WO2020031352A1 - ユーザ端末及び無線通信方法 - Google Patents

ユーザ端末及び無線通信方法 Download PDF

Info

Publication number
WO2020031352A1
WO2020031352A1 PCT/JP2018/029995 JP2018029995W WO2020031352A1 WO 2020031352 A1 WO2020031352 A1 WO 2020031352A1 JP 2018029995 W JP2018029995 W JP 2018029995W WO 2020031352 A1 WO2020031352 A1 WO 2020031352A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
signal
transmission power
precoding matrix
user terminal
Prior art date
Application number
PCT/JP2018/029995
Other languages
English (en)
French (fr)
Inventor
祐輝 松村
佑一 柿島
和晃 武田
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to EP18929590.0A priority Critical patent/EP3836415A4/en
Priority to JP2020535448A priority patent/JP7315555B2/ja
Priority to KR1020217005391A priority patent/KR20210040083A/ko
Priority to CN201880098615.9A priority patent/CN112840575B/zh
Priority to US17/266,782 priority patent/US20210345253A1/en
Priority to PCT/JP2018/029995 priority patent/WO2020031352A1/ja
Publication of WO2020031352A1 publication Critical patent/WO2020031352A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0628Diversity capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/262TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account adaptive modulation and coding [AMC] scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present disclosure relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • LTE-A LTE Advanced, LTE @ Rel. 10, 11, 12, 13
  • LTE @ Rel. 8, 9 LTE @ Rel. 8, 9
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • UEs support at least one of codebook (CB) -based transmission and non-codebook (NCB) -based transmission.
  • CB codebook
  • NCB non-codebook
  • the UE may not be able to use all of the transmission power determined by the transmission power control. If all of the transmission power cannot be used, the performance of the system may be degraded, such as a decrease in coverage.
  • an object of the present disclosure is to provide a user terminal and a wireless communication method capable of appropriately determining transmission power when performing precoding.
  • a user terminal a transmission unit that transmits a signal based on a precoding matrix, and a control unit that corrects transmission power of the signal when a value of a part of the precoding matrix is zero.
  • transmission power for performing precoding can be appropriately determined.
  • FIG. 1 is a diagram illustrating an example of codebook-based transmission.
  • FIG. 2 is a diagram illustrating an example of non-codebook-based transmission.
  • FIG. 3 is a diagram illustrating an example of a UE antenna model.
  • FIG. 4 is a diagram illustrating an example of an association between a precoder type and a TPMI index.
  • FIG. 5 is a diagram illustrating an example of association between a TPMI index and a precoding matrix.
  • FIG. 6 is a diagram illustrating an example of a relationship between correction of transmission power and coverage.
  • FIG. 7 is a diagram illustrating an example of the random access procedure.
  • FIG. 8 is a diagram illustrating another example of the random access procedure.
  • FIG. 1 is a diagram illustrating an example of codebook-based transmission.
  • FIG. 2 is a diagram illustrating an example of non-codebook-based transmission.
  • FIG. 3 is a diagram illustrating an example of a UE antenna model.
  • FIG. 4 is
  • FIG. 9 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 10 is a diagram illustrating an example of the entire configuration of the base station according to the embodiment.
  • FIG. 11 is a diagram illustrating an example of a functional configuration of the base station according to the embodiment.
  • FIG. 12 is a diagram illustrating an example of the overall configuration of the user terminal according to the embodiment.
  • FIG. 13 is a diagram illustrating an example of a functional configuration of the user terminal according to the embodiment.
  • FIG. 14 is a diagram illustrating an example of a hardware configuration of the base station and the user terminal according to the embodiment.
  • the UE supports at least one of codebook (CB) -based transmission and non-codebook (NCB) -based transmission.
  • CB codebook
  • NCB non-codebook
  • the UE uses at least a measurement reference signal (SRS: Sounding Reference Signal) resource index (SRI: SRS Resource Index) to generate a precoder (precoding matrix) for at least one of CB-based and NCB-based PUSCH transmission. Judgment is being considered.
  • SRS Sounding Reference Signal
  • SRI SRS Resource Index
  • the UE determines a precoder for PUSCH transmission based on an SRI, a transmission rank indicator (TRI: Transmitted Rank Indicator) and a transmission precoding matrix indicator (TPMI: Transmitted Precoding Matrix Indicator). You may.
  • the UE may determine a precoder for PUSCH transmission based on the SRI for NCB based transmission.
  • CB-based precoding Precoding applied to CB-based transmission may be referred to as CB-based precoding.
  • Precoding applied to NCB-based transmission may be referred to as NCB-based precoding.
  • CB-based transmission and NCB-based transmission may be referred to as CB transmission and NCB transmission, respectively.
  • CCB and NCB transmission up to 4 layers may be supported.
  • Frequency selective precoding may be supported for four antenna ports.
  • FIG. 1 is a diagram showing an example of CB transmission.
  • the UE may be configured with an SRS resource set for a predetermined number of SRS resources.
  • the SRS resource includes the location of the SRS resource (eg, time and / or frequency resource location, resource offset, resource cycle, SRS symbol number, SRS bandwidth, Comb, sequence ID, etc.), SRS port number, SRS port number, SRS It may be specified based on at least one information such as a resource number (which may be called an SRS resource configuration ID (SRS-ResourceConfigId) or the like).
  • SRS resource configuration ID SRS-ResourceConfigId
  • ⁇ Information on the SRS resource set may be configured in the UE using higher layer signaling.
  • the UE transmits an SRS using the set SRS resource set.
  • the base station may perform measurement (for example, channel measurement) using the SRS resource.
  • the UE transmits information on at least one of SRI, TRI, and TPMI to the base station by using higher layer signaling, physical layer signaling (for example, downlink control information (DCI: Downlink Control Information)) or a combination thereof. It may be notified from the station.
  • the information may be included in DCI (which may be called UL grant) that schedules PUSCH transmission.
  • the DCI may include an MCS (Modulation and Coding Scheme) for PUSCH transmission.
  • the UE may select one SRS resource from the set SRS resources based on the SRI included in the received DCI.
  • the UE may determine a preferred precoder for the SRS port in the selected SRS resource based on the TPMI included in the received DCI.
  • the UE may determine the number of ports used for transmission from the SRS ports in the selected SRS resource based on the TRI included in the received DCI.
  • step S104 the UE determines a precoder (codebook) using TPMI and TRI using the SRS port of the SRS resource specified by DCI, and performs PUSCH transmission using the precoder.
  • a precoder codebook
  • FIG. 2 is a diagram showing an example of NCB transmission.
  • a base station gNB, which may be called a transmission / reception point (TRP: Transmission / Reception @ Point)
  • TRP Transmission / Reception @ Point
  • RS Reference @ Signal
  • the RS includes a channel state measurement RS (CSI-RS: Channel ⁇ Information ⁇ RS), a primary synchronization signal (PSS: Primary ⁇ SS), a secondary synchronization signal (SSS: Secondary ⁇ SS), a mobility reference signal (MRS: Mobility ⁇ RS), At least one of a tracking reference signal (TRS: Tracking @ RS), a signal included in a synchronization signal block (SSB: Synchronization @ Signal @ Block), a demodulation reference signal (DMRS: DeModulation @ Reference @ Signal), a beam-specific signal, or the like, or an extension thereof And / or a signal configured by changing (for example, a signal configured by changing the density and / or period).
  • CSI-RS Channel ⁇ Information ⁇ RS
  • PSS Primary ⁇ SS
  • SSS Secondary ⁇ SS
  • MRS Mobility ⁇ RS
  • TRS Tracking @ RS
  • SSB Synchronization @ Signal @ Block
  • DMRS Demodulation @ Reference @
  • CSI-RS The RS in step S201 will be described as CSI-RS, but is not limited to this.
  • CSI-RS may be read as any of the above RSs.
  • the UE may transmit the SRS using a precoded single-port SRS resource (Precoded SRS resources w / single port).
  • the UE may determine a precoder (SRS precoder) to be applied to the SRS by a reciprocity-based method. For example, the UE determines the SRS precoder based on the related CSI-RS (for example, the CSI-RS resource measured in step S201, the position of the CSI-RS resource, the measurement result using the resource, and the like). Is also good.
  • SRS precoder a precoder to be applied to the SRS by a reciprocity-based method. For example, the UE determines the SRS precoder based on the related CSI-RS (for example, the CSI-RS resource measured in step S201, the position of the CSI-RS resource, the measurement result using the resource, and the like). Is also good.
  • one or more SRS resources may be configured for the UE.
  • the UE may be configured with an SRS resource set (SRS resource set) associated with a predetermined number of SRS resources.
  • SRS resource set SRS resource set
  • the number of SRS resources or SRS resource sets configured for the UE may be limited by the maximum transmission rank (number of layers).
  • Each SRS resource may have one or more SRS ports (and may correspond to one or more SRS ports).
  • each SRS resource has one SRS port.
  • the SRS resource includes a position of the SRS resource (for example, a time and / or frequency resource position, a resource offset, a resource cycle, the number of SRS symbols, an SRS bandwidth, a Comb, a sequence ID, etc.), a signal sequence, the number of SRS ports, and an SRS port.
  • the number may be specified based on at least one of a number, an SRS resource number (which may be called an SRS resource configuration ID (SRS-ResourceConfigId), and the like).
  • the information on the SRS resource set and / or the SRS resource may be configured in the UE using higher layer signaling, physical layer signaling, or a combination thereof.
  • the UE may be configured with information on the correspondence between the SRS precoder and the related CSI-RS using higher layer signaling or the like.
  • step S202 the UE may transmit each of the precoded SRS resources # 0 to # N-1.
  • the base station may perform measurement (for example, channel measurement) using the precoded SRS resource in step S202.
  • the base station performs beam selection based on the measurement result.
  • the base station selects three SRS resources from the N SRS resources and determines the TRI to be 3.
  • step S203 the base station transmits a UL grant for scheduling UL data transmission to the UE.
  • step S204 the UE transmits a signal (for example, PUSCH) to which a predetermined precoder (for example, at least one of SRS precoders) is applied based on the UL grant in step S203.
  • a predetermined precoder for example, at least one of SRS precoders
  • the UL grant in step S203 includes information (for example, SRI) for specifying a precoder used for UL data transmission.
  • the UL grant may include information on parameters applied to UL data transmission (for example, MCS (Modulation and Coding Scheme)). Also, the UL grant may or may not include the TRI and / or TPMI applied to UL data transmission.
  • the gNB may narrow down the precoders used by the UE for PUSCH transmission, for example, by notification of the SRI.
  • the UE may specify one or more SRS resources from the set SRS resources based on one or more SRIs included in the UL grant received in step S203.
  • the UE may transmit the PUSCH of the number of layers corresponding to the number of the specified SRS resources in step S204, using the precoder corresponding to the specified SRS resource.
  • TRI 3 and three SRIs are specified by the UL grant in step S203, and the UE transmits three layers of PUSCH ports # 0 to # 2 using precoders corresponding to the three SRIs in step S204. carry out.
  • the UE may determine a precoder based on an SRI other than the SRI specified by the UL grant and transmit the precoder.
  • the UE may determine a preferred precoder for an SRS port in the selected SRS resource based on the TPMI.
  • the UE may determine the number of ports to be used for transmission from the SRS ports in the selected SRS resource based on the TRI.
  • the UE may report UE capability information on the precoder type, and the base station may set the precoder type based on the UE capability information by higher layer signaling.
  • the UE capability information may be information of a precoder type used by the UE in PUSCH transmission (may be represented by a parameter “pusch-TransCoherence”).
  • the UE based on the precoder type information (may be represented by the parameter “codebookSubset”) included in the PUSCH configuration information (PUSCH-Config information element of RRC signaling) notified by higher layer signaling, performs PUSCH (and A precoder used for (PTRS) transmission may be determined.
  • the precoder type information may be represented by the parameter “codebookSubset” included in the PUSCH configuration information (PUSCH-Config information element of RRC signaling) notified by higher layer signaling, performs PUSCH (and A precoder used for (PTRS) transmission may be determined.
  • the precoder type is one of full coherent (full coherent, fully coherent, coherent), partial coherent (partial coherent), and non-coherent (non coherent, non-coherent) or a combination of at least two of them (for example, “complete coherent”). And may be represented by parameters such as "partial and non-coherent” (fullyAndPartialAndNonCoherent), "partial and non-coherent”.
  • Completely coherent may mean that the antenna ports used for transmission are synchronized (the phases may be matched, the precoder applied may be the same, etc.).
  • Partially coherent may mean that some of the antenna ports used for transmission are synchronized but not synchronized.
  • Non-coherent may mean that the antenna ports used for transmission cannot be synchronized.
  • Codebooks may be defined for fully coherent, partially coherent, and non-coherent.
  • each antenna port is connected to one RF circuit and the phase between the two antenna ports can be adjusted. Partially coherent does not apply. In non-coherent, each antenna port is connected to a different RF circuit, and it is impossible to adjust the phase between two antenna ports. In contrast to the four antenna ports (4-Tx), in the fully coherent mode, the four antenna ports are connected to one RF circuit, and the phase between the four antenna ports can be adjusted. Partially coherent is that two antenna port sets are connected to one RF circuit and the phase of the two antenna ports in each set can be adjusted, but each set is connected to a different RF circuit and the Adjustment of the phase is not possible. In non-coherent, each antenna port is connected to a different RF circuit, and phase adjustment between four antenna ports is impossible.
  • the coherency will be described by taking as an example a case where a MIMO (Multi-Input Multi-Output) antenna is configured using a panel.
  • MIMO Multi-Input Multi-Output
  • RF Radio Frequency
  • the UE performs UL transmission using only the antenna port corresponding to one panel, it may be assumed that the UE is completely coherent. If the UE performs UL transmission using antenna ports corresponding to a plurality of panels, and there are a plurality of antenna ports corresponding to at least one panel, the UE may be assumed to be partially coherent. In the case where the UE performs UL transmission using antenna ports corresponding to a plurality of panels, and the UE has one antenna port corresponding to each panel, it may be assumed that the UE is non-coherent.
  • UEs that support fully coherent precoder types may be assumed to support partially coherent and non-coherent precoder types.
  • UEs that support partially coherent precoder types may be assumed to support non-coherent precoder types.
  • the precoder type may be read as coherency, PUSCH transmission coherence, coherent type, coherence type, codebook type, codebook subset, codebook subset type, or the like.
  • the UE may determine a precoding matrix (codebook) corresponding to a TPMI index obtained from DCI that schedules UL transmission from a plurality of precoders (precoding matrices) for CB-based transmission.
  • precoding matrix codebook
  • DFT-S-OFDM Discrete Fourier Transform-Spread-OFDM, transform precoding is valid
  • CP Cyclic Prefix
  • Transform precoding is invalid
  • Precoding information number of layers, TPMI
  • the precoder type codebookSubset
  • the UE is configured with any TPMI from 0 to 27 for the single layer.
  • the precoder type is partial and non-coherent (partialAndNonCoherent)
  • the UE is configured with any TPMI from 0 to 11 for the single layer.
  • the precoder type is non-coherent, the UE is set to any one of TPMI from 0 to 3 for the single layer.
  • a plurality of precoding matrices for single layer transmission using four antenna ports when DFT-S-OFDM is used may be defined in the specification.
  • a plurality of precoding matrices for single layer transmission using four antenna ports when CP-OFDM is used may be defined in the specification.
  • a plurality of precoding matrices may be associated with a plurality of TPMI indexes, respectively.
  • the TPMIs corresponding to the precoder type “complete and partial and non-coherent (fullyAndPartialAndNonCoherent)”, the TPMIs (from 12 to 27) except for the TPMI corresponding to the precoder type “partial and non-coherent” are completely coherent.
  • the precoding matrix of In a fully coherent precoding matrix, since four elements (values) are non-zero, four antenna ports have the same amplitude.
  • TPMIs corresponding to the precoder type “partial and non-coherent”
  • TPMIs (from 4 to 11) except for the TPMI corresponding to the precoder type “non-coherent” correspond to the partial coherent precoding matrix.
  • the partially coherent precoding matrix since two elements are non-zero, only two antenna ports out of four antenna ports are assigned transmission power, and the remaining two antenna ports have transmission power of zero.
  • TPTPMI (0 to 3) corresponding to the precoder type “non-coherent” corresponds to a non-coherent precoding matrix.
  • the transmission power of three of the four antenna ports is zero.
  • a UE that reports a non-coherent precoder type or a partially coherent and non-coherent precoder type may have some elements in the precoding matrix set to 0.
  • the UE determines transmission power available for the PUSCH by transmission power control (TPC).
  • TPC transmission power control
  • the UE adjusts the linear value of the transmission power according to the ratio between the number of antenna ports used for non-zero PUSCH transmission and the number of antenna ports set for the transmission scheme. This scaled power is divided evenly across the antenna ports over which the non-zero PUSCH is transmitted (transmission power distribution).
  • the UE divides the transmission power into a plurality of antenna ports and multiplies the signals of the plurality of antenna ports by a precoding matrix, so that the precoding matrix is zero, such as a partially coherent precoding matrix or a non-coherent precoding matrix. If there is an element, the total transmission power is reduced by the transmission power of the corresponding antenna port.
  • a UE using a non-coherent or partially coherent precoding matrix has a lower total transmission power than using a fully coherent precoding matrix. In other words, a UE that uses a non-coherent or partially coherent precoding matrix cannot use all of the transmission power determined by the transmission power control.
  • the present inventors have conceived a method of correcting transmission power when a partial value of a precoding matrix becomes 0.
  • the NW network, for example, a base station, gNB
  • the NW determines which specification (release) the UE supports the function until an RRC connection is established with the UE.
  • the function is disabled.
  • the coverage of the UE having the same will be the same as the coverage of the UE not having the function.
  • the present inventors have conceived a method of improving coverage when supporting a function of correcting transmission power.
  • PUSCH in the description of the present disclosure may be replaced with an UL channel (such as PUCCH), an UL signal (such as SRS), or the like.
  • CB transmission will be mainly described, but this embodiment can also be applied to NCB transmission.
