WO2020029302A1 - 一种参考信号测量配置方法、终端设备及网络设备 - Google Patents

一种参考信号测量配置方法、终端设备及网络设备 Download PDF

Info

Publication number
WO2020029302A1
WO2020029302A1 PCT/CN2018/100097 CN2018100097W WO2020029302A1 WO 2020029302 A1 WO2020029302 A1 WO 2020029302A1 CN 2018100097 W CN2018100097 W CN 2018100097W WO 2020029302 A1 WO2020029302 A1 WO 2020029302A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
reference signal
measurement parameter
terminal device
threshold information
Prior art date
Application number
PCT/CN2018/100097
Other languages
English (en)
French (fr)
Inventor
史志华
陈文洪
张治�
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201880096350.9A priority Critical patent/CN112534738B/zh
Priority to KR1020217006314A priority patent/KR20210043597A/ko
Priority to PCT/CN2018/100097 priority patent/WO2020029302A1/zh
Priority to AU2018435988A priority patent/AU2018435988A1/en
Priority to EP18929365.7A priority patent/EP3832897A4/en
Priority to TW108128382A priority patent/TW202010353A/zh
Publication of WO2020029302A1 publication Critical patent/WO2020029302A1/zh
Priority to US17/161,239 priority patent/US20210160714A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints

