WO2020019234A1 - 一种多重纤维混合保暖絮片及其制备方法与应用 - Google Patents

一种多重纤维混合保暖絮片及其制备方法与应用 Download PDF

Info

Publication number
WO2020019234A1
WO2020019234A1 PCT/CN2018/097190 CN2018097190W WO2020019234A1 WO 2020019234 A1 WO2020019234 A1 WO 2020019234A1 CN 2018097190 W CN2018097190 W CN 2018097190W WO 2020019234 A1 WO2020019234 A1 WO 2020019234A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
flakes
warm
fleece
polyester
Prior art date
Application number
PCT/CN2018/097190
Other languages
English (en)
French (fr)
Inventor
孟凯
蒋耀兴
朱海燕
徐文静
王洪亮
Original Assignee
南通纺织丝绸产业技术研究院
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通纺织丝绸产业技术研究院, 苏州大学 filed Critical 南通纺织丝绸产业技术研究院
Publication of WO2020019234A1 publication Critical patent/WO2020019234A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/02Cotton wool; Wadding
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/425Cellulose series
    • D04H1/4258Regenerated cellulose series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4391Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D2400/00Functions or special features of garments
    • A41D2400/10Heat retention or warming

Definitions

  • the invention relates to a multi-fiber mixed warm-keeping flake, a preparation method and application thereof, and belongs to the technical field of textile materials.
  • the raw materials of traditional flakes are mainly silk, wool, cotton, polyester, etc. Most of them are single material flakes, and the performance is relatively obvious: silk is gentle, comfortable, and has health effects on the human body. Production The process is pollution-free, but has poor durability and is expensive. Wool fleece has excellent elasticity and warmth, but wool has severe flocking and is easily deformed. The shortage of wool fiber resources has also kept its price high. Cotton fiber has the advantages of good thermal insulation, less static electricity, and no irritation to the human body, but the quilt is easy to settle and mildew.
  • Viscose fiber is a kind of natural biodegradable, non-irritating to the skin, high hygroscopicity, soft hand, silky smooth. However, the bulkiness of the viscose fiber is too low, and the thermal insulation performance cannot be improved.
  • the present invention uses viscose fiber as a main raw material, and mixes two types of differentiated polyester fibers to develop a new type of thermal fleece.
  • a first object of the present invention is to provide a multi-fiber mixed warm fleece, which is composed of 60 to 90% viscose fiber, 0 to 30% fine denier polyester fiber, and 10 to 40% three-dimensional crimped polyester fiber by weight.
  • it is composed of 60 to 70% viscose fiber, 10 to 30% fine denier polyester fiber, and 20 to 40% three-dimensional crimped polyester fiber by weight.
  • the viscose fiber has a fiber fineness of 1.67 to 2.78 dtex and a length of 3.8 to 10 cm.
  • the fine denier polyester has a fiber fineness of 0.74 to 2.78 dtex and a length of 5.1 to 10 cm.
  • the three-dimensional crimped polyester has a fiber fineness of 1.33 to 3.33 dtex and a length of 4 to 9 cm.
  • the second object of the present invention is to provide the method for preparing the multi-fiber mixed thermal insulation flakes, which includes the following steps: fiber mixed raw material ⁇ twice opening ⁇ cotton feeding ⁇ carding ⁇ laying ⁇ feeding ⁇ pre-needling ⁇ Needle-punching ⁇ slicing to obtain the multi-fiber mixed warm flock.
  • the method specifically includes the following steps:
  • step (2) feeding the fiber raw material obtained in step (1) into the first opening machine for opening, and then feeding the raw material that has been opened once into the second opening machine for opening again;
  • step (3) feeding the fiber raw material that has been opened twice in step (2) into a carding machine and carding to form a fiber web fiber;
  • step (3) rearrange the fiber web fibers in step (3) with a messy stick, so that the fiber web fibers form a crisscross structure with 12 orientations;
  • step (4) The fiber web treated in step (4) is sent from a slant curtain to a screen laying machine for screen laying to obtain a fiber flake;
  • Pre-puncture needles and lower puncture needles are obtained from the fiber flakes obtained in step (5), and then sliced to obtain the warm flocks.
  • a third object of the present invention is to provide the application of the multi-fiber mixed warm fleece in the textile industry.
  • a fourth object of the present invention is to provide a warm clothing, which is prepared from the multi-fiber mixed warm fleece.