  • the following embodiments can be applied to both UL transmission using CP-OFDM and UL transmission using DFT-S-OFDM.
  • the upper layer signaling may be, for example, any one of RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, broadcast information, and the like, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • the MAC signaling may use, for example, a MAC control element (MAC CE (Control Element)), a MAC PDU (Protocol Data Unit), or the like.
  • the broadcast information includes, for example, a master information block (MIB: Master Information Block), a system information block (SIB: System Information Block), minimum system information (RMSI: Remaining Minimum System Information), and other system information (OSI: Other). System @ Information).
  • the UE may support at least one of the following transmission power determination methods 1-3. At least one of the transmission power determination methods 1 to 3 may be defined as a type.
  • Transmission power determination method 1 The UE first divides transmission power for each antenna port (transmission power distribution), and then performs precoding.
  • the UE may determine whether the precoder is fully coherent based on at least one of information configured from the NW (such as a TPMI index) and UE capability information reported by the UE (such as a precoder type). 27, all elements (values) of the precoding matrix are non-zero, etc., or partial or non-coherent (TPMI index is a value from 0 to 11; Some elements are zero, the UE has reported partialAndNonCoherent or nonCoherent, etc.), and according to the determination result, the next, completely or non-coherent transmission power determination method, Do one.
  • NW such as a TPMI index
  • UE capability information reported by the UE such as a precoder type
  • the UE determines the transmission power per antenna port according to the precoder type used.
  • the UE may determine the transmission power per antenna port according to one of the following antenna port transmission power determination methods 1 to 3.
  • Method 1 for determining antenna port transmit power The UE determines the transmission power per antenna port such that the total transmission power of all antenna ports (total transmission power) is equal to the total transmission power when using a completely coherent precoding matrix.
  • the UE may double a signal multiplied by the precoding matrix or the amplitude of the multiplication result by (M / N) 2 .
  • the UE uses a non-coherent precoding matrix ((1, 0, 0, 0) at four antenna ports (antenna ports # 0 to # 3), and uses a completely coherent precoding matrix.
  • the transmission power of the antenna port # 0 is corrected to four times (the amplitude is corrected to 16 times).
  • the UE can transmit using the same total transmission power as in the case of using a completely coherent precoding matrix, so that coverage and SNR (communication quality) can be improved.
  • Method 2 for determining antenna port transmit power The UE determines the transmission power per antenna port such that the total transmission power of all antenna ports (total transmission power) is ⁇ 1 times the total transmission power when using a completely coherent precoding matrix.
  • ⁇ 1 may be equal to or smaller than 1, or may be smaller than 1.
  • ⁇ 1 may be specified in the specification.
  • the UE may be set to ⁇ 1 by higher layer signaling.
  • the UE may use the value reported by the UE capability information.
  • the UE may report one of the plurality of candidates specified in the specification.
  • the UE may multiply the amplitude of the signal multiplied by the precoding matrix or the result of the multiplication by (M / N) 2 and multiply the power by ⁇ 1.
  • Method 3 for determining antenna port transmit power The UE multiplies the transmit power per antenna port by ⁇ 2 for the partial or non-coherent precoding matrix.
  • ⁇ 2 may be 1 or more, or may be larger than 1.
  • ⁇ 2 may be a coefficient by which a precoding matrix as shown in FIG. 4 is multiplied.
  • the UE may be set with a coefficient for each TPMI index, a coefficient for non-coherent (corresponding to TPMI from 0 to 3) and a coefficient for partial coherent (corresponding to TPMI from 4 to 11). And two values may be set.
  • ⁇ 2 may be specified in the specification.
  • the UE may use the value reported by the UE capability information as ⁇ 2.
  • the UE may report one of the plurality of candidates specified in the specification.
  • the UE may be set to ⁇ 2 by higher layer signaling.
  • the UE may be set to ⁇ 2 for each rank.
  • the UE may be configured with a plurality of candidates for ⁇ 2 by higher layer signaling, and may designate one of the plurality of candidates by DCI (eg, UL grant for scheduling PUSCH, DCI format 0_0, 0_1).
  • This DCI may include a bit field that specifies a candidate, or may specify a candidate by a combination of a plurality of bit fields.
  • the UE may multiply the amplitude of the signal multiplied by the precoding matrix or the amplitude of the multiplication result by ⁇ 2.
  • the transmission power determination method 2 or the partial / non-coherent transmission power determination method may be referred to as a transmission power correction method, a correction, a transmission power increase method, a full power, or the like.
  • the transmission power determination method 2 it is possible to suppress a decrease in the total transmission power when using a partially coherent or non-coherent precoding matrix.
  • Transmission power determination method 3 The UE does not distribute the transmission power determined by the transmission power control to a plurality of set antenna ports, but transmits the transmission power determined by the transmission power control based on the ratio of the elements of the precoding matrix. Of antenna ports.
  • the UE may evenly distribute the transmission power determined by the transmission power control to the antenna ports corresponding to the non-zero elements in the precoding matrix. If the number of non-zero elements in the precoding matrix is 1, the UE may assign a transmission power determined by transmission power control to one antenna port corresponding to the element. If the number of non-zero elements in the precoding matrix is 2, the UE may equally allocate the transmission power determined by the transmission power control to two antenna ports corresponding to those elements. .
  • the transmission power determination method 3 it is possible to suppress a decrease in the total transmission power when using a partially coherent or non-coherent precoding matrix.
  • the UE may report the capability regarding the transmission power determination method 2 according to the UE capability information.
  • the UE may use any of the following reporting methods 1 and 2.
  • a UE that reports a non-coherent (nonCoherent) precoder type or a partial and non-coherent (partialAndNonCoherent) precoder type by UE capability information eg, codebook MIMO, pushch-TransCoherence
  • UE capability information eg, codebook MIMO, pushch-TransCoherence
  • UE capability 1 whether transmission power determination method 2 is supported; UE capability 2: whether UE supports ⁇ 1 (the antenna port transmission power determination method 2 described above), and at least one of the values of ⁇ 1.
  • UE Capability 3 Whether the UE supports ⁇ 2 (the above-described antenna port transmission power determination method 3), and at least one of the values of ⁇ 2.
  • UE Capability 4 What is the transmission power or amplitude of the UE per antenna port ⁇ (maximum amplification rate, maximum correction coefficient) value that indicates whether it can be increased up to 2 times
  • may be 1 or more.
  • the antenna port transmission power determination method 1 is applied. It is necessary to correct the transmission power of the antenna port # 0 to 4 times (correct the amplitude to 16 times) as compared with the case of using a completely coherent precoding matrix.
  • the UE that has reported ⁇ may amplify the transmission power or amplitude per antenna port up to ⁇ times in the determination method for partial or noncoherent when the TPMI corresponding to partial or noncoherent is set. This allows the UE to limit amplification based on the transmission power determination method 2 by ⁇ . By reporting ⁇ based on the performance of the signal amplifier, the UE can perform correction according to the performance of the signal amplifier, prevent correction that exceeds the performance of the signal amplifier, and suppress required performance.
  • the UE may report new UE capability information.
  • the UE capability information may indicate at least one of non-coherent, partially coherent, and fully coherent. At least one of non-coherent and partially coherent may be divided into a plurality of types depending on the presence or absence of at least one of the UE capabilities 1 to 4, and the UE capability information may indicate one type.
  • the UE can appropriately determine the transmission power according to the UE capability.
  • a UE supporting the transmission power determination method 2 may perform at least one of the following operations 1 to 4.
  • the UE is set to transmission power determination method 2 by higher layer signaling (for example, RRC signaling).
  • higher layer signaling for example, RRC signaling
  • the UE may be set to the transmission power determination method 2 by being notified of at least one of the above ⁇ 1, ⁇ 2, and ⁇ .
  • the NW may notify at least one of ⁇ 1, ⁇ 2, and ⁇ based on the UE capability information reported from the UE.
  • the UE is set to transmission power determination method 2 by DCI.
  • the DCI may be, for example, an UL grant that schedules a PUSCH.
  • This DCI may include a bit field indicating transmission power determination method 2, or may indicate transmission power determination method 2 by a combination of a plurality of bit fields.
  • Operation 3 A UE that reports that it supports the transmission power determination method 2 according to the UE capability information applies the transmission power determination method 2 to the PUSCH transmission after the report (after the RRC connection). That is, the UE applies the transmission power determination method 2 without being instructed by the NW. The UE sends the Msg. 3 Transmission power determination method 2 is not applied to PUSCH (before RRC connection).
  • CP-OFDM may be applied to PUSCHs other than 3 (conversion precoding may not be applied (disable)). Usually, Msg. 3.
  • DFT-S-OFDM conversion precoding
  • CP-OFDM conversion precoding
  • PAPR increases in CP-OFDM compared to DFT-S-OFDM. Therefore, the coverage is reduced in CP-OFDM as compared with DFT-S-OFDM. Therefore, the coverage can be improved by the UE applying the transmission power determination method 2 to the PUSCH after the RRC connection.
  • the UE that reports that it supports the transmission power determination method 2 according to the UE capability information may receive the Msg.
  • the transmission power determination method 2 is applied to PUSCH transmissions 3 and thereafter.
  • the UE may always apply the transmission power determination method 2.
  • the coverage can be improved by the UE applying the transmission power determination method 2 before the RRC connection.
  • the UE can appropriately apply the transmission power determination method 2.
  • the UE supporting the transmission power determination method 2 may set the Msg. In the random access procedure (before RRC connection). 3
  • the transmission power determination method 2 may be applied to PUSCH transmission.
  • the UE supporting the transmission power determination method 2 By selecting one RACH (Random @ Access @ Channel) resource, it may be reported that the transmission power determination method 2 is supported.
  • RACH Random @ Access @ Channel
  • the UE supporting the transmission power determination method 2 determines the RACH resource by replacing the RACH resource notified from the NW by a predetermined method, and uses the determined RACH resource to determine the Msg. 1 may be transmitted.
  • the UE that does not support the transmission power determination method 2 uses the RACH resource notified from the NW to send the Msg. 1 may be transmitted.
  • UEA UE supporting the transmission power determination method 2 may select a RACH resource by the following RACH resource selection method, and may determine the RACH resource by replacing the selected RACH resource by a predetermined method. For example, the UE may determine the RACH resource by adding a predetermined resource offset to the selected RACH resource.
  • the UE determines the number N of SS / PBCH (Synchronization Signal / Physical Broadcast Channel) blocks associated with one PRACH (Physical Random Access Channel) opportunity (occasion) and the number of channels per SS / PBCH block.
  • the number R of tension-based preambles may be provided by higher layer parameters. If N is less than one, one SS / PBCH block is mapped to 1 / N consecutive PRACH opportunities. If N is greater than or equal to 1, then, per PRACH opportunity, R contention-based preambles with a contiguous index associated with SS / PBCH block n (0 ⁇ n ⁇ N ⁇ 1) are calculated from preamble index n 64 / N. Start.
  • the SS / PBCH block index is calculated according to a preamble index in a single PRACH opportunity, a frequency resource index for a frequency-multiplexed PRACH opportunity, a time resource index time-multiplexed in one PRACH slot, and an index of a PRACH slot. Opportunities may be mapped.
  • the resource offset may be at least one of a preamble (sequence) index, a frequency resource index, a time resource index, and a PRACH slot index.
  • the UE that supports the transmission power determination method 2 receives Msg. 3 (it reports that the transmission power determination method 2 is supported by Msg. 1) or not, which may depend on the UE (depending on the UE implementation). May be indicated by broadcast information (for example, SS / PBCH block) from the NW.
  • Msg. 3 reports that the transmission power determination method 2 is supported by Msg. 1 or not, which may depend on the UE (depending on the UE implementation). May be indicated by broadcast information (for example, SS / PBCH block) from the NW.
  • UEA UE that does not support the transmission power determination method 2 may determine the RACH resource by the above-described RACH resource selection method.
  • the UE supporting the transmission power determination method 2 is Msg. 3 Whether to apply transmission power determination method 2 to the PUSCH is determined by the following Msg. At least one of the three transmission methods 1 and 2 may be followed.
  • Transmission method 1 As shown in FIG. 3 whether to apply the transmission power determination method 2 to the PUSCH or not. 2 may be instructed from the NW.
  • the instruction as to whether to apply the transmission power determination method 2 to the 3 PUSCH may be any of the following instructions 1 to 4.
  • Indication 1 UE sends Msg. 2
  • the instruction may be notified by bits ⁇ 0, 1 ⁇ included in DCI.
  • UE sends Msg.
  • the instruction may be notified by a combination of a plurality of bit fields included in 2 DCI.
  • the instruction may be notified using physical resources (for example, frequency resources) of 2 PDCCH.
  • the instruction may be notified according to whether the value obtained by dividing the CCE index of 2 PDCCH by the aggregation level is an even number or an odd number.
  • the UE may be notified of the instruction by a value associated with the CCE index.
  • Indication 4 The UE sends the Msg.
  • the instruction may be notified by the selection of the search space of 2 PDCCH or the reset.
  • the instruction may be notified depending on which of the two candidates, the search space ID or the coreset ID that has received the No. 2 is used.
  • Msg. 3 It is possible to flexibly set whether to apply the transmission power determination method 2 to the PUSCH.
  • Transmission method 2 As shown in FIG. 3 Whether to apply the transmission power determination method 2 to the PUSCH may not be instructed by the NW.
  • the UE sends the Msg. 3
  • the transmission power determination method 2 may be applied to PUSCH transmission.
  • the UE that applies the transmission power determination method 2 to the 3 PUSCH is Msg. 3 Whether to apply the transmission power determination method 2 to the PUSCH from the PUSCH to the RRC connection may follow any of the following PUSCH transmission methods 1-1 and 1-2.
  • the UE supporting the transmission power determination method 2 is the Msg. 3 is applied to transmission power determination method 2, and Msg. 3
  • the transmission power determination method 2 is applied to the PUSCH from the PUSCH to the RRC connection (for example, Msg. 4 HARQ-ACK).
  • PUSCH transmission method 1-1 coverage can be improved by applying transmission power determination method 2 to the PUSCH before RRC connection.
  • the UE supporting the transmission power determination method 2 is the Msg. 3 is applied to transmission power determination method 2, and Msg. 3 The transmission power determination method 2 is not applied to the PUSCH from the PUSCH to the RRC connection (eg, Msg. 4 HARQ-ACK).
  • the NW can flexibly set whether to apply transmission power determination method 2 after RRC connection.
  • the UE that applies the transmission power determination method 2 to the PUSCH may determine whether to apply the transmission power determination method 2 to the PUSCH after the RRC connection according to one of the following PUSCH transmission methods 2-1 and 2-2. .
  • the UE supporting the transmission power determination method 2 is the Msg. 3, the transmission power determination method 2 is applied to the PUSCH after the RRC connection. That is, the UE applies the transmission power determination method 2 to the PUSCH after the RRC connection, regardless of the instruction from the NW.
  • PUSCH transmission method 2-1 coverage can be improved by applying transmission power determination method 2 to the PUSCH after RRC connection.
  • the UE supporting the transmission power determination method 2 is the Msg.
  • the transmission power determination method 2 is applied to No. 3 and the transmission power determination method 2 is set by higher layer signaling after the RRC connection, the transmission power determination method 2 is applied to the PUSCH after the RRC connection. If the transmission power determination method 2 is not set by higher layer signaling after the RRC connection, the transmission power determination method 2 is not applied to the PUSCH after the RRC connection.
  • the NW can flexibly set whether to apply the transmission power determination method 2 after RRC connection.
  • the UE can improve coverage by applying the transmission power determination method 2 even before the RRC connection.
  • Each of the above aspects may be applied to transmission of a UL signal such as a measurement reference signal (SRS: Sounding Reference Signal), a phase tracking reference signal (PTRS: Phase Tracking Reference Signal), or a UL channel such as PUCCH. May be applied.
  • a measurement reference signal SRS: Sounding Reference Signal
  • PTRS Phase Tracking Reference Signal
  • UL channel such as PUCCH. May be applied.
  • wireless communication system (Wireless communication system)
  • communication is performed using any of the wireless communication methods according to the above embodiments or a combination thereof.
  • FIG. 9 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a unit of a system bandwidth (for example, 20 MHz) of an LTE system are applied. can do.
  • DC dual connectivity
  • the wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G. (5th generation mobile communication system), NR (New Radio), FRA (Future Radio Access), New-RAT (Radio Access Technology), etc., or a system for realizing these.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • NR New Radio
  • FRA Full Radio Access
  • New-RAT Radio Access Technology
  • the wireless communication system 1 includes a base station 11 forming a macro cell C1 having relatively wide coverage, and a base station 12 (12a to 12c) arranged in the macro cell C1 and forming a small cell C2 smaller than the macro cell C1.
  • a base station 11 forming a macro cell C1 having relatively wide coverage
  • a base station 12 (12a to 12c) arranged in the macro cell C1 and forming a small cell C2 smaller than the macro cell C1.
  • user terminals 20 are arranged in the macro cell C1 and each small cell C2.
  • the arrangement, number, and the like of each cell and the user terminals 20 are not limited to the modes shown in the figure.
  • the user terminal 20 can be connected to both the base station 11 and the base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 simultaneously using CA or DC. In addition, the user terminal 20 may apply CA or DC using a plurality of cells (CCs) (for example, five or less CCs and six or more CCs).
