WO2019237998A1 - 电子设备、用户设备、无线通信方法和存储介质 - Google Patents

电子设备、用户设备、无线通信方法和存储介质 Download PDF

Info

Publication number
WO2019237998A1
WO2019237998A1 PCT/CN2019/090460 CN2019090460W WO2019237998A1 WO 2019237998 A1 WO2019237998 A1 WO 2019237998A1 CN 2019090460 W CN2019090460 W CN 2019090460W WO 2019237998 A1 WO2019237998 A1 WO 2019237998A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
network
side device
downlink
angle
Prior art date
Application number
PCT/CN2019/090460
Other languages
English (en)
French (fr)
Inventor
盛彬
徐平平
呂本舜
张文博
Original Assignee
索尼公司
盛彬
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 盛彬 filed Critical 索尼公司
Priority to CN201980010573.3A priority Critical patent/CN111656828A/zh
Priority to US17/056,028 priority patent/US11496910B2/en
Priority to EP19820052.9A priority patent/EP3793276A4/en
Publication of WO2019237998A1 publication Critical patent/WO2019237998A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/08Systems for determining direction or position line
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/02Systems for determining distance or velocity not using reflection or reradiation using radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/02Systems for determining distance or velocity not using reflection or reradiation using radio waves
    • G01S11/04Systems for determining distance or velocity not using reflection or reradiation using radio waves using angle measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/46Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0018Transmission from mobile station to base station
    • G01S5/0036Transmission from mobile station to base station of measured values, i.e. measurement on mobile and position calculation on base station
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0273Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves using multipath or indirect path propagation signals in position determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/12Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves by co-ordinating position lines of different shape, e.g. hyperbolic, circular, elliptical or radial
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • Embodiments of the present disclosure generally relate to the field of wireless communications, and in particular, to electronic devices, user equipment, wireless communication methods, and computer-readable storage media. More specifically, the present disclosure relates to an electronic device as a network-side device in a wireless communication system, a user equipment in a wireless communication system, a wireless communication method performed by a network-side device in a wireless communication system, an A wireless communication method performed by a user equipment in a wireless communication system and a computer-readable storage medium.
  • DOA direction of arrival
  • AOA angle of arrival
  • An object of the present disclosure is to provide an electronic device, a user device, a wireless communication method, and a computer-readable storage medium to improve the accuracy of positioning a user device.
  • an electronic device provided in a wireless communication system including a single base station device, including a processing circuit, configured to: according to a downlink signal arrival angle measured by a user equipment and an uplink measured by a network-side device Estimate the distance between the network-side device and the user equipment by the signal arrival angle; and determine the user equipment ’s location based on the distance between the network-side device and the user equipment and the uplink signal arrival angle. position.
  • a user equipment provided in a wireless communication system including a single base station device, including a processing circuit, configured to: measure a downlink signal arrival angle; and send the downlink signal arrival angle,
  • the base station device used for the network side device or serving the network side device is calculated according to the downlink signal arrival angle and the uplink signal arrival angle measured by the network side device to calculate the Distance, and determine the position of the user equipment according to the distance between the network-side device and the user equipment and the arrival angle of the uplink signal.
  • a wireless communication method performed by an electronic device, comprising: calculating the network-side device and the network-side device according to a downlink signal arrival angle measured by a user equipment and an uplink signal arrival angle measured by a network-side device. The distance between the user equipments; and determining the location of the user equipment according to the distance between the network-side equipment and the user equipment and the uplink signal arrival angle.
  • a wireless communication method performed by a user equipment, including: measuring an angle of arrival of a downlink signal; and sending the angle of arrival of the downlink signal for use on a network side device or for the network side
  • the base station equipment provided by the device calculates the distance between the network side equipment and the user equipment according to the downlink signal arrival angle and the uplink signal arrival angle measured by the network side equipment, and according to the network side equipment and the user equipment Between the distance and the angle of arrival of the uplink signal to determine the location of the user equipment.
  • a computer-readable storage medium including executable computer instructions that, when executed by a computer, cause the computer to perform the wireless communication method according to the present disclosure.
  • the user equipment can measure the angle of arrival of the downlink signal, and the network-side device can measure the angle of arrival of the uplink signal, so that the angle of arrival of the downlink signal and the angle of arrival of the uplink signal can be measured To estimate the distance between the network-side device and the user equipment, and then locate the user equipment. In this way, the distance is determined based on the two arrival angles, so that the determined distance is more accurate. Further, the user equipment may be located according to the distance determined thereby and the true arrival angle of the uplink signal, so that the user equipment is positioned more accurately.
  • FIG. 1 is a schematic diagram illustrating user equipment discovery in a beam scanning manner
  • FIG. 2 is a block diagram showing an example of a configuration of an electronic device according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram illustrating a calculation model for positioning a user equipment according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram showing a direct path and a non-direct path according to an embodiment of the present disclosure
  • FIG. 5 is a signaling flowchart illustrating selection of a beam pair closest to a direct path according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram illustrating a time-frequency position of a positioning reference signal according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram illustrating a calculation model for positioning a user equipment in a case where a direct path exists according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram illustrating a calculation model for positioning a user equipment in a case where there is no direct path according to an embodiment of the present disclosure
  • FIG. 9 is a signaling flowchart illustrating a location of a user equipment determined by a TRP according to an embodiment of the present disclosure
  • FIG. 10 is a signaling flowchart illustrating a location of a user equipment determined by a base station device according to an embodiment of the present disclosure
  • FIG. 11 is a block diagram showing an example of a configuration of a user equipment according to an embodiment of the present disclosure
  • FIG. 12 is a flowchart illustrating a wireless communication method performed by an electronic device according to an embodiment of the present disclosure
  • FIG. 13 is a flowchart illustrating a wireless communication method performed by a user equipment according to an embodiment of the present disclosure
  • FIG. 14 is a block diagram showing a first example of a schematic configuration of an eNB (Evolved Node B);
  • 15 is a block diagram showing a second example of a schematic configuration of an eNB
  • FIG. 16 is a block diagram showing an example of a schematic configuration of a smartphone.
  • FIG. 17 is a block diagram showing an example of a schematic configuration of a car navigation device.
  • Example embodiments are provided so that this disclosure will be thorough, and will fully convey its scope to those skilled in the art. Numerous specific details are set forth, such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be used, that example embodiments may be implemented in many different forms, and they should not be construed as limiting the scope of the disclosure. In some example embodiments, well-known processes, well-known structures, and well-known technologies are not described in detail.
  • FIG. 1 is a schematic diagram illustrating user equipment discovery by means of beam scanning.
  • the angle of the scanning beam is not continuous.
  • the scanning angle interval of the beam is 1 degree
  • the starting angle of the beam can only point to 1 degree, 2 degrees, 3 degrees, and so on.
  • the locations of user equipment are randomly distributed.
  • the user equipment is at a position of 2.5 degrees, and because the beam has a certain width, the user equipment can also receive signals and can perform normal communication.
  • the starting angle of the used beam is different from the position of the user equipment, for example, when 3 degrees is used as the DOA of the user equipment, a positioning error will obviously occur.
  • the coverage area of the network-side device is a circle with a radius of 50 meters
  • a circumference of 314 meters can be calculated, and the distance between the centerlines of two adjacent beams is about 0.9 meters on the circle. If the user equipment is at the boundary of the coverage at this time, a 0.5 degree offset will cause a positioning error of 0.45 meters.
  • the distance can be estimated using the received power.
  • the received power is also related to many other factors, such as circuit fluctuations and the absorption of radio waves by shields. Therefore, there is also a certain error in using the received power to estimate the distance.
  • the present disclosure proposes an electronic device in a wireless communication system, a user equipment in the wireless communication system, a wireless communication method performed by the electronic device in the wireless communication system, and a user equipment in the wireless communication system.
  • the network-side device may be any type of TRP (Transmit and Receive Port).
  • the TRP may have a sending and receiving function.
  • the TRP may receive information from the user equipment and the base station equipment, and may also send information to the user equipment and the base station equipment.
  • the TRP may serve user equipment and is controlled by the base station equipment. That is, the base station device provides services to the user equipment through TRP.
  • the network-side device described in the present disclosure may also be a base station device, such as an eNB or a gNB (base station in a 5th generation communication system).
  • the user equipment may be a mobile terminal such as a smartphone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable / dongle-type mobile router, and a digital camera device, or a vehicle-mounted terminal such as a car navigation device ).
  • User equipment can also be implemented as a terminal (also called a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single chip) mounted on each of the terminals described above.
  • FIG. 2 is a block diagram illustrating an example of a configuration of an electronic device 200 according to an embodiment of the present disclosure.
  • the electronic device 200 here can be used as a base station device or a TRP in a wireless communication system. Further, the electronic device 200 may be provided in a wireless communication system including a single base station device.
  • the electronic device 200 may include a positioning unit 210 and a communication unit 220.
  • each unit of the electronic device 200 may be included in a processing circuit.
  • the electronic device 200 may include one processing circuit or multiple processing circuits.
  • the processing circuit may include various discrete functional units to perform various different functions and / or operations. It should be noted that these functional units may be physical entities or logical entities, and units with different names may be implemented by the same physical entity.
  • the positioning unit 210 may estimate the distance between the network-side device and the user equipment according to the downlink signal arrival angle measured by the user equipment and the uplink signal arrival angle measured by the network-side device.
  • the electronic device 200 may acquire the downlink signal arrival angle measured by the user equipment through the communication unit 220.
  • the network-side device here may be a TRP or a base station device, and the electronic device 200 may be the network-side device or may not be the network-side device.
  • the electronic device 200 may also obtain, through the communication unit 220, the uplink signal arrival angle measured by the network-side device.
  • the positioning unit 210 may also determine the position of the user equipment according to the distance between the network-side device and the user equipment and the angle of arrival of the uplink signal.
  • the distance between the network-side device and the user equipment can be estimated according to the angle of arrival of the downlink signal and the angle of arrival of the uplink signal, thereby positioning the user equipment.
  • the distance is determined based on the two arrival angles, so that the determined distance is more accurate.
  • the user equipment may be located according to the distance determined thereby and the true arrival angle of the uplink signal, so that the user equipment is positioned more accurately.
  • the location of the user device may be determined.
  • the electronic device 200 may be a TRP or a base station device; when the network-side device is a base station device, the electronic device 200 may be a base station device. That is, the location of the user equipment may be determined by a TRP or a base station device.
  • the TRP here may be the TRP around the user equipment, including the TRP that is serving the user equipment and the TRP that is relatively close to the user equipment but currently does not serve the user equipment, and the base station equipment may be for the user equipment (or for the user equipment) And TRP) base station equipment that provides services.
  • the positioning unit 210 may further calculate a distance between the network-side device and the user equipment according to an uplink signal transmission angle, a downlink signal transmission angle, a downlink signal arrival angle, and an uplink signal arrival angle.
  • the angle of arrival of the downlink signal and the angle of arrival of the uplink signal are associated with a direct path between the user equipment and the network-side device.
  • the uplink signal transmission angle is associated with the direction of the uplink transmission beam of the user equipment, and the downlink signal transmission angle is associated with the direction of the downlink transmission beam of the network-side device.
  • FIG. 3 is a schematic diagram illustrating a calculation model for positioning a user equipment according to an embodiment of the present disclosure.
  • the straight line between the network-side device and the user equipment represents the direct path between the network-side device and the user equipment
  • the dotted line on the network-side device side indicates the direction of the downlink transmission beam
  • the dotted line on the user equipment side indicates the uplink transmission.
  • the direction of the beam As shown in FIG.
  • ⁇ rx represents the angle of arrival of the downlink signal, which is related to the direct path between the network-side device and the user equipment, specifically: the direct path; and the two directions perpendicular to the antenna array of the user equipment The angle between them; ⁇ tx represents the angle of arrival of the uplink signal, which is related to the direct path between the network-side device and the user equipment, specifically: the direct path; and the two directions perpendicular to the antenna array of the network-side device The angle between directions; ⁇ tx represents the downlink signal transmission angle, which is related to the direction of the downlink transmission beam of the network-side device, and specifically represents the angle between the following two directions: the direction of the downlink transmission beam; and the network Antenna device array's vertical direction; ⁇ rx represents the uplink signal transmission angle, which is related to the direction of the uplink transmission beam of the user equipment, specifically the angle between the following two directions: the direction of the uplink transmission beam; and The antenna array of the user equipment is oriented vertically.
  • the positioning unit 210 may calculate the relationship between the network-side device and the user equipment according to the uplink signal transmission angle ⁇ rx , the downlink signal transmission angle ⁇ tx , the downlink signal arrival angle ⁇ rx, and the uplink signal arrival angle ⁇ tx . distance.
  • the electronic device 200 may further include a selection unit 230 for selecting an uplink transmission beam and a downlink transmission beam as shown in FIG. 3.
  • the selecting unit 230 may select a beam pair closest to the direct path from a plurality of beam pairs between the user equipment and the network-side device as an uplink transmission beam and a downlink transmission beam.
  • the network-side device may send a downlink signal by using a specific transmit beam, and the user equipment receives the downlink signal by using a specific receive beam, so that the network-side device ’s transmit beam and the The receiving beam of the user equipment acts as a beam pair. Further, the user equipment can thereby obtain all beam pairs, and can record all beam pairs.
  • the user equipment may also measure channel quality of all acquired beam pairs.
  • the channel quality includes but is not limited to SIR (Signal to Interference Ratio), SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio), RSRP (Reference to Signal) Receiving Power, etc.).
  • the electronic device 200 may obtain all beam pair information from the user equipment, for example, including the numbers of the transmitting beam and the receiving beam included in the beam pair; and channel quality information of each beam pair.
  • the selection unit 230 may select a beam pair closest to the direct path according to the channel quality of each beam pair in the plurality of beam pairs. Specifically, the selecting unit 230 may select the beam pair with the best channel quality among the multiple beam pairs as the beam pair closest to the direct path. Further, the selection unit 230 may also set a channel quality threshold, and select a beam pair with a channel quality greater than the channel quality threshold and the best channel quality among the multiple beam pairs as the beam pair closest to the direct path.
  • the electronic device 200 may use the transmission beam with the best quality in the process of transmitting downlink signals as the downlink transmission beam of the network-side device, and use the reception beam with the best quality as the uplink transmission beam of the user equipment. That is, the downlink receiving beam of the user equipment can be used as the uplink transmitting beam. Therefore, in this article, no distinction is made between the downlink receive beam and the uplink transmit beam on the user equipment side.
  • the direct path is a direct path between the network side device and the user equipment, and there is no obstruction, the channel quality should be the best. Therefore, the electronic device 200 can determine the beam pair closest to the direct path according to the channel quality.
  • the selection unit 230 selects a beam pair with a channel quality greater than a channel quality threshold and the best channel quality may be equivalent to a process of determining whether a direct path exists between the network-side device and the user equipment. That is, the value of the channel quality threshold can be set reasonably, so that when there is a beam pair with a channel quality greater than the channel quality threshold, it can be determined that a direct path exists between the network-side device and the user equipment; and when there is no channel quality greater than When the beam pair of the channel quality threshold is used, it can be determined that there is no direct path between the network-side device and the user equipment.
  • FIG. 4 is a schematic diagram illustrating a direct path and a non-direct path according to an embodiment of the present disclosure.
  • the direct path refers to a direct path without obstructions between the network-side device and the user equipment, for example, the path between the downlink transmission beam 1 and the uplink transmission beam 1 in FIG. 4.
  • the non-direct path refers to a non-through path with an obstruction between the network-side device and the user equipment, for example, the path between the downlink transmission beam 2 and the uplink transmission beam 2 in FIG. 4. That is, when there is an obstruction between the network-side device and the user equipment, the signal sent by the transmitting end through the transmission beam needs to be reflected by the reflector to reach the receiving end. Further, the signal arriving at the receiving end may undergo one or multiple reflections. The more the number of reflections, the worse the quality of the received signal.
  • the selection unit 230 may set a channel quality threshold.
  • the channel quality threshold When the channel quality of a certain beam pair is greater than the channel quality threshold, it can be considered that the transmitting beam in the beam pair can be used by the receiving end to use the beam pair through the direct path. Receive beam in. Further, when the selection unit 230 determines a plurality of beam pairs whose channel quality is greater than a channel quality threshold, a beam pair with the best channel quality may be selected therefrom.
  • the channel quality threshold may also be set by the base station device, so that the selection unit 230 may receive the channel quality threshold from the base station device.
  • the selection unit 230 may determine a channel quality threshold according to a coverage range of a network-side device.
  • the selection unit 230 may also determine the channel quality threshold based on the coverage range of the network-side device, the antenna gain of the network-side device, and the antenna gain of the user equipment. The following is a description of setting the channel quality threshold according to an embodiment of the present disclosure.
  • the selection unit 230 may determine the channel quality threshold ⁇ according to the following formula:
  • G t represents the antenna gain of the network-side device
  • G r represents the antenna gain of the user equipment
  • R m represents the radius of the coverage range of the network-side device
  • represents the carrier wavelength.
  • G r may represent the antenna gain of the user equipment to be located, and may also represent the average value of the antenna gain of the user equipment within the coverage area of the network-side device.
  • the selecting unit 230 may select a beam pair with a channel quality greater than the channel quality threshold and the best channel quality among the multiple beam pairs as the beam pair closest to the direct path.
  • the electronic device 200 may be a TRP or a base station device
  • the operation of selecting the beam pair closest to the direct path may be implemented by the TRP or the base station device.
  • step S501 the TRP and the UE perform a beam scanning process, so that the UE obtains all beam pairs and channel quality of the beam pairs.
  • step S502 the UE reports the beam pair and the channel quality information of the beam pair to the TRP.
  • step S503 the TRP selects the beam pair closest to the direct path according to the channel quality of the multiple beam pairs.
  • the operation of selecting the beam pair closest to the direct path may also be performed by the base station device.
  • the TRP may also send the beam pair and the channel quality information of the beam pair to the base station device.
  • the base station device selects the beam pair closest to the direct path according to the channel quality conditions of the multiple beam pairs.