  • the beneficial effect of the present invention is that the multi-fiber mixed warm fleece prepared by the present invention has excellent taking performance, can well meet the basic performance requirements of the warm fleece, and has high physiological comfort.
  • the multi-fiber mixed batting sheet of the present invention by increasing the content of the three-dimensional crimped polyester fiber and the fine-denier polyester fiber, the bulkiness, air permeability, and heat retention are enhanced, and the production cost is further reduced.
  • Figure 1 shows the variation of the thickness of different flakes
  • Figure 2 shows the change law of the fluff of different flakes
  • Figure 3 shows the variation of air permeability of different flakes
  • Figure 4 shows the variation of moisture permeability of different flocs
  • Figure 5 shows the change in warmth retention of different flakes.
  • Thickness test According to GB / T 3820-1997 "Determination of the thickness of textiles and textile products", the thickness of the flakes is measured. The sample size is 20cm ⁇ 20cm, constant pressure (80 ⁇ 2) g, and the thickness value T 0 is read after pressing for 10s. Each sample is measured 3 times and the average value is taken.
  • Air permeability test According to GB / T 5453-1997 "Determination of air permeability of textile fabrics", test the air permeability of the flakes, the test area of the sample is 20cm 2 , the pressure difference is 100Pa, and each sample is measured 3 times. take the average.
  • Looseness test According to the provisions of FZ / T 01051.1-1998 "Compression properties of textile materials and textile products Part 1: Determination of durable compression characteristics", measure the loft of the floc. Sample size 20cm ⁇ 20cm, weigh each The mass of the sample G, based on the apparent thickness of the flakes, calculates the bulkiness B of the sample, see formula (1)
  • Test of compression rate and compression recovery rate According to the provisions of GB / T 22796-2009 "quilt and quilt cover", determine the compression rate and compression recovery rate of the flakes. A sample with a size of 20 cm ⁇ 20 cm and a composition mass of about 60 g was tested in three groups and the average value was taken.
  • Moisture permeability test Refer to GB / T 12704.2-2009 "Test Method for Moisture Permeability of Textile Fabrics-Part 2: Evaporation Method" to determine the moisture permeability of the flakes.
  • the sample and the moisture-permeable cup were sealed from the side with transparent tape, and held by a rubber band to form a test assembly. After 2h equilibration, weigh one by one according to the sample number, and after the test time of 1h, weigh in the same order. The test results are expressed as the average of three samples.
  • Thermal insulation test According to the provisions of GB 11048-89 "Test Method for Thermal Insulation Performance of Textiles", determine the Crowe value of the flakes. The sample size is 30cm ⁇ 30cm, each sample is measured 3 times, and the average value is taken.
  • viscose fiber (1.35dtex, 3.8mm), fine denier polyester (1.08dtex, 6.1mm), and three-dimensional crimped polyester (3.60dtex, 64mm).
  • step (2) The fiber raw material obtained in step (1) is fed into the first opening machine (needle plate opening) through an automatic cotton feeding machine for opening, and then the raw material that has been opened once is fed into the photoelectric feeding cotton by a fan. Machine, feeding the second opening machine for opening again;
  • step (3) The fiber raw material that has been opened twice in step (2) is sent into an automatic cotton feeding box by a fan, and fed into an 1850 double-doffer high-speed carding machine to card to form cotton web fibers;
  • step (3) rearrange the fiber web fibers in step (3) with a messy stick, so that the fiber web fibers form a crisscross structure with 12 orientations;
  • step (4) The fiber web treated in step (4) is sent from a slanted curtain to a net laying machine for net laying, and the net laying machine is evenly stacked to obtain a required square gram weight to obtain a fiber flake;
  • step (5) The fiber flakes obtained in step (5) are conveyed into the triangular hair guide curtain through a flat curtain to perform a pre-puncture needle, and the pre-puncture is performed into a lower needling machine to perform a bottom needle.
  • viscose fiber By weight, 60% viscose fiber, 20% fine denier polyester fiber, and 20% three-dimensional crimped polyester fiber were weighed. Among them, viscose fiber (1.35dtex, 3.8mm), fine denier polyester (1.08dtex, 6.1mm), and three-dimensional crimped polyester (3.60dtex, 64mm).
  • the preparation method of the thermal insulation flakes is the same as that in Example 1, and a multiple fiber mixed thermal insulation flakes 2 are prepared.