Definitions

  • the present invention relates to the technical field of information processing, and in particular, to a reference signal measurement configuration method, a terminal device, a network device, a chip, a computer-readable storage medium, a computer program product, and a computer program.
  • the New Radio (NR, New Radio) / Fifth Generation Mobile Communication Network (5G) multi-beam (Multi-beam) system covers the entire cell through different beams. Different beams are identified by different signals carried by them. For example, different synchronization blocks (SS blocks) are transmitted on different beams. Terminal devices can distinguish different beams by using different SS blocks. Transmission on different beams For different channel state information reference signals (CSI-RS), the terminal device can identify different beams through CSI-RS or CSI-RS resources.
  • CSI-RS channel state information reference signals
  • the terminal equipment needs to measure some signals in a multi-beam system, and judge which beams have better transmission quality based on the measurement results, and report the relevant information to the network.
  • L1-RSRP is usually used as the measurement parameter.
  • the measurement method based on L1-RSRP is too single, and there is also a problem that it cannot be guaranteed to adapt to more scenarios.
  • embodiments of the present invention provide a reference signal measurement configuration method, a terminal device, a network device, a chip, a computer-readable storage medium, a computer program product, and a computer program.
  • a reference signal measurement configuration method is provided and is applied to a terminal device.
  • the method includes:
  • the measurement parameters include at least a first type of measurement parameters.
  • the first type of measurement parameters are: parameters other than L1-RSRP, which are used to indicate the quality of the reference signal.
  • a reference signal measurement configuration method which is applied to a network device.
  • the method includes:
  • the measurement parameters include at least a first type of measurement parameters.
  • the first type of measurement parameters are: parameters other than L1-RSRP, which are used to indicate the quality of the reference signal.
  • a terminal device including:
  • a first communication unit that measures at least one measurement parameter of at least one candidate reference signal to obtain a measurement result of at least one measurement parameter of at least one reference signal
  • a first processing unit based on a measurement result of the at least one measurement parameter for at least one candidate reference signal, selecting a reference signal from the at least one candidate reference signal;
  • the measurement parameters include at least a first type of measurement parameters.
  • the first type of measurement parameters are: parameters other than L1-RSRP, which are used to indicate the quality of the reference signal.
  • a network device including:
  • a second communication unit configured for the terminal device to have at least one measurement parameter for at least one reference signal
  • the measurement parameters include at least a first type of measurement parameters.
  • the first type of measurement parameters are: parameters other than L1-RSRP, which are used to indicate the quality of the reference signal.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, and execute the method in the above-mentioned first aspect or its implementations.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the second aspect or the implementations thereof.
  • a chip is provided for implementing any one of the first to second aspects or a method in each implementation thereof.
  • the chip includes a processor for invoking and running a computer program from a memory, so that a device installed with the chip executes any one of the first aspect to the second aspect described above or implementations thereof. method.
  • a computer-readable storage medium for storing a computer program that causes a computer to execute the method in any one of the first to second aspects described above or in its implementations.
  • a computer program product including computer program instructions that cause a computer to execute the method in any one of the first to second aspects described above or in various implementations thereof.
  • a computer program that, when run on a computer, causes the computer to execute the method in any one of the first to second aspects described above or in its implementations.
  • the first type of measurement parameters other than L1-RSRP can be configured, so that the reference signal is measured based on the newly configured measurement parameters; thus, it is ensured that when the measurement parameters are newly introduced, Ensure the normal configuration and measurement of the system, ensure the processing capacity of the system, and avoid the problems of relatively single measurement parameters and the inability to use multiple communication scenarios.
  • FIG. 1 is a schematic diagram 1 of a communication system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a reference signal measurement configuration method according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a communication device according to an embodiment of the present invention.
  • FIG. 5 is a schematic block diagram of a chip according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram 2 of a communication system architecture according to an embodiment of the present application.
  • GSM Global System for Mobile
  • CDMA Code Division Multiple Access
  • Wideband Code Division Multiple Access Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the communication system 100 applied in the embodiment of the present application may be shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or a communication terminal or a terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located within the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, or a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • the network device may be a mobile switching center, relay station, access point, vehicle equipment, Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in public land mobile networks (PLMN) that will evolve in the future.
  • PLMN public land mobile networks
  • the communication system 100 further includes at least one terminal device 120 located within a coverage area of the network device 110.
  • terminal equipment used herein includes, but is not limited to, connection via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Line (DSL), digital cable, direct cable connection ; And / or another data connection / network; and / or via a wireless interface, such as for cellular networks, Wireless Local Area Networks (WLAN), digital television networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter; and / or another terminal device configured to receive / transmit communication signals; and / or Internet of Things (IoT) devices.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • WLAN Wireless Local Area Networks
  • DVB-H Digital Video Broadband
  • satellite networks satellite networks
  • AM- FM broadcast transmitter AM- FM broadcast transmitter
  • IoT Internet of Things
  • a terminal device configured to communicate through a wireless interface may be referred to as a “wireless communication terminal”, a “wireless terminal”, or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular phones; personal communications systems (PCS) terminals that can combine cellular radiotelephones with data processing, facsimile, and data communications capabilities; can include radiotelephones, pagers, Internet / internal PDA with network access, web browser, notepad, calendar, and / or Global Positioning System (GPS) receiver; and conventional laptop and / or palm-type receivers or others including radiotelephone transceivers Electronic device.
  • PCS personal communications systems
  • GPS Global Positioning System
  • a terminal device can refer to an access terminal, user equipment (User Equipment), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or User device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Processing (PDA), and wireless communication.
  • terminal devices 120 may perform terminal direct device (D2D) communication.
  • D2D terminal direct device
  • the 5G system or the 5G network may also be referred to as a New Radio (NR) system or an NR network.
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
  • the communication system 100 may further include other network entities such as a network controller, a mobility management entity, and the like in this embodiment of the present application is not limited thereto.
  • network entities such as a network controller, a mobility management entity, and the like in this embodiment of the present application is not limited thereto.
  • the device having a communication function in the network / system in the embodiments of the present application may be referred to as a communication device.
  • the communication device may include a network device 110 and a terminal device 120 having a communication function, and the network device 110 and the terminal device 120 may be specific devices described above, and are not described herein again
  • the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller, a mobile management entity, and the like, which is not limited in the embodiments of the present application.
  • An embodiment of the present invention provides a reference signal measurement configuration method, which is applied to a terminal device. As shown in FIG. 2, the method includes:
  • Step 201 Perform measurement on at least one measurement parameter of at least one candidate reference signal to obtain a measurement result of at least one measurement parameter of at least one reference signal.
  • Step 202 Select a reference signal from the at least one candidate reference signal based on a measurement result of the at least one measurement parameter for the at least one candidate reference signal.
  • the measurement parameters include at least a first type of measurement parameters.
  • the first type of measurement parameters are: parameters other than L1-RSRP, which are used to indicate the quality of the reference signal.
  • the measurement parameters do not exclude the inclusion of L1-RSRP parameters, that is, in actual processing, L1-RSRP and / or at least one first-type measurement parameter may be included.
  • the first type of measurement parameters may include at least one of the following: L1-SINR, L1-RSRQ.
  • the terminal device may use the existing L1-RSRP measurement, and / or, may also use one or more of the following measurements: L1-SINR, L1 -RSRQ, Hypothetical BLER.
  • the measurement of at least one measurement parameter of at least one candidate reference signal includes: the measurement of at least one candidate reference signal.
  • the first type of measurement parameter is measured.
  • the first type of measurement parameters are used to select new candidate reference signals.
  • the method further includes: receiving threshold information for the first type of measurement parameter configured on the network side.
  • the network side may configure threshold information corresponding to different first-type measurement parameters for the terminal device.
  • the method further includes:
  • a measurement parameter to be measured by the terminal device is determined.
  • the network supports the following configuration methods when the terminal is configured with beam, failure, and recovery information:
  • the configuration information may include at least one measurement parameter that the network side instructs the terminal device to measure, which may include L1-RSRP, and / or includes at least one first-type measurement parameter.
  • the network side may be configured with one or more measurement parameters for the terminal device through the configuration information; when at least two measurement parameters are configured, the terminal device may select from the at least two measurement parameters by itself. Of course, this You can select all of them, or select one or some of the measurement parameters.
  • the configuration information sent by the network side includes measurement parameters 1, 2, and 3, and if the terminal device only needs to measure one of them, it can select measurement parameter 1 for subsequent processing.
  • the terminal device selects some measurement parameters in the configuration information it may be based on historical information. For example, when one of the measurement parameters is often used for reference signal measurement, the measurement parameter may be kept measured; or, it may be randomly selected according to the configuration information. The choice is not repeated here.
  • Method 2 indicates the specific measurement parameter to be used. For example, there is a field indicating the measurement parameter / reported amount A or B, such as:
  • the determining a measurement parameter to be measured by the terminal device based on the configuration information includes:
  • a measurement parameter to be measured by the terminal device is determined.
  • the first field may be a field for indicating a measurement parameter in the configuration information determined according to the protocol, and is specifically set according to an actual situation.
  • the configuration information field can indicate whether the measurement parameter A or B is displayed.
  • judge according to whether the first field is default such as:
  • the terminal device When the first field in the configuration information is defaulted, it is determined that the terminal device is to measure the first target measurement parameter; when the first field is not defaulted, it is determined that the terminal device is to be measured as the second target measurement parameter.
  • Target measurement parameter wherein the first target measurement parameter is different from the second target measurement parameter.
  • the two sides negotiate, when the first field indicates, only the indicated second target measurement parameter,
  • the time saving is determined to indicate the first target measurement parameter. Assume that there are measurement parameters A and B. By default, this field instructs the terminal device to use A. If this field is configured, only B is configured to instruct the terminal device to use B.
  • a modification method of RRC configuration configure the measurement parameters through the quality field, and then indicate the corresponding threshold information through the threshold field, such as:
  • Manner 3 Determine the measurement parameter to be measured by the terminal device through the threshold information in the configuration information.
  • an indication threshold can be used to implicitly indicate whether to use measurement parameter A or measurement parameter B.
  • a target measurement parameter to be measured by the terminal device may be determined according to a parameter name corresponding to the threshold information or a position of the threshold information in the configuration information;
  • radio resource control Radio Resource Control
  • RRC Radio Resource Control
  • Manner 4 A measurement parameter that the network side instructs the terminal device to measure is determined by using the content in the first keyword structure in the configuration information sent by the network side.
  • the first keyword may be a "CHOICE" field.
  • other fields may be adopted as the first keyword through negotiation between the two parties; for example, the structure of the CHOICE keyword is used, and sinr-Threshold name. If Rel-16 introduces multiple first-type measurement parameters, you can continue to add other names, such as rsrq-Threshold, etc., such as:
  • threshold threshold CHOICE ⁇
  • new measurement parameters can be selected according to the measurement parameters and threshold information configured on the network side.
  • Scenario 1 Obtain at least two measurement parameters from at least one measurement parameter sent from the network side, and a set of candidate reference signals. For example, for a terminal device that supports the first type of measurement parameter, when the network configures the terminal with the relevant information about the failure and recovery, two types of measurement parameters A and B are configured through signaling, but a set of candidate references corresponding to the optional beam is configured signal.
  • the measurement parameters sent by the network side may include the first type of measurement parameters and / or L1-RSRP.
  • the selecting a reference signal from the at least one candidate reference signal based on a measurement result of the at least one measurement parameter for the at least one candidate reference signal includes:
  • the terminal device selects A or B and the corresponding threshold to select the first type of measurement parameter.
  • the threshold information may include a threshold value.
  • a reference signal is selected from the candidate reference signals that satisfy the threshold information corresponding to any one measurement parameter and is collectively selected.
  • At least two measurement parameters are measured for each measurement parameter to obtain a measurement result, and are selected from a group of candidate reference signals according to the measurement result corresponding to each measurement parameter and the threshold information for the measurement parameter configured on the network side.
  • Multiple candidate reference signals; candidate reference signals selected based on all measurement parameters are used as a union; finally, one is selected from the union set as the finally selected reference signal.
  • a new reference signal can be selected from a candidate reference signal (RS) that meets the measurement parameter A threshold and a candidate RS that meets the measurement parameter B threshold, that is, the selected reference signal can satisfy the threshold corresponding to measurement parameter A, Or meet the threshold corresponding to measurement parameter B.
  • RS candidate reference signal
  • a reference signal is selected from an intersection consisting of candidate reference signals that satisfy the threshold information corresponding to each measurement parameter .
  • At least two measurement parameters are measured for each measurement parameter to obtain a measurement result, and are selected from a group of candidate reference signals based on the measurement result corresponding to each measurement parameter and the threshold information for the measurement parameter configured on the network side.
  • a plurality of candidate reference signals then, an intersection is obtained based on the reference signals individually selected from all the measurement parameters; and finally, one is selected from the intersection as the finally selected reference signal.
  • a new reference signal can be selected from the intersection of a candidate reference signal (RS) that meets the measurement parameter A threshold and a candidate RS that meets the measurement parameter B threshold. Both the threshold corresponding to the threshold A and the B corresponding can be selected. Threshold. It should be noted here that when the intersection cannot be obtained based on all candidate reference signals, the processing is stopped.
  • priority is given to the measurement result of the measurement parameter with the higher priority, and based on the threshold information of the measurement parameter with the higher priority and the measurement result, the selected reference signal is selected to meet Reference signal for corresponding threshold information.
  • the threshold information corresponding to the measurement parameter A with high priority is selected from the reference signal RS first. To select a new reference signal.
  • a reference signal that satisfies the corresponding threshold information is selected from a group of candidate reference signals.
  • the threshold information corresponding to the measurement parameter A with high priority is selected from the reference signal RS first.
  • a new reference signal is selected; if the condition is not met, a new RS is selected from the measurement parameters B with a low selection priority and the RSs that meet the threshold corresponding to the measurement parameter B.
  • a first candidate subset is selected from the group of candidate reference signals according to a measurement result of a first target measurement parameter among the at least two measurement parameters and its corresponding threshold information; according to the at least two measurements
  • the measurement result of the second target measurement parameter in the parameters and the corresponding threshold information are used to select a reference signal from the first candidate subset; wherein the selection priority of the first target measurement parameter is higher than that of the second target measurement parameter.
  • the method of selecting the first candidate subset may be to add candidate RSs whose reference signal quality is higher than a preset value to the first candidate subset; a measurement standard for the quality of the reference signal may be set according to actual conditions, for example, It may include signal-to-noise ratio, signal strength, and so on, which are not described in detail here.
  • measurement parameter A a RS subset that satisfies the threshold, or the best T ones, is selected; in this RS subset, measurement parameter B is used to select a new beam.
  • N is an integer.
  • the measurement parameter A is used to filter to obtain the first candidate subset, and then the best T 'subsets in the subset are directly selected to form a new third candidate subset. If the number of elements is not enough, the number of elements in the new subset is less than T ′, and then a new RS is selected from this third candidate subset.
  • a reference signal with optimal quality is directly obtained from the first candidate subset.
  • the measurement parameter A is used to filter to obtain the first candidate subset, and then the measurement parameter B and its corresponding threshold information are used to directly select the best one from the first candidate subset as the new one.
  • RS the measurement parameter
  • one measurement parameter may be selected from the at least two measurement parameters one by one according to the selection priority, and a reference signal is selected from the group of candidate reference signals based on the measurement result of the selected measurement parameter and its corresponding threshold information.
  • the method of selecting the next measurement parameter from the measurement parameters with lower priority including:
  • the priority A is selected to be higher and B is lower.
  • the new RS is preferentially selected from the selection of the measurement parameter A with high priority to meet the threshold, and then the uplink signal corresponding to the RS is sent.
  • beam failure recovery if no corresponding effective network response is obtained, select RS from RSs that meet the threshold corresponding to measurement parameter B and send the corresponding beam failure recovery request; if no corresponding effective network response is obtained, the measurement is satisfied
  • the RS in the threshold corresponding to the parameter A continues to be transmitted; the two crosses until the stop condition is satisfied.
  • Selecting a measurement parameter from the at least two measurement parameters according to the selection priority selecting a reference signal from the set of candidate reference signals based on the measurement result of the selected measurement parameter and its corresponding threshold information, and The network sends an uplink signal corresponding to the selected reference signal; if a valid network response is not received from the network side, it continues to select a reference signal based on the selected measurement parameter and sends the selected reference signal corresponding to the network Until the processing is stopped according to the rules and a valid network response is not received from the network side, then another measurement parameter is selected from the at least two measurement parameters, and reference signal selection is continued.
  • the priority A is selected to be higher and B is lower.
  • the new RS is preferentially selected from the selection of the measurement parameter A with high priority to meet the threshold, and the uplink signal corresponding to the new RS is selected.
  • Send the corresponding beam failure recovery request if no corresponding valid network response is obtained, continue to send according to the rules until the specified stop condition is met; then select from RS that meets the threshold corresponding to measurement parameter B, and send the corresponding beam failure recovery recovery request .
  • the two are not crossed, and one is used first. If the beam failure is not successful under the specified conditions, the other one is used to continue the attempt. After completing all the attempts, if the corresponding reference signal is still not selected successfully, the processing will also end. .
  • the specified stopping condition may be the number of transmissions.
  • the number of transmissions may be set to five, and then after five times, the system selects a new measurement parameter with a priority lower than the current measurement parameter for RS selection.
  • the selection priority is: configured by the network side, or specified by a protocol, or determined by the terminal device.
  • Scenario 2 Obtain M measurement parameters and M groups of candidate reference signals from the network side, where M is an integer greater than or equal to 2; wherein the different measurement parameters correspond to different groups of candidate reference signals.
  • the measurement parameters sent by the network side may include the first type of measurement parameters and / or L1-RSRP.
  • the network configures the terminal device with beam and failure recovery information and configures two measurement parameters A and B, but two sets of candidate reference signals (candidate and RS) corresponding to optional beams are configured, and the two groups correspond to measurement parameters A and B, that is, RS signal set 1 corresponds to measurement parameter A, and RS set 2 corresponds to measurement parameter B.
  • a target measurement parameter from the M measurement parameters selects a reference signal from the candidate reference signal group corresponding to the target measurement parameter according to the threshold information corresponding to the selected target measurement parameter and the measurement result. For example, when two measurement parameters are configured, the RS set 1 or 2 is selected by itself, and the corresponding RS is selected using the corresponding measurement parameters and thresholds.
  • a reference signal is selected from the set of reference signals that meet any of the measurement parameters and is collectively selected.
  • the first group of RSs corresponding to measurement parameter 1 that meets the corresponding threshold from RS set 1 and the second group of RSs that meets the threshold corresponding to measurement parameter 2 from RS set 2 A group of RSs and a second group of RSs are used to collectively select a new reference signal.
  • the measurement parameters are selected in sequence; based on the threshold information and measurement results corresponding to the selected measurement parameters, it is determined whether it can be selected from its corresponding set of candidate reference signals. Select a reference signal that meets the conditions; if a reference signal that meets the conditions can be selected, the reference signal selection is completed; otherwise, the measurement parameters are reselected. For example, a new first set of RSs is selected first from RS sets 1 of measurement parameter 1 that meet the corresponding threshold. If the conditions are not met, then a new second set is selected from RS set 2 of measurement parameter 2 according to the corresponding threshold. Group RS.
  • one measurement parameter is selected from the M measurement parameters one by one according to the selection priority.
  • a set of candidate references corresponding to the selected measurement parameter is selected. Select a reference signal from the signals and send the uplink signal corresponding to the selected candidate reference signal to the network; detect whether a valid network response is received; if a valid network response is not received from the network side, continue to select the priority Select the next measurement parameter from the lower measurement parameters.
  • measurement parameters 1 and 2 are configured, and the selection priority of measurement parameter 1 is higher; the new beam is selected from the RS set 1 corresponding to the measurement parameter 1 with the higher priority and the RS that meets the corresponding threshold is selected.
  • the corresponding beam, recovery, and request are sent on the uplink resource corresponding to the RS. If no corresponding effective network response is obtained, the RS is selected from the RS that meets the corresponding threshold in the RS set 2 corresponding to the measurement parameter 2, and the uplink resource corresponding to the RS is selected.
  • Send the corresponding beam failure recovery request if no corresponding effective network response is obtained, then continue to select and continue sending from the RS set 1 that meets the corresponding threshold; the two crossover until the stop condition is met.
  • a measurement parameter is selected from the M measurement parameters according to the selection priority
  • a reference signal is selected from a corresponding set of candidate reference signals based on the measurement result of the selected measurement parameter and its corresponding threshold information, and
  • the network sends an uplink signal corresponding to the selected reference signal; detecting whether a valid network response is received;
  • another measurement parameter is selected from the at least two measurement parameters, and the candidate reference signal corresponding to the another measurement parameter is continued. Select the reference signal in the group.
  • the selection priority of measurement parameter 1 is higher; priority is given to selecting a new beam from the RS set 1 of measurement parameter 1 that meets the corresponding threshold, and sending the corresponding beam failure recovery request, if Did not get the corresponding valid network response, continue to send according to the rules until the specified stop condition is met; then select beam from the RS set 2 of the measurement parameter 2 that meets the corresponding threshold, and send the corresponding beam failure recovery request; in this method
  • the two do not cross one is used first. If the failure of recovery is not successful under the specified conditions, use the other to continue the attempt.
  • the priority of the M group candidate reference signals is determined by one of the following: configured by the network side, determined by the type of the reference signal, specified by the protocol, determined by its corresponding measurement parameter, and determined by its corresponding threshold information.
  • the threshold information may include at least one of the following: a threshold value and a type of the threshold; of course, there may be other contents that are not described herein again.
  • the configuration by the network side includes:
  • the network display indicates the set priority.
  • the priority is determined according to the location of each group of candidate reference signals in the configuration information sent by the network side, for example, the location of the domain corresponding to RS set 1 and RS set 1 in the configuration signaling.
  • the priority of RS set 1 and RS set 2 is determined by the RS type; wherein the correspondence between RS type and priority is configured by the network; or the correspondence between RS type and priority is fixed by the protocol.
  • the method further includes: configuring threshold information by RRC.
  • the threshold information configured by RRC includes: determining threshold information corresponding to a reference signal type according to the threshold information configured by RRC, and adjusting threshold information corresponding to other reference signal types according to power offset information; or according to the threshold configured by RRC The information determines threshold information corresponding to at least two reference signal types.
  • the reference signal is at least one of the following: a synchronization signal block SSB and a channel state information reference signal CSI-RS.
  • this embodiment does not involve whether the threshold information is different for different RS types.
  • RRC can be configured with a threshold for SSB. Therefore, when it is used for CSI-RS, the threshold needs to be adjusted according to the power offset.
  • the threshold for RRC configuration is for a certain RS type, so when it is used for other types, it needs to be adjusted according to the power offset (similar to L1-RSRP); the threshold for RRC configuration is only used For multiple RS types.
  • the first type of measurement parameters other than L1-RSRP can be configured, so that the reference signal is measured based on the newly configured measurement parameters; in this way, it is ensured that the system's The normal configuration and measurement ensure the processing capacity of the system, and can avoid the problems of relatively single measurement parameters and the inability to use multiple communication scenarios.
  • An embodiment of the present invention provides a reference signal measurement configuration method, which is applied to a network device.
  • the method includes:
  • the measurement parameters include at least a first type of measurement parameters.
  • the first type of measurement parameters are: parameters other than L1-RSRP, which are used to indicate the quality of the reference signal.
  • the measurement parameters do not exclude the inclusion of L1-RSRP parameters, that is, in actual processing, L1-RSRP and / or at least one first-type measurement parameter may be included.
  • the first type of measurement parameters may include at least one of the following: L1-SINR, L1-RSRQ.
  • the terminal device may use the existing L1-RSRP measurement, and / or, may also use one or more of the following measurements: L1-SINR, L1 -RSRQ, Hypothetical BLER.
  • the measurement of at least one measurement parameter of at least one candidate reference signal includes: sending configuration information to a terminal device;
  • the configuration information indicates a measurement parameter to be measured by the terminal device.
  • the first type of measurement parameters are used to select new candidate reference signals.
  • the method further includes: configuring threshold information for the first type of measurement parameter.
  • the network side may configure threshold information corresponding to different first-type measurement parameters for the terminal device.
  • the network supports the following configuration methods when configuring the terminal with beam and failure recovery information:
  • the configuration information may include at least one measurement parameter that the network side instructs the terminal device to measure, which may include L1-RSRP, and / or includes at least one first-type measurement parameter.
  • the network side may be configured with one or more measurement parameters for the terminal device through the configuration information; when at least two measurement parameters are configured, the terminal device may select from the at least two measurement parameters by itself. Of course, this You can select all of them, or select one or some of the measurement parameters.
  • the configuration information sent by the network side includes measurement parameters 1, 2, and 3, and if the terminal device only needs to measure one of them, it can select measurement parameter 1 for subsequent processing.
  • the terminal device selects some measurement parameters in the configuration information it may be based on historical information. For example, when one of the measurement parameters is often used for reference signal measurement, the measurement parameter may be kept measured; or, it may be randomly selected according to the configuration information. The choice is not repeated here.
  • Method 2 indicates the specific measurement parameter to be used. For example, there is a field indicating the measurement parameter / reported amount A or B, such as:
  • a measurement parameter to be measured by the terminal device is indicated.
  • the first field may be a field for indicating a measurement parameter in the configuration information determined according to the protocol, and is specifically set according to an actual situation.
  • the configuration information field can indicate whether the measurement parameter A or B is displayed.
  • judge according to whether the first field is default such as:
  • the first field in the configuration information When the first field in the configuration information is defaulted, it indicates that the terminal device is to measure the first target measurement parameter; when the first field is not defaulted, it indicates that the terminal device is to measure the second target measurement parameter.
  • Target measurement parameter wherein the first target measurement parameter is different from the second target measurement parameter.
  • the two sides negotiate, when the first field indicates, only the indicated second target measurement parameter,
  • the time saving is determined to indicate the first target measurement parameter. Assume that there are measurement parameters A and B. By default, this field instructs the terminal device to use A. If this field is configured, only B is configured to instruct the terminal device to use B.
  • a modification method of RRC configuration configure the measurement parameters through the quality field, and then indicate the corresponding threshold information through the threshold field, such as:
  • Manner 3 Use the threshold information in the configuration information to indicate the measurement parameter to be measured by the terminal device.
  • an indication threshold can be used to implicitly indicate whether to use measurement parameter A or measurement parameter B.
  • the target measurement parameter to be measured by the terminal device may be indicated according to a parameter name corresponding to the threshold information or a position of the threshold information in the configuration information;
  • L1-RSRP is used
  • L1-SINR is used.
  • the RRC configuration is configured through the following fields:
  • the content of the first keyword structure in the configuration information is used to indicate the measurement parameter to be measured by the terminal device.
  • the first keyword can be a "CHOICE" field.
  • other fields can be used as the first keyword through negotiation between the two parties; for example, the structure of the word using the CHOICE keyword, where threshold, sinr-Threshold can be Using other names, sinr-Threshold is only used to indicate an identification of a first type of measurement parameter. If Rel-16 introduces multiple first-type measurement parameters, you can continue to add other names, such as rsrq-Threshold, etc., such as:
  • new measurement parameters can be selected according to the measurement parameters and threshold information configured on the network side.
  • Scenario 1 Send at least two measurement parameters and at least one set of candidate reference signals to the terminal device.
  • the network configures the terminal device with beam, failure, and recovery related information.
  • Two types of measurement parameters A and B are configured through signaling, but a set of optional group candidates corresponding to beam Reference signal.
  • the measurement parameters sent to the terminal device may include first-type measurement parameters and / or L1-RSRP.
  • Scenario 2 Send M measurement parameters among at least one measurement parameter and M groups of candidate reference signals to the terminal device, where M is an integer greater than or equal to 2;
  • the different measurement parameters correspond to different groups of candidate reference signals.
  • the measurement parameters sent to the terminal device may include first-type measurement parameters and / or L1-RSRP.
  • the network configures the terminal device with beam and failure recovery information and configures two measurement parameters A and B, but configured with two sets of optional beam signals (candidate, RS), two sets of measurement parameters A and B respectively, that is, RS signal set 1 corresponds to measurement parameter A, RS set 2 corresponds to measurement parameter B.
  • RS optional beam signals
  • the threshold information may include at least one of the following: a threshold value and a type of the threshold; of course, there may be other contents that are not described herein again.
  • the method further includes: configuring threshold information for the terminal device through RRC.
  • the configuring threshold information for a terminal device through RRC includes:
  • the threshold information corresponding to at least two reference signal types is determined according to the threshold information configured by the RRC.
  • the reference signal is at least one of the following: a synchronization signal block SSB and a channel state information reference signal CSI-RS.
  • this embodiment does not involve whether the threshold information is different for different RS types.
  • RRC can be configured with a threshold for SSB. Therefore, when it is used for CSI-RS, the threshold needs to be adjusted according to the power offset.
  • the threshold for RRC configuration is for a certain RS type, so when it is used for other types, it needs to be adjusted according to the power offset (similar to L1-RSRP); the threshold for RRC configuration is only used For multiple RS types.
  • the first type of measurement parameters other than L1-RSRP can be configured, so that the reference signal is measured based on the newly configured measurement parameters; in this way, it is ensured that the system's Normal configuration and measurement to ensure the processing capacity of the system.
  • An embodiment of the present invention provides a terminal device, as shown in FIG. 3, including:
  • the first communication unit 31 performs measurement on at least one measurement parameter of at least one candidate reference signal to obtain a measurement result of at least one measurement parameter of at least one reference signal;