  • the electronic device 200 may also send the information of the beam pair closest to the direct path to the network-side device and the user device through the communication unit 220.
  • the electronic device 200 when the electronic device 200 is the network-side device, only the information of the beam pair closest to the direct path may be sent to the user equipment.
  • the electronic device 200 may carry an uplink transmission beam for the user equipment and a downlink transmission beam for the network-side device by using a positioning instruction message.
  • the positioning instruction message sent by the electronic device 200 may further include a positioning start time and / or a positioning duration.
  • the positioning duration may indicate a time for the network-side device and the user equipment to obtain parameters required for positioning
  • the positioning start time may indicate a start time of the positioning duration.
  • the positioning duration may further include a first positioning duration and a second positioning duration.
  • the first positioning duration may indicate a time for a network-side device to obtain a parameter required for positioning
  • the second positioning duration may indicate a time for a user device to obtain a parameter required for positioning.
  • the first positioning duration may be a time for performing uplink transmission.
  • the user equipment sends an uplink signal using the uplink transmit beam determined in the foregoing, and the network side device does not form a receive beam, thereby Parameters required for positioning.
  • the second positioning duration may be a time for performing downlink transmission.
  • the network-side device sends a downlink signal using the downlink transmitting beam determined in the foregoing, and the user equipment does not form a receiving beam, so that Get the parameters needed for positioning.
  • the electronic device 200 when the electronic device 200 is a network-side device, the electronic device 200 can measure the arrival angle of the uplink signal, that is, ⁇ tx shown in FIG. 3, and can receive the downlink signal measured by the user device from the user device to arrive.
  • the angle is ⁇ rx shown in FIG. 3.
  • the electronic device 200 may receive an uplink signal transmitted by using an uplink transmission beam from the user equipment through the communication unit 220. Further, during the first positioning duration, the electronic device 200 does not generate a receiving beam, that is, receives an uplink signal from the user equipment in all directions.
  • the electronic device 200 may further include a measuring unit 240 for measuring an angle of arrival of the uplink signal in the first positioning duration. Further, the measurement unit 240 may measure the arrival angle of the uplink signal according to the uplink signals received on different antennas of the electronic device 200.
  • the transmit beamforming vector generated by the user equipment is:
  • N rx represents the number of antennas of the user equipment
  • ⁇ rx represents an uplink signal transmission angle determined according to the direction of the uplink transmission beam
  • [] T represents performing a transpose operation on the matrix
  • the network-side device does not form a receiving beam, and the received signal is:
  • Pu represents the uplink transmission power of the user equipment
  • H represents the downlink channel matrix between the user equipment and the network-side equipment
  • H T represents the transpose operation on the downlink channel matrix
  • w * ( ⁇ rx ) represents the above formula ( 2)
  • s (t) represents the positioning signal
  • n u represents the noise.
  • the above formula can be transformed into:
  • N tx represents the number of antennas of the network-side device
  • y 0 (t), y 1 (t), ..., y Ntx-1 (t) represents the received signal on each antenna of the network-side device
  • ⁇ tx represents The angle of arrival of the uplink signal to be measured
  • h can be expressed as:
  • a tx ( ⁇ tx) represents a steering vector
  • a rx ( ⁇ rx) represents the response vector
  • represents the complex channel parameter between the user equipment and the network side device
  • P u denotes an uplink transmission power of the user equipment
  • w * ( ⁇ rx ) represents a transmit beamforming vector obtained by the above formula (2)
  • s (t) represents a positioning signal
  • [] T represents performing a transpose operation on a matrix.
  • the steering vector indicates a part of the channel matrix between the user equipment and the network side equipment that is related to the angle of arrival of the uplink signal.
  • the channel matrix H between the user equipment and the network side equipment can be expressed as:
  • a tx ( ⁇ tx ) represents a steering vector
  • [] H represents performing a conjugate transpose operation on a matrix
  • the steering vector represents a part of H that is related to the angle of arrival of the uplink signal, which can be expressed as:
  • N tx represents the number of antennas of the network-side device
  • ⁇ tx represents the angle of arrival of the uplink signal
  • a rx ( ⁇ rx ) represents the response vector, that is, the part of H that is related to the angle of arrival of the downlink signal can be expressed as:
  • N rx indicates the number of antennas of the user equipment
  • ⁇ rx indicates the angle of arrival of the downlink signal
  • [] T indicates that the transpose operation is performed on the matrix.
  • represents a complex channel parameter of a direct path between a user equipment and a network-side device, and represents a portion of the channel matrix other than a portion related to the angle of arrival of the uplink signal and a portion related to the angle of arrival of the downlink signal.
  • the measurement unit 240 may measure the angle of arrival of the uplink signal according to the uplink signals received on different antennas of the electronic device 200.
  • the measurement unit 240 may measure the uplink signal received on the antenna 1 and the antenna 0
  • the second element y 1 (t) in formula (4) divided by the first element y 0 (t) can be obtained:
  • the measurement unit 240 can calculate the uplink signal arrival angle ⁇ tx according to the phase angle of z in the formula (8).
  • the measurement unit 240 may also use the uplink signals received on all antennas to measure the uplink signal arrival angle. For example, the following formula may be used to calculate z, and the uplink signal arrival angle ⁇ tx may be calculated according to the phase angle of z:
  • the network-side device may not generate a receiving beam and record the uplink signals received on each antenna, and then measure the uplink signal arrival angle ⁇ tx according to the uplink signals received on different antennas of the network-side device.
  • the network-side device may use the downlink transmission beam determined in the foregoing to send a downlink signal to the user equipment, and may receive the angle of arrival of the downlink signal measured by the user equipment.
  • the user equipment does not generate a receiving beam, that is, receives a downlink signal from the network-side device in all directions. Further, the user equipment may also measure the arrival angle of the downlink signal according to the downlink signals received on different antennas.
  • the transmission beamforming vector generated by the network-side device is:
  • N tx represents the number of antennas of the network-side device
  • ⁇ tx represents the downlink signal transmission angle determined according to the direction of the downlink transmit beam
  • [] T represents the transpose operation performed on the matrix
  • the user equipment does not form a receiving beam, and the received signal is:
  • P d represents the downlink transmission power of the network-side equipment
  • H represents the downlink channel matrix between the user equipment and the network-side equipment
  • f ( ⁇ tx ) represents the transmission beamforming vector obtained by formula (10)
  • s (t ) Indicates a positioning signal
  • n d indicates noise.
  • N rx represents the number of antennas of the user equipment
  • y Nrx-1 (t) represents the received signal on each antenna of the user equipment
  • ⁇ rx represents the measurement to be measured
  • T means to perform the transpose operation on the matrix
  • h can be expressed as:
  • a tx ( ⁇ tx ) represents the steering vector
  • a rx ( ⁇ rx ) represents the response vector
  • represents the complex channel parameter between the user equipment and the network-side equipment
  • P d represents the downlink transmission power of the network-side equipment
  • f represents the The transmission beamforming vector obtained by formula (10)
  • s (t) represents a positioning signal.
  • the user equipment may also measure the arrival angle of the uplink signal according to the uplink signals received on different antennas of the user equipment, for example, it may be determined based on the uplink signal received on antenna 1 and the uplink signal received on antenna 0.
  • the angle of arrival of the uplink signal that is, the second element y 1 (t) in formula (12) divided by the first element y 0 (t) can be obtained:
  • the user equipment can calculate the downlink signal arrival angle ⁇ rx according to the phase angle of z. That is, the user equipment may not generate a receiving beam and record the downlink signals received on each antenna, and then the user equipment may measure the angle of arrival of the downlink signals according to the downlink signals received on different antennas of the user equipment.
  • the electronic device 200 when the electronic device 200 is a network-side device (for example, the electronic device 200 and the network-side device are both TRPs, or the electronic device 200 and the network-side device are both base station devices), the electronic device 200 can measure the angle of arrival of the uplink signal, that is, ⁇ tx shown in FIG. 3, and can receive the angle of arrival of the downlink signal measured by the user equipment, that is, ⁇ rx shown in FIG. 3. In addition, the electronic device 200 may determine the downlink signal transmission angle ⁇ tx according to the direction of the downlink transmission beam, and may determine the uplink signal transmission angle ⁇ rx according to the direction of the uplink transmission beam.
  • the electronic device 200 can obtain the uplink signal arrival angle ⁇ tx , the downlink signal arrival angle ⁇ rx , the downlink signal transmission angle ⁇ tx, and the uplink signal transmission angle ⁇ rx , so that the network-side device and the user device can be calculated based on the angle information. the distance between.
  • the electronic device 200 when the electronic device 200 is a base station device and the network-side device is, for example, a TRP, the electronic device 200 may receive the downlink signal arrival angle ⁇ rx measured by the user device from the user device, and may receive from the network-side device The angle of arrival of the uplink signal measured by the network-side device ⁇ tx .
  • the manner in which the user equipment measures the angle of arrival of the downlink signal and the manner in which the network-side equipment measures the angle of arrival of the uplink signal have been described in detail above, and are not repeated here.
  • the electronic device 200 can determine the downlink signal transmission angle ⁇ tx according to the direction of the downlink transmission beam, and can determine the uplink signal transmission angle ⁇ rx according to the direction of the uplink transmission beam, so that the network-side device can be calculated based on the angle information.
  • the positioning unit 210 calculates the distance between the network-side device and the user device.
  • the network-side device and the user equipment generate beam pairs. That is, the network-side device can send a downlink signal by using a specific transmit beam, and the user equipment receives the downlink signal by using a specific receive beam, so that the transmit beam of the network-side device and the receive beam of the user equipment can be used as a beam pair.
  • the transmission beamforming vector generated by the network-side device is:
  • N tx represents the number of antennas of the network-side device
  • ⁇ tx represents the downlink signal transmission angle determined according to the direction of the downlink transmit beam
  • [] T represents the transpose operation performed on the matrix
  • the receiving beamforming vector generated by the user equipment is:
  • N rx represents the number of antennas of the user equipment
  • ⁇ rx represents the uplink signal transmission angle determined according to the direction of the downlink receiving beam (that is, the direction of the uplink transmitting beam)
  • [] T represents performing a transpose operation on the matrix.
  • the downlink received signal on the user equipment side can be expressed as:
  • P d represents the downlink transmission power of the network-side device
  • w H and w H ( ⁇ rx ) represent the transpose of the receiving beamforming vector by formula (15)
  • H represents the downlink channel between the user equipment and the network-side device Matrix
  • f ( ⁇ tx ) represents the transmission beamforming vector of the transmitting network side device
  • s (t) represents the positioning signal
  • n d (t) represents the noise.
  • represents an error between the direction of the downlink transmission beam and the direction of the direct path (hereinafter referred to as a second error). That is, ⁇ represents an error on the downlink received signal due to a mismatch between the transmission beamforming vector f ( ⁇ tx ) and the steering vector a tx ( ⁇ tx ) due to ⁇ tx ⁇ ⁇ tx .
  • represents an error (hereinafter referred to as a first error) between the direction of the uplink transmission beam and the direction of the direct path. That is, ⁇ represents an error on the downlink received signal due to the mismatch between the received beamforming vector w ( ⁇ rx ) and the response vector a rx ( ⁇ rx ) due to ⁇ rx ⁇ ⁇ rx .
  • N tx represents the number of antennas of the network-side device
  • ⁇ tx represents the transmission angle of the downlink signal
  • ⁇ tx represents the angle of arrival of the uplink signal
  • N rx represents the number of antennas of the user equipment
  • ⁇ rx represents an uplink signal transmission angle
  • ⁇ rx represents a downlink signal arrival angle
  • represents the modulus of the complex channel parameter
  • the downlink received signal may be used to determine the complex channel parameters, so that the distance between the network-side device and the user equipment is calculated according to the modulus or phase angle of the complex channel parameters.
  • the influence of the first error and the second error must be removed from the downlink received signal, so that the complex channel parameters can be accurately calculated, thereby calculating the network-side equipment and the user equipment. Distance.
  • the embodiment of the present invention uses the above principle to calculate the first error and the second error according to the uplink signal arrival angle, the downlink signal arrival angle, the uplink signal transmission angle, and the downlink signal transmission angle, and then removes from the downlink received signal The influence of the first error and the second error, thereby calculating the complex channel parameters, and calculating the distance between the network-side device and the user equipment according to the complex channel parameters.
  • the positioning unit 210 may perform the uplink signal transmission angle ⁇ rx and the downlink signal arrival angle. To calculate a first error ⁇ between the direction of the uplink transmit beam and the direction of the direct path between the user equipment and the network-side device.
  • the first error ⁇ and the downlink receive beamforming vector w ( ⁇ rx ) and the response vector related That is to say, (e.g., using formula (20)), the downlink received beamforming vector w ( ⁇ rx ) and the response vector can be formed.
  • the downlink receive beamforming vector w ( ⁇ rx ) is related to the uplink signal transmission angle ⁇ rx , that is, the downlink receive beamforming can be calculated based on the uplink signal transmission angle ⁇ rx (eg, using formula (15)) Vector w ( ⁇ rx ).
  • the response vector Angle of arrival with downlink signal Relevant that is, (for example, using formula (7)) Calculate the response vector of the downlink channel matrix of the direct path
  • the positioning unit 210 may calculate a downlink receiving beamforming vector according to an uplink signal transmission angle, calculate a response vector of a downlink channel matrix of a direct path according to a downlink signal arrival angle, and determine The shape vector and the response vector are used to calculate the first error, where the response vector represents a part of the downlink channel matrix that is related to the angle of arrival of the downlink signal.
  • the estimated value of the first error ⁇ It can be calculated by the following formula:
  • the measured value is the value of the angle of arrival of the downlink signal measured by the user equipment.
  • ⁇ rx represents the transmission angle of the uplink signal
  • N rx represents the number of antennas of the user equipment.
  • the positioning unit 210 may be based on the downlink signal transmission angle ⁇ tx and the uplink signal arrival angle To calculate a second error ⁇ between the direction of the downlink transmission beam and the direction of the direct path.
  • the second error ⁇ and the downlink transmission beamforming vector f ( ⁇ tx ) and the steering vector related can be formed from the downlink transmit beamforming (for example, using formula (19)).
  • the steering vector represents the part of the downlink channel matrix that is related to the angle of arrival of the uplink signal. According to formula (14), That is, (for example, using formula (6)) according to the arrival angle of the uplink signal Calculate the steering vector of the downlink channel matrix of the direct path
  • the positioning unit 210 may calculate a downlink transmission beamforming vector f ( ⁇ tx ) according to a downlink signal transmission angle, and calculate a steering vector of a downlink channel matrix of a direct path according to an uplink signal arrival angle. And according to the downlink transmit beamforming vector f ( ⁇ tx ) and the steering vector To calculate the second error ⁇ , the steering vector represents the part of the downlink channel matrix that is related to the angle of arrival of the uplink signal.
  • the estimated value of the second error ⁇ It can be calculated by the following formula:
  • the measured value is the value of the angle of arrival of the uplink signal measured by the network-side device
  • ⁇ tx represents the transmission angle of the downlink signal
  • N tx represents the number of antennas of the network-side device.
  • the estimated value of the first error ⁇ is calculated at the positioning unit 210 as described above. And the estimate of the second error ⁇ After that, the positioning unit 210 may calculate a distance between the network-side device and the user equipment according to the first error and the second error.
  • the positioning unit 210 may obtain the complex channel parameters of the direct path according to the first error and the second error, and then calculate the distance between the network-side device and the user equipment according to the complex channel parameters of the direct path.
  • the positioning unit 210 may divide the downlink received signal by the product of the first error and the second error, thereby obtaining the value of the complex channel parameter. That is, the positioning unit 210 may calculate the value of the complex channel parameter ⁇ by using the following formula:
  • the user equipment can not only save the channel quality information of the beam pair and the beam pair, but also the value of the downlink received signal. Further, the user equipment may send the value of the downlink received signal to a device that determines the distance between the user equipment and the network-side device, such as the network-side device, or a base station device that provides services to the network-side device.
  • represents the modulus of the complex channel parameter, Represents the phase angle of a complex channel parameter.
  • G t and G r represent the antenna gains of the network-side device and the user equipment
  • represents the carrier wavelength
  • R represents the distance between the network-side device and the user equipment to be calculated.
  • phase angle of the complex channel parameter there is the following formula:
  • represents a carrier wavelength
  • R represents a distance between a network-side device and a user device to be calculated
  • n is a natural number
  • ⁇ ⁇ 2 ⁇ is a carrier wavelength
  • the positioning unit 210 may calculate a distance between the network-side device and the user equipment according to a complex channel parameter of the direct path. For example, after calculating the complex channel parameter, the positioning unit 210 can calculate the modulus and phase angle of the complex channel parameter, so that the distance between the network-side device and the user equipment can be calculated according to the complex channel parameter's modulus or phase angle.
  • the positioning unit 210 may calculate the distance between the network-side device and the user equipment according to the modulus of the complex channel parameter. For example, by formula (27), given the values of G t , G r , ⁇ , and
  • the positioning unit 210 may also calculate the distance between the network-side device and the user equipment according to the phase angle of the complex channel parameter. As shown in formula (28), since the value of n is not known, the phase difference between the complex channel parameters can be used to calculate the distance between the network-side device and the user equipment.
  • the network-side device may receive an uplink signal transmitted from the user equipment using an uplink transmission beam (that is, a known uplink signal transmission angle). Further, during the first positioning duration, the network-side device does not generate a receiving beam, that is, receives the uplink signal from the user equipment in all directions, thereby measuring the angle of arrival of the uplink signal. Further, in the second positioning duration, the user equipment may receive, from the network-side device, a downlink signal sent by using a downlink transmission beam (that is, a known downlink signal transmission angle).
  • the user equipment does not generate a receiving beam, that is, receives the downlink signal from the network-side device in all directions, thereby measuring the angle of arrival of the downlink signal.