  • CCs cells
  • Communication between the user terminal 20 and the base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (also referred to as an existing carrier or a legacy carrier).
  • a carrier having a relatively high frequency band for example, 3.5 GHz, 5 GHz, or the like
  • a wide bandwidth may be used, or between the user terminal 20 and the base station 11.
  • the same carrier as described above may be used. Note that the configuration of the frequency band used by each base station is not limited to this.
  • the user terminal 20 can perform communication using time division duplex (TDD: Time Division Duplex) and / or frequency division duplex (FDD: Frequency Division Duplex) in each cell.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • a single numerology may be applied, or a plurality of different numerologies may be applied.
  • the base station 11 and the base station 12 may be connected by wire (for example, an optical fiber or an X2 interface compliant with CPRI (Common Public Radio Interface)) or wirelessly. Good.
  • wire for example, an optical fiber or an X2 interface compliant with CPRI (Common Public Radio Interface)
  • CPRI Common Public Radio Interface
  • the base station 11 and each base station 12 are respectively connected to the upper station apparatus 30, and are connected to the core network 40 via the upper station apparatus 30.
  • the higher station apparatus 30 includes, for example, an access gateway apparatus, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • each base station 12 may be connected to the higher station apparatus 30 via the base station 11.
  • the base station 11 is a base station having relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the base station 12 is a base station having local coverage, such as a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and a transmission / reception point. May be called.
  • a base station 10 when the base stations 11 and 12 are not distinguished, they are collectively referred to as a base station 10.
  • Each user terminal 20 is a terminal corresponding to various communication systems such as LTE and LTE-A, and may include not only mobile communication terminals (mobile stations) but also fixed communication terminals (fixed stations).
  • orthogonal frequency division multiple access Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier
  • Frequency Division Multiple Access Frequency Division Multiple Access
  • / or OFDMA is applied.
  • OFDMA is a multicarrier transmission scheme in which a frequency band is divided into a plurality of narrow frequency bands (subcarriers), and data is mapped to each subcarrier for communication.
  • the SC-FDMA divides a system bandwidth into bands constituted by one or continuous resource blocks for each terminal, and a single carrier transmission that reduces interference between terminals by using different bands for a plurality of terminals. It is a method.
  • the uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
  • a downlink shared channel (PDSCH: Physical Downlink Shared Channel), a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel and the like shared by each user terminal 20 are used. Used.
  • the PDSCH transmits user data, upper layer control information, SIB (System @ Information @ Block), and the like. Also, MIB (Master ⁇ Information ⁇ Block) is transmitted by PBCH.
  • SIB System @ Information @ Block
  • MIB Master ⁇ Information ⁇ Block
  • Downlink L1 / L2 control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel) and the like.
  • Downlink control information (DCI: Downlink Control Information) including scheduling information of PDSCH and / or PUSCH is transmitted by PDCCH.
  • the scheduling information may be notified by DCI.
  • a DCI that schedules DL data reception may be called a DL assignment
  • a DCI that schedules UL data transmission may be called an UL grant.
  • PCFICH transmits the number of OFDM symbols used for PDCCH.
  • the PHICH transmits HARQ (Hybrid Automatic Repeat Repeat request) acknowledgment information (for example, retransmission control information, HARQ-ACK, ACK / NACK, etc.) for the PUSCH.
  • HARQ Hybrid Automatic Repeat Repeat request
  • the EPDCCH is frequency-division multiplexed with a PDSCH (Downlink Shared Data Channel) and used for transmission of DCI and the like like the PDCCH.
  • PDSCH Downlink Shared Data Channel
  • an uplink shared channel (PUSCH: Physical Uplink Shared Channel), an uplink control channel (PUCCH: Physical Uplink Control Channel), a random access channel (PRACH: Physical Random Access Channel) or the like is used.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • user data higher layer control information, etc. are transmitted.
  • downlink radio quality information CQI: Channel Quality Indicator
  • acknowledgment information acknowledgment information
  • scheduling request (SR: Scheduling Request), and the like are transmitted by PUCCH.
  • the PRACH transmits a random access preamble for establishing a connection with a cell.
  • a cell-specific reference signal CRS
  • CSI-RS channel state information reference signal
  • DMRS demodulation reference signal
  • PRS Positioning Reference Signal
  • a reference signal for measurement SRS: Sounding Reference Signal
  • DMRS reference signal for demodulation
  • the DMRS may be called a user terminal specific reference signal (UE-specific Reference Signal). Further, the transmitted reference signal is not limited to these.
  • FIG. 10 is a diagram illustrating an example of the entire configuration of the base station according to the embodiment.
  • the base station 10 includes a plurality of transmitting / receiving antennas 101, an amplifier unit 102, a transmitting / receiving unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • the transmitting / receiving antenna 101, the amplifier unit 102, and the transmitting / receiving unit 103 may be configured to include at least one each.
  • the baseband signal processing unit 104 regarding user data, processing of a PDCP (Packet Data Convergence Protocol) layer, division / combination of user data, transmission processing of an RLC layer such as RLC (Radio Link Control) retransmission control, and MAC (Medium Access) Control) Transmission / reception control (for example, HARQ transmission processing), scheduling, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, precoding processing, etc., and transmission / reception processing are performed.
  • RLC Radio Link Control
  • MAC Medium Access
  • Transmission / reception control for example, HARQ transmission processing
  • scheduling transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, precoding processing, etc.
  • IFFT inverse fast Fourier transform
  • the transmission / reception unit 103 converts the baseband signal precoded and output from the baseband signal processing unit 104 for each antenna into a radio frequency band, and transmits the radio frequency band.
  • the radio frequency signal frequency-converted by the transmitting / receiving section 103 is amplified by the amplifier section 102 and transmitted from the transmitting / receiving antenna 101.
  • the transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field of the present invention. Note that the transmission / reception unit 103 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • a radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmitting / receiving section 103 receives the upstream signal amplified by the amplifier section 102.
  • Transmitting / receiving section 103 frequency-converts the received signal into a baseband signal and outputs the baseband signal to baseband signal processing section 104.
  • the baseband signal processing unit 104 performs fast Fourier transform (FFT: Fast Fourier Transform), inverse discrete Fourier transform (IDFT), and error correction on user data included in the input uplink signal. Decoding, reception processing of MAC retransmission control, reception processing of the RLC layer and PDCP layer are performed, and the data is transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing (setting, release, etc.) of a communication channel, state management of the base station 10, management of radio resources, and the like.
  • the transmission path interface 106 transmits and receives signals to and from the higher-level station device 30 via a predetermined interface.
  • the transmission line interface 106 transmits and receives signals (backhaul signaling) to and from another base station 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface). Is also good.
  • FIG. 11 is a diagram illustrating an example of a functional configuration of the base station according to the embodiment.
  • functional blocks of characteristic portions in the present embodiment are mainly shown, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. Note that these configurations need only be included in base station 10, and some or all of the configurations need not be included in baseband signal processing section 104.
  • the control unit (scheduler) 301 controls the entire base station 10.
  • the control unit 301 can be configured by a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
  • the control unit 301 controls, for example, signal generation in the transmission signal generation unit 302, signal assignment in the mapping unit 303, and the like. Further, the control unit 301 controls a signal reception process in the reception signal processing unit 304, a signal measurement in the measurement unit 305, and the like.
  • the control unit 301 performs scheduling (for example, resource transmission) of system information, a downlink data signal (for example, a signal transmitted on the PDSCH), and a downlink control signal (for example, a signal transmitted on the PDCCH and / or the EPDCCH; acknowledgment information and the like). Allocation). Further, control section 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is required for an uplink data signal.
  • scheduling for example, resource transmission
  • a downlink data signal for example, a signal transmitted on the PDSCH
  • a downlink control signal for example, a signal transmitted on the PDCCH and / or the EPDCCH; acknowledgment information and the like. Allocation.
  • control section 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is required for an uplink data signal.
  • control unit 301 controls scheduling of a synchronization signal (for example, Primary Synchronization Signal (PSS) / Secondary Synchronization Signal (SSS)) and a downlink reference signal (for example, CRS, CSI-RS, and DMRS).
  • a synchronization signal for example, Primary Synchronization Signal (PSS) / Secondary Synchronization Signal (SSS)
  • SSS Secondary Synchronization Signal
  • CRS channel CSI-RS
  • DMRS downlink reference signal
  • control unit 301 transmits an uplink data signal (for example, a signal transmitted on the PUSCH), an uplink control signal (for example, a signal transmitted on the PUCCH and / or PUSCH, acknowledgment information and the like), a random access preamble (for example, It controls the scheduling of signals transmitted on the PRACH) and uplink reference signals.
  • an uplink data signal for example, a signal transmitted on the PUSCH
  • an uplink control signal for example, a signal transmitted on the PUCCH and / or PUSCH, acknowledgment information and the like
  • a random access preamble for example, It controls the scheduling of signals transmitted on the PRACH
  • Transmission signal generation section 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from control section 301, and outputs the generated signal to mapping section 303.
  • the transmission signal generation unit 302 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 302 generates a DL assignment for notifying downlink data allocation information and / or a UL grant for notifying uplink data allocation information, based on an instruction from the control unit 301, for example.
  • the DL assignment and the UL grant are both DCI and follow the DCI format.
  • the downlink data signal is subjected to an encoding process and a modulation process according to an encoding rate, a modulation scheme, and the like determined based on channel state information (CSI: Channel ⁇ State ⁇ Information) from each user terminal 20 or the like.
  • CSI Channel ⁇ State ⁇ Information
  • Mapping section 303 maps the downlink signal generated by transmission signal generation section 302 to a predetermined radio resource based on an instruction from control section 301, and outputs the result to transmission / reception section 103.
  • the mapping unit 303 can be composed of a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, and decoding) on the reception signal input from the transmission / reception unit 103.
  • the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20.
  • the reception signal processing unit 304 can be configured from a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when a PUCCH including HARQ-ACK is received, HARQ-ACK is output to control section 301. Further, the reception signal processing unit 304 outputs the reception signal and / or the signal after the reception processing to the measurement unit 305.
  • the measurement unit 305 performs measurement on the received signal.
  • the measurement unit 305 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present invention.
  • the measurement unit 305 may perform RRM (Radio Resource Management) measurement, CSI (Channel State Information) measurement, or the like based on the received signal.
  • Measuring section 305 receives power (for example, RSRP (Reference Signal Received Power)), reception quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio)).
  • Power for example, RSRP (Reference Signal Received Power)
  • reception quality for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio)
  • Signal strength for example, RSSI (Received Signal Strength Indicator)
  • channel information for example, CSI
  • the measurement result may be output to the control unit 301.
  • FIG. 12 is a diagram illustrating an example of the overall configuration of the user terminal according to the embodiment.
  • the user terminal 20 includes a plurality of transmitting / receiving antennas 201, an amplifier unit 202, a transmitting / receiving unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the transmitting / receiving antenna 201, the amplifier unit 202, and the transmitting / receiving unit 203 may be configured to include at least one each.
  • the radio frequency signal received by the transmitting / receiving antenna 201 is amplified by the amplifier unit 202.
  • the transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202.
  • the transmitting / receiving section 203 converts the frequency of the received signal into a baseband signal and outputs the baseband signal to the baseband signal processing section 204.
  • the transmission / reception unit 203 can be configured from a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present invention. Note that the transmission / reception unit 203 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, reception processing for retransmission control, and the like on the input baseband signal.
  • the downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, of the downlink data, broadcast information may be transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processor 204 performs retransmission control transmission processing (eg, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like, and performs transmission / reception processing. Transferred to 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits the radio frequency band.
  • the radio frequency signal frequency-converted by the transmitting / receiving section 203 is amplified by the amplifier section 202 and transmitted from the transmitting / receiving antenna 201.
  • FIG. 13 is a diagram illustrating an example of a functional configuration of the user terminal according to the embodiment. Note that, in this example, functional blocks of characteristic portions in the present embodiment are mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 204 of the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations need only be included in the user terminal 20, and some or all of the configurations need not be included in the baseband signal processing unit 204.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 can be configured by a controller, a control circuit, or a control device that is described based on common recognition in the technical field according to the present invention.
  • the control unit 401 controls, for example, signal generation in the transmission signal generation unit 402, signal assignment in the mapping unit 403, and the like. Further, the control unit 401 controls a signal reception process in the reception signal processing unit 404, a signal measurement in the measurement unit 405, and the like.
  • the control unit 401 acquires the downlink control signal and the downlink data signal transmitted from the base station 10 from the reception signal processing unit 404.
  • the control unit 401 controls generation of an uplink control signal and / or an uplink data signal based on a result of determining whether or not retransmission control is required for a downlink control signal and / or a downlink data signal.
  • Transmission signal generation section 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from control section 401 and outputs the generated signal to mapping section 403.
  • the transmission signal generation unit 402 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 402 generates an uplink control signal related to acknowledgment information, channel state information (CSI), and the like based on an instruction from the control unit 401, for example. Further, transmission signal generating section 402 generates an uplink data signal based on an instruction from control section 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the downlink control signal notified from the base station 10 includes a UL grant.
  • CSI channel state information
  • Mapping section 403 maps the uplink signal generated by transmission signal generation section 402 to a radio resource based on an instruction from control section 401, and outputs the result to transmission / reception section 203.
  • the mapping unit 403 can be composed of a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, and decoding) on the reception signal input from the transmission / reception unit 203.
  • the received signal is, for example, a downlink signal (a downlink control signal, a downlink data signal, a downlink reference signal, etc.) transmitted from the base station 10.
  • the reception signal processing unit 404 can be configured from a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention. Further, the reception signal processing unit 404 can constitute a reception unit according to the present invention.
  • the reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401.
  • the reception signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401. Further, the reception signal processing unit 404 outputs the reception signal and / or the signal after the reception processing to the measurement unit 405.
  • the measuring unit 405 measures the received signal.
  • the measurement unit 405 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present invention.
  • the measurement unit 405 may perform RRM measurement, CSI measurement, and the like based on the received signal.
  • the measurement unit 405 may measure reception power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), and channel information (for example, CSI).
  • the measurement result may be output to the control unit 401.
  • the transmission / reception unit 203 may transmit a signal based on a precoding matrix (precoder, codebook).
  • precoding matrix precoder, codebook
  • control unit 401 may correct the transmission power of the signal.
  • Control section 401 transmits information (upper layer signaling, precoder type (codebookSubset), DCI, etc.) notified from the base station and information (UE capability information, pre- Coder type) may be determined based on at least one of the above.
  • the control unit 401 determines the first sum of the transmission powers of all the antenna ports (the sum of the transmission powers when a completely coherent precoding matrix is used), Making the coding matrix equal to a second sum of transmission power of all antenna ports when all values are non-zero (sum of transmission power when using a partially coherent or non-coherent precoding matrix); Making one sum equal to a value obtained by multiplying the second sum by a first coefficient (for example, ⁇ 1) smaller than one, and multiplying the value of the precoding matrix by a second coefficient (for example, ⁇ 2) larger than one
  • a first coefficient for example, ⁇ 1