  • the first processing unit 32 performs reference signal selection from the at least one candidate reference signal based on a measurement result of the at least one measurement parameter for the at least one candidate reference signal;
  • the measurement parameters include at least a first type of measurement parameters.
  • the first type of measurement parameters are: parameters other than L1-RSRP, which are used to indicate the quality of the reference signal.
  • the measurement parameters do not exclude the inclusion of L1-RSRP parameters, that is, in actual processing, L1-RSRP and / or at least one first-type measurement parameter may be included.
  • the first type of measurement parameters may include at least one of the following: L1-SINR, L1-RSRQ.
  • the terminal device may use the existing L1-RSRP measurement, and / or, may also use one or more of the following measurements: L1-SINR, L1 -RSRQ, Hypothetical BLER.
  • the measurement of at least one measurement parameter of at least one candidate reference signal includes: the measurement of at least one candidate reference signal.
  • the first type of measurement parameter is measured.
  • the first type of measurement parameters are used to select new candidate reference signals.
  • the first communication unit 31 receives threshold information configured on the network side for the first type of measurement parameter.
  • the network side may configure threshold information corresponding to different first-type measurement parameters for the terminal device.
  • the method further includes:
  • a measurement parameter to be measured by the terminal device is determined.
  • the network supports the following configuration methods when the terminal is configured with beam, failure, and recovery information:
  • the configuration information may include at least one measurement parameter that the network side instructs the terminal device to measure, which may include L1-RSRP, and / or includes at least one first-type measurement parameter.
  • the network side may be configured with one or more measurement parameters for the terminal device through the configuration information; when at least two measurement parameters are configured, the first processing unit 32 may select from among the at least two measurement parameters by itself. Of course, at this time, you can select all, or you can select one or some of the measurement parameters.
  • the configuration information sent by the network side includes measurement parameters 1, 2, and 3, and if the terminal device only needs to measure one of them, it can select measurement parameter 1 for subsequent processing.
  • the terminal device selects some measurement parameters in the configuration information it may be based on historical information. For example, when one of the measurement parameters is often used for reference signal measurement, the measurement parameter may be kept measured; or, it may be randomly selected according to the configuration information. The choice is not repeated here.
  • Method 2 indicates the specific measurement parameter to be used. For example, there is a field indicating the measurement parameter / reported amount A or B, such as:
  • the first processing unit 32 determines a measurement parameter to be measured by the terminal device based on a content of a first field in the configuration information.
  • the first field may be a field for indicating a measurement parameter in the configuration information determined according to the protocol, and is specifically set according to an actual situation.
  • the configuration information field can indicate whether the measurement parameter A or B is displayed.
  • judge according to whether the first field is default such as:
  • the terminal device When the first field in the configuration information is defaulted, it is determined that the terminal device is to measure the first target measurement parameter; when the first field is not defaulted, it is determined that the terminal device is to be measured as the second target measurement parameter.
  • Target measurement parameter wherein the first target measurement parameter is different from the second target measurement parameter.
  • the two sides negotiate, when the first field indicates, only the indicated second target measurement parameter,
  • the time saving is determined to indicate the first target measurement parameter. Assume that there are measurement parameters A and B. By default, this field instructs the terminal device to use A. If this field is configured, only B is configured to instruct the terminal device to use B.
  • a modification method of RRC configuration configure the measurement parameters through the quality field, and then indicate the corresponding threshold information through the threshold field, such as:
  • Manner 3 The first processing unit 32 determines a measurement parameter to be measured by the terminal device by using threshold information in the configuration information.
  • an indication threshold can be used to implicitly indicate whether to use measurement parameter A or measurement parameter B.
  • a target measurement parameter to be measured by the terminal device may be determined according to a parameter name corresponding to the threshold information or a position of the threshold information in the configuration information;
  • radio resource control Radio Resource Control
  • RRC Radio Resource Control
  • the first processing unit 32 determines, based on the content in the first keyword structure in the configuration information sent from the network side, a measurement parameter that the network side instructs the terminal device to measure.
  • the first keyword may be a "CHOICE" field.
  • other fields may be adopted as the first keyword through negotiation between the two parties; for example, the structure of the CHOICE keyword is used, and sinr-Threshold name. If Rel-16 introduces multiple first-type measurement parameters, you can continue to add other names, such as rsrq-Threshold, etc., such as:
  • new measurement parameters can be selected according to the measurement parameters and threshold information configured on the network side.
  • the first communication unit 31 acquires at least two measurement parameters from at least one measurement parameter sent from the network side, and a set of candidate reference signals. For example, for a terminal device that supports the first type of measurement parameter, when the network configures the terminal with the relevant information about the failure and recovery, two types of measurement parameters A and B are configured through signaling, but a set of candidate references corresponding to the optional beam is configured signal.
  • the measurement parameters sent by the network side may include the first type of measurement parameters and / or L1-RSRP.
  • the first processing unit 32 selects a target measurement parameter from the at least two measurement parameters, and selects from the set of candidate reference signals according to the threshold information corresponding to the selected target measurement parameter and the measurement result. Reference signal. That is, the terminal device selects A or B and the corresponding threshold to select the first type of measurement parameter. It should also be noted that the threshold information may include a threshold value.
  • the first processing unit 32 according to threshold information and measurement results corresponding to each measurement parameter of the at least two measurement parameters, is composed of candidate reference signals that satisfy the threshold information corresponding to any one measurement parameter in a group of candidate reference signals. And centrally select the reference signal.
  • At least two measurement parameters are measured for each measurement parameter to obtain a measurement result, and are selected from a group of candidate reference signals according to the measurement result corresponding to each measurement parameter and the threshold information for the measurement parameter configured on the network side.
  • Multiple candidate reference signals; candidate reference signals selected based on all measurement parameters are used as a union; finally, one is selected from the union set as the finally selected reference signal.
  • a new reference signal can be selected from a candidate reference signal (RS) that meets the measurement parameter A threshold and a candidate RS that meets the measurement parameter B threshold, that is, the selected reference signal can satisfy the threshold corresponding to measurement parameter A, Or meet the threshold corresponding to measurement parameter B.
  • RS candidate reference signal
  • the first processing unit 32 according to threshold information and measurement results corresponding to each measurement parameter of the at least two target measurement parameters, is composed of candidate reference signals that satisfy the threshold information corresponding to each measurement parameter in a group of candidate reference signals. Select the reference signal at the intersection of.
  • At least two measurement parameters are measured for each measurement parameter to obtain a measurement result, and are selected from a group of candidate reference signals based on the measurement result corresponding to each measurement parameter and the threshold information for the measurement parameter configured on the network side.
  • a plurality of candidate reference signals then, an intersection is obtained based on the reference signals individually selected from all the measurement parameters; and finally, one is selected from the intersection as the finally selected reference signal.
  • a new reference signal can be selected from the intersection of a candidate reference signal (RS) that meets the measurement parameter A threshold and a candidate RS that meets the measurement parameter B threshold. Both the threshold corresponding to the threshold A and the B corresponding can be selected. Threshold. It should be noted here that when the intersection cannot be obtained based on all candidate reference signals, the processing is stopped.
  • the first processing unit 32 is based on the selection priority of at least two measurement parameters, preferentially based on the measurement result of the measurement parameter with the higher priority selection, and according to the threshold information of the measurement parameter with the higher priority and the measurement result from the group of candidates.
  • a reference signal that satisfies the corresponding threshold information is selected.
  • the threshold information corresponding to the measurement parameter A with high priority is selected from the reference signal RS first. To select a new reference signal.
  • a reference signal that satisfies the corresponding threshold information is selected from a group of candidate reference signals.
  • the threshold information corresponding to the measurement parameter A with high priority is selected from the reference signal RS first.
  • a new reference signal is selected; if the condition is not met, a new RS is selected from the measurement parameters B with a low selection priority and the RSs that meet the threshold corresponding to the measurement parameter B.
  • the first processing unit 32 selects a first candidate subset from the set of candidate reference signals according to a measurement result of a first target measurement parameter among the at least two measurement parameters and its corresponding threshold information;
  • the measurement result of the second target measurement parameter and the corresponding threshold information of the at least two measurement parameters are used to select a reference signal from the first candidate subset; wherein the selection priority of the first target measurement parameter is higher than that of the first target measurement parameter.
  • the method of selecting the first candidate subset may be to add candidate RSs whose reference signal quality is higher than a preset value to the first candidate subset; a measurement standard for the quality of the reference signal may be set according to actual conditions, for example, It may include signal-to-noise ratio, signal strength, and so on, which are not described in detail here.
  • measurement parameter A a RS subset that satisfies the threshold, or the best T ones, is selected; in this RS subset, measurement parameter B is used to select a new beam.
  • N is an integer.
  • the measurement parameter A is used to filter to obtain the first candidate subset, and then the best T 'subsets in the subset are directly selected to form a new third candidate subset. If the number of elements is not enough, the number of elements in the new subset is less than T ′, and then a new RS is selected from this third candidate subset.
  • a reference signal with optimal quality is directly obtained from the first candidate subset.
  • the measurement parameter A is used to filter to obtain the first candidate subset, and then the measurement parameter B and its corresponding threshold information are used to directly select the best one from the first candidate subset as the new one.
  • RS the measurement parameter
  • the first processing unit 32 may further select one measurement parameter from the at least two measurement parameters one by one according to the selection priority, and from the set of candidate reference signals based on the measurement result of the selected measurement parameter and its corresponding threshold information. Select a reference signal in the medium, and send an uplink signal corresponding to the selected reference signal to the network; detect whether a valid network response is received; if a valid network response is not received from the network side, continue to select the lower priority Select the next measurement parameter among the measurement parameters.
  • the first processing unit 32 determines whether at least two measurement parameters are all selected, and if so, restarts extracting measurement parameters from the at least two measurement parameters one by one according to the selection priority, and executes based on the measurement.
  • the parameter performs the processing of selecting the reference signal; until the end condition is satisfied.
  • the priority A is selected to be higher and B is lower.
  • the new RS is preferentially selected from the selection of the measurement parameter A with high priority to meet the threshold, and then the uplink signal corresponding to the RS is sent.
  • beam failure recovery if no corresponding effective network response is obtained, select RS from RSs that meet the threshold corresponding to measurement parameter B and send the corresponding beam failure recovery request; if no corresponding effective network response is obtained, the measurement is satisfied
  • the RS in the threshold corresponding to the parameter A continues to be transmitted; the two crosses until the stop condition is satisfied.
  • the first processing unit 32 selects a measurement parameter from the at least two measurement parameters according to a selection priority, and selects a measurement parameter from the set of candidate reference signals based on a measurement result of the selected measurement parameter and corresponding threshold information thereof. Selecting a reference signal and sending an uplink signal corresponding to the selected reference signal to the network; if a valid network response is not received from the network side, the reference signal is continuously selected based on the selected measurement parameter and sent to the network Selecting the uplink signal corresponding to the reference signal; until the processing is stopped according to the rule and a valid network response is not received from the network side, selecting another measurement parameter from the at least two measurement parameters and continuing to perform reference Signal selection.
  • the priority A is selected to be higher and B is lower.
  • the new RS is preferentially selected from the selection of the measurement parameter A with high priority to meet the threshold, and the uplink signal corresponding to the new RS is selected.
  • Send the corresponding beam failure recovery request if no corresponding valid network response is obtained, continue to send according to the rules until the specified stop condition is met; then select from RS that meets the threshold corresponding to measurement parameter B, and send the corresponding beam failure recovery recovery request .
  • the two are not crossed, and one is used first. If the beam failure is not successful under the specified conditions, the other one is used to continue the attempt. After completing all the attempts, if the corresponding reference signal is still not selected successfully, the processing will also end. .
  • the specified stopping condition may be the number of transmissions.
  • the number of transmissions may be set to five, and then after five times, the system selects a new measurement parameter with a priority lower than the current measurement parameter for RS selection.
  • the selection priority is: configured by the network side, or specified by a protocol, or determined by the terminal device.
  • the first processing unit 32 obtains M measurement parameters and M groups of candidate reference signals sent by the network side, where M is an integer greater than or equal to 2; wherein the different measurement parameters correspond to different groups of candidate references signal.
  • the measurement parameters sent by the network side may include the first type of measurement parameters and / or L1-RSRP.
  • the network configures the terminal device with beam and failure recovery information and configures two measurement parameters A and B, but two sets of candidate reference signals (candidate and RS) corresponding to optional beams are configured, and the two groups correspond to measurement parameters A and B, that is, RS signal set 1 corresponds to measurement parameter A, and RS set 2 corresponds to measurement parameter B.
  • the first processing unit 32 selects a target measurement parameter from the M measurement parameters; and according to the threshold information corresponding to the selected target measurement parameter and the measurement result, from the candidate reference signal group corresponding to the target measurement parameter Select the reference signal. For example, when two measurement parameters are configured, the RS set 1 or 2 is selected by itself, and the corresponding RS is selected using the corresponding measurement parameters and thresholds.
  • the first processing unit 32 according to the threshold information and the measurement result corresponding to each of the M measurement parameters, is formed from a reference signal that satisfies any of the measurement parameters in a corresponding set of candidate reference signals. And select the reference signal collectively. For example, when two measurement parameters are configured, the first group of RSs corresponding to measurement parameter 1 that meets the corresponding threshold from RS set 1 and the second group of RSs that meets the threshold corresponding to measurement parameter 2 from RS set 2 A group of RSs and a second group of RSs are used to collectively select a new reference signal.
  • the first processing unit 32 may sequentially select the measurement parameters according to the selection priority of the M measurement parameters from high to low, and determine whether it is possible to determine from the corresponding one according to the threshold information and measurement results corresponding to the selected measurement parameters.
  • a reference signal that satisfies the condition is selected; if a reference signal that satisfies the condition can be selected, the reference signal selection is completed; otherwise, the measurement parameters are reselected.
  • a new first set of RSs is selected first from RS sets 1 of measurement parameter 1 that meet the corresponding threshold. If the conditions are not met, then a new second set is selected from RS set 2 of measurement parameter 2 according to the corresponding threshold.
  • Group RS Group RS.
  • the first processing unit 32 selects one measurement parameter from the M measurement parameters one by one according to the selection priority, and, based on the measurement result of the selected one measurement parameter and its corresponding threshold information, selects from the selected measurement parameters. Select a reference signal from a corresponding set of candidate reference signals and send an uplink signal corresponding to the selected candidate reference signal to the network; detect whether a valid network response is received; if a valid network response is not received from the network side, then Continue to select the next measurement parameter from the measurement parameters with lower priority.
  • the first processing unit 32 determines whether all of the M measurement parameters have been selected, and if so, restarts extracting the measurement parameters from the at least two measurement parameters one by one according to the selection priority, and performs reference based on the measurement parameters. Signal selection processing; until the end condition is met.
  • measurement parameters 1 and 2 are configured, and the selection priority of measurement parameter 1 is higher; the new beam is selected from the RS set 1 corresponding to the measurement parameter 1 with the higher priority and the RS that meets the corresponding threshold is selected.
  • the corresponding beam, recovery, and request are sent on the uplink resource corresponding to the RS. If no corresponding effective network response is obtained, the RS is selected from the RS that meets the corresponding threshold in the RS set 2 corresponding to the measurement parameter 2, and the uplink resource corresponding to the RS is selected.
  • Send the corresponding beam failure recovery request if no corresponding effective network response is obtained, then continue to select and continue sending from the RS set 1 that meets the corresponding threshold; the two crossover until the stop condition is met.
  • the first processing unit 32 selects a measurement parameter from the M measurement parameters according to the selection priority, and based on the measurement result of the selected measurement parameter and its corresponding threshold information, selects a corresponding set of candidate reference signals. Selecting a reference signal from the network and sending an uplink signal corresponding to the selected reference signal to the network; detecting whether a valid network response is received;
  • another measurement parameter is selected from the at least two measurement parameters, and the candidate reference signal corresponding to the another measurement parameter is continued. Select the reference signal in the group.
  • the selection priority of measurement parameter 1 is higher; priority is given to selecting a new beam from the RS set 1 of measurement parameter 1 that meets the corresponding threshold, and sending the corresponding beam failure recovery request, if Did not get the corresponding valid network response, continue to send according to the rules until the specified stop condition is met; then select beam from the RS set 2 of the measurement parameter 2 that meets the corresponding threshold, and send the corresponding beam failure recovery request; in this method
  • the two do not cross one is used first. If the failure of recovery is not successful under the specified conditions, use the other to continue the attempt.
  • the priority of the M group candidate reference signals is determined by one of the following: configured by the network side, determined by the type of the reference signal, specified by the protocol, determined by its corresponding measurement parameter, and determined by its corresponding threshold information.
  • the threshold information may include at least one of the following: a threshold value and a type of the threshold; of course, there may be other contents that are not described herein again.
  • the configuration by the network side includes:
  • the network display indicates the set priority.
  • the priority is determined according to the location of each group of candidate reference signals in the configuration information sent by the network side, for example, the location of the domain corresponding to RS set 1 and RS set 1 in the configuration signaling.
  • the priority of RS set 1 and RS set 2 is determined by the RS type; wherein the correspondence between RS type and priority is configured by the network; or the correspondence between RS type and priority is fixed by the protocol.
  • Threshold information is configured by RRC.
  • the first processing unit 32 determines threshold information corresponding to a reference signal type according to the threshold information configured by the RRC, and adjusts threshold information corresponding to other reference signal types according to the power offset information; or determines at least two references according to the threshold information configured by the RRC Threshold information corresponding to the signal type.
  • the reference signal is at least one of the following: a synchronization signal block SSB and a channel state information reference signal CSI-RS.
  • this embodiment does not involve whether the threshold information is different for different RS types.
  • RRC can be configured with a threshold for SSB. Therefore, when it is used for CSI-RS, the threshold needs to be adjusted according to the power offset.
  • the threshold for RRC configuration is for a certain RS type, so when it is used for other types, it needs to be adjusted according to the power offset (similar to L1-RSRP); the threshold for RRC configuration is only used For multiple RS types.
  • the first type of measurement parameters other than L1-RSRP can be configured, so that the reference signal is measured based on the newly configured measurement parameters; in this way, it is ensured that the system's The normal configuration and measurement ensure the processing capacity of the system, and can avoid the problems of relatively single measurement parameters and the inability to use multiple communication scenarios.
  • An embodiment of the present invention provides a network device, including:
  • a second communication unit configured for the terminal device to have at least one measurement parameter for at least one reference signal
  • the measurement parameters include at least a first type of measurement parameters.
  • the first type of measurement parameters are: parameters other than L1-RSRP, which are used to indicate the quality of the reference signal.
  • the measurement parameters do not exclude the inclusion of L1-RSRP parameters, that is, in actual processing, L1-RSRP and / or at least one first-type measurement parameter may be included.
  • the first type of measurement parameters may include at least one of the following: L1-SINR, L1-RSRQ.
  • the terminal device may use the existing L1-RSRP measurement, and / or, may also use one or more of the following measurements: L1-SINR, L1 -RSRQ, Hypothetical BLER.
  • the measurement of at least one measurement parameter of at least one candidate reference signal includes: a second communication unit, which is sent to the terminal device.
  • Configuration information based on the configuration information, indicating a measurement parameter to be measured by the terminal device.
  • the first type of measurement parameters are used to select new candidate reference signals.
  • the second communication unit is configured with threshold information for the first type of measurement parameter.
  • the network side may configure threshold information corresponding to different first-type measurement parameters for the terminal device.
  • the network supports the following configuration methods when the terminal is configured with beam, failure, and recovery information:
  • the configuration information may include at least one measurement parameter that the network side instructs the terminal device to measure, which may include L1-RSRP, and / or includes at least one first-type measurement parameter.
  • the second communication unit may be configured with one or more measurement parameters for the terminal device through the configuration information; when at least two measurement parameters are configured, the terminal device may select from the at least two measurement parameters by itself, Of course, at this time, you can select all, or you can select one or some of the measurement parameters.
  • the configuration information sent by the network side includes measurement parameters 1, 2, and 3, and if the terminal device only needs to measure one of them, it can select measurement parameter 1 for subsequent processing.
  • the terminal device selects some measurement parameters in the configuration information it may be based on historical information. For example, when one of the measurement parameters is often used for reference signal measurement, the measurement parameter may be kept measured; or, it may be randomly selected according to the configuration information. The choice is not repeated here.
  • Method 2 indicates the specific measurement parameter to be used. For example, there is a field indicating the measurement parameter / reported amount A or B, such as:
  • the second communication unit indicates a measurement parameter to be measured by the terminal device based on the content of the first field in the configuration information.
  • the first field may be a field for indicating a measurement parameter in the configuration information determined according to the protocol, and is specifically set according to an actual situation.
  • the configuration information field can indicate whether the measurement parameter A or B is displayed.
  • judge according to whether the first field is default such as:
  • the first field in the configuration information When the first field in the configuration information is defaulted, it indicates that the terminal device is to measure the first target measurement parameter; when the first field is not defaulted, it indicates that the terminal device is to measure the second target measurement parameter.
  • Target measurement parameter wherein the first target measurement parameter is different from the second target measurement parameter.
  • the two sides negotiate, when the first field indicates, only the indicated second target measurement parameter,
  • the time saving is determined to indicate the first target measurement parameter. Assume that there are measurement parameters A and B. By default, this field instructs the terminal device to use A. If this field is configured, only B is configured to instruct the terminal device to use B.
  • a modification method of RRC configuration configure the measurement parameters through the quality field, and then indicate the corresponding threshold information through the threshold field, such as:
  • the second communication unit indicates the measurement parameter to be measured by the terminal device through the threshold information in the configuration information.
  • an indication threshold can be used to implicitly indicate whether to use measurement parameter A or measurement parameter B.
  • the target measurement parameter to be measured by the terminal device may be indicated according to a parameter name corresponding to the threshold information or a position of the threshold information in the configuration information;
  • L1-RSRP is used
  • L1-SINR is used.
  • the RRC configuration is configured through the following fields:
  • the second communication unit indicates the measurement parameter to be measured by the terminal device by using the content in the first keyword structure in the configuration information.
  • the first keyword can be a "CHOICE" field.
  • other fields can be used as the first keyword through negotiation between the two parties; for example, the structure of the word using the CHOICE keyword, where threshold, sinr-Threshold can be Using other names, sinr-Threshold is only used to indicate an identification of a first type of measurement parameter. If Rel-16 introduces multiple first-type measurement parameters, you can continue to add other names, such as rsrq-Threshold, etc., such as:
  • new measurement parameters can be selected according to the measurement parameters and threshold information configured on the network side.
  • the second communication unit sends at least two measurement parameters and at least one set of candidate reference signals to the terminal device.
  • the network configures the terminal device with beam, failure, and recovery related information.
  • Two types of measurement parameters A and B are configured through signaling, but a set of optional group candidates corresponding to beam Reference signal.
  • the measurement parameters sent to the terminal device may include first-type measurement parameters and / or L1-RSRP.
  • the second communication unit sends M measurement parameters and at least one M group of candidate reference signals to the terminal device; where M is an integer greater than or equal to 2;
  • the different measurement parameters correspond to different groups of candidate reference signals.
  • the measurement parameters sent to the terminal device may include first-type measurement parameters and / or L1-RSRP.
  • the network configures the terminal device with beam and failure recovery information and configures two measurement parameters A and B, but configured with two sets of optional beam signals (candidate, RS), two sets of measurement parameters A and B respectively, that is, RS signal set 1 corresponds to measurement parameter A, RS set 2 corresponds to measurement parameter B.
  • RS optional beam signals
  • the threshold information may include at least one of the following: a threshold value and a type of the threshold; of course, there may be other contents that are not described herein again.
  • the second communication unit configures threshold information for the terminal device through RRC.
  • the second communication unit determines threshold information corresponding to a reference signal type according to the threshold information configured by the RRC, and adjusts threshold information corresponding to other reference signal types according to the power offset information;
  • the threshold information corresponding to at least two reference signal types is determined according to the threshold information configured by the RRC.
  • the reference signal is at least one of the following: a synchronization signal block SSB and a channel state information reference signal CSI-RS.
  • this embodiment does not involve whether the threshold information is different for different RS types.
  • RRC can be configured with a threshold for SSB. Therefore, when it is used for CSI-RS, the threshold needs to be adjusted according to the power offset.
  • the threshold for RRC configuration is for a certain RS type, so when it is used for other types, it needs to be adjusted according to the power offset (similar to L1-RSRP); the threshold for RRC configuration is only used For multiple RS types.
  • the first type of measurement parameters other than L1-RSRP can be configured, so that the reference signal is measured based on the newly configured measurement parameters; in this way, it is ensured that the system's The normal configuration and measurement ensure the processing capacity of the system, and can avoid the problems of relatively single measurement parameters and the inability to use multiple communication scenarios.
  • FIG. 4 is a schematic structural diagram of a communication device 400 according to an embodiment of the present application.
  • the communication device 400 shown in FIG. 4 includes a processor 410, and the processor 410 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 400 may further include a memory 420.
  • the processor 410 may call and run a computer program from the memory 420 to implement the method in the embodiment of the present application.
  • the memory 420 may be a separate device independent of the processor 410, or may be integrated in the processor 410.
  • the communication device 400 may further include a transceiver 430, and the processor 410 may control the transceiver 430 to communicate with other devices, and specifically, may send information or data to other devices, or receive other Information or data sent by the device.
  • the processor 410 may control the transceiver 430 to communicate with other devices, and specifically, may send information or data to other devices, or receive other Information or data sent by the device.
  • the transceiver 430 may include a transmitter and a receiver.
  • the transceiver 430 may further include antennas, and the number of antennas may be one or more.
  • the communication device 400 may specifically be a network device according to an embodiment of the present application, and the communication device 400 may implement a corresponding process implemented by a network device in each method in the embodiments of the present application. .
  • the communication device 400 may specifically be a terminal device or a network device in the embodiments of the present application, and the communication device 400 may implement the corresponding processes implemented by the mobile terminal / terminal device in each method of the embodiments of the present application. Concise, I won't repeat them here.
  • FIG. 5 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 500 shown in FIG. 5 includes a processor 510, and the processor 510 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the chip 500 may further include a memory 520.
  • the processor 510 may call and run a computer program from the memory 520 to implement the method in the embodiment of the present application.
  • the memory 520 may be a separate device independent of the processor 510, or may be integrated in the processor 510.
  • the chip 500 may further include an input interface 530.
  • the processor 510 may control the input interface 530 to communicate with other devices or chips. Specifically, the processor 510 may obtain information or data sent by other devices or chips.
  • the chip 500 may further include an output interface 540.
  • the processor 510 may control the output interface 540 to communicate with other devices or chips. Specifically, the processor 510 may output information or data to the other devices or chips.
  • the chip may be applied to the network device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip may be applied to the network device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip may be applied to the terminal device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the chip may implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-level chip, a system chip, a chip system or a system-on-chip.
  • FIG. 6 is a schematic block diagram of a communication system 600 according to an embodiment of the present application. As shown in FIG. 6, the communication system 600 includes a terminal device 610 and a network device 620.
  • the terminal device 610 may be used to implement the corresponding functions implemented by the terminal device in the foregoing method
  • the network device 620 may be used to implement the corresponding functions implemented by the network device in the foregoing method.
  • details are not described herein again. .
  • the processor in the embodiment of the present application may be an integrated circuit chip and has a signal processing capability.
  • each step of the foregoing method embodiment may be completed by using an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (Field, Programmable Gate Array, FPGA), or other Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • Various methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly implemented by a hardware decoding processor, or may be performed by using a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the foregoing method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), and an electronic memory. Erase programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchronous DRAM Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM Enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory Synchrobus RAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (SDRAM), double data rate synchronous dynamic random access memory (Double SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct RAMbus RAM, DR RAM) and so on. That is, the memories in the embodiments of the present application are intended to include, but not limited to, these and any other suitable types of memories.
  • An embodiment of the present application further provides a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method in the embodiment of the present application. For simplicity, here No longer.
  • the computer-readable storage medium can be applied to the terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the mobile terminal / terminal device in each method of the embodiment of the present application, for the sake of brevity , Will not repeat them here.
  • An embodiment of the present application further provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instruction causes the computer to execute a corresponding process implemented by the network device in each method in the embodiment of the present application. More details.
  • the computer program product can be applied to a mobile terminal / terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute a corresponding process implemented by the mobile terminal / terminal device in each method in the embodiments of the present application, For brevity, I will not repeat them here.
  • the embodiment of the present application also provides a computer program.
  • the computer program may be applied to a network device in the embodiment of the present application.
  • the computer program When the computer program is run on a computer, the computer is caused to execute a corresponding process implemented by the network device in each method in the embodiment of the present application. , Will not repeat them here.
  • the computer program may be applied to a mobile terminal / terminal device in the embodiment of the present application.
  • the computer program When the computer program is run on a computer, the computer executes each method in the embodiment of the application by the mobile terminal / terminal device. The corresponding processes are not repeated here for brevity.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of this application is essentially a part that contributes to the existing technology or a part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory) ROM, random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种参考信号测量配置方法、终端设备、网络设备及计算机存储介质,其中所述方法包括:针对至少一个候选参考信号的至少一个测量参数进行测量,得到针对至少一个参考信号的至少一个测量参数的测量结果;基于针对至少一个候选参考信号的所述至少一个测量参数的测量结果,从所述至少一个候选参考信号中进行参考信号选择;其中,所述测量参数中,至少包括第一类测量参数;所述第一类测量参数为:除L1-RSRP之外的、用于表示参考信号质量的参数。