  • the positioning unit 210 of the electronic device 200 may calculate the first error and the second error according to the uplink signal transmission angle, the downlink signal transmission angle, the uplink signal arrival angle, and the downlink signal arrival angle, thereby calculating the complex channel parameters of the direct path, Then, the distance between the network-side device and the user equipment is determined according to the multiple channel parameters.
  • the present disclosure does not specify the order of the first positioning duration and the second positioning duration. That is, the network side device may send the downlink signal first, or the user equipment may send the uplink signal first. Each time a first positioning duration and a second positioning duration pass, a value of a complex channel parameter can be obtained.
  • a plurality of first positioning durations and a plurality of second positioning durations may be set, so that the positioning unit 210 may be based on multiple complex channel parameters calculated by sending uplink signals and downlink signals multiple times.
  • the phase difference is used to calculate the distance between the network-side device and the user equipment.
  • multiple times may be twice.
  • the network-side device may use different carriers to send downlink signals, such as PRS (Positioning Reference Signal). That is to say, the carrier frequencies for sending downlink signals are different, and therefore the carrier wavelengths are also different, so different values of the multiple channel parameters can be obtained.
  • PRS Positioning Reference Signal
  • FIG. 6 is a schematic diagram illustrating a time-frequency position of a positioning reference signal according to an embodiment of the present disclosure.
  • the upper oblique line portion indicates the time-frequency position of the PRS transmitted the first time
  • the lower oblique line portion indicates the time-frequency position of the PRS transmitted the second time
  • the two PRSs transmitted are separated by N subcarriers.
  • n 1 and n 2 are both natural numbers, ⁇ 1 ⁇ 2 ⁇ and ⁇ 2 ⁇ 2 ⁇ .
  • c represents the speed of light
  • R represents the distance between the network-side device and the user device.
  • the distance R between the network-side device and the user device can be obtained:
  • the positioning unit 210 may calculate the distance between the network-side device and the user equipment according to the difference between the phase angles calculated twice. Further, the positioning unit 210 may calculate the distance based on the difference between the phase angles calculated twice and the difference between the center frequencies of the downlink signals transmitted twice (for example, by using formula (32)).
  • the positioning unit 210 may determine the user equipment ’s location based on the distance between the network-side device and the user equipment, the angle of arrival of the uplink signal, and the position of the network-side device. position.
  • FIG. 7 is a schematic diagram illustrating a calculation model for positioning a user equipment in the presence of a direct path according to an embodiment of the present disclosure.
  • the coordinates of the network-side device are (x 1 , y 1 ), and the angle of arrival of the uplink signal measured by the network-side device is The distance between the network-side device and the user equipment calculated as described above is R. Therefore, the coordinates (x 2 , y 2 ) of the user equipment can be determined according to the following formula:
  • the process of positioning the user equipment by the electronic device 200 is described in detail above.
  • the TRP receives the uplink signal sent by the uplink transmission beam from the user equipment during the first positioning duration and measures the angle of arrival of the uplink signal.
  • the TRP sends the downlink signal to the user equipment using the downlink transmission beam during the second positioning duration for use.
  • the TRP can calculate the distance between the TRP and the user equipment to locate the user equipment, or it can send related parameters to the base station equipment, and the base station equipment calculates the distance between the TRP and the user equipment.
  • the user equipment performs positioning.
  • the user equipment may perform a beam scanning process with multiple TRPs around it, so that the user equipment may send a beam pair and channel quality information for each TRP to the base station device, which is selected by the base station device. There is a TRP for the direct path to the user equipment.
  • the user equipment may also send a beam pair and channel quality information for each TRP to the corresponding TRP, so that each TRP determines whether a direct path exists.
  • the base station device in a case where there is no direct path between all TRPs and user equipment, that is, when the channel quality of each TRP and user equipment beam pair is not greater than the channel quality threshold, the base station device Multiple TRPs can be selected to participate in the positioning process of the user equipment. Preferably, the plurality may be three. Each TRP can calculate the distance between the TRP and the user equipment in the same manner as described in the embodiment in the case where there is a direct path, but the calculated distance at this time is the distance reflected by the reflector.
  • FIG. 8 is a schematic diagram illustrating a calculation model for positioning a user equipment without a direct path according to an embodiment of the present disclosure.
  • R TRP represents the distance between the TRP and the reflector
  • R UE represents the distance between the user equipment and the reflector
  • f 1 represents the center frequency of the PRS transmitted for the first time
  • f 2 represents the PRS for the second transmission.
  • Center frequency Represents the phase angle of the complex channel parameter calculated from the first transmitted PRS
  • the distance value obtained by formula (35) can be multiplied by an empirical value to estimate the straight-line distance R between the TRP and the user equipment.
  • the empirical value may be 0.8, for example. That is, there is the following formula:
  • multiple TRPs around the user equipment can estimate the straight-line distance from the user equipment, so that the electronic device 200 (for example, a base station device) can estimate the position of the user equipment based on multiple straight-line distance values.
  • the electronic device 200 for example, a base station device
  • the three TRPs can be used as the center of the circle and the respective estimated distances as the radius.
  • the approximate intersections of the three circles can be used as the user equipment's Final position.
  • the distance between the user equipment and the TRP can be calculated, thereby positioning the user equipment.
  • the calculated distance can be used to verify whether a direct path really exists between the user equipment and the TRP.
  • the electronic device 200 may calculate a square value of a modulus of a complex channel parameter of a direct path between the user equipment and the network-side device according to the calculated distance between the user equipment and the network-side device, and When the difference between the square of the modulus of the calculated complex channel parameter and the channel quality of the selected beam pair closest to the direct path is less than or equal to the difference threshold, it is determined that a direct path exists between the user equipment and the network-side device; When the difference between the square of the modulus of the complex channel parameter and the channel quality of the selected beam pair closest to the direct path is greater than the difference threshold, it is determined that there is no direct path between the user equipment and the network-side device.
  • the electronic device 200 can calculate the square value ⁇ of the modulus of the complex channel parameter by using the following formula:
  • G t and G r represent the antenna gains of the network-side equipment and the user equipment, respectively, and ⁇ represents the carrier wavelength. Represents a distance calculated between a network-side device and a user equipment according to an embodiment of the present disclosure.
  • the electronic device 200 may calculate a difference between the channel quality of ⁇ and the selected beam pair closest to the direct path.
  • the channel's RSRP value is used to represent the channel quality
  • is used to represent the difference threshold
  • RSRP represents the RSRP value of the beam pair closest to the direct path
  • represents the square value of the modulus of the complex channel parameter obtained according to formula (37).
  • the Beam pair when there is no direct path between the user equipment and the network-side device, assuming that there are other beam pairs between the user equipment and the network-side device whose channel quality is greater than the channel quality threshold, the Beam pair to re-execute the positioning process for the user equipment; assuming that there is no other beam pair with a channel quality greater than the channel quality threshold between the user equipment and the network side device, it is possible to re-select the existence of a channel quality greater than the channel with the user equipment Quality-threshold beam-pair network-side equipment; assuming that no beam pair with a channel quality greater than the channel quality threshold exists between all network-side equipment and user equipment, multiple network-side equipment can be selected to locate the user equipment as described above .
  • FIG. 9 is a signaling flowchart illustrating a location of a user equipment determined by a TRP according to an embodiment of the present disclosure.
  • the TRP may be used to represent the network-side device and the electronic device 200.
  • the TRP sends a positioning instruction message to the UE.
  • the positioning instruction message may include at least one of the following: a positioning start time, a positioning duration, an uplink transmission beam for a user equipment, and a downlink transmission beam for a network-side device. This information may be obtained from the base station device and sent to the UE, or may be determined by the TRP and sent to the UE.
  • step S902 for the first positioning duration indicated in the positioning instruction message, the UE generates an uplink transmission beam and sends an uplink signal.
  • step S903 the TRP does not generate a receiving beam, and thus measures the angle of arrival of the uplink signal.
  • step S904 for the second positioning duration indicated in the positioning instruction message, the TRP generates a downlink transmission beam and sends a downlink signal.
  • step S905 the UE does not generate a receiving beam, and thus measures the angle of arrival of the downlink signal.
  • step S906 the UE sends the measured downlink signal arrival angle to the TRP.
  • step S907 the TRP calculates the distance between the TRP and the UE according to the arrival angle of the uplink signal and the arrival angle of the downlink signal, thereby determining the location of the UE.
  • FIG. 10 is a signaling flowchart illustrating a location of a user equipment determined by a base station device according to an embodiment of the present disclosure.
  • the TRP may be used to represent a network-side device
  • the base station device may be used to represent the electronic device 200.
  • the TRP sends a positioning instruction message to the UE.
  • the positioning instruction message may include at least one of the following: a positioning start time, a positioning duration, an uplink transmission beam for a user equipment, and a downlink transmission beam for a network-side device.
  • step S1002 For the first positioning duration indicated in the positioning instruction message, the UE generates an uplink transmission beam and sends an uplink signal.
  • step S1003 the TRP does not generate a receiving beam, and thus measures the angle of arrival of the uplink signal.
  • step S1004 in the second positioning duration indicated in the positioning instruction message, the TRP generates a downlink transmission beam and sends a downlink signal.
  • step S1005 the UE does not generate a receiving beam, and thus measures the angle of arrival of the downlink signal.
  • step S1006 the UE sends the measured downlink signal arrival angle to the base station device.
  • step S1007 the TRP sends the measured uplink signal arrival angle to the base station device.
  • step S1008 the base station device calculates the distance between the TRP and the UE according to the angle of arrival of the uplink signal and the angle of arrival of the downlink signal, thereby determining the location of the UE.
  • the distance between the network side device and the user equipment can be estimated according to the angle of arrival of the downlink signal and the angle of arrival of the uplink signal, and then the user equipment can be located. In this way, the distance is determined based on the two arrival angles, so that the determined distance is more accurate. Further, the user equipment may be located according to the distance determined thereby and the true arrival angle of the uplink signal, so that the user equipment is positioned more accurately.
  • the final location of the user equipment may be estimated by using the distances estimated by the plurality of network-side devices to the user equipment.
  • FIG. 11 is a block diagram showing a structure of a user equipment 1100 in a wireless communication system according to an embodiment of the present disclosure.
  • the user equipment 1100 may be provided in a wireless communication system including a single base station device, for example.
  • the user equipment 1100 may include an angle measurement unit 1110 and a communication unit 1120.
  • each unit of the user equipment 1100 may be included in a processing circuit.
  • the user equipment 1100 may include one processing circuit or multiple processing circuits.
  • the processing circuit may include various discrete functional units to perform various different functions and / or operations. It should be noted that these functional units may be physical entities or logical entities, and units with different names may be implemented by the same physical entity.
  • the angle measurement unit 1110 may measure an arrival angle of a downlink signal.
  • the communication unit 1120 may send a downlink signal arrival angle for a network-side device or a base station device serving the network-side device to calculate according to the downlink signal arrival angle and the uplink signal arrival angle measured by the network-side device.
  • the distance between the network-side device and the user equipment, and the position of the user equipment is determined according to the distance between the network-side device and the user equipment and the angle of arrival of the uplink signal.
  • the network-side device may be, for example, TRP.
  • TRP is a device that determines the location of the user equipment
  • the communication unit 1120 may send the angle of arrival of the downlink signal measured by the user equipment to the TRP for the TRP to determine the location of the user equipment; when the base station equipment determines the location of the user equipment When the device is connected, the communication unit 1120 may send the angle of arrival of the downlink signal measured by the user equipment to the base station device, so that the base station device determines the position of the user equipment.
  • the user equipment can measure the angle of arrival of the downlink signal, so that the network side device or the base station device can estimate the distance between the network side device and the user equipment according to the angle of arrival of the downlink signal and the angle of arrival of the uplink signal. To locate the user device. In this way, the distance is determined based on the two arrival angles, so that the determined distance is more accurate. Further, the user equipment may be located according to the distance determined thereby and the true arrival angle of the uplink signal, so that the user equipment is positioned more accurately.
  • the communication unit 1120 may receive a positioning instruction message, and the positioning instruction message may include at least one of the following: a positioning start time, a positioning duration, an uplink transmission beam for a user equipment, and a network side device Downlink transmission beam.
  • the positioning duration may include a first positioning duration and a second positioning duration. This part has been described in detail in the foregoing, and will not be repeated here.
  • the communication unit 1120 may further send an uplink signal to the network-side device by using the uplink transmission beam, so that the network-side device measures the angle of arrival of the uplink signal.
  • the uplink signal can be used to send an uplink signal to the network-side device during the first positioning duration.
  • the network-side device does not generate a receive beam to measure the angle of arrival of the uplink signal.
  • the communication unit 1120 may further receive a downlink signal sent by using a downlink transmit beam from a network-side device to measure a downlink signal arrival angle. Further, when a downlink signal is received from a network-side device, a receiving beam is not generated, and the angle of arrival of the downlink signal may be measured according to the downlink signals received on different antennas of the user equipment.
  • the user equipment 1100 may further include a channel quality measurement unit 1130 for measuring the channel quality of each beam pair between the user equipment 1100 and the network-side device. Further, the user equipment 1100 may measure the channel quality of each beam pair during a beam scan. In addition, the user equipment 1100 may also report the multiple beam pairs and the channel quality of each beam pair to the network-side device through the communication unit 1120, so as to be used by the network-side device to select the beam pair closest to the direct path. Optionally, the user equipment 1100 may also report the multiple beam pairs and the channel quality of each beam pair to the base station device, so that the base station device selects the beam pair closest to the direct path between the network side device and the user equipment.
  • a channel quality measurement unit 1130 for measuring the channel quality of each beam pair between the user equipment 1100 and the network-side device. Further, the user equipment 1100 may measure the channel quality of each beam pair during a beam scan. In addition, the user equipment 1100 may also report the multiple beam pairs and the channel quality of each beam pair to the network-
  • the electronic device 200 may serve as a TRP or a base station device that provides services to the user equipment 1100, so all the embodiments described above regarding the electronic device 200 are applicable to this.
  • FIG. 12 is a flowchart illustrating a wireless communication method performed by the electronic device 200 as a network-side device in a wireless communication system according to an embodiment of the present disclosure.
  • step S1210 the distance between the network-side device and the user equipment is calculated according to the downlink signal arrival angle measured by the user equipment and the uplink signal arrival angle measured by the network-side device.
  • step S1220 the position of the user equipment is determined according to the distance between the network-side device and the user equipment and the uplink signal arrival angle.
  • calculating the distance between the network-side device and the user equipment includes: calculating the distance between the network-side device and the user equipment according to an uplink signal transmission angle, a downlink signal transmission angle, a downlink signal arrival angle, and an uplink signal arrival angle.
  • calculating the distance between the network side device and the user equipment further includes: calculating the direction of the uplink transmission beam and the direction of the direct path between the user equipment and the network side device according to the uplink signal transmission angle and the downlink signal arrival angle. Calculate a second error between the direction of the downlink transmission beam and the direction of the direct path according to the downlink signal transmission angle and the uplink signal arrival angle; and calculate the network-side device according to the first error and the second error The distance from the user equipment.
  • calculating the first error includes: calculating a downlink receive beamforming vector according to an uplink signal transmission angle, calculating a response vector of a downlink channel matrix of a direct path according to a downlink signal arrival angle, and according to the downlink receive beamforming vector and the response vector to Calculate the first error, the response vector represents the part of the downlink channel matrix that is related to the angle of arrival of the downlink signal, and calculating the second error includes: calculating the downlink transmit beamforming vector based on the downlink signal transmission angle, and calculating the direct path based on the uplink signal arrival angle
  • the steering vector of the downlink channel matrix, and a second error is calculated according to the downlink transmit beamforming vector and the steering vector.
  • the steering vector represents a part of the downlink channel matrix related to the angle of arrival of the uplink signal.
  • calculating the distance between the network-side device and the user equipment further includes: obtaining a complex channel parameter of the direct path according to the first error and the second error; and calculating a complex channel parameter between the network-side device and the user equipment according to the complex channel parameter of the direct path. Distance.
  • calculating the distance between the network-side device and the user equipment further includes: calculating the distance between the network-side device and the user equipment according to the phase differences of multiple multiple channel parameters calculated by sending the uplink signal and the downlink signal multiple times. .
  • the angle of arrival of the downlink signal and the angle of arrival of the uplink signal are associated with a direct path between the user equipment and the network-side device.
  • the uplink signal transmission angle is associated with the direction of the uplink transmission beam of the user equipment, and the downlink signal transmission angle is associated with the direction of the downlink transmission beam of the network-side device.
  • the wireless communication method further includes: selecting a beam pair closest to the direct path from a plurality of beam pairs between the user equipment and the network-side device as an uplink transmission beam and a downlink transmission beam.
  • selecting the beam pair closest to the direct path includes: selecting the beam pair closest to the direct path according to the channel quality of each beam pair in the plurality of beam pairs.
  • selecting the beam pair closest to the direct path includes: selecting a beam pair with a channel quality greater than a channel quality threshold and the best channel quality among the multiple beam pairs as the beam pair closest to the direct path.
  • the wireless communication method further includes: determining a channel quality threshold according to a coverage range of the network-side device.
  • determining the location of the user equipment further includes: determining the location of the user equipment according to a distance between the network side equipment and the user equipment, an uplink signal arrival angle, and the location of the network side equipment.
  • the wireless communication method further includes: sending a positioning instruction message to the user equipment, where the positioning instruction message includes at least one of the following: positioning start time, positioning duration, uplink transmission beam for the user equipment, and for the network side device Downlink transmission beam.
  • the positioning instruction message includes at least one of the following: positioning start time, positioning duration, uplink transmission beam for the user equipment, and for the network side device Downlink transmission beam.
  • the electronic device is a network-side device
  • the wireless communication method further includes: sending a downlink signal to the user equipment using a downlink transmission beam, and receiving the angle of arrival of the downlink signal measured by the user equipment; and receiving from the user equipment the Up signal and measure the angle of arrival of the up signal.
  • the wireless communication method further includes: when receiving the uplink signal from the user equipment, no receiving beam is generated, and the angle of arrival of the uplink signal is measured according to the uplink signals received on different antennas of the network-side device.