  • a second coefficient for example, ⁇ 2
  • the control unit 401 reports at least one of whether to support the correction, the first coefficient, the second coefficient, and the maximum amplification factor (eg, ⁇ ) of the power or amplitude of the signal by the correction. May be.
  • the maximum amplification factor eg, ⁇
  • Control section 401 may apply the correction to the uplink shared channel (Msg.3, Msg.4 at least one of HARQ-ACK) in the random access procedure.
  • Msg.3, Msg.4 at least one of HARQ-ACK
  • each functional block is realized by an arbitrary combination of at least one of hardware and software.
  • a method of implementing each functional block is not particularly limited. That is, each functional block may be realized using one device physically or logically coupled, or directly or indirectly (for example, two or more devices physically or logically separated). , Wired, wireless, etc.), and may be implemented using these multiple devices.
  • the functional block may be implemented by combining one device or the plurality of devices with software.
  • the functions include judgment, determination, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (configuration unit) that causes transmission to function may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
  • the realization method is not particularly limited.
  • a base station, a user terminal, and the like may function as a computer that performs processing of the wireless communication method according to the present disclosure.
  • FIG. 14 is a diagram illustrating an example of a hardware configuration of the base station and the user terminal according to the embodiment.
  • the above-described base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices illustrated in the drawing, or may be configured to exclude some of the devices.
  • processor 1001 may be implemented by one or more chips.
  • the functions of the base station 10 and the user terminal 20 are performed, for example, by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002 so that the processor 1001 performs an arithmetic operation and communicates via the communication device 1004. And controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • predetermined software program
  • the processor 1001 performs an arithmetic operation and communicates via the communication device 1004.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
  • CPU Central Processing Unit
  • the above-described baseband signal processing unit 104 (204), call processing unit 105, and the like may be realized by the processor 1001.
  • the processor 1001 reads out a program (program code), a software module, data, and the like from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to these.
  • a program program code
  • a program that causes a computer to execute at least a part of the operation described in the above embodiment is used.
  • the control unit 401 of the user terminal 20 may be implemented by a control program stored in the memory 1002 and operated by the processor 1001, and other functional blocks may be implemented similarly.
  • the memory 1002 is a computer-readable recording medium, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically EPROM), RAM (Random Access Memory), and other appropriate storage media. It may be constituted by one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to execute the wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc) ROM, etc.), a digital versatile disc, At least one of a Blu-ray (registered trademark) disk, a removable disk, a hard disk drive, a smart card, a flash memory device (eg, a card, a stick, a key drive), a magnetic stripe, a database, a server, and other suitable storage media. May be configured.
  • the storage 1003 may be called an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, a duplexer, a filter, a frequency synthesizer, and the like, for example, in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD: Time Division Duplex). May be configured.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like may be realized by the communication device 1004.
  • the transmission / reception unit 103 (203) may be mounted physically or logically separated between the transmission unit 103a (203a) and the reception unit 103b (203b).
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an external input.
  • the output device 1006 is an output device that performs output to the outside (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, and the like). Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • the devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
  • the base station 10 and the user terminal 20 include hardware such as a microprocessor, a digital signal processor (DSP: Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). It may be configured to include hardware, and some or all of the functional blocks may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these pieces of hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • RS Reference Signal
  • a component carrier may be called a cell, a frequency carrier, a carrier frequency, or the like.
  • a radio frame may be configured by one or more periods (frames) in the time domain.
  • the one or more respective periods (frames) forming the radio frame may be referred to as a subframe.
  • a subframe may be configured by one or more slots in the time domain.
  • the subframe may be of a fixed length of time (eg, 1 ms) that does not depend on numerology.
  • the new melology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology includes, for example, subcarrier interval (SCS: SubCarrier @ Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission @ Time @ Interval), number of symbols per TTI, radio frame configuration, transmission and reception.
  • SCS SubCarrier @ Spacing
  • TTI Transmission @ Time @ Interval
  • TTI Transmission @ Time @ Interval
  • radio frame configuration transmission and reception.
  • At least one of a specific filtering process performed by the transceiver in the frequency domain and a specific windowing process performed by the transceiver in the time domain may be indicated.
  • the slot may be configured by one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. Further, the slot may be a time unit based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • Slots may include multiple mini-slots. Each minislot may be constituted by one or more symbols in the time domain. Also, the mini-slot may be called a sub-slot. A minislot may be made up of a smaller number of symbols than slots.
  • a PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (PUSCH) mapping type A.
  • a PDSCH (or PUSCH) transmitted using a minislot may be referred to as a PDSCH (PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals.
  • the radio frame, the subframe, the slot, the minislot, and the symbol may have different names corresponding to each. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be interchanged with each other.
  • one subframe may be called a transmission time interval (TTI: Transmission @ Time @ Interval)
  • TTI Transmission @ Time @ Interval
  • TTI Transmission Time interval
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot is called a TTI.
  • You may. That is, at least one of the subframe and the TTI may be a subframe (1 ms) in the existing LTE, a period shorter than 1 ms (for example, 1 to 13 symbols), or a period longer than 1 ms. It may be.
  • the unit representing the TTI may be called a slot, a minislot, or the like instead of a subframe.
  • the TTI refers to, for example, a minimum time unit of scheduling in wireless communication.
  • the base station performs scheduling for allocating radio resources (frequency bandwidth, transmission power, and the like that can be used in each user terminal) to each user terminal in TTI units.
  • radio resources frequency bandwidth, transmission power, and the like that can be used in each user terminal
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, a time section (for example, the number of symbols) in which a transport block, a code block, a codeword, and the like are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (mini-slot number) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in [email protected]), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, and the like.
  • a TTI shorter than the normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • a long TTI (for example, a normal TTI, a subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (for example, a shortened TTI, etc.) may be replaced with a TTI shorter than the long TTI and 1 ms
  • the TTI having the above-described TTI length may be replaced with the TTI.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain.
  • the number of subcarriers included in the RB may be the same irrespective of the numerology, and may be, for example, 12.
  • the number of subcarriers included in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may have a length of one slot, one minislot, one subframe, or one TTI.
  • One TTI, one subframe, and the like may each be configured by one or a plurality of resource blocks.
  • one or more RBs include a physical resource block (PRB: Physical @ RB), a subcarrier group (SCG: Sub-Carrier @ Group), a resource element group (REG: Resource @ Element @ Group), a PRB pair, an RB pair, and the like. May be called.
  • PRB Physical @ RB
  • SCG Sub-Carrier @ Group
  • REG Resource @ Element @ Group
  • PRB pair an RB pair, and the like. May be called.
  • a resource block may be composed of one or more resource elements (RE: Resource @ Element).
  • RE Resource @ Element
  • one RE may be a radio resource area of one subcarrier and one symbol.
  • a bandwidth part (which may be referred to as a partial bandwidth or the like) may also represent a subset of consecutive common RBs (common @ resource @ blocks) for a certain numerology in a certain carrier. Good.
  • the common RB may be specified by an index of the RB based on the common reference point of the carrier.
  • a PRB may be defined by a BWP and numbered within the BWP.
  • $ BWP may include a BWP for UL (UL @ BWP) and a BWP for DL (DL @ BWP).
  • BWP for a UE, one or more BWPs may be configured in one carrier.
  • At least one of the configured BWPs may be active, and the UE does not have to assume to transmit and receive a given signal / channel outside the active BWP.
  • “cell”, “carrier”, and the like in the present disclosure may be replaced with “BWP”.
  • the structures of the above-described radio frame, subframe, slot, minislot, symbol, and the like are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, included in an RB The configuration of the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP: Cyclic @ Prefix) length, and the like can be variously changed.
  • the information, parameters, and the like described in the present disclosure may be expressed using an absolute value, may be expressed using a relative value from a predetermined value, or may be expressed using another corresponding information. May be represented.
  • a radio resource may be indicated by a predetermined index.
  • Names used for parameters and the like in the present disclosure are not limited in any respect. Further, the formulas and the like using these parameters may be different from those explicitly disclosed in the present disclosure.
  • the various channels (PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.) and information elements can be identified by any suitable name, so the various names assigned to these various channels and information elements Is not a limiting name in any way.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that can be referred to throughout the above description are not limited to voltages, currents, electromagnetic waves, magnetic or magnetic particles, optical or photons, or any of these. May be represented by a combination of
  • information, signals, and the like can be output from the upper layer to at least one of the lower layer and the lower layer to the upper layer.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • Information and signals input and output may be stored in a specific place (for example, a memory) or may be managed using a management table. Information and signals that are input and output can be overwritten, updated, or added. The output information, signal, and the like may be deleted. The input information, signal, and the like may be transmitted to another device.
  • Notification of information is not limited to the aspect / embodiment described in the present disclosure, and may be performed using another method.
  • the information is notified by physical layer signaling (for example, downlink control information (DCI: Downlink Control Information), uplink control information (UCI: Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, It may be implemented by broadcast information (master information block (MIB: Master Information Block), system information block (SIB: System Information Block), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be called L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
  • the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • the MAC signaling may be notified using, for example, a MAC control element (MAC @ CE (Control @ Element)).
  • the notification of the predetermined information is not limited to an explicit notification, and is implicit (for example, by not performing the notification of the predetermined information or by another information). May be performed).
  • the determination may be made by a value represented by 1 bit (0 or 1), or may be made by a boolean value represented by true or false. , May be performed by comparing numerical values (for example, comparison with a predetermined value).
  • software, instructions, information, and the like may be transmitted and received via a transmission medium.
  • a transmission medium For example, if the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.), the website, When transmitted from a server or other remote source, at least one of these wired and / or wireless technologies is included within the definition of a transmission medium.
  • system and “network” as used in this disclosure may be used interchangeably.
  • precoding In the present disclosure, “precoding”, “precoder”, “weight (precoding weight)”, “quasi-co-location (QCL)”, “TCI state (Transmission Configuration Indication state)”, “spatial relation” (Spatial relation), “spatial domain filter”, “transmission power”, “phase rotation”, “antenna port”, “antenna port group”, “layer”, “number of layers”, “ Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, “panel” are interchangeable Can be used for
  • base station (BS: Base @ Station)”, “wireless base station”, “fixed station (fixed @ station)”, “NodeB”, “eNodeB (eNB)”, “gNodeB (gNB)”, “gNodeB (gNB)” "Access point (access @ point)”, “transmission point (TP: Transmission @ Point)”, “reception point (RP: Reception @ Point)”, “transmission / reception point (TRP: Transmission / Reception @ Point)”, “panel”, “cell” , “Sector”, “cell group”, “carrier”, “component carrier” and the like may be used interchangeably.
  • a base station may also be referred to as a macro cell, a small cell, a femto cell, a pico cell, or the like.
  • a base station can accommodate one or more (eg, three) cells. If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH: Communication services can also be provided by Remote Radio Head)).
  • a base station subsystem eg, a small indoor base station (RRH: Communication services can also be provided by Remote Radio Head).
  • RRH small indoor base station
  • the term “cell” or “sector” refers to part or all of the coverage area of at least one of a base station and a base station subsystem that provides communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • a mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , Handset, user agent, mobile client, client or some other suitable terminology.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • at least one of the base station and the mobile station may be a device mounted on the mobile unit, the mobile unit itself, or the like.
  • the moving object may be a vehicle (for example, a car, an airplane, or the like), may be an unmanned moving object (for example, a drone, an autonomous vehicle), or may be a robot (maned or unmanned). ).
  • at least one of the base station and the mobile station includes a device that does not necessarily move during a communication operation.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be replaced with a user terminal.
  • communication between a base station and a user terminal is replaced with communication between a plurality of user terminals (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the configuration may be such that the user terminal 20 has the function of the base station 10 described above.
  • words such as “up” and “down” may be read as words corresponding to communication between terminals (for example, “side”).
  • an uplink channel, a downlink channel, and the like may be replaced with a side channel.
  • a user terminal in the present disclosure may be replaced by a base station.
  • a configuration in which the base station 10 has the function of the user terminal 20 described above may be adopted.
  • the operation performed by the base station may be performed by an upper node (upper node) in some cases.
  • various operations performed for communication with a terminal include a base station, one or more network nodes other than the base station (eg, Obviously, it can be performed by MME (Mobility Management Entity), S-GW (Serving-Gateway) or the like, but not limited thereto, or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • Each aspect / embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching with execution.
  • the order of the processing procedure, sequence, flowchart, and the like of each aspect / embodiment described in the present disclosure may be changed as long as there is no inconsistency.
  • elements of various steps are presented in an exemplary order, and are not limited to the specific order presented.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication
  • 5G 5th generation mobile communication system
  • FRA Fluture Radio Access
  • New-RAT Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Fluture generation radio access
  • GSM Registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.11 Wi-Fi
  • WiMAX registered trademark
  • UWB Ultra-WideBand
  • Bluetooth registered trademark
  • a system using other appropriate wireless communication methods and a next-generation system extended based on these methods.
  • a plurality of systems may be combined (for example, a combination of LTE or LTE-A and 5G) and applied.
  • any reference to elements using designations such as "first,” “second,” etc., as used in this disclosure, does not generally limit the quantity or order of those elements. These designations may be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not mean that only two elements can be employed or that the first element must precede the second element in any way.
  • determining means judging, calculating, computing, processing, deriving, investigating, searching (upping, searching, inquiry) ( For example, a search in a table, database, or another data structure), ascertaining, etc., may be regarded as "deciding".
  • determining includes receiving (eg, receiving information), transmitting (eg, transmitting information), input (input), output (output), and access ( accessing) (e.g., accessing data in a memory) or the like.
  • judgment (decision) is regarded as “judgment (decision)” of resolving, selecting, selecting, establishing, comparing, and the like. Is also good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of any operation.
  • “judgment (decision)” may be read as “assuming”, “expecting”, “considering”, or the like.
  • the “maximum transmission power” described in the present disclosure may mean the maximum value of the transmission power, may mean the nominal maximum transmission power (the nominal UE maximum transmit power), or may refer to the rated maximum transmission power (the rated UE maximum transmit power).
  • connection refers to any direct or indirect connection or coupling between two or more elements. And may include the presence of one or more intermediate elements between two elements “connected” or “coupled” to each other.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
  • the radio frequency domain, microwave It can be considered to be “connected” or “coupled” to each other using electromagnetic energy having a wavelength in the region, light (both visible and invisible) regions, and the like.
  • the term “A and B are different” may mean that “A and B are different from each other”.
  • the term may mean that “A and B are different from C”.
  • Terms such as “separate”, “coupled” and the like may be interpreted similarly to "different”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

