帧中的一个或多个OPUC实例帧中包含第一指示信息,第一指示信息用于指示对应的OPUC实例帧所采用的时隙复用结构,接收端确定第一信息,包括:接收端根据n个OPUC实例帧中的一个或多个OPUC实例帧包含的第一指示信息确定第一信息。该种可能的实现方式,通过在OPUC实例帧中包含第一指示信息,使得接收端可以确定OPUCn帧中的OPUC实例帧所采用的时隙复用结构,从而提取业务数据。
在一种可能的实现方式中,n个OPUC实例帧中的每个OPUC实例帧中包含第二指示信息,第二指示信息用于指示对应的OPUC实例帧的时隙的占用情况,接收端确定第二信息,包括:接收端根据n个OPUC实例帧中的每个OPUC实例帧中包含的第二指示信息确定第二信息。该种可能的实现方式,通过在OPUC实例帧中包含第二指示信息,使得接收端可以确定OPUCn帧中的OPUC实例帧中的时隙的占用情况,从而提取业务数据。
在一种可能的实现方式中,n个OPUC实例帧中属于同一种的OPUC实例帧共用一个复帧指示,接收端确定第三信息,包括:接收端根据n个OPUC实例帧中的至少一个OPUC实例帧中包含的复帧指示确定第三信息。该种可能的实现方式,通过共用复帧指示,与在每个OPUC实例帧包含复帧指示相比,可以减少OPUCn中携带的信息量,从而提高OPUCn帧的传输效率。
在一种可能的实现方式中,多种OPUC实例帧中包括以下三种OPUC实例帧中的至少两种OPUC实例帧:包含80个时隙速率为1.25吉比特(Gbit)/秒(s)的时隙的OPUC实例帧,包含20个时隙速率为5Gbit/s的时隙的OPUC实例帧,包含4个时隙速率为25Gbit/s的时隙的OPUC实例帧。该种可能的实现方式,提供了多种可能的OPUCn帧,从而使得本申请实施例提供的OPUCn帧可以适应不同的应用场景。
在一种可能的实现方式中,多种OPUC实例帧中包括包含80个时隙速率为1.25Gbit/s的时隙的OPUC实例帧,包含80个时隙速率为1.25Gbit/s的时隙的OPUC实例帧通过对OPU4帧进行速率提升得到。该种可能的实现方式,针对包含80个时隙速率为1.25Gbit/s的时隙的OPUC实例帧,可以直接通过对OPU4帧进行速率提升得到,不需要重新对OPUC实例帧的净荷区进行划分,降低了实现复杂度。
第三方面,提供了一种光传送网中的数据传输装置,该装置具有实现第一方面提供的任意一种方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。该装置可以以芯片的产品形态存在。
第四方面,提供了一种光传送网中的数据传输装置,该装置具有实现第二方面提供的任意一种方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。该装置可以以芯片的产品形态存在。
第五方面,提供了一种光传送网中的数据传输装置,包括:存储器和处理器,还可以包括通信接口,通信接口、存储器和处理器通过通信总线连接,存储器用于存储 指令,处理器通过执行该指令以实现第一方面提供的任意一种方法。该装置可以以芯片的产品形态存在。
第六方面,提供了一种光传送网中的数据传输装置,包括:存储器和处理器,还可以包括通信接口,通信接口、存储器和处理器通过通信总线连接,存储器用于存储指令,处理器通过执行该指令以实现第二方面提供的任意一种方法。该装置可以以芯片的产品形态存在。
第七方面,提供了一种OPUCn帧,包括:n个OPUC实例帧,n个OPUC实例帧包括多种OPUC实例帧,多种OPUC实例帧中的任意两种OPUC实例帧包含的时隙的时隙速率不同,n为大于1的整数。第七方面提供的OPUCn帧中引入了混合时隙粒度,包括多种OPUC实例帧。因此,发送端在映射业务数据时,可以根据实际业务速率来进行业务映射。一方面,这种方式提高了网络带宽利用率。另外一方面,业务无需经过多个层级的映射,简化了映射的复杂度。
在一种可能的实现方式中,多种OPUC实例帧中包括以下三种OPUC实例帧中的至少两种OPUC实例帧:包含80个时隙速率为1.25吉比特(Gbit)/秒(s)的时隙的OPUC实例帧,包含20个时隙速率为5Gbit/s的时隙的OPUC实例帧,包含4个时隙速率为25Gbit/s的时隙的OPUC实例帧。该种可能的实现方式,提供了多种可能的OPUCn帧,从而使得本申请实施例提供的OPUCn帧可以适应不同的应用场景。
在一种可能的实现方式中,n个OPUC实例帧中的一个或多个OPUC实例帧中包含第一指示信息,第一指示信息用于指示对应的OPUC实例帧所采用的时隙复用结构。该种可能的实现方式,通过在OPUC实例帧中包含第一指示信息,可以使得接收OPUCn帧的设备确定OPUCn帧中的OPUC实例帧所采用的时隙复用结构,以便提取业务数据。
在一种可能的实现方式中,n个OPUC实例帧中的每个OPUC实例帧中包含第二指示信息,第二指示信息用于指示对应的OPUC实例帧的时隙的占用情况。该种可能的实现方式,通过在OPUC实例帧中包含第二指示信息,可以使得接收OPUCn帧的设备确定OPUCn帧中的OPUC实例帧中的时隙的占用情况,以便提取业务数据。
在一种可能的实现方式中,多种OPUC实例帧中包括包含80个时隙速率为1.25Gbit/s的时隙的OPUC实例帧,包含80个时隙速率为1.25Gbit/s的时隙的OPUC实例帧通过对OPU4帧进行速率提升得到。该种可能的实现方式,针对包含80个时隙速率为1.25Gbit/s的时隙的OPUC实例帧,可以直接通过对OPU4帧进行速率提升得到,不需要重新对OPUC实例帧的净荷区进行划分,还可以重用现有的处理流程,降低了实现复杂度。
在一种可能的实现方式中,n个OPUC实例帧中属于同一种的OPUC实例帧共用一个复帧指示。该种可能的实现方式,通过共用复帧指示,与在每个OPUC实例帧包含复帧指示相比,可以减少OPUCn中携带的信息量,从而提高OPUCn帧的传输效率。
第八方面,提供了一种发送端,包括:第三方面或第五方面提供的任意一种装置。
第九方面,提供了一种接收端,包括:第四方面或第六方面提供的任意一种装置。
第十方面,提供了一种通信***,包括:第三方面提供的任意一种装置和第四方面提供的任意一种装置;或者,第五方面提供的任意一种装置和第六方面提供的任意 一种装置;或者,包括第三方面提供的任意一种装置的发送端和包括第四方面提供的任意一种装置的接收端;或者,包括第五方面提供的任意一种装置的发送端和包括第六方面提供的任意一种装置的接收端。
第十一方面,提供了一种计算机存储介质,包括:计算机指令,当计算机指令在计算机上运行时,使得计算机执行第一方面提供的任意一种方法。
第十二方面,提供了一种计算机存储介质,包括:计算机指令,当计算机指令在计算机上运行时,使得计算机执行第二方面提供的任意一种方法。
第十三方面,提供了一种包含指令的计算机程序产品,当该指令在计算机上运行时,使得计算机执行第一方面提供的任意一种方法。
第十四方面,提供了一种包含指令的计算机程序产品,当该指令在计算机上运行时,使得计算机执行第二方面提供的任意一种方法。
第三方面至第六方面、第八方面至第十四方面中任一种实现方式所带来的技术效果可参见第一方面或第二方面中对应的实现方式所带来的技术效果,此处不再赘述。
附图说明
图1为本申请实施例应用的一种网络架构示意图;
图2为一种可能的OTN设备的硬件结构示意图;
图3为一种OTUk帧的帧结构示意图;
图4为一种OTUCn帧的帧结构示意图;
图5为本申请实施例提供的OPUCn帧净荷区的一种可能的时隙划分示意图;