  • the electronic device is a base station device
  • the wireless communication method further includes: receiving the downlink signal arrival angle from the user equipment; and receiving the uplink signal arrival angle from the network-side device.
  • the subject performing the above method may be the electronic device 200 according to the embodiment of the present disclosure, so all the embodiments of the electronic device 200 described above are applicable to this.
  • FIG. 13 is a flowchart illustrating a wireless communication method performed by a user equipment 1100 in a wireless communication system according to an embodiment of the present disclosure.
  • step S1310 the angle of arrival of the downlink signal is measured.
  • step S1320 the downlink signal arrival angle is sent for the network-side device or the base station device serving the network-side device to calculate the network-side device according to the downlink signal arrival angle and the uplink signal arrival angle measured by the network-side device.
  • the distance to the user equipment, and the position of the user equipment is determined according to the distance between the network side equipment and the user equipment and the angle of arrival of the uplink signal.
  • the wireless communication method further includes: sending an uplink signal to the network-side device by using the uplink transmission beam for the network-side device to measure the angle of arrival of the uplink signal; and receiving the downlink signal sent by the network-side device using the downlink transmission beam and measuring Downward signal arrival angle.
  • the wireless communication method further includes: when receiving a downlink signal from a network-side device, no receiving beam is generated, and the angle of arrival of the downlink signal is measured according to the downlink signals received on different antennas of the user equipment.
  • the wireless communication method further includes: receiving a positioning instruction message, the positioning instruction message including at least one of the following: positioning start time, positioning duration, uplink transmission beam for user equipment, and downlink transmission for network side equipment Beam.
  • the wireless communication method further includes: during a beam scanning, measuring a channel quality of each beam pair among a plurality of beam pairs between the user equipment and the network-side device; and reporting the plurality of beam pairs and each Channel quality for each beam pair.
  • the subject performing the above method may be the user equipment 1100 according to the embodiment of the present disclosure, so all the embodiments of the user equipment 1100 described above are applicable to this.
  • the technology of the present disclosure can be applied to various products.
  • Network-side equipment can be implemented as any type of TRP.
  • the TRP may have a sending and receiving function.
  • the TRP may receive information from the user equipment and the base station equipment, and may also send information to the user equipment and the base station equipment.
  • TRP can serve user equipment and is controlled by the base station equipment.
  • the TRP may have a structure similar to the base station device described below, or may only have a structure related to transmitting and receiving information in the base station device.
  • Network-side equipment can also be implemented as any type of base station equipment, such as macro eNBs and small eNBs, and can also be implemented as any type of gNB (base station in a 5G system).
  • a small eNB may be an eNB covering a cell smaller than a macro cell, such as a pico eNB, a pico eNB, and a home (femto) eNB.
  • the base station may be implemented as any other type of base station, such as a NodeB and a base transceiver station (BTS).
  • the base station may include: a main body (also referred to as a base station device) configured to control wireless communication; and one or more remote wireless headends (RRH) provided at a place different from the main body.
  • RRH remote wireless headends
  • the user equipment may be implemented as a mobile terminal such as a smartphone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable / dongle-type mobile router, and a digital camera device, or a vehicle-mounted terminal such as a car navigation device.
  • User equipment can also be implemented as a terminal (also called a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single chip) mounted on each of the user equipments described above.
  • FIG. 14 is a block diagram showing a first example of a schematic configuration of an eNB to which the technology of the present disclosure can be applied.
  • the eNB 1400 includes one or more antennas 1410 and a base station device 1420.
  • the base station device 1420 and each antenna 1410 may be connected to each other via an RF cable.
  • Each of the antennas 1410 includes a single or multiple antenna elements, such as multiple antenna elements included in a multiple-input multiple-output (MIMO) antenna, and is used for the base station device 1420 to transmit and receive wireless signals.
  • the eNB 1400 may include multiple antennas 1410.
  • multiple antennas 1410 may be compatible with multiple frequency bands used by eNB 1400.
  • FIG. 14 illustrates an example in which the eNB 1400 includes a plurality of antennas 1410, the eNB 1400 may also include a single antenna 1410.
  • the base station device 1420 includes a controller 1421, a memory 1422, a network interface 1423, and a wireless communication interface 1425.
  • the controller 1421 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station device 1420. For example, the controller 1421 generates a data packet according to data in a signal processed by the wireless communication interface 1425, and transmits the generated packet via the network interface 1423. The controller 1421 may bundle data from multiple baseband processors to generate a bundled packet, and pass the generated bundled packet. The controller 1421 may have a logical function that performs control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 1822 includes a RAM and a ROM, and stores a program executed by the controller 1421 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • the network interface 1423 is a communication interface for connecting the base station device 1420 to the core network 1424.
  • the controller 1421 may communicate with a core network node or another eNB via the network interface 1423.
  • the eNB 1400 and the core network node or other eNBs may be connected to each other through a logical interface such as an S1 interface and an X2 interface.
  • the network interface 1423 may also be a wired communication interface or a wireless communication interface for a wireless backhaul line. If the network interface 1423 is a wireless communication interface, compared to the frequency band used by the wireless communication interface 1425, the network interface 1423 can use a higher frequency band for wireless communication.
  • the wireless communication interface 1425 supports any cellular communication scheme such as Long Term Evolution (LTE) and LTE-Advanced, and provides a wireless connection to a terminal located in a cell of the eNB 1400 via an antenna 1410.
  • the wireless communication interface 1425 may generally include, for example, a baseband (BB) processor 1426 and an RF circuit 1427.
  • the BB processor 1426 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and execute layers such as L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)).
  • L1 Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • the BB processor 1426 may have a part or all of the above-mentioned logical functions.
  • the BB processor 1426 may be a memory storing a communication control program, or a module including a processor and related circuits configured to execute the program. Updating the program can change the function of the BB processor 1426.
  • the module may be a card or a blade inserted into a slot of the base station device 1420. Alternatively, the module may be a chip mounted on a card or a blade.
  • the RF circuit 1427 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 1410.
  • the wireless communication interface 1425 may include a plurality of BB processors 1426.
  • multiple BB processors 1426 may be compatible with multiple frequency bands used by eNB 1400.
  • the wireless communication interface 1425 may include a plurality of RF circuits 1427.
  • multiple RF circuits 1427 may be compatible with multiple antenna elements.
  • FIG. 14 shows an example in which the wireless communication interface 1425 includes a plurality of BB processors 1426 and a plurality of RF circuits 1427, the wireless communication interface 1425 may also include a single BB processor 1426 or a single RF circuit 1427.
  • FIG. 15 is a block diagram showing a second example of a schematic configuration of an eNB to which the technology of the present disclosure can be applied.
  • the eNB 1530 includes one or more antennas 1540, base station equipment 1550, and RRH 1560.
  • the RRH 1560 and each antenna 1540 may be connected to each other via an RF cable.
  • the base station equipment 1550 and RRH 1560 can be connected to each other via a high-speed line such as a fiber optic cable.
  • Each of the antennas 1540 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for RRH 1560 to transmit and receive wireless signals.
  • the eNB 1530 may include multiple antennas 1540.
  • multiple antennas 1540 may be compatible with multiple frequency bands used by eNB 1530.
  • FIG. 15 illustrates an example in which the eNB 1530 includes a plurality of antennas 1540, the eNB 1530 may also include a single antenna 1540.
  • the base station device 1550 includes a controller 1551, a memory 1552, a network interface 1553, a wireless communication interface 1555, and a connection interface 1557.
  • the controller 1551, the memory 1552, and the network interface 1553 are the same as the controller 1421, the memory 1422, and the network interface 1423 described with reference to FIG.
  • the wireless communication interface 1555 supports any cellular communication scheme such as LTE and LTE-Advanced, and provides wireless communication to a terminal located in a sector corresponding to the RRH 1560 via the RRH 1560 and the antenna 1540.
  • the wireless communication interface 1555 may generally include, for example, a BB processor 1556.
  • the BB processor 1556 is the same as the BB processor 1426 described with reference to FIG. 15 except that the BB processor 1556 is connected to the RRH 1560 via the connection interface 1557.
  • the wireless communication interface 1555 may include a plurality of BB processors 1556.
  • multiple BB processors 1556 may be compatible with multiple frequency bands used by the eNB 1530.
  • FIG. 15 illustrates an example in which the wireless communication interface 1555 includes a plurality of BB processors 1556, the wireless communication interface 1555 may also include a single BB processor 1556.
  • connection interface 1557 is an interface for connecting the base station device 1550 (wireless communication interface 1555) to the RRH 1560.
  • the connection interface 1557 may also be a communication module for communication in the above-mentioned high-speed line connecting the base station device 1550 (wireless communication interface 1555) to the RRH 1560.
  • the RRH 1560 includes a connection interface 1561 and a wireless communication interface 1563.
  • connection interface 1561 is an interface for connecting the RRH 1560 (wireless communication interface 1563) to the base station device 1550.
  • the connection interface 1561 may also be a communication module for communication in the above-mentioned high-speed line.
  • the wireless communication interface 1563 transmits and receives wireless signals via the antenna 1540.
  • the wireless communication interface 1563 may generally include, for example, an RF circuit 1564.
  • the RF circuit 1564 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 1540.
  • the wireless communication interface 1563 may include a plurality of RF circuits 1564.
  • multiple RF circuits 1564 may support multiple antenna elements.
  • FIG. 15 shows an example in which the wireless communication interface 1563 includes a plurality of RF circuits 1564, the wireless communication interface 1563 may include a single RF circuit 1564.
  • the positioning unit 210, the selection unit 230, and the measurement unit 240 described in FIG. 2 may be implemented by the controller 1421 and / or the controller 1551. At least a part of the functions may also be implemented by the controller 1421 and the controller 1551.
  • the controller 1421 and / or the controller 1551 may perform functions of positioning a user equipment, selecting a beam pair, and measuring an angle of arrival of an uplink channel by executing instructions stored in a corresponding memory.
  • FIG. 16 is a block diagram showing an example of a schematic configuration of a smartphone 1600 to which the technology of the present disclosure can be applied.
  • the smart phone 1600 includes a processor 1601, a memory 1602, a storage device 1603, an external connection interface 1604, a camera device 1606, a sensor 1607, a microphone 1608, an input device 1609, a display device 1610, a speaker 1611, a wireless communication interface 1612, one or more An antenna switch 1615, one or more antennas 1616, a bus 1617, a battery 1618, and an auxiliary controller 1619.
  • the processor 1601 may be, for example, a CPU or a system on chip (SoC), and controls functions of an application layer and another layer of the smartphone 1600.
  • the memory 1602 includes a RAM and a ROM, and stores data and programs executed by the processor 1601.
  • the storage device 1603 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 1604 is an interface for connecting external devices such as a memory card and a universal serial bus (USB) device to the smartphone 1600.
  • the imaging device 1606 includes an image sensor such as a charge-coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • the sensor 1607 may include a set of sensors such as a measurement sensor, a gyroscope sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 1608 converts a sound input to the smartphone 1600 into an audio signal.
  • the input device 1609 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 1610, and receives an operation or information input from a user.
  • the display device 1610 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 1600.
  • the speaker 1611 converts an audio signal output from the smartphone 1600 into a sound.
  • the wireless communication interface 1612 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 1612 may generally include, for example, a BB processor 1613 and an RF circuit 1614.
  • the BB processor 1613 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1614 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 1616.
  • the wireless communication interface 1612 may be a chip module on which a BB processor 1613 and an RF circuit 1614 are integrated. As shown in FIG.
  • the wireless communication interface 1612 may include multiple BB processors 1613 and multiple RF circuits 1614. Although FIG. 16 shows an example in which the wireless communication interface 1612 includes multiple BB processors 1613 and multiple RF circuits 1614, the wireless communication interface 1612 may also include a single BB processor 1613 or a single RF circuit 1614.
  • the wireless communication interface 1612 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless local area network (LAN) scheme.
  • the wireless communication interface 1612 may include a BB processor 1613 and an RF circuit 1614 for each wireless communication scheme.
  • Each of the antenna switches 1615 switches a connection destination of the antenna 1616 between a plurality of circuits included in the wireless communication interface 1612 (for example, circuits for different wireless communication schemes).
  • Each of the antennas 1616 includes a single or multiple antenna elements, such as multiple antenna elements included in a MIMO antenna, and is used for the wireless communication interface 1612 to transmit and receive wireless signals.
  • the smartphone 1600 may include a plurality of antennas 1616.
  • FIG. 16 illustrates an example in which the smart phone 1600 includes a plurality of antennas 1616, the smart phone 1600 may also include a single antenna 1616.
  • the smartphone 1600 may include an antenna 1616 for each wireless communication scheme.
  • the antenna switch 1615 may be omitted from the configuration of the smartphone 1600.
  • the bus 1617 connects the processor 1601, the memory 1602, the storage device 1603, the external connection interface 1604, the camera 1606, the sensor 1607, the microphone 1608, the input device 1609, the display device 1610, the speaker 1611, the wireless communication interface 1612, and the auxiliary controller 1619 to each other. connection.
  • the battery 1618 supplies power to each block of the smartphone 1600 shown in FIG. 16 via a feeder, and the feeder is partially shown as a dotted line in the figure.
  • the auxiliary controller 1619 operates the minimum necessary functions of the smartphone 1600 in the sleep mode, for example.
  • the angle measurement unit 1110 and the channel quality measurement unit 1130 described by using FIG. 11 may be implemented by the processor 1601 or the auxiliary controller 1619. At least a part of the functions may also be implemented by the processor 1601 or the auxiliary controller 1619.
  • the processor 1601 or the auxiliary controller 1619 may perform functions of measuring the angle of arrival of a downlink signal and measuring the quality of a channel by executing instructions stored in the memory 1602 or the storage device 1603.
  • FIG. 17 is a block diagram showing an example of a schematic configuration of a car navigation device 1720 to which the technology of the present disclosure can be applied.
  • the car navigation device 1720 includes a processor 1721, a memory 1722, a global positioning system (GPS) module 1724, a sensor 1725, a data interface 1726, a content player 1727, a storage medium interface 1728, an input device 1729, a display device 1730, a speaker 1731, and a wireless device.
  • the processor 1721 may be, for example, a CPU or a SoC, and controls navigation functions and other functions of the car navigation device 1720.
  • the memory 1722 includes a RAM and a ROM, and stores data and programs executed by the processor 1721.
  • the GPS module 1724 uses GPS signals received from GPS satellites to measure the position (such as latitude, longitude, and altitude) of the car navigation device 1720.
  • the sensor 1725 may include a set of sensors such as a gyroscope sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 1726 is connected to, for example, an in-vehicle network 1741 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 1727 reproduces content stored in a storage medium such as a CD and a DVD, which is inserted into the storage medium interface 1728.
  • the input device 1729 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 1730, and receives an operation or information input from a user.
  • the display device 1730 includes a screen such as an LCD or OLED display, and displays an image of a navigation function or reproduced content.
  • the speaker 1731 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 1733 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 1733 may generally include, for example, a BB processor 1734 and an RF circuit 1735.
  • the BB processor 1734 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1735 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 1737.
  • the wireless communication interface 1733 may also be a chip module on which a BB processor 1734 and an RF circuit 1735 are integrated. As shown in FIG.
  • the wireless communication interface 1733 may include a plurality of BB processors 1734 and a plurality of RF circuits 1735.
  • FIG. 17 shows an example in which the wireless communication interface 1733 includes a plurality of BB processors 1734 and a plurality of RF circuits 1735, the wireless communication interface 1733 may also include a single BB processor 1734 or a single RF circuit 1735.
  • the wireless communication interface 1733 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near-field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 1733 may include a BB processor 1734 and an RF circuit 1735 for each wireless communication scheme.
  • Each of the antenna switches 1736 switches the connection destination of the antenna 1737 between a plurality of circuits included in the wireless communication interface 1733, such as circuits for different wireless communication schemes.
  • Each of the antennas 1737 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 1733 to transmit and receive wireless signals.
  • the car navigation device 1720 may include a plurality of antennas 1737.
  • FIG. 17 shows an example in which the car navigation device 1720 includes a plurality of antennas 1737, the car navigation device 1720 may also include a single antenna 1737.
  • the car navigation device 1720 may include an antenna 2137 for each wireless communication scheme.
  • the antenna switch 1736 may be omitted from the configuration of the car navigation device 1720.
  • the battery 1738 supplies power to each block of the car navigation device 1720 shown in FIG. 17 via a feeder line, and the feeder line is partially shown as a dotted line in the figure.
  • the battery 1738 accumulates power provided from the vehicle.
  • the angle measurement unit 1110 and the channel quality measurement unit 1130 described in FIG. 11 may be implemented by the processor 1721. At least a part of the functions may also be implemented by the processor 1721.
  • the processor 1721 may perform functions of measuring the angle of arrival of the downlink channel and measuring the quality of the channel by executing instructions stored in the memory 1722.
  • the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 1740 including one or more of a car navigation device 1720, an in-vehicle network 1741, and a vehicle module 1742.
  • vehicle module 1742 generates vehicle data such as vehicle speed, engine speed, and failure information, and outputs the generated data to the in-vehicle network 1741.
  • the units shown by dashed boxes in the functional block diagram shown in the drawings all indicate that the functional unit is optional in the corresponding device, and each optional functional unit can be combined in an appropriate manner to achieve the required function .
  • a plurality of functions included in one unit in the above embodiments may be implemented by separate devices.
  • multiple functions implemented by multiple units in the above embodiments may be implemented by separate devices, respectively.
