WO2020029955A1 - 一种数据调度方法及装置 - Google Patents

一种数据调度方法及装置 Download PDF

Info

Publication number
WO2020029955A1
WO2020029955A1 PCT/CN2019/099440 CN2019099440W WO2020029955A1 WO 2020029955 A1 WO2020029955 A1 WO 2020029955A1 CN 2019099440 W CN2019099440 W CN 2019099440W WO 2020029955 A1 WO2020029955 A1 WO 2020029955A1
Authority
WO
WIPO (PCT)
Prior art keywords
time domain
terminal device
time
domain location
time slot
Prior art date
Application number
PCT/CN2019/099440
Other languages
English (en)
French (fr)
Inventor
肖洁华
彭金磷
唐臻飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19847631.9A priority Critical patent/EP3823396A4/en
Publication of WO2020029955A1 publication Critical patent/WO2020029955A1/zh
Priority to US17/171,469 priority patent/US20210168835A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a data scheduling method and device.
  • CA Carrier Aggregation
  • the aggregated carriers include multiple CCs (Component Carriers), and multiple CCs include a Primary Carrier (PC) and one or more CCs. Secondary Carrier (SC).
  • PC Primary Carrier
  • SC Secondary Carrier
  • the 5th generation mobile communication radio technology (New Generation Radio, New Radio, 5G NR) system also defines other frequency resources, such as the bandwidth part. (Bandwidth Part, BWP), solves the demand for flexible bandwidth use of mobile communications, and improves the utilization of scattered spectrum in wireless frequency bands.
  • BWP Bandwidth Part
  • the carrier aggregation technology of the Long Term Evolution (LTE) system can support cross-carrier scheduling.
  • Cross-carrier scheduling refers to scheduling data channel resources of another component carrier on one component carrier.
  • 5G systems need to support more services and richer spectrum resources, so carrier aggregation and cross-carrier scheduling technologies will continue to be adopted, and due to the introduction of BWP, cross-BWP scheduling and feedback will also be supported.
  • the subcarrier interval is fixed.
  • the subcarrier spacing may be different in different frequency bands.
  • the subcarrier interval on the low frequency band is 15khz
  • the subcarrier interval on the high frequency band is 60khz.
  • the subcarrier spacing on different carriers may be different.
  • the subcarrier spacing on different BWPs of the same carrier may also be different.
  • the present application provides a data scheduling method and device, which are used to limit the time domain location of the data scheduled by the scheduling information, so as to prevent the terminal device from storing data before demodulation (or data to be sent). It takes a long time to increase the load on the terminal equipment.
  • an embodiment of the present application provides a data scheduling method, where the method includes:
  • the network device sends scheduling information to the terminal device at the first time domain location, and sends or receives data scheduled by the scheduling information at the second time domain location; the first time domain location and the second time domain location Located on different carriers, or the first time domain location and the second time domain location are located in different bandwidth portions BWP; wherein the second time domain location is based on the end location of the first time domain location and And / or the capability of the terminal device is determined.
  • the scheduled data can be located in a variety of possible time domain locations, but when the scheduled data is located in some possible time domain locations, it will cause the terminal device to cache data It takes a long time (which may exceed the buffer size of the terminal device), which further increases the processing load of the terminal device. Therefore, in the embodiments of the present application, it is proposed that the time until the end of the time domain location where the terminal device is located and / or the scheduling information is located. Determine the time domain location where the scheduled data is located, thereby limiting the time domain location where the scheduled data is located, effectively reducing the length of time that the terminal device stores the data (or data to be transmitted) before demodulation, and reducing the processing of the terminal device burden.
  • the capabilities of the terminal device include any one or any of the following: a buffer size of the terminal device, a processing capability of the terminal device, and the terminal
  • the processing capability of the device includes any one or any of the following: processing capability for scheduling information, and processing capability for data.
  • the capability of the terminal device may further include other information, which is not limited in this embodiment of the present application.
  • the method further includes: the network device receives a buffer size of the terminal device reported by the terminal device; or the network device acquires the terminal The processing capability of the device, and the cache size of the terminal device is determined according to the processing capability of the terminal device.
  • an embodiment of the present application provides a data scheduling method, where the method includes:
  • the terminal device receives the scheduling information sent by the network device at the first time domain location, and receives or sends the scheduling information scheduled by the scheduling information at the second time domain location; the first time domain location and the second time domain The location is on a different carrier, or the first time domain location and the second time domain location are located in different bandwidth portions BWP; wherein the second time domain location is an end location according to the first time domain location And / or the capability of the terminal device is determined.
  • the length of time that the terminal device stores the data (or data to be transmitted) before demodulation is effectively reduced, and the processing load of the terminal device is reduced.
  • the capabilities of the terminal device include any one or any of the following: a buffer size of the terminal device, a processing capability of the terminal device, and the terminal
  • the processing capability of the device includes any one or any of the following: processing capability for scheduling information, and processing capability for data.
  • the method further includes: the terminal device reporting the buffer size of the terminal device and / or the processing capability of the terminal device to the network device.
  • the first time domain location and the second time domain location do not overlap in time domain resources.
  • the first time domain position is located in a first time slot in the scheduling resource, and the first time domain position is in the first time slot.
  • the last symbol occupied in the time slot is located in the second time slot in the scheduled resource;
  • the second time domain position is located in any time slot after the second time slot in the scheduled resource;
  • the scheduling The resource and the scheduled resource are located on the different carriers, or the scheduled resource and the scheduled resource are located on the different BWP.
  • the first time domain position is located in a first time slot in the scheduling resource, and the first time domain position is in the first time slot.
  • the last symbol occupied in the time slot is located in the second time slot in the scheduled resource; the second time domain position is located in the second time slot, and the second time domain position is in the second time slot.
  • the symbol occupied in the resource is located after the last symbol occupied by the first time domain position in the first time slot, the scheduling resource and the scheduled resource are located on the different carriers, or the scheduling resource and The scheduled resources are located in the different BWPs.
  • a start symbol occupied by the second time domain position in the second time slot is determined by the first time domain position in the second time slot.
  • the number of symbols occupied by the second time domain location in the second time domain unit is determined according to a last symbol occupied in the first time slot, and the sum of the number of symbols included in the second time domain unit and A start symbol occupied by the second time domain location in the second time domain unit is determined.
  • the duration of the amount of data that can be stored in the cache of the terminal device on the scheduled resource is shorter than the starting point of the first time domain location to A duration of time during which the terminal device completes channel estimation of the data channel.
  • an embodiment of the present application provides an apparatus, which may be a network device or a terminal device, or may be a semiconductor chip provided in the network device or the terminal device.
  • the device has functions for implementing the various possible implementations of the first and second aspects described above. This function can be realized by hardware, and can also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • an apparatus includes: a processor and a memory; the memory is configured to store a computer execution instruction; when the device is running, the processor executes the computer execution instruction stored in the memory, so that the memory
  • the device executes the data scheduling method according to the first aspect or any one of the first aspects, or causes the device to execute the data scheduling method according to the second aspect or any one of the second aspects.
  • an embodiment of the present application further provides a computer-readable storage medium.
  • the computer-readable storage medium stores instructions, and when the computer-readable storage medium runs on the computer, the computer executes the methods described in the foregoing aspects.
  • an embodiment of the present application further provides a computer program product including instructions, which when executed on a computer, causes the computer to execute the methods described in the foregoing aspects.
  • FIG. 1 is a schematic diagram of a system architecture applicable to an embodiment of the present application
  • 2 is a schematic diagram of self-carrier scheduling and cross-carrier scheduling
  • FIG. 3 is a schematic diagram of a cross-carrier scheduling scenario
  • 4A and 4B are schematic diagrams of different subcarrier intervals between a scheduled carrier and a scheduled carrier in cross-carrier scheduling, respectively;
  • 4C and 4D are schematic diagrams of the values of K0 and K2 in different scenarios
  • FIG. 5A is a schematic diagram of the location of a PDCCH monitoring
  • 5B is a schematic diagram of a location of another PDCCH monitoring occasion
  • FIG. 5C is a schematic diagram of a location of another PDCCH monitoring occasion
  • FIG. 6 is a schematic diagram of self-carrier data scheduling and cross-carrier data scheduling
  • FIG. 7 is a schematic flowchart of a data scheduling method according to an embodiment of the present application.
  • 8A, 8B, 9A, 9B, and 9C are exemplary diagrams of a first time domain position and a second time domain position, respectively;
  • FIG. 10 is a diagram illustrating an example of a buffer size of a terminal device according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of determining whether to limit the second time domain location according to the capability of the terminal device
  • FIG. 12 is another schematic diagram of determining whether to limit the second time domain location according to the capability of the terminal device
  • FIG. 13 is a schematic diagram of another situation for determining whether to limit the position in the second time domain
  • FIG. 14 is a schematic structural diagram of a device according to an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of another device according to an embodiment of the present application.
  • At least one means one or more. At least two means two or more. “At least one”, “any one” or similar expressions refers to any combination of these terms, including any combination of single or plural items. For example, at least one (a, b) of a, b, or c can be expressed as: a, b, c, ab, ac, bc, or abc, where a, b, or c can be a single or a Multiple.
  • FIG. 1 is a schematic diagram of a system architecture applicable to an embodiment of the present application.
  • the system architecture includes a network device 101 and one or more terminal devices, such as a first terminal 1021, a second terminal 1022, and a third terminal 1023 shown in FIG.
  • the network device 101 can communicate with any one of the first terminal 1021, the second terminal 1022, and the third terminal 1023 through the network.
  • the network device may be a base station (BS), which is a device deployed in a wireless access network to provide a wireless communication function.
  • BS base station
  • devices that provide base station functions in 2G networks include base transceiver stations (BTS) and base station controllers (BSC).
  • BTS base transceiver stations
  • BSC base station controllers
  • Devices that provide base station functions in 3G networks include Node B (NodeB) and wireless Network controller (RNC).
  • NodeB Node B
  • RNC wireless Network controller
  • Equipment that provides base station functions in 4G networks includes evolved NodeB (eNB), and equipment that provides base station functions in 5G networks includes New Radio NodeB.
  • GNB Centralized Unit
  • CU Distributed Unit
  • Distributed Unit Distributed Unit
  • a terminal device is a device with wireless transceiver capabilities that can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on the water (such as a ship); it can also be deployed in the air (such as an aircraft, Balloons and satellites).
  • the terminal device may be a mobile phone, a tablet, a computer with a wireless transmitting and receiving function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, or an industrial control device.
  • wireless terminal in industrial control wireless terminal in self driving, wireless terminal in remote medical, wireless terminal in smart grid, transportation safety Wireless terminals, wireless terminals in smart cities, wireless terminals in smart homes, and the like.
  • Terminal equipment can also be called user equipment (UE), access terminal equipment, UE unit, UE station, mobile station, mobile station, remote station, remote terminal device, mobile device, UE terminal device, terminal device, Wireless communication equipment, UE agent or UE device, etc.
  • a network device may use scheduling resources to send scheduling information to a terminal device, and use scheduled resources to send or receive data to the terminal device.
  • the scheduling information may be located on a physical downlink control channel (physical downlink control channel (PDCCH)
  • the scheduling information may be downlink control information (downlink control information, DCI) carried in the PDCCH or an information field in the DCI
  • the scheduling information is used to indicate a data channel of the scheduled resource.
  • the terminal device may use the scheduling resource to receive scheduling information, and according to the scheduling information carried in the scheduling information, use the scheduled resource to receive or send data scheduled by the scheduling information.
  • the data may be located on a data channel, and the data channel may include a physical downlink shared channel (PDSCH) (used to carry downlink data) and / or a physical uplink shared channel (physical uplink (shared channel) (PUSCH) (used to carry uplink data ).
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • the PDSCH is used as an example for description.
  • the resource may be a carrier or a BWP.
  • the scheduling resource may be a time-frequency resource within a carrier, or may be a time-frequency resource within a BWP; the scheduled resource may be a time-frequency resource within a carrier, or may also be a time-frequency resource within a BWP.
  • the above scheduled resources may be referred to as a scheduled carrier, and the above scheduled resources may be referred to as a scheduled carrier.
  • the following embodiments are described by taking a scheduled carrier and a scheduled carrier as examples. It should be understood that the principles of the embodiments of the present application may be applicable to other resource scheduling granularities.
  • CC1 indicates a scheduled carrier and CC2 indicates a scheduled carrier.
  • the network device sends DCI to the terminal device through the PDCCH of CC1.
  • the DCI includes PDSCH resource indication information on CC2, and the indication information indicates the allocation to the terminal device.
  • the location of the PDSCH time-frequency resource on CC2 is used, so that the terminal device can receive data sent by the network device on the indicated CC2.
  • CC1 indicates a scheduled carrier and CC2 indicates a scheduled carrier.
  • the network device sends DCI to the terminal device through the PDCCH of CC1.
  • the DCI includes PUSCH resource indication information on CC2, and the indication information indicates the allocation to the terminal.
  • the PUSCH time-frequency resource location on the CC2 used by the device so that the terminal device can send data to the network device on the PUSCH on the indicated CC2.
  • the scheduling carrier and the scheduled carrier may be the same carrier (self-carrier scheduling) or different carriers (cross-carrier scheduling).
  • the left diagram in FIG. 2 shows a schematic diagram that does not use cross-carrier scheduling (that is, the scheduling carrier and the scheduled carrier are the same carrier), and the right diagram in FIG. 2 shows cross-carrier scheduling (that is, (Scheduling carriers and scheduled carriers are different carriers), it can be seen that, in cross-carrier scheduling, a PDCCH on one carrier may indicate PDSCH resources on other carriers.
  • cross-carrier scheduling will be mainly studied.
  • a macro base station cell (corresponding to the macro cell in the figure) and a small base station cell (corresponding to the small cell in the figure) share two downlink component carriers: CC1 and CC2.