图6为本申请实施例提供的OPUCn帧的一种可能的帧结构示意图;
图7为本申请实施例提供的256个OPUC#2中的256个PSI字节的示意图;
图8为本申请实施例提供的一种可能的时隙占用情况示意图;
图9为本申请实施例提供的又一种可能的时隙占用情况示意图;
图10为本申请实施例提供的一路OPUC实例帧的帧结构示意图;
图11为本申请实施例提供的一种光传送网中的数据传输方法的流程图;
图12为本申请实施例提供的业务数据的一种可能的映射示意图;
图13为本申请实施例提供的业务数据的又一种可能的映射示意图;
图14为本申请实施例提供的OPUCn帧净荷区的另一种可能的时隙划分示意图;
图15为本申请实施例提供的业务数据的又一种可能的映射示意图;
图16为本申请实施例提供的一种通信装置的组成示意图;
图17为本申请实施例提供的又一种通信装置的组成示意图;
图18为本申请实施例提供的另一种通信装置的组成示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,“至少一个”是指一个或多个,“多个”是指两个或两个以上。
本申请实施例描述的网络架构以及业务场景是为了更加清楚地说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限制。本领域普通技术人员 可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题同样适用。
本申请的实施例适用于光网络,例如:OTN。一个OTN通常由多个OTN设备通过光纤连接而成,可以根据具体需要组成如线型、环形和网状等不同的拓扑类型。如图1所示的OTN由两个OTN网络(分别为OTN网络1和OTN网络2)组成。每一个OTN网络由一定数量的OTN设备(图1中用N表示)组成,OTN网络内的设备之间的链路为域内链路,OTN网络间的设备之间的链路为域间链路。根据实际的需要,一个OTN设备可能具备不同的功能。一般地来说,OTN设备分为光层设备、电层设备,以及光电混合设备。光层设备指的是能够处理光层信号的设备,例如:光放大器(optical amplifier,OA)、光分插复用器(optical add-drop multiplexer,OADM)。OA也可被称为光线路放大器(optical line amplifier,OLA),主要用于对光信号进行放大,以支持在保证光信号的特定性能的前提下传输更远的距离。OADM用于对光信号进行空间的变换,从而使其可以从不同的输出端口(有时也称为方向)输出。根据能力不同,OADM可以分为固定的OADM(fixed OADM,FOADM),可配置的OADM(reconfigurable OADM,ROADM)等。电层设备指的是能够处理电层信号的设备,例如:能够处理ODU信号的设备。光电混合设备指的是具备处理光层信号和电层信号能力的设备。需要说明的是,根据具体的集成需要,一台OTN设备可以集合多种不同的功能。本申请提供的技术方案适用于不同形态和集成度的OTN设备。
图2给出了一个OTN设备的硬件结构示意图。具体的,一个OTN设备包括电源、风扇、辅助类单板,还可能包括支路板、线路板、交叉板,以及***控制和通信类单板,其中,线路板也可以是光层处理单板。需要说明的是,根据具体的需要,每个设备具体包含的单板类型和数量可能不相同。例如:作为核心节点的网络设备可能没有支路板。作为边缘节点的网络设备可能有多个支路板。其中,电源用于为OTN设备供电,可能包括主用和备用电源。风扇用于为设备散热。辅助类单板用于提供外部告警或者接入外部时钟等辅助功能。支路板、交叉板和线路板主要是用于处理OTN的电层信号(后续称为OTN帧)。其中,支路板用于实现各种客户业务的接收和发送,例如同步数字体系(synchronous digital hierarchy,SDH)业务、分组业务、以太网业务和前传业务等。更进一步地,支路板可以划分为客户侧光模块和信号处理器。其中,客户侧光模块可以为光收发器,用于接收和/或发送客户信号。信号处理器用于实现对客户信号到OTN帧的映射和解映射处理。交叉板用于实现OTN帧的交换,完成一种或多种类型的OTN帧的交换。线路板主要实现线路侧OTN帧的处理。具体的,线路板可以划分为线路侧光模块和信号处理器。其中,线路侧光模块可以为线路侧光收发器,用于接收和/或发送OTN帧。信号处理器用于实现对线路侧的OTN帧的复用和解复用,或者映射和解映射处理。***控制和通信类单板用于实现***控制和通信。具体的,可以通过背板从不同的单板收集信息,或者将控制指令发送到对应的单板上去。需要说明的是,除非特殊说明,具体的组件(例如:信号处理器)可以是一个或多个,本申请不做任何限制。还需要说明的是,本申请实施例不对设备包含的单板类型,以及单板具体的功能设计和数量做任何限制。
在电层上,OTN设备所处理的OTN帧可以采用国际电信联盟-电信标准分部 (International Telecommunication Union-Telecommunication standard sector,ITU-T)定义的帧格式。例如,G.709标准和G.709.1标准等,以实现设备之间的互通。现有的标准中已经定义了多种速率的OTN帧,如光净荷单元k(optical payload unit-k,OPUk)帧、光数据单元k(optical data unit-k,ODUk)帧和光传输单元k(optical transport unit-k,OTUk)帧。其中,k=0,1,2,3,4,Cn和flex分别表示比特速率为1.25吉比特(Gbit)/秒(s),2.5Gbit/s,10Gbit/s,40Gbit/s,100Gbit/s,n*100Gbit/s,n*1.25Gbit/s(n≥2)。需要说明的是,上述提及的比特速率均为近似值。例如,OPU4帧的比特速率更准确为104.35597533Gbit/s,OPU4帧中包含80个时隙,则每个时隙的比特速率大约为1.301683217Gbit/s。
图3示出了一个OTUk(k不等于Cn)帧的帧结构示意图。如图3所示,一个OTUk帧有4行*4080列。OPUk净荷区和OPUk开销区(即OPUk OH)构成了OPUk帧,OPUk帧和ODUk开销区(即ODUk OH)构成了ODUk帧,ODUk帧、OTUk开销区(即OTUk OH)、帧对齐信号(frame alignment signal,FAS)和前向错误纠正(forward error correction,FEC)校验区构成了OTUk帧。具体的,OTUk帧中的第1行的1~7列为FAS和复帧对齐信号(multiframe alignment signal,MFAS),第1行的8~14列为OTUk OH,第2~4行的1~14列为ODUk OH,第1~4行的15~16列为OPUk OH,第1~4行的17~3824列为OPUk净荷区,第1~4行的3825~4080列为FEC校验区。
当k=Cn时,如图4所示,OTUCn帧由n个OTUC实例帧(图4中记为OTUC#1至OTUC#n)组成,OTUC实例帧不包括FEC校验区。OTUCn帧包括OPUCn帧(即OTUCn帧中的第15~3824列),OPUCn帧由n个OPUC实例帧(即一个OTUC实例帧中的第15~3824列)组成。其中,OPUCn帧的净荷区可以由n个OPUC实例帧的净荷区按照一定字节数间插组成。例如,按照16列间插。需要说明的是,OTUC实例帧指的是构成OTUCn帧的基本帧单位,也可以称为OTUC基础帧或其他名称,本申请对此不作任何限定。