Description

一种参考信号测量配置方法、终端设备及网络设备 技术领域
本发明涉及信息处理技术领域,尤其涉及一种参考信号测量配置方法、终端设备、网络设备、芯片、计算机可读存储介质、计算机程序产品以及计算机程序。
背景技术
新无线(NR,New Radio)/第五代移动通信网络(5G)的多波束(Multi-beam)***通过不同的波束(beam)来覆盖整个小区。不同的beam通过其承载的不同信号来进行识别,比如,不同beam上传输不同的同步信号块(SS block),终端设备可以通过不同的SS block来分辨出不同的beam;在不同的beam上传输不同的信道状态信息参考信号(CSI-RS),终端设备可以通过CSI-RS或者CSI-RS资源来识别出不同的beam。
终端设备在一个multi-beam***中需要去测量某些信号,并且基于测量结果来判断哪些beam的传输质量比较好,同时把相关信息上报给网络。在上述处理中,通常采用L1-RSRP作为测量参数。但是,上述处理方式,存在基于L1-RSRP进行测量的方式过于单一的问题,还存在无法保证适应更多场景的问题。
发明内容
为解决上述技术问题,本发明实施例提供了一种参考信号测量配置方法、终端设备、网络设备、芯片、计算机可读存储介质、计算机程序产品以及计算机程序。
第一方面,提供了一种参考信号测量配置方法,应用于终端设备,所述方法包括:
针对至少一个候选参考信号的至少一个测量参数进行测量,得到针对至少一个参考信号的至少一个测量参数的测量结果;
基于针对至少一个候选参考信号的所述至少一个测量参数的测量结果,从所述至少一个候选参考信号中进行参考信号选择;
其中,所述测量参数中,至少包括第一类测量参数;所述第一类测量参数为:除L1-RSRP之外的、用于表示参考信号质量的参数。
第二方面,提供了一种参考信号测量配置方法,应用于网络设备,所述方法包括:
为终端设备配置针对至少一个参考信号的至少一个测量参数;
其中,所述测量参数中,至少包括第一类测量参数;所述第一类测量参数为:除L1-RSRP之外的、用于表示参考信号质量的参数。
第三方面,提供了一种终端设备,包括:
第一通信单元,针对至少一个候选参考信号的至少一个测量参数进行测量,得到针对至少一个参考信号的至少一个测量参数的测量结果;
第一处理单元,基于针对至少一个候选参考信号的所述至少一个测量参数的测量结果,从所述至少一个候选参考信号中进行参考信号选择;
其中,所述测量参数中,至少包括第一类测量参数;所述第一类测量参数为:除L1-RSRP之外的、用于表示参考信号质量的参数。
第四方面,提供了一种网络设备,包括:
第二通信单元,为终端设备配置针对至少一个参考信号的至少一个测量参数;
其中,所述测量参数中,至少包括第一类测量参数;所述第一类测量参数为:除L1-RSRP之外的、用于表示参考信号质量的参数。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
通过本发明实施例提供的上述方案,就能够配置除了L1-RSRP之外的第一类测量参数,从而基于新配置的测量参数进行参考信号的测量;如此,保证了当新引入测量参数的时候保证***的正常配置以及测量,保证***的处理能力,并且能够避免测量参数较为单一、以及无法使用多种通信场景的问题。
附图说明
图1是本申请实施例提供的一种通信***架构的示意性图一。
图2为本发明实施例提供的一种参考信号测量配置方法流程示意图;
图3为本发明实施例一种终端设备组成结构示意图;
图4为本发明实施例提供的一种通信设备组成结构示意图;
图5是本申请实施例提供的一种芯片的示意性框图。
图6是本申请实施例提供的一种通信***架构的示意性图二。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通讯(Global System of Mobile communication,GSM)***、码分多址(Code Division Multiple Access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)***、LTE频分双工(Frequency Division Duplex,FDD)***、LTE时分双工(Time Division Duplex,TDD)、通用移动通信***(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信***或5G***等。
示例性的,本申请实施例应用的通信***100可以如图1所示。该通信***100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM***或CDMA***中的基站(Base Transceiver Station,BTS),也可以是WCDMA***中的基站(NodeB,NB),还可以是LTE***中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信***100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信***(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位***(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G***或5G网络还可以称为新无线(New Radio,NR)***或NR网络。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信***100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信***100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/***中具有通信功能的设备可称为通信设备。以图1示出的通信***100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信***100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“***”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
实施例一、
本发明实施例提供了一种参考信号测量配置方法,应用于终端设备,如图2所示,包括:
步骤201:针对至少一个候选参考信号的至少一个测量参数进行测量,得到针对至少一个参考信号的至少一个测量参数的测量结果;
步骤202:基于针对至少一个候选参考信号的所述至少一个测量参数的测量结果,从所述至少一个候选参考信号中进行参考信号选择;
其中,所述测量参数中,至少包括第一类测量参数;所述第一类测量参数为:除L1-RSRP之外的、用于表示参考信号质量的参数。
需要指出的是,测量参数中并不排除包含有L1-RSRP参数,也就是说,在实际处理中,可以包括有L1-RSRP和/或至少一个第一类测量参数。
其中,所述第一类测量参数,可以包括有:以下至少之一:L1-SINR、L1-RSRQ。
即在采用本实施例提供的方案选择新的参考信号的时候,终端设备可以使用现有的L1-RSRP测量、和/或、还可能采用以下1个或多个进行测量:L1-SINR、L1-RSRQ、Hypothetical BLER。
通过上述描述,可以理解到本实施例可以仅针对第一类测量参数进行测量,比如,所述针对至少一个候选参考信号的至少一个测量参数进行测量,包括:针对至少一个候选参考信号的所述第一类测量参数进行测量。
需要理解的是,对于支持新版的终端,或者上报能力支持第一类测量参数的终端设备,在做波束失败恢复beam failure recovery时,采用第一类测量参数来选择新的候选参考信号。
相应的,所述方法还包括:接收网络侧配置的针对第一类测量参数的门限信息。具体的,网络侧可以为终端设备配置不同的第一类测量参数分别对应的门限信息。
所述针对至少一个候选参考信号的至少一个测量参数进行测量之前,所述方法还包括:
接收网络侧发来的配置信息;
基于所述配置信息,确定所述终端设备所要测量的测量参数。
对于支持第一类测量参数/上报量的终端设备,网络给终端设备配置beam failure recovery相关信息时,支持以下配置方式:
方式1、所述配置信息中可以包括有网络侧指示终端设备需要测量的至少一个测量参数,其中,可以包括有L1-RSRP,和/或,包括至少一个第一类测量参数。
进一步地,网络侧可以为通过配置信息为终端设备配置有一个或多个测量参数;当配置有至少两个测量参数的时候,终端设备可以自行从至少两个测量参数中进行选取,当然,此时,可以全部选择,也可以选择其中的一个或部分测量参数。比如,网络侧发的配置信息中包含有测量参数1、2、3,终端设备此时如果仅需要测量其中的一个,那么可以选择测量参数1进行后续处理。相应的,终端设备选择配置信息中的部分测量参数时,可以根据历史信息,比如经常采用其中的某一个测量参数进行参考信号测量的时候,可以保持测量该测量参数;或者,可以根据配置信息随机选择,这里不再进行赘述。
方式2、指示具体使用的测量参数,例如有一个字段指示使用测量参数/上报量A或者B,比如:
所述基于所述配置信息,确定所述终端设备所要测量的测量参数,包括:
基于所述配置信息中第一字段的内容,确定所述终端设备所要测量的测量参数。
其中,第一字段可以为根据协议确定的配置信息中用于指示测量参数的字段,具体根据实际情况来设置。
比如,当有测量参数A、B两个的时候,可以通过配置信息这个字段显示的指示是测量参数A还是B。
或者,根据第一字段是否缺省来进行判断,比如:
当所述配置信息中第一字段缺省时,确定所述终端设备所要测量的为第一目标测量参数;当所述第一字段不缺省时,确定所述终端设备所要测量的为第二目标测量参数;其中,所述第一目标测量参数与第二目标测量参数不同。
比如,可以通过***预先设置,第一目标测量参数和第二目标测量参数分别是什么,然后双方协商,当第一字段指示的时候仅用于指示的第二目标测量参数,当第一字段缺省的时候确定用于指示第一目标测量参数。假设有测量参数A、B,这个字段缺省时,指示终端设备使用A,如果这个字段配置时,只配置B,指示终端设备使用B。
使用这种方式,RRC配置的一种修改方法:通过quality字段来配置测量参数,然后通过threshold字段指示对应的门限信息,比如:
Quality quanlity数值类型 OPTIONAL,--Need M
Threshold thershold数值类型 OPTIONAL,--Need M。
另外,还可以删除以下字段:
rsrp-ThresholdSSB RSRP-Range OPTIONAL,--Need M。
方式3、通过所述配置信息中的门限信息,确定所述终端设备所要测量的测量参数。
比如,可以通过通过指示门限来隐含地指示使用测量参数A,还是测量参数B。
具体的,可以根据门限信息对应的参数名称、或者根据所述配置信息中的门限信息的位置,确定所述终端设备所要测量的目标测量参数;
和/或,根据门限信息对应的数据类型,确定所述终端设备所要测量的目标测量参数。
例如现有字段rsrp-ThresholdSSB配置了就采用L1-RSRP,如果配置新的字段sinr-Threshold就采用L1-SINR。比如,无线资源控制(RRC,Radio Resource Control)配置中通过以下字段进行配置:
rsrp-ThresholdSSB RSRP-Range OPTIONAL,--Need M
sinr-Threshold SINR-Range OPTIONAL,--Need M;
方式4、通过网络侧发来的配置信息中的第一关键字结构中的内容,确定网络侧指示所述终端设备所要测量的测量参数。
其中,第一关键字可以为“CHOICE”字段,当然根据实际处理,可以通过双方协商采用其他的字段作为第一关键字;比如,使用CHOICE关建字的结构,其中,sinr-Threshold可以使用别的名字。如果Rel-16引入多个第一类测量参数,则可以继续增加别的名字,例如rsrq-Threshold等,比如:
threshold                       CHOICE{
rsrp-ThresholdSSB RSRP-Range OPTIONAL,--Need M
sinr-Threshold SINR-Range OPTIONAL,--Need M
}
采用前述几种方式,均可以根据网络侧配置的测量参数和门限信息选择新的测量参数。
基于前述处理,下面针对如何配置候选参考信号以及对应的测量参数进行测量参数的选择进行说明:
场景1、获取网络侧发来的至少一个测量参数中的至少两个测量参数,以及一组候选参考信号。比如,对于支持第一类测量参数的终端设备,网络给终端设备配置beam failure recovery相关信息时,通过信令配置了2种测量参数A和B,但是配置了一组可选beam对应的候选参考信号。
其中,网络侧发送的测量参数,可以包括第一类测量参数和/或L1-RSRP。
所述基于针对至少一个候选参考信号的所述至少一个测量参数的测量结果,从所述至少一个候选参考信号中进行参考信号选择,包括:
从所述至少两个测量参数中,选择一个目标测量参数;根据选择的一个目标测量参数对应的门限信息、以及测量结果,从所述一组候选参考信号中选取参考信号。也就是由终端设备自行选择A或者B,以及对应的门限来选择第一类测量参数。还需要指出的是,门限信息可以包含门限值。
或者,
根据所述至少两个测量参数的每一个测量参数对应的门限信息及测量结果,在一组候选参考信号中,从满足任一个测量参数对应门限信息的候选参考信号组成的并集中选取参考信号。
其中,至少两个测量参数中对每一个测量参数进行测量得到测量结果,分别根据每一个测量参数对应的测量结果、以及网络侧配置的针对测量参数的门限信息,从一组候选参考信号中选取多个候选参考信号;将基于全部测量参数分别选取出来的候选参考信号作为并集;最后从并集中,选取出来一个作为最终选中的参考信号。比如,可以从满足测量参数A门限的候选参考信号(RS),以及满足测量参数B门限的候选RS的并集中选择新的参考信号,即选中的参考信号可以时满足测量参数A对应的门限,或者满足测量参数B对应的门限。
或者,
根据所述至少两个目标测量参数的每一个测量参数对应的门限信息及测量结果,在一组候选参考信号中,从满足每一个测量参数对应门限信息的候选参考信号组成的交集中选取参考信号。
其中,至少两个测量参数中对每一个测量参数进行测量得到测量结果,分别基于每一个测量参数对应的测量结果、以及网络侧配置的针对测量参数的门限信息,从一组候选参考信号中选取多个候选参考信号;然后基于全部测量参数分别选取出来的参考信号得到交集;最后从交集中,选取出来一个作为最终选中的参考信号。比如,可以从满足测量参数A门限的候选参考信号(RS),以及满足测量参数B门限的候选RS的交集中选择新的参考信号,既要满足门限A对应的门限,也要满足B对应的门限。这里需要指出的是,当基于全部候选参考信号无法得到交集时,停止进行处理。
或者,
基于至少两个测量参数的选取优先级,优先基于选取优先级高的测量参数的测量结果,根据选取优先级高的测量参数的门限信息以及测量结果从所述一组候选参考信号中,选取满足对应的门限信息的参考信号。
比如,有两个测量参数A、B,其中选取优先级较高的为A,选取优先级较低的为B;那么,优先从高选取优先级的测量参数A对应的门限信息从参考信号RS中选择新的参考信号。
当基于选取优先级高的测量参数的测量结果无法从所述一组候选参考信号中选取满足对应的门限信息的参考信号时,根据选取优先级低的测量参数的门限信息以及测量结果从所述一组候选参考信号中选取出满足对应的门限信息的参考信号。
比如,有两个测量参数A、B,其中选取优先级较高的为A,选取优先级较低的为B;那么,优先从高选取优先级的测量参数A对应的门限信息从参考信号RS中选择新的参考信号;如果没有满足条件的,则从低选取优先级的测量参数B中,选择满足测量参数B对应的门限的RS中选择新的RS。
或者,根据所述至少两个测量参数中的第一目标测量参数的测量结果及其对应的门限信息,从所述一组候选参考信号中选取第一候选子集;根据所述至少两个测量参数中的第二目标测量参数的测量结果及其对应的门限信息,从所述第一候选子集中选择参考信号;其中,所述第一目标测量参数的选取优先级高于第二目标测量参数。
其中,选取第一候选子集的方式,可以为选择参考信号的质量高于预设值的候选RS添加到第一候选子集中;关于参考信号的质量的衡量标准可以根据实际情况设置,比如,可以包括信噪比、信号强度等等,这里不赘述。
比如,根据测量参数A选择满足条件的一个满足门限的RS子集,或者最好的T个;在这个RS子集中使用测量参数B选择新的beam。
具体的,包括以下之一:
根据所述至少两个测量参数中的第二目标测量参数的测量结果及其对应的门限信息,从所述第一候选子集中选取第二候选子集;从所述第二候选子集中选取参考信号;比如,当存在测量参数A、B时,采用测量参数A进行筛选得到第一候选子集后,使用测量参数B的门限信息选择选择更小的一个子集作为第二候选子集,从这个第二候选子集中选择一个新的RS。
根据所述至少两个测量参数中的第二目标测量参数的测量结果及其对应的门限信息,从所述第一候选子集中选取质量最优的N个参考信号组成第三候选子集;从所述第三候选子集中选取参考信号;N为整数。比如,当存在测量参数A、B时,采用测量参数A进行筛选得到第一候选子集后,直接选择子集中最好的T’个形成新的第三候选子集,如果第一个子集元素数目不够,则新的子集中 元素数目小于T’,然后从这个第三候选子集中选择一个新的RS。
根据所述至少两个测量参数中的第二目标测量参数的测量结果及其对应的门限信息,直接从所述第一候选子集中质量最优的一个参考信号。比如,当存在测量参数A、B时,采用测量参数A进行筛选得到第一候选子集后,使用测量参数B及其对应的门限信息直接从第一候选子集中选择最好的1个作为新的RS。
或者,还可以根据选取优先级逐个从所述至少两个测量参数中选择一个测量参数,基于选择的测量参数的测量结果及其对应的门限信息,从所述一组候选参考信号中选取参考信号,向网络发送与所述选取的参考信号对应的上行信号;检测是否接收到有效网络响应;若未接收到网络侧发来的有效网络响应,则继续从选取优先级较低的测量参数中选择下一个测量参数。
其中,所述继续从选取优先级较低的测量参数中选择下一个测量参数,包括:
判断至少两个测量参数是否全部选择过,若是,则重新开始根据选取优先级逐个从所述至少两个测量参数中提取测量参数,并执行基于所述测量参数进行参考信号的选取的处理;直至满足结束条件。
比如,存在测量参数A、B,选取优先级A较高、B较低;优先从选取优先级高的测量参数A选择满足门限的RS中选择新的RS,然后在该RS对应的上行信号发送beam failure recovery request;如果没有得到对应的有效网络响应,则从满足测量参数B对应的门限的RS中选择RS,发送对应的beam failure recovery request,如果没有得到对应的有效网络响应,则从满足测量参数A对应的门限的RS中继续发送;两个交叉进行,直到满足停止条件。
或者,
根据选取优先级从所述至少两个测量参数中选择一个测量参数,基于所述选择的测量参数的测量结果及其对应的门限信息,从所述一组候选参考信号中选取参考信号,并向网络发送与所述选取的参考信号对应的上行信号;若未接收到网络侧发来的有效网络响应,则继续基于所述选择的测量参数进行选取参考信号并向网络发送所述选取参考信号对应的上行信号;直至根据规则停止所述处理且未能收到网络侧发来的有效网络响应,则从所述至少两个测量参数中选择另一个测量参数,继续进行参考信号选择。
比如,存在测量参数A、B,选取优先级A较高、B较低;优先从选取优先级高的测量参数A选择满足门限的RS中选择新的RS,在新的RS对应的上行信号中发送对应的beam failure recovery request,如果没有得到对应的有效网络响应,根据规则继续发送,直到满足规定的停止条件;然后从满足测量参数B对应的门限的RS中选择,发送对应的beam failure recovery request。也就是说,两个没有交叉,一个优先使用,如果beam failure recovery在规定条件下没有成功,则使用另外一个继续尝试,完成所有尝试之后,如果仍没有成功选择对应的参考信号,也会结束处理。
其中,规定的停止条件可以为发送的次数,比如,可以设置发送次数为5次,那么就在5次之后转向选取优先级低于当前测量参数的一个新的测量参数进行RS选取。
所述选取优先级,为:由网络侧配置、或者、由协议规定、或者、由所述终端设备决定。
场景2、获取网络侧发来的M个测量参数,以及M组候选参考信号;其中,M为大于等于2的整数;其中,所述不同的测量参数对应不同组候选参考信号。
其中,网络侧发送的测量参数,可以包括第一类测量参数和/或L1-RSRP。
比如,当存在两个测量参数A、B时,对于支持第一类测量参数/上报量的终端设备,网络给终端设备配置beam failure recovery相关信息时,通过信令配置了2种测量参数A和B,但是配置了2组可选beam对应的候选参考信号(candidate Beam RS),两组分别对应测量参数A和B,即RS信号集合1对应测量参数A,RS集合2对应测量参数B。
根据网络配置的测量参数和门限选择新的beam,具体方法有以下之一:
从所述M个测量参数中,选择一个目标测量参数;根据选择的一个目标测量参数对应的门限信息、以及测量结果,从所述目标测量参数所对应的候选参考信号组中选取参考信号。比如,当配置两个测量参数时,自行选择RS集合1或者2,使用对应的测量参数以及门限来选择新的RS。
或者,根据所述M个测量参数的每一个测量参数对应的门限信息及测量结果,在各自对应的一组候选参考信号中,从满足任一个测量参数对应的参考信号组成的并集中选取参考信号。比如,当配置两个测量参数时,从RS集合1中满足对应门限的测量参数1对应的第一组RS,以及RS集合2中满足对应测量参数2的门限的第二组RS,从的第一组RS以及第二组RS组成的并集中选择新的参考信号。
或者,根据M个测量参数的选取优先级从高到低的顺序,依次选取测量参数;根据选取的测量参数对应的门限信息及测量结果,判断是否能够从其对应的一组候选参考信号中,选取满足条件的参考信号;若能够选取到满足条件的参考信号,则完成参考信号选择;否则,重新选取测量参数。比如,优先从测量参数1的RS集合1中满足对应门限的RS中选择新的第一组RS,如果没有满足条件的,则从测量参数2的RS集合2中根据对应门限选择新的第二组RS。