  • the two component carriers of the small cell both work at low transmission power, CC1 of the macro cell works at high transmission power, and CC2 works at low transmission power. Therefore, on a small cell, the PDCCH on CC2 is used to schedule PDSCH resources on CC1 across carriers; on a macro cell, the PDCCH on CC1 is used to schedule PDSCH resources on CC2 across carriers.
  • the frame structure parameter (numerology) of the scheduled carrier and the frame structure parameter of the scheduled carrier may be the same or different.
  • the frame structure parameter may include a subcarrier interval and a cyclic prefix (CP).
  • the subcarrier interval may also be referred to as a subcarrier spacing (SCS).
  • SCS subcarrier spacing
  • Different frame structure parameters have different index values ⁇ . As shown in Table 1, the correspondence between the index values of the frame structure parameters and the frame structure parameters is shown.
  • Table 1 Correspondence between index values of frame structure parameters and frame structure parameters
  • the subcarrier interval of the scheduled carrier and the subcarrier interval of the scheduled carrier may be the same or different.
  • the scheduling carrier shown as CC1 in the figure
  • the subcarrier interval is 15KHz.
  • the scheduled carrier (Shown as CC2 in the figure) is located in the high frequency band and the subcarrier interval is 60KHz.
  • the network device sends scheduling information through the PDCCH on CC1 to indicate the PDSCH and / or PUSCH resources on CC2 (such as the PDSCH and / or PUSCH time slot). And the frequency domain location).
  • the scheduling carrier (shown as CC1 in the figure) is located in a low frequency band, the subcarrier interval is 15KHz, and the scheduled carrier (shown as CC2 in the figure) is located in a high frequency band, and the subcarrier interval is 30KHz.
  • the network device sends scheduling information through the PDCCH on CC1 to indicate the resources of PDSCH and / or PUSCH on CC2 (such as the time slot where the PDSCH and / or PUSCH is located and the frequency domain location). It should be noted that there may be a correspondence between the size of the subcarrier interval of the carrier and the high and low frequencies of the carrier.
  • the smaller the subcarrier interval of the carrier the smaller the carrier may be in the lower frequency band, and the larger the subcarrier interval of the carrier, Then the carrier may be located in a high frequency band; in other cases, carriers with different subcarrier intervals may also be located in the same frequency band, which is not limited in this embodiment of the present application.
  • CC1 and CC2 involved in any diagram are only the identifiers of the two carriers shown in the diagram, which is convenient to distinguish the two carriers in the diagram; CC1 and CC2 involved in different diagrams There is no correlation between them.
  • CC1 shown in FIG. 3 and CC1 shown in FIG. 4A may respectively represent different carriers.
  • the time (in timeslot unit) relationship between the PDCCH used to carry scheduling information and the scheduled PDSCH or PUSCH (that is, the time domain location between the PDCCH and the scheduled PDSCH or PUSCH) Relationship) can be expressed by K0 and K2.
  • the values of K0 and K2 can be determined according to the time domain difference between the time slot where the PDCCH and the scheduled PDSCH or PUSCH are located.
  • the data channel scheduled by PDCCH1 in CC1 is PDSCH1 in CC1
  • PDCCH1 and PDSCH1 are located in the same time slot (that is, time slot 0) in CC1
  • K0 0
  • PDCCH1 in CC1 is scheduled
  • the data channel is PDSCH2 in CC1. Since PDCCH1 is located in time slot 0 in CC1, PDSCH2 is located in time slot 1 in CC1, and the unit is time slot.
  • PDCCH1 and PDSCH2 differ by 1 time slot in the time domain.
  • K0 1.
  • the data channel scheduled by PDCCH2 in CC1 is PUSCH1 in CC2, since PDCCH2 is located in time slot 0 in CC1, PUSCH1 is located in time slot 0 in CC2, time slot 0 in CC1 and time slot 0 in CC2 are in the time domain
  • K2 0 at this time; if the data channel scheduled by PDCCH2 in CC1 is PUSCH2 in CC2, since PDCCH2 is located in slot 0 in CC1, PUSCH2 is located in slot 1 in CC2, and PDCCH2 and PUSCH2 are in the time domain
  • K2 1.
  • the frame structure parameters of the scheduled carrier can be used to explain the values of K0 and K2.
  • the subcarrier interval of the scheduled carrier shown as CC1 in the figure
  • the subcarrier interval of the scheduled carrier shown as CC2 in the figure
  • the value of K0 can be referred to that shown in FIG. 4D and will not be described again.
  • FIG. 4D only illustrates that the data channel scheduled by the PDCCH is PDSCH. If the data channel scheduled by the PDCCH is PUSCH, the value of K2 can be determined by referring to K0, which is not described again.
  • K0 and K2 are both equal to 10
  • K0 and K2 are both equal to 1.
  • the configuration of K0 and K2 that is, there is no restriction on the time domain location where the scheduled PDSCH or PUSCH is located, and there may be various possibilities.
  • the following description uses the PDCCH and the scheduled PDSCH as examples.
  • the network device can configure multiple search space sets for the terminal device.
  • the configuration parameters of each search space set can include the PDCCH monitoring period, PDCCH monitoring offset, PDCCH monitoring mode, and One or more of the parameters such as the number of consecutive time slots that need to be monitored in the PDCCH monitoring period.
  • the PDCCH monitoring period is used to configure how many time slots the terminal device performs monitoring; the PDCCH monitoring offset is used to indicate the terminal device. Monitoring is performed on several timeslots in a monitoring period; the PDCCH monitoring mode is used to indicate which symbol of the time slot the terminal device starts to monitor.
  • the configuration parameters of a control-resource set (CORESET) corresponding to each search space set include the number of consecutive time slots to be monitored in each PDCCH monitoring period.
  • the PDCCH monitoring timing corresponding to each search space set can be based on the PDCCH monitoring period, PDCCH monitoring offset, PDCCH monitoring mode, and the number of consecutive time slots to be monitored in each PDCCH monitoring period (the configuration parameter of CORESET corresponding to the search space) (Determined) and other parameters.
  • the terminal device can monitor the control channel (ie, the PDCCH) at the PDCCH monitoring timing corresponding to multiple search space sets, that is, the position where the PDCCH may appear is at the PDCCH monitoring timing.
  • the PDCCH can be sent in the resource indicated by CORESET.
  • the configured parameter range of CORESET is that the duration of CORESET is at most 3 symbols, then the PDCCH can occupy up to 3 symbols and does not span time slots ; Without considering that the PDCCH occupies multiple symbols, the starting position of the PDCCH can be located anywhere in the time slot. Based on the analysis of the PDCCH position here, it can be known that there are two possible scenarios for the PDCCH monitoring timing on the terminal device. The following describes two possible scenarios.
  • Scenario 1 a, the PDCCH monitoring timing appears in the first 3 symbols of the time slot of the scheduled carrier, and takes up to 3 consecutive symbols, and appears only once in a time slot; as shown in FIG. 5A, it is a kind of Location diagram of PDCCH monitoring timing.
  • b The PDCCH monitoring timing appears in any symbol of the time slot of the scheduling carrier, and it takes up to 3 consecutive symbols, and only appears once in a time slot.
  • FIG. 5B it is another PDCCH monitoring timing. Location diagram.
  • Scenario 2 Other configuration situations than scenario 1, such as a situation in which multiple PDCCH monitoring occasions occur in a time slot.
  • FIG. 5C it is a schematic location diagram of another PDCCH monitoring timing.
  • FIG. 6 is a schematic diagram of self-carrier data scheduling and cross-carrier data scheduling. Among them, (a) in FIG. 6 illustrates self-carrier data scheduling, and (b ) Indicates data scheduling across carriers.
  • both the scheduled carrier and the scheduled carrier are CC2 shown in the figure.
  • the length of time occupied by the time domain location where the PDCCH is located is T1a.
  • the time required for the terminal device to process after receiving the PDCCH is T2a.
  • the process performed by the terminal device after receiving the PDCCH may include one or more of the terminal device parsing the received PDCCH and performing channel estimation on the PDSCH, where the terminal device performs the received PDCCH
  • the analysis may include one or more of a fast Fourier transform (FFT) transformation of PDCCH data, PDCCH demodulation, PDCCH decoding, and DCI data analysis.
  • FFT fast Fourier transform
  • the length of time required for the terminal device from receiving and storing the PDSCH to releasing the buffer is T1a + T2a + T3a, that is, the length of time for the terminal device to store the PDSCH before demodulation is T1a + T2a + T3a.
  • the subcarrier interval of the scheduled carrier (shown as CC1 in the figure) is 15KHz, and the subcarrier interval of the scheduled carrier (shown as CC2 in the figure) is 60KHz.
  • the time length occupied by the time domain location where the PDCCH is located is T1b.
  • the time required for the terminal device to process after receiving the PDCCH is T2b.
  • T3b For the process of processing after receiving the PDCCH by the terminal device, refer to the description in (a), which is not repeated here. In the scenario illustrated by (b) in FIG.
  • the length of time required for the terminal device from receiving and storing the PDSCH to releasing the buffer is T1b + T2b + T3b, that is, the length of time that the terminal device stores the PDSCH before demodulation is T1b + T2b + T3b.
  • T1b + T2b + T3b is significantly larger than T1a + T2a + T3a, that is, in the CA scenario, when cross-carrier scheduling is configured and the subcarrier interval of the scheduled carrier is smaller than the subcarrier interval of the scheduled carrier,
  • the terminal device needs a larger buffer to store the data before demodulation, which will cause the terminal device to add additional processing load.
  • an embodiment of the present application provides a data scheduling method, which limits the time domain location where a data channel (such as PDSCH) is located, thereby effectively reducing the length of time that the terminal device stores the PDSCH before demodulation and reducing the processing of the terminal device. burden.
  • the data scheduling method in the embodiments of the present application can be applied to various scenarios, and is particularly applicable to a scenario in which cross-carrier scheduling is performed and a subcarrier interval of a scheduled carrier is smaller than a subcarrier interval of a scheduled carrier.
  • the subcarrier interval of the scheduling carrier involved in the embodiments of the present application is smaller than the subcarrier interval of the scheduled carrier. It can also be expressed as that the index value of the frame structure parameter of the scheduled carrier is smaller than the frame structure parameter of the scheduled carrier. Index values, as can be seen from Table 1 above, both have the same meaning.
  • the time slots (slots) involved in the embodiments of the present application can also be expressed as time-domain units. In the case of common CP, one time slot contains 14 orthogonal frequency division multiplexing (OFDM) symbols.
  • one slot contains 12 OFDM symbols (or simply referred to as symbols); it can be understood that in other embodiments, the number of symbols included in one slot can also be other numbers, specifically Without limitation, the following description mainly uses 14 symbols in one time slot as an example.
  • the time lengths of time slots on carriers with different subcarrier intervals are different.
  • the time length of one time slot on a scheduled carrier for example, the subcarrier interval is 15KHz
  • N scheduled carriers such as The length of time occupied by time slots on the subcarrier interval (60KHz).
  • ⁇ 1 is the index value of the frame structure parameter of the scheduled carrier
  • ⁇ 2 is the index value of the frame structure parameter of the scheduled carrier
  • SCS1 is the scheduled carrier subcarrier interval
  • SCS2 is the scheduled carrier subcarrier interval.
  • FIG. 7 is a schematic flowchart of a data scheduling method according to an embodiment of the present application. As shown in FIG. 7, it includes:
  • Step 701 The network device sends scheduling information to the terminal device at the first time domain location. Accordingly, in step 702, the terminal device receives the scheduling information at the first time domain location.
  • Step 703 Based on the scheduling information, the network device and the terminal device communicate at a second time domain location. Specifically, the network device sends or receives data scheduled by the scheduling information at the second time domain location, and accordingly, the terminal device receives or sends data scheduled by the scheduling information at the second time domain location.
  • the first time domain location may be a time domain location where a PDCCH carrying scheduling information is located
  • the second time domain location may be a time domain location where a data channel (PDSCH or PUSCH) carrying data scheduled by the scheduling information is located.
  • the first time domain location and the second time domain location may be located on different carriers, or the first time domain location and the second time domain location may also be located on different BWPs.
  • the carrier where the first time domain location is located can be referred to as a scheduling carrier
  • the carrier where the second time domain location is located can be referred to as a scheduled carrier.
  • the sub-carrier interval of can be smaller than the sub-carrier interval of the scheduled carrier.
  • the network device may To determine the second time domain location, that is, the second time domain location is limited by the first time domain location and / or the capability of the terminal device, and specifically includes: (1) according to the first time domain The location determines the second time domain location; (2) determines the second time domain location according to the capabilities of the terminal device; (3) determines the second time domain location according to the first time domain location and the terminal device's capabilities. The following three cases are described in detail.
  • the first time domain location and the second time domain location do not overlap in time domain resources.
  • the first time domain location and the second time domain location may not overlap in time domain resources.
  • the time domain resources occupied by the first time domain location are earlier in time than the second time domain. Time domain resources occupied by the location.
  • the first time domain location and the second time domain location do not overlap in time domain resources, which may refer to: if the first time domain location is located first in the scheduling carrier Time slot, the last symbol occupied by the first time domain position in the first time slot is located in the second time slot in the scheduled carrier, then the second time domain position is located in any time slot after the second time slot in the scheduled carrier .
  • FIG. 8A is an example diagram of a first time domain position and a second time domain position. As shown in FIG. 8A, the first time domain position is located in time slot 0 (first time slot) in the scheduling carrier (shown as CC1 in the figure, and the subcarrier interval is 15 kHz).
  • the first time domain position occupies 3 symbols (symbol 0, symbol 1 and symbol 2 respectively), the last symbol in time slot 0 occupied by the first time domain position (ie symbol 2) is located on the scheduled carrier (shown as CC2 in the figure, the subcarrier interval) 60KHz) in time slot 0 (second time slot), in this case, the second time domain position can be located in any time slot after time slot 0 in CC2, such as time slot 1 or time slot 2 in CC2 Or time slot 3, which is not specifically limited. It should be noted that the number carried after the time slot described in the embodiments of the present application is the number of the time slot, and the number carried after the symbol is the number of the symbol.
  • the last symbol (that is, symbol 2) in time slot 0 occupied by the first time domain location is located in time slot 0 in CC2.
  • the first time domain location can also be determined as follows Number of the time slot whose last symbol occupied in the first time slot is in the scheduled carrier:
  • X is the number of the slot where the last symbol occupied by the first time domain position in the first time slot is located in the scheduled carrier
  • Floor () means round down
  • PDCCH_LastSymbol indicates that the first time domain position is in the first Number of the last symbol occupied in the time slot (value is 0 to SymbsInASlot_SchedulingCC-1, SymbsInASlot_SchedulingCC indicates the number of symbols included in one slot in the scheduling carrier), and SymbsInASlot_ScheduledCC indicates the number of symbols included in one slot in the scheduled carrier Number of symbols.
  • FIG. 8B is another example diagram of the first time domain position and the second time domain position.
  • the first time domain position is located in time slot 0 (first time slot) in the scheduling carrier (shown as CC1 in the figure, and the subcarrier interval is 15 KHz).
  • the first time domain position occupies the front of time slot 0. 3 symbols (symbol 0, symbol 1 and symbol 2 respectively), the last symbol in time slot 0 occupied by the first time domain position (ie symbol 2) is located on the scheduled carrier (shown as CC2 in the figure, the subcarrier interval) Time slot 0 (second time slot) in 30KHz).
  • the second time domain position can be located in any time slot after time slot 0 in CC2, such as time slot 1 in CC2.