  • viscose fiber 14% fine denier polyester fiber, and 8% three-dimensional crimped polyester fiber were weighed. Among them, viscose fiber (1.35dtex, 3.8mm), fine denier polyester (1.08dtex, 6.1mm), and three-dimensional crimped polyester (3.60dtex, 64mm).
  • the preparation method of the thermal insulation flakes is the same as that in Example 1, and a multiple fiber mixed thermal insulation flakes 3 are prepared.
  • the thickness of the flakes is not the same under the same areal density.
  • the thickness of the three-dimensional curled polyester fleece is the largest, and the thickness values of the multi-fiber mixed flakes 1, 2, and 3. Both are small, close to cotton fleece, and the thickness of silk and wool fleece is centered.
  • the thickness of the flakes gradually increases with the increase of the areal density.
  • the multi-fiber mixed batting sheet 3 has a low fluffy degree, which is close to that of a cotton batting sheet.
  • the fluff of the blob 2 is improved.
  • the thermal insulation flakes of the same fiber material as the surface density of the flakes increases, the fluffiness of the flakes decreases.
  • Example 6 Test of compression rate and compression recovery rate of warm flakes
  • the compression rate of the seven kinds of flakes is more than 45%. According to the provisions of GB / T 22796-2009 "quilt and quilt cover", they are superior products. Compression ratio is an important indicator to characterize the fluffiness of the flakes.
  • the compression ratio of three-dimensional curled polyester flakes is the best.
  • the compression ratio of multifiber mixed flakes 1 and 2 is better than that of mulberry silk and cotton fleece.
  • the compression ratio is low.
  • the compression recovery rate of the five types of flakes all reached more than 75%, which are also superior products.
  • the compression recovery rate of the three-dimensional curled polyester flakes is the best, followed by the multi-fiber mixed flakes 1, 2.
  • the compression recovery rate of the flakes reflects the elastic recovery characteristics of the flakes and is an important indicator of the performance of the product.
  • the flakes have good compression resilience and can provide long-lasting thermal insulation performance.
  • the addition of three-dimensional curly polyester gives the flakes a three-dimensional spatial structure and increases the elasticity and fatigue resistance of the flakes.
  • Example 7 Air permeability test of warm flakes
  • the wool fibers have natural curl, there are many gaps between the fibers, and the flake structure is fluffy. Under certain pressure, the air flow is easier to pass through the gaps in the flakes, so it is breathable. large.
  • the fibers In the three-dimensional crimped polyester, the fibers have long-lasting natural crimp and three-dimensional space structure, and the viscose fiber has good air permeability, which is beneficial to the physiological cycle of the human body. Therefore, the multi-fiber mixed flakes 1, 2, and 3 are obtained Large air permeability.
  • the denser the flakes and the air permeability gradually decrease.
  • Example 8 Test of moisture permeability of warm flakes
  • the moisture permeability test was performed on the multiple fiber mixed flakes prepared in Examples 1 to 3, as well as silk flakes, wool fleece, cotton fleece, and three-dimensional curly polyester fleece under different areal density conditions. The results are shown in Figure 4. Show.
  • the moisture permeability of mulberry silk flakes is the best, followed by the multi-fiber mixed flock 3, and the multi-fiber mixed flakes 1 and 2 also have relatively good moisture permeability.
  • the viscose fiber has good hygroscopicity, as a thermal fleece, its hygroscopicity best meets the physiological requirements of human skin.
  • the moisture permeability of the flakes has a great relationship with the density of the flakes, the moisture absorption of the fibers, and the gaps between the fibers. With the increase of the surface density of the flakes, the more contact points between the fibers, the more the water molecules are transmitted to the channel. The bigger the obstacle. Therefore, the moisture permeability is significantly reduced.
  • the thermal insulation of the flakes is related to the comprehensive thermal resistance of the fiber assembly.
  • the multi-fiber mixed flakes prepared in Examples 1 to 3 and silk fleece fleece fleece fleece fleece fleece fleece flakes and three-dimensional curly polyester fleece were tested for thermal insulation. The results are shown in Figure 5. Show.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