或者,根据选取优先级逐个从所述M个测量参数中选择一个测量参数,基于选择的一个测量参数的测量结果及其对应的门限信息,从所述选择的测量参数所对应的一组候选参考信号中选取参考信号,并向网络发送所述选取的候选参考信号对应的上行信号;检测是否接收到有效网络响应;若未接收到网络侧发来的有效网络响应,则继续从选取优先级较低的测量参数中选择下一个测量参数。
所述继续从选取优先级较低的测量参数中选择下一个测量参数,包括:
判断M个测量参数是否全部选择完成,若是,则重新开始根据选取优先级逐个从所述至少两个测量参数中提取测量参数,并执行基于所述测量参数进行参考信号的选取的处理;直至满足结束条件。
比如,配置有测量参数1、2,测量参数1的选取优先级较高;优先从选取优先级高的测量参数1对应的RS集合1中满足对应门限的RS中选择新的beam,在新的RS对应的上行资源上发送对应的beam failure recovery request,如果没有得到对应的有效网络响应;则从测量参数2对应的RS集合2中满足对应门限的RS中选择RS,在RS对应的上行资源上发送对应的beam failure recovery request,如果没有得到对应的有效网络响应,则再从RS集合1中满足对应门限的RS中继续进行选择并继续发送;两个交叉进行,直到满足停止条件。
或者,根据选取优先级从所述M个测量参数中选择一个测量参数,基于选取的一个测量参数的测量结果及其对应的门限信息,从其对应的一组候选参考信号中选取参考信号,向网络发送所述选取的参考信号对应的上行信号;检测是否接收到有效网络响应;
若未接收到网络侧发来的有效网络响应,则基于所述选择的这个测量参数进行选取参考信号并向网络发送所述选取的参考信号对应的上行信号的处理;
直至根据规则停止所述处理且未能收到网络侧发来的有效网络响应,则从所述至少两个测量参数中选择另一个测量参数,继续在所述另一个测量参数对应的候选参考信号组中进行参考信号选择。
比如,配置有测量参数1、2,测量参数1的选取优先级较高;优先从测量参数1的RS集合1中满足对应门限的RS中选择新的beam,发送对应的beam failure recovery request,如果没有得到对应的有效网络响应,根据规则继续发送,直到满足规定的停止条件;然后从测量参数2的RS集合2中满足对应门限的RS中选择beam,发送对应的beam failure recovery request;本方式中,多个测量参数进行选取操作时两个没有交叉,一个优先使用,如果beam failure recovery在规定条件下没有成功,则使用另外一个继续尝试。
所述M组候选参考信号的优先级的确定方式为以下之一:由网络侧配置、由参考信号的类型确定、由协议规定、由其对应的测量参数确定、由其对应的门限信息确定。
其中,所述门限信息可以包括以下至少之一:门限值、门限的类型;当然还可以存在其他内容这里不再赘述。
所述由网络侧配置,包括:
根据网络侧发送的显示指示进行配置;比如网络显示指示集合优先级。
或者,
根据网络侧发送的配置信息中的每一组候选参考信号所在域的位置确定,比如,根据配置信令中RS集合1和RS集合1对应的域的位置确定优先级。
由参考信号的类型确定,包括:
根据网络侧配置的参考信号的类型与优先级之间的对应关系确定;或者,根据协议规定的参考信号的类型与优先级之间的对应关系确定。
比如,RS集合1和RS集合2的优先级由RS类型决定;其中,RS类型与优先级对应关系由网络配置;或者,RS类型与优先级对应关系由协议固定。
所述方法还包括:由RRC配置门限信息。
其中,所述由RRC配置门限信息,包括:根据RRC配置的门限信息确定一个参考信号类型对应的门限信息,根据功率偏移信息调整其他参考信号类型对应的门限信息;或者,根据RRC配置的门限信息确定至少两个参考信号类型对应的门限信息。
所述参考信号为以下至少之一:同步信号块SSB、信道状态信息参考信号CSI-RS。
需要指出的是,本实施例没有涉及门限信息对于不同的RS类型是否不同。针对L1-RSRP,RRC配置的可以是针对SSB的门限,因此用于CSI-RS时,需要根据power offset来调整门限。对于新引入的测量参数,存在两种可能:RRC配置的门限是针对某个RS类型,因此用于其他类型时,需要根据power offset来调整(与L1-RSRP类似);RRC配置的门限只用于多个的RS类型。
可见,通过采用上述方案,就能够配置除了L1-RSRP之外的第一类测量参数,从而基于新配置的测量参数进行参考信号的测量;如此,保证了当新引入测量参数的时候保证***的正常配置以及测量,保证***的处理能力,并且能够避免测量参数较为单一、以及无法使用多种通信场景的问题。
实施例二、
本发明实施例提供了一种参考信号测量配置方法,应用于网络设备,所述方法包括:
为终端设备配置针对至少一个参考信号的至少一个测量参数;
其中,所述测量参数中,至少包括第一类测量参数;所述第一类测量参数为:除L1-RSRP之外的、用于表示参考信号质量的参数。
需要指出的是,测量参数中并不排除包含有L1-RSRP参数,也就是说,在实际处理中,可以包括有L1-RSRP和/或至少一个第一类测量参数。
其中,所述第一类测量参数,可以包括有:以下至少之一:L1-SINR、L1-RSRQ。
即在采用本实施例提供的方案选择新的参考信号的时候,终端设备可以使用现有的L1-RSRP测量、和/或、还可能采用以下1个或多个进行测量:L1-SINR、L1-RSRQ、Hypothetical BLER。
通过上述描述,可以理解到本实施例可以仅针对第一类测量参数进行测量,比如,所述针对至少一个候选参考信号的至少一个测量参数进行测量,包括:向终端设备发送配置信息;基于所述配置信息,指示所述终端设备所要测量的测量参数。
需要理解的是,对于支持新版的终端,或者上报能力支持第一类测量参数的终端设备,在做波束失败恢复beam failure recovery时,采用第一类测量参数来选择新的候选参考信号。
相应的,所述方法还包括:配置针对第一类测量参数的门限信息。具体的,网络侧可以为终端设备配置不同的第一类测量参数分别对应的门限信息。
对于支持第一类测量参数/上报量的终端设备,网络给终端设备配置beam failure recovery相关信 息时,支持以下配置方式:
方式1、所述配置信息中可以包括有网络侧指示终端设备需要测量的至少一个测量参数,其中,可以包括有L1-RSRP,和/或,包括至少一个第一类测量参数。
进一步地,网络侧可以为通过配置信息为终端设备配置有一个或多个测量参数;当配置有至少两个测量参数的时候,终端设备可以自行从至少两个测量参数中进行选取,当然,此时,可以全部选择,也可以选择其中的一个或部分测量参数。比如,网络侧发的配置信息中包含有测量参数1、2、3,终端设备此时如果仅需要测量其中的一个,那么可以选择测量参数1进行后续处理。相应的,终端设备选择配置信息中的部分测量参数时,可以根据历史信息,比如经常采用其中的某一个测量参数进行参考信号测量的时候,可以保持测量该测量参数;或者,可以根据配置信息随机选择,这里不再进行赘述。
方式2、指示具体使用的测量参数,例如有一个字段指示使用测量参数/上报量A或者B,比如:
基于所述配置信息中第一字段的内容,指示所述终端设备所要测量的测量参数。
其中,第一字段可以为根据协议确定的配置信息中用于指示测量参数的字段,具体根据实际情况来设置。
比如,当有测量参数A、B两个的时候,可以通过配置信息这个字段显示的指示是测量参数A还是B。
或者,根据第一字段是否缺省来进行判断,比如:
当所述配置信息中第一字段缺省时,指示所述终端设备所要测量的为第一目标测量参数;当所述第一字段不缺省时,指示所述终端设备所要测量的为第二目标测量参数;其中,所述第一目标测量参数与第二目标测量参数不同。
比如,可以通过***预先设置,第一目标测量参数和第二目标测量参数分别是什么,然后双方协商,当第一字段指示的时候仅用于指示的第二目标测量参数,当第一字段缺省的时候确定用于指示第一目标测量参数。假设有测量参数A、B,这个字段缺省时,指示终端设备使用A,如果这个字段配置时,只配置B,指示终端设备使用B。
使用这种方式,RRC配置的一种修改方法:通过quality字段来配置测量参数,然后通过threshold字段指示对应的门限信息,比如:
Quality quanlity数值类型 OPTIONAL,--Need M
Threshold thershold数值类型 OPTIONAL,--Need M。
另外,还可以删除以下字段:
rsrp-ThresholdSSB RSRP-Range OPTIONAL,--Need M。
方式3、通过所述配置信息中的门限信息,指示所述终端设备所要测量的测量参数。
比如,可以通过通过指示门限来隐含地指示使用测量参数A,还是测量参数B。
具体的,可以根据门限信息对应的参数名称、或者根据所述配置信息中的门限信息的位置,指示所述终端设备所要测量的目标测量参数;
和/或,根据门限信息对应的数据类型,指示所述终端设备所要测量的目标测量参数。
例如现有字段rsrp-ThresholdSSB配置了,则就采用L1-RSRP,如果配置新的字段sinr-Threshold,则就采用L1-SINR。比如,RRC配置中通过以下字段进行配置:
rsrp-ThresholdSSB RSRP-Range OPTIONAL,--Need M
sinr-Threshold   SINR-Range OPTIONAL,--Need M;
方式4、通过配置信息中的第一关键字结构中的内容,指示所述终端设备所要测量的测量参数。
其中,第一关键字可以为“CHOICE”字段,当然根据实际处理,可以通过双方协商采用其他的字段作为第一关键字;比如,使用CHOICE关建字的结构,其中,threshold,sinr-Threshold可以使用别的名字,sinr-Threshold这儿只是用来指示一种第一类测量参数的标识而已。如果Rel-16引入多个第一类测量参数,则可以继续增加别的名字,例如rsrq-Threshold等,比如:
threshold                    CHOICE{
rsrp-ThresholdSSB RSRP-Range OPTIONAL,--Need M
sinr-Threshold SINR-Range OPTIONAL,--Need M}
采用前述几种方式,均可以根据网络侧配置的测量参数和门限信息选择新的测量参数。
基于前述处理,下面针对如何配置候选参考信号以及对应的测量参数进行测量参数的选择进行说明:
场景1、向终端设备发送至少一个测量参数中的至少两个测量参数,以及一组候选参考信号。比如,对于支持第一类测量参数的终端设备,网络给终端设备配置beam failure recovery相关信息时,通过信令配置了2种测量参数A和B,但是配置了一组可选beam对应的组候选参考信号。
其中,向终端设备发送的测量参数,可以包括第一类测量参数和/或L1-RSRP。
场景2、向终端设备发送至少一个测量参数中的M个测量参数,以及M组候选参考信号;其中,M为大于等于2的整数;
其中,所述不同的测量参数对应不同组候选参考信号。
其中,向终端设备发送的测量参数,可以包括第一类测量参数和/或L1-RSRP。
比如,当存在两个测量参数A、B时,对于支持第一类测量参数/上报量的终端设备,网络给终端设备配置beam failure recovery相关信息时,通过信令配置了2种测量参数A和B,但是配置了2组可选beam对应的RS信号(candidate Beam RS),两组分别对应测量参数A和B,即RS信号集合1对应测量参数A,RS集合2对应测量参数B。
其中,所述门限信息可以包括以下至少之一:门限值、门限的类型;当然还可以存在其他内容 这里不再赘述。
所述方法还包括:通过RRC为终端设备配置门限信息。
所述通过RRC为终端设备配置门限信息,包括:
根据RRC配置的门限信息确定一个参考信号类型对应的门限信息,根据功率偏移信息调整其他参考信号类型对应的门限信息;
或者,根据RRC配置的门限信息确定至少两个参考信号类型对应的门限信息。
所述参考信号为以下至少之一:同步信号块SSB、信道状态信息参考信号CSI-RS。
需要指出的是,本实施例没有涉及门限信息对于不同的RS类型是否不同。针对L1-RSRP,RRC配置的可以是针对SSB的门限,因此用于CSI-RS时,需要根据power offset来调整门限。对于新引入的测量参数,存在两种可能:RRC配置的门限是针对某个RS类型,因此用于其他类型时,需要根据power offset来调整(与L1-RSRP类似);RRC配置的门限只用于多个的RS类型。
可见,通过采用上述方案,就能够配置除了L1-RSRP之外的第一类测量参数,从而基于新配置的测量参数进行参考信号的测量;如此,保证了当新引入测量参数的时候保证***的正常配置以及测量,保证***的处理能力。
实施例三、
本发明实施例提供了一种终端设备,如图3所示,包括:
第一通信单元31,针对至少一个候选参考信号的至少一个测量参数进行测量,得到针对至少一个参考信号的至少一个测量参数的测量结果;
第一处理单元32,基于针对至少一个候选参考信号的所述至少一个测量参数的测量结果,从所述至少一个候选参考信号中进行参考信号选择;
其中,所述测量参数中,至少包括第一类测量参数;所述第一类测量参数为:除L1-RSRP之外的、用于表示参考信号质量的参数。
需要指出的是,测量参数中并不排除包含有L1-RSRP参数,也就是说,在实际处理中,可以包括有L1-RSRP和/或至少一个第一类测量参数。
其中,所述第一类测量参数,可以包括有:以下至少之一:L1-SINR、L1-RSRQ。
即在采用本实施例提供的方案选择新的参考信号的时候,终端设备可以使用现有的L1-RSRP测量、和/或、还可能采用以下1个或多个进行测量:L1-SINR、L1-RSRQ、Hypothetical BLER。
通过上述描述,可以理解到本实施例可以仅针对第一类测量参数进行测量,比如,所述针对至少一个候选参考信号的至少一个测量参数进行测量,包括:针对至少一个候选参考信号的所述第一类测量参数进行测量。
需要理解的是,对于支持新版的终端,或者上报能力支持第一类测量参数的终端设备,在做波束失败恢复beam failure recovery时,采用第一类测量参数来选择新的候选参考信号。
相应的,所述第一通信单元31,接收网络侧配置的针对第一类测量参数的门限信息。具体的,网络侧可以为终端设备配置不同的第一类测量参数分别对应的门限信息。
所述针对至少一个候选参考信号的至少一个测量参数进行测量之前,所述方法还包括:
接收网络侧发来的配置信息;
基于所述配置信息,确定所述终端设备所要测量的测量参数。
对于支持第一类测量参数/上报量的终端设备,网络给终端设备配置beam failure recovery相关信息时,支持以下配置方式:
方式1、所述配置信息中可以包括有网络侧指示终端设备需要测量的至少一个测量参数,其中,可以包括有L1-RSRP,和/或,包括至少一个第一类测量参数。
进一步地,网络侧可以为通过配置信息为终端设备配置有一个或多个测量参数;当配置有至少两个测量参数的时候,第一处理单元32,可以自行从至少两个测量参数中进行选取,当然,此时,可以全部选择,也可以选择其中的一个或部分测量参数。比如,网络侧发的配置信息中包含有测量参数1、2、3,终端设备此时如果仅需要测量其中的一个,那么可以选择测量参数1进行后续处理。相应的,终端设备选择配置信息中的部分测量参数时,可以根据历史信息,比如经常采用其中的某一个测量参数进行参考信号测量的时候,可以保持测量该测量参数;或者,可以根据配置信息随机选择,这里不再进行赘述。
方式2、指示具体使用的测量参数,例如有一个字段指示使用测量参数/上报量A或者B,比如:
所述第一处理单元32,基于所述配置信息中第一字段的内容,确定所述终端设备所要测量的测量参数。
其中,第一字段可以为根据协议确定的配置信息中用于指示测量参数的字段,具体根据实际情况来设置。
比如,当有测量参数A、B两个的时候,可以通过配置信息这个字段显示的指示是测量参数A还是B。
或者,根据第一字段是否缺省来进行判断,比如:
当所述配置信息中第一字段缺省时,确定所述终端设备所要测量的为第一目标测量参数;当所述第一字段不缺省时,确定所述终端设备所要测量的为第二目标测量参数;其中,所述第一目标测量参数与第二目标测量参数不同。
比如,可以通过***预先设置,第一目标测量参数和第二目标测量参数分别是什么,然后双方协商,当第一字段指示的时候仅用于指示的第二目标测量参数,当第一字段缺省的时候确定用于指示第一目标测量参数。假设有测量参数A、B,这个字段缺省时,指示终端设备使用A,如果这个字段配置时,只配置B,指示终端设备使用B。
使用这种方式,RRC配置的一种修改方法:通过quality字段来配置测量参数,然后通过threshold字段指示对应的门限信息,比如:
Quality quanlity数值类型 OPTIONAL,--Need M
Threshold thershold数值类型 OPTIONAL,--Need M。
另外,还可以删除以下字段:
rsrp-ThresholdSSB RSRP-Range OPTIONAL,--Need M。
方式3、第一处理单元32,通过所述配置信息中的门限信息,确定所述终端设备所要测量的测量参数。
比如,可以通过通过指示门限来隐含地指示使用测量参数A,还是测量参数B。
具体的,可以根据门限信息对应的参数名称、或者根据所述配置信息中的门限信息的位置,确定所述终端设备所要测量的目标测量参数;
和/或,根据门限信息对应的数据类型,确定所述终端设备所要测量的目标测量参数。
例如现有字段rsrp-ThresholdSSB配置了就采用L1-RSRP,如果配置新的字段sinr-Threshold就采用L1-SINR。比如,无线资源控制(RRC,Radio Resource Control)配置中通过以下字段进行配置:
rsrp-ThresholdSSB RSRP-Range OPTIONAL,--Need M
sinr-Threshold SINR-Range OPTIONAL,--Need M;
方式4、第一处理单元32,通过网络侧发来的配置信息中的第一关键字结构中的内容,确定网络侧指示所述终端设备所要测量的测量参数。
其中,第一关键字可以为“CHOICE”字段,当然根据实际处理,可以通过双方协商采用其他的字段作为第一关键字;比如,使用CHOICE关建字的结构,其中,sinr-Threshold可以使用别的名字。如果Rel-16引入多个第一类测量参数,则可以继续增加别的名字,例如rsrq-Threshold等,比如:
threshold                      CHOICE{
rsrp-ThresholdSSB RSRP-Range OPTIONAL,--Need M
sinr-Threshold SINR-Range OPTIONAL,--Need M}
采用前述几种方式,均可以根据网络侧配置的测量参数和门限信息选择新的测量参数。
基于前述处理,下面针对如何配置候选参考信号以及对应的测量参数进行测量参数的选择进行说明:
场景1、第一通信单元31,获取网络侧发来的至少一个测量参数中的至少两个测量参数,以及一组候选参考信号。比如,对于支持第一类测量参数的终端设备,网络给终端设备配置beam failure recovery相关信息时,通过信令配置了2种测量参数A和B,但是配置了一组可选beam对应的候选参考信号。
其中,网络侧发送的测量参数,可以包括第一类测量参数和/或L1-RSRP。
所述第一处理单元32,从所述至少两个测量参数中,选择一个目标测量参数;根据选择的一个目标测量参数对应的门限信息、以及测量结果,从所述一组候选参考信号中选取参考信号。也就是由终端设备自行选择A或者B,以及对应的门限来选择第一类测量参数。还需要指出的是,门限信息可以包含门限值。
或者,
第一处理单元32,根据所述至少两个测量参数的每一个测量参数对应的门限信息及测量结果,在一组候选参考信号中,从满足任一个测量参数对应门限信息的候选参考信号组成的并集中选取参考信号。
其中,至少两个测量参数中对每一个测量参数进行测量得到测量结果,分别根据每一个测量参数对应的测量结果、以及网络侧配置的针对测量参数的门限信息,从一组候选参考信号中选取多个候选参考信号;将基于全部测量参数分别选取出来的候选参考信号作为并集;最后从并集中,选取出来一个作为最终选中的参考信号。比如,可以从满足测量参数A门限的候选参考信号(RS),以及满足测量参数B门限的候选RS的并集中选择新的参考信号,即选中的参考信号可以时满足测量参数A对应的门限,或者满足测量参数B对应的门限。
或者,
第一处理单元32,根据所述至少两个目标测量参数的每一个测量参数对应的门限信息及测量结果,在一组候选参考信号中,从满足每一个测量参数对应门限信息的候选参考信号组成的交集中选取参考信号。
其中,至少两个测量参数中对每一个测量参数进行测量得到测量结果,分别基于每一个测量参数对应的测量结果、以及网络侧配置的针对测量参数的门限信息,从一组候选参考信号中选取多个候选参考信号;然后基于全部测量参数分别选取出来的参考信号得到交集;最后从交集中,选取出来一个作为最终选中的参考信号。比如,可以从满足测量参数A门限的候选参考信号(RS),以及满足测量参数B门限的候选RS的交集中选择新的参考信号,既要满足门限A对应的门限,也要满足B对应的门限。这里需要指出的是,当基于全部候选参考信号无法得到交集时,停止进行处理。
或者,
第一处理单元32,基于至少两个测量参数的选取优先级,优先基于选取优先级高的测量参数的测量结果,根据选取优先级高的测量参数的门限信息以及测量结果从所述一组候选参考信号中,选取满足对应的门限信息的参考信号。
比如,有两个测量参数A、B,其中选取优先级较高的为A,选取优先级较低的为B;那么,优先从高选取优先级的测量参数A对应的门限信息从参考信号RS中选择新的参考信号。
当基于选取优先级高的测量参数的测量结果无法从所述一组候选参考信号中选取满足对应的门 限信息的参考信号时,根据选取优先级低的测量参数的门限信息以及测量结果从所述一组候选参考信号中选取出满足对应的门限信息的参考信号。
比如,有两个测量参数A、B,其中选取优先级较高的为A,选取优先级较低的为B;那么,优先从高选取优先级的测量参数A对应的门限信息从参考信号RS中选择新的参考信号;如果没有满足条件的,则从低选取优先级的测量参数B中,选择满足测量参数B对应的门限的RS中选择新的RS。