  • the number of the time slot where the last symbol occupied by the first time domain position in the first time slot in the scheduled carrier is located in the scheduled carrier can be obtained according to the above formula 1.
  • the first time domain location and the second time domain location do not overlap in the time domain resources, which may refer to: if the first time domain location is located at the first place in the scheduling carrier One time slot, the last symbol occupied by the first time domain position in the first time slot is located in the second time slot in the scheduled carrier, then the second time domain position is located in the second time slot, and the second time domain position is The symbols occupied in the second time slot are located after the last symbol occupied by the first time domain position in the first time slot.
  • FIG. 9A is another example diagram of the first time domain position and the second time domain position.
  • the first time domain position is located at time slot 0 (first time slot) in the scheduling carrier (shown as CC1 in the figure, and the subcarrier interval is 15 kHz).
  • the first time domain position occupies the front of time slot 0.
  • the last symbol in time slot 0 occupied by the first time domain position (ie symbol 2) is located on the scheduled carrier (shown as CC2 in the figure, the subcarrier interval) Time slot 0 (second time slot) in 60KHz), in this case, the second time domain position may be located in time slot 0 in CC2, and the second time domain position is in time slot 0 of the scheduled carrier
  • the occupied symbol is located after the last symbol occupied by the first time domain location in slot 0 of the scheduled carrier.
  • the symbols that can be occupied by the second time domain location in slot 0 of the scheduled carrier can be symbol 12 and symbol. 13, wherein the starting symbol that can be occupied by the second time domain location in slot 0 of the scheduled carrier is symbol 12, and the number of symbols is 2.
  • the second time domain position can occupy the starting symbol and the number of symbols in slot 0 of the scheduled carrier.
  • the second time domain position can also be on the scheduled carrier in the following manner.
  • Y is the number of the symbol before the start symbol that the second time domain position can occupy in slot 0 of the scheduled carrier.
  • the number of symbols that the second time domain position can occupy in slot 0 of the scheduled carrier can be calculated in the following manner:
  • Z is the number of symbols that the second time domain position can occupy in slot 0 of the scheduled carrier.
  • FIG. 9B is another example diagram of the first time domain position and the second time domain position.
  • the first time domain position is located in time slot 0 (first time slot) in the scheduling carrier (shown as CC1 in the figure, and the subcarrier interval is 15 kHz).
  • the first time domain position occupies the front of time slot 0.
  • the last symbol in time slot 0 occupied by the first time domain position (ie symbol 2) is located on the scheduled carrier (shown as CC2 in the figure, the subcarrier interval) (30KHz) in time slot 0 (second time slot), in this case, the second time domain position may be located in time slot 0 in CC2, and the second time domain position is in time slot 0 of the scheduled carrier
  • the occupied symbol is located after the last symbol occupied by the first time domain location in slot 0 of the scheduled carrier.
  • the symbols that can be occupied by the second time domain location in slot 0 of the scheduled carrier can be symbol 6, symbol. 7, symbol 8, symbol 9, symbol 10, symbol 11, symbol 12, and symbol 13, wherein the starting symbol that the second time domain position can occupy in slot 0 of the scheduled carrier is symbol 6, and the number of symbols is 8.
  • Example 1 see FIG. 8A and FIG. 8B
  • Example 2 see FIG. 9A and FIG. 9B
  • the second time domain position may be the coincident 12 and the symbol 13 in time slot 0, or may be located in any time slot after time slot 0, and if the second If the time domain position is in any time slot after time slot 0, it can be any position in the time slot.
  • the capability of the terminal device may include a buffer size of the terminal device and / or a processing capability of the terminal device.
  • the buffer of the terminal device involved herein may be used to store data before demodulation, such as storing PDSCH before demodulation.
  • the buffer of the terminal device may also be called a receiving buffer or a downlink receiving buffer; or, the terminal device
  • the buffer can also be used to store the data to be sent, such as storing the PUSCH to be sent (the PUSCH needs to be placed in the to-be-sent data buffer before sending).
  • the buffer of the terminal device can also be called the sending buffer or the uplink sending buffer .
  • the buffer of the terminal device is used to store the PDSCH before demodulation as an example.
  • the embodiment of the present application is also applicable to the scenario where the buffer of the terminal device is used to store the PUSCH before transmission.
  • the processing capability of the terminal device may include any one or any of the following: the processing capability of scheduling information and the processing capability of data.
  • the processing capability of the terminal device may also include the ability to monitor the PDCCH.
  • the processing capability of the terminal device may further include other information, which is not specifically limited in this embodiment of the present application.
  • the processing capability of scheduling information may also be referred to as the processing capability of the PDCCH; for example, the processing capability of the PDCCH may include the ability of the terminal device to perform FFT, demodulation, decoding, and blind PDCCH processing on the PDCCH.
  • the data processing capability can also be referred to as the data channel processing capability; for example, the data channel processing capability can include the PDSCH processing capability and / or the PUSCH processing capability, where the PDSCH processing capability can include The ability of the terminal device to demodulate and decode the PDSCH.
  • the processing capacity of the PDSCH is related to the length of time from when the terminal device starts to process the PDSCH to the releasable buffer. The length is related.
  • the length of time required for the terminal device to prepare the PUSCH refers to the length of time required from the time when the terminal device receives the PDCCH until it can send the PUSCH.
  • the ability to monitor the PDCCH may refer to what kind of PDCCH monitoring scenario the terminal supports.
  • the terminal device may determine its own cache size and report its cache size to the network device; for example, the terminal device may actively report to the network device, or the terminal device may also receive a request message sent by the network device Then report it to the network device.
  • the embodiment of this application does not limit the specific report method.
  • FIG. 10 an example of a buffer size of a terminal device is shown.
  • a possible implementation process for the terminal device to determine its own cache size is specifically described below.
  • the channel bandwidth supported by the terminal equipment in frequency range 1 is shown in Table 2, where the frequency range represented by FR1 is 450MHz–6000MHz.
  • Table 2 Channel bandwidth supported by terminal equipment in frequency range 1
  • any channel bandwidth supported by the terminal device can be configured with multiple frame structures, and different frame structures correspond to different numbers of RBs. Therefore, the terminal device needs to determine the buffer size according to the supported channel bandwidth. . Further, for the same channel bandwidth, the number of data in the frequency domain corresponding to the number of different RBs is different (one RB corresponds to 12 subcarriers, corresponding to 12 data in the frequency domain), because the terminal device cannot determine that it will be configured to Which frame structure, in general, the buffer size can be determined according to the maximum number of RBs.
  • the PDSCH in a scheduled time slot can contain a maximum of 14 symbols, which can also be referred to as a PDSCH Type A scheduling, which belongs to a type of slot scheduling.
  • the buffer of the terminal device can be no less than 14 symbols. Based on this, in an example, the channel bandwidth supported by the terminal device is 50 MHz, and the determined buffer size is about 270 RBs * 14 symbols.
  • the network device can acquire the processing capability of the terminal device, and determine the cache size of the terminal device according to the processing capability of the terminal device.
  • the terminal device can report the processing capability of the terminal device to the network device.
  • the network device may determine a downlink receiving buffer of the terminal device based on at least one of a processing capability of the PDCCH, a processing capability of the PDSCH, and a capability of monitoring the PDCCH, and the network device may determine the processing capability of the PUSCH based on the processing capability of the PUSCH.
  • the uplink sending buffer of the terminal device may be a downlink receiving buffer of the terminal device based on at least one of a processing capability of the PDCCH, a processing capability of the PDSCH, and a capability of monitoring the PDCCH.
  • the network device determining the second time domain location according to the cache size of the terminal device may refer to that the network device determines whether to limit the second time domain location according to the cache size of the terminal device. Details are described below.
  • this implementation manner is applicable to the scenario 1 described above regarding the PDCCH monitoring timing on the terminal device
  • the embodiment of this application introduces a comparison value M, which can be obtained by It is calculated by the following formula:
  • N buffer is the number of symbols corresponding to the buffer size of the terminal device
  • N 1 is the number of symbols corresponding to the time length (T1) occupied by the time domain location where the PDCCH is located on the scheduled carrier
  • N 2 is the number of symbols received by the terminal device. The number of symbols corresponding to the length of time (T2) required for processing after PDCCH on the scheduled carrier.
  • T4a the time length of the terminal device storing the data before demodulation. It can be seen that T4a is being The number of corresponding symbols on the scheduled carrier is smaller than the buffer size of the terminal and the number of corresponding symbols on the scheduled carrier. Therefore, the second time domain location is at slot 0 of CC2, which does not increase the processing load of the terminal device.
  • T4a is being The number of corresponding symbols on the scheduled carrier is smaller than the buffer size of the terminal and the number of corresponding symbols on the scheduled carrier. Therefore, the second time domain location is at slot 0 of CC2, which does not increase the processing load of the terminal device.
  • the start time point at which the terminal device stores the data before demodulation is the starting point of the second time domain location, and the terminal device stores The time length of the data before demodulation is T4b. It can be seen that the number of corresponding symbols on the scheduled carrier for T4b is less than the buffer size of the terminal and the number of symbols corresponding to the scheduled carrier. Therefore, the second time domain position is located at Time slot 1 of CC2 does not increase the processing load of the terminal device. As shown in (c) of FIG.
  • the start time point at which the terminal device stores the data before demodulation is the starting point of the second time domain location, and the terminal device stores The time length of the data before demodulation is T4c. It can be seen that the number of corresponding symbols on the scheduled carrier for T4c is less than the buffer size of the terminal and the number of symbols corresponding to the scheduled carrier. Therefore, the second time domain location is Time slot 2 of CC2 does not increase the processing load of the terminal device. For any time slot after the second time domain position is located in time slot 2 of CC2, reference may be made to the situation when the second time domain position is located in time slot 2 of CC2, and details are not described herein again.
  • the second time domain position can be located at or after time slot 0 of CC2. Any time slot.
  • T4d the time length of the terminal device storing the data before demodulation. It can be seen that T4d is being The number of corresponding symbols on the scheduled carrier is greater than the buffer size of the terminal. The corresponding number of symbols on the scheduled carrier is therefore the second time domain location in slot 0 of CC2, which will increase the processing load of the terminal device.
  • T4d is being The number of corresponding symbols on the scheduled carrier is greater than the buffer size of the terminal. The corresponding number of symbols on the scheduled carrier is therefore the second time domain location in slot 0 of CC2, which will increase the processing load of the terminal device.
  • the start time point at which the terminal device stores the data before demodulation is the starting point of the second time domain location, and the terminal device stores The time length of the data before demodulation is T4e. It can be seen that the number of corresponding symbols on T4e on the scheduled carrier is smaller than the buffer size of the terminal and the number of symbols on the scheduled carrier. Therefore, the second time domain position is located at Time slot 1 of CC2 does not increase the processing load of the terminal device. As shown in (c) of FIG.
  • the start time point at which the terminal device stores the data before demodulation is the starting point of the second time domain location, and the terminal device stores The time length of the data before demodulation is T4f. It can be seen that the number of symbols corresponding to T4f on the scheduled carrier is less than the buffer size of the terminal and the number of symbols corresponding to the scheduled carrier. Therefore, the second time domain position is Time slot 2 of CC2 does not increase the processing load of the terminal device. For any time slot after the second time domain position is located in time slot 2 of CC2, reference may be made to the situation when the second time domain position is located in time slot 2 of CC2, and details are not described herein again.
  • the second time domain position needs to be restricted.
  • One possible restriction method is to determine the second time domain position according to the first time domain position.
  • the first threshold value may be set in advance. If M is greater than or equal to the first threshold value, the second time domain position may not be restricted; if M is less than the first threshold value, the second time domain position may be restricted. In one example, the first threshold may be equal to zero. When a time offset caused by other processing or data scheduling time is considered, the first threshold may also be another value.
  • the network device can also adjust whether the time domain position of the data channel scheduled by the terminal device needs to be restricted according to the capabilities of the terminal device (such as the processing capability of the PDCCH, the processing capability of the PDSCH, etc.). For example, when the terminal device After the processing power of the terminal is enhanced, it may not be necessary to limit the time domain position of the data channel scheduled by the terminal device. When the processing capability of the terminal device is weakened, the time domain position of the data channel scheduled by the terminal device may be limited . Specific description will be given below.
  • the processing capability of the terminal device is enhanced, for example, if the processing capability of the PDCCH is enhanced, the length of T1 shown in FIG. 11, FIG. 12, or FIG. 13 becomes shorter. If the processing capability of the PDSCH is enhanced, then FIG. 11 and FIG. The length of T2 shown in FIG. 12 or FIG. 13 becomes shorter. Therefore, when the buffer size of the terminal device is not changed, the comparison value M becomes correspondingly larger.
  • the terminal apparatus 1 and terminal apparatus 28 are N buffer 2
  • the number of symbol length (T1) of time where the time domain PDCCH occupies a position corresponding to the scheduled on carrier 1 is 12 N
  • determining the second time domain location according to the capability of the terminal device and the first time domain location may refer to first determining whether the second time domain location needs to be restricted according to the capability of the terminal device, and then according to the first The time domain location determines a second time domain location. That is, in this case, you can first determine whether the second time domain position needs to be restricted according to the content described in (2) above. If the second time domain position needs to be restricted, you can (1) to determine the second time domain location.
  • This embodiment of the present application also provides a method for limiting the position in the second time domain (referred to as method b for convenience of description).
  • PDSCH1 scheduled by PDCCH1 and PDSCH2 scheduled by PDCCH2 are located in two consecutive locations. Time slots (ie time slots 1 and 2).
  • the length of time that the terminal device stores the data before demodulation (PDSCH1) is T4g, that is, at the end of T4g, the terminal device can release the buffer, receive and store PDSCH2.
  • T4g the length of time that the terminal device stores the data before demodulation
  • the terminal device can release the buffer, receive and store PDSCH2.