一种多重纤维混合保暖絮片及其制备方法与应用,所述多重纤维混合保暖絮片,按重量计,由60~90%粘胶纤维、0~30%细旦涤纶纤维和10~40%三维卷曲涤纶纤维混合,由开松机将纤维原料经过两次开松混合,然后喂入梳理机梳理后,纤维网经杂乱棍作用,纤维获得重新排列,使其纵横交错12方位交叉,再导入预针刺机预针刺和下针刺机进行底面针刺。多重纤维混合保暖絮片服用性能优良,能很好地满足保暖絮片基本性能要求,并且有较高的生理舒适性。同时,多重纤维混合絮片在厚度较低的基础上,通过增加三维卷曲涤纶纤维和细旦涤纶纤维的含量,加强了蓬松性、透气性和保暖性,进一步降低了生产成本。

Description

一种多重纤维混合保暖絮片及其制备方法与应用 技术领域
本发明涉及一种多重纤维混合保暖絮片及其制备方法与应用,属于纺织材料技术领域。
背景技术
随着人们的生活质量、消费要求不断提高,纺织科学技术也在不断发展,各种具备保暖、保健、可降解等功能的絮片层出不穷。絮片是纺织产业的重要辅料,传统絮片的原料主要为蚕丝、羊毛、棉、涤纶等,多为单一材料絮片,性能优劣比较明显:蚕丝轻柔、舒适,对人体具有保健功效,生产过程无污染,但耐久性较差且价格昂贵。羊毛絮片具有优良的弹性和保暖性,但羊毛具有严重的缩绒性,易变形,羊毛纤维资源的紧缺也使其价格一直居高不下。棉纤维具备良好的保暖性,静电少、对人体无刺激等优点,但是棉被容易板结,霉变。
粘胶纤维,是一种可自然生物降解,对皮肤亲和无刺激,吸湿性较高,且手感柔软,具有丝一般的光滑。但是粘胶纤维的蓬松度过低,保温性能得不到提升。
发明内容
为解决上述问题,本发明以粘胶纤维为主要原料,混合两种差别化涤纶纤维,开发出一种新型的保暖絮片。
本发明的第一个目的是提供一种多重纤维混合保暖絮片,按重量计,由60~90%粘胶纤维、0~30%细旦涤纶纤维和10~40%三维卷曲涤纶纤维组成。
在本发明的一种实施方式中,按重量计,由60~70%粘胶纤维、10~30%细旦涤纶纤维和20~40%三维卷曲涤纶纤维组成。
在本发明的一种实施方式中,粘胶纤维的纤维细度为1.67~2.78dtex,长度 为3.8~10cm。
在本发明的一种实施方式中,细旦涤纶的纤维细度为0.74~2.78dtex,长度为5.1~10cm。
在本发明的一种实施方式中,三维卷曲涤纶的纤维细度为1.33~3.33dtex,长度为4~9cm。
本发明的第二个目的是提供所述的多重纤维混合保暖絮片的制备方法,包括如下步骤:纤维混合原料→两次开松→给棉→梳理→铺网→喂入→预针刺→下针刺→切片,得到所述的多重纤维混合保暖絮片。
在本发明的一种实施方式中,所述的方法,具体包括如下步骤:
(1)将粘胶纤维、细旦涤纶和三维卷曲涤纶混合均匀得到纤维原料;
(2)将步骤(1)得到的纤维原料喂入第一道开松机进行开松,然后将经过一次开松的原料喂入第二道开松机进行再次开松;
(3)将经过步骤(2)两次开松的纤维原料喂入梳理机进行梳理形成纤维网纤维;
(4)采用杂乱棍将步骤(3)的纤维网纤维重新排列,使纤维网纤维形成纵横交错12方位交叉结构;
(5)将步骤(4)处理后的纤维网由斜帘送入铺网机进行铺网,得到纤维絮片;
(6)将步骤(5)得到纤维絮片进行预刺针和下刺针,然后切片得到所述的保暖絮片。
本发明的第三个目的是提供所述多重纤维混合保暖絮片在纺织业中的应用。
本发明的第四个目的是提供一种保暖衣服,由所述的多重纤维混合保暖絮片制备得到。
本发明的有益效果:本发明制备得到的多重纤维混合保暖絮片服用性能优良,能很好地满足保暖絮片基本性能要求,并且有较高的生理舒适性。同时,本发明的多重纤维混合絮片在厚度较低的基础上,通过增加三维卷曲涤纶纤维 和细旦涤纶纤维的含量,加强了蓬松性、透气性和保暖性,进一步降低了生产成本。
附图说明
图1为不同絮片厚度变化规律;
图2为不同絮片蓬松度变化规律;
图3为不同絮片透气率变化规律;
图4为不同絮片透湿性变化规律;
图5为不同絮片保暖性变化规律。
具体实施方式
为了更好地理解发明的实质,下面通过实施例来详细说明发明的技术内容。
各项性能测试均按照国家标准的相关规定,在标准大气条件下进行测试。恒温恒湿实验室的温度20℃±2℃,相对湿度65%±2%。