现有的OPUC实例帧包含时隙速率为5Gbit/s的20个时隙。可以理解的是,若直接将ODU0、ODU1或比特速率不是5Gbit/s整数倍的ODUflex映射到OPUCn的1个或多个5Gbit/s时隙(即时隙速率为5Gbit/s的时隙)中,由于这些比特速率无法占满整个5Gbit/s时隙的时隙速率,会存在带宽的浪费。
为了更加清楚的理解本申请,以下对本申请实施例中使用的部分概念作简单介绍。
为了描述方便,本申请实施例下文中将“比特速率为XGbit/s”均描述为“比特速率为XG”,此处的比特速率也可以替换为时隙速率。时隙速率是指时隙的比特速率,一个时隙速率为XG的时隙可以简称为XG时隙,例如,时隙速率为5G的时隙可以简称为5G时隙。M个时隙速率为XG的时隙可以简单描述为M*XG时隙,例如,80个时隙速率为1.25G的时隙可以简单描述为80*1.25G时隙。上述X为一个数值,例如:X=5,X=1.25等。M为一个大于0的整数。
OPUCn帧中的第r个OPUC实例帧可以记为OPUC#r。例如,OPUCn帧中的第5个OPUC实例帧记为OPUC#5。连续的OPUCn帧中的第r个OPUC实例帧可以称为第r路OPUC实例帧,即连续的OPUCn帧由n路OPUC实例帧组成。本文中提到的OPUCn帧可以为一个OPUCn单帧,也可以为由多个连续的OPUCn单帧组成的复帧, 类似的,OPUC实例帧可以为一个OPUC单帧,也可以为由一路OPUC实例帧中的多个连续的OPUC实例帧组成的复帧。其中,r为大于0且小于等于n的整数。为简化描述,下文中将OPUCn帧也简称为OPUCn,OPUC实例帧也简称为OPUC。
若一个OPUC的净荷区被划分为M个时隙,M个时隙中的第m个时隙记为TS#m。例如,一个OPUC中的第2个5G时隙可以记为5G TS#2。M个时隙中的ts个时隙组成的结构称为光数据支路单元C(optical data tributary unit C,ODTUC),记为ODTUC.ts。其中,m和ts均为大于0且小于等于M的整数。同理,对于OPUCn中的n'个OPUC,若每个OPUC的净荷区均被划分为M个时隙,则由该n'个OPUC中的n'*M个时隙中的ts个时隙组成的结构称为光数据支路单元Cn′(optical data tributary unit Cn',ODTUCn'),记为ODTUCn'.ts。其中,ts为大于0小于等于n'*M的整数,n'为大于0小于n的整数。本申请下文中提到的ODTU可以指ODTUC也可以指ODTUCn'。
一种OTN帧可以基于不同速率的时隙进行划分。对应地,该OTN帧可能包括不同数量的时隙。例如,当时隙速率(也称时隙粒度)分别为1.25G、5G、25G时,一个速率为100G的OTN帧包括的时隙数量分别为80,20和4。一种时隙数量和时隙速率的组合可以对应一种时隙复用结构。示例性地,表1示出了时隙复用结构与时隙数量和时隙速率的组合的对应关系。需要说明的是,OTN帧指的是OTN中可能使用到的任意一种数据帧。例如,前述提到的OPUC、OPUCn、ODUCn或OTUCn。
表1
时隙复用结构 时隙数量和时隙速率的组合
1 80*1.25G时隙
2 20*5G时隙
3 4*25G时隙
本申请实施例提供了一种OPUCn,包括:n个OPUC,n个OPUC包括多种OPUC,多种OPUC中的任意两种OPUC包含的时隙的时隙速率不同,n为大于1的整数。
其中,OPUCn中包含的OPUC的种类和多种OPUC包含的时隙的时隙速率和/或时隙数量可以为预先配置的。一种OPUC对应一种时隙复用结构。需要说明的是,由于OPUC的速率是一定的。因此,根据OPUC包含的时隙的时隙速率可以确定OPUC包含的时隙的时隙数量。同样的,根据OPUC包含的时隙的时隙数量可以确定OPUC包含的时隙的时隙速率。
可选地,多种OPUC中包括以下三种OPUC中的至少两种OPUC:包含80个时隙速率为1.25G的时隙的OPUC(即包含80*1.25G时隙的OPUC,包含20个时隙速率为5G的时隙的OPUC(即包含20*5G时隙的OPUC),包含4个时隙速率为25G的时隙的OPUC(即包含4*25G时隙的OPUC)。表2示例性地示出了四种OPUC对应的时隙数量和时隙速率的组合。
表2
OPUC的种类 时隙数量和时隙速率的组合
第一种OPUC 80*1.25G时隙
第二种OPUC 20*5G时隙
第三种OPUC 4*25G时隙
第四种OPUC 40*2.5G时隙
需要说明的是,本申请实施例中仅对多种OPUC进行示例性说明,并非对多种OPUC包含的OPUC的种类作的具体限定。在实际实现时,OPUC的种类可以根据实际的应用场景进行确定。例如,多种OPUC中包括以下OPUC中的至少两种OPUC:包含80*1.25G时隙的OPUC、包含100*1G时隙的OPUC、包含40*2.5G时隙的OPUC、包含20*5G时隙的OPUC、包含10*10G时隙的OPUC和包含4*25G时隙的OPUC等。
本申请实施例提供了多种可能的OPUCn,从而使得本申请实施例提供的OPUCn可以适应不同的应用场景。
以OPUCn中包括第一种OPUC、第二种OPUC和第三种OPUC为例,图5示出了一种OPUCn中的n个OPUC的净荷区的时隙划分示意图。其中,第1个OPUC的净荷区以x1字节为单位依次划分为80*1.25G时隙,第n个OPUC的净荷区以x2字节为单位依次划分为4*25G时隙,其他OPUC的净荷区以x3字节为单位依次划分为20*5G时隙,x1、x2和x3均为正整数。这三个值中的任意两个值可以相同,也可以不同。图5中以x1=x2=x3为例进行绘制。
需要说明的是,当一个OPUC的净荷区无法完整划分为M个时隙时,可以将OPUC的净荷区中的部分列用于填充信息。示例性地,参见图6,图5中所示的OPUCn的净荷区第3817列到3824列可以为填充信息(即图6中的FS区域)。
针对本申请新定义的OPUC(即非5G时隙粒度的OPUC,例如:第一种OPUC,第三种OPUC),可以通过现有的OPUC进行进一步时隙划分或者时隙组合得到(后续简称方式1),或者可以通过对OPUC进行时隙划分得到(后续简称方式2)。下面对这两种方式进行进一步的介绍。
方式1、对第二种OPUC中的时隙进行时隙划分或时隙组合得到
情况1,针对表2提及的第三种OPUC,方式1在具体实现时可以包括:对第二种OPUC中的20个5G时隙进行时隙组合,5个5G时隙组合为1个25G时隙,变为4个25G时隙,得到第三种OPUC。例如,将第二种OPUC中的TS#1、TS#5、TS#9、TS#13和TS#17组合为第三种OPUC中的TS#1,将第二种OPUC中的TS#2、TS#6、TS#10、TS#14和TS#18组合为第三种OPUC中的TS#2,将第二种OPUC中的TS#3个、TS#7、TS#11、TS#15和TS#19组合为第三种OPUC中的TS#3,将第二种OPUC中的TS#4、TS#8、TS#12、TS#16和TS#20组合为第三种OPUC中的TS#4。
情况2、针对表2提及的第四种OPUC,方式1在具体实现时可以包括:对第二种OPUC中的20个5G时隙进行时隙划分,每个5G时隙划分为2个2.5G时隙,变为40个2.5G时隙,得到第四种OPUC。