  • the symbols occupied by PDSCH1 and PDSCH2 are continuous, it can be seen from FIG.
  • the terminal device cannot receive and store the data in the first symbol of time slot 2 in time.
  • the symbols occupied by data channels such as PDSCH
  • the time interval between the end symbol occupied by the first data channel in the first time slot and the start symbol occupied by the second data channel in the second time slot is greater than or equal to the first data stored by the terminal device.
  • the length of time required for the channel to process and release the buffer, where the first time slot is the previous time slot adjacent to the second time slot. That is, as shown in (b) of FIG. 13, the length of time between the end symbol of PDSCH1 and the start symbol of PDSCH2 is greater than or equal to the length of time required for the terminal device to process the stored PDSCH1 and release the buffer.
  • the second time domain location may be determined first according to the capabilities of the terminal device. If so, the second time domain location is determined according to the first time domain location. At this time, if it is determined that the second time domain position can be located in any time slot after time slot 0 (see FIG. 8A), when the second time domain position is located in any time slot after time slot 1, it may appear in FIG. 13 (a) The situation shown in the figure, therefore, the second time domain position can be determined by further combining method b.
  • the scheduled data can be located in a variety of possible time domain locations, but when the scheduled data is located in some possible time domain locations, it will cause the terminal device to cache The data takes a long time (which may exceed the buffer size of the terminal device), which further increases the processing load of the terminal device. Therefore, in the embodiments of the present application, it is proposed that the end of the time domain location where the terminal device is located and / or the scheduling information is located. To determine the time domain location of the scheduled data, thereby limiting the time domain location of the scheduled data, effectively reducing the length of time that the terminal device stores data before demodulation (or data to be sent), and reducing the Deal with the burden.
  • the network device or the terminal device may include a hardware structure and / or a software module corresponding to each function.
  • the present invention can be implemented in the form of hardware or a combination of hardware and computer software by combining the units and algorithm steps of each example described in the embodiments disclosed herein. Whether a certain function is performed by hardware or computer software-driven hardware depends on the specific application of the technical solution and design constraints. A person skilled in the art can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of the present invention.
  • FIG. 14 shows a possible exemplary block diagram of a device involved in the embodiment of the present application, and the device 1400 may exist in the form of software.
  • the apparatus 1400 may include a processing unit 1402 and a communication unit 1403.
  • the processing unit 1402 is configured to control and manage the operations of the device 1400.
  • the communication unit 1403 is configured to support communication between the device 1400 and other network entities.
  • the device 1400 may further include a storage unit 1401 for storing program code and data of the device 1400.
  • the processing unit 1402 may be a processor or a controller.
  • the processing unit 1402 may be a general-purpose central processing unit (CPU), a general-purpose processor, digital signal processing (DSP), or an application-specific integrated circuit. circuits, ASICs), field programmable gate arrays (FPGAs) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It may implement or execute various exemplary logical blocks, modules, and circuits described in connection with the present disclosure.
  • the processor may also be a combination that realizes a computing function, for example, includes a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and the like.
  • the communication unit 1403 may be a communication interface, a transceiver, or a transceiver circuit. The communication interface is collectively referred to. In specific implementations, the communication interface may include multiple interfaces.
  • the storage unit 1401 may be a memory.
  • the apparatus 1400 may be a network device in any of the foregoing embodiments, or may also be a semiconductor chip provided in the network device.
  • the processing unit 1402 may support the device 1400 to perform the actions of the network device in the foregoing method examples, and the communication unit 1403 may support communication between the device 1400 and the terminal device; for example, the processing unit 1402 and / or the communication unit 1403 is configured to support The device 1400 performs steps 1401 and 1403 in FIG. 14.
  • the processing unit executes in conjunction with the communication unit:
  • the first time domain location and the second time domain location do not overlap in a time domain resource.
  • the first time domain position is located in a first time slot in the scheduling resource, and the last symbol occupied by the first time domain position in the first time slot is located in a The second time slot in the scheduled resource; the second time domain position is located at any time slot after the second time slot in the scheduled resource; the scheduled resource and the scheduled resource are located in the Different carriers, or the scheduled resources and the scheduled resources are located in the different BWPs.
  • the first time domain position is located in a first time slot in the scheduling resource, and the last symbol occupied by the first time domain position in the first time slot is located in a The second time slot in the scheduled resource; the second time domain location is located in the second time slot, and the symbol occupied by the second time domain location in the second time slot is located in the first time slot
  • the domain position is after the last symbol occupied in the first time slot; the scheduling resource and the scheduled resource are located on the different carrier, or the scheduling resource and the scheduled resource are located on the different BWP.
  • a start symbol occupied by the second time domain location in the second time slot is a last one occupied by the first time domain location in the first time slot
  • the number of symbols occupied by the second time domain location in the second time domain unit is determined by the sign, according to the number of symbols included in the second time domain unit and the second time domain location in the second time domain unit.
  • the start symbol occupied in the second time domain unit is determined.
  • the capabilities of the terminal device include any one or any of the following: the buffer size of the terminal device, and the processing capability of the terminal device; the processing capabilities of the terminal device include the following Any one or more of them: the ability to process scheduling information, the ability to process data.
  • the communication unit is further configured to: receive a buffer size of the terminal device reported by the terminal device; or the processing unit is further configured to: obtain a processing capability of the terminal device And determine a cache size of the terminal device according to the processing capability of the terminal device.
  • the duration of the amount of data that can be stored in the cache of the terminal device on the scheduled resource is less than the starting point of the first time domain location until the terminal device completes the data channel.
  • the length of the duration of the channel estimate is less than the starting point of the first time domain location until the terminal device completes the data channel.
  • the apparatus 1400 may be a terminal device in any of the foregoing embodiments, or may be a semiconductor chip provided in the terminal device.
  • the processing unit 1402 may support the device 1400 to perform the actions of the terminal device in the foregoing method examples, and the communication unit 1403 may support communication between the device 1400 and a network device; for example, the processing unit 1402 and / or the communication unit 1403 is configured to support The device 1400 performs steps 1402 and 1403 in FIG. 14.
  • the processing unit executes in conjunction with the communication unit:
  • the first time domain location and the second time domain location do not overlap in a time domain resource.
  • the first time domain position is located in a first time slot in the scheduling resource, and the last symbol occupied by the first time domain position in the first time slot is located in a The second time slot in the scheduled resource; the second time domain position is located at any time slot after the second time slot in the scheduled resource; the scheduled resource and the scheduled resource are located in the Different carriers, or the scheduled resources and the scheduled resources are located in the different BWPs.
  • the first time domain position is located in a first time slot in the scheduling resource, and the last symbol occupied by the first time domain position in the first time slot is located in a The second time slot in the scheduled resource;
  • the second time domain position is located in the second time slot, and the symbol occupied by the second time domain position in the second time slot is located in the first time domain position. After the last symbol of; the scheduling resource and the scheduled resource are located on the different carrier, or the scheduling resource and the scheduled resource are located on the different BWP.
  • a start symbol occupied by the second time domain location in the second time slot is a last one occupied by the first time domain location in the first time slot
  • the number of symbols occupied by the second time domain location in the second time domain unit is determined by the sign, according to the number of symbols included in the second time domain unit and the second time domain location in the second time domain unit.
  • the start symbol occupied in the second time domain unit is determined.
  • the capabilities of the terminal device include any one or any of the following: the buffer size of the terminal device, and the processing capability of the terminal device; the processing capabilities of the terminal device include the following Any one or more of them: the ability to process scheduling information, the ability to process data.
  • the communication unit is further configured to report a buffer size of the terminal device and / or a processing capability of the terminal device to the network device.
  • the duration of the amount of data that can be stored in the cache of the terminal device on the scheduled resource is less than the starting point of the first time domain location until the terminal device completes the data channel The length of the duration of the channel estimate.
  • FIG. 15 is a schematic structural diagram of a communication device.
  • the communication device 1500 may be the network device 101 in FIG. 1, or may be the terminal devices 1021, 1022, or 1023 in FIG. 1.
  • the communication device may be configured to implement the method corresponding to the communication device described in the foregoing method embodiments. For details, refer to the description in the foregoing method embodiments.
  • the communication device 1500 may include one or more processors 1501.
  • the processor 1501 may also be referred to as a processing unit and may implement certain control functions.
  • the processor 1501 may be a general-purpose processor or a special-purpose processor. For example, it may be a baseband processor or a central processing unit.
  • the baseband processor can be used for processing communication protocols and communication data.
  • the central processor can be used for communication devices (such as base stations, baseband chips, distributed units (DUs) or centralized units (CUs), etc. ) Perform control, execute software programs, and process software program data.
  • DUs distributed units
  • CUs centralized units
  • the processor 1501 may also store instructions and / or data 1503, and the instructions and / or data 1503 may be run by the processor, so that the communication device 1500 executes the foregoing method embodiment Corresponds to the method described in the communication device.
  • the processor 1501 may include a transceiver unit for implementing receiving and transmitting functions.
  • the transceiver unit may be a transceiver circuit or an interface.
  • the circuits or interfaces used to implement the receive and transmit functions can be separate or integrated.
  • the communication device 1500 may include a circuit that can implement the functions of sending, receiving, or communicating in the foregoing method embodiments.
  • the communication device 1500 may include one or more memories 1502, and instructions 1504 may be stored thereon, and the instructions may be executed on the processor, so that the communication device 1500 executes the foregoing method implementation.
  • the memory may further store data.
  • the processor may also store instructions and / or data.
  • the processor and the memory may be set separately or integrated together.
  • the various corresponding relationships described in the foregoing method embodiments may be stored in a memory or stored in a processor.
  • the communication device 1500 may further include a transceiver 1505 and / or an antenna 1506.
  • the processor 1501 may be referred to as a processing unit and controls a communication device (a terminal device or a network device).
  • the transceiver 1505 may be called a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., and is used to implement a transceiver function of a communication device.
  • a communication device 1500 may include a processor 1501 and a transceiver 1505.
  • the transceiver 1505 sends scheduling information at a first time domain location and sends or receives scheduling data at a second time domain location; the processor 1501 according to the end location of the first time domain location and / or the The capability of the terminal device determines the second time domain location.
  • the processors and transceivers described in this application can be implemented in integrated circuits (ICs), analog ICs, radio-frequency integrated circuits (RFICs), mixed-signal ICs, application-specific integrated circuits (ASICs), and printed circuit boards (ICs). printed circuit (PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), and P-type Metal oxide semiconductor (positive channel, metal oxide, semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • P-type Metal oxide semiconductor positive channel, metal oxide, semiconductor, PMOS
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • the communication device is described by using a network device or a terminal device as an example, the scope of the communication device described in this application is not limited thereto, and the structure of the communication device may not be limited by FIG.
  • the communication device may be a stand-alone device or may be part of a larger device.
  • the device may be:
  • the IC set may also include a storage component for storing data and / or instructions;
  • ASIC such as a modem (MSM)
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server, or data center Transmission by wire (for example, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (for example, infrared, wireless, microwave, etc.) to another website site, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, and the like including one or more available medium integration.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (Solid State Disk)).
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a DVD
  • a semiconductor medium for example, a solid state disk (Solid State Disk)
  • Various illustrative logic units and circuits described in the embodiments of the present application may be implemented by a general-purpose processor, a digital signal processor, an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other programmable logic devices. Discrete gate or transistor logic, discrete hardware components, or any combination of the above are designed to implement or operate the described functions.
  • the general-purpose processor may be a microprocessor. Alternatively, the general-purpose processor may also be any conventional processor, controller, microcontroller, or state machine.
  • the processor may also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a digital signal processor core, or any other similar configuration. achieve.
  • a software unit may be stored in a RAM memory, a flash memory, a ROM memory, an EPROM memory, an EEPROM memory, a register, a hard disk, a removable disk, a CD-ROM, or any other form of storage medium in the art.
  • the storage medium may be connected to the processor, so that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium may be integral to the processor.
  • the processor and the storage medium may be provided in an ASIC, and the ASIC may be provided in a terminal device. Alternatively, the processor and the storage medium may also be provided in different components in the terminal device.
  • These computer program instructions can also be loaded on a computer or other programmable data processing device, so that a series of steps can be performed on the computer or other programmable device to produce a computer-implemented process, which can be executed on the computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more flowcharts and / or one or more blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及通信技术领域,公开了一种数据调度方法及装置,包括:网络设备在第一时域位置上向终端设备发送调度信息,以及在第二时域位置上发送或接收所述调度信息调度的数据;所述第一时域位置和所述第二时域位置位于不同的载波,或者所述第一时域位置和所述第二时域位置位于不同的BWP。由于第二时域位置可以根据所述第一时域位置的结束位置和/或所述终端设备的能力确定,从而通过对调度的数据所在的时域位置进行限制,有效缩短终端设备存储解调前的数据(或待发送的数据)的时间长度,降低终端设备的处理负担。