  • one of the above functions can be implemented by multiple units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowchart include not only processes performed in time series in the described order, but also processes performed in parallel or individually instead of having to be performed in time series. Further, even in the steps processed in time series, needless to say, the order can be appropriately changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种电子设备、用户设备、无线通信方法和存储介质。设置在包括单个基站设备的无线通信***中的电子设备包括处理电路,被配置为:根据用户设备测量的下行信号到达角度和网络侧设备测量的上行信号到达角度来估计网络侧设备与用户设备之间的距离;以及根据网络侧设备与用户设备之间的距离和上行信号到达角度来确定用户设备的位置。

Description

电子设备、用户设备、无线通信方法和存储介质
本申请要求于2018年6月13日提交中国专利局、申请号为201810647895.6、发明名称为“电子设备、用户设备、无线通信方法和存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开的实施例总体上涉及无线通信领域,具体地涉及电子设备、用户设备、无线通信方法和计算机可读存储介质。更具体地,本公开涉及一种作为无线通信***中的网络侧设备的电子设备、一种无线通信***中的用户设备、一种由无线通信***中的网络侧设备执行的无线通信方法、一种由无线通信***中的用户设备执行的无线通信方法以及一种计算机可读存储介质。
背景技术
存在采用基于到达方向(Direction Of Arrival,DOA)或到达角度(Angle of Arrival,AOA)对用户设备进行定位的方法。在这种方式中,采用波束扫描的方式来发现用户并测量用户的DOA/AOA。但是,考虑到时延和复杂度等原因,扫描波束的出发角并不是连续的,从而造成了定位的误差。此外,在基于DOA/AOA的定位中,在估计出用户的DOA/AOA后,还需估计用户距离网络侧设备的距离。在现有的方法中,可以利用接收功率来估计距离。但是,接收功率除了跟距离有关外,还和许多其它因素有关,比如电路的波动和遮挡物对电波的吸收等等。所以,采用接收功率来估计距离也会存在一定的误差。
因此,有必要提出一种技术方案,以提高对用户设备进行定位的精确度。
发明内容
这个部分提供了本公开的一般概要,而不是其全部范围或其全部特征的全面披露。
本公开的目的在于提供一种电子设备、用户设备、无线通信方法和计算机可读存储介质,以提高对用户设备进行定位的精确度。
根据本公开的一方面,提供了一种设置在包括单个基站设备的无线通信***中的电子设备,包括处理电路,被配置为:根据用户设备测量的下行信号到达角度和网络侧设备测量的上行信号到达角度来估计所述网络侧设备与所述用户设备之间的距离;以及根据所述网络侧设备与所述用户设备之间的距离和所述上行信号到达角度来确定所述用户设备的位置。
根据本公开的另一方面,提供了一种设置在包括单个基站设备的无线通信***中的用户设备,包括处理电路,被配置为:测量下行信号到达角度;以及发送所述下行信号到达角度,以用于网络侧设备或者为所述网络侧设备提供服务的基站设备根据所述下行信号到达角度和所述网络侧设备测量的上行信号到达角度来计算所述网络侧设备与用户设备之间的距离,并根据所述网络侧设备与用户设备之间的距离和所述上行信号到达角度来确定所述用户设备的位置。
根据本公开的另一方面,提供了一种由电子设备执行的无线通信方法,包括:根据用户设备测量的下行信号到达角度和网络侧设备测量的上行信号到达角度来计算所述网络侧设备与所述用户设备之间的距离;以及根据所述网络侧设备与所述用户设备之间的距离和所述上行信号到达角度来确定所述用户设备的位置。
根据本公开的另一方面,提供了一种由用户设备执行的无线通信方法,包括:测量下行信号到达角度;以及发送所述下行信号到达角度,以用于网络侧设备或者为所述网络侧设备提供服务的基站设备根据所述下行信号到达角度和所述网络侧设备测量的上行信号到达角度来计算所述网络侧设备与用户设备之间的距离,并根据所述网络侧设备与用户设备之间的距离和所述上行信号到达角度来确定所述用户设备的位置。
根据本公开的另一方面,提供了一种计算机可读存储介质,包括可执行计算机指令,所述可执行计算机指令当被计算机执行时使得所述计算机执行根据本公开所述的无线通信方法。
使用根据本公开的电子设备、无线通信方法和计算机可读存储介质,用户设备可以测量下行信号到达角度,并且网络侧设备可以测量上行信号到达角度,从而可以根据下行信号到达角度和上行信号到达角度来估计网 络侧设备与用户设备之间的距离,进而对用户设备进行定位。这样一来,根据两个到达角度来确定距离,使得确定的距离更加精确。进一步,可以根据由此确定的距离以及上行信号的真实到达角度来对用户设备进行定位,从而使得对用户设备的定位更加精确。
从在此提供的描述中,进一步的适用性区域将会变得明显。这个概要中的描述和特定例子只是为了示意的目的,而不旨在限制本公开的范围。
附图说明
在此描述的附图只是为了所选实施例的示意的目的而非全部可能的实施,并且不旨在限制本公开的范围。在附图中:
图1是示出通过波束扫描的方式来发现用户设备的示意图;
图2是示出根据本公开的实施例的电子设备的配置的示例的框图;
图3是示出根据本公开的实施例的对用户设备进行定位的计算模型的示意图;
图4是示出根据本公开的实施例的直达路径和非直达路径的示意图;
图5是示出根据本公开的实施例的选择与直达路径最接近的波束对的信令流程图;
图6是示出根据本公开的实施例的定位参考信号的时频位置的示意图;
图7是示出根据本公开的实施例的在存在直达路径的情况下对用户设备进行定位的计算模型的示意图;
图8是示出根据本公开的实施例的在不存在直达路径的情况下对用户设备进行定位的计算模型的示意图;
图9是示出根据本公开的实施例的由TRP确定用户设备的位置的信令流程图;
图10是示出根据本公开的实施例的由基站设备确定用户设备的位置的信令流程图;
图11是示出根据本公开的实施例的用户设备的配置的示例的框图;
图12是示出根据本公开的实施例的由电子设备执行的无线通信方法 的流程图;
图13是示出根据本公开的实施例的由用户设备执行的无线通信方法的流程图;
图14是示出eNB(Evolved Node B,演进型节点B)的示意性配置的第一示例的框图;
图15是示出eNB的示意性配置的第二示例的框图;
图16是示出智能电话的示意性配置的示例的框图;以及
图17是示出汽车导航设备的示意性配置的示例的框图。
虽然本公开容易经受各种修改和替换形式,但是其特定实施例已作为例子在附图中示出,并且在此详细描述。然而应当理解的是,在此对特定实施例的描述并不打算将本公开限制到公开的具体形式,而是相反地,本公开目的是要覆盖落在本公开的精神和范围之内的所有修改、等效和替换。要注意的是,贯穿几个附图,相应的标号指示相应的部件。
具体实施方式
现在参考附图来更加充分地描述本公开的例子。以下描述实质上只是示例性的,而不旨在限制本公开、应用或用途。
提供了示例实施例,以便本公开将会变得详尽,并且将会向本领域技术人员充分地传达其范围。阐述了众多的特定细节如特定部件、装置和方法的例子,以提供对本公开的实施例的详尽理解。对于本领域技术人员而言将会明显的是,不需要使用特定的细节,示例实施例可以用许多不同的形式来实施,它们都不应当被解释为限制本公开的范围。在某些示例实施例中,没有详细地描述众所周知的过程、众所周知的结构和众所周知的技术。
将按照以下顺序进行描述:
1.综述;
2.网络侧设备的配置示例;
3.用户设备的配置示例;
4.方法实施例;
5.应用示例。
<1.综述>
图1是示出通过波束扫描的方式来发现用户设备的示意图。
前文中提到,在波束扫描方面,考虑到扫描的时延以及实现复杂度等原因,扫描波束的角度并不是连续的。例如,当波束的扫描角度间隔为1度时,波束的出发角只能指向1度、2度、3度等等。然而,用户设备的位置是随机分布的。如图1所示,假定用户设备处在2.5度的位置,由于波束有一定宽度,用户设备也能收到信号,可以进行正常通信。但是,当采用的波束的出发角与用户设备处的位置有差距时,比如3度作为用户设备的DOA时,显然会产生定位误差。假设该网络侧设备的覆盖范围为半径为50米的圆,可算出圆周长为314米,相邻两个波束中心线的距离在圆上大约为0.9米。如果用户设备此时正处在覆盖范围的边界上,那么0.5度的偏移会造成0.45米的定位误差。
此外,如前文中所述,在现有的方法中,可以利用接收功率来估计距离。但是,接收功率除了跟距离有关外,还和许多其它因素有关,比如电路的波动和遮挡物对电波的吸收等等。所以,采用接收功率来估计距离也会存在一定的误差。
本公开针对这样的场景提出了一种无线通信***中的电子设备、无线通信***中的用户设备、由无线通信***中的电子设备执行的无线通信方法、由无线通信***中的用户设备执行的无线通信方法以及计算机可读存储介质,以提高对用户设备进行定位的精确度。
根据本公开的网络侧设备可以是任何类型的TRP(Transmit and Receive Port,发送和接收端口)。该TRP可以具备发送和接收功能,例如可以从用户设备和基站设备接收信息,也可以向用户设备和基站设备发送信息。在一个示例中,TRP可以为用户设备提供服务,并且受基站设备的控制。也就是说,基站设备通过TRP向用户设备提供服务。此外,在本公开中所述的网络侧设备也可以是基站设备,例如可以是eNB,也可以是gNB(第5代通信***中的基站)。
根据本公开的用户设备可以是移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通 信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
<2.网络侧设备的配置示例>
图2是示出根据本公开的实施例的电子设备200的配置的示例的框图。这里的电子设备200可以作为无线通信***中的基站设备或TRP。进一步,电子设备200可以被设置在包括单个基站设备的无线通信***中。
如图2所示,电子设备200可以包括定位单元210和通信单元220。
这里,电子设备200的各个单元都可以包括在处理电路中。需要说明的是,电子设备200既可以包括一个处理电路,也可以包括多个处理电路。进一步,处理电路可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
根据本公开的实施例,定位单元210可以根据用户设备测量的下行信号到达角度和网络侧设备测量的上行信号到达角度来估计网络侧设备与用户设备之间的距离。例如,电子设备200可以通过通信单元220获取用户设备测量的下行信号到达角度。进一步,这里的网络侧设备可以是TRP或基站设备,而电子设备200可以是该网络侧设备,也可以不是该网络侧设备。当电子设备200不是该网络侧设备(例如网络侧设备是TRP,电子设备200是基站设备)时,电子设备200还可以通过通信单元220获取网路侧设备测量的上行信号到达角度。
根据本公开的实施例,定位单元210还可以根据网络侧设备与用户设备之间的距离和上行信号到达角度来确定用户设备的位置。
由此可见,根据本公开的电子设备200,可以根据下行信号到达角度和上行信号到达角度来估计网络侧设备与用户设备之间的距离,进而对用户设备进行定位。这样一来,根据两个到达角度来确定距离,使得确定的距离更加精确。进一步,可以根据由此确定的距离以及上行信号的真实到达角度来对用户设备进行定位,从而使得对用户设备的定位更加精确。
根据本公开的实施例,当电子设备200是网络侧设备时,可以确定用户设备的位置。当网络侧设备是TRP时,电子设备200可以是TRP或者基站设备;当网络侧设备是基站设备时,电子设备200可以是基站设备。也就是说,可以由TRP或者基站设备来确定用户设备的位置。这里的TRP 可以是用户设备周围的TRP,包括正在为用户设备提供服务的TRP以及距离用户设备比较近但是目前没有为用户设备提供服务的TRP,而基站设备可以是为用户设备(或者为用户设备以及TRP)提供服务的基站设备。
根据本公开的实施例,定位单元210还可以根据上行信号发射角度、下行信号发射角度、下行信号到达角度和上行信号到达角度来计算网络侧设备与用户设备之间的距离。
根据本公开的实施例,下行信号到达角度以及上行信号到达角度和用户设备与网络侧设备之间的直达路径相关联。
根据本公开的实施例,上行信号发射角度和用户设备的上行发射波束的方向相关联,并且下行信号发射角度和网络侧设备的下行发射波束的方向相关联。
图3是示出根据本公开的实施例的对用户设备进行定位的计算模型的示意图。
如图3所示,网络侧设备和用户设备之间的直线表示网络侧设备和用户设备之间的直达路径,网络侧设备侧的虚线表示下行发射波束的方向,用户设备侧的虚线表示上行发射波束的方向。如图3所示,φ rx表示下行信号到达角度,其与网络侧设备和用户设备之间的直达路径相关,具体地表示:直达路径;以及与用户设备的天线阵列垂直的方向这两个方向之间的夹角;φ tx表示上行信号到达角度,其与网络侧设备和用户设备之间的直达路径相关,具体地表示:直达路径;以及与网络侧设备的天线阵列垂直的方向这两个方向之间的夹角;θ tx表示下行信号发射角度,其与网络侧设备的下行发射波束的方向相关,具体地表示如下两个方向之间的夹角:下行发射波束的方向;以及与网络侧设备的天线阵列垂直的方向;θ rx表示上行信号发射角度,其与用户设备的上行发射波束的方向相关,具体地表示如下两个方向之间的夹角:上行发射波束的方向;以及与用户设备的天线阵列垂直的方向。
根据本公开的实施例,定位单元210可以根据上行信号发射角度θ rx、下行信号发射角度θ tx、下行信号到达角度φ rx和上行信号到达角度φ tx来计算网络侧设备与用户设备之间的距离。
根据本公开的实施例,如图2所示,电子设备200还可以包括选择单元230,用于选择如图3所示的上行发射波束和下行发射波束。具体地,选择单元230可以从用户设备和网络侧设备之间的多个波束对中选择与 直达路径最接近的波束对作为上行发射波束和下行发射波束。
根据本公开的实施例,在波束扫描过程中,网络侧设备可以利用特定的发射波束发送下行信号,用户设备利用特定的接收波束接收该下行信号,从而可以将该网络侧设备的发射波束和该用户设备的接收波束作为一个波束对。进一步,用户设备可以由此获取所有的波束对,并可以记录所有的波束对。
根据本公开的实施例,用户设备还可以测量获取的所有波束对的信道质量。这里,信道质量包括但不限于SIR(Signal to Interference Ratio,信干比)、SINR(Signal to Interference plus Noise Ratio,信干噪比)、SNR(Signal Noise Ratio,信噪比)、RSRP(Reference Signal Receiving Power,参考信号接收功率)等。
根据本公开的实施例,电子设备200可以从用户设备获取所有的波束对信息,例如包括波束对中包括的发射波束和接收波束的编号;以及每个波束对的信道质量信息等。
根据本公开的实施例,选择单元230可以根据多个波束对中的每个波束对的信道质量来选择与直达路径最接近的波束对。具体地,选择单元230可以选择多个波束对中信道质量最好的波束对作为与直达路径最接近的波束对。进一步,选择单元230还可以设定信道质量阈值,并在多个波束对中选择信道质量大于信道质量阈值并且信道质量最好的波束对作为与直达路径最接近的波束对。
根据本公开的实施例,电子设备200可以将发送下行信号过程中的质量最好的发射波束作为网络侧设备的下行发射波束,并将质量最好的接收波束作为用户设备的上行发射波束。也就是说,用户设备的下行接收波束可以作为上行发射波束。因此,在本文中,并未区分用户设备侧的下行接收波束和上行发射波束。这里,由于直达路径是网络侧设备和用户设备之间的直通路径,没有遮挡物,因此信道质量应当最好,因此电子设备200可以根据信道质量来确定与直达路径最接近的波束对。
根据本公开的实施例,选择单元230选取信道质量大于信道质量阈值并且信道质量最好的波束对可以等同于判断网络侧设备和用户设备之间是否存在直达路径的过程。也就是说,可以合理地设置信道质量阈值的值,以使得当存在信道质量大于信道质量阈值的波束对时,可以判断网络侧设备和用户设备之间存在直达路径;而当不存在信道质量大于信道质量 阈值的波束对时,可以判断网络侧设备和用户设备之间不存在直达路径。
图4是示出根据本公开的实施例的直达路径和非直达路径的示意图。如图4所示,直达路径指的是网络侧设备和用户设备之间没有遮挡物的直通路径,例如图4中的下行发射波束1和上行发射波束1之间的路径。而非直达路径指的是网络侧设备和用户设备之间有遮挡物的非直通路径,例如图4中的下行发射波束2和上行发射波束2之间的路径。也就是说,当网络侧设备和用户设备之间有遮挡物时,由发送端通过发射波束发送的信号需要经过反射物的反射从而到达接收端。进一步,到达接收端的信号可能经过了一次反射或多次反射,反射的次数越多,接收到的信号质量越差。
根据本公开的实施例,选择单元230可以设定信道质量阈值,当某个波束对的信道质量大于信道质量阈值时,可以认为该波束对中的发射波束可以通过直达路径被接收端用波束对中的接收波束接收。进一步,当选择单元230确定出多个信道质量大于信道质量阈值的波束对时,可以从中选取一个信道质量最好的波束对。此外,当电子设备与网络侧设备都是TRP时,也可以由基站设备来设定该信道质量阈值,从而选择单元230可以从基站设备接收信道质量阈值。
根据本公开的实施例,选择单元230可以根据网络侧设备的覆盖范围来确定信道质量阈值。
进一步,选择单元230还可以根据网络侧设备的覆盖范围、网络侧设备的天线增益以及用户设备的天线增益来确定信道质量阈值,以下是根据本公开的一个实施例设置信道质量阈值的说明。
优选地,选择单元230可以根据以下公式来确定信道质量阈值Δ:
Figure PCTCN2019090460-appb-000001
其中,G t表示网络侧设备的天线增益,G r表示用户设备的天线增益,R m表示网络侧设备的覆盖范围的半径,λ表示载波波长。这里,G r可以表示待定位的用户设备的天线增益,也可以表示网络侧设备覆盖范围内的用户设备的天线增益的平均值。
如上所述,选择单元230在确定了信道质量阈值之后,可以在多个波束对中选择信道质量大于信道质量阈值并且信道质量最好的波束对作为与直达路径最接近的波束对。
根据本公开的实施例,由于电子设备200可能是TRP,也可能是基站设备,因此选择与直达路径最接近的波束对的操作可以由TRP来实现,也可以由基站设备来实现。
图5是示出根据本公开的实施例的选择与直达路径最接近的波束对的信令流程图。如图5所示,在步骤S501中,TRP和UE执行波束扫描过程,从而使得UE获取所有的波束对以及波束对的信道质量。接下来,在步骤S502中,UE将波束对以及波束对的信道质量信息上报到TRP。接下来,在步骤S503中,TRP根据多个波束对的信道质量情况选择与直达路径最接近的波束对。可选地,选择与直达路径最接近的波束对的操作也可以由基站设备来执行。因此,可选地,在步骤S504中,TRP也可以将波束对以及波束对的信道质量信息发送至基站设备。接下来,在步骤S505中,基站设备根据多个波束对的信道质量情况选择与直达路径最接近的波束对。
根据本公开的实施例,电子设备200还可以通过通信单元220将与直达路径最接近的波束对的信息发送至网络侧设备和用户设备。这里,当电子设备200就是该网络侧设备时,可以仅将与直达路径最接近的波束对的信息发送至用户设备。例如,电子设备200可以通过定位指示消息携带用于所述用户设备的上行发射波束以及用于所述网络侧设备的下行发射波束。