ユーザ端末は、プリコーディング行列に基づく信号を送信する送信部と、前記プリコーディング行列の一部の値がゼロである場合、前記信号の送信電力の補正を行う制御部と、を有する。本開示の一態様によれば、プリコーディングを行う場合の送信電力を適切に決定できる。

Description

ユーザ端末及び無線通信方法
 本開示は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(LTE Rel.8、9)の更なる大容量、高度化などを目的として、LTE-A(LTEアドバンスト、LTE Rel.10、11、12、13)が仕様化された。
 LTEの後継システム(例えば、FRA(Future Radio Access)、5G(5th generation mobile communication system)、5G+(plus)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、LTE Rel.14又は15以降などともいう)も検討されている。
 将来の無線通信システム(例えば、NR)では、UEがコードブック(CB:Codebook)ベース送信及びノンコードブック(NCB:Non-Codebook)ベース送信の少なくとも一方をサポートすることが検討されている。
 CBベース送信及びNCBベース送信に基づいて決定されたプリコーディング行列によっては、UEは、送信電力制御によって決定された送信電力の全てを利用できない場合がある。送信電力の全てを利用できない場合、カバレッジの減少など、システムの性能が劣化するおそれがある。
 そこで、本開示は、プリコーディングを行う場合の送信電力を適切に決定できるユーザ端末及び無線通信方法を提供することを目的の1つとする。
 本開示の一態様に係るユーザ端末は、プリコーディング行列に基づく信号を送信する送信部と、前記プリコーディング行列の一部の値がゼロである場合、前記信号の送信電力の補正を行う制御部と、を有することを特徴とする。
 本開示の一態様によれば、プリコーディングを行う場合の送信電力を適切に決定できる。
図1は、コードブックベース送信の一例を示す図である。 図2は、ノンコードブックベース送信の一例を示す図である。 図3は、UEアンテナモデルの一例を示す図である。 図4は、プリコーダタイプとTPMIインデックスとの関連付けの一例を示す図である。 図5は、TPMIインデックスとプリコーディング行列との関連付けの一例を示す図である。 図6は、送信電力の補正とカバレッジとの関係の一例を示す図である。 図7は、ランダムアクセス手順の一例を示す図である。 図8は、ランダムアクセス手順の別の一例を示す図である。 図9は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図10は、一実施形態に係る基地局の全体構成の一例を示す図である。 図11は、一実施形態に係る基地局の機能構成の一例を示す図である。 図12は、一実施形態に係るユーザ端末の全体構成の一例を示す図である。 図13は、一実施形態に係るユーザ端末の機能構成の一例を示す図である。 図14は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。
 NRでは、UEがコードブック(CB:Codebook)ベース送信及びノンコードブック(NCB:Non-Codebook)ベース送信の少なくとも一方をサポートすることが検討されている。例えば、UEは少なくとも測定用参照信号(SRS:Sounding Reference Signal)リソースインデックス(SRI:SRS Resource Index)を用いて、CBベース及びNCBベースの少なくとも一方のPUSCH送信のためのプリコーダ(プリコーディング行列)を判断することが検討されている。
 例えば、UEは、CBベース送信の場合、SRI、送信ランク指標(TRI:Transmitted Rank Indicator)及び送信プリコーディング行列指標(TPMI:Transmitted Precoding Matrix Indicator)に基づいて、PUSCH送信のためのプリコーダを決定してもよい。UEは、NCBベース送信の場合、SRIに基づいてPUSCH送信のためのプリコーダを決定してもよい。
 CBベース送信に適用されるプリコーディングは、CBベースプリコーディングと呼ばれてもよい。NCBベース送信に適用されるプリコーディングは、NCBベースプリコーディングと呼ばれてもよい。
 なお、CBベース送信及びNCBベース送信は、それぞれCB送信及びNCB送信と呼ばれてもよい。
 4レイヤまでのCB送信及びNCB送信がサポートされてもよい。4アンテナポートに対して周波数選択プリコーディング(frequency selective precoding)がサポートされてもよい。
 図1は、CB送信の一例を示す図である。UEは、所定数のSRSリソースについてのSRSリソースセットを設定されてもよい。
 SRSリソースは、SRSリソースの位置(例えば、時間及び/又は周波数リソース位置、リソースオフセット、リソースの周期、SRSシンボル数、SRS帯域幅、Comb、系列IDなど)、SRSポート数、SRSポート番号、SRSリソース番号(SRSリソース設定ID(SRS-ResourceConfigId)などと呼ばれてもよい)などのうち少なくとも1つの情報に基づいて特定されてもよい。
 SRSリソースセット(SRSリソース)に関する情報は、上位レイヤシグナリングを用いてUEに設定されてもよい。
 ステップS102において、UEは、設定されたSRSリソースセットを用いてSRSを送信する。基地局は、SRSリソースを用いて、測定(例えば、チャネル測定)を行ってもよい。
 ステップS103において、UEは、SRI、TRI、TPMIの少なくとも1つに関する情報を、上位レイヤシグナリング、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information))又はこれらの組み合わせを用いて、基地局から通知されてもよい。当該情報は、PUSCH送信をスケジュールするDCI(ULグラントと呼ばれてもよい)に含まれてもよい。当該DCIは、PUSCH送信のためのMCS(Modulation and Coding Scheme)を含んでもよい。
 例えば、UEは、受信したDCIに含まれるSRIに基づいて、設定されたSRSリソースから1つのSRSリソースを選択してもよい。UEは、受信したDCIに含まれるTPMIに基づいて、選択したSRSリソース内のSRSポート用に好ましいプリコーダを決定してもよい。UEは、受信したDCIに含まれるTRIに基づいて、選択したSRSリソース内のSRSポートから送信に用いるポート数を決定してもよい。
 ステップS104において、UEは、DCIによって指定されたSRSリソースのSRSポートを用いて、TPMI及びTRIを利用してプリコーダ(コードブック)を決定し、当該プリコーダを用いてPUSCH送信を行う。
 図2は、NCB送信の一例を示す図である。ステップS201において、基地局(gNB、送受信ポイント(TRP:Transmission/Reception Point)などと呼ばれてもよい)は参照信号(RS:Reference Signal)を送信し、UEは当該参照信号を用いた測定を実施する。
 当該RSは、チャネル状態測定用RS(CSI-RS:Channel State Information RS)、プライマリ同期信号(PSS:Primary SS)、セカンダリ同期信号(SSS:Secondary SS)、モビリティ参照信号(MRS:Mobility RS)、トラッキング参照信号(TRS:Tracking RS)、同期信号ブロック(SSB:Synchronization Signal Block)に含まれる信号、復調用参照信号(DMRS:DeModulation Reference Signal)、ビーム固有信号などの少なくとも1つ、又はこれらを拡張及び/又は変更して構成される信号(例えば、密度及び/又は周期を変更して構成される信号)であってもよい。
 ステップS201のRSはCSI-RSとして説明するが、これに限られない。CSI-RSは、上述のRSのいずれかで読み替えられてもよい。
 ステップS202において、UEは、プリコードされたシングルポートのSRSリソース(Precoded SRS resources w/ single port)を用いてSRSを送信してもよい。
 UEは、SRSに適用するプリコーダ(SRSプリコーダ(SRS precoder))を、レシプロシティ(reciprocity)ベースの方法で決定してもよい。例えば、UEは、SRSプリコーダを、関連するCSI-RS(例えば、ステップS201で測定したCSI-RSリソース、当該CSI-RSリソースの位置、当該リソースを用いた測定結果など)に基づいて決定してもよい。
 なお、UEに対しては、1つ又は複数のSRSリソースが設定(configure)されてもよい。UEは、所定数のSRSリソースに関連するSRSリソースセット(SRS resource set)を設定されてもよい。UEに対して設定されるSRSリソース又はSRSリソースセットの数は、最大の送信ランク(レイヤ数)によって制限されてもよい。各SRSリソースは、1つ又は複数のSRSポートを有してもよい(1つ又は複数のSRSポートに対応してもよい)。
 この例では、UEはN個のSRSリソース(それぞれSRI=0~N-1に対応するSRSリソース#0~#N-1)を含むSRSリソースセットを設定されていると想定する。また、各SRSリソースは、1つのSRSポートを有すると想定する。
 SRSリソースは、SRSリソースの位置(例えば、時間及び/又は周波数リソース位置、リソースオフセット、リソースの周期、SRSシンボル数、SRS帯域幅、Comb、系列IDなど)、信号系列、SRSポート数、SRSポート番号、SRSリソース番号(SRSリソース設定ID(SRS-ResourceConfigId)などと呼ばれてもよい)などのうち少なくとも1つの情報に基づいて特定されてもよい。
 SRSリソースセット及び/又はSRSリソースに関する情報は、上位レイヤシグナリング、物理レイヤシグナリング又はこれらの組み合わせを用いてUEに設定されてもよい。
 UEは、SRSプリコーダ及び関連するCSI-RSとの対応関係に関する情報を、上位レイヤシグナリングなどを用いて設定されてもよい。
 ステップS202において、UEは、プリコードされたSRSリソース#0~#N-1のそれぞれを送信してもよい。
 基地局は、ステップS202におけるプリコードされたSRSリソースを用いて、測定(例えば、チャネル測定)を行ってもよい。基地局は、測定結果に基づいてビーム選択を行う。この例では、基地局はN個のSRSリソースから3つのSRSリソースを選択し、TRIを3と決定する。
 ステップS203において、基地局は、UEにULデータ送信をスケジュールするためのULグラントを送信する。ステップS204において、UEは、ステップS203のULグラントに基づいて、所定のプリコーダ(例えば、SRSプリコーダの少なくとも1つ)を適用した信号(例えば、PUSCH)を送信する。
 ステップS203のULグラントには、ULデータ送信に用いるプリコーダを特定するための情報(例えば、SRI)が含まれることが好ましい。当該ULグラントには、ULデータ送信に適用するパラメータ(例えば、MCS(Modulation and Coding Scheme))に関する情報が含まれてもよい。また、当該ULグラントには、ULデータ送信に適用するTRI及び/又はTPMIが含まれてもよいし、含まれなくてもよい。
 gNBは、例えばSRIの通知によって、UEがPUSCH送信に用いるプリコーダを絞りこんでもよい。例えば、UEは、ステップS203において受信したULグラントに含まれる1つ又は複数のSRIに基づいて、設定されたSRSリソースから1つ又は複数のSRSリソースを特定してもよい。この場合、UEは、特定されたSRSリソースに対応するプリコーダを用いて、特定されたSRSリソースの数に対応するレイヤ数のPUSCHを、ステップS204において送信してもよい。
 この例においては、ステップS203のULグラントによってTRI=3と、3つのSRIが指定され、UEはステップS204において3つのSRIに対応するプリコーダを用いてPUSCHポート#0~#2の3レイヤ送信を実施する。
 なお、UEは、ULグラントによって指定されるSRI以外のSRIに基づいてプリコーダを決定し、送信を行ってもよい。
 なお、UEは、受信したULグラントにTPMIが含まれる場合、当該TPMIに基づいて、選択したSRSリソース内のSRSポート用に好ましいプリコーダを決定してもよい。UEは、受信したULグラントに含まれるTRIが含まれる場合、当該TRIに基づいて、選択したSRSリソース内のSRSポートから送信に用いるポート数を決定してもよい。
 UEは、プリコーダタイプに関するUE能力情報(UE capability information)を報告し、基地局から上位レイヤシグナリングによって当該UE能力情報に基づくプリコーダタイプを設定されてもよい。当該UE能力情報は、UEがPUSCH送信において用いるプリコーダタイプの情報(パラメータ「pusch-TransCoherence」で表されてもよい)であってもよい。
 UEは、上位レイヤシグナリングで通知されるPUSCH設定情報(RRCシグナリングのPUSCH-Config情報要素)に含まれるプリコーダタイプの情報(パラメータ「codebookSubset」で表されてもよい)に基づいて、PUSCH(及びPTRS)送信に用いるプリコーダを決定してもよい。
 なお、プリコーダタイプは、完全コヒーレント(full coherent、fully coherent、coherent)、部分コヒーレント(partial coherent)及びノンコヒーレント(non coherent、非コヒーレント)のいずれか又はこれらの少なくとも2つの組み合わせ(例えば、「完全及び部分及びノンコヒーレント(fullyAndPartialAndNonCoherent)」、「部分及びノンコヒーレント(partialAndNonCoherent)」などのパラメータで表されてもよい)によって指定されてもよい。
 完全コヒーレントは、送信に用いるアンテナポートの同期がとれている(位相を合わせることができる、適用するプリコーダが同じである、などと表現されてもよい)ことを意味してもよい。部分コヒーレントは、送信に用いるアンテナポートのうち、一部は同期がとれているが、同期がとれないことを意味してもよい。ノンコヒーレントは、送信に用いるアンテナポートの同期がとれないことを意味してもよい。
 NRのULコードブック設計のために、図3に示すUEアンテナモデルが検討されている。完全コヒーレント、部分コヒーレント、ノンコヒーレントに対してコードブックが定義されてもよい。
 2アンテナポート(2-Tx)に対し、完全コヒーレントは、2アンテナポートが1つのRF回路に接続され、2アンテナポート間の位相の調整が可能である。部分コヒーレントは、適用されない。ノンコヒーレントは、各アンテナポートが異なるRF回路に接続され、2アンテナポート間の位相の調整が不可能である。4アンテナポート(4-Tx)に対し、完全コヒーレントは、4アンテナポートが1つのRF回路に接続され、4アンテナポート間の位相の調整が可能である。部分コヒーレントは、2アンテナポートの組が1つのRF回路に接続され、各組内の2アンテナポートの位相の調整が可能であるが、各組が異なるRF回路に接続され、2組の間の位相の調整が不可能である。ノンコヒーレントは、各アンテナポートが異なるRF回路に接続され、4アンテナポート間の位相の調整が不可能である。
 MIMO(Multi-Input Multi-Output)のアンテナがパネルを用いて構成される場合を例に挙げてコヒーレンシーについて説明する。ここでは、パネルごとにRF(Radio Frequency)回路が別である(独立している)ことを想定する。この場合、パネル内のアンテナポート(ひいてはアンテナ素子)は同期がとれるが、パネル間では同期がとれるとは保証できない。
 UEが1つのパネルに対応するアンテナポートのみを用いてUL送信する場合は、完全コヒーレントであると想定されてもよい。UEが複数のパネルに対応するアンテナポートを用いてUL送信する場合であって、少なくとも1つのパネルに対応するアンテナポートが複数ある場合は、部分コヒーレントであると想定されてもよい。UEが複数のパネルに対応するアンテナポートを用いてUL送信する場合であって、各パネルに対応するアンテナポートが1つずつの場合は、ノンコヒーレントであると想定されてもよい。
 なお、完全コヒーレントのプリコーダタイプをサポートするUEは、部分コヒーレント及びノンコヒーレントのプリコーダタイプをサポートすると想定されてもよい。部分コヒーレントのプリコーダタイプをサポートするUEは、ノンコヒーレントのプリコーダタイプをサポートすると想定されてもよい。
 プリコーダタイプは、コヒーレンシー、PUSCH送信コヒーレンス、コヒーレントタイプ、コヒーレンスタイプ、コードブックタイプ、コードブックサブセット、コードブックサブセットタイプなどで読み替えられてもよい。
 UEは、CBベース送信のための複数のプリコーダ(プリコーディング行列)から、UL送信をスケジュールするDCIから得られるTPMIインデックスに対応するプリコーディング行列(コードブック)を決定してもよい。
 例えば、図4に示すように、DFT-S-OFDM(Discrete Fourier Transform-Spread-OFDM、変換プリコーディング(transform precoding)が有効である)又はCP(Cyclic Prefix)-OFDM(変換プリコーディングが無効である)を用い、最大ランクが1である場合の、4アンテナポートに対するプリコーディング情報(レイヤ数、TPMI)が仕様に規定されてもよい。プリコーダタイプ(codebookSubset)が、完全及び部分及びノンコヒーレント(fullyAndPartialAndNonCoherent)である場合、UEは、シングルレイヤに対して、0から27までのいずれかのTPMIを設定される。プリコーダタイプが、部分及びノンコヒーレント(partialAndNonCoherent)である場合、UEは、シングルレイヤに対して、0から11までのいずれかのTPMIを設定される。プリコーダタイプが、ノンコヒーレント(nonCoherent)である場合、UEは、シングルレイヤに対して、0から3までのいずれかのTPMIを設定される。
 例えば、図5に示すように、DFT-S-OFDMを用いる(変換プリコーディングが有効である)場合の4アンテナポートを用いるシングルレイヤ送信に対する複数のプリコーディング行列が仕様に規定されてもよい。同様にして、CP-OFDMを用いる(変換プリコーディングが無効である)場合の4アンテナポートを用いるシングルレイヤ送信に対する複数のプリコーディング行列が仕様に規定されてもよい。複数のTPMIインデックスに複数のプリコーディング行列がそれぞれ関連付けられてもよい。
 プリコーダタイプ「完全及び部分及びノンコヒーレント(fullyAndPartialAndNonCoherent)」に対応するTPMIのうち、プリコーダタイプ「部分及びノンコヒーレント(partialAndNonCoherent)」に対応するTPMIを除くTPMI(12から27まで)は、完全コヒーレントのプリコーディング行列に対応する。完全コヒーレントのプリコーディング行列では、4つの要素(値)が非ゼロであるため、4アンテナポートが同じ振幅になる。
 プリコーダタイプ「部分及びノンコヒーレント」に対応するTPMIのうち、プリコーダタイプ「ノンコヒーレント(nonCoherent)」に対応するTPMIを除くTPMI(4から11まで)は、部分コヒーレントのプリコーディング行列に対応する。部分コヒーレントのプリコーディング行列では、2つの要素が非ゼロであるため、4アンテナポートのうち2アンテナポートの振幅だけが送信電力を割り当てられ、残りの2アンテナポートの送信電力が0になる。
 プリコーダタイプ「ノンコヒーレント」に対応するTPMI(0から3まで)は、ノンコヒーレントのプリコーディング行列に対応する。ノンコヒーレントのプリコーディング行列では、1つの要素が非ゼロであるため、4アンテナポートのうち3アンテナポートの送信電力が0になる。
 NCB送信の場合も、ノンコヒーレントのプリコーダタイプ、又は部分コヒーレント及びノンコヒーレントのプリコーダタイプを報告したUEは、プリコーディング行列における一部の要素が0になる場合がある。
 また、UEは、送信電力制御(TPC)によってPUSCHに利用可能な送信電力を決定する。UEは、非ゼロPUSCH送信に用いられるアンテナポート数と、送信方式に対して設定されたアンテナポートの数との比によって、送信電力の線形値を調整する。これによってスケールされた電力は、非ゼロPUSCHが送信されるアンテナポートにわたって均等に分けられる(送信電力の分配)。
 UEは、送信電力を複数のアンテナポートに分け、複数のアンテナポートの信号にプリコーディング行列を乗ずるため、部分コヒーレントのプリコーディング行列又はノンコヒーレントのプリコーディング行列のように、プリコーディング行列がゼロの要素を有する場合、対応するアンテナポートの送信電力分だけ、総送信電力が減少する。
 したがって、UEがCP-OFDM(変換プリコーディングが無効)又はDFT-S-OFDM(変換プリコーディングが有効)の上りMIMOを行い(2以上のアンテナポートを用い)、ランクが1である場合、NCBベース送信又はCBベース送信において、ノンコヒーレント又は部分コヒーレントのプリコーディング行列を用いるUEは、完全コヒーレントのプリコーディング行列を用いる場合に比べて、総送信電力が減少する。言い換えれば、ノンコヒーレント又は部分コヒーレントのプリコーディング行列を用いるUEは、送信電力制御によって決定された送信電力の全てを用いることができない。
 そこで、本発明者らは、プリコーディング行列の一部の値が0になる場合に送信電力を補正する方法を着想した。
 また、UEが、送信電力を補正する機能をサポートする場合、NW(ネットワーク、例えば、基地局、gNB)は、UEとRRC接続するまで、当該UEが当該機能をサポートするか、どの仕様(リリース)に準拠しているか、を知ることができない。よって、図6に示すように、送信電力を補正する場合のカバレッジが、送信電力を補正しない場合のカバレッジより大きくなるとしても、RRC接続前に当該機能を用いることができなければ、当該機能を持つUEのカバレッジは、当該機能を持たないUEのカバレッジと同じになってしまう。
 そこで、本発明者らは、送信電力を補正する機能をサポートする場合にカバレッジを改善する方法を着想した。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 なお、本開示の説明におけるPUSCHは、ULチャネル(PUCCHなど)、UL信号(SRSなど)、などで読み替えられてもよい。
 以下の実施形態では、主にCB送信について説明するが、この実施形態はNCB送信にも適用できる。以下の実施形態は、CP-OFDMを用いるUL送信にも、DFT-S-OFDMを用いるUL送信にも、適用できる。
 また、本開示において、上位レイヤシグナリングは、例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
 MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))、MAC PDU(Protocol Data Unit)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)、最低限のシステム情報(RMSI:Remaining Minimum System Information)、その他のシステム情報(OSI:Other System Information)などであってもよい。
(無線通信方法)
<態様1>
 UEは、次の送信電力決定方法1~3の少なくとも1つをサポートしてもよい。送信電力決定方法1~3の少なくとも1つがタイプとして規定されてもよい。
>送信電力決定方法1
 UEは、初めに送信電力をアンテナポート毎に分けてから(送信電力の分配)、プリコーディングを行う。
>送信電力決定方法2
 UEは、NWから設定された情報(TPMIインデックスなど)及びUEによって報告されたUE能力情報(プリコーダタイプなど)の少なくとも1つに基づいて、プリコーダが完全コヒーレントであるか(TPMIインデックスが12から27までの値である、プリコーディング行列の全ての要素(値)が非ゼロである、など)、部分又はノンコヒーレントであるか(TPMIインデックスが0から11までの値である、プリコーディング行列の一部の要素がゼロである、UEがpartialAndNonCoherent又はnonCoherentを報告した、など)を判定し、判定結果に応じて、次の、完全コヒーレント送信電力決定方法、部分又はノンコヒーレント送信電力決定方法、のいずれかを行う。
≫>完全コヒーレント送信電力決定方法
 UEは、初めに送信電力をアンテナポート毎に分けてから、プリコーディングを行う(送信電力決定方法1と同様)。
≫>部分/ノンコヒーレント送信電力決定方法
 UEは、使うプリコーダタイプに応じて、アンテナポート当たりの送信電力を決定する。
 UEは、次のアンテナポート送信電力決定方法1~3の1つに従って、アンテナポート当たりの送信電力を決定してもよい。
>≫>アンテナポート送信電力決定方法1
 UEは、全アンテナポートの総送信電力(合計送信電力)が、完全コヒーレントのプリコーディング行列を用いる場合の総送信電力と等しくなるように、アンテナポート当たりの送信電力を決定する。
 アンテナポート数をM、プリコーディング行列における非ゼロの要素数をNとすると、UEは、プリコーディング行列を乗算する信号又は乗算結果の振幅を、(M/N)倍してもよい。
 例えば、UEは、4アンテナポート(アンテナポート#0~#3)において、ノンコヒーレントのプリコーディング行列1/2(1,0,0,0)を用いる場合、完全コヒーレントのプリコーディング行列を用いる場合に比べて総送信電力が1/4になるため、アンテナポート#0の送信電力を4倍に補正する(振幅を16倍に補正する)。
 UEは、完全コヒーレントのプリコーディング行列を用いる場合と同じ総送信電力を用いて送信できるため、カバレッジ及びSN比(通信品質)を改善できる。
>≫>アンテナポート送信電力決定方法2
 UEは、全アンテナポートの総送信電力(合計送信電力)が、完全コヒーレントのプリコーディング行列を用いる場合の総送信電力のα1倍になるように、アンテナポート当たりの送信電力を決定する。ここで、α1は1以下であってもよいし、1より小さくてもよい。
 アンテナポート当たりの送信電力が増大すると、UEの信号増幅器の所要性能が高くなり、コストが増大するおそれがある。α1を設定することによって、送信電力を抑え、信号増幅器の所要性能を抑えることができる。
 α1は、仕様で規定されてもよい。UEは、上位レイヤシグナリングによって、α1を設定されてもよい。UEは、UE能力情報によって報告した値を用いてもよい。ここで、UEは、仕様に規定された複数の候補の1つを報告してもよい。
 UEは、プリコーディング行列を乗算する信号又は乗算結果の振幅を、(M/N)倍し、その電力をα1倍してもよい。
>≫>アンテナポート送信電力決定方法3
 UEは、部分又はノンコヒーレントのプリコーディング行列に対し、アンテナポート当たりの送信電力をα2倍する。ここで、α2は1以上であってもよいし、1より大きくてもよい。
 α2は、図4のようなプリコーディング行列に乗ずる係数であってもよい。UEは、TPMIインデックス毎の係数を設定されてもよいし、ノンコヒーレント用の(TPMIが0から3までに対応する)係数と、部分コヒーレント用の(TPMIが4から11までに対応する)係数と、の2値を設定されてもよい。
 α2は、仕様で規定されてもよい。UEは、UE能力情報によって報告した値をα2として用いてもよい。ここで、UEは、仕様に規定された複数の候補の1つを報告してもよい。
 UEは、上位レイヤシグナリングによって、α2を設定されてもよい。ここで、UEは、ランク毎にα2を設定されてもよい。
 UEは、上位レイヤシグナリングによってα2の複数の候補を設定され、DCI(例えば、PUSCHをスケジュールするULグラント、DCIフォーマット0_0、0_1)によって複数の候補の1つを指定されてもよい。このDCIは、候補を指定するビットフィールドを含んでもよいし、複数のビットフィールドの組み合わせによって候補を指定してもよい。
 UEは、プリコーディング行列を乗算する信号又は乗算結果の振幅を、α2倍してもよい。
 送信電力決定方法2又は部分/ノンコヒーレント送信電力決定方法は、送信電力補正方法、補正、送信電力増加方法、full powerなどと呼ばれてもよい。
 この送信電力決定方法2によれば、部分コヒーレント又はノンコヒーレントのプリコーディング行列を用いる場合の総送信電力の減少を抑えることができる。
>送信電力決定方法3
 UEは、送信電力制御によって決定される送信電力を、設定された複数のアンテナポートに分配するのではなく、送信電力制御によって決定される送信電力を、プリコーディング行列の要素の比に基づいて複数のアンテナポートに分配してもよい。