厚度测试:根据GB/T 3820-1997《纺织品和纺织制品厚度的测定》的规定,测量絮片的厚度。试样尺寸20cm×20cm,恒定压力(80±2)g,加压10s后读取厚度值T 0,每个试样测3次,取平均值。
透气率测试:根据GB/T 5453-1997《纺织品织物透气性的测定》的规定,测试絮片的透气率,试样测试面积为20cm 2,压差为100Pa,每个试样测3次,取平均值。
蓬松度测试:根据FZ/T 01051.1-1998《纺织材料和纺织制品压缩性能第1部分:耐久压缩特性的测定》的规定,测定絮片的蓬松度,试样尺寸20cm×20cm,称取每个试样的质量G,根据絮片的表观厚度,计算试样的蓬松度B,见公式(1)
B=0.1T 0·A/G……………………(1)
式中:B----蓬松度,cm 3/g;T 0----表观厚度,mm;A----试样面积,cm 2;G----试样质量,g。
压缩率、压缩回复率测试:根据GB/T 22796—2009《被、被套》的规定,测定絮片的压缩率和压缩回复率。试样尺寸为20cm×20cm,组成质量约为60 g的一组试样,共测试三组,取平均值。
透湿性测试:参照GB/T 12704.2-2009《纺织品织物透湿性试验方法第2部分:蒸发法》的规定,测定絮片的透湿率。选取直径82mm、高80mm的透湿杯,用量筒精确量取与实验条件温度相同的蒸馏水,注入清洁、干燥的透湿杯内,使水距试样下表面位置10mm左右,将试样放置在透湿杯上,用透明胶带从侧面封住试样和透湿杯,并用橡皮筋勒住,组成试验组合体。经过2h平衡后,按试样编号逐一称量,经过试验时间1h后,以同一顺序称量。试验结果以3块试样的平均值表示。
保暖性测试:根据GB 11048-89《纺织品保温性能试验方法》的规定,测定絮片的克罗值。试样尺寸为30cm×30cm,每个试样测3次,取平均值。
实施例1:保暖絮片的制备
按重量计,称量65%粘胶纤维、10%细旦涤纶纤维和25%三维卷曲涤纶纤维。其中,粘胶纤维(1.35dtex,3.8mm),细旦涤纶(1.08dtex,6.1mm),三维卷曲涤纶(3.60dtex,64mm)。
按照:纤维混合原料→开松(两次)→给棉→梳理→铺网→喂入→预针刺→下针刺→切片的方式,具体按照如下步骤:
(1)将称量得到的粘胶纤维、细旦涤纶和三维卷曲涤纶混合均匀得到纤维原料;
(2)将步骤(1)得到的纤维原料通过自动喂棉机喂入第一道开松机(针板开松)进行开松,然后将经过一次开松的原料由风机送入光电喂棉机,喂入第二道开松机进行再次开松;
(3)将经过步骤(2)两次开松的纤维原料由风机送入自动喂棉箱,喂入1850双道夫高速梳理机进行梳理形成棉网纤维;
(4)采用杂乱棍将步骤(3)的纤维网纤维重新排列,使纤维网纤维形成纵横交错12方位交叉结构;
(5)将步骤(4)处理后的纤维网由斜帘送入铺网机进行铺网,铺网机均匀平铺叠加使其得出所需的平方克重,得到纤维絮片;
(6)将步骤(5)得到纤维絮片经过平帘输送入三角形导毛帘进行预刺针,预刺完进入下刺针机进行底面刺针。
絮片上下面针刺好后进入切断机按照所需尺寸切断后,得到多重纤维混合保暖絮片1。
实施例2:保暖絮片的制备
按重量计,称量60%粘胶纤维、20%细旦涤纶纤维和20%三维卷曲涤纶纤维。其中,粘胶纤维(1.35dtex,3.8mm),细旦涤纶(1.08dtex,6.1mm),三维卷曲涤纶(3.60dtex,64mm)。
保暖絮片的制备方法与实施例1相同,制备得到多重纤维混合保暖絮片2。
实施例3:保暖絮片的制备
按重量计,称量70%粘胶纤维、22%细旦涤纶纤维和8%三维卷曲涤纶纤维。其中,粘胶纤维(1.35dtex,3.8mm),细旦涤纶(1.08dtex,6.1mm),三维卷曲涤纶(3.60dtex,64mm)。
保暖絮片的制备方法与实施例1相同,制备得到多重纤维混合保暖絮片3。
实施例4:保暖絮片厚度测试
对实施例1~3制备得到的多重纤维混合絮片以及桑蚕丝絮片、羊毛絮片、棉絮片、三维卷曲涤纶絮片进行厚度测试,结果如图1所示。