或者,
第一处理单元32,根据所述至少两个测量参数中的第一目标测量参数的测量结果及其对应的门限信息,从所述一组候选参考信号中选取第一候选子集;根据所述至少两个测量参数中的第二目标测量参数的测量结果及其对应的门限信息,从所述第一候选子集中选择参考信号;其中,所述第一目标测量参数的选取优先级高于第二目标测量参数。
其中,选取第一候选子集的方式,可以为选择参考信号的质量高于预设值的候选RS添加到第一候选子集中;关于参考信号的质量的衡量标准可以根据实际情况设置,比如,可以包括信噪比、信号强度等等,这里不赘述。
比如,根据测量参数A选择满足条件的一个满足门限的RS子集,或者最好的T个;在这个RS子集中使用测量参数B选择新的beam。
具体的,包括以下之一:
根据所述至少两个测量参数中的第二目标测量参数的测量结果及其对应的门限信息,从所述第一候选子集中选取第二候选子集;从所述第二候选子集中选取参考信号;比如,当存在测量参数A、B时,采用测量参数A进行筛选得到第一候选子集后,使用测量参数B的门限信息选择选择更小的一个子集作为第二候选子集,从这个第二候选子集中选择一个新的RS。
根据所述至少两个测量参数中的第二目标测量参数的测量结果及其对应的门限信息,从所述第一候选子集中选取质量最优的N个参考信号组成第三候选子集;从所述第三候选子集中选取参考信号;N为整数。比如,当存在测量参数A、B时,采用测量参数A进行筛选得到第一候选子集后,直接选择子集中最好的T’个形成新的第三候选子集,如果第一个子集元素数目不够,则新的子集中元素数目小于T’,然后从这个第三候选子集中选择一个新的RS。
根据所述至少两个测量参数中的第二目标测量参数的测量结果及其对应的门限信息,直接从所述第一候选子集中质量最优的一个参考信号。比如,当存在测量参数A、B时,采用测量参数A进行筛选得到第一候选子集后,使用测量参数B及其对应的门限信息直接从第一候选子集中选择最好的1个作为新的RS。
或者,
第一处理单元32,还可以根据选取优先级逐个从所述至少两个测量参数中选择一个测量参数,基于选择的测量参数的测量结果及其对应的门限信息,从所述一组候选参考信号中选取参考信号,向网络发送与所述选取的参考信号对应的上行信号;检测是否接收到有效网络响应;若未接收到网络侧发来的有效网络响应,则继续从选取优先级较低的测量参数中选择下一个测量参数。
其中,所述第一处理单元32,判断至少两个测量参数是否全部选择过,若是,则重新开始根据选取优先级逐个从所述至少两个测量参数中提取测量参数,并执行基于所述测量参数进行参考信号的选取的处理;直至满足结束条件。
比如,存在测量参数A、B,选取优先级A较高、B较低;优先从选取优先级高的测量参数A选择满足门限的RS中选择新的RS,然后在该RS对应的上行信号发送beam failure recovery request;如果没有得到对应的有效网络响应,则从满足测量参数B对应的门限的RS中选择RS,发送对应的beam failure recovery request,如果没有得到对应的有效网络响应,则从满足测量参数A对应的门限的RS中继续发送;两个交叉进行,直到满足停止条件。
或者,
第一处理单元32,根据选取优先级从所述至少两个测量参数中选择一个测量参数,基于所述选择的测量参数的测量结果及其对应的门限信息,从所述一组候选参考信号中选取参考信号,并向网络发送与所述选取的参考信号对应的上行信号;若未接收到网络侧发来的有效网络响应,则继续基于所述选择的测量参数进行选取参考信号并向网络发送所述选取参考信号对应的上行信号;直至根据规则停止所述处理且未能收到网络侧发来的有效网络响应,则从所述至少两个测量参数中选择另一个测量参数,继续进行参考信号选择。
比如,存在测量参数A、B,选取优先级A较高、B较低;优先从选取优先级高的测量参数A选择满足门限的RS中选择新的RS,在新的RS对应的上行信号中发送对应的beam failure recovery request,如果没有得到对应的有效网络响应,根据规则继续发送,直到满足规定的停止条件;然后从满足测量参数B对应的门限的RS中选择,发送对应的beam failure recovery request。也就是说,两个没有交叉,一个优先使用,如果beam failure recovery在规定条件下没有成功,则使用另外一个继续尝试,完成所有尝试之后,如果仍没有成功选择对应的参考信号,也会结束处理。
其中,规定的停止条件可以为发送的次数,比如,可以设置发送次数为5次,那么就在5次之后转向选取优先级低于当前测量参数的一个新的测量参数进行RS选取。
所述选取优先级,为:由网络侧配置、或者、由协议规定、或者、由所述终端设备决定。
场景2、第一处理单元32,获取网络侧发来的M个测量参数,以及M组候选参考信号;其中,M为大于等于2的整数;其中,所述不同的测量参数对应不同组候选参考信号。
其中,网络侧发送的测量参数,可以包括第一类测量参数和/或L1-RSRP。
比如,当存在两个测量参数A、B时,对于支持第一类测量参数/上报量的终端设备,网络给终 端设备配置beam failure recovery相关信息时,通过信令配置了2种测量参数A和B,但是配置了2组可选beam对应的候选参考信号(candidate Beam RS),两组分别对应测量参数A和B,即RS信号集合1对应测量参数A,RS集合2对应测量参数B。
根据网络配置的测量参数和门限选择新的beam,具体方法有以下之一:
第一处理单元32,从所述M个测量参数中,选择一个目标测量参数;根据选择的一个目标测量参数对应的门限信息、以及测量结果,从所述目标测量参数所对应的候选参考信号组中选取参考信号。比如,当配置两个测量参数时,自行选择RS集合1或者2,使用对应的测量参数以及门限来选择新的RS。
或者,第一处理单元32,根据所述M个测量参数的每一个测量参数对应的门限信息及测量结果,在各自对应的一组候选参考信号中,从满足任一个测量参数对应的参考信号组成的并集中选取参考信号。比如,当配置两个测量参数时,从RS集合1中满足对应门限的测量参数1对应的第一组RS,以及RS集合2中满足对应测量参数2的门限的第二组RS,从的第一组RS以及第二组RS组成的并集中选择新的参考信号。
或者,第一处理单元32,根据M个测量参数的选取优先级从高到低的顺序,依次选取测量参数;根据选取的测量参数对应的门限信息及测量结果,判断是否能够从其对应的一组候选参考信号中,选取满足条件的参考信号;若能够选取到满足条件的参考信号,则完成参考信号选择;否则,重新选取测量参数。比如,优先从测量参数1的RS集合1中满足对应门限的RS中选择新的第一组RS,如果没有满足条件的,则从测量参数2的RS集合2中根据对应门限选择新的第二组RS。
或者,第一处理单元32,根据选取优先级逐个从所述M个测量参数中选择一个测量参数,基于选择的一个测量参数的测量结果及其对应的门限信息,从所述选择的测量参数所对应的一组候选参考信号中选取参考信号,并向网络发送所述选取的候选参考信号对应的上行信号;检测是否接收到有效网络响应;若未接收到网络侧发来的有效网络响应,则继续从选取优先级较低的测量参数中选择下一个测量参数。
所述第一处理单元32,判断M个测量参数是否全部选择完成,若是,则重新开始根据选取优先级逐个从所述至少两个测量参数中提取测量参数,并执行基于所述测量参数进行参考信号的选取的处理;直至满足结束条件。
比如,配置有测量参数1、2,测量参数1的选取优先级较高;优先从选取优先级高的测量参数1对应的RS集合1中满足对应门限的RS中选择新的beam,在新的RS对应的上行资源上发送对应的beam failure recovery request,如果没有得到对应的有效网络响应;则从测量参数2对应的RS集合2中满足对应门限的RS中选择RS,在RS对应的上行资源上发送对应的beam failure recovery request,如果没有得到对应的有效网络响应,则再从RS集合1中满足对应门限的RS中继续进行选择并继续发送;两个交叉进行,直到满足停止条件。
或者,第一处理单元32,根据选取优先级从所述M个测量参数中选择一个测量参数,基于选取的一个测量参数的测量结果及其对应的门限信息,从其对应的一组候选参考信号中选取参考信号,向网络发送所述选取的参考信号对应的上行信号;检测是否接收到有效网络响应;
若未接收到网络侧发来的有效网络响应,则基于所述选择的这个测量参数进行选取参考信号并向网络发送所述选取的参考信号对应的上行信号的处理;
直至根据规则停止所述处理且未能收到网络侧发来的有效网络响应,则从所述至少两个测量参数中选择另一个测量参数,继续在所述另一个测量参数对应的候选参考信号组中进行参考信号选择。
比如,配置有测量参数1、2,测量参数1的选取优先级较高;优先从测量参数1的RS集合1中满足对应门限的RS中选择新的beam,发送对应的beam failure recovery request,如果没有得到对应的有效网络响应,根据规则继续发送,直到满足规定的停止条件;然后从测量参数2的RS集合2中满足对应门限的RS中选择beam,发送对应的beam failure recovery request;本方式中,多个测量参数进行选取操作时两个没有交叉,一个优先使用,如果beam failure recovery在规定条件下没有成功,则使用另外一个继续尝试。
所述M组候选参考信号的优先级的确定方式为以下之一:由网络侧配置、由参考信号的类型确定、由协议规定、由其对应的测量参数确定、由其对应的门限信息确定。
其中,所述门限信息可以包括以下至少之一:门限值、门限的类型;当然还可以存在其他内容这里不再赘述。
所述由网络侧配置,包括:
根据网络侧发送的显示指示进行配置;比如网络显示指示集合优先级。
或者,
根据网络侧发送的配置信息中的每一组候选参考信号所在域的位置确定,比如,根据配置信令中RS集合1和RS集合1对应的域的位置确定优先级。
由参考信号的类型确定,包括:
根据网络侧配置的参考信号的类型与优先级之间的对应关系确定;或者,根据协议规定的参考信号的类型与优先级之间的对应关系确定。
比如,RS集合1和RS集合2的优先级由RS类型决定;其中,RS类型与优先级对应关系由网络配置;或者,RS类型与优先级对应关系由协议固定。
由RRC配置门限信息。第一处理单元32,根据RRC配置的门限信息确定一个参考信号类型对应的门限信息,根据功率偏移信息调整其他参考信号类型对应的门限信息;或者,根据RRC配置的门限信息确定至少两个参考信号类型对应的门限信息。
所述参考信号为以下至少之一:同步信号块SSB、信道状态信息参考信号CSI-RS。
需要指出的是,本实施例没有涉及门限信息对于不同的RS类型是否不同。针对L1-RSRP,RRC配置的可以是针对SSB的门限,因此用于CSI-RS时,需要根据power offset来调整门限。对于新引入的测量参数,存在两种可能:RRC配置的门限是针对某个RS类型,因此用于其他类型时,需要根据power offset来调整(与L1-RSRP类似);RRC配置的门限只用于多个的RS类型。
可见,通过采用上述方案,就能够配置除了L1-RSRP之外的第一类测量参数,从而基于新配置的测量参数进行参考信号的测量;如此,保证了当新引入测量参数的时候保证***的正常配置以及测量,保证***的处理能力,并且能够避免测量参数较为单一、以及无法使用多种通信场景的问题。
实施例四、
本发明实施例提供了一种网络设备,包括:
第二通信单元,为终端设备配置针对至少一个参考信号的至少一个测量参数;
其中,所述测量参数中,至少包括第一类测量参数;所述第一类测量参数为:除L1-RSRP之外的、用于表示参考信号质量的参数。
需要指出的是,测量参数中并不排除包含有L1-RSRP参数,也就是说,在实际处理中,可以包括有L1-RSRP和/或至少一个第一类测量参数。
其中,所述第一类测量参数,可以包括有:以下至少之一:L1-SINR、L1-RSRQ。
即在采用本实施例提供的方案选择新的参考信号的时候,终端设备可以使用现有的L1-RSRP测量、和/或、还可能采用以下1个或多个进行测量:L1-SINR、L1-RSRQ、Hypothetical BLER。
通过上述描述,可以理解到本实施例可以仅针对第一类测量参数进行测量,比如,所述针对至少一个候选参考信号的至少一个测量参数进行测量,包括:第二通信单元,向终端设备发送配置信息;基于所述配置信息,指示所述终端设备所要测量的测量参数。
需要理解的是,对于支持新版的终端,或者上报能力支持第一类测量参数的终端设备,在做波束失败恢复beam failure recovery时,采用第一类测量参数来选择新的候选参考信号。
相应的,所述第二通信单元,配置针对第一类测量参数的门限信息。具体的,网络侧可以为终端设备配置不同的第一类测量参数分别对应的门限信息。
对于支持第一类测量参数/上报量的终端设备,网络给终端设备配置beam failure recovery相关信息时,支持以下配置方式:
方式1、所述配置信息中可以包括有网络侧指示终端设备需要测量的至少一个测量参数,其中,可以包括有L1-RSRP,和/或,包括至少一个第一类测量参数。
进一步地,第二通信单元,可以为通过配置信息为终端设备配置有一个或多个测量参数;当配置有至少两个测量参数的时候,终端设备可以自行从至少两个测量参数中进行选取,当然,此时,可以全部选择,也可以选择其中的一个或部分测量参数。比如,网络侧发的配置信息中包含有测量参数1、2、3,终端设备此时如果仅需要测量其中的一个,那么可以选择测量参数1进行后续处理。相应的,终端设备选择配置信息中的部分测量参数时,可以根据历史信息,比如经常采用其中的某一个测量参数进行参考信号测量的时候,可以保持测量该测量参数;或者,可以根据配置信息随机选择,这里不再进行赘述。
方式2、指示具体使用的测量参数,例如有一个字段指示使用测量参数/上报量A或者B,比如:
第二通信单元,基于所述配置信息中第一字段的内容,指示所述终端设备所要测量的测量参数。
其中,第一字段可以为根据协议确定的配置信息中用于指示测量参数的字段,具体根据实际情况来设置。
比如,当有测量参数A、B两个的时候,可以通过配置信息这个字段显示的指示是测量参数A还是B。
或者,根据第一字段是否缺省来进行判断,比如:
当所述配置信息中第一字段缺省时,指示所述终端设备所要测量的为第一目标测量参数;当所述第一字段不缺省时,指示所述终端设备所要测量的为第二目标测量参数;其中,所述第一目标测量参数与第二目标测量参数不同。
比如,可以通过***预先设置,第一目标测量参数和第二目标测量参数分别是什么,然后双方协商,当第一字段指示的时候仅用于指示的第二目标测量参数,当第一字段缺省的时候确定用于指示第一目标测量参数。假设有测量参数A、B,这个字段缺省时,指示终端设备使用A,如果这个字段配置时,只配置B,指示终端设备使用B。
使用这种方式,RRC配置的一种修改方法:通过quality字段来配置测量参数,然后通过threshold字段指示对应的门限信息,比如:
Quality quanlity数值类型 OPTIONAL,--Need M
Threshold thershold数值类型 OPTIONAL,--Need M。
另外,还可以删除以下字段:
rsrp-ThresholdSSB RSRP-Range OPTIONAL,--Need M。
方式3、第二通信单元,通过所述配置信息中的门限信息,指示所述终端设备所要测量的测量参数。
比如,可以通过通过指示门限来隐含地指示使用测量参数A,还是测量参数B。
具体的,可以根据门限信息对应的参数名称、或者根据所述配置信息中的门限信息的位置,指示所述终端设备所要测量的目标测量参数;
和/或,根据门限信息对应的数据类型,指示所述终端设备所要测量的目标测量参数。
例如现有字段rsrp-ThresholdSSB配置了,则就采用L1-RSRP,如果配置新的字段sinr-Threshold,则就采用L1-SINR。比如,RRC配置中通过以下字段进行配置:
rsrp-ThresholdSSB RSRP-Range OPTIONAL,--Need M
sinr-Threshold SINR-Range OPTIONAL,--Need M;
方式4、第二通信单元,通过配置信息中的第一关键字结构中的内容,指示所述终端设备所要测量的测量参数。
其中,第一关键字可以为“CHOICE”字段,当然根据实际处理,可以通过双方协商采用其他的字段作为第一关键字;比如,使用CHOICE关建字的结构,其中,threshold,sinr-Threshold可以使用别的名字,sinr-Threshold这儿只是用来指示一种第一类测量参数的标识而已。如果Rel-16引入多个第一类测量参数,则可以继续增加别的名字,例如rsrq-Threshold等,比如:
threshold                    CHOICE{
rsrp-ThresholdSSB RSRP-Range OPTIONAL,--Need M
sinr-Threshold SINR-Range OPTIONAL,--Need M}
采用前述几种方式,均可以根据网络侧配置的测量参数和门限信息选择新的测量参数。
基于前述处理,下面针对如何配置候选参考信号以及对应的测量参数进行测量参数的选择进行说明:
场景1、第二通信单元,向终端设备发送至少一个测量参数中的至少两个测量参数,以及一组候选参考信号。比如,对于支持第一类测量参数的终端设备,网络给终端设备配置beam failure recovery相关信息时,通过信令配置了2种测量参数A和B,但是配置了一组可选beam对应的组候选参考信号。
其中,向终端设备发送的测量参数,可以包括第一类测量参数和/或L1-RSRP。
场景2、第二通信单元,向终端设备发送至少一个测量参数中的M个测量参数,以及M组候选参考信号;其中,M为大于等于2的整数;
其中,所述不同的测量参数对应不同组候选参考信号。
其中,向终端设备发送的测量参数,可以包括第一类测量参数和/或L1-RSRP。
比如,当存在两个测量参数A、B时,对于支持第一类测量参数/上报量的终端设备,网络给终端设备配置beam failure recovery相关信息时,通过信令配置了2种测量参数A和B,但是配置了2组可选beam对应的RS信号(candidate Beam RS),两组分别对应测量参数A和B,即RS信号集合1对应测量参数A,RS集合2对应测量参数B。
其中,所述门限信息可以包括以下至少之一:门限值、门限的类型;当然还可以存在其他内容这里不再赘述。
所述第二通信单元,通过RRC为终端设备配置门限信息。
所述第二通信单元,根据RRC配置的门限信息确定一个参考信号类型对应的门限信息,根据功率偏移信息调整其他参考信号类型对应的门限信息;
或者,根据RRC配置的门限信息确定至少两个参考信号类型对应的门限信息。
所述参考信号为以下至少之一:同步信号块SSB、信道状态信息参考信号CSI-RS。
需要指出的是,本实施例没有涉及门限信息对于不同的RS类型是否不同。针对L1-RSRP,RRC配置的可以是针对SSB的门限,因此用于CSI-RS时,需要根据power offset来调整门限。对于新引入的测量参数,存在两种可能:RRC配置的门限是针对某个RS类型,因此用于其他类型时,需要根据power offset来调整(与L1-RSRP类似);RRC配置的门限只用于多个的RS类型。
可见,通过采用上述方案,就能够配置除了L1-RSRP之外的第一类测量参数,从而基于新配置的测量参数进行参考信号的测量;如此,保证了当新引入测量参数的时候保证***的正常配置以及测量,保证***的处理能力,并且能够避免测量参数较为单一、以及无法使用多种通信场景的问题。
图4是本申请实施例提供的一种通信设备400示意性结构图。图4所示的通信设备400包括处理器410,处理器410可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图4所示,通信设备400还可以包括存储器420。其中,处理器410可以从存储器420中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器420可以是独立于处理器410的一个单独的器件,也可以集成在处理器410中。
可选地,如图4所示,通信设备400还可以包括收发器430,处理器410可以控制该收发器430与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器430可以包括发射机和接收机。收发器430还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备400具体可为本申请实施例的网络设备,并且该通信设备400可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备400具体可为本申请实施例的终端设备、或者网络设备,并且该通信设备400可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图5是本申请实施例的芯片的示意性结构图。图5所示的芯片500包括处理器510,处理器510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图5所示,芯片500还可以包括存储器520。其中,处理器510可以从存储器520中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
可选地,该芯片500还可以包括输入接口530。其中,处理器510可以控制该输入接口530与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片500还可以包括输出接口540。其中,处理器510可以控制该输出接口540与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为***级芯片,***芯片,芯片***或片上***芯片等。
图6是本申请实施例提供的一种通信***600的示意性框图。如图6所示,该通信***600包括终端设备610和网络设备620。
其中,该终端设备610可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备620可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (101)