 例えば、UEは、送信電力制御によって決定される送信電力を、プリコーディング行列内の非ゼロの要素に対応するアンテナポートに対して均等に分配してもよい。プリコーディング行列内の非ゼロの要素の数が1である場合、UEは、その要素に対応する1つのアンテナポートに対して、送信電力制御によって決定される送信電力を割り当ててもよい。プリコーディング行列内の非ゼロの要素の数が2である場合、UEは、それらの要素に対応する2つのアンテナポートに対して、送信電力制御によって決定される送信電力を均等に割り当ててもよい。
 この送信電力決定方法3によれば、部分コヒーレント又はノンコヒーレントのプリコーディング行列を用いる場合の総送信電力の減少を抑えることができる。
<態様2>
 UEは、UE能力情報によって送信電力決定方法2に関する能力を報告してもよい。
 UEは、次の報告方法1、2のいずれかを用いてもよい。
>報告方法1
 UE能力情報(例えば、codebook MIMO、pusch-TransCoherence)によってノンコヒーレント(nonCoherent)のプリコーダタイプ、又は、部分及びノンコヒーレント(partialAndNonCoherent)のプリコーダタイプを報告したUEは、次のUE能力1~4の少なくとも1つを報告してもよい。
・UE能力1:送信電力決定方法2をサポートしているか
・UE能力2:UEがα1(前述のアンテナポート送信電力決定方法2)をサポートしているか、及び、α1の値の少なくとも1つ
・UE能力3:UEがα2(前述のアンテナポート送信電力決定方法3)をサポートしているか、及び、α2の値の少なくとも1つ
・UE能力4:UEがアンテナポート当たりの送信電力又は振幅を何倍まで大きくできるかを示すβ(最大増幅率、最大補正係数)の値
 βは1以上であってもよい。例えば、UEが4アンテナポート(アンテナポート#0~#3)において、ノンコヒーレントのプリコーディング行列1/2(1,0,0,0)を用いる場合にアンテナポート送信電力決定方法1を適用すると、完全コヒーレントのプリコーディング行列を用いる場合に比べて、アンテナポート#0の送信電力を4倍に補正する(振幅を16倍に補正する)必要がある。
 βを報告したUEは、部分又はノンコヒーレントに対応するTPMIを設定された場合、部分又はノンコヒーレント用決定方法において、アンテナポート当たりの送信電力又は振幅を最大でβ倍まで増幅してもよい。これによって、UEは、送信電力決定方法2に基づく増幅を、βによって制限することができる。UEは、信号増幅器の性能に基づくβを報告することによって、信号増幅器の性能に応じた補正を行うことができ、信号増幅器の性能を超過する補正を防ぎ、所要性能を抑えることができる。
>報告方法2
 UEは、新たなUE能力情報を報告してもよい。このUE能力情報は、ノンコヒーレント、部分コヒーレント、完全コヒーレント、の少なくとも1つを示してもよい。ノンコヒーレント、部分コヒーレントの少なくとも1つが、前述のUE能力1~4の少なくとも1つの有無によって、複数のタイプに分けられ、UE能力情報は、1つのタイプを示してもよい。
 この態様2によれば、UEは、UE能力に応じて送信電力を適切に決定できる。
<態様3>
 送信電力決定方法2をサポートするUEは、次の動作1~4の少なくとも1つを行ってもよい。
>動作1
 UEは、上位レイヤシグナリング(例えば、RRCシグナリング)によって送信電力決定方法2を設定される。
 UEは、前述のα1、α2、βの少なくとも1つを通知されることによって、送信電力決定方法2を設定されてもよい。NWは、UEから報告されたUE能力情報に基づいて、α1、α2、βの少なくとも1つを通知してもよい。
>動作2
 UEは、DCIによって送信電力決定方法2を設定される。DCIは、例えば、PUSCHをスケジュールするULグラントであってもよい。
 このDCIは、送信電力決定方法2を指示するビットフィールドを含んでもよいし、複数のビットフィールドの組み合わせによって送信電力決定方法2を指示してもよい。
>動作3
 UE能力情報によって送信電力決定方法2をサポートすることを報告するUEは、報告後(RRC接続後)のPUSCH送信に送信電力決定方法2を適用する。すなわち、UEは、NWから指示されることなく、送信電力決定方法2を適用する。UEは、Msg.3 PUSCH(RRC接続前)に送信電力決定方法2を適用しない。
 Msg.3 PUSCHに送信電力決定方法2を適用されないことにより、カバレッジは改善されないが、RRC接続後のSN比(通信品質)を改善できる。
 UEは、Msg.3以外のPUSCHにCP-OFDMを適用してもよい(変換プリコーディングを適用しなくてもよい(disable))。通常、Msg.3 PUSCHにDFT-S-OFDM(変換プリコーディング)を適用し(enable)、RRC接続後のPUSCHにCP-OFDMを適用する場合、DFT-S-OFDMに比べてCP-OFDMではPAPRが増大するため、DFT-S-OFDMに比べてCP-OFDMではカバレッジが縮小する。そこで、UEがRRC接続後のPUSCHに送信電力決定方法2を適用することによって、カバレッジを改善できる。
>動作4
 UE能力情報によって送信電力決定方法2をサポートすることを報告するUEは、Msg.3以降のPUSCH送信に送信電力決定方法2を適用する。UEは、常に送信電力決定方法2を適用してもよい。
 UEがRRC接続前に送信電力決定方法2を適用することによって、カバレッジを改善できる。
 この態様3によれば、UEは、送信電力決定方法2を適切に適用できる。
<態様4>
 送信電力決定方法2をサポートするUEは、ランダムアクセス手順(RRC接続前)においてMsg.3 PUSCH送信に送信電力決定方法2を適用してもよい。
 図7に示すように、送信電力決定方法2をサポートするUEは、Msg.1のRACH(Random Access Channel)リソースの選択によって、送信電力決定方法2をサポートしていることを報告してもよい。
 送信電力決定方法2をサポートするUEは、NWから通知されたRACHリソースを、所定の方法によって読み替えることによってRACHリソースを決定し、決定されたRACHリソースを用いてMsg.1を送信してもよい。送信電力決定方法2をサポートしないUEは、NWから通知されたRACHリソースを用いてMsg.1を送信してもよい。
 送信電力決定方法2をサポートするUEは、以下のRACHリソース選択方法によって、RACHリソースを選択し、選択されたRACHリソースを所定の方法で読み替えることによってRACHリソースを決定してもよい。例えば、UEは、選択されたRACHリソースに、所定のリソースオフセットを加えることによって、RACHリソースを決定してもよい。
《RACHリソース選択方法》UEは、1つのPRACH(Physical Random Access Channel)機会(occasion)に関連付けられたSS/PBCH(Synchronization Signal/Physical Broadcast Channel)ブロックの数Nと、SS/PBCHブロック当たりのコンテンションベースプリアンブルの数Rと、を上位レイヤパラメータによって提供されてもよい。Nが1より小さい場合、1つのSS/PBCHブロックが1/N個の連続するPRACH機会にマップされる。Nが1以上である場合、PRACH機会当たり、SS/PBCHブロックn(0≦n≦N-1)に関連付けられた連続インデックスを有するR個のコンテンションベースプリアンブルは、プリアンブルインデックスn 64/Nから開始する。SS/PBCHブロックインデックスは、単一のPRACH機会内のプリアンブルインデックス、周波数多重されるPRACH機会に対する周波数リソースインデックス、1つのPRACHスロット内に時間多重される時間リソースインデックス、PRACHスロットのインデックス、に従って、PRACH機会にマップされてもよい。
 リソースオフセットは、プリアンブル(系列)インデックス、周波数リソースインデックス、時間リソースインデックス、PRACHスロットインデックス、の少なくとも1つであってもよい。
 送信電力決定方法2をサポートするUEが、Msg.3に送信電力決定方法2を適用する要求する(送信電力決定方法2をサポートしていることをMsg.1によって報告する)かどうかは、UE次第であってもよい(UE実装に依存してもよい)し、NWからブロードキャスト情報(例えば、SS/PBCHブロック)によって指示されてもよい。
 送信電力決定方法2をサポートしないUEは、前述のRACHリソース選択方法によって、RACHリソースを決定してもよい。
 送信電力決定方法2をサポートするUEは、Msg.3 PUSCHに送信電力決定方法2を適用するかどうかを、次のMsg.3送信方法1、2の少なくとも1つに従ってもよい。
>Msg.3送信方法1
 図7に示すように、UEは、Msg.3 PUSCHに送信電力決定方法2を適用するかどうかを、Msg.2を用いてNWから指示されてもよい。
 Msg.3 PUSCHに送信電力決定方法2を適用するかどうかの指示は、次の指示1~4のいずれかであってもよい。
・指示1:UEは、Msg.2 DCIに含まれるビット{0,1}によって指示を通知されてもよい。
・指示2:UEは、Msg.2 DCIに含まれる複数のビットフィールドの組み合わせによって指示を通知されてもよい。
・指示3:UEは、Msg.2 PDCCHの物理リソース(例えば、周波数リソース)を用いて指示を通知されてもよい。例えば、UEは、Msg.2 PDCCHのCCEインデックスをアグリゲーションレベルで除した値が偶数か奇数かによって、指示を通知されてもよい。UEは、CCEインデックスに紐付けられた値によって、指示を通知されてもよい。
・指示4:UEは、Msg.2 PDCCHのサーチスペース又はCORESETの選択によって指示を通知されてもよい。UEは、Msg.2を受信したサーチスペースID又はCORESET IDの2つの候補のいずれを用いるかによって、指示を通知されてもよい。
 このMsg.3送信方法1によれば、Msg.3 PUSCHに送信電力決定方法2を適用するかどうかを柔軟に設定できる。
>Msg.3送信方法2
 図8に示すように、UEがMsg.3 PUSCHに送信電力決定方法2を適用するかどうかは、NWから指示されなくてもよい。UEは、Msg.3 PUSCH送信に送信電力決定方法2を適用してもよい。
 このMsg.3送信方法2によれば、完全コヒーレントのプリコーディング行列を用いる場合と同じ総送信電力を用いて送信できるため、カバレッジ及びSN比(通信品質)を改善できる。
 Msg.3 PUSCHに送信電力決定方法2を適用するUEは、Msg.3 PUSCHからRRC接続までのPUSCHに送信電力決定方法2を適用するかどうかについて、次のPUSCH送信方法1-1、1-2のいずれかに従ってもよい。
>PUSCH送信方法1-1
 送信電力決定方法2をサポートするUEは、Msg.3に送信電力決定方法2を適用し、Msg.3 PUSCHからRRC接続までのPUSCH(例えば、Msg.4 HARQ-ACK)に送信電力決定方法2を適用する。
 このPUSCH送信方法1-1によれば、RRC接続前のPUSCHに送信電力決定方法2を適用することによって、カバレッジを改善できる。
>PUSCH送信方法1-2
 送信電力決定方法2をサポートするUEは、Msg.3に送信電力決定方法2を適用し、Msg.3 PUSCHからRRC接続までのPUSCH(例えば、Msg.4 HARQ-ACK)に送信電力決定方法2を適用しない。
 このPUSCH送信方法1-2によれば、NWは、RRC接続後の送信電力決定方法2の適用の有無を柔軟に設定できる。
 Msg.3 PUSCHに送信電力決定方法2を適用するUEは、RRC接続後のPUSCHに送信電力決定方法2を適用するかどうかについて、次のPUSCH送信方法2-1、2-2のいずれかに従ってもよい。
>PUSCH送信方法2-1
 送信電力決定方法2をサポートするUEは、Msg.3に送信電力決定方法2を適用し、RRC接続後のPUSCHに送信電力決定方法2を適用する。すなわち、UEは、NWからの指示に依らず、RRC接続後のPUSCHに送信電力決定方法2を適用する。
 このPUSCH送信方法2-1によれば、RRC接続後のPUSCHに送信電力決定方法2を適用することによって、カバレッジを改善できる。
>PUSCH送信方法2-2
 送信電力決定方法2をサポートするUEは、Msg.3に送信電力決定方法2を適用し、RRC接続後に上位レイヤシグナリングによって送信電力決定方法2を設定された場合、RRC接続後のPUSCHに送信電力決定方法2を適用する。RRC接続後に上位レイヤシグナリングによって送信電力決定方法2を設定されない場合、RRC接続後のPUSCHに送信電力決定方法2を適用しない。
 このPUSCH送信方法2-2によれば、NWは、RRC接続後の送信電力決定方法2の適用の有無を柔軟に設定できる。
 この態様4によれば、UEは、RRC接続前にも送信電力決定方法2を適用することによって、カバレッジを改善できる。
<他の態様>
 以上の各態様は、測定用参照信号(SRS:Sounding Reference Signal)、位相追従参照信号(PTRS:Phase Tracking Reference Signal)、などのUL信号の送信に適用されてもよいし、PUCCHなどのULチャネルの送信に適用されてもよい。
(無線通信システム)
 以下、一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図9は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。
 なお、無線通信システム1は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、NR(New Radio)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)などと呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。
 ユーザ端末20は、基地局11及び基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCを用いて同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、5個以下のCC、6個以上のCC)を用いてCA又はDCを適用してもよい。
 ユーザ端末20と基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、legacy carrierなどとも呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、基地局11との間と同じキャリアが用いられてもよい。なお、各基地局が利用する周波数帯域の構成はこれに限られない。
 また、ユーザ端末20は、各セルで、時分割複信(TDD:Time Division Duplex)及び/又は周波数分割複信(FDD:Frequency Division Duplex)を用いて通信を行うことができる。また、各セル(キャリア)では、単一のニューメロロジーが適用されてもよいし、複数の異なるニューメロロジーが適用されてもよい。
 基地局11と基地局12との間(又は、2つの基地局12間)は、有線(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線によって接続されてもよい。
 基地局11及び各基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されない。また、各基地局12は、基地局11を介して上位局装置30に接続されてもよい。
 なお、基地局11は、相対的に広いカバレッジを有する基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、基地局12は、局所的なカバレッジを有する基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末(移動局)だけでなく固定通信端末(固定局)を含んでもよい。
 無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア-周波数分割多元接続(SC-FDMA:Single Carrier Frequency Division Multiple Access)及び/又はOFDMAが適用される。
 OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックによって構成される帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限らず、他の無線アクセス方式が用いられてもよい。
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHによって、ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHによって、MIB(Master Information Block)が伝送される。
 下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHによって、PDSCH及び/又はPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。
 なお、DCIによってスケジューリング情報が通知されてもよい。例えば、DLデータ受信をスケジューリングするDCIは、DLアサインメントと呼ばれてもよいし、ULデータ送信をスケジューリングするDCIは、ULグラントと呼ばれてもよい。
 PCFICHによって、PDCCHに用いるOFDMシンボル数が伝送される。PHICHによって、PUSCHに対するHARQ(Hybrid Automatic Repeat reQuest)の送達確認情報(例えば、再送制御情報、HARQ-ACK、ACK/NACKなどともいう)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送される。また、PUCCHによって、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認情報、スケジューリングリクエスト(SR:Scheduling Request)などが伝送される。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
 無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。
(基地局)
 図10は、一実施形態に係る基地局の全体構成の一例を示す図である。基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
 下りリンクによって基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化、逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102によって増幅され、送受信アンテナ101から送信される。送受信部103は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行う。
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の基地局10と信号を送受信(バックホールシグナリング)してもよい。
 図11は、一実施形態に係る基地局の機能構成の一例を示す図である。なお、本例では、本実施形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。
 ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。なお、これらの構成は、基地局10に含まれていればよく、一部又は全部の構成がベースバンド信号処理部104に含まれなくてもよい。
 制御部(スケジューラ)301は、基地局10全体の制御を実施する。制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部301は、例えば、送信信号生成部302における信号の生成、マッピング部303における信号の割り当てなどを制御する。また、制御部301は、受信信号処理部304における信号の受信処理、測定部305における信号の測定などを制御する。
 制御部301は、システム情報、下りデータ信号(例えば、PDSCHで送信される信号)、下り制御信号(例えば、PDCCH及び/又はEPDCCHで送信される信号。送達確認情報など)のスケジューリング(例えば、リソース割り当て)を制御する。また、制御部301は、上りデータ信号に対する再送制御の要否を判定した結果などに基づいて、下り制御信号、下りデータ信号などの生成を制御する。また、制御部301は、同期信号(例えば、PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal))、下り参照信号(例えば、CRS、CSI-RS、DMRS)などのスケジューリングの制御を行う。
 また、制御部301は、上りデータ信号(例えば、PUSCHで送信される信号)、上り制御信号(例えば、PUCCH及び/又はPUSCHで送信される信号。送達確認情報など)、ランダムアクセスプリアンブル(例えば、PRACHで送信される信号)、上り参照信号などのスケジューリングを制御する。
 送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部302は、例えば、制御部301からの指示に基づいて、下りデータの割り当て情報を通知するDLアサインメント及び/又は上りデータの割り当て情報を通知するULグラントを生成する。DLアサインメント及びULグラントは、いずれもDCIであり、DCIフォーマットに従う。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI:Channel State Information)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理が行われる。
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。
 受信信号処理部304は、受信処理によって復号された情報を制御部301に出力する。例えば、HARQ-ACKを含むPUCCHを受信した場合、HARQ-ACKを制御部301に出力する。また、受信信号処理部304は、受信信号及び/又は受信処理後の信号を、測定部305に出力する。
 測定部305は、受信した信号に関する測定を実施する。測定部305は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 例えば、測定部305は、受信した信号に基づいて、RRM(Radio Resource Management)測定、CSI(Channel State Information)測定などを行ってもよい。測定部305は、受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio)、SNR(Signal to Noise Ratio))、信号強度(例えば、RSSI(Received Signal Strength Indicator))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部301に出力されてもよい。
(ユーザ端末)
 図12は、一実施形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
 送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、ブロードキャスト情報もアプリケーション部205に転送されてもよい。
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202によって増幅され、送受信アンテナ201から送信される。
 図13は、一実施形態に係るユーザ端末の機能構成の一例を示す図である。なお、本例においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。
 ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。なお、これらの構成は、ユーザ端末20に含まれていればよく、一部又は全部の構成がベースバンド信号処理部204に含まれなくてもよい。
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部401は、例えば、送信信号生成部402における信号の生成、マッピング部403における信号の割り当てなどを制御する。また、制御部401は、受信信号処理部404における信号の受信処理、測定部405における信号の測定などを制御する。
 制御部401は、基地局10から送信された下り制御信号及び下りデータ信号を、受信信号処理部404から取得する。制御部401は、下り制御信号及び/又は下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号及び/又は上りデータ信号の生成を制御する。
 送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認情報、チャネル状態情報(CSI)などに関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。
 受信信号処理部404は、受信処理によって復号された情報を制御部401に出力する。受信信号処理部404は、例えば、ブロードキャスト情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号及び/又は受信処理後の信号を、測定部405に出力する。
 測定部405は、受信した信号に関する測定を実施する。測定部405は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 例えば、測定部405は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部405は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部401に出力されてもよい。
 送受信部203は、プリコーディング行列(プリコーダ、コードブック)に基づく信号を送信してもよい。
 前記プリコーディング行列の一部の値(要素)がゼロである場合、制御部401は、前記信号の送信電力の補正を行ってもよい。
 制御部401は、基地局から通知される情報(上位レイヤシグナリング、プリコーダタイプ(codebookSubset)、DCI、など)と、前記プリコーディング行列に関する能力について前記基地局へ報告した情報(UE能力情報、プリコーダタイプ)と、の少なくとも1つに基づいて、前記補正を適用するかを決定してもよい。
 前記プリコーディング行列の一部の値がゼロである場合、制御部401は、全アンテナポートの送信電力の第1合計(完全コヒーレントのプリコーディング行列を用いる場合の送信電力の合計)を、前記プリコーディング行列を全ての値が非ゼロである場合の全アンテナポートの送信電力の第2合計(部分コヒーレント又はノンコヒーレントのプリコーディング行列を用いる場合の送信電力の合計)に等しくすることと、前記第1合計を、1よりも小さい第1係数(例えばα1)を前記第2合計に乗じた値に等しくすることと、前記プリコーディング行列の値に1よりも大きい第2係数(例えばα2)を乗ずること、の1つを行ってもよい。
 制御部401は、前記補正をサポートするかと、前記第1係数と、前記第2係数と、前記補正によって前記信号の電力又は振幅の最大増幅率(例えば、β)と、の少なくとも1つを報告してもよい。
 制御部401は、ランダムアクセス手順における上り共有チャネル(Msg.3、Msg.4 HARQ-ACKの少なくとも1つ)に前記補正を適用してもよい。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図14は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004によって実現されてもよい。送受信部103(203)は、送信部103a(203a)と受信部103b(203b)とで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(QCL:Quasi-Co-Location)」、「TCI状態(Transmission Configuration Indication state)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(TP:Transmission Point)」、「受信ポイント(RP:Reception Point)」、「送受信ポイント(TRP:Transmission/Reception Point)」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (6)