需要说明的是,当一种OPUC包括M个时隙时,可以以该种OPUC的M帧的复帧作为时隙划分周期,但在本申请实施例中,可以以该种OPUC(非第二种OPUC)的M帧的复帧作为时隙划分周期,也可以以第二种OPUC的20帧的复帧作为时隙划分周期。前者方式,每种OPUC可以有不同的时隙划分周期,使得每种OPUC的时隙划分周期更加灵活。后者方式重用现有OPUC的20*5G时隙划分周期,重用部分功能,降低一定处理复杂度。
方式2、对OPUC的净荷区进行时隙划分得到
在情况1下,方式2在具体实现时可以包括:对OPUC的净荷区直接划分为4个时隙,得到第三种OPUC。
情况3、针对表2提及的第一种OPUC,方式2在具体实现时可以包括:对OPUC的净荷区直接划分为80个时隙,得到第一种OPUC。或者,当多种OPUC中包括第一种OPUC时,第一种OPUC可以通过对OPU4帧进行速率提升得到。该情况下,不需要重新对OPUC的净荷区进行划分,降低了实现复杂度。
当OPUC中包括80个时隙时,OPUC中的时隙的时隙速率实际为1.3101953885G,由于OPU4帧中包含80个时隙,为了重用现有的处理流程,降低实现复杂度,可以将OPU4帧的比特速率提升到OPUC的比特速率,使得OPU4帧变为包括80个时隙的OPUC,从而增加OPUC的种类。
本申请实施例提供的OPUCn中引入了混合时隙粒度,包括多种OPUC。因此,发送端在映射业务数据时,可以根据实际业务速率来进行映射。例如,比特速率为1.25G的业务数据可以映射到第一种OPUC的一个1.25G时隙中。一方面,这种方式提高了网络带宽利用率。另外一方面,业务无需经过多个层级的映射,简化了映射的复杂度。
相比现有技术中的OPUCn,由于本申请实施例提供的OPUCn中增加了新的OPUC类型。因此,需要额外定义一些开销用于指示与新定义的OPUC相关的参数。
可选地,n个OPUC中的一个或多个OPUC中包含第一指示信息,第一指示信息用于指示对应的OPUC所采用的时隙复用结构。对于连续的OPUCn,“一个或多个OPUC”表示“一路或多路OPUC”,第一指示信息用于指示对应路中的所有OPUC所采用的时隙复用结构。
n个OPUC中的每个OPUC中都可以通过包含第一指示信息指示自身的时隙复用结构。或者,一个OPUC中包含的第一指示信息也可以用于指示时隙复用结构相同的多个OPUC所采用的时隙复用结构。示例性的,若OPUCn(n=80)中的前20个OPUC采用的时隙复用结构为80*1.25G,中间30个OPUC采用的时隙复用结构为20*5G,最后30个OPUC采用的时隙复用结构为4*25G。则OPUC#1中包含的第一指示信息可以用于指示前20个OPUC采用的时隙复用结构,OPUC#21中包含的第一指示信息可以用于指示中间30个OPUC采用的时隙复用结构,OPUC#51中包含的第一指示信息可以用于指示最后30个OPUC采用的时隙复用结构。
该可选的方法,通过在OPUC中包含第一指示信息,可以使得接收OPUCn的设备确定OPUCn中的OPUC所采用的时隙复用结构,以便提取业务数据。
可选地,n个OPUC中的每个OPUC中包含第二指示信息,该信息用于指示对应的OPUC的时隙占用情况。对于连续的OPUCn,“一个或多个OPUC”表示“一路或多路OPUC”,第二指示信息用于指示对应路中的所有OPUC的时隙占用情况。
该可选的方法,通过在OPUC中包含第二指示信息,可以使得接收OPUCn的设备确定OPUCn中的OPUC中的时隙的占用情况,以便提取业务数据。
以下以连续的OPUCn为例,对第一指示信息和第二指示信息作示例性说明。
其中,第一指示信息和第二指示信息都可以放置在净荷结构指示(payload structure identifier,PSI)开销位置。每个OPUC中承载PSI的字节位于OPUC中的第4行第15列(参见图6)。一路OPUC中的256个OPUC中承载一个完整的PSI信息。第一 指示信息可以占用256个字节中的一个或多个字节。第二指示信息中可以包括M个子指示信息,其中,第m个子指示信息用于指示一路OPUC中的所有OPUC中的第m个时隙的占用情况。一个子指示信息可以占用256个字节中的一个或多个字节。其中,M为该路OPUC中的每个OPUC中包含的总时隙数。
示例性地,参见图7,第2路OPUC(即图7中右边n个OPUC中的OPUC#2组成的一路OPUC)中的256个OPUC中承载PSI的字节为左边示出的256个字节,这256个字节可以包含用于指示第2路OPUC所采用的时隙复用结构的第一指示信息和用于指示第2路OPUC的时隙的占用情况的第二指示信息。
以下分别以图7中的第2路OPUC和第3路OPUC为例对第一指示信息和第二指示信息作示例性说明。
(1)第一指示信息
第一指示信息可以记为PTsub。示例性地(记为示例1),第2路OPUC和第3路OPUC包含的PTsub可以位于PSI[1]中。第2路OPUC包含的PTsub的值为0x23时,该PTsub表明第2路OPUC中的所有OPUC采用的时隙复用结构为80*1.25G时隙。第3路OPUC包含的PTsub的值可以为0x24,该PTsub对应的时隙复用结构为4*25G时隙,该PTsub表明第3路OPUC中的所有OPUC采用的时隙复用结构为4*25G时隙。其中,PSI[r]是指256个字节中的第r个字节,此处r为大于等于0且小于等于255的整数。
(2)第二指示信息
第二指示信息可以为复用结构指示(multiplex structure identifier,MSI)。
在一种示例中,第二指示信息中的每个子指示信息可以占用256个字节中的1个字节。示例性地,在第2路OPUC中,可以将图7中的PSI[2]到PSI[81]的80个字节作为MSI开销,分别用于指示第2路OPUC中的TS#1至TS#80的占用情况。具体的,图8给出了一个TS的占用情况。其中,每个字节中的1个比特用于指示对应的时隙是否被占用(Occupation),其余7个比特用于指示占用该时隙的业务标识,示例性地,其余7个比特放置的信息具体可以为支路端口标识(tributary port identifier,TPID)。
在另一种示例中,第二指示信息中的每个子指示信息可以占用2个字节。示例性地,在第2路OPUC中,也可以将PSI[2]到PSI[161]的160个字节作为MSI开销,每2个字节用于指示第2路OPUC中的1个时隙的占用情况。具体的,图9给出了一个TS的占用情况,2个字节中的1个比特用于指示对应的时隙是否可用(Availability),1比特用于指示对应的时隙是否被占用,其余14个比特用于指示占用该时隙的业务标识,示例性地,其余14个比特放置的信息具体可以为TPID。
类似地,针对OPUC#3,即在第3路OPUC中,可以将256个字节中的8个字节作为MSI开销,每2个字节用于指示第3路OPUC中的一个时隙的占用情况。例如,将PSI[2]和PSI[3]用于指示第3路OPUC中的TS#1的占用情况,PSI[12]和PSI[13]用于指示第3路OPUC中的TS#2的占用情况,PSI[22]和PSI[23]用于指示第3路OPUC中的TS#3的占用情况,PSI[32]和PSI[33]用于指示第3路OPUC中的TS#4的占用情况。指示方式参见图9和相关描述,此处不再赘述。
可选地,属于同一种的OPUC共用一个复帧指示。一般情况下,每种OPUC的所 有路OPUC中至少一路OPUC包含复用指示。其中,复帧指示可以为OPU复帧指示(OPU multi-frame identifier,OMFI),可位于OPUC的第4行第16列(参见图6)。