由图1可知,对于不同纤维原料的保暖絮片,在相同面密度下,絮片厚度并不相同,其中三维卷曲涤纶絮片的厚度最大,多重纤维混合絮片1、2、3的厚度值都较小,与棉絮片接近,桑蚕丝和羊毛絮片的厚度居中。对于同种纤维原料保暖絮片,絮片厚度随着面密度的增加而逐渐增加。
实施例5:保暖絮片蓬松度测试
在不同面密度实验条件下,对实施例1~3制备得到的多重纤维混合絮片以及桑蚕丝絮片、羊毛絮片、棉絮片、三维卷曲涤纶絮片进行蓬松度测试,结果如图2所示。
由图2可知:在相同面密度的实验条件下,多重纤维混合絮片3的蓬松度较低,与棉絮片接近,三维卷曲涤纶的含量增加的多重纤维混合保暖絮片1和 多重纤维混合保暖絮片2的蓬松度得到改善。对于同种纤维原料的保暖絮片,随着絮片面密度增加,絮片的蓬松度呈减小的变化趋势。
实施例6:保暖絮片压缩率和压缩回复率测试
对实施例1~3制备得到的多重纤维混合絮片以及桑蚕丝絮片、羊毛絮片、棉絮片、三维卷曲涤纶絮片进行压缩率和压缩回复率进行测试,结果如表1所示。
表1 絮片压缩率、压缩回复率测试结果
Figure PCTCN2018097190-appb-000001
由表1可知:七种絮片的压缩率都在45%以上,根据GB/T 22796-2009《被、被套》的规定,属于优等品。压缩率是表征絮片蓬松程度的一个重要指标,三维卷曲涤纶絮片的压缩率最好,多重纤维混合絮片1、2的压缩率优于桑蚕丝和棉絮片,多重纤维混合絮片3的压缩率较低。五种絮片的压缩回复率都达到75%以上,同样属于优等品,三维卷曲涤纶絮片的压缩回复率最好,其次是多重纤维混合絮片1、2。絮片压缩回复率的高低,反映了絮片的弹性回复特性,是其产品服用性能的重要指标。絮片具有很好的压缩回弹性,可以提供持久的保暖性能,三维卷曲涤纶的加入,赋予了絮片三维空间结构,增加絮片的弹性和耐疲劳性。
实施例7:保暖絮片透气率测试
在不同面密度实验条件下,对实施例1~3制备得到的多重纤维混合絮片以及桑蚕丝絮片、羊毛絮片、棉絮片、三维卷曲涤纶絮片进行透气率测试,结果如图3所示。
由图3可知:在相同面密度的实验条件下,由于羊毛纤维具有天然卷曲,纤维之间空隙较多,絮片结构蓬松,在一定的压力下气流较容易通过絮片中的空隙,所以透气量大。在三维卷曲涤纶中,其纤维有着持久的自然卷曲和三维空间结构,并且,粘胶纤维具有良好的透气性,有利于人体生理循环,因此, 多重纤维混合絮片1、2、3均获得的较大的透气量。
对于同种原料的保暖絮片,随着面密度的增加,厚度增加,絮片越密实,透气率逐渐下降。
实施例8:保暖絮片透湿率测试
在不同面密度条件下,对实施例1~3制备得到的多重纤维混合絮片以及桑蚕丝絮片、羊毛絮片、棉絮片、三维卷曲涤纶絮片进行透湿率测试,结果如图4所示。
由图4可知:在相同面密度的实验条件下,桑蚕丝絮片的透湿率最好,其次是多重纤维混合絮片3,多重纤维混合絮片1、2的透湿性也相对较好。由于粘胶纤维具有较好的吸湿性能,作为保暖絮片,其吸湿性最符合人体皮肤的生理要求。絮片的透湿性与絮片的密度、纤维自身吸湿、纤维间的空隙等因素有着很大的关系,随着絮片面密度的增大,纤维间的接触点愈多,对通道传递水分子的阻碍愈大。因此,透湿性明显地下降。
实施例9:
絮片的保暖性与纤维集合体的综合热阻相关,热阻越高,则絮片的保暖性能越好;同时与纤维夹层中静止的空气数量有关。在不同面密度实验条件下,对实施例1~3制备得到的多重纤维混合絮片以及桑蚕丝絮片、羊毛絮片、棉絮片、三维卷曲涤纶絮片进行保暖性测试,结果如图5所示。
由图5可知:在相同面密度的实验条件下,桑蚕丝絮片的克罗值最大,其次是多重纤维混合絮片1、2。原因分析:细旦涤纶纤细致密的纤维层能锁定空气,产生稳定的静止空气层,起到保温效果,又考虑到三维卷曲涤纶絮片采用的是三维空间结构,蓬松度较高,絮片静止空气含量较多。随着面密度增加,多重纤维混合絮片的克罗值不断加速增大,当面密度为1100g/m 2时,仅次于蚕丝絮片,故增加多重纤维混合絮片的面密度也可明显提高其保暖性。
对于同种原料保暖絮片,随着面密度的增加,絮片厚度增加,单位时间内散失的热量降低,热阻增大,克罗值不断递增,保暖性越好。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (9)