Description

一种数据调度方法及装置
相关申请的交叉引用
本申请要求在2018年08月10日提交中国专利局、申请号为201810911049.0、申请名称为“一种数据调度方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种数据调度方法及装置。
背景技术
无线通信***中,随着智能终端的用户不断增长,用户业务量和数据吞吐量也在不断增加,进而对通信带宽和速率提出了更高的要求。为此,引入了载波聚合(Carrier Aggregation,CA)技术,聚合的载波包含多个CC(Component Carrier,成员载波),多个CC中包含一个主载波(Primary Carrier,简称PC)和一个或者多个辅载波(Secondary Carrier,简称SC)。通过载波聚合可以将多个连续或不连续的成员载波聚合起来使用,此外第五代移动通信无线电技术(the 5th Generation mobile communication technology New Radio,5G NR)***还定义了其他频率资源,比如带宽部分(bandwidth part,BWP),解决了移动通信对于灵活带宽使用的需求,并提高了无线频带中零散频谱的利用率。
长期演进(Long Term Evolution,LTE)***的载波聚合技术可以支持跨载波调度。跨载波调度是指在一个成员载波上调度另外的成员载波的数据信道资源。5G***需要支持更多的业务和更丰富的频谱资源,因此载波聚合以及跨载波调度技术会继续采用,并且由于BWP的引入,跨BWP的调度和反馈也会支持。但在LTE***中,子载波间隔是固定的。在5G***中,考虑到高频段的无线传播特性与低频段的无线传输特性差别较大,因此不同频段上子载波间隔可能不同。比如,低频段上子载波间隔为15khz,高频段上子载波间隔为60khz。即使同一频段内,不同载波上的子载波间隔也可能不同。相同载波不同BWP上的子载波间隔也可能不同。
由于5G***中,子载波间隔不再固定不变,当调度载波和被调度载波的子载波间隔不同时,如何进行跨载波调度仍需进一步的研究。
发明内容
有鉴于此,本申请提供了一种数据调度方法及装置,用于对调度信息调度的数据所在的时域位置进行限制,从而避免终端设备存储解调前的数据(或待发送的数据)的时间较长,增加终端设备的负担。
第一方面,本申请实施例提供一种数据调度方法,所述方法包括:
网络设备在第一时域位置上向终端设备发送调度信息,以及在第二时域位置上发送或接收所述调度信息调度的数据;所述第一时域位置和所述第二时域位置位于不同的载波,或者所述第一时域位置和所述第二时域位置位于不同的带宽部分BWP;其中,所述第二时域位置是根据所述第一时域位置的结束位置和/或所述终端设备的能力确定的。
也就是说,网络设备在通过调度信息调度数据时,调度的数据可以位于多种可能的时域位置上,但当调度的数据位于某些可能的时域位置上时,会导致终端设备缓存数据的时间较长(可能会超过终端设备的缓存大小),进而增加终端设备的处理负担,因此,本申请实施例中提出根据终端设备的能力和/或调度信息所在的时域位置的结束为止来确定调度的数据所在的时域位置,从而通过对调度的数据所在的时域位置进行限制,有效缩短终端设备存储解调前的数据(或待发送的数据)的时间长度,降低终端设备的处理负担。
基于上述第一方面,在一种可能的实现方式中,所述终端设备的能力包括以下任一项或任意多项:所述终端设备的缓存大小、所述终端设备的处理能力;所述终端设备的处理能力包括以下任一项或任意多项:对调度信息的处理能力、对数据的处理能力。在其它可能的实施例中,终端设备的能力还可以包括其它信息,本申请实施例对此不作限定。
基于上述第一方面,在一种可能的实现方式中,所述方法还包括:所述网络设备接收所述终端设备上报的所述终端设备的缓存大小;或者,所述网络设备获取所述终端设备的处理能力,并根据所述终端设备的处理能力确定所述终端设备的缓存大小。
第二方面,本申请实施例提供一种数据调度方法,所述方法包括:
终端设备在第一时域位置上接收网络设备发送的调度信息,以及在第二时域位置上接收或发送所述调度信息调度的数据;所述第一时域位置和所述第二时域位置位于不同的载波,或者所述第一时域位置和所述第二时域位置位于不同的带宽部分BWP;其中,所述第二时域位置是根据所述第一时域位置的结束位置和/或所述终端设备的能力确定的。
如此,通过对调度的数据所在的时域位置进行限制,有效缩短终端设备存储解调前的数据(或待发送的数据)的时间长度,降低终端设备的处理负担。
基于上述第二方面,在一种可能的实现方式中,所述终端设备的能力包括以下任一项或任意多项:所述终端设备的缓存大小、所述终端设备的处理能力;所述终端设备的处理能力包括以下任一项或任意多项:对调度信息的处理能力、对数据的处理能力。
基于上述第二方面,在一种可能的实现方式中,所述方法还包括:所述终端设备向所述网络设备上报所述终端设备的缓存大小和/或所述终端设备的处理能力。
基于上述第一方面或第二方面,在一种可能的实现方式中,所述第一时域位置和所述第二时域位置在时域资源上不重叠。
基于上述第一方面或第二方面,在一种可能的实现方式中,所述第一时域位置位于所述调度资源中的第一时隙,所述第一时域位置在所述第一时隙中占用的最后一个符号位于所述被调度资源中的第二时隙;所述第二时域位置位于所述被调度资源中所述第二时隙之后的任一时隙;所述调度资源和所述被调度资源位于所述不同的载波,或者所述调度资源和所述被调度资源位于所述不同的BWP。
基于上述第一方面或第二方面,在一种可能的实现方式中,所述第一时域位置位于所述调度资源中的第一时隙,所述第一时域位置在所述第一时隙中占用的最后一个符号位于所述被调度资源中的第二时隙;所述第二时域位置位于所述第二时隙,所述第二时域位置在所述第二时隙中占用的符号位于所述第一时域位置在所述第一时隙中占用的最后一个符号之后,所述调度资源和所述被调度资源位于所述不同的载波,或者所述调度资源和所述被调度资源位于所述不同的BWP。
基于上述第一方面或第二方面,在一种可能的实现方式中,所述第二时域位置在所述第二时隙中占用的起始符号是根据所述第一时域位置在所述第一时隙中占用的最后一个 符号确定的,所述第二时域位置在所述第二时域单元中占用的符号个数是根据所述第二时域单元包括的符号个数和所述第二时域位置在所述第二时域单元中占用的起始符号确定的。
基于上述第一方面或第二方面,在一种可能的实现方式中,所述终端设备的缓存可存储的数据量在被调度资源上的持续时间长度小于所述第一时域位置的起点至所述终端设备完成对所述数据信道的信道估计的持续时间长度。
第三方面,本申请实施例提供一种装置,该装置可以是网络设备或终端设备,或者也可以是设置在网络设备或终端设备中的半导体芯片。该装置具有实现上述第一方面和第二方面的各种可能的实现方式的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。
第四方面,本申请实施例一种装置,包括:处理器和存储器;该存储器用于存储计算机执行指令,当该装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该装置执行如上述第一方面或第一方面中任一所述的数据调度方法、或者以使该装置执行如上述第二方面或第二方面中任一所述的数据调度方法。
第五方面,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第六方面,本申请实施例还提供一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
图1为本申请实施例适用的一种***架构示意图;
图2为自载波调度和跨载波调度示意图;
图3为跨载波调度场景的示意图;
图4A、图4B分别为跨载波调度中调度载波和被调度载波的子载波间隔不相同的示意图;
图4C、图4D分别为不同场景下K0和K2的取值示意图;
图5A为一种PDCCH monitoring occasion的位置示意图;
图5B为又一种PDCCH monitoring occasion的位置示意图;
图5C为又一种PDCCH monitoring occasion的位置示意图;
图6为自载波的数据调度和跨载波的数据调度示意图;
图7为本申请实施例提供的一种数据调度方法所对应的流程示意图;
图8A、图8B、图9A、图9B、图9C分别为第一时域位置和第二时域位置的示例图;
图10为本申请实施例中终端设备的缓存大小示例图;
图11为根据终端设备的能力确定是否限制第二时域位置的一种情形示意图;
图12为根据终端设备的能力确定是否限制第二时域位置的又一种情形示意图;
图13为确定是否限制第二时域位置的又一情形示意图;
图14为本申请实施例提供的一种装置的结构示意图;
图15为本申请实施例提供的又一种装置的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。其中,在本申请的描述中,本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“至少一个”是指一个或者多个。至少两个是指两个或者多个。“至少一个”、“任意一个”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个、种),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
图1为本申请实施例适用的一种***架构示意图。如图1所示,该***架构中包括网络设备101和一个或多个终端设备,比如图1所示的第一终端1021、第二终端1022、第三终端1023。网络设备101可以通过网络与第一终端1021、第二终端1022、第三终端1023中的任一终端进行通信。
本申请实施例中,网络设备可以为基站(base station,BS)是一种部署在无线接入网用以提供无线通信功能的装置。例如在2G网络中提供基站功能的设备包括基地无线收发站(base transceiver station,BTS)和基站控制器(base station controller,BSC),3G网络中提供基站功能的设备包括节点B(NodeB)和无线网络控制器(radio network controller,RNC),在4G网络中提供基站功能的设备包括演进的节点B(evolved NodeB,eNB),在5G网络中提供基站功能的设备包括新无线节点B(New Radio NodeB,gNB),集中单元(Centralized Unit,CU),分布式单元(Distributed Unit)和新无线控制器。
终端设备是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。终端设备有时也可以称为用户设备(user equipment,UE)、接入终端设备、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、终端设备、无线通信设备、UE代理或UE装置等。
本申请实施例描述的***架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着通信***架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
在图1所示意的***架构中,网络设备可以使用调度资源向终端设备发送调度信息,以及使用被调度资源向终端设备发送或接收数据;具体来说,调度信息可以位于物理下行控制信道(physical downlink control channel,PDCCH),调度信息可以为承载在PDCCH中的下行控制信息(downlink control information,DCI)或DCI中的信息域,所述调度信息用于指示被调度资源的数据信道。相应地,终端设备可使用调度资源接收调度信息,以及根据调度信息中承载的调度信息,使用被调度资源接收或发送调度信息调度的数据。数据可以位于数据信道,数据信道可以包括物理下行共享信道(physical downlink shared channe,PDSCH)(用于承载下行数据)和/或物理上行共享信道(physical uplink shared channel,PUSCH)(用于承载上行数据)。以下实施例以数据信道为PDSCH为例进行描述。
其中,本申请实施例对资源的种类不作限制,比如,资源可以是载波,也可以是BWP。在一个示例中,调度资源可以为载波内的时频资源,或者也可以为BWP内的时频资源;被调度资源可以为载波内的时频资源,或者也可以为BWP内的时频资源。为便于描述,上述调度资源可以称为调度载波,上述被调度资源可以称为被调度载波。以下实施例以调度载波和被调度载波为例进行描述,应理解,本申请实施例的原理可适用于其他资源调度粒度的情况。
在一个例子中,CC1表示调度载波、CC2表示被调度载波,网络设备通过CC1的PDCCH向终端设备发送DCI,该DCI中包括CC2上的PDSCH资源指示信息,通过该指示信息指示分配给该终端设备使用的CC2上的PDSCH时频资源位置,以使该终端设备可在所指示的CC2上接收网络设备发送的数据。在另外的例子中,CC1表示调度载波、CC2表示被调度载波,网络设备通过CC1的PDCCH向终端设备发送DCI,该DCI中包括CC2上的PUSCH资源指示信息,通过该指示信息指示分配给该终端设备使用的CC2上的PUSCH时频资源位置,以使该终端设备可在所指示的CC2上的PUSCH上向网络设备发送数据。
上述调度载波和被调度载波可以是相同的载波(自载波调度),也可以是不同的载波(跨载波调度)。比如如图2所示,图2中的左图示出了未采用跨载波调度(即调度载波和被调度载波为相同载波)的示意图,图2中的右图示出了跨载波调度(即调度载波和被调度载波为不同载波)的示意图,可以看出,在跨载波调度时,一个载波上的PDCCH可指示其他载波上的PDSCH资源。本申请实施例中,将主要研究跨载波调度的情形。
在图3所示的跨载波调度的例子中,一个宏基站小区(对应于图中的macro cell)和一个小基站小区(对应于图中的small cell)共享2个下行成员载波:CC1和CC2。small cell的2个成员载波都在低传输功率下工作,macro cell的CC1在高传输功率工作,CC2在低传输功率工作。因此,在small cell上,使用CC2上的PDCCH来跨载波调度在CC1上的PDSCH资源;在macro cell上,使用CC1上的PDCCH来跨载波调度在CC2上的PDSCH资源。
在跨载波调度的场景下,调度载波的帧结构参数(numerology)和被调度载波的帧结构参数可以相同,也可以不同。其中,帧结构参数可以包括子载波间隔、循环前缀(cyclic prefix,CP),子载波间隔也可以称为子载波带宽(subcarrier spacing,SCS)。不同的帧结构参数具有不同的索引值μ。如表1所示,为帧结构参数的索引值和帧结构参数的对应关系示意。
表1:帧结构参数的索引值和帧结构参数的对应关系
Figure PCTCN2019099440-appb-000001
也就是说,调度载波的子载波间隔与被调度载波的子载波间隔,可以相同也可以不同。在调度载波的子载波间隔与被调度载波的子载波间隔不相同的一个例子中,如图4A所示,调度载波(图中示为CC1)位于低频段,子载波间隔为15KHz,被调度载波(图中示为CC2)位于高频段,子载波间隔为60KHz,网络设备通过CC1上的PDCCH发送调度信息以指示CC2上的PDSCH和/或PUSCH的资源(比如PDSCH和/或PUSCH所在的时隙以及所在的频域位置)。在另外的例子中,如图4B所示,调度载波(图中示为CC1)位于低频段,子载波间隔为15KHz,被调度载波(图中示为CC2)位于高频段,子载波间隔为30KHz,网络设备通过CC1上的PDCCH发送调度信息以指示CC2上的PDSCH和/或PUSCH的资源(比如PDSCH和/或PUSCH所在的时隙以及所在的频域位置)。需要说明的是,载波的子载波间隔的大小与载波的高低频之间可以存在对应关系,比如,载波的子载波间隔越小,则该载波可能位于低频段,载波的子载波间隔越大,则该载波可能位于高频段;在其它情形下,不同子载波间隔的载波也可以位于相同频段,本申请实施例对此不作限定。
本申请实施例中,任一示意图中所涉及的CC1、CC2仅为该示意图中所示出的两个载波的标识,便于区分该示意图中的两个载波;不同示意图中所涉及的CC1、CC2之间没有任何关联关系,比如,图3中所示意的CC1与图4A中所示意的CC1可以分别代表不同的载波。
在5G NR***中,用于承载调度信息的PDCCH与被调度的PDSCH或PUSCH之间的时间(以时隙为单位)关系(也即PDCCH与被调度的PDSCH或PUSCH所在的时域位置之间的关系)可以用K0和K2来表示。
针对于调度载波和被调度载波的子载波间隔相同的场景,K0和K2的值可依据PDCCH与被调度的PDSCH或PUSCH所位于的时隙在时域上的差异来确定。如图4C所示,若CC1中的PDCCH1调度的数据信道为CC1中的PDSCH1,由于PDCCH1和PDSCH1位于CC1中的同一时隙(即时隙0),此时K0=0;若CC1中的PDCCH1调度的数据信道为CC1中的PDSCH2,由于PDCCH1位于CC1中的时隙0,PDSCH2位于CC1中的时隙1,以时隙为单位,PDCCH1和PDSCH2在时域上相差1个时隙,此时K0=1。若CC1中的PDCCH2调度的数据信道为CC2中的PUSCH1,由于PDCCH2位于CC1中的时隙0,PUSCH1位于CC2中的时隙0,CC1中的时隙0和CC2中的时隙0在时域上重叠,此时K2=0;若CC1中的PDCCH2调度的数据信道为CC2中的PUSCH2,由于PDCCH2位于CC1中的时隙0,PUSCH2位于CC2中的时隙1,PDCCH2和PUSCH2在时域上相差1个时隙,此时K2=1。
针对于调度载波和被调度载波的子载波间隔不同的场景,可使用被调度载波的帧结构参数来解释K0和K2的值。如图4D所示,调度载波(图中示为CC1)的子载波间隔为 15KHz,被调度载波(图中示为CC2)的子载波间隔为30KHz。若CC1中的PDCCH1调度的数据信道为CC2中的PDSCH1,由于PDCCH1在时域上位于CC2中的时隙0,PDSCH1也位于CC2中的时隙0,故此时K0=0;若CC1中的PDCCH1调度的数据信道为CC2中的PDSCH2,由于PDSCH2位于CC2中的时隙1,以CC2的时隙为单位,PDCCH1和PDSCH2在时域上相差1个时隙,此时K0=1;若CC1中的PDCCH1调度的数据信道为CC2中的PDSCH3,由于PDSCH3位于CC2中的时隙2,以CC2的时隙为单位,PDCCH1和PDSCH3在时域上相差2个时隙,此时K0=2。其它情形类似,K0的值可参照图4D中所示意出的,不再赘述。需要说明的是,图4D中仅示意出PDCCH调度的数据信道为PDSCH,若PDCCH调度的数据信道为PUSCH,则K2的值可参照K0来确定,不再赘述。