进一步,电子设备200发送的定位指示消息还可以包括定位开始时间和/或定位持续时间。这里,定位持续时间可以表示用于网络侧设备和用户设备获取定位所需的参数的时间,而定位开始时间可以表示该定位持续时间的开始时间。进一步,定位持续时间还可以包括第一定位持续时间和第二定位持续时间。第一定位持续时间可以表示用于网络侧设备获取定位所需的参数的时间,而第二定位持续时间可以表示用于用户设备获取定位所需的参数的时间。进一步,第一定位持续时间可以是用于执行上行传输的时间,在第一定位持续时间中,用户设备利用前文中确定的上行发射波束发送上行信号,而网络侧设备不形成接收波束,从而获取定位所需的参数。类似地,第二定位持续时间可以是用于执行下行传输的时间,在第二定位持续时间中,网络侧设备利用前文中确定的下行发射波束发送下行信号,而用户设备不形成接收波束,从而获取定位所需的参数。
根据本公开的实施例,当电子设备200就是网络侧设备时,电子设备200可以测量上行信号到达角度,即图3中所示的φ tx,并可以从用户 设备接收用户设备测量的下行信号到达角度,即图3中所示的φ rx
具体地,在第一定位持续时间中,电子设备200可以通过通信单元220从用户设备接收利用上行发射波束发送的上行信号。进一步,在第一定位持续时间中,电子设备200不产生接收波束,即全向接收来自用户设备的上行信号。
根据本公开的实施例,如图2所示,电子设备200还可以包括测量单元240,用于在第一定位持续时间中测量上行信号到达角度。进一步,测量单元240可以根据电子设备200的不同天线上接收到的上行信号来测量上行信号到达角度。
在第一定位持续时间中,用户设备产生的发射波束赋形向量为:
Figure PCTCN2019090460-appb-000002
其中,N rx表示用户设备的天线个数,θ rx表示根据上行发射波束的方向确定的上行信号发射角度,[] T表示对矩阵执行转置操作。
网络侧设备不形成接收波束,得到的接收信号为:
Figure PCTCN2019090460-appb-000003
其中,P u表示用户设备的上行发送功率,H表示用户设备与网络侧设备之间的下行信道矩阵,H T表示对下行信道矩阵执行转置操作,w*(θ rx)表示由上述公式(2)得到的发射波束赋形向量,s(t)表示定位信号,n u表示噪声。这里,假定不考虑噪声,则上述公式可以变换为:
Figure PCTCN2019090460-appb-000004
其中,N tx表示网络侧设备的天线个数,y 0(t),y 1(t),…,y Ntx-1(t)表示网络侧设备的每根天线上的接收信号,φ tx表示待测量的上行信号到达角 度,h可以表示为:
Figure PCTCN2019090460-appb-000005
并且a txtx)表示导向矢量,a rxrx)表示响应矢量,α表示用户设备与网络侧设备之间的复信道参数,P u表示用户设备的上行发送功率,w*(θ rx)表示由上述公式(2)得到的发射波束赋形向量,s(t)表示定位信号,[] T表示对矩阵执行转置操作。
导向矢量表示用户设备与网络侧设备之间的信道矩阵中与上行信号到达角度相关的部分。具体地,用户设备与网络侧设备之间的信道矩阵H可以表示为:
Figure PCTCN2019090460-appb-000006
其中,a txtx)表示导向矢量,[] H表示对矩阵执行共轭转置操作,导向矢量表示H中与上行信号到达角度相关的部分,可以被表示为:
Figure PCTCN2019090460-appb-000007
这里,N tx表示网络侧设备的天线个数,φ tx表示上行信号到达角度。
其中,a rxrx)表示响应矢量,即H中与下行信号到达角度相关的部分,可以被表示为:
Figure PCTCN2019090460-appb-000008
这里,N rx表示用户设备的天线个数,φ rx表示下行信号到达角度,[] T表示对矩阵执行转置操作。
其中,α表示用户设备与网络侧设备之间的直达路径的复信道参数,表示信道矩阵中除了与上行信号到达角度相关的部分以及与下行信号到 达角度相关的部分以外的部分。
根据本公开的实施例,测量单元240可以根据电子设备200的不同天线上接收到的上行信号来测量上行信号到达角度,例如测量单元240可以根据1号天线上接收到的上行信号和0号天线上接收到的上行信号来确定上行信号到达角度,即用公式(4)中的第二个元素y 1(t)除以第一个元素y 0(t)可以得到:
Figure PCTCN2019090460-appb-000009
由此,测量单元240可以根据公式(8)中的z的相位角来计算上行信号到达角度φ tx
进一步,测量单元240还可以利用所有天线上接收到的上行信号来测量上行信号到达角度,例如可以利用以下公式来计算z,并根据z的相位角来计算上行信号到达角度φ tx
Figure PCTCN2019090460-appb-000010
由此,网络侧设备可以不产生接收波束,并记录每根天线上接收到的上行信号,然后根据网络侧设备的不同天线上接收到的上行信号来测量上行信号到达角度φ tx
根据本公开的实施例,在第二定位持续时间中,网络侧设备可以利用前文中确定的下行发射波束向用户设备发送下行信号,并可以接收用户设备测量的下行信号到达角度。
根据本公开的实施例,在第二定位持续时间中,用户设备也不产生接收波束,即全向接收来自网络侧设备的下行信号。进一步,用户设备也可以根据不同天线上接收到的下行信号来测量下行信号到达角度。
网络侧设备产生的发送波束赋形向量为:
Figure PCTCN2019090460-appb-000011
其中,N tx表示网络侧设备的天线个数,θ tx表示根据下行发射波束的方向确定的下行信号发射角度,[] T表示对矩阵执行转置操作。
用户设备不形成接收波束,得到的接收信号为:
Figure PCTCN2019090460-appb-000012
其中,P d表示网络侧设备的下行发送功率,H表示用户设备与网络侧设备之间的下行信道矩阵,f(θ tx)表示由公式(10)得到的发送波束赋形向量,s(t)表示定位信号,n d表示噪声。这里,假定不考虑噪声,则上述公式可以变换为:
Figure PCTCN2019090460-appb-000013
其中,N rx表示用户设备的天线个数,y 0(t),y 1(t),…,y Nrx-1(t)表示用户设备的每根天线上的接收信号,φ rx表示待测量的下行信号到达角度,[] T表示对矩阵执行转置操作,h可以表示为:
Figure PCTCN2019090460-appb-000014
并且a txtx)表示导向矢量,a rxrx)表示响应矢量,α表示用户设备与网络侧设备之间的复信道参数,P d表示网络侧设备的下行发送功率,f表示由公式(10)得到的发送波束赋形向量,s(t)表示定位信号。
类似地,用户设备也可以根据用户设备的不同天线上接收到的上行信号来测量上行信号到达角度,例如可以根据1号天线上接收到的上行信号和0号天线上接收到的上行信号来确定上行信号到达角度,即用公式 (12)中的第二个元素y 1(t)除以第一个元素y 0(t)可以得到:
Figure PCTCN2019090460-appb-000015
由此,用户设备可以根据z的相角来计算下行信号到达角度φ rx。也就是说,用户设备可以不产生接收波束,并记录每根天线上接收到的下行信号,然后用户设备可以根据用户设备的不同天线上接收到的下行信号来测量下行信号到达角度。
如上所述,根据本公开的实施例,当电子设备200就是网络侧设备时(例如,电子设备200和网络侧设备都是TRP,或者电子设备200和网络侧设备都是基站设备),电子设备200可以测量上行信号到达角度,即图3中所示的φ tx,并可以从用户设备接收用户设备测量的下行信号到达角度,即图3中所示的φ rx。此外,电子设备200可以根据下行发射波束的方向来确定下行信号发射角度θ tx,并可以根据上行发射波束的方向来确定上行信号发射角度θ rx。由此,电子设备200可以获取上行信号到达角度φ tx、下行信号到达角度φ rx、下行信号发射角度θ tx和上行信号发射角度θ rx,从而可以根据这些角度信息来计算网络侧设备与用户设备之间的距离。
根据本公开的实施例,当电子设备200是基站设备,而网络侧设备是例如TRP时,电子设备200可以从用户设备接收用户设备测量的下行信号到达角度φ rx,并可以从网络侧设备接收网络侧设备测量的上行信号到达角度φ tx。这里,用户设备测量下行信号到达角度的方式以及网络侧设备测量上行信号到达角度的方式在前文中已经详述过,在此不再赘述。类似地,电子设备200可以根据下行发射波束的方向来确定下行信号发射角度θ tx,并可以根据上行发射波束的方向来确定上行信号发射角度θ rx,从而可以根据这些角度信息来计算网络侧设备与用户设备之间的距离。
接下来将详细描述定位单元210如何计算网络侧设备与用户设备之间的距离。
在波束扫描的过程中,网络侧设备和用户设备会产生波束对。也就是说,网络侧设备可以利用特定的发射波束发送下行信号,用户设备利用特定的接收波束接收该下行信号,从而可以将该网络侧设备的发射波束和该用户设备的接收波束作为一个波束对。在这样的过程中,网络侧设备产 生的发送波束赋形向量为:
Figure PCTCN2019090460-appb-000016
其中,N tx表示网络侧设备的天线个数,θ tx表示根据下行发射波束的方向确定的下行信号发射角度,[] T表示对矩阵执行转置操作。
用户设备产生的接收波束赋形向量为:
Figure PCTCN2019090460-appb-000017
其中,N rx表示用户设备的天线个数,θ rx表示根据下行接收波束的方向(即上行发射波束的方向)确定的上行信号发射角度,[] T表示对矩阵执行转置操作。
进一步,用户设备侧的下行接收信号可以表示为:
Figure PCTCN2019090460-appb-000018
其中,P d表示网络侧设备的下行发送功率,w H和w Hrx)表示由公式(15)接收波束赋形向量的转置,H表示用户设备与网络侧设备之间的下行信道矩阵,f(θ tx)表示发送网络侧设备的发送波束赋形向量,s(t)表示定位信号,n d(t)表示噪声。这里,假定不考虑噪声,并且s(t)=1,P d=1,则上述公式可以变换为:
y d(t)=w Hrx)Hf(θ tx)    (17)
这里,将公式(5)中H的表达式带入公式(17)中可以得到:
Figure PCTCN2019090460-appb-000019
根据本公开的实施例,设定:
Figure PCTCN2019090460-appb-000020
Figure PCTCN2019090460-appb-000021
根据本公开的实施例,β表示下行发射波束的方向与直达路径的方向之间的误差(在下文中称为第二误差)。也就是说,β表示因θ tx≠φ tx导 致的发送波束赋形向量f(θ tx)与导向矢量a txtx)不匹配从而对下行接收信号产生的误差。
根据本公开的实施例,γ表示上行发射波束的方向和直达路径的方向之间的误差(在下文中称为第一误差)。也就是说,γ表示因θ rx≠φ rx导致的接收波束赋形向量w(θ rx)与响应矢量a rxrx)不匹配从而对下行接收信号产生的误差。
进一步,将公式(6)和公式(14)带入公式(19)可得:
Figure PCTCN2019090460-appb-000022
其中,N tx表示网络侧设备的天线个数,θ tx表示下行信号发射角度,φ tx表示上行信号到达角度。
进一步,将公式(7)和公式(15)带入公式(20)可得:
Figure PCTCN2019090460-appb-000023
其中,N rx表示用户设备的天线个数,θ rx表示上行信号发射角度,φ rx表示下行信号到达角度。
假定不存在第一误差和第二误差,也就是说,θ tx=φ tx且θ rx=φ rx,则可 以得到γ=β=1。进一步,公式(18)可以变换为:
Figure PCTCN2019090460-appb-000024
其中,|α|表示复信道参数的模,
Figure PCTCN2019090460-appb-000025
表示复信道参数的相位角。
在这种情况下,可以利用下行接收信号确定复信道参数,从而根据复信道参数的模或者相位角来计算网络侧设备和用户设备之间的距离。但是,由于第一误差和第二误差的存在,必须从下行接收信号中去除第一误差和第二误差的影响,才能够精确地计算出复信道参数,从而计算出网络侧设备和用户设备之间的距离。
本发明的实施例正是利用了上述原理,根据上行信号到达角度、下行信号到达角度、上行信号发射角度和下行信号发射角度来计算出第一误差和第二误差,然后从下行接收信号中去除第一误差和第二误差的影响,从而计算出复信道参数,并根据复信道参数计算出网络侧设备和用户设备之间的距离。
根据本公开的实施例,定位单元210可以根据上行信号发射角度θ rx和下行信号到达角度
Figure PCTCN2019090460-appb-000026
来计算上行发射波束的方向和用户设备与网络侧设备之间的直达路径的方向之间的第一误差γ。
由公式(20)可知,第一误差γ与下行接收波束赋形向量w(θ rx)以及响应矢量
Figure PCTCN2019090460-appb-000027
有关。也就是说,可以(例如利用公式(20))根据下行接收波束赋形向量w(θ rx)和响应矢量
Figure PCTCN2019090460-appb-000028
来计算第一误差γ。由公式(15)可知,下行接收波束赋形向量w(θ rx)与上行信号发射角度θ rx有关,即可以(例如利用公式(15))根据上行信号发射角度θ rx计算下行接收波束赋形向量w(θ rx)。由公式(7)可知,响应矢量
Figure PCTCN2019090460-appb-000029
与下行信号到达角度
Figure PCTCN2019090460-appb-000030
有关,即可以(例如利用公式(7))根据下行信号到达角度
Figure PCTCN2019090460-appb-000031
计算直达路径的下行信道矩阵的响应矢量
Figure PCTCN2019090460-appb-000032
如上所述,根据本公开的实施例,定位单元210可以根据上行信号发射角度计算下行接收波束赋形向量,根据下行信号到达角度计算直达路径的下行信道矩阵的响应矢量,并根据下行接收波束赋形向量和响应矢量来计算第一误差,其中,响应矢量表示下行信道矩阵中与下行信号到达角度相关的部分。
即,第一误差γ的估计值
Figure PCTCN2019090460-appb-000033
可以由以下公式计算:
Figure PCTCN2019090460-appb-000034
这里,
Figure PCTCN2019090460-appb-000035
表示
Figure PCTCN2019090460-appb-000036
的测量值,即用户设备测量的下行信号到达角度的值,θ rx表示上行信号发射角度,N rx表示用户设备的天线个数。
进一步,根据本公开的实施例,定位单元210可以根据下行信号发射角度θ tx和上行信号到达角度
Figure PCTCN2019090460-appb-000037
来计算下行发射波束的方向与直达路径的方向之间的第二误差β。
由公式(19)可知,第二误差β与下行发射波束赋形向量f(θ tx)以及导向矢量
Figure PCTCN2019090460-appb-000038
有关。也就是说,可以(例如利用公式(19))根据下行发射波束赋形向量f(θ tx)和导向矢量
Figure PCTCN2019090460-appb-000039
来计算第二误差β,导向矢量表示下行信道矩阵中与上行信号到达角度相关的部分。由公式(14)可知,
Figure PCTCN2019090460-appb-000040
即可以(例如利用公式(6))根据上行信号到达角度
Figure PCTCN2019090460-appb-000041
计算直达路径的下行信道矩阵的导向矢量
Figure PCTCN2019090460-appb-000042
如上所述,根据本公开的实施例,定位单元210可以根据下行信号发射角度计算下行发射波束赋形向量f(θ tx),根据上行信号到达角度计算直达路径的下行信道矩阵的导向矢量
Figure PCTCN2019090460-appb-000043
并根据下行发射波束赋形向量f(θ tx)和导向矢量
Figure PCTCN2019090460-appb-000044
来计算第二误差β,导向矢量表示下行信道矩阵中与上行信号到达角度相关的部分。
即,第二误差β的估计值
Figure PCTCN2019090460-appb-000045
可以由以下公式计算:
Figure PCTCN2019090460-appb-000046
这里,
Figure PCTCN2019090460-appb-000047
表示
Figure PCTCN2019090460-appb-000048
的测量值,即网络侧设备测量的上行信号到达角度的值,θ tx表示下行信号发射角度,N tx表示网络侧设备的天线个数。
值的注意的是,在本文中,符号
Figure PCTCN2019090460-appb-000049
用于表示参数“x”的估计值、计算值或者测量值,实际上与参数“x”并无本质的区别,仅仅用于表示这个参数是经过估计、计算或测量的。
根据本公开的实施例,在定位单元210如上所述计算出第一误差γ的估计值
Figure PCTCN2019090460-appb-000050
和第二误差β的估计值
Figure PCTCN2019090460-appb-000051
之后,定位单元210可以根据第一误差和第二误差来计算网络侧设备与用户设备之间的距离。
根据本公开的实施例,定位单元210可以根据第一误差和第二误差获得直达路径的复信道参数,然后根据直达路径的复信道参数来计算网络侧设备与用户设备之间的距离。
由公式(23)可知,在不存在第一误差和第二误差的情况下,可以用下行接收信号来表示直达路径的复信道参数。因此,根据本公开的实施例,在存在第一误差和第二误差的情况下,必须从下行接收信号中去除第一误差和第二误差的影响,才能够得到复信道参数的精确值。具体地,根据本公开的实施例,定位单元210可以用下行接收信号除以第一误差和第二误差的乘积,从而得到复信道参数的值。也就是说,定位单元210可以利用如下公式计算复信道参数α的值:
Figure PCTCN2019090460-appb-000052
其中,
Figure PCTCN2019090460-appb-000053
Figure PCTCN2019090460-appb-000054
分别表示定位单元210计算出的第一误差和第二误差的值,y d(t)表示用户设备侧测量的下行接收信号。根据本公开的实施例,在波束扫描的过程中,用户设备不仅可以保存波束对和波束对的信道质量信 息,还可以保存下行接收信号的值。进一步,用户设备可以将下行接收信号的值发送至确定用户设备与网络侧设备之间的距离的装置,例如该网络侧设备,或者为网络侧设备提供服务的基站设备。
在公式(26)中,|α|表示复信道参数的模,
Figure PCTCN2019090460-appb-000055
表示复信道参数的相位角。
根据本公开的实施例,针对复信道参数的模,有如下公式:
Figure PCTCN2019090460-appb-000056
其中,G t和G r分别表示网络侧设备和用户设备的天线增益,λ表示载波波长,R表示待计算的网络侧设备与用户设备之间的距离。
进一步,根据本公开的实施例,针对复信道参数的相位角,有如下公式:
Figure PCTCN2019090460-appb-000057
其中,λ表示载波波长,R表示待计算的网络侧设备与用户设备之间的距离,n为自然数,ψ<2π。
根据本公开的实施例,定位单元210可以根据直达路径的复信道参数来计算网络侧设备与用户设备之间的距离。例如,定位单元210在计算出复信道参数之后,可以计算出复信道参数的模和相位角,从而可以根据复信道参数的模或者相位角来计算网络侧设备与用户设备之间的距离。