  1. 一种多重纤维混合保暖絮片,其特征在于,按重量计,由60~90%粘胶纤维、0~30%细旦涤纶纤维和10~40%三维卷曲涤纶纤维混合组成。
  2. 根据权利要求1所述的多重纤维混合保暖絮片,其特征在于,按重量计,由60~70%粘胶纤维、10~30%细旦涤纶纤维和20~40%三维卷曲涤纶纤维组成。
  3. 根据权利要求1所述的多重纤维混合保暖絮片,其特征在于,粘胶纤维的纤维细度为1.67~2.78dtex,长度为3.8~10cm。
  4. 根据权利要求1所述的多重纤维混合保暖絮片,其特征在于,细旦涤纶的纤维细度为0.74~2.78dtex,长度为5.1~10cm。
  5. 根据权利要求1所述的多重纤维混合保暖絮片,其特征在于,三维卷曲涤纶的纤维细度为1.33~3.33dtex,长度为4~9cm。
  6. 一种权利要求1~5任一项所述的多重纤维混合保暖絮片的制备方法,其特征在于,包括如下步骤:
    (1)将粘胶纤维、细旦涤纶和三维卷曲涤纶混合均匀得到纤维原料;
    (2)将步骤(1)得到的纤维原料喂入第一道开松机进行开松,然后将经过一次开松的原料喂入第二道开松机进行再次开松;
    (3)将经过步骤(2)两次开松的纤维原料喂入梳理机进行梳理形成纤维网纤维;
    (4)采用杂乱棍将步骤(3)的纤维网纤维重新排列,使纤维网纤维形成纵横交错12方位交叉结构;
    (5)将步骤(4)处理后的纤维网由斜帘送入铺网机进行铺网,得到纤维絮片;
    (6)将步骤(5)得到纤维絮片进行预刺针和下刺针,然后切片得到所述的保暖絮片。
  7. 权利要求1~5任一项所述的多重纤维混合保暖絮片在纺织业中的应用。
  8. 一种保暖衣服,其特征在于,由权利要求1~5任一项所述的多重纤维混 合保暖絮片制备得到。
  9. 一种保暖棉被,其特征在于,由权利要求1~5任一项所述的多重纤维混合保暖絮片制备得到。
PCT/CN2018/097190 2018-07-25 2018-07-26 一种多重纤维混合保暖絮片及其制备方法与应用 WO2020019234A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810826922.6 2018-07-25
CN201810826922.6A CN108842292A (zh) 2018-07-25 2018-07-25 一种多重纤维混合保暖絮片及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2020019234A1 true WO2020019234A1 (zh) 2020-01-30