根据上述对K0和K2的介绍,可知如图4A中,K0和K2均等于10,如图4B中,K0和K2均等于1。目前,对于CA场景中的上下行调度,对K0和K2的配置并没有额外的限制,即对被调度的PDSCH或PUSCH所在的时域位置不做限制,可以存在各种可能性。下文中以PDCCH与被调度的PDSCH为例进行描述。
在5G NR***中,网络设备可以为终端设备配置多个搜索空间集合(search space set),每个搜索空间集合的配置参数中可以包括PDCCH监控周期、PDCCH监控偏移、PDCCH监控模式、每个PDCCH监控周期内需要监控的连续时隙个数等参数中的一个或多个,其中,PDCCH监控周期用于配置终端设备每隔多少个时隙进行一次监控;PDCCH监控偏移用于指示终端设备在一个监控周期内的第几个时隙进行监控;PDCCH监控模式用于指示终端设备在时隙的哪个符号开始监控。此外,每个搜索空间集合对应的控制资源集合(control-resource set,CORESET)的配置参数中包括每个PDCCH监控周期内需要监控的连续时隙个数。每个搜索空间集合对应的PDCCH监控时机可以根据PDCCH监控周期、PDCCH监控偏移、PDCCH监控模式、每个PDCCH监控周期内需要监控的连续时隙个数(由该搜索空间对应的CORESET的配置参数确定的)等参数中的一个或多个来确定。终端设备可以在多个搜索空间集合对应的PDCCH监控时机对控制信道(即PDCCH)进行监控,也就是说,PDCCH可能出现的位置位于PDCCH监控时机。
作为一种实现方式,PDCCH可以位于CORESET所指示的资源里发送,比如,配置的CORESET的参数范围为CORESET的持续时间最多为3个符号,则PDCCH最多可占用3个符号,且不跨时隙;在不考虑PDCCH占用多个符号的情况下,PDCCH的起始位置可以位于时隙中的任何位置。基于此处对于PDCCH的位置的分析可知,终端设备上的PDCCH监控时机存在两种可能的场景。下面对两种可能的场景进行展开介绍。
场景1:a,PDCCH监控时机在调度载波的时隙的前3个符号内出现,最长占3个连续的符号,且在一个时隙内只出现一次;如图5A所示,为一种PDCCH监控时机的位置示意图。b,PDCCH监控时机在调度载波的时隙的任意符号内出现,最长占3个连续的符号,且在一个时隙内只出现一次;如图5B所示,为又一种PDCCH监控时机的位置示意图。
场景2:除了场景1的其他配置情况,比如一个时隙内出现多个PDCCH监控时机的情况。如图5C所示,为又一种PDCCH监控时机的位置示意图。
下面以场景1中a为例,图6为自载波的数据调度和跨载波的数据调度示意图,其中, 图6中的(a)所示意的为自载波的数据调度,图6中的(b)所示意的为跨载波的数据调度。
如图6中的(a)所示,调度载波和被调度载波均为图中所示的CC2。PDCCH所在的时域位置占用的时间长度为T1a,终端设备接收到PDCCH后进行处理的过程所需的时间长度为T2a,终端设备对存储的PDSCH进行处理并释放缓存(buffer)所需的时间长度为T3a。在一个示例中,终端设备接收到PDCCH后进行处理的过程可以包括终端设备对接收到的PDCCH进行解析、对PDSCH进行信道估计中的一项或多项,其中,终端设备对接收到的PDCCH进行解析可以包括对PDCCH数据进行离散傅氏变换的快速算法(fast fourier transformation,FFT)变换、PDCCH解调、PDCCH解码、DCI数据解析中的一项或多项。可以理解的,在具体实施中,还可以包括其它的处理,本申请实施例对此不作限定;也就是说,T2a所代表的时间长度即是指从PDCCH结束的时间点到终端设备开始对存储的PDSCH进行处理的时间长度。在图6中的(a)所示意的场景中,终端设备从接收并存储PDSCH开始至释放缓存所需的时间长度为T1a+T2a+T3a,即终端设备存储解调前的PDSCH的时间长度为T1a+T2a+T3a。
如图6中的(b)所示,调度载波(图中示为CC1)子载波间隔为15KHz,被调度载波(图中示为CC2)子载波间隔为60KHz。PDCCH所在的时域位置占用的时间长度为T1b,终端设备接收到PDCCH后进行处理的过程所需的时间长度为T2b,终端设备对存储的PDSCH进行处理并释放缓存(buffer)所需的时间长度为T3b。其中,终端设备接收到PDCCH后进行处理的过程可以参见(a)中的介绍,此处不再赘述。在图6中的(b)所示意的场景中,终端设备从接收并存储PDSCH开始至释放缓存所需的时间长度为T1b+T2b+T3b,即终端设备存储解调前的PDSCH的时间长度为T1b+T2b+T3b。
可以看出,T1b+T2b+T3b明显大于T1a+T2a+T3a,也就是说,在CA场景下,当配置了跨载波调度,且调度载波的子载波间隔小于被调度载波的子载波间隔时,终端设备需要更大的缓存来存储解调前的数据,从而会导致终端设备增加额外的处理负担。
基于此,本申请实施例提供一种数据调度方法,通过对数据信道(比如PDSCH)所在的时域位置进行限制,从而有效缩短终端设备存储解调前的PDSCH的时间长度,降低终端设备的处理负担。本申请实施例中的数据调度方法可以应用于各种场景,尤其适用于跨载波调度且调度载波的子载波间隔小于被调度载波的子载波间隔的场景中。
需要说明的是:本申请实施例中所涉及的调度载波的子载波间隔小于被调度载波的子载波间隔,也可以表述为调度载波的帧结构参数的索引值小于被调度载波的帧结构参数的索引值,根据上述表1可以看出,二者具有相同含义。本申请实施例所涉及的时隙(slot)也可以表述为时域单元,在普通CP情况下,1个时隙包含14个正交频分复用技术(orthogonal frequency division multiplexing,OFDM)符号(symbols),在扩展CP下,1个时隙包含12个OFDM符号(或简称为符号);可以理解的,在其它实施例中,1个时隙所包含的符号也可以为其它个数,具体不做限定,下文中主要以1个时隙包含14个符号为例进行描述。进一步地,具有不同子载波间隔的载波上的时隙的时间长度不同,比如,在调度载波(比如子载波间隔为15KHz)上的1个时隙的时间长度相当于N个被调度载波(比如子载波间隔为60KHz)上的时隙所占用的时间长度。
在一个示例中,N的取值符合公式:N=2 μ1-μ2或N=SCS1/SCS2
其中,μ1为被调度载波的帧结构参数的索引值,μ2为调度载波的帧结构参数的索引值;SCS 1为被调度载波子载波间隔,SCS 2为调度载波子载波间隔。
图7为本申请实施例提供的一种数据调度方法所对应的流程示意图,如图7所示,包括:
步骤701,网络设备在第一时域位置上向终端设备发送调度信息。相应地,在步骤702,终端设备在第一时域位置上接收调度信息。
步骤703,基于调度信息,网络设备和终端设备在第二时域位置上进行通信。具体可以为,网络设备在第二时域位置上发送或接收调度信息调度的数据,相应地,终端设备在第二时域位置上接收或发送调度信息调度的数据。
在一个示例中,第一时域位置可以为承载调度信息的PDCCH所在的时域位置,第二时域位置可以为承载调度信息调度的数据的数据信道(PDSCH或PUSCH)所在的时域位置。
本申请实施例中,第一时域位置和第二时域位置可以位于不同的载波,或者,第一时域位置与第二时域位置也可以位于不同的BWP。以第一时域位置和第二时域位置位于不同的载波为例,第一时域位置位于的载波可以称为调度载波,第二时域位置位于的载波可以称为被调度载波,调度载波的子载波间隔可以小于被调度载波的子载波间隔。
具体实施中,对第二时域位置进行限制的方法可能有多种,本申请实施例提供的一种可能的实现方法(为便于描述,简称为方法a)为,网络设备可根据第一时域位置和/或终端设备的能力来确定第二时域位置,即第二时域位置受第一时域位置和/或终端设备的能力的限制,具体包括:(1)根据第一时域位置确定第二时域位置;(2)根据终端设备的能力确定第二时域位置;(3)根据第一时域位置和终端设备的能力确定第二时域位置。下面分别针对3种情形进行详细阐述。
(1)根据第一时域位置确定第二时域位置,比如根据第一时域位置的结束位置确定第二时域位置
作为一种实现方式,第一时域位置和第二时域位置在时域资源上不重叠。本申请实施例中,第一时域位置和第二时域位置在时域资源上可以完全不重叠,进一步地,第一时域位置所占用的时域资源在时间上早于第二时域位置所占用的时域资源。
在一个示例(为便于描述,简称示例1)中,第一时域位置和第二时域位置在时域资源上不重叠,可以是指:若第一时域位置位于调度载波中的第一时隙,第一时域位置在第一时隙中占用的最后一个符号位于被调度载波中的第二时隙,则第二时域位置位于被调度载波中第二时隙之后的任一时隙。
图8A为第一时域位置和第二时域位置的一种示例图。如图8A所示,第一时域位置位于调度载波(图中示为CC1,子载波间隔为15KHz)中时隙0(第一时隙),第一时域位置占用时隙0中的前3个符号(分别为符号0、符号1和符号2),第一时域位置占用的时隙0中的最后一个符号(即符号2)位于被调度载波(图中示为CC2,子载波间隔为60KHz)中的时隙0(第二时隙),在这种情形下,第二时域位置可以位于CC2中时隙0之后的任 一时隙,比如CC2中的时隙1或时隙2或时隙3,具体不做限定。需要说明的是,本申请实施例中所描述的时隙之后所携带的数字即为时隙的编号,符号之后所携带的数字即为符号的编号。
通过图8A可以直观看出第一时域位置占用的时隙0中的最后一个符号(即符号2)位于CC2中的时隙0,具体实施中,也可以通过如下方式确定第一时域位置在第一时隙中占用的最后一个符号位于被调度载波中的时隙的编号:
X=Floor{(PDCCH_LastSymbol+1)*N/SymbsInASlot_ScheduledCC}   公式1
其中,X为第一时域位置在第一时隙中占用的最后一个符号位于被调度载波中的时隙的编号,Floor()表示向下取整,PDCCH_LastSymbol表示第一时域位置在第一时隙中占用的最后一个符号的编号(取值为0~SymbsInASlot_SchedulingCC-1,SymbsInASlot_SchedulingCC表示调度载波中的1个时隙包含的符号个数),SymbsInASlot_ScheduledCC表示被调度载波中的1个时隙包含的符号个数。在图8A所示意的例子中,X=Floor{(2+1)*4/14}=0。
图8B为第一时域位置和第二时域位置的又一种示例图。如图8B所示,第一时域位置位于调度载波(图中示为CC1,子载波间隔为15KHz)中时隙0(第一时隙),第一时域位置占用时隙0中的前3个符号(分别为符号0、符号1和符号2),第一时域位置占用的时隙0中的最后一个符号(即符号2)位于被调度载波(图中示为CC2,子载波间隔为30KHz)中的时隙0(第二时隙),在这种情形下,第二时域位置可以位于CC2中时隙0之后的任一时隙,比如CC2中的时隙1,具体不做限定。同样地,在该示例中,也可根据上述公式1得到第一时域位置在第一时隙中占用的最后一个符号位于被调度载波中的时隙的编号X=Floor{(2+1)*2/14}=0。
在又一个示例(为便于描述,简称示例2)中,第一时域位置和第二时域位置在时域资源上不重叠,可以是指:若第一时域位置位于调度载波中的第一时隙,第一时域位置在第一时隙中占用的最后一个符号位于被调度载波中的第二时隙,则第二时域位置位于第二时隙,且第二时域位置在第二时隙中占用的符号位于第一时域位置在第一时隙中占用的最后一个符号之后。
图9A为第一时域位置和第二时域位置的又一种示例图。如图9A所示,第一时域位置位于调度载波(图中示为CC1,子载波间隔为15KHz)中时隙0(第一时隙),第一时域位置占用时隙0中的前3个符号(分别为符号0、符号1和符号2),第一时域位置占用的时隙0中的最后一个符号(即符号2)位于被调度载波(图中示为CC2,子载波间隔为60KHz)中的时隙0(第二时隙),在这种情形下,第二时域位置可以位于CC2中的时隙0,且第二时域位置在被调度载波的时隙0中占用的符号位于第一时域位置在调度载波的时隙0中占用的最后一个符号之后,比如,第二时域位置在被调度载波的时隙0中可以占用的符号可以为符号12和符号13,其中,第二时域位置在被调度载波的时隙0中可以占用的起始符号为符号12,符号个数为2。
通过图9A可以直观看出第二时域位置在被调度载波的时隙0中可以占用的起始符号和符号个数,具体实施中,也可以通过如下方式第二时域位置在被调度载波的时隙0中可以占用的起始符号:
Y=(PDCCH_LastSymbol+1)*N-1   公式2
其中,Y为第二时域位置在被调度载波的时隙0中可以占用的起始符号之前的符号的编号。在图9A所示意的例子中,Y=(2+1)*4-1=11,因此,Y为第二时域位置在被调度载波的时隙0中可以占用的起始符号的编号为12。
可以通过如下方式计算第二时域位置在被调度载波的时隙0中可以占用的符号个数:
Z=SymbsInASlot_ScheduledCC-Y-1=14-11-1=2   公式3
其中,Z为第二时域位置在被调度载波的时隙0中可以占用的符号个数。在图9A所示意的例子中,Z=14-11-1=2。
图9B为第一时域位置和第二时域位置的又一种示例图。如图9B所示,第一时域位置位于调度载波(图中示为CC1,子载波间隔为15KHz)中时隙0(第一时隙),第一时域位置占用时隙0中的前3个符号(分别为符号0、符号1和符号2),第一时域位置占用的时隙0中的最后一个符号(即符号2)位于被调度载波(图中示为CC2,子载波间隔为30KHz)中的时隙0(第二时隙),在这种情形下,第二时域位置可以位于CC2中的时隙0,且第二时域位置在被调度载波的时隙0中占用的符号位于第一时域位置在调度载波的时隙0中占用的最后一个符号之后,比如,第二时域位置在被调度载波的时隙0中可以占用的符号可以为符号6、符号7、符号8、符号9、符号10、符号11、符号12和符号13,其中,第二时域位置在被调度载波的时隙0中可以占用的起始符号为符号6,符号个数为8。
同样地,在该示例中,也可根据上述公式2得到Y=(2+1)*2-1=5,因此,Y为第二时域位置在被调度载波的时隙0中可以占用的起始符号的编号为6;根据上述公式3得到Z=14-5-1=8,因此,Y为第二时域位置在被调度载波的时隙0中可以占用的符号个数为8。
需要说明的是,具体实施中,示例1(参见图8A和图8B)和示例2(参见图9A和图9B)中所描述的方法可以单独适用,或者,也可以结合适用。若将二者结合适用,则参见图9C,可以看出,第二时域位置可以为时隙0中的符合12和符号13,也可以位于时隙0之后的任一时隙,且若第二时域位置位于时隙0之后的任一时隙,则其可以为该时隙中的任意位置。
(2)根据终端设备的能力确定第二时域位置
本申请实施例中,终端设备的能力可以包括终端设备的缓存大小和/或终端设备的处理能力。此处所涉及的终端设备的缓存可以用于存储解调前的数据,比如存储解调前的PDSCH,此种情形下,终端设备的缓存也可以称为接收缓存或下行接收缓存;或者,终端设备的缓存也可以用于存储待发送的数据,比如存储待发送的PUSCH(PUSCH发送前需要放入待发送数据缓存),此种情形下,终端设备的缓存也可以称为发送缓存或上行发送缓存。本申请实施例在描述中,仅是以终端设备的缓存用于存储解调前的PDSCH为例,本申请实施例同样可适用于终端设备的缓存用于存储发送前的PUSCH的场景中。
终端设备的处理能力可以包括以下任一项或任意多项:对调度信息的处理能力、对数据的处理能力,可选地,终端设备的处理能力还可以包括对PDCCH进行监控的能力,在其它实施例中,终端设备的处理能力还可以包括其它信息,本申请实施例对此不作具体限定。其中,对调度信息的处理能力,也可以称为对PDCCH的处理能力;比如,对PDCCH的处理能力可以包括终端设备对PDCCH进行FFT、解调、译码以及PDCCH盲检测处理 能力。对数据的处理能力,也可以称为对数据信道的处理能力;比如,对数据信道的处理能力可以包括对PDSCH的处理能力和/或对PUSCH的处理能力,其中,对PDSCH的处理能力可以包括终端设备对PDSCH进行解调、解码的能力,具体来说,PDSCH的处理能力与终端设备从开始处理PDSCH到可释放缓存的时间长度有关;对PUSCH的处理能力与终端设备准备PUSCH所需的时间长度有关,终端设备准备PUSCH所需的时间长度是指从终端设备接收到PDCCH到可以发送PUSCH所需的时间长度。对PDCCH进行监控的能力可以是指终端支持哪种PDCCH monitoring场景。
网络设备获取终端设备的缓存大小的方式可以有多种。作为一种实现方式,终端设备可确定自身的缓存大小,并向网络设备上报其缓存大小;比如,终端设备可以主动向网络设备上报,或者,终端设备也可以在接收到网络设备发送的请求消息后再向网络设备上报,本申请实施例对具体的上报方式不做限定。
参见图10,为终端设备的缓存大小示例图。下面具体描述终端设备确定自身的缓存大小的一种可能的实现过程。
终端设备在频率范围1(FR1)可支持的信道带宽如表2所示,其中FR1代表的频率范围为450MHz–6000MHz。
表2:终端设备在频率范围1可支持的信道带宽
Figure PCTCN2019099440-appb-000002
由表2可以看出,终端设备所支持的任一信道带宽均可以配置为多种帧结构,不同的帧结构对应不同的RB个数,因此,终端设备需要根据支持的信道带宽来确定缓存大小。进一步地,针对于同一信道带宽,不同的RB个数对应的频域上的数据个数不同(一个RB对应12个子载波,对应频域上12个数据),由于终端设备无法确定会被配置成哪种帧结构,一般情况下,可按照RB个数最多的情况来确定缓存大小。此外,由于下行数据调度时(比如调度PDSCH),一次调度的时隙中PDSCH最多可以包含14个符号,也可称为一种PDSCH Type A的调度,该调度属于一种时隙调度。为了支持这种基本的调度,终端设备的缓存可以不小于14个符号。基于此,在一个示例中,终端设备支持的信道带宽为50MHz,则确定的缓存大小约为270RBs*14symbols。
作为又一种实现方式,网络设备可以获取终端设备的处理能力,并根据终端设备的处理能力来确定终端设备的缓存大小,其中,网络设备获取终端设备的处理能力的方式可以有多种,比如终端设备可以向网络设备上报终端设备的处理能力。进一步地,网络设备可基于对PDCCH的处理能力、对PDSCH的处理能力、对PDCCH进行监控的能力中的至少一项来确定终端设备的下行接收缓存,网络设备可基于对PUSCH的处理能力来确定终端设备的上行发送缓存。
本申请实施例中,网络设备根据终端设备的缓存大小来确定第二时域位置可以是指,网络设备根据终端设备的缓存大小来确定是否对第二时域位置进行限制。下面进行具体介绍。
作为一种可能的实现方式(该种实现方式可适用于上述关于终端设备上的PDCCH监控时机所描述的场景1),为便于描述限制的情形,本申请实施例引入比较值M,M可通过如下公式计算得到:
M=N buffer-N 1-N 2