需要说明的是,在本申请实施例中,多路OPUC的时隙复用结构可能是相同的,该情况下,属于同一种的OPUC的多路OPUC可以共用一个复帧指示。示例性地,由OPUC#2、OPUC#20和OPUC#25组成的三路OPUC的时隙复用结构相同时,三路OPUC可以共用一路OPUC包括的复帧指示。若OPUC的80帧的复帧包括80个OPUC#2,80个OPUC#2(记为OPUC#2 1至OPUC#2 80)为这三路OPUC中的一路OPUC。参见图10,该路OPUC中的80个OPUC#2中包含的OMFI的取值为0~79,每帧递增1依次循环,则三路OPUC可以共用该路OPUC包括的复帧指示。
同一种的OPUC的多路OPUC共用一个复帧指示,与在每路OPUC包含复帧指示相比,可以减少OPUCn中携带的信息量。此外,接收端通过处理一个复帧指示来解析多个OPUC,可以降低接收端的处理复杂度。
n个OPUC中的每个OPUC中还可以包括调整控制(justification control,JC)1~JC6,JC1~JC6作为通用映射规程(generic mapping procedure,GMP)映射开销,用于放置映射业务到OPUC的时隙生成的Cm和CnD信息,其中Cm代表映射的时隙里的业务字节或多字节数量,CnD代表业务的时钟信息。
本申请实施例提供的OPUCn可以用于域内链路(例如:图1所示的N1和N2之间的链路),也可以用于域间链路(例如:图1所示的N3和N6之间的链路)。
结合上面针对新定义的具备混合时隙粒度的OPUCn的描述,下面结合更多的附图对本申请提供的技术方案作进一步描述。
本申请实施例提供了一种光传送网中的数据传输方法、装置及***,该方法中的OPUCn可以为上述实施例提供的任意一种OPUCn。如图11所示,包括:
1101、发送端将业务数据映射到OPUCn中,OPUCn由n个OPUC组成,n个OPUC包括多种OPUC,多种OPUC中的任意两种OPUC包含的时隙的时隙速率不同,n为大于1的整数。
本申请实施例中的发送端和接收端可以为OTN设备。具体的,发送端和接收端可以为同一个域内的OTN设备,也可以为不同域内的OTN设备。
其中,业务数据可以是ODU,例如:ODU0、ODU1、ODU2、ODU2e(用于承载10吉比特以太网(10Gigabit Ethernet,10GE)业务的专用ODU帧)、ODU3、ODU4、ODUflex,也可以直接是客户业务数据。例如:以太业务、通用公共无线接口(common public radio interface,CPRI)业务、增强通用公共无线接口(enhanced common public radio interface,eCPRI)业务、光纤通道(fiber channel,FC)业务、专线业务等。
可选地,多种OPUC中包括以下三种OPUC中的至少两种OPUC:包含80*1.25G时隙的OPUC(即第一种OPUC),包含20*5G时隙的OPUC(即第二种OPUC),包含4*25G时隙的OPUC(即第三种OPUC)。关于该可选的方法的相关描述可参见上文,在此不再赘述。
可选地,多种OPUC中包括包含80个时隙速率为1.25G的时隙的OPUC,包含80个时隙速率为1.25G的时隙的OPUC通过对OPU4帧进行速率提升得到。关于该可选的方法的相关描述可参见上文,在此不再赘述。
可选地,步骤1101具体包括:11)发送端确定业务数据对应的OPUC种类;12)发送端将业务数据映射到属于业务数据对应的OPUC的种类的一个或多个OPUC中。
需要说明的是,一路业务数据对应的OPU实例帧的种类可以有一种或多种。发送端采用的映射方式可以为GMP。一路业务数据可以映射到对应种类的OPU实例帧中。
可选地,步骤11)在具体实现时包括:发送端确定该业务数据的比特速率为一种或多种OPUC中包含的时隙的时隙速率的整数倍时,确定该一种或多种OPUC为业务数据对应的OPUC的种类。通过将业务数据映射到对应的OPUC的种类中的一个或多个OPUC中,可以避免带宽浪费。
示例性地,当ODUflex1的比特速率为2.5G时,由于2.5G为第一种OPUC中的OPUC包含的时隙的时隙速率1.25G的2倍,因此,发送端可以确定ODUflex1对应的OPUC的种类为第一种OPUC,或者,由于2.5G为前述第四种OPUC中的OPUC包含的时隙的时隙速率2.5G的1倍,因此,发送端也可以确定ODUflex1对应的OPUC的种类为第四种OPUC。
另外,发送端还可以根据业务数据的比特速率和对应的OPUC的种类确定占用的时隙数量。基于上一示例,当ODUflex1对应的OPUC的种类为第一种OPUC时,发送端还可以确定业务数据所占用的时隙数量为2,当ODUflex1对应的OPUC的种类为第四种OPUC时,发送端还可以确定业务数据所占用的时隙数量为1。
针对步骤12),以OPUCn中包括n1个第一种OPUC(记为OPUCn1)和n2个第二种OPUC(记为OPUCn2)为例,对步骤12)的实现过程作示例性说明。
参见图12,当ODUflex1至ODUflexi的比特速率为2.5G时,发送端可以将ODUflex1至ODUflexi分别映射到OPUCn1中的2个时隙中,当ODUflex(i+1)至ODUflexj的比特速率为5G时,发送端可以将ODUflex(i+1)至ODUflexj分别映射到OPUCn2中的1个时隙中。
当OPUCn中还包括n3个第三种OPUC(记为OPUCn3)时,参见图13,若ODUflex(j+1)至ODUflexk的比特速率为25G时,发送端还可以将ODUflex(j+1)至ODUflexk分别映射到OPUCn3中的1个时隙中。
需要说明的是,一个ODUflex可以映射到一个或多个OPUC中。
可选地,步骤12)具体包括:21)发送端将业务数据添加映射开销到属于业务数据对应的OPUC的种类的一个或多个OPUC的ODTU中,并将ODTU复用到一个或多个OPUC中。其中,ODTU是由OPUC的一个或者多个时隙构成的一种中间帧。
具体的,业务数据可以映射到属于业务数据对应的OPUC的种类的一个OPUC中的多个时隙组成的ODTU中,并将该ODTU复用到该OPUC中,也可以映射到属于业务数据对应的OPUC的种类的多个OPUC中的多个时隙组成的ODTU中,并将该ODTU复用到该多个OPUC中。
示例性地,基于图12所示的示例,发送端可以将ODUflex1至ODUflexi分别添加映射开销到OPUCn1的一个或多个时隙所组成的ODTU中,将该ODTU复用到OPUCn1中。将ODUflex(i+1)至ODUflexj分别添加映射开销到OPUCn2的一个或多个时隙所组成的ODTU中,然后将该ODTU复用到OPUCn2中。OPUCn1和OPUCn2的组合即OPUCn。另外,发送端也可以将复用到OPUCn1的ODTU和复用到OPUCn2 的ODTU直接复用,从而得到OPUCn。
1102、发送端向接收端发送OPUCn。相应的,接收端从发送端接收OPUCn。
具体的,发送端可以为OPUCn添加ODU OH,得到ODUCn帧,再为ODUCn帧添加OTU OH,得到OTUCn帧,并向接收端发送OTUCn帧。该情况下,接收端可以从发送端接收OTUCn帧,从OTUCn帧中获取OPUCn。
1103、接收端从n个OPUC包含的时隙中获取业务数据。
本申请实施例提供的方法中,OPUCn包括多种OPUC,发送端在将业务数据映射到一个OPUCn的过程中,可以根据业务数据的比特速率选择合适的OPUC进行映射,例如,比特速率为1.25G的业务数据可以映射到第一种OPUC的一个1.25G时隙中。一方面,这种方式提高了网络带宽利用率。另外一方面,业务无需经过多个层级的映射,降低了映射复杂度。