Family

ID=64192066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097190 WO2020019234A1 (zh) 2018-07-25 2018-07-26 一种多重纤维混合保暖絮片及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN108842292A (zh)
WO (1) WO2020019234A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113684606A (zh) * 2021-09-01 2021-11-23 浙江华江科技股份有限公司 一种乘用车内外饰用纤维增强轻质热塑性无界面分层毡材及装置及制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110804804A (zh) * 2019-11-13 2020-02-18 上海海凯生物材料有限公司 一种舒适弹性垫类产品及其制造方法
CN110923944A (zh) * 2019-11-28 2020-03-27 东华大学 一种异型多组分纤维保暖絮片及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101476212A (zh) * 2009-01-19 2009-07-08 汕头市奥山服饰有限公司 一种保暖絮片及其制造方法
CN101481851A (zh) * 2009-01-19 2009-07-15 汕头市奥山服饰有限公司 保暖絮片及其制造方法
CN101718024A (zh) * 2009-12-15 2010-06-02 汕头市奥山服饰有限公司 保暖絮片及其制造方法
CN202154095U (zh) * 2011-07-13 2012-03-07 杨永发 柞蚕丝保暖絮片
JP2015004155A (ja) * 2013-05-21 2015-01-08 王子ホールディングス株式会社 不織布シート
CN108265395A (zh) * 2018-01-10 2018-07-10 河南工程学院 一种透气透湿可生物降解保暖絮片及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100348794C (zh) * 2005-10-10 2007-11-14 中国石油天然气股份有限公司 阻燃不熔滴絮片的制备方法
CN205083127U (zh) * 2015-08-13 2016-03-16 蒋敏容 耐水洗的机能棉被
CN106192200B (zh) * 2016-08-16 2018-07-13 南通纺织丝绸产业技术研究院 一种功能性保暖复合絮片的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101476212A (zh) * 2009-01-19 2009-07-08 汕头市奥山服饰有限公司 一种保暖絮片及其制造方法
CN101481851A (zh) * 2009-01-19 2009-07-15 汕头市奥山服饰有限公司 保暖絮片及其制造方法
CN101718024A (zh) * 2009-12-15 2010-06-02 汕头市奥山服饰有限公司 保暖絮片及其制造方法
CN202154095U (zh) * 2011-07-13 2012-03-07 杨永发 柞蚕丝保暖絮片
JP2015004155A (ja) * 2013-05-21 2015-01-08 王子ホールディングス株式会社 不織布シート
CN108265395A (zh) * 2018-01-10 2018-07-10 河南工程学院 一种透气透湿可生物降解保暖絮片及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113684606A (zh) * 2021-09-01 2021-11-23 浙江华江科技股份有限公司 一种乘用车内外饰用纤维增强轻质热塑性无界面分层毡材及装置及制备方法

Also Published As

Publication number Publication date
CN108842292A (zh) 2018-11-20

Similar Documents

Publication Publication Date Title
CN103306050B (zh) 一种可裁剪、可水洗丝绵絮片的制备方法
WO2020019234A1 (zh) 一种多重纤维混合保暖絮片及其制备方法与应用
EP3243397B1 (en) Garment
CN109602230A (zh) 一种提高柔软度的被子及其生产工艺
CN102689469B (zh) 一种复合双层非织造布及其制作方法
CN106937902B (zh) 一种高通透性导流层材料及其制备方法
Suganthi et al. Comfort properties of double face knitted fabrics for tennis sportswear
CN105621340A (zh) 保温填充材料及其制备方法、保温制品
CN109056190A (zh) 一种可调温可发生负离子的坐垫及垫芯的制作方法
AU4182497A (en) Polyester fiber
WO2015170741A1 (ja) 詰め綿
CN106436012A (zh) 机能絮片及制品
CN209194150U (zh) 一种棉型水刺非织造布
CN109338590A (zh) 一种功能性黄麻床垫垫芯及垫芯的制作方法
Fangueiro et al. Moisture management performance of functional yarns based on wool fibres
CN207632987U (zh) 一种具有滑爽感的柔软拒水无纺布
CN113103700B (zh) 一种吸湿保暖型口罩及其制备方法
CN106213909B (zh) 一种夹心被子
CN213295716U (zh) Es纤维芯材制品
CN110129990B (zh) 一种单向导湿发热纤维被芯及其制备方法
JPH07310264A (ja) 保温性および健康増進性を有する中詰綿及びこれを用いた寝具
WO2023134164A1 (zh) 保温絮片及其应用
CN210174324U (zh) 一种混合纤维被芯
Akaydın et al. A survey of comfort properties of socks produced from cellulose-based fibers
CN201167763Y (zh) 一种羊驼绒毛被

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927848

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18927848

Country of ref document: EP

Kind code of ref document: A1