其中,N buffer为终端设备的缓存大小对应的符号个数,N 1为PDCCH所在的时域位置占用的时间长度(T1)在被调度载波上对应的符号个数,N 2为终端设备接收到PDCCH后进行处理的过程所需的时间长度(T2)在被调度载波上对应的符号个数。
在图11所示意的例子中,N buffer=28,N 1=12,N 2=13,M=28-12-13=3。此种情形下,如图11中的(a)所示,若第二时域位置位于CC2的时隙0,终端设备存储解调前的数据的时间长度为T4a,可以看出,T4a在被调度载波上对应的符号个数小于终端的缓存大小在被调度载波上对应的符号个数,因此,第二时域位置位于CC2的时隙0,并不会增加终端设备的处理负担。如图11中的(b)所示,若第二时域位置位于CC2的时隙1,此时,终端设备存储解调前数据的开始时间点为第二时域位置的起点,终端设备存储解调前的数据的时间长度为T4b,可以看出,T4b在被调度载波上对应的符号个数小于终端的缓存大小在被调度载波上对应的符号个数,因此,第二时域位置位于CC2的时隙1,并不会增加终端设备的处理负担。如图11中的(c)所示,若第二时域位置位于CC2的时隙2,此时,终端设备存储解调前数据的开始时间点为第二时域位置的起点,终端设备存储解调前的数据的时间长度为T4c,可以看出,T4c在被调度载波上对应的符号个数小于终端的缓存大小在被调度载波上对应的符号个数,因此,第二时域位置位于CC2的时隙2,并不会增加终端设备的处理负担。第二时域位置位于CC2的时隙2之后的任一时隙均可参照第二时域位置位于CC2的时隙2时的情形,此处不再赘述。
基于上述内容可知,M=28-12-13=3>0时,可无需对第二时域位置进行限制,也就是说,第二时域位置可以位于CC2的时隙0或时隙0后的任一时隙。
在图12所示意的例子中,N buffer=14,N 1=12,N 2=13,M=14-12-13=-11。此种情形下,如图12中的(a)所示,若第二时域位置位于CC2的时隙0,终端设备存储解调前的数据的时间长度为T4d,可以看出,T4d在被调度载波上对应的符号个数大于终端的缓存大小在被调度载波上对应的符号个数,因此,第二时域位置位于CC2的时隙0,会增加终端设备的处理负担。如图12中的(b)所示,若第二时域位置位于CC2的时隙1,此时,终端设备存储解调前数据的开始时间点为第二时域位置的起点,终端设备存储解调前的数据的时间长度为T4e,可以看出,T4e在被调度载波上对应的符号个数小于终端的缓存大小在被调度载波上对应的符号个数,因此,第二时域位置位于CC2的时隙1,并不会增加终端设备的处理负担。如图12中的(c)所示,若第二时域位置位于CC2的时隙2,此时,终端设备存储解调前数据的开始时间点为第二时域位置的起点,终端设备存储解调前的数据的时间长度为T4f,可以看出,T4f在被调度载波上对应的符号个数小于终端的缓存大小在被调度载波上对应的符号个数,因此,第二时域位置位于CC2的时隙2,并不会增加终端 设备的处理负担。第二时域位置位于CC2的时隙2之后的任一时隙均可参照第二时域位置位于CC2的时隙2时的情形,此处不再赘述。
基于上述内容可知,M=14-12-13=-11<0时(此时,也可以理解为终端设备的缓存可存储的数据量在被调度载波上的持续时间长度小于第一时域位置的起点至终端设备完成对所述数据信道的信道估计的持续时间长度),需要对第二时域位置进行限制,一种可能的限制方法为根据第一时域位置来确定第二时域位置,具体可以参照前文中的描述。
本申请实施例中,可以预先设置第一阈值,若M大于等于第一阈值,则可不对第二时域位置进行限制;若M小于第一阈值,则可对第二时域位置进行限制。在一个示例中,第一阈值可以等于0。当考虑到其它处理或数据调度时间导致的时间偏移情况下,第一阈值也可以是其它的值。
需要说明的是,网络设备还可以根据终端设备的能力(比如PDCCH的处理能力、PDSCH的处理能力等)来调整是否需要对终端设备调度的数据信道的时域位置进行限制,比如,当终端设备的处理能力增强后,则可能无需再对终端设备调度的数据信道的时域位置进行限制,当终端设备的处理能力变弱后,则可能需要对终端设备调度的数据信道的时域位置进行限制。下面进行具体说明。
当终端设备的处理能力增强后,比如若PDCCH的处理能力增强,则图11、图12或图13中所示意出的T1的长度会变短,若PDSCH的处理能力增强,则图11、图12或图13中所示意出的T2的长度会变短,因此,在终端设备的缓存大小不变的情况下,比较值M会相应地变大。举个例子,终端设备1和终端设备2的N buffer均为28,PDCCH所在的时域位置占用的时间长度(T1)在被调度载波上对应的符号个数N 1均为12,终端设备1的处理能力为N 2=18,终端设备2的处理能力为N 2=13,则对于终端设备1来说,M=28-12-18=-2<0,对于终端设备2来说,M=28-12-13=3>0,因此,对于终端设备1来说,需要对第二时域位置进行限制,而对于终端设备2来说,无需对第二时域位置进行限制。若后续终端设备1的处理能力增强,比如终端设备1的处理能力提升为N 2=15,此时对于终端设备1来说,M=28-12-15=2>0,可以看出,在终端设备1的缓存大小不变的情况下,由于终端设备1的处理能力提升,使得比较值M会相应地变大,进而也可无需再对第二时域位置进行限制。终端设备的处理能力变弱的情形可参照终端设备的处理能力增强的情形来处理,二者属于同一思路,此处不再赘述。
(3)根据终端设备的能力和第一时域位置确定第二时域位置
本申请实施例中,根据终端设备的能力和第一时域位置确定第二时域位置可以是指,先根据终端设备的能力,确定是否需要对第二时域位置进行限制,进而根据第一时域位置确定出第二时域位置。也就是说,在该种情形下,可以先根据上述(2)中所描述的内容,来判断是否需要对第二时域位置进行限制,若需要对第二时域位置进行限制,则可以根据(1)中所描述的内容,来确定第二时域位置。
本申请实施例还提供一种限制第二时域位置的方法(为便于描述,简称为方法b),在图13所示意的例子中,PDCCH1调度的PDSCH1和PDCCH2调度的PDSCH2位于连续的两个时隙(即时隙1和时隙2)。此种情形下,如图13中的(a)所示,终端设备存储解调前的数据(PDSCH1)的时间长度为T4g,即在T4g的终点,终端设备方可释放缓存,接 收并存储PDSCH2,但由于PDSCH1和PDSCH2占用的符号连续,从图13可以看出,会导致终端设备无法及时接收并存储时隙2的第1个符号中的数据。基于此,本申请实施例中,当被调度载波的多个时隙中的数据信道(比如PDSCH)所占用的符号连续时,需要对PDSCH所在的时域位置进行限制,一种可能的限制方式为:第一数据信道在第一时隙中所占用的结束符号和第二数据信道在第二时隙中所占用的起始符号之间间隔的时间长度大于等于终端设备对存储的第一数据信道进行处理并释放缓存所需的时间长度,其中,第一时隙为与第二时隙相邻的前一时隙。也就是说,如图13中的(b)所示,PDSCH1的结束符号和PDSCH2的起始符号之间间隔的时间长度大于等于终端设备对存储的PDSCH1进行处理并释放缓存所需的时间长度。
需要说明的是,本申请实施例中所描述的方法a与方法b可以分别单独适用,或者,也可以结合适用。在一个示例中,可以先根据终端设备的能力判断是否需要对第二时域位置进行限制,若是,则根据第一时域位置确定第二时域位置。此时,若确定第二时域位置可以位于时隙0后的任一时隙(参见图8A),则在第二时域位置位于时隙1后的任一时隙时,可能会出现图13中(a)所示意的情形,因此,可以进一步结合方法b来确定出第二时域位置。
根据上述内容可知,网络设备在通过调度信息调度数据时,调度的数据可以位于多种可能的时域位置上,但当调度的数据位于某些可能的时域位置上时,会导致终端设备缓存数据的时间较长(可能会超过终端设备的缓存大小),进而增加终端设备的处理负担,因此,本申请实施例中提出根据终端设备的能力和/或调度信息所在的时域位置的结束为止来确定调度的数据所在的时域位置,从而通过对调度的数据所在的时域位置进行限制,有效缩短终端设备存储解调前的数据(或待发送的数据)的时间长度,降低终端设备的处理负担。
上述主要从网络设备和终端设备之间交互的角度对本申请提供的方案进行了介绍。可以理解的是,为了实现上述功能,网络设备或终端设备可以包括执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
在采用集成的单元的情况下,图14示出了本申请实施例中所涉及的装置的可能的示例性框图,该装置1400可以以软件的形式存在。装置1400可以包括:处理单元1402和通信单元1403。处理单元1402用于对装置1400的动作进行控制管理。通信单元1403用于支持装置1400与其他网络实体的通信。装置1400还可以包括存储单元1401,用于存储装置1400的程序代码和数据。
其中,处理单元1402可以是处理器或控制器,例如可以是通用中央处理器(central processing unit,CPU),通用处理器,数字信号处理(digital signal processing,DSP),专用集成电路(application specific integrated circuits,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件 或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包括一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元1403可以是通信接口、收发器或收发电路等,其中,该通信接口是统称,在具体实现中,该通信接口可以包括多个接口。存储单元1401可以是存储器。
该装置1400可以为上述任一实施例中的网络设备、或者还可以为设置在网络设备中的半导体芯片。处理单元1402可以支持装置1400执行上文中各方法示例中网络设备的动作,通信单元1403可以支持装置1400与终端设备之间的通信;例如,处理单元1402和/或所述通信单元1403用于支持装置1400执行图14中的步骤1401和步骤1403。
具体地,在一个实施例中,所述处理单元结合所述通信单元执行:
在第一时域位置上向终端设备发送调度信息;以及在第二时域位置上发送或接收所述调度信息调度的数据;所述第一时域位置和所述第二时域位置位于不同的载波,或者所述第一时域位置和所述第二时域位置位于不同的带宽部分BWP;其中,所述第二时域位置是根据所述第一时域位置的结束位置和/或所述终端设备的能力确定的。
在一种可能的实现方式中,所述第一时域位置和所述第二时域位置在时域资源上不重叠。
在一种可能的实现方式中,所述第一时域位置位于所述调度资源中的第一时隙,所述第一时域位置在所述第一时隙中占用的最后一个符号位于所述被调度资源中的第二时隙;所述第二时域位置位于所述被调度资源中所述第二时隙之后的任一时隙;所述调度资源和所述被调度资源位于所述不同的载波,或者所述调度资源和所述被调度资源位于所述不同的BWP。
在一种可能的实现方式中,所述第一时域位置位于所述调度资源中的第一时隙,所述第一时域位置在所述第一时隙中占用的最后一个符号位于所述被调度资源中的第二时隙;所述第二时域位置位于所述第二时隙,所述第二时域位置在所述第二时隙中占用的符号位于所述第一时域位置在所述第一时隙中占用的最后一个符号之后;所述调度资源和所述被调度资源位于所述不同的载波,或者所述调度资源和所述被调度资源位于所述不同的BWP。
在一种可能的实现方式中,所述第二时域位置在所述第二时隙中占用的起始符号是根据所述第一时域位置在所述第一时隙中占用的最后一个符号确定的,所述第二时域位置在所述第二时域单元中占用的符号个数是根据所述第二时域单元包括的符号个数和所述第二时域位置在所述第二时域单元中占用的起始符号确定的。
在一种可能的实现方式中,所述终端设备的能力包括以下任一项或任意多项:所述终端设备的缓存大小、所述终端设备的处理能力;所述终端设备的处理能力包括以下任一项或任意多项:对调度信息的处理能力、对数据的处理能力。
在一种可能的实现方式中,所述通信单元还用于:接收所述终端设备上报的所述终端设备的缓存大小;或者,所述处理单元还用于:获取所述终端设备的处理能力,并根据所述终端设备的处理能力确定所述终端设备的缓存大小。
在一种可能的实现方式中,所述终端设备的缓存可存储的数据量在被调度资源上的持续时间长度小于所述第一时域位置的起点至所述终端设备完成对所述数据信道的信道估计的持续时间长度。
该装置1400可以为上述任一实施例中的终端设备、或者还可以为设置在终端设备中 的半导体芯片。处理单元1402可以支持装置1400执行上文中各方法示例中终端设备的动作,通信单元1403可以支持装置1400与网络设备之间的通信;例如,处理单元1402和/或所述通信单元1403用于支持装置1400执行图14中的步骤1402和步骤1403。
具体地,在一个实施例中,所述处理单元结合所述通信单元执行:
在第一时域位置上接收网络设备发送的调度信息;以及在第二时域位置上接收或发送所述调度信息调度的数据;所述第一时域位置和所述第二时域位置位于不同的载波,或者所述第一时域位置和所述第二时域位置位于不同的带宽部分BWP;其中,所述第二时域位置是根据所述第一时域位置的结束位置和/或终端设备的能力确定的。
在一种可能的实现方式中,所述第一时域位置和所述第二时域位置在时域资源上不重叠。
在一种可能的实现方式中,所述第一时域位置位于所述调度资源中的第一时隙,所述第一时域位置在所述第一时隙中占用的最后一个符号位于所述被调度资源中的第二时隙;所述第二时域位置位于所述被调度资源中所述第二时隙之后的任一时隙;所述调度资源和所述被调度资源位于所述不同的载波,或者所述调度资源和所述被调度资源位于所述不同的BWP。
在一种可能的实现方式中,所述第一时域位置位于所述调度资源中的第一时隙,所述第一时域位置在所述第一时隙中占用的最后一个符号位于所述被调度资源中的第二时隙;
所述第二时域位置位于所述第二时隙,所述第二时域位置在所述第二时隙中占用的符号位于所述第一时域位置在所述第一时隙中占用的最后一个符号之后;所述调度资源和所述被调度资源位于所述不同的载波,或者所述调度资源和所述被调度资源位于所述不同的BWP。
在一种可能的实现方式中,所述第二时域位置在所述第二时隙中占用的起始符号是根据所述第一时域位置在所述第一时隙中占用的最后一个符号确定的,所述第二时域位置在所述第二时域单元中占用的符号个数是根据所述第二时域单元包括的符号个数和所述第二时域位置在所述第二时域单元中占用的起始符号确定的。
在一种可能的实现方式中,所述终端设备的能力包括以下任一项或任意多项:所述终端设备的缓存大小、所述终端设备的处理能力;所述终端设备的处理能力包括以下任一项或任意多项:对调度信息的处理能力、对数据的处理能力。
在一种可能的实现方式中,所述通信单元还用于:向所述网络设备上报所述终端设备的缓存大小和/或所述终端设备的处理能力。
在一种可能的实现方式中,所述终端设备的缓存可存储的数据量在被调度资源上的持续时间长度小于所述第一时域位置的起点至所述终端设备完成对所述数据信道的信道估计的持续时间长度。
图15给出了一种通信装置的结构示意图。所述通信装置1500可以是图1中的网络设备101,也可以是图1中的终端设备1021、1022或1023。通信装置可用于实现上述方法实施例中描述的对应于通信设备的方法,具体可以参见上述方法实施例中的说明。
所述通信装置1500可以包括一个或多个处理器1501,所述处理器1501也可以称为处理单元,可以实现一定的控制功能。所述处理器1501可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,分布单元(distributed  unit,DU)或集中单元(centralized unit,CU)等)进行控制,执行软件程序,处理软件程序的数据。
在一种可选的设计中,处理器1501也可以存有指令和/或数据1503,所述指令和/或数据1503可以被所述处理器运行,使得所述通信装置1500执行上述方法实施例中描述的对应于通信设备的方法。
在一个中可选的设计中,处理器1501中可以包括用于实现接收和发送功能的收发单元。例如该收发单元可以是收发电路,或者是接口。用于实现接收和发送功能的电路或接口可以是分开的,也可以集成在一起。
在又一种可能的设计中,通信装置1500可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。
可选的,所述通信装置1500中可以包括一个或多个存储器1502,其上可以存有指令1504,所述指令可在所述处理器上被运行,使得所述通信装置1500执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。可选的,处理器中也可以存储指令和/或数据。所述处理器和存储器可以单独设置,也可以集成在一起。例如,上述方法实施例中所描述的各种对应关系可以存储在存储器中,或者存储在处理器中。
可选的,所述通信装置1500还可以包括收发器1505和/或天线1506。所述处理器1501可以称为处理单元,对通信装置(终端设备或者网络设备)进行控制。所述收发器1505可以称为收发单元、收发机、收发电路或者收发器等,用于实现通信装置的收发功能。
在一种可能的设计中,一种通信装置1500(例如,集成电路、无线设备、电路模块,网络设备,终端等)可包括处理器1501和收发器1505。由收发器1505在第一时域位置发送调度信息以及在第二时域位置上发送或接收调度信息调度的数据;由处理器1501根据所述第一时域位置的结束位置和/或所述终端设备的能力确定第二时域位置。
本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(Bipolar Junction Transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
虽然在以上的实施例描述中,通信装置以网络设备或者终端设备为例来描述,但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图15的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述设备可以是:
(1)独立的集成电路IC,或芯片,或,芯片***或子***;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据和/或指令的存储部件;
(3)ASIC,例如调制解调器(MSM);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端、智能终端、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于终端设备中。可选地,处理器和存储媒介也可以设置于终端设备中的不同的部件中。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包括这些改动和变型在内。