可选地,步骤1103在具体实现时包括:31)接收端确定第一信息,第一信息为n个OPUC包含的时隙数量和时隙速率;32)接收端确定第二信息,第二信息为n个OPUC包含的时隙的时隙占用情况;33)接收端确定第三信息,第三信息为n个OPUC的复帧指示;34)接收端根据第一信息、第二信息和第三信息对OPUCn解复用得到ODTU;35)接收端从ODTU中解映射出业务数据。
可选地,n个OPUC中的一个或多个OPUC中包含第一指示信息,第一指示信息用于指示对应的OPUC所采用的时隙复用结构。关于该可选的方法的相关描述可参见上文,在此不再赘述。
基于该可选的方法,步骤31)在具体实现时可以包括:接收端根据n个OPUC中的一个或多个OPUC包含的第一指示信息确定第一信息。
示例性地,基于示例1,接收端可以根据识别出的OPUCn中的n路OPUC携带的PSI确定n路OPUC的时隙复用结构。具体的,当接收端识别到一路OPUC携带的PTsub=0x23,则确定该路OPUC中的每个OPUC采用的时隙复用结构为80*1.25时隙。当接收端识别到一路OPUC携带的PTsub=0x24,则确定该路OPUC中的每个OPUC采用的时隙复用结构为4*25时隙。
可选地,n个OPUC中的每个OPUC中包含第二指示信息,该信息用于指示对应的OPUC的时隙占用情况。关于该可选的方法的相关描述可参见上文,在此不再赘述。
基于该可选的方法,步骤32)在具体实现时可以包括:接收端根据n个OPUC中的每个OPUC中包含的第二指示信息确定第二信息。
具体的,接收端可以根据获取到的OPUC中携带的MSI确定OPUC中的时隙是否被占用以及被哪个业务占用。
可选地,n个OPUC中属于同一种的OPUC共用一个复帧指示。关于该可选的方法的相关描述可参见上文,在此不再赘述。
基于该可选的方法,步骤33)在具体实现时可以包括:接收端根据n个OPUC中的至少一个OPUC中包含的复帧指示确定第三信息。
基于该可选的方法,当多路OPUC的时隙复用结构相同时,接收端可以根据上述第一指示信息确定该多路OPUC的时隙复用结构相同,再根据该多路中的一路OPUC中包括的复帧指示确定该多路OPUC的复帧指示。接收端根据复帧指示可以确定哪些 OPUC为一个复帧,从而将OPUC解复用为多个ODTU,从多个ODTU分别提取映射开销信息(即前述Cm和CnD信息),将各个业务解映射出来。
本申请实施例还提供了一种OPUCn,包括:n个OPUC,n个OPUC中的每个OPUC包括80*1.25G时隙,n为大于1的整数。
可选地,OPUC通过对OPU4帧进行速率提升得到。对OPU4帧进行速率提升的相关描述可参见上文相关部分的描述,在此不再赘述。
示例性地,参见图14,图14示出了该种OPUCn中的n个OPUC的划分方式,其中,该种OPUCn中的每个OPUC的净荷区划分为80*1.25G时隙。
该情况下,参见图15,发送端可以将ODUflex1至ODUflexk添加映射开销到OPUCn中的ODTUCn.ts(即由OPUCn中的ts个1.25G时隙组成的ODTU)中,将多路ODTUCn.ts复用到OPUCn。其中,一个ODUflex可以映射到一个或多个OPUC中,示例性地,参见图15,ODUflexi可以添加映射开销到OPUCn中的第一个和最后一个OPUC中。其中,映射方式可以为GMP。
本申请实施例提供的OPUCn中的n个OPUC均包括80*1.25G时隙,由于时隙划分的粒度较小,因此,相比时隙划分粒度为5G的OPUCn而言,比特速率为1.25G的业务数据可以映射到本申请实施例提供的OPUCn中的一个1.25G时隙,而不需要映射到一个5G时隙中,可以提高带宽利用率。
图16为本申请实施例提供的一种通信装置的组成示意图。该通信装置可以为上述实施例中的发送端或接收端。参见图16,通信装置160包括处理单元1601和通信单元1602,还可以包括存储单元1603。通信单元1602可以包括发送单元和接收单元。需要说明的是,发送单元或接收单元可能是可选的单元。
当该通信装置160为上述实施例中的发送端时,处理单元1601用于执行图11中的步骤1101,通信单元1602用于执行图11中的步骤1102。参见图17,处理单元1601中可以包括映射单元,图11中的步骤1101具体可以由映射单元执行,图11中的步骤1102具体可以由通信单元1602中的发送单元执行。
当该通信装置160为上述实施例中的接收端时,处理单元1601用于执行图11中的步骤1103,通信单元1602用于执行图11中的步骤1102。参见图18,处理单元1601可以包括获取单元,图11中的步骤1103具体可以由获取单元执行,图11中的步骤1102具体可以由通信单元1602中的接收单元执行。
需要说明的是,上述各个单元对应执行的动作仅是具体举例,各个单元实际执行的动作参照上述基于图11所述的实施例的描述中提及的动作或步骤。还需要说明的是,各单元在图2所示的OTN硬件结构图中,可能位于线路板中。本申请对各单元具体所在的单板位置不做任何限制。
还需要说明的是,上述处理单元、发送单元、接收单元和通信单元也可以替换为处理器、发送器、接收器和通信接口(或收发器)。还需要说明的是,发送单元可以是仅具备发送功能或具备收发两种功能的光模块,接收单元可以是仅具备接收功能或具备收发两种功能的光模块。
本申请实施例还提供一种芯片,该芯片中集成了用于实现上述处理器的功能的电路和一个或者多个接口。当该芯片中集成了存储器时,该芯片通过该接口与光模块连 接,从而利用光模块来发送上述方法实施例中提及的OPUCn给其他通信装置,或者从光模块接收其他通信装置发送的帧;当该芯片中未集成存储器时,可以通过该接口与外置的存储器连接,该芯片根据外置的存储器中存储的程序代码来实现上述实施例中通信装置(发送端或接收端)内部执行的动作,并借助跟其连接光模块来发送和接收OPUCn。可选地,芯片支持的功能可以包括基于图11所述的实施例中发送端或接收端的处理动作,此处不再赘述。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,随机接入存储器等。具体的,例如:上述处理单元或处理器可以是中央处理器,通用处理器、特定集成电路(application specific integrated circuit,ASIC)、微处理器(digital singnal processor,DSP),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。上述的这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法。
本申请实施例还提供了一种计算机存储介质,包括:计算机指令,当计算机指令在计算机上运行时,使得计算机执行上述实施例中的任意一种方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当该指令在计算机上运行时,使得计算机执行上述实施例中的任意一种方法。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看附图、公开内容、以及所附权利要求书,可理解并实现公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。