例如,定位单元210可以根据复信道参数的模来计算网络侧设备与用户设备之间的距离。例如,通过公式(27),已知G t、G r、λ和|α|,可以计算出R的值。
再如,定位单元210也可以根据复信道参数的相位角来计算网络侧设备与用户设备之间的距离。如公式(28)所示,由于不知道n的值,因此可以利用复信道参数的相位差来计算网络侧设备与用户设备之间的距离。
如上所述,根据本公开的实施例,在第一定位持续时间中,网络侧设备可以从用户设备接收利用上行发射波束(即,已知上行信号发射角度)发送的上行信号。进一步,在第一定位持续时间中,网络侧设备不产生接 收波束,即全向接收来自用户设备的上行信号,从而测量上行信号到达角度。进一步,在第二定位持续时间中,用户设备可以从网络侧设备接收利用下行发射波束(即,已知下行信号发射角度)发送的下行信号。进一步,在第二定位持续时间中,用户设备不产生接收波束,即全向接收来自网络侧设备的下行信号,从而测量下行信号到达角度。进一步,电子设备200的定位单元210可以根据上行信号发射角度、下行信号发射角度、上行信号到达角度和下行信号到达角度来计算第一误差和第二误差,从而计算出直达路径的复信道参数,然后根据复信道参数来确定网络侧设备与用户设备之间的距离。这里,本公开并未规定第一定位持续时间和第二定位持续时间的顺序。也就是说,可以先由网络侧设备发送下行信号,也可以先由用户设备发送上行信号。每次经过一个第一定位持续时间和一个第二定位持续时间之后,可以获得一个复信道参数的值。
根据本公开的实施例,可以设定多个第一定位持续时间和多个第二定位持续时间,从而定位单元210可以根据通过多次发送上行信号和下行信号而计算的多个复信道参数的相位差来计算网络侧设备与用户设备之间的距离。优选地,多次可以为两次。
根据本公开的实施例,在第二定位持续时间中,网络侧设备可以利用不同的载波来发送下行信号,例如PRS(Positioning Reference Signal,定位参考信号)。也就是说,发送下行信号的载波频率不同,因此载波波长也不同,从而可以得到不同的复信道参数的值。
图6是示出根据本公开的实施例的定位参考信号的时频位置的示意图。如图6所示,上面的斜线部分表示第一次发送的PRS的时频位置,下面的斜线部分表示第二次发送的PRS的时频位置,两次发送的PRS相距N个子载波。这里,假定第一次发送的PRS的中心频率为f 1,第二次发送的PRS的中心频率为f 2,则有如下公式:
Figure PCTCN2019090460-appb-000058
Figure PCTCN2019090460-appb-000059
其中,
Figure PCTCN2019090460-appb-000060
表示根据第一次发送的PRS计算出的复信道参数的相位角,
Figure PCTCN2019090460-appb-000061
表示根据第二次发送的PRS计算出的复信道参数的相位角,n 1和n 2均为自然数,ψ 1<2π并且ψ 2<2π。c表示光速,R表示网络侧设备与用户设备之间的距离。
将公式(29)和公式(30)相减,可得如下公式:
Figure PCTCN2019090460-appb-000062
由此可以得到网络侧设备与用户设备之间的距离R:
Figure PCTCN2019090460-appb-000063
如上所述,定位单元210可以根据两次计算得到的相位角的差值来计算网络侧设备与用户设备之间的距离。进一步,定位单元210可以根据两次计算得到的相位角的差值以及两次发送的下行信号的中心频率的差值(例如通过公式(32))来计算距离。
如上所述,定位单元210在计算出网络侧设备与用户设备之间的距离之后,可以根据网络侧设备与用户设备之间的距离、上行信号到达角度以及网络侧设备的位置来确定用户设备的位置。
图7是示出根据本公开的实施例的在存在直达路径的情况下对用户设备进行定位的计算模型的示意图。如图7所示,假定网络侧设备的坐标为(x 1,y 1),网络侧设备测量的上行信号到达角度为
Figure PCTCN2019090460-appb-000064
如上所述计算出的网络侧设备与用户设备之间的距离为R。因此,可以根据如下公式来确定用户设备的坐标(x 2,y 2):
Figure PCTCN2019090460-appb-000065
Figure PCTCN2019090460-appb-000066
如上详细描述了电子设备200对用户设备进行定位的过程。在上文描述的实施例中,网络侧设备与用户设备之间存在直达路径。也就是说,在多个波束对中存在信道质量大于信道质量阈值的波束对,即能够选取出与直达路径最接近的波束对。也就是说,当网络侧设备是TRP的情况下,可以选取与用户设备之间存在直达路径的TRP参与用户设备的定位过程。 例如,该TRP在第一定位持续时间从用户设备接收利用上行发射波束发送的上行信号,并测量上行信号到达角度,该TRP在第二定位持续时间利用下行发射波束向用户设备发送下行信号以用于用户设备测量下行信号到达角度。同时,该TRP可以计算该TRP与用户设备之间的距离,从而对用户设备进行定位,也可以将相关的参数发送到基站设备,由基站设备计算该TRP与用户设备之间的距离,从而对用户设备进行定位。
也就是说,根据本公开的实施例,用户设备可以与其周围的多个TRP执行波束扫描过程,从而用户设备可以将针对每个TRP的波束对以及信道质量信息发送至基站设备,由基站设备选取与用户设备之间存在直达路径的TRP。可选地,用户设备也可以将针对每个TRP的波束对以及信道质量信息发送至相应的TRP,从而由各个TRP判断是否存在直达路径。
下面将描述所有的TRP与用户设备之间都没有直达路径的情况。根据本公开的实施例,在所有的TRP与用户设备之间都没有直达路径的情况下,即在每个TRP与用户设备的波束对的信道质量都不大于信道质量阈值的情况下,基站设备可以选取多个TRP参与用户设备的定位过程。优选地,多个可以为三个。每个TRP都可以利用与在存在直达路径的情况下的实施例中描述的方式相同的方式来计算其与用户设备之间的距离,但是此时计算出的距离是经过反射物反射的距离。
图8是示出根据本公开的实施例的在不存在直达路径的情况下对用户设备进行定位的计算模型的示意图。如图8所示,网络侧设备与用户设备之间存在一个反射物,因此来自发射端的信号经过了反射物的一次反射才到达接收端,因此,例如根据公式(32)计算出的距离实际上是网络侧设备和用户设备之间经过了反射物的曲线距离,因此有:
Figure PCTCN2019090460-appb-000067
其中,R TRP表示TRP与反射物之间的距离,R UE表示用户设备与反射物之间的距离,f 1表示第一次发送的PRS的中心频率,f 2表示第二次发送的PRS的中心频率,
Figure PCTCN2019090460-appb-000068
表示根据第一次发送的PRS计算出的复信道参数的相位角,
Figure PCTCN2019090460-appb-000069
表示根据第二次发送的PRS计算出的复信道参数的相位角。这里,由于不知道反射物的具***置,因此可以将由公式(35)得到的距离值乘以一个经验值来估计TRP与用户设备之间的直线距离R。该 经验值例如可以是0.8。也就是说,有如下公式:
R=0.8×(R TRP+R UE)     (36)
如上所述,用户设备周围的多个TRP都可以估计出与用户设备之间的直线距离,从而电子设备200(例如基站设备)可以根据多个直线距离值估计出用户设备的位置。例如,当三个TRP都估计出与用户设备之间的直线距离时,可以分别以这三个TRP为圆心,以各自估计的距离为半径做圆,三个圆的近似交点可以作为用户设备的最终位置。
如上所述,无论用户设备与TRP之间是否存在直达路径,根据本公开的方案都可以计算出用户设备与TRP之间的距离,从而实现对用户设备的定位。
进一步,根据本公开的实施例,在判断出用户设备与TRP之间存在直达路径,即在能够选取出与直达路径最接近的波束对的情况下,当计算出TRP与用户设备的距离之后,可以根据计算出的距离验证用户设备与该TRP之间是否真的存在直达路径。
根据本公开的实施例,电子设备200可以根据计算出的用户设备与网络侧设备之间的距离来计算用户设备与网络侧设备之间的直达路径的复信道参数的模的平方值,并且在计算出的复信道参数的模的平方值与选取出的与直达路径最接近的波束对的信道质量的差异小于等于差异阈值时,确定用户设备与网络侧设备之间存在直达路径;在计算出的复信道参数的模的平方值与选取出的与直达路径最接近的波束对的信道质量的差异大于差异阈值时,确定用户设备与网络侧设备之间不存在直达路径。
例如,在计算出用户设备与网络侧设备之间的距离
Figure PCTCN2019090460-appb-000070
之后,电子设备200可以利用如下公式计算出复信道参数的模的平方值ρ:
Figure PCTCN2019090460-appb-000071
其中,G t和G r分别表示网络侧设备和用户设备的天线增益,λ表示载波波长,
Figure PCTCN2019090460-appb-000072
表示根据本公开的实施例计算出的网络侧设备与用户设备之间的距离。
进一步,电子设备200可以计算ρ与选取出的与直达路径最接近的波束对的信道质量的差异。这里,假定用信道的RSRP值来表示信道质量,并且用Λ来表示差异阈值,则在如下公式成立的情况下,可以认为用户设 备和网络侧设备之间存在直达路径,那么可以认为计算出的距离
Figure PCTCN2019090460-appb-000073
是准确的,从而可以利用这样的距离
Figure PCTCN2019090460-appb-000074
对用户设备进行定位:
|ρ-RSRP|≤Λ   (38)
进一步,根据本公开的实施例,在如下公式成立的情况下,可以认为用户设备和网络侧设备之间不存在直达路径:
|ρ-RSRP|>Λ    (39)
这里,RSRP表示与直达路径最接近的波束对的RSRP值,ρ表示根据公式(37)得到的复信道参数的模的平方值。
根据本公开的实施例,当用户设备和网络侧设备之间不存在直达路径时,假定用户设备与该网络侧设备之间还存在其它的信道质量大于信道质量阈值的波束对,则可以利用该波束对来重新执行对用户设备的定位过程;假定用户设备与该网络侧设备之间不存在其它的信道质量大于信道质量阈值的波束对,则可以重新选取与用户设备之间存在信道质量大于信道质量阈值的波束对的网络侧设备;假定所有的网络侧设备与用户设备之间都不存在信道质量大于信道质量阈值的波束对,则可以如上所述选取多个网络侧设备对用户设备进行定位。
图9是示出根据本公开的实施例的由TRP确定用户设备的位置的信令流程图。这里,TRP可以用于表示网络侧设备以及电子设备200。此外,假定TRP与UE之间存在直达路径。如图9所示,在步骤S901中,TRP向UE发送定位指示消息。定位指示消息可以包括以下中的至少一种:定位开始时间、定位持续时间、用于用户设备的上行发射波束以及用于网络侧设备的下行发射波束。这些信息可以是从基站设备获取从而发送给UE的,也可以是TRP确定并发送给UE的。接下来,在步骤S902中,在定位指示消息中指示的第一定位持续时间,UE生成上行发射波束并发送上行信号。接下来,在步骤S903中,TRP不产生接收波束,从而测量上行信号到达角度。接下来,在步骤S904中,在定位指示消息中指示的第二定位持续时间,TRP生成下行发射波束并发送下行信号。接下来,在步骤S905中,UE不产生接收波束,从而测量下行信号到达角度。接下来,在步骤S906中,UE将测量的下行信号到达角度发送至TRP。接下来,在步骤S907中,TRP根据上行信号到达角度、下行信号到达角度来计算TRP与UE之间的距离,从而确定UE的位置。
图10是示出根据本公开的实施例的由基站设备确定用户设备的位置 的信令流程图。这里,TRP可以用于表示网络侧设备,基站设备可以用于表示电子设备200。此外,假定TRP与UE之间存在直达路径。如图10所示,在步骤S1001中,TRP向UE发送定位指示消息。定位指示消息可以包括以下中的至少一种:定位开始时间、定位持续时间、用于用户设备的上行发射波束以及用于网络侧设备的下行发射波束。这些信息可以是从基站设备获取从而发送给UE的,也可以是TRP确定并发送给UE的。接下来,在步骤S1002中,在定位指示消息中指示的第一定位持续时间,UE生成上行发射波束并发送上行信号。接下来,在步骤S1003中,TRP不产生接收波束,从而测量上行信号到达角度。接下来,在步骤S1004中,在定位指示消息中指示的第二定位持续时间,TRP生成下行发射波束并发送下行信号。接下来,在步骤S1005中,UE不产生接收波束,从而测量下行信号到达角度。接下来,在步骤S1006中,UE将测量的下行信号到达角度发送至基站设备。接下来,在步骤S1007中,TRP将测量的上行信号到达角度发送至基站设备。接下来,在步骤S1008中,基站设备根据上行信号到达角度、下行信号到达角度来计算TRP与UE之间的距离,从而确定UE的位置。
由此可见,根据本公开的实施例,可以根据下行信号到达角度和上行信号到达角度来估计网络侧设备与用户设备之间的距离,进而对用户设备进行定位。这样一来,根据两个到达角度来确定距离,使得确定的距离更加精确。进一步,可以根据由此确定的距离以及上行信号的真实到达角度来对用户设备进行定位,从而使得对用户设备的定位更加精确。此外,根据本公开的实施例,在网络侧设备与用户设备之间不存在直达路径的情况下,可以利用多个网络侧设备估计的与用户设备之间的距离来估计用户设备的最终位置。进一步,根据本公开的实施例,还可以根据估计出的网络侧设备与用户设备之间的距离来验证网络侧设备与用户设备之间是否存在直达路径,从而使得确定的用户设备的位置更加精确。
<3.用户设备的配置示例>
图11是示出根据本公开的实施例的无线通信***中的用户设备1100的结构的框图。这里,用户设备1100例如可以被设置在包括单个基站设备的无线通信***中。
如图11所示,用户设备1100可以包括角度测量单元1110和通信单元1120。
这里,用户设备1100的各个单元都可以包括在处理电路中。需要说明的是,用户设备1100既可以包括一个处理电路,也可以包括多个处理电路。进一步,处理电路可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
根据本公开的实施例,角度测量单元1110可以测量下行信号到达角度。
根据本公开的实施例,通信单元1120可以发送下行信号到达角度,以用于网络侧设备或者为网络侧设备提供服务的基站设备根据下行信号到达角度和网络侧设备测量的上行信号到达角度来计算网络侧设备与用户设备之间的距离,并根据网络侧设备与用户设备之间的距离和上行信号到达角度来确定用户设备的位置。
这里,网络侧设备例如可以是TRP。当TRP是确定用户设备的位置的设备时,通信单元1120可以将用户设备测量的下行信号到达角度发送至TRP,以用于该TRP确定用户设备的位置;当基站设备是确定用户设备的位置的设备时,通信单元1120可以将用户设备测量的下行信号到达角度发送至基站设备,以用于基站设备确定用户设备的位置。
如上所述,根据本公开的实施例,用户设备可以测量下行信号到达角度,从而网络侧设备或者基站设备可以根据下行信号到达角度和上行信号到达角度来估计网络侧设备与用户设备之间的距离,进而对用户设备进行定位。这样一来,根据两个到达角度来确定距离,使得确定的距离更加精确。进一步,可以根据由此确定的距离以及上行信号的真实到达角度来对用户设备进行定位,从而使得对用户设备的定位更加精确。
根据本公开的实施例,通信单元1120可以接收定位指示消息,定位指示消息可以包括以下中的至少一种:定位开始时间、定位持续时间、用于用户设备的上行发射波束以及用于网络侧设备的下行发射波束。例如,定位持续时间可以包括第一定位持续时间和第二定位持续时间。这部分内容在前文中已经详细描述过,在此不再赘述。
根据本公开的实施例,通信单元1120还可以利用上行发射波束向网络侧设备发送上行信号,以用于网络侧设备测量上行信号到达角度。例如,可以在第一定位持续时间中,利用上行发射波束向网络侧设备发送上行信号,网络侧设备不产生接收波束,以测量上行信号到达角度。
根据本公开的实施例,通信单元1120还可以从网络侧设备接收利用下行发射波束发送的下行信号,以测量下行信号到达角度。进一步,当从网络侧设备接收下行信号时,不产生接收波束,可以根据用户设备的不同天线上接收到的下行信号来测量下行信号到达角度。
根据本公开的实施例,如图11所示,用户设备1100还可以包括信道质量测量单元1130,用于测量用户设备1100与网络侧设备之间的每个波束对的信道质量。进一步,用户设备1100可以在波束扫描期间测量每个波束对的信道质量。此外,用户设备1100还可以通过通信单元1120向网络侧设备上报多个波束对和每个波束对的信道质量,以用于网络侧设备选取与直达路径最接近的波束对。可选地,用户设备1100还可以向基站设备上报多个波束对和每个波束对的信道质量,以用于基站设备选取与网络侧设备和用户设备之间的直达路径最接近的波束对。
根据本公开的实施例的电子设备200可以作为为用户设备1100提供服务的TRP或基站设备,因此在前文中描述的关于电子设备200的全部实施例都适用于此。
<4.方法实施例>
接下来将详细描述根据本公开实施例的由无线通信***中的作为网络侧设备的电子设备200执行的无线通信方法。
图12是示出根据本公开的实施例的由无线通信***中的作为网络侧设备的电子设备200执行的无线通信方法的流程图。
如图12所示,在步骤S1210中,根据用户设备测量的下行信号到达角度和网络侧设备测量的上行信号到达角度来计算网络侧设备与用户设备之间的距离。
接下来,在步骤S1220中,根据网络侧设备与用户设备之间的距离和上行信号到达角度来确定用户设备的位置。
优选地,计算网络侧设备与用户设备之间的距离包括:根据上行信号发射角度、下行信号发射角度、下行信号到达角度和上行信号到达角度来计算网络侧设备与用户设备之间的距离。
优选地,计算网络侧设备与用户设备之间的距离还包括:根据上行信号发射角度和下行信号到达角度来计算上行发射波束的方向和用户设 备与网络侧设备之间的直达路径的方向之间的第一误差;根据所述下行信号发射角度和上行信号到达角度来计算下行发射波束的方向与直达路径的方向之间的第二误差;以及根据第一误差和第二误差来计算网络侧设备与用户设备之间的距离。
优选地,计算第一误差包括:根据上行信号发射角度计算下行接收波束赋形向量,根据下行信号到达角度计算直达路径的下行信道矩阵的响应矢量,并根据下行接收波束赋形向量和响应矢量来计算第一误差,响应矢量表示下行信道矩阵中与下行信号到达角度相关的部分,并且计算第二误差包括:根据下行信号发射角度计算下行发射波束赋形向量,根据上行信号到达角度计算直达路径的下行信道矩阵的导向矢量,并根据下行发射波束赋形向量和导向矢量来计算第二误差,导向矢量表示下行信道矩阵中与上行信号到达角度相关的部分。
优选地,计算网络侧设备与用户设备之间的距离还包括:根据第一误差和第二误差获得直达路径的复信道参数;以及根据直达路径的复信道参数来计算网络侧设备与用户设备之间的距离。
优选地,计算网络侧设备与用户设备之间的距离还包括:根据通过多次发送上行信号和下行信号而计算的多个复信道参数的相位差来计算网络侧设备与用户设备之间的距离。
优选地,下行信号到达角度以及上行信号到达角度和用户设备与网络侧设备之间的直达路径相关联。
优选地,上行信号发射角度和用户设备的上行发射波束的方向相关联,并且下行信号发射角度和网络侧设备的下行发射波束的方向相关联。
优选地,无线通信方法还包括:从用户设备和网络侧设备之间的多个波束对中选择与直达路径最接近的波束对作为上行发射波束和下行发射波束。
优选地,选择与直达路径最接近的波束对包括:根据多个波束对中的每个波束对的信道质量来选择与直达路径最接近的波束对。
优选地,选择与直达路径最接近的波束对包括:在多个波束对中选择信道质量大于信道质量阈值并且信道质量最好的波束对作为与直达路径最接近的波束对。
优选地,无线通信方法还包括:根据网络侧设备的覆盖范围来确定信道质量阈值。
优选地,确定用户设备的位置还包括:根据网络侧设备与用户设备之间的距离、上行信号到达角度和网络侧设备的位置来确定用户设备的位置。