  1. 一种参考信号测量配置方法,应用于终端设备,所述方法包括:
    针对至少一个候选参考信号的至少一个测量参数进行测量,得到针对至少一个参考信号的至少一个测量参数的测量结果;
    基于针对至少一个候选参考信号的所述至少一个测量参数的测量结果,从所述至少一个候选参考信号中进行参考信号选择;
    其中,所述测量参数中,至少包括第一类测量参数;所述第一类测量参数为:除L1-RSRP之外的、用于表示参考信号质量的参数。
  2. 根据权利要求1所述的方法,其中,所述针对至少一个候选参考信号的至少一个测量参数进行测量,包括:
    针对至少一个候选参考信号的所述第一类测量参数进行测量。
  3. 根据权利要求2所述的方法,其中,所述方法还包括:
    接收网络侧配置的针对第一类测量参数的门限信息。
  4. 根据权利要求1所述的方法,其中,所述针对至少一个候选参考信号的至少一个测量参数进行测量之前,所述方法还包括:
    接收网络侧发来的配置信息;
    基于所述配置信息,确定所述终端设备所要测量的测量参数。
  5. 根据权利要求4所述的方法,其中,所述基于所述配置信息,确定所述终端设备所要测量的测量参数,包括:
    基于所述配置信息中第一字段的内容,确定所述终端设备所要测量的测量参数。
  6. 根据权利要求4所述的方法,其中,所述基于所述配置信息,确定所述终端设备所要测量的测量参数,包括:
    当所述配置信息中第一字段缺省时,确定所述终端设备所要测量的为第一目标测量参数;
    当所述第一字段不缺省时,确定所述终端设备所要测量的为第二目标测量参数;
    其中,所述第一目标测量参数与第二目标测量参数不同。
  7. 根据权利要求1所述的方法,其中,所述基于所述配置信息,确定所述终端设备所要测量的测量参数,包括:
    通过所述配置信息中的门限信息,确定所述终端设备所要测量的测量参数。
  8. 根据权利要求7所述的方法,其中,所述通过所述配置信息中的门限信息,确定所述终端设备所要测量的测量参数,包括以下至少之一:
    根据门限信息对应的参数名称、或者根据所述配置信息中的门限信息的位置,确定所述终端设备所要测量的目标测量参数;
    根据门限信息对应的数据类型,确定所述终端设备所要测量的目标测量参数。
  9. 根据权利要求1所述的方法,其中,所述方法还包括:
    通过网络侧发来的配置信息中的第一关键字结构中的内容,确定所述终端设备所要测量的测量参数。
  10. 根据权利要求1-9任一项所述的方法,其中,所述方法还包括:
    获取网络侧发来的至少一个测量参数中的至少两个测量参数,以及一组候选参考信号。
  11. 根据权利要求10所述的方法,其中,所述基于针对至少一个候选参考信号的所述至少一个测量参数的测量结果,从所述至少一个候选参考信号中进行参考信号选择,包括:
    从所述至少两个测量参数中,选择一个目标测量参数;
    根据选择的一个目标测量参数对应的门限信息、以及测量结果,从所述一组候选参考信号中选取参考信号。
  12. 根据权利要求10所述的方法,其中,所述基于针对至少一个候选参考信号的所述至少一个测量参数的测量结果,从所述至少一个候选参考信号中进行参考信号选择,包括:
    根据所述至少两个测量参数的每一个测量参数对应的门限信息及测量结果,在一组候选参考信号中,从满足任一个测量参数对应门限信息的候选参考信号组成的并集中选取参考信号。
  13. 根据权利要求10所述的方法,其中,所述基于针对至少一个候选参考信号的所述至少一个测量参数的测量结果,从所述至少一个候选参考信号中进行参考信号选择,包括:
    根据所述至少两个目标测量参数的每一个测量参数对应的门限信息及测量结果,在一组候选参考信号中,从满足每一个测量参数对应门限信息的候选参考信号组成的交集中选取参考信号。
  14. 根据权利要求10所述的方法,其中,所述基于针对至少一个候选参考信号的所述至少一个测量参数的测量结果,从所述至少一个候选参考信号中进行参考信号选择,包括:
    基于至少两个测量参数的选取优先级,优先基于选取优先级高的测量参数的测量结果,根据选取优先级高的测量参数的门限信息以及测量结果从一组候选参考信号中,选取满足对应的门限信息 的参考信号。
  15. 根据权利要求14所述的方法,其中,所述方法还包括:
    当基于选取优先级高的测量参数的测量结果无法从所述一组候选参考信号中选取满足对应的门限信息的参考信号时,根据选取优先级低的测量参数的门限信息以及测量结果从所述一组候选参考信号中选取出满足对应的门限信息的参考信号。
  16. 根据权利要求10所述的方法,其中,所述基于针对至少一个候选参考信号的所述至少一个测量参数的测量结果,从所述至少一个候选参考信号中进行参考信号选择,包括:
    根据所述至少两个测量参数中的第一目标测量参数的测量结果及其对应的门限信息,从所述一组候选参考信号中选取第一候选子集;
    根据所述至少两个测量参数中的第二目标测量参数的测量结果及其对应的门限信息,从所述第一候选子集中选择参考信号;
    其中,所述第一目标测量参数的选取优先级高于第二目标测量参数。
  17. 根据权利要求16所述的方法,其中,所述根据所述至少两个测量参数中的第二目标测量参数的测量结果及其对应的门限信息,从所述第一候选子集中选择参考信号,包括以下之一:
    根据所述至少两个测量参数中的第二目标测量参数的测量结果及其对应的门限信息,从所述第一候选子集中选取第二候选子集;从所述第二候选子集中选取参考信号;
    根据所述至少两个测量参数中的第二目标测量参数的测量结果及其对应的门限信息,从所述第一候选子集中选取质量最优的N个参考信号组成第三候选子集;从所述第三候选子集中选取参考信号;N为整数;
    根据所述至少两个测量参数中的第二目标测量参数的测量结果及其对应的门限信息,直接从所述第一候选子集中质量最优的一个参考信号。
  18. 根据权利要求10所述的方法,其中,所述基于针对至少一个候选参考信号的所述至少一个测量参数的测量结果,从所述至少一个候选参考信号中进行参考信号选择,包括:
    根据选取优先级逐个从所述至少两个测量参数中选择一个测量参数,基于选择的测量参数的测量结果及其对应的门限信息,从所述一组候选参考信号中选取参考信号,向网络发送与所述选取的参考信号对应的上行信号;检测是否接收到有效网络响应;
    若未接收到网络侧发来的有效网络响应,则继续从选取优先级较低的测量参数中选择下一个测量参数。
  19. 根据权利要求18所述的方法,其中,所述继续从选取优先级较低的测量参数中选择下一个测量参数,包括:
    判断至少两个测量参数是否全部选择过,若是,则重新开始根据选取优先级逐个从所述至少两个测量参数中提取测量参数,并执行基于所述测量参数进行参考信号的选取的处理;直至满足结束条件。
  20. 根据权利要求10所述的方法,其中,所述基于针对至少一个候选参考信号的所述至少一个测量参数的测量结果,从所述至少一个候选参考信号中进行参考信号选择,包括:
    根据选取优先级从所述至少两个测量参数中选择一个测量参数,基于所述选择的测量参数的测量结果及其对应的门限信息,从所述一组候选参考信号中选取参考信号,并向网络发送与所述选取的参考信号对应的上行信号;
    若未接收到网络侧发来的有效网络响应,则继续基于所述选择的测量参数进行选取参考信号并向网络发送所述选取参考信号对应的上行信号;
    直至根据规则停止所述处理且未能收到网络侧发来的有效网络响应,则从所述至少两个测量参数中选择另一个测量参数,继续进行参考信号选择。
  21. 根据权利要求14-20任一项所述的方法,其中,所述选取优先级,为:由网络侧配置、或者、由协议规定、或者、由所述终端设备决定。
  22. 根据权利要求1-9任一项所述的方法,其中,所述方法还包括:
    获取网络侧发来的M个测量参数,以及M组候选参考信号;其中,M为大于等于2的整数;
    其中,所述不同的测量参数对应不同组候选参考信号。
  23. 根据权利要求22所述的方法,其中,所述基于针对至少一个候选参考信号的所述至少一个测量参数的测量结果,从所述至少一个候选参考信号中进行参考信号选择,包括:
    从所述M个测量参数中,选择一个目标测量参数;
    根据选择的一个目标测量参数对应的门限信息、以及测量结果,从所述目标测量参数所对应的候选参考信号组中选取参考信号。
  24. 根据权利要求22所述的方法,其中,所述基于针对至少一个候选参考信号的所述至少一个测量参数的测量结果,从所述至少一个候选参考信号中进行参考信号选择,包括:
    根据所述M个测量参数的每一个测量参数对应的门限信息及测量结果,在各自对应的一组候选参考信号中,从满足任一个测量参数对应的参考信号组成的并集中选取参考信号。
  25. 根据权利要求22所述的方法,其中,所述基于针对至少一个候选参考信号的所述至少一个测量参数的测量结果,从所述至少一个候选参考信号中进行参考信号选择,包括:
    根据M个测量参数的选取优先级从高到低的顺序,依次选取测量参数;
    根据选取的测量参数对应的门限信息及测量结果,判断是否能够从其对应的一组候选参考信号中,选取满足条件的参考信号;
    若能够选取到满足条件的参考信号,则完成参考信号选择;否则,重新选取测量参数。
  26. 根据权利要求22所述的方法,其中,所述基于针对至少一个候选参考信号的所述至少一个测量参数的测量结果,从所述至少一个候选参考信号中进行参考信号选择,包括:
    根据选取优先级逐个从所述M个测量参数中选择一个测量参数,基于选择的一个测量参数的测量结果及其对应的门限信息,从所述选择的测量参数所对应的一组候选参考信号中选取参考信号,并向网络发送所述选取的候选参考信号对应的上行信号;检测是否接收到有效网络响应;
    若未接收到网络侧发来的有效网络响应,则继续从选取优先级较低的测量参数中选择下一个测量参数。
  27. 根据权利要求26所述的方法,其中,所述继续从选取优先级较低的测量参数中选择下一个测量参数,包括:
    判断M个测量参数是否全部选择完成,若是,则重新开始根据选取优先级逐个从所述至少两个测量参数中提取测量参数,并执行基于所述测量参数进行参考信号的选取的处理;直至满足结束条件。
  28. 根据权利要求22所述的方法,其中,所述基于针对至少一个候选参考信号的所述至少一个测量参数的测量结果,从所述至少一个候选参考信号中进行参考信号选择,包括:
    根据选取优先级从所述M个测量参数中选择一个测量参数,基于选取的一个测量参数的测量结果及其对应的门限信息,从其对应的一组候选参考信号中选取参考信号,向网络发送所述选取的参考信号对应的上行信号;检测是否接收到有效网络响应;
    若未接收到网络侧发来的有效网络响应,则基于所述选择的这个测量参数进行选取参考信号并向网络发送所述选取的参考信号对应的上行信号的处理;
    直至根据规则停止所述处理且未能收到网络侧发来的有效网络响应,则从所述至少两个测量参数中选择另一个测量参数,继续在所述另一个测量参数对应的候选参考信号组中进行参考信号选择。
  29. 根据权利要求25-28任一项所述的方法,其中,所述M组候选参考信号的优先级的确定方式为以下之一:由网络侧配置、由参考信号的类型确定、由协议规定、由其对应的测量参数确定、由其对应的门限信息确定。
  30. 根据权利要求29所述的方法,其中,所述由网络侧配置,包括:
    根据网络侧发送的显示指示进行配置;
    或者,
    根据网络侧发送的配置信息中的每一组候选参考信号所在域的位置确定。
  31. 根据权利要求29所述的方法,其中,由参考信号的类型确定,包括:
    根据网络侧配置的参考信号的类型与优先级之间的对应关系确定;
    或者,
    根据协议规定的参考信号的类型与优先级之间的对应关系确定。
  32. 根据权利要求10-31任一项所述的方法,其中,所述方法还包括:
    由RRC配置门限信息。
  33. 根据权利要求32所述的方法,其中,所述由RRC配置门限信息,包括:
    根据RRC配置的门限信息确定一个参考信号类型对应的门限信息,根据功率偏移信息调整其他参考信号类型对应的门限信息;
    或者,
    根据RRC配置的门限信息确定至少两个参考信号类型对应的门限信息。
  34. 根据权利要求1-33任一项所述的方法,其中,所述参考信号为以下至少之一:同步信号块SSB、信道状态信息参考信号CSI-RS。
  35. 根据权利要求1-34任一项所述的方法,其中,所述第一类测量参数,包括以下至少之一:L1-SINR、L1-RSRQ。
  36. 一种参考信号测量配置方法,应用于网络设备,所述方法包括:
    为终端设备配置针对至少一个参考信号的至少一个测量参数;
    其中,所述测量参数中,至少包括第一类测量参数;所述第一类测量参数为:除L1-RSRP之外的、用于表示参考信号质量的参数。
  37. 根据权利要求36所述的方法,其中,所述方法还包括:
    配置针对第一类测量参数的门限信息。
  38. 根据权利要求36所述的方法,其中,所述方法还包括:
    向终端设备发送配置信息;基于所述配置信息,指示所述终端设备所要测量的测量参数。
  39. 根据权利要求38所述的方法,其中,所述基于所述配置信息,指示所述终端设备所要测量的测量参数,包括:
    基于所述配置信息中第一字段的内容,指示所述终端设备所要测量的测量参数。
  40. 根据权利要求38所述的方法,其中,所述基于所述配置信息,指示所述终端设备所要测量的测量参数,包括:
    当所述配置信息中第一字段缺省时,指示所述终端设备所要测量的为第一目标测量参数;
    当所述第一字段不缺省时,指示所述终端设备所要测量的为第二目标测量参数;
    其中,所述第一目标测量参数与第二目标测量参数不同。
  41. 根据权利要求38所述的方法,其中,所述基于所述配置信息,指示所述终端设备所要测量的测量参数,包括:
    通过所述配置信息中的门限信息,指示所述终端设备所要测量的测量参数。
  42. 根据权利要求41所述的方法,其中,所述通过所述配置信息中的门限信息,指示所述终端设备所要测量的测量参数,包括以下至少之一:
    根据门限信息对应的参数名称、或者根据所述配置信息中的门限信息的位置,指示所述终端设备所要测量的目标测量参数;
    根据门限信息对应的数据类型,指示所述终端设备所要测量的目标测量参数。
  43. 根据权利要求38所述的方法,其中,所述方法还包括:
    通过配置信息中的第一关键字结构中的内容,指示所述终端设备所要测量的测量参数。
  44. 根据权利要求36-42任一项所述的方法,其中,所述方法还包括:
    向终端设备发送至少一个测量参数中的至少两个测量参数,以及一组候选参考信号。
  45. 根据权利要求36-43任一项所述的方法,其中,所述方法还包括:
    向终端设备发送M个测量参数,以及M组候选参考信号;其中,M为大于等于2的整数;
    其中,所述不同的测量参数对应不同组候选参考信号。
  46. 根据权利要求36-45任一项所述的方法,其中,所述方法还包括:
    通过RRC为终端设备配置门限信息。
  47. 根据权利要求46所述的方法,其中,所述通过RRC为终端设备配置门限信息,包括:
    根据RRC配置的门限信息确定一个参考信号类型对应的门限信息,根据功率偏移信息调整其他参考信号类型对应的门限信息;
    或者,
    根据RRC配置的门限信息确定至少两个参考信号类型对应的门限信息。
  48. 一种终端设备,包括:
    第一通信单元,针对至少一个候选参考信号的至少一个测量参数进行测量,得到针对至少一个参考信号的至少一个测量参数的测量结果;
    第一处理单元,基于针对至少一个候选参考信号的所述至少一个测量参数的测量结果,从所述至少一个候选参考信号中进行参考信号选择;
    其中,所述测量参数中,至少包括第一类测量参数;所述第一类测量参数为:除L1-RSRP之外的、用于表示参考信号质量的参数。
  49. 根据权利要求48所述的终端设备,其中,所述第一通信单元,针对至少一个候选参考信号的所述第一类测量参数进行测量。
  50. 根据权利要求49所述的终端设备,其中,所述第一通信单元,接收网络侧配置的针对第一类测量参数的门限信息。
  51. 根据权利要求48所述的终端设备,其中,所述第一通信单元,接收网络侧发来的配置信息;
    所述第一处理单元,基于所述配置信息,确定所述终端设备所要测量的测量参数。
  52. 根据权利要求51所述的终端设备,其中,所述第一处理单元,基于所述配置信息中第一字段的内容,确定所述终端设备所要测量的测量参数。
  53. 根据权利要求51所述的终端设备,其中,所述第一处理单元,当所述配置信息中第一字段缺省时,确定所述终端设备所要测量的为第一目标测量参数;
    当所述第一字段不缺省时,确定所述终端设备所要测量的为第二目标测量参数;
    其中,所述第一目标测量参数与第二目标测量参数不同。
  54. 根据权利要求48所述的终端设备,其中,所述第一处理单元,通过所述配置信息中的门限信息,确定所述终端设备所要测量的测量参数。
  55. 根据权利要求54所述的终端设备,其中,所述第一处理单元,,包括以下至少之一:
    根据门限信息对应的参数名称、或者根据所述配置信息中的门限信息的位置,确定所述终端设备所要测量的目标测量参数;
    根据门限信息对应的数据类型,确定所述终端设备所要测量的目标测量参数。
  56. 根据权利要求48所述的终端设备,其中,所述第一处理单元,通过网络侧发来的配置信息中的第一关键字结构中的内容,确定所述终端设备所要测量的测量参数。
  57. 根据权利要求48-56任一项所述的终端设备,其中,所述第一通信单元,获取网络侧发来的至少一个测量参数中的至少两个测量参数,以及一组候选参考信号。
  58. 根据权利要求57所述的终端设备,其中,所述第一处理单元,从所述至少两个测量参数中,选择一个目标测量参数;
    根据选择的一个目标测量参数对应的门限信息、以及测量结果,从所述一组候选参考信号中选取参考信号。
  59. 根据权利要求57所述的方终端设备,其中,所述第一处理单元,根据所述至少两个测量参数的每一个测量参数对应的门限信息及测量结果,在所述一组候选参考信号中,从满足任一个测量参数对应门限信息的候选参考信号组成的并集中选取参考信号。
  60. 根据权利要求57所述的终端设备,其中,所述第一处理单元,根据所述至少两个目标测量参数的每一个测量参数对应的门限信息及测量结果,在所述一组候选参考信号中,从满足每一个测量参数对应门限信息的候选参考信号组成的交集中选取参考信号。
  61. 根据权利要求57所述的终端设备,其中,所述第一处理单元,基于至少两个测量参数的选取优先级,优先基于选取优先级高的测量参数的测量结果,根据选取优先级高的测量参数的门限信息以及测量结果从所述一组候选参考信号中,选取满足对应的门限信息的参考信号。
  62. 根据权利要求61所述的终端设备,其中,所述第一处理单元,当基于选取优先级高的测量参数的测量结果无法从所述一组候选参考信号中选取满足对应的门限信息的参考信号时,根据选取优先级低的测量参数的门限信息以及测量结果从所述一组候选参考信号中选取出满足对应的门限信息的参考信号。
  63. 根据权利要求57所述的终端设备,其中,所述第一处理单元,根据所述至少两个测量参数中的第一目标测量参数的测量结果及其对应的门限信息,从所述一组候选参考信号中选取第一候选子集;
    根据所述至少两个测量参数中的第二目标测量参数的测量结果及其对应的门限信息,从所述第一候选子集中选择参考信号;
    其中,所述第一目标测量参数的选取优先级高于第二目标测量参数。
  64. 根据权利要求63所述的终端设备,其中,所述第一处理单元,包括以下之一:
    根据所述至少两个测量参数中的第二目标测量参数的测量结果及其对应的门限信息,从所述第一候选子集中选取第二候选子集;从所述第二候选子集中选取参考信号;
    根据所述至少两个测量参数中的第二目标测量参数的测量结果及其对应的门限信息,从所述第一候选子集中选取质量最优的N个参考信号组成第三候选子集;从所述第三候选子集中选取参考信号;N为整数;
    根据所述至少两个测量参数中的第二目标测量参数的测量结果及其对应的门限信息,直接从所述第一候选子集中质量最优的一个参考信号。
  65. 根据权利要求57所述的终端设备,其中,所述第一处理单元,根据选取优先级逐个从所述至少两个测量参数中选择一个测量参数,基于选择的测量参数的测量结果及其对应的门限信息,从所述一组候选参考信号中选取参考信号,向网络发送与所述选取的参考信号对应的上行信号;检测是否接收到有效网络响应;
    若未接收到网络侧发来的有效网络响应,则继续从选取优先级较低的测量参数中选择下一个测量参数。
  66. 根据权利要求65所述的终端设备,其中,所述第一处理单元,判断至少两个测量参数是否全部选择过,若是,则重新开始根据选取优先级逐个从所述至少两个测量参数中提取测量参数,并执行基于所述测量参数进行参考信号的选取的处理;直至满足结束条件。
  67. 根据权利要求57所述的终端设备,其中,所述第一处理单元,根据选取优先级从所述至少两个测量参数中选择一个测量参数,基于所述选择的测量参数的测量结果及其对应的门限信息,从所述一组候选参考信号中选取参考信号,并向网络发送与所述选取的参考信号对应的上行信号;
    若未接收到网络侧发来的有效网络响应,则继续基于所述选择的测量参数进行选取参考信号并向网络发送所述选取参考信号对应的上行信号;
    直至根据规则停止所述处理且未能收到网络侧发来的有效网络响应,则从所述至少两个测量参数中选择另一个测量参数,继续进行参考信号选择。
  68. 根据权利要求61-67任一项所述的终端设备,其中,所述选取优先级,为:由网络侧配置、或者、由协议规定、或者、由所述终端设备决定。
  69. 根据权利要求48-56任一项所述的终端设备,其中,所述第一通信单元,获取网络侧发来的M个测量参数,以及M组候选参考信号;其中,M为大于等于2的整数;
    其中,所述不同的测量参数对应不同组候选参考信号。
  70. 根据权利要求69所述的终端设备,其中,所述第一处理单元,从所述M个测量参数中,选择一个目标测量参数;根据选择的一个目标测量参数对应的门限信息、以及测量结果,从所述目标测量参数所对应的候选参考信号组中选取参考信号。
  71. 根据权利要求69所述的终端设备,其中,所述第一处理单元,根据所述M个测量参数的每一个测量参数对应的门限信息及测量结果,在各自对应的一组候选参考信号中,从满足任一个测量参数对应的参考信号组成的并集中选取参考信号。
  72. 根据权利要求69所述的终端设备,其中,所述第一处理单元,根据M个测量参数的选取优先级从高到低的顺序,依次选取测量参数;根据选取的测量参数对应的门限信息及测量结果,判 断是否能够从其对应的一组候选参考信号中,选取满足条件的参考信号;若能够选取到满足条件的参考信号,则完成参考信号选择;否则,重新选取测量参数。
  73. 根据权利要求69所述的终端设备,其中,所述第一处理单元,根据选取优先级逐个从所述M个测量参数中选择一个测量参数,基于选择的一个测量参数的测量结果及其对应的门限信息,从所述选择的测量参数所对应的一组候选参考信号中选取参考信号,并向网络发送所述选取的候选参考信号对应的上行信号;检测是否接收到有效网络响应;若未接收到网络侧发来的有效网络响应,则继续从选取优先级较低的测量参数中选择下一个测量参数。
  74. 根据权利要求73所述的终端设备,其中,所述第一处理单元,判断M个测量参数是否全部选择完成,若是,则重新开始根据选取优先级逐个从所述至少两个测量参数中提取测量参数,并执行基于所述测量参数进行参考信号的选取的处理;直至满足结束条件。
  75. 根据权利要求69所述的终端设备,其中,所述第一处理单元,根据选取优先级从所述M个测量参数中选择一个测量参数,基于选取的一个测量参数的测量结果及其对应的门限信息,从其对应的一组候选参考信号中选取参考信号,向网络发送所述选取的参考信号对应的上行信号;检测是否接收到有效网络响应;若未接收到网络侧发来的有效网络响应,则基于所述选择的这个测量参数进行选取参考信号并向网络发送所述选取的参考信号对应的上行信号的处理;直至根据规则停止所述处理且未能收到网络侧发来的有效网络响应,则从所述至少两个测量参数中选择另一个测量参数,继续在所述另一个测量参数对应的候选参考信号组中进行参考信号选择。
  76. 根据权利要求68-75任一项所述的终端设备,其中,所述M组候选参考信号的优先级的确定方式为以下之一:由网络侧配置、由参考信号的类型确定、由协议规定、由其对应的测量参数确定、由其对应的门限信息确定。
  77. 根据权利要求76所述的终端设备,其中,所述第一处理单元,根据网络侧发送的显示指示进行配置;
    或者,
    根据配置信息中的每一组候选参考信号所在域的位置确定。
  78. 根据权利要求76所述的终端设备,其中,所述第一处理单元,根据网络侧配置的参考信号的类型与优先级之间的对应关系确定;
    或者,
    根据协议规定的参考信号的类型与优先级之间的对应关系确定。
  79. 根据权利要求57-78任一项所述的终端设备,其中,所述第一处理单元,由RRC配置门限信息。
  80. 根据权利要求79所述的终端设备,其中,所述第一处理单元,根据RRC配置的门限信息确定一个参考信号类型对应的门限信息,根据功率偏移信息调整其他参考信号类型对应的门限信息;
    或者,
    根据RRC配置的门限信息确定至少两个参考信号类型对应的门限信息。
  81. 根据权利要求48-80任一项所述的终端设备,其中,所述参考信号为以下至少之一:同步信号块SSB、信道状态信息参考信号CSI-RS。
  82. 根据权利要求48-81任一项所述的终端设备,其中,所述第一类测量参数,包括以下至少之一:L1-SINR、L1-RSRQ。
  83. 一种网络设备,包括:
    第二通信单元,为终端设备配置针对至少一个参考信号的至少一个测量参数;
    其中,所述测量参数中,至少包括第一类测量参数;所述第一类测量参数为:除L1-RSRP之外的、用于表示参考信号质量的参数。
  84. 根据权利要求83所述的网络设备,其中,所述第二通信单元,配置针对第一类测量参数的门限信息。
  85. 根据权利要求83所述的网络设备,其中,所述第二通信单元,向终端设备发送配置信息;基于所述配置信息,指示所述终端设备所要测量的测量参数。
  86. 根据权利要求85所述的网络设备,其中,所述第二通信单元,基于所述配置信息中第一字段的内容,指示所述终端设备所要测量的测量参数。
  87. 根据权利要求85所述的网络设备,其中,所述第二通信单元,当所述配置信息中第一字段缺省时,指示所述终端设备所要测量的为第一目标测量参数;当所述第一字段不缺省时,指示所述终端设备所要测量的为第二目标测量参数;
    其中,所述第一目标测量参数与第二目标测量参数不同。
  88. 根据权利要求85所述的网络设备,其中,所述第二通信单元,通过所述配置信息中的门限信息,指示所述终端设备所要测量的测量参数。
  89. 根据权利要求88所述的网络设备,其中,所述第二通信单元,包括以下至少之一:
    根据门限信息对应的参数名称、或者根据所述配置信息中的门限信息的位置,指示所述终端设备所要测量的目标测量参数;
    根据门限信息对应的数据类型,指示所述终端设备所要测量的目标测量参数。
  90. 根据权利要求88所述的网络设备,其中,所述第二通信单元,通过配置信息中的第一关键字结构中的内容,指示所述终端设备所要测量的测量参数。
  91. 根据权利要求83-90任一项所述的网络设备,其中,所述第二通信单元,向终端设备发送至少一个测量参数中的至少两个测量参数,以及一组候选参考信号。
  92. 根据权利要求83-90任一项所述的网络设备,其中,所述第二通信单元,向终端设备发送M个测量参数,以及M组候选参考信号;其中,M为大于等于2的整数;
    其中,所述不同的测量参数对应不同组候选参考信号。
  93. 根据权利要求83-92任一项所述的网络设备,其中,所述第二通信单元,通过RRC为终端设备配置门限信息。
  94. 根据权利要求93所述的网络设备,其中,所述第二通信单元,根据RRC配置的门限信息确定一个参考信号类型对应的门限信息,根据功率偏移信息调整其他参考信号类型对应的门限信息;
    或者,
    根据RRC配置的门限信息确定至少两个参考信号类型对应的门限信息。
  95. 一种终端设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,
    其中,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1-34任一项所述方法的步骤。
  96. 一种网络设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,
    其中,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求35-46任一项所述方法的步骤。
  97. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1-34中任一项所述的方法。
  98. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求35-46中任一项所述的方法。
  99. 一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1-46任一项所述方法的步骤。
  100. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1-46中任一项所述的方法。
  101. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1-46中任一项所述的方法。
PCT/CN2018/100097 2018-08-10 2018-08-10 一种参考信号测量配置方法、终端设备及网络设备 WO2020029302A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201880096350.9A CN112534738B (zh) 2018-08-10 2018-08-10 一种参考信号测量配置方法、终端设备及网络设备
KR1020217006314A KR20210043597A (ko) 2018-08-10 2018-08-10 기준 신호 측정 구성 방법, 단말 기기 및 네트워크 기기
PCT/CN2018/100097 WO2020029302A1 (zh) 2018-08-10 2018-08-10 一种参考信号测量配置方法、终端设备及网络设备
AU2018435988A AU2018435988A1 (en) 2018-08-10 2018-08-10 Reference signal measurement configuration method, terminal device, and network device
EP18929365.7A EP3832897A4 (en) 2018-08-10 2018-08-10 REFERENCE SIGNAL MEASUREMENT CONFIGURATION PROCEDURE, TERMINAL DEVICE AND NETWORK DEVICE
TW108128382A TW202010353A (zh) 2018-08-10 2019-08-08 一種參考訊號測量配置方法、終端設備及網路設備
US17/161,239 US20210160714A1 (en) 2018-08-10 2021-01-28 Method for beam reference signal measurement configuration, terminal device, and computer-readable storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/100097 WO2020029302A1 (zh) 2018-08-10 2018-08-10 一种参考信号测量配置方法、终端设备及网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/161,239 Continuation US20210160714A1 (en) 2018-08-10 2021-01-28 Method for beam reference signal measurement configuration, terminal device, and computer-readable storage medium