  1.  プリコーディング行列に基づく信号を送信する送信部と、
     前記プリコーディング行列の一部の値がゼロである場合、前記信号の送信電力の補正を行う制御部と、を有することを特徴とするユーザ端末。
  2.  前記制御部は、基地局から通知される情報と、前記プリコーディング行列に関する能力について前記基地局へ報告した情報と、の少なくとも1つに基づいて、前記補正を適用するかを決定することを特徴とする請求項1に記載のユーザ端末。
  3.  前記プリコーディング行列の一部の値がゼロである場合、前記制御部は、全アンテナポートの送信電力の第1合計を、前記プリコーディング行列を全ての値が非ゼロである場合の全アンテナポートの送信電力の第2合計に等しくすることと、前記第1合計を、1よりも小さい第1係数を前記第2合計に乗じた値に等しくすることと、前記プリコーディング行列の値に1よりも大きい第2係数を乗ずること、の1つを行うことを特徴とする請求項1又は請求項2に記載のユーザ端末。
  4.  前記制御部は、前記補正をサポートするかと、前記第1係数と、前記第2係数と、前記補正によって前記信号の電力又は振幅の最大増幅率と、の少なくとも1つを報告することを特徴とする請求項3に記載のユーザ端末。
  5.  前記制御部は、ランダムアクセス手順における上り共有チャネルに前記補正を適用することを特徴とする請求項1から請求項4のいずれかに記載のユーザ端末。
  6.  プリコーディング行列に基づく信号を送信する工程と、
     前記プリコーディング行列の一部の値がゼロである場合、前記信号の送信電力の補正を行う工程と、を有することを特徴とするユーザ端末の無線通信方法。
PCT/JP2018/029995 2018-08-09 2018-08-09 ユーザ端末及び無線通信方法 WO2020031352A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP18929590.0A EP3836415A4 (en) 2018-08-09 2018-08-09 USER TERMINAL AND WIRELESS COMMUNICATION METHOD
JP2020535448A JP7315555B2 (ja) 2018-08-09 2018-08-09 端末、無線通信方法、基地局及びシステム
KR1020217005391A KR20210040083A (ko) 2018-08-09 2018-08-09 유저단말 및 무선 통신 방법
CN201880098615.9A CN112840575B (zh) 2018-08-09 2018-08-09 用户终端以及无线通信方法
US17/266,782 US20210345253A1 (en) 2018-08-09 2018-08-09 User terminal and radio communication method
PCT/JP2018/029995 WO2020031352A1 (ja) 2018-08-09 2018-08-09 ユーザ端末及び無線通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/029995 WO2020031352A1 (ja) 2018-08-09 2018-08-09 ユーザ端末及び無線通信方法