Claims (23)

  1. 一种数据调度方法,其特征在于,所述方法包括:
    网络设备在第一时域位置上向终端设备发送调度信息;
    所述网络设备在第二时域位置上发送或接收所述调度信息调度的数据;所述第一时域位置和所述第二时域位置位于不同的载波,或者所述第一时域位置和所述第二时域位置位于不同的带宽部分BWP;
    其中,所述第二时域位置是根据所述第一时域位置的结束位置和/或所述终端设备的能力确定的。
  2. 根据权利要求1所述的方法,其特征在于:
    所述第一时域位置和所述第二时域位置在时域资源上不重叠。
  3. 根据权利要求2所述的方法,其特征在于:
    所述第一时域位置位于调度资源中的第一时隙,所述第一时域位置在所述第一时隙中占用的最后一个符号位于被调度资源中的第二时隙;所述第二时域位置位于所述被调度资源中所述第二时隙之后的任一时隙;
    所述调度资源和所述被调度资源位于所述不同的载波,或者所述调度资源和所述被调度资源位于所述不同的BWP。
  4. 根据权利要求2所述的方法,其特征在于:
    所述第一时域位置位于所述调度资源中的第一时隙,所述第一时域位置在所述第一时隙中占用的最后一个符号位于所述被调度资源中的第二时隙;所述第二时域位置位于所述第二时隙,所述第二时域位置在所述第二时隙中占用的符号位于所述第一时域位置在所述第一时隙中占用的最后一个符号之后;
    所述调度资源和所述被调度资源位于所述不同的载波,或者所述调度资源和所述被调度资源位于所述不同的BWP。
  5. 根据权利要求4所述的方法,其特征在于:
    所述第二时域位置在所述第二时隙中占用的起始符号是根据所述第一时域位置在所述第一时隙中占用的最后一个符号确定的,所述第二时域位置在所述第二时域单元中占用的符号个数是根据所述第二时域单元包括的符号个数和所述第二时域位置在所述第二时域单元中占用的起始符号确定的。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述终端设备的能力包括以下任一项或任意多项:所述终端设备的缓存大小、所述终端设备的处理能力;
    所述终端设备的处理能力包括以下任一项或任意多项:对调度信息的处理能力、对数据的处理能力。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端设备上报的所述终端设备的缓存大小;或者,
    所述网络设备获取所述终端设备的处理能力,并根据所述终端设备的处理能力确定所述终端设备的缓存大小。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于:
    所述终端设备的缓存可存储的数据量在被调度资源上的持续时间长度小于所述第一时域位置的起点至所述终端设备完成对所述数据信道的信道估计的持续时间长度。
  9. 一种数据调度方法,其特征在于,所述方法包括:
    终端设备在第一时域位置上接收网络设备发送的调度信息;
    所述终端设备在第二时域位置上接收或发送所述调度信息调度的数据;所述第一时域位置和所述第二时域位置位于不同的载波,或者所述第一时域位置和所述第二时域位置位于不同的BWP;
    其中,所述第二时域位置是根据所述第一时域位置的结束位置和/或所述终端设备的能力确定的。
  10. 根据权利要求9所述的方法,其特征在于:
    所述第一时域位置和所述第二时域位置在时域资源上不重叠。
  11. 根据权利要求10所述的方法,其特征在于:
    所述第一时域位置位于所述调度资源中的第一时隙,所述第一时域位置在所述第一时隙中占用的最后一个符号位于所述被调度资源中的第二时隙;所述第二时域位置位于所述被调度资源中所述第二时隙之后的任一时隙;
    所述调度资源和所述被调度资源位于所述不同的载波,或者所述调度资源和所述被调度资源位于所述不同的BWP。
  12. 根据权利要求10所述的方法,其特征在于:
    所述第一时域位置位于所述调度资源中的第一时隙,所述第一时域位置在所述第一时隙中占用的最后一个符号位于所述被调度资源中的第二时隙;所述第二时域位置位于所述第二时隙,所述第二时域位置在所述第二时隙中占用的符号位于所述第一时域位置在所述第一时隙中占用的最后一个符号之后;
    所述调度资源和所述被调度资源位于所述不同的载波,或者所述调度资源和所述被调度资源位于所述不同的BWP。
  13. 根据权利要求12所述的方法,其特征在于:
    所述第二时域位置在所述第二时隙中占用的起始符号是根据所述第一时域位置在所述第一时隙中占用的最后一个符号确定的,所述第二时域位置在所述第二时域单元中占用的符号个数是根据所述第二时域单元包括的符号个数和所述第二时域位置在所述第二时域单元中占用的起始符号确定的。
  14. 根据权利要求9至13中任一项所述的方法,其特征在于,所述终端设备的能力包括以下任一项或任意多项:所述终端设备的缓存大小、所述终端设备的处理能力;
    所述终端设备的处理能力包括以下任一项或任意多项:对调度信息的处理能力、对数据的处理能力。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    所述终端设备向所述网络设备上报所述终端设备的缓存大小和/或所述终端设备的处理能力。
  16. 根据权利要求9至15中任一项所述的方法,其特征在于:
    所述终端设备的缓存可存储的数据量在被调度资源上的持续时间长度小于所述第一时域位置的起点至所述终端设备完成对所述数据信道的信道估计的持续时间长度。
  17. 一种装置,其特征在于,用于执行如权利要求1至16项任一项所述的方法。
  18. 一种装置,其特征在于,所述装置包括处理器、存储器以及存储在存储器上并可在处理器上运行的指令,当所述指令被运行时,使得所述装置执行如权利要求1至16项 任一项所述的方法。
  19. 一种网络设备,其特征在于,包括如权利要求17所述的装置。
  20. 一种终端设备,其特征在于,包括如权利要求17所述的装置。
  21. 一种通信***,其特征在于,包括如权利要求19所述的网络设备以及如权利要求20所述的终端设备。
  22. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1至16任一项所述的方法。
  23. 一种计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行权利要求1至16任一项所述的方法。
PCT/CN2019/099440 2018-08-10 2019-08-06 一种数据调度方法及装置 WO2020029955A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19847631.9A EP3823396A4 (en) 2018-08-10 2019-08-06 DATA PLANNING PROCESS AND DEVICE
US17/171,469 US20210168835A1 (en) 2018-08-10 2021-02-09 Data scheduling method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810911049.0A CN110831217B (zh) 2018-08-10 2018-08-10 一种数据调度方法及装置
CN201810911049.0 2018-08-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/171,469 Continuation US20210168835A1 (en) 2018-08-10 2021-02-09 Data scheduling method and apparatus

Publications (1)

Publication Number Publication Date
WO2020029955A1 true WO2020029955A1 (zh) 2020-02-13

Family

ID=69413387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099440 WO2020029955A1 (zh) 2018-08-10 2019-08-06 一种数据调度方法及装置

Country Status (4)

Country Link
US (1) US20210168835A1 (zh)
EP (1) EP3823396A4 (zh)
CN (1) CN110831217B (zh)
WO (1) WO2020029955A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022073149A1 (en) * 2020-10-05 2022-04-14 Apple Inc. Network operations to reduce pdcch monitoring
CN115623598A (zh) * 2021-07-14 2023-01-17 华为技术有限公司 信号传输方法及装置
CN116633707A (zh) * 2022-02-11 2023-08-22 华为技术有限公司 一种通信方法及通信装置
CN117896835B (zh) * 2024-03-14 2024-05-10 成都星联芯通科技有限公司 时隙资源调度方法、装置、地球站、通信***和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106304372A (zh) * 2015-05-15 2017-01-04 ***通信集团公司 一种上行调度方法、装置、设备和***
CN106559188A (zh) * 2015-09-25 2017-04-05 华为技术有限公司 一种数据传输的方法及基站
CN107370683A (zh) * 2016-05-13 2017-11-21 电信科学技术研究院 一种数据传输方法、终端及基站
CN108370562A (zh) * 2015-12-31 2018-08-03 华为技术有限公司 一种跨载波调度方法、反馈方法及装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120103400A (ko) * 2011-03-11 2012-09-19 삼성전자주식회사 통신시스템에서 하이브리드 자동재전송요구 지원 방법 및 장치
US9497747B2 (en) * 2012-06-22 2016-11-15 Qualcomm Incorporated Data transmission in carrier aggregation with different carrier configurations
KR20140032705A (ko) * 2012-09-07 2014-03-17 삼성전자주식회사 이종 복식 기지국간 주파수 집적 시스템에서 상향링크 신호 전송 방법 및 장치
WO2015020190A1 (ja) * 2013-08-09 2015-02-12 シャープ株式会社 端末装置、基地局装置、通信方法、および集積回路
CN105592467A (zh) * 2014-11-07 2016-05-18 北京三星通信技术研究有限公司 长期演进通信***中竞争信道资源的方法及设备
CN112911603A (zh) * 2015-08-14 2021-06-04 韩国电子通信研究院 通信网络中用户设备的操作方法
KR20170134238A (ko) * 2016-05-27 2017-12-06 주식회사 아이티엘 Nr 시스템을 위한 제어 채널 및 데이터 채널 송수신 방법 및 장치
US10925079B2 (en) * 2016-10-27 2021-02-16 Kt Corporation Method and device for scheduling uplink signal and downlink data channel in next generation wireless network
US10477457B2 (en) * 2016-11-03 2019-11-12 Samsung Electronics Co., Ltd. Apparatus and method to support ultra-wide bandwidth in fifth generation (5G) new radio
CN106714322B (zh) * 2016-11-04 2019-02-15 展讯通信(上海)有限公司 跨子带/载波调度方法、基站及用户设备
US10211955B2 (en) * 2017-02-02 2019-02-19 Qualcomm Incorporated Half-duplex operation in new radio systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106304372A (zh) * 2015-05-15 2017-01-04 ***通信集团公司 一种上行调度方法、装置、设备和***
CN106559188A (zh) * 2015-09-25 2017-04-05 华为技术有限公司 一种数据传输的方法及基站
CN108370562A (zh) * 2015-12-31 2018-08-03 华为技术有限公司 一种跨载波调度方法、反馈方法及装置
CN107370683A (zh) * 2016-05-13 2017-11-21 电信科学技术研究院 一种数据传输方法、终端及基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3823396A4 *

Also Published As

Publication number Publication date
EP3823396A4 (en) 2021-10-13
CN110831217A (zh) 2020-02-21
EP3823396A1 (en) 2021-05-19
US20210168835A1 (en) 2021-06-03
CN110831217B (zh) 2021-12-14

Similar Documents

Publication Publication Date Title
EP3706353B1 (en) Carrier switching method, device and system for multi-carrier communication
US10764884B2 (en) Method for sending or receiving physical downlink control channel and device
WO2020029955A1 (zh) 一种数据调度方法及装置
WO2019029366A1 (zh) 一种调整频域资源和发送指示信息的方法、装置及***
EP3627733B1 (en) Communication method, network device and terminal device
WO2018228500A1 (zh) 一种调度信息传输方法及装置
WO2022214013A1 (zh) 资源确定方法、装置、终端、网络侧设备及存储介质
WO2018028565A1 (zh) 通信方法和设备
WO2020147731A1 (zh) 一种通信方法及装置
CN111148237B (zh) 一种通信方法及装置
US11051300B2 (en) Method and apparatus for transmitting control channel information in an OFDM system
CN113424618B (zh) 一种通信方法、装置及计算机可读存储介质
US20210345307A1 (en) Terminal device scheduling method, network device, and terminal device
WO2022218368A1 (zh) 旁链路反馈资源的确定方法、装置、终端及存储介质
WO2022188508A1 (zh) 直连链路同步信号块传输方法及装置、计算机可读存储介质
CN110475292A (zh) 一种通信方法及装置
TW201826747A (zh) 資源映射的方法和通訊設備
WO2021062687A1 (zh) 一种通信方法及装置
US20230047144A1 (en) Physical downlink control channel monitoring method and apparatus
CN115173889A (zh) 跳频处理方法、装置及终端
WO2024093834A1 (zh) 一种通信方法及装置
WO2023165612A1 (zh) 物理下行控制信道监听方法与装置、终端设备和网络设备
WO2023185984A1 (zh) 资源配置方法、通信装置及计算机可读存储介质
WO2021032023A1 (zh) 一种通信方法及装置
WO2024093878A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19847631

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019847631

Country of ref document: EP

Effective date: 20210215