Publications (1)

Publication Number Publication Date
WO2020029302A1 true WO2020029302A1 (zh) 2020-02-13

Family

ID=69414386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100097 WO2020029302A1 (zh) 2018-08-10 2018-08-10 一种参考信号测量配置方法、终端设备及网络设备

Country Status (7)

Country Link
US (1) US20210160714A1 (zh)
EP (1) EP3832897A4 (zh)
KR (1) KR20210043597A (zh)
CN (1) CN112534738B (zh)
AU (1) AU2018435988A1 (zh)
TW (1) TW202010353A (zh)
WO (1) WO2020029302A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021179181A1 (zh) * 2020-03-10 2021-09-16 Oppo广东移动通信有限公司 测量方法、装置及设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11490275B2 (en) * 2019-01-03 2022-11-01 Ofinno, Llc Beam management and beam failure recovery in a radio system
CN113767661A (zh) * 2019-05-03 2021-12-07 索尼集团公司 用于波束控制信令的方法、网络节点和无线设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104041107A (zh) * 2011-11-17 2014-09-10 高通股份有限公司 用于mbms***中的物理层测量的方法和装置
US20180083680A1 (en) * 2016-09-21 2018-03-22 Samsung Electronics Co., Ltd. Method and apparatus for beam management reference signals in wireless communication systems
WO2018143697A1 (en) * 2017-02-01 2018-08-09 Samsung Electronics Co., Ltd. Method and apparatus for channel state information report in wireless communication system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103535065B (zh) * 2012-05-11 2017-11-28 华为技术有限公司 测量上报的方法、网络设备和用户设备
WO2014017810A1 (ko) * 2012-07-23 2014-01-30 엘지전자 주식회사 무선 통신 시스템에서 결합된 측정 보고 방법과 이를 지원하는 장치
WO2014110758A1 (en) * 2013-01-17 2014-07-24 Broadcom Corporation Configurable reference signal type for rrm/rlm measurement
US20160285660A1 (en) * 2015-03-27 2016-09-29 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods for selecting beam-reference signals for channel-state information reference-signal transmission
EP3358752A1 (en) * 2015-09-25 2018-08-08 Huawei Technologies Co., Ltd. Method and apparatus for selecting a resource, and electronic device
US11190327B2 (en) * 2016-04-15 2021-11-30 Apple Inc. Frequency tracking for beamformed systems
WO2018005014A1 (en) * 2016-07-01 2018-01-04 Intel Corporation Interference aware beam selection for nr (new radio)
CN108696889B (zh) * 2017-03-30 2021-09-10 财团法人工业技术研究院 波束测量和反馈的方法及使用所述方法的基站与用户设备
CN110582947B (zh) * 2017-05-01 2023-08-01 株式会社Ntt都科摩 用户终端以及无线通信方法
MX2021000729A (es) * 2018-07-20 2021-03-26 Ntt Docomo Inc Terminal de usuario y estacion base.
WO2020026454A1 (ja) * 2018-08-03 2020-02-06 株式会社Nttドコモ ユーザ端末及び無線通信方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104041107A (zh) * 2011-11-17 2014-09-10 高通股份有限公司 用于mbms***中的物理层测量的方法和装置
US20180083680A1 (en) * 2016-09-21 2018-03-22 Samsung Electronics Co., Ltd. Method and apparatus for beam management reference signals in wireless communication systems
WO2018143697A1 (en) * 2017-02-01 2018-08-09 Samsung Electronics Co., Ltd. Method and apparatus for channel state information report in wireless communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3832897A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021179181A1 (zh) * 2020-03-10 2021-09-16 Oppo广东移动通信有限公司 测量方法、装置及设备

Also Published As

Publication number Publication date
TW202010353A (zh) 2020-03-01
KR20210043597A (ko) 2021-04-21
EP3832897A4 (en) 2021-07-28
CN112534738B (zh) 2022-09-30
EP3832897A1 (en) 2021-06-09
CN112534738A (zh) 2021-03-19
AU2018435988A1 (en) 2021-03-18
US20210160714A1 (en) 2021-05-27

Similar Documents

Publication Publication Date Title
WO2020001502A1 (zh) 一种测量方法和测量装置
US20210160714A1 (en) Method for beam reference signal measurement configuration, terminal device, and computer-readable storage medium
WO2019242154A1 (zh) 信息测量方法、终端设备和网络设备
WO2019237241A1 (zh) 一种下行信号的传输方法及终端设备
WO2019242712A1 (zh) 一种能力交互方法及相关设备
WO2020029160A1 (zh) 信号上报的方法、终端设备和网络设备
WO2019242419A1 (zh) 一种bwp切换方法及装置、终端设备
US11706775B2 (en) Wireless communication method and device
KR20220051303A (ko) 셀 선택의 방법, 단말기 디바이스 및 네트워크 디바이스
WO2020061850A1 (zh) 通信方法、终端设备和网络设备
US12035260B2 (en) Wireless communication method, network device, and terminal device
WO2020143055A1 (zh) 一种测量配置方法及装置、终端
WO2020029286A1 (zh) 一种信号传输方法及装置、终端、网络设备
WO2019241969A1 (zh) 配置测量信息的方法、终端设备和网络设备
KR20210057799A (ko) 사이드링크에서 전송 모드를 결정하는 방법, 단말 장치와 네트워크 장치
WO2020029201A1 (zh) 信号上报的方法、终端设备和网络设备
WO2019233396A1 (zh) 一种终端能力信息的交互方法、终端设备及网络设备
WO2020113520A1 (zh) 用于建立连接的方法、网络设备和终端设备
WO2020000174A1 (zh) 一种核心网选择方法及装置、终端设备、网络设备
US20210153084A1 (en) Wireless communication method, terminal device, and network device
US20210250810A1 (en) Data replication transmission configuration method, apparatus, chip, and computer program
WO2020051903A1 (zh) 一种链路恢复过程的处理方法及装置、终端
WO2021031189A1 (zh) 无线通信方法、终端设备和网络设备
WO2020010612A1 (zh) 波束失败恢复实现方法、装置、芯片及计算机程序
US20210282155A1 (en) Method and apparatus for information generation, and computer-readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929365

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021506975

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217006314

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018929365

Country of ref document: EP

Effective date: 20210303

ENP Entry into the national phase

Ref document number: 2018435988

Country of ref document: AU

Date of ref document: 20180810

Kind code of ref document: A