Publications (1)

Publication Number Publication Date
WO2020031352A1 true WO2020031352A1 (ja) 2020-02-13

Family

ID=69415398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029995 WO2020031352A1 (ja) 2018-08-09 2018-08-09 ユーザ端末及び無線通信方法

Country Status (6)

Country Link
US (1) US20210345253A1 (ja)
EP (1) EP3836415A4 (ja)
JP (1) JP7315555B2 (ja)
KR (1) KR20210040083A (ja)
CN (1) CN112840575B (ja)
WO (1) WO2020031352A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022142459A1 (zh) * 2020-12-31 2022-07-07 大唐移动通信设备有限公司 信号传输方法及装置、终端、接入网设备
CN115211086A (zh) * 2020-03-25 2022-10-18 华为技术有限公司 一种通信方法及装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110838856B (zh) * 2018-08-17 2021-11-26 大唐移动通信设备有限公司 一种数据传输方法、终端及网络设备
CN109417717B (zh) * 2018-09-27 2022-06-24 北京小米移动软件有限公司 测量配置方法、装置、设备、***及存储介质
CN116112140A (zh) * 2019-02-03 2023-05-12 Oppo广东移动通信有限公司 传输信号的方法、终端设备和网络设备
WO2020167747A1 (en) * 2019-02-13 2020-08-20 Idac Holdings, Inc. Ul mimo full tx power
CN113826429B (zh) * 2019-05-31 2024-02-20 高通股份有限公司 用于部分互易的csi捕获
US11095348B2 (en) * 2019-08-16 2021-08-17 Lg Electronics Inc. Method and apparatus for uplink signal transmission based on codebook in a wireless communication system
US11101856B2 (en) * 2019-08-16 2021-08-24 Lg Electronics Inc. Method and apparatus for uplink signal transmission based on codebook in a wireless communication system
US11606239B2 (en) 2019-10-16 2023-03-14 Qualcomm Incorporated Non-coherent waveforms for wireless communication
WO2023245533A1 (en) * 2022-06-23 2023-12-28 Qualcomm Incorporated Power scaling and splitting for uplink high resolution tpmi

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008773A2 (ko) * 2010-07-16 2012-01-19 엘지전자 주식회사 무선 통신 시스템에서 상향링크 전송 전력 제어 방법 및 장치
JP5990815B2 (ja) * 2011-11-07 2016-09-14 シャープ株式会社 基地局、端末、通信システムおよび通信方法
JP2015139101A (ja) * 2014-01-22 2015-07-30 株式会社Nttドコモ ユーザ端末、無線通信システム及び送信電力制御方法
WO2016018101A1 (ko) * 2014-07-31 2016-02-04 엘지전자 주식회사 채널 추정을 수행하기 위한 방법 및 이를 위한 장치
CN107534474A (zh) * 2015-04-09 2018-01-02 株式会社Ntt都科摩 无线基站、用户终端、无线通信***以及无线通信方法
US10575311B2 (en) * 2015-09-25 2020-02-25 Sharp Kabushiki Kaisha Base station device, terminal device, and communication method
CN108141428B (zh) * 2015-10-02 2021-04-09 株式会社Ntt都科摩 无线基站、用户终端以及无线通信方法
CN108463954A (zh) * 2016-02-04 2018-08-28 株式会社Ntt都科摩 基站、用户装置、预编码矩阵应用方法及预编码矩阵取得方法
WO2018025908A1 (ja) * 2016-08-03 2018-02-08 株式会社Nttドコモ ユーザ端末及び無線通信方法
US10567048B2 (en) * 2016-09-23 2020-02-18 Qualcomm Incorporated Techniques for determining uplink precoding matrix for a user equipment
WO2018084208A1 (ja) * 2016-11-02 2018-05-11 株式会社Nttドコモ ユーザ端末及び無線通信方法
CN110192354B (zh) * 2017-01-09 2022-04-29 瑞典爱立信有限公司 混合srs组合信令
US10952151B2 (en) * 2018-04-19 2021-03-16 Samsung Electronics Co., Ltd. Uplink power control for advanced wireless communication systems

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 8", 3GPP TS 36.300, April 2010 (2010-04-01)
ERICSSON: "Power control for UL MIMO", 3 GPP TSG RAN WG1 MEETING #92BIS RL-1805205, 20 April 2018 (2018-04-20), pages 1 - 7, XP051414414 *
LG ELECTRONICS: "Text proposals on UL PT -RS power boosting and DL PT -RS reception", 3GPP TSG RAN WG1 MEETING AH 1801 RL-1800369, 26 January 2018 (2018-01-26), pages 1 - 8, XP051384824 *
NTT DOCOMO, INC.: "Full TX Power UL transmission", 3GPP TSG RAN WG1 MEETING #94BIS RL-1811350, 12 October 2018 (2018-10-12), pages 1 - 3, XP051518753 *
See also references of EP3836415A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115211086A (zh) * 2020-03-25 2022-10-18 华为技术有限公司 一种通信方法及装置
WO2022142459A1 (zh) * 2020-12-31 2022-07-07 大唐移动通信设备有限公司 信号传输方法及装置、终端、接入网设备

Also Published As

Publication number Publication date
EP3836415A4 (en) 2022-03-30
EP3836415A1 (en) 2021-06-16
US20210345253A1 (en) 2021-11-04
JPWO2020031352A1 (ja) 2021-08-19
CN112840575B (zh) 2023-11-21
CN112840575A (zh) 2021-05-25
KR20210040083A (ko) 2021-04-12
JP7315555B2 (ja) 2023-07-26

Similar Documents

Publication Publication Date Title
WO2020044409A1 (ja) ユーザ端末及び無線通信方法
JP7315555B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2020053978A1 (ja) ユーザ端末及び無線通信方法
EP3852436A1 (en) User equipment and wireless communication method
WO2020026296A1 (ja) ユーザ端末及び無線通信方法
US11723051B2 (en) User terminal
WO2020026454A1 (ja) ユーザ端末及び無線通信方法
US11678174B2 (en) User terminal and radio communication method
WO2020026305A1 (ja) ユーザ端末
WO2020026297A1 (ja) 基地局及び無線通信方法
WO2020003443A1 (ja) ユーザ端末及び無線基地局
CA3095726A1 (en) User terminal and radio base station
WO2020026424A1 (ja) ユーザ端末
WO2020035947A1 (ja) 無線通信装置及び無線通信方法
WO2020031387A1 (ja) ユーザ端末及び無線通信方法
WO2020031354A1 (ja) ユーザ端末及び無線通信方法
WO2020017055A1 (ja) ユーザ端末及び無線通信方法
US11909696B2 (en) Uplink control information (UCI) transmission for bandwidth part (BWP) switching
US11564203B2 (en) User terminal and radio communication method
WO2020039482A1 (ja) ユーザ端末及び無線通信方法
WO2020031357A1 (ja) ユーザ端末
US20200413362A1 (en) User terminal and radio communication method
CA3108847A1 (en) User terminal and radio communication method
WO2020026451A1 (ja) ユーザ端末及び無線通信方法
WO2020035949A1 (ja) ユーザ端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929590

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020535448

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018929590

Country of ref document: EP

Effective date: 20210309