Claims (24)

  1. 一种光传送网中的数据传输方法,其特征在于,包括:
    发送端将业务数据映射到光净荷单元Cn(OPUCn)帧中,所述OPUCn帧由n个光净荷单元C(OPUC)实例帧组成,所述n个OPUC实例帧包括多种OPUC实例帧,所述多种OPUC实例帧中的任意两种OPUC实例帧包含的时隙的时隙速率不同,n为大于1的整数;
    所述发送端向所述接收端发送所述OPUCn帧。
  2. 根据权利要求1所述的方法,其特征在于,所述发送端将业务数据映射到OPUCn帧中,包括:
    所述发送端确定所述业务数据对应的OPUC实例帧的种类;
    所述发送端将所述业务数据映射到属于所述业务数据对应的OPUC实例帧的种类的一个或多个OPUC实例帧中。
  3. 根据权利要求2所述的方法,其特征在于,所述发送端将所述业务数据映射到属于所述业务数据对应的OPUC实例帧的种类的一个或多个OPUC实例帧中,包括:
    所述发送端将所述业务数据添加映射开销到属于所述业务数据对应的OPUC实例帧的种类的一个或多个OPUC实例帧的光数据支路单元ODTU中,并将所述ODTU复用到所述一个或多个OPUC实例帧中。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述多种OPUC实例帧中包括以下三种OPUC实例帧中的至少两种:
    包含80个时隙速率为1.25吉比特(Gbit)/秒(s)的时隙的OPUC实例帧,包含20个时隙速率为5Gbit/s的时隙的OPUC实例帧,包含4个时隙速率为25Gbit/s的时隙的OPUC实例帧。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述n个OPUC实例帧中的一个或多个OPUC实例帧中包含第一指示信息,所述第一指示信息用于指示对应的OPUC实例帧所采用的时隙复用结构。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述多种OPUC实例帧中包括包含80个时隙速率为1.25Gbit/s的时隙的OPUC实例帧,所述包含80个时隙速率为1.25Gbit/s的时隙的OPUC实例帧通过对OPU4帧进行速率提升得到。
  7. 一种光传送网中的数据传输装置,其特征在于,包括:通信单元和处理单元;
    所述处理单元,用于将业务数据映射到光净荷单元Cn(OPUCn)帧中,所述OPUCn帧由n个光净荷单元C(OPUC)实例帧组成,所述n个OPUC实例帧包括多种OPUC实例帧,所述多种OPUC实例帧中的任意两种OPUC实例帧包含的时隙的时隙速率不同,n为大于1的整数;
    所述通信单元,用于向所述接收端发送所述OPUCn帧。
  8. 根据权利要求7所述的装置,其特征在于,所述处理单元,具体用于:
    确定所述业务数据对应的OPUC实例帧的种类;
    将所述业务数据映射到属于所述业务数据对应的OPUC实例帧的种类的一个或多个OPUC实例帧中。
  9. 根据权利要求8所述的装置,其特征在于,所述处理单元,具体用于:
    将所述业务数据添加映射开销到属于所述业务数据对应的OPUC实例帧的种类的一个或多个OPUC实例帧的光数据支路单元ODTU中,并将所述ODTU复用到所述一个或多个OPUC实例帧中。
  10. 根据权利要求7-9任一项所述的装置,其特征在于,所述多种OPUC实例帧中包括以下三种OPUC实例帧中的至少两种OPUC实例帧:包含80个时隙速率为1.25吉比特(Gbit)/秒(s)的时隙的OPUC实例帧,包含20个时隙速率为5Gbit/s的时隙的OPUC实例帧,包含4个时隙速率为25Gbit/s的时隙的OPUC实例帧。
  11. 根据权利要求7-10任一项所述的装置,其特征在于,所述n个OPUC实例帧中的一个或多个OPUC实例帧中包含第一指示信息,所述第一指示信息用于指示对应的OPUC实例帧所采用的时隙复用结构。
  12. 根据权利要求7-11任一项所述的装置,其特征在于,所述多种OPUC实例帧中包括包含80个时隙速率为1.25Gbit/s的时隙的OPUC实例帧,所述包含80个时隙速率为1.25Gbit/s的时隙的OPUC实例帧通过对OPU4帧进行速率提升得到。
  13. 一种光传送网中的数据传输装置,其特征在于,包括:通信单元和处理单元;
    所述通信单元,用于从发送端接收光净荷单元Cn(OPUCn)帧,所述OPUCn帧由n个光净荷单元C(OPUC)实例帧组成,所述n个OPUC实例帧包括多种OPUC实例帧,所述多种OPUC实例帧中的任意两种OPUC实例帧包含的时隙的时隙速率不同,n为大于1的整数;
    所述处理单元,用于从所述n个OPUC实例帧包含的时隙中获取业务数据。
  14. 根据权利要求13所述的装置,其特征在于,所述处理单元,具体用于:
    确定第一信息,所述第一信息为所述n个OPUC实例帧包含的时隙数量和时隙速率;
    确定第二信息,所述第二信息为所述n个OPUC实例帧包含的时隙的时隙占用情况;
    确定第三信息,所述第三信息为所述n个OPUC实例帧的复帧指示;
    根据所述第一信息、所述第二信息和所述第三信息对所述OPUCn帧解复用得到光数据支路单元ODTU;
    从所述ODTU中解映射出所述业务数据。
  15. 根据权利要求14所述的装置,其特征在于,所述n个OPUC实例帧中的一个或多个OPUC实例帧中包含第一指示信息,所述第一指示信息用于指示对应的OPUC实例帧所采用的时隙复用结构,所述处理单元,具体用于:
    根据所述n个OPUC实例帧中的一个或多个OPUC实例帧包含的第一指示信息确定所述第一信息。
  16. 根据权利要求13-15任一项所述的装置,其特征在于,所述多种OPUC实例帧中包括以下三种OPUC实例帧中的至少两种OPUC实例帧:包含80个时隙速率为1.25吉比特(Gbit)/秒(s)的时隙的OPUC实例帧,包含20个时隙速率为5Gbit/s的时隙的OPUC实例帧,包含4个时隙速率为25Gbit/s的时隙的OPUC实例帧。
  17. 根据权利要求13-16任一项所述的装置,其特征在于,所述多种OPUC实例帧中包括包含80个时隙速率为1.25Gbit/s的时隙的OPUC实例帧,所述包含80个时 隙速率为1.25Gbit/s的时隙的OPUC实例帧通过对OPU4帧进行速率提升得到。
  18. 一种光传送网中的数据传输装置,其特征在于,包括:存储器和处理器,所述存储器和所述处理器通过通信总线连接,所述存储器用于存储指令,所述处理器执行所述指令以使得所述装置实现如权利要求1至6任一项所述的方法。
  19. 一种光净荷单元Cn(OPUCn)帧,其特征在于,包括:
    n个光净荷单元C(OPUC)实例帧,所述n个OPUC实例帧包括多种OPUC实例帧,所述多种OPUC实例帧中的任意两种OPUC实例帧包含的时隙的时隙速率不同,n为大于1的整数。
  20. 根据权利要求19所述的OPUCn帧,其特征在于,所述多种OPUC实例帧包括以下三种OPUC实例帧中的至少两种:
    包含80个时隙速率为1.25吉比特(Gbit)/秒(s)的时隙的OPUC实例帧,包含20个时隙速率为5Gbit/s的时隙的OPUC实例帧和包含4个时隙速率为25Gbit/s的时隙的OPUC实例帧。
  21. 根据权利要求19或20所述的OPUCn帧,其特征在于,所述n个OPUC实例帧中的一个或多个OPUC实例帧中包含第一指示信息,所述第一指示信息用于指示对应的OPUC实例帧所采用的时隙复用结构。
  22. 根据权利要求19-21任一项所述的OPUCn帧,其特征在于,所述n个OPUC实例帧中的每个OPUC实例帧中包含第二指示信息,所述第二指示信息用于指示对应的OPUC实例帧的时隙占用情况。
  23. 根据权利要求19-22任一项所述的OPUCn帧,其特征在于,所述多种OPUC实例帧中包括包含80个时隙速率为1.25Gbit/s的时隙的OPUC实例帧,所述包含80个时隙速率为1.25Gbit/s的时隙的OPUC实例帧通过对OPU4帧进行速率提升得到。
  24. 根据权利要求19-23任一项所述的OPUCn帧,其特征在于,所述n个OPUC实例帧中属于同一种的OPUC实例帧共用一个复帧指示。
PCT/CN2018/105569 2018-09-13 2018-09-13 光传送网中的数据传输方法及装置 WO2020051851A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/105569 WO2020051851A1 (zh) 2018-09-13 2018-09-13 光传送网中的数据传输方法及装置
CN201880090543.3A CN111989933B (zh) 2018-09-13 2018-09-13 光传送网中的数据传输方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/105569 WO2020051851A1 (zh) 2018-09-13 2018-09-13 光传送网中的数据传输方法及装置

Publications (1)

Publication Number Publication Date
WO2020051851A1 true WO2020051851A1 (zh) 2020-03-19

Family

ID=69777009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/105569 WO2020051851A1 (zh) 2018-09-13 2018-09-13 光传送网中的数据传输方法及装置

Country Status (2)

Country Link
CN (1) CN111989933B (zh)
WO (1) WO2020051851A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024109580A1 (zh) * 2022-11-22 2024-05-30 华为技术有限公司 数据传输的方法和装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112821982B (zh) * 2021-01-19 2022-06-24 柳州达迪通信技术股份有限公司 基于光传送网的业务通道分组方法、***及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101651512A (zh) * 2009-09-24 2010-02-17 中兴通讯股份有限公司 一种实现数据业务透明传送的方法、***及装置
WO2016026348A1 (zh) * 2014-08-22 2016-02-25 华为技术有限公司 一种处理信号的方法、装置及***
EP3038376A1 (en) * 2013-09-13 2016-06-29 Huawei Technologies Co., Ltd. Data migration method and communication node
CN107566074A (zh) * 2016-06-30 2018-01-09 华为技术有限公司 光传送网中传送客户信号的方法及传送设备
CN108513180A (zh) * 2017-02-28 2018-09-07 中兴通讯股份有限公司 一种路径建立方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101051879B (zh) * 2007-04-06 2012-04-04 华为技术有限公司 低速业务复用及解复用的方法和装置
CN101742364B (zh) * 2008-11-25 2012-10-03 中兴通讯股份有限公司 一种将光净荷单元时隙信号映射到信号帧的方法及***
BRPI0924344B1 (pt) * 2009-05-11 2021-02-17 Huawei Technologies Co., Ltd. método, sistema e nó de rede para transmissão de dados em rede de transporte óptica

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101651512A (zh) * 2009-09-24 2010-02-17 中兴通讯股份有限公司 一种实现数据业务透明传送的方法、***及装置
EP3038376A1 (en) * 2013-09-13 2016-06-29 Huawei Technologies Co., Ltd. Data migration method and communication node
WO2016026348A1 (zh) * 2014-08-22 2016-02-25 华为技术有限公司 一种处理信号的方法、装置及***
CN107566074A (zh) * 2016-06-30 2018-01-09 华为技术有限公司 光传送网中传送客户信号的方法及传送设备
CN108513180A (zh) * 2017-02-28 2018-09-07 中兴通讯股份有限公司 一种路径建立方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024109580A1 (zh) * 2022-11-22 2024-05-30 华为技术有限公司 数据传输的方法和装置

Also Published As

Publication number Publication date
CN111989933B (zh) 2022-05-10
CN111989933A (zh) 2020-11-24

Similar Documents

Publication Publication Date Title
US11967992B2 (en) Data transmission method and apparatus in optical transport network
US11234055B2 (en) Service data processing method and apparatus
US11700083B2 (en) Method and apparatus for processing service data in optical transport network
WO2019213901A1 (zh) 光传送网中低速业务数据的处理方法、装置和***
US8374186B2 (en) Method, apparatus and system for transmitting and receiving client signals
US20200235905A1 (en) Data Transmission Method In Optical Network And Optical Network Device
US7826741B2 (en) Optical network system
US9497064B2 (en) Method and apparatus for transporting ultra-high-speed Ethernet service
US9088380B2 (en) Optical transport network generic non-client specific protection systems and methods
EP4027650A1 (en) Method and device for service processing in optical transport network, and system
CN101873517B (zh) 光传送网的信号传送方法、设备及通信***
WO2017201757A1 (zh) 一种业务传送方法和第一传送设备
US11750314B2 (en) Service data processing method and apparatus
EP2388964A1 (en) Method and device for transmitting and receiving service data
JP5834425B2 (ja) クロスコネクトシステム及びクロスコネクト方法
WO2020051851A1 (zh) 光传送网中的数据传输方法及装置
CN102238439B (zh) 一种基于g.709的业务映射过程的控制方法和***
WO2024109349A1 (zh) 一种传输数据的方法和装置
WO2024109580A1 (zh) 数据传输的方法和装置
US20160142798A1 (en) Transmission apparatus
WO2023231764A1 (zh) 业务数据处理的方法和装置
WO2023232097A1 (zh) 业务数据处理方法和装置
CN118074850A (zh) 传输数据的方法及装置
CN116488768A (zh) 开销信息传输方法、通信装置和***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933010

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18933010

Country of ref document: EP

Kind code of ref document: A1