优选地,无线通信方法还包括:向用户设备发送定位指示消息,定位指示消息包括以下中的至少一种:定位开始时间、定位持续时间、用于用户设备的上行发射波束以及用于网络侧设备的下行发射波束。
优选地,电子设备是网络侧设备,并且无线通信方法还包括:利用下行发射波束向用户设备发送下行信号,并接收用户设备测量的下行信号到达角度;以及从用户设备接收利用上行发射波束发送的上行信号,并测量上行信号到达角度。
优选地,无线通信方法还包括:当从用户设备接收上行信号时,不产生接收波束,根据网络侧设备的不同天线上接收到的上行信号来测量上行信号到达角度。
优选地,电子设备是基站设备,并且无线通信方法还包括:从用户设备接收所述下行信号到达角度;以及从网络侧设备接收上行信号到达角度。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的实施例的电子设备200,因此前文中关于电子设备200的全部实施例均适用于此。
接下来将详细描述根据本公开实施例的由无线通信***中的用户设备1100执行的无线通信方法。
图13是示出根据本公开的实施例的由无线通信***中的用户设备1100执行的无线通信方法的流程图。
如图13所示,在步骤S1310中,测量下行信号到达角度。
接下来,在步骤S1320中,发送下行信号到达角度,以用于网络侧设备或者为网络侧设备提供服务的基站设备根据下行信号到达角度和网络侧设备测量的上行信号到达角度来计算网络侧设备与用户设备之间的距离,并根据网络侧设备与用户设备之间的距离和上行信号到达角度来确定用户设备的位置。
优选地,无线通信方法还包括:利用上行发射波束向网络侧设备发送上行信号,以用于网络侧设备测量上行信号到达角度;以及从网络侧设 备接收利用下行发射波束发送的下行信号,并测量下行信号到达角度。
优选地,无线通信方法还包括:当从网络侧设备接收下行信号时,不产生接收波束,根据用户设备的不同天线上接收到的下行信号来测量下行信号到达角度。
优选地,无线通信方法还包括:接收定位指示消息,定位指示消息包括以下中的至少一种:定位开始时间、定位持续时间、用于用户设备的上行发射波束以及用于网络侧设备的下行发射波束。
优选地,无线通信方法还包括:在波束扫描期间,测量用户设备与网络侧设备之间的多个波束对中的每个波束对的信道质量;以及向网络侧设备上报多个波束对和每个波束对的信道质量。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的实施例的用户设备1100,因此前文中关于用户设备1100的全部实施例均适用于此。
<5.应用示例>
本公开内容的技术能够应用于各种产品。
网络侧设备可以被实现为任何类型的TRP。该TRP可以具备发送和接收功能,例如可以从用户设备和基站设备接收信息,也可以向用户设备和基站设备发送信息。在典型的示例中,TRP可以为用户设备提供服务,并且受基站设备的控制。进一步,TRP可以具备与如下所述的基站设备类似的结构,也可以仅具备基站设备中与发送和接收信息相关的结构。
网络侧设备也可以被实现为任何类型的基站设备,诸如宏eNB和小eNB,还可以被实现为任何类型的gNB(5G***中的基站)。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。
用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被 实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述用户设备中的每个用户设备上的无线通信模块(诸如包括单个晶片的集成电路模块)。
<关于基站的应用示例>
(第一应用示例)
图14是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图。eNB 1400包括一个或多个天线1410以及基站设备1420。基站设备1420和每个天线1410可以经由RF线缆彼此连接。
天线1410中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备1420发送和接收无线信号。如图14所示,eNB 1400可以包括多个天线1410。例如,多个天线1410可以与eNB 1400使用的多个频带兼容。虽然图14示出其中eNB 1400包括多个天线1410的示例,但是eNB 1400也可以包括单个天线1410。
基站设备1420包括控制器1421、存储器1422、网络接口1423以及无线通信接口1425。
控制器1421可以为例如CPU或DSP,并且操作基站设备1420的较高层的各种功能。例如,控制器1421根据由无线通信接口1425处理的信号中的数据来生成数据分组,并经由网络接口1423来传递所生成的分组。控制器1421可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1421可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器1822包括RAM和ROM,并且存储由控制器1421执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1423为用于将基站设备1420连接至核心网1424的通信接口。控制器1421可以经由网络接口1423而与核心网节点或另外的eNB进行通信。在此情况下,eNB 1400与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口1423还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1423为无线通信接口,则与由无线通信接口1425使用的频带相比,网络接口1423可以使用较高频带用于无线通信。
无线通信接口1425支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线1410来提供到位于eNB 1400的小区中的终端的无线连接。无线通信接口1425通常可以包括例如基带(BB)处理器1426和RF电路1427。BB处理器1426可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器1421,BB处理器1426可以具有上述逻辑功能的一部分或全部。BB处理器1426可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1426的功能改变。该模块可以为***到基站设备1420的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1427可以包括例如混频器、滤波器和放大器,并且经由天线1410来传送和接收无线信号。
如图14所示,无线通信接口1425可以包括多个BB处理器1426。例如,多个BB处理器1426可以与eNB 1400使用的多个频带兼容。如图14所示,无线通信接口1425可以包括多个RF电路1427。例如,多个RF电路1427可以与多个天线元件兼容。虽然图14示出其中无线通信接口1425包括多个BB处理器1426和多个RF电路1427的示例,但是无线通信接口1425也可以包括单个BB处理器1426或单个RF电路1427。
(第二应用示例)
图15是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图。eNB 1530包括一个或多个天线1540、基站设备1550和RRH 1560。RRH 1560和每个天线1540可以经由RF线缆而彼此连接。基站设备1550和RRH 1560可以经由诸如光纤线缆的高速线路而彼此连接。
天线1540中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 1560发送和接收无线信号。如图15所示,eNB 1530可以包括多个天线1540。例如,多个天线1540可以与eNB 1530使用的多个频带兼容。虽然图15示出其中eNB 1530包括多个天线1540的示例,但是eNB 1530也可以包括单个天线1540。
基站设备1550包括控制器1551、存储器1552、网络接口1553、无线通信接口1555以及连接接口1557。控制器1551、存储器1552和网络接口1553与参照图14描述的控制器1421、存储器1422和网络接口1423相同。
无线通信接口1555支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 1560和天线1540来提供到位于与RRH 1560对应的扇区中的终端的无线通信。无线通信接口1555通常可以包括例如BB处理器1556。除了BB处理器1556经由连接接口1557连接到RRH 1560的RF电路1564之外,BB处理器1556与参照图15描述的BB处理器1426相同。如图15所示,无线通信接口1555可以包括多个BB处理器1556。例如,多个BB处理器1556可以与eNB 1530使用的多个频带兼容。虽然图15示出其中无线通信接口1555包括多个BB处理器1556的示例,但是无线通信接口1555也可以包括单个BB处理器1556。
连接接口1557为用于将基站设备1550(无线通信接口1555)连接至RRH 1560的接口。连接接口1557还可以为用于将基站设备1550(无线通信接口1555)连接至RRH 1560的上述高速线路中的通信的通信模块。
RRH 1560包括连接接口1561和无线通信接口1563。
连接接口1561为用于将RRH 1560(无线通信接口1563)连接至基站设备1550的接口。连接接口1561还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1563经由天线1540来传送和接收无线信号。无线通信接口1563通常可以包括例如RF电路1564。RF电路1564可以包括例如混频器、滤波器和放大器,并且经由天线1540来传送和接收无线信号。如图15所示,无线通信接口1563可以包括多个RF电路1564。例如,多个RF电路1564可以支持多个天线元件。虽然图15示出其中无线通信接口1563包括多个RF电路1564的示例,但是无线通信接口1563也可以包括单个RF电路1564。
在图14和图15所示的eNB 1400和eNB 1530中,通过使用图2所描述的定位单元210、选择单元230和测量单元240可以由控制器1421和/或控制器1551实现。功能的至少一部分也可以由控制器1421和控制器1551实现。例如,控制器1421和/或控制器1551可以通过执行相应的存储器中存储的指令而执行对用户设备进行定位、选择波束对和测量上行信道到达角度的功能。
<关于终端设备的应用示例>
(第一应用示例)
图16是示出可以应用本公开内容的技术的智能电话1600的示意性 配置的示例的框图。智能电话1600包括处理器1601、存储器1602、存储装置1603、外部连接接口1604、摄像装置1606、传感器1607、麦克风1608、输入装置1609、显示装置1610、扬声器1611、无线通信接口1612、一个或多个天线开关1615、一个或多个天线1616、总线1617、电池1618以及辅助控制器1619。
处理器1601可以为例如CPU或片上***(SoC),并且控制智能电话1600的应用层和另外层的功能。存储器1602包括RAM和ROM,并且存储数据和由处理器1601执行的程序。存储装置1603可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口1604为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话1600的接口。
摄像装置1606包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器1607可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风1608将输入到智能电话1600的声音转换为音频信号。输入装置1609包括例如被配置为检测显示装置1610的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置1610包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话1600的输出图像。扬声器1611将从智能电话1600输出的音频信号转换为声音。
无线通信接口1612支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1612通常可以包括例如BB处理器1613和RF电路1614。BB处理器1613可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1614可以包括例如混频器、滤波器和放大器,并且经由天线1616来传送和接收无线信号。无线通信接口1612可以为其上集成有BB处理器1613和RF电路1614的一个芯片模块。如图16所示,无线通信接口1612可以包括多个BB处理器1613和多个RF电路1614。虽然图16示出其中无线通信接口1612包括多个BB处理器1613和多个RF电路1614的示例,但是无线通信接口1612也可以包括单个BB处理器1613或单个RF电路1614。
此外,除了蜂窝通信方案之外,无线通信接口1612可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口1612可以包括针对每种无 线通信方案的BB处理器1613和RF电路1614。
天线开关1615中的每一个在包括在无线通信接口1612中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线1616的连接目的地。
天线1616中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1612传送和接收无线信号。如图16所示,智能电话1600可以包括多个天线1616。虽然图16示出其中智能电话1600包括多个天线1616的示例,但是智能电话1600也可以包括单个天线1616。
此外,智能电话1600可以包括针对每种无线通信方案的天线1616。在此情况下,天线开关1615可以从智能电话1600的配置中省略。
总线1617将处理器1601、存储器1602、存储装置1603、外部连接接口1604、摄像装置1606、传感器1607、麦克风1608、输入装置1609、显示装置1610、扬声器1611、无线通信接口1612以及辅助控制器1619彼此连接。电池1618经由馈线向图16所示的智能电话1600的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器1619例如在睡眠模式下操作智能电话1600的最小必需功能。
在图16所示的智能电话1600中,通过使用图11所描述的角度测量单元1110和信道质量测量单元1130可以由由处理器1601或辅助控制器1619实现。功能的至少一部分也可以由处理器1601或辅助控制器1619实现。例如,处理器1601或辅助控制器1619可以通过执行存储器1602或存储装置1603中存储的指令而执行测量下行信号到达角度和测量信道质量的功能。
(第二应用示例)
图17是示出可以应用本公开内容的技术的汽车导航设备1720的示意性配置的示例的框图。汽车导航设备1720包括处理器1721、存储器1722、全球定位***(GPS)模块1724、传感器1725、数据接口1726、内容播放器1727、存储介质接口1728、输入装置1729、显示装置1730、扬声器1731、无线通信接口1733、一个或多个天线开关1736、一个或多个天线1737以及电池1738。
处理器1721可以为例如CPU或SoC,并且控制汽车导航设备1720的导航功能和另外的功能。存储器1722包括RAM和ROM,并且存储数 据和由处理器1721执行的程序。
GPS模块1724使用从GPS卫星接收的GPS信号来测量汽车导航设备1720的位置(诸如纬度、经度和高度)。传感器1725可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口1726经由未示出的终端而连接到例如车载网络1741,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器1727再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被***到存储介质接口1728中。输入装置1729包括例如被配置为检测显示装置1730的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置1730包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器1731输出导航功能的声音或再现的内容。
无线通信接口1733支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1733通常可以包括例如BB处理器1734和RF电路1735。BB处理器1734可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1735可以包括例如混频器、滤波器和放大器,并且经由天线1737来传送和接收无线信号。无线通信接口1733还可以为其上集成有BB处理器1734和RF电路1735的一个芯片模块。如图17所示,无线通信接口1733可以包括多个BB处理器1734和多个RF电路1735。虽然图17示出其中无线通信接口1733包括多个BB处理器1734和多个RF电路1735的示例,但是无线通信接口1733也可以包括单个BB处理器1734或单个RF电路1735。
此外,除了蜂窝通信方案之外,无线通信接口1733可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口1733可以包括BB处理器1734和RF电路1735。
天线开关1736中的每一个在包括在无线通信接口1733中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线1737的连接目的地。
天线1737中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1733传送和接收 无线信号。如图17所示,汽车导航设备1720可以包括多个天线1737。虽然图17示出其中汽车导航设备1720包括多个天线1737的示例,但是汽车导航设备1720也可以包括单个天线1737。
此外,汽车导航设备1720可以包括针对每种无线通信方案的天线2137。在此情况下,天线开关1736可以从汽车导航设备1720的配置中省略。
电池1738经由馈线向图17所示的汽车导航设备1720的各个块提供电力,馈线在图中被部分地示为虚线。电池1738累积从车辆提供的电力。
在图17示出的汽车导航设备1720中,通过使用图11所描述的角度测量单元1110和信道质量测量单元1130可以由处理器1721实现。功能的至少一部分也可以由处理器1721实现。例如,处理器1721可以通过执行存储器1722中存储的指令而执行测量下行信道到达角度和测量信道质量的功能。
本公开内容的技术也可以被实现为包括汽车导航设备1720、车载网络1741以及车辆模块1742中的一个或多个块的车载***(或车辆)1740。车辆模块1742生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络1741。
以上参照附图描述了本公开的优选实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
例如,附图所示的功能框图中以虚线框示出的单元均表示该功能单元在相应装置中是可选的,并且各个可选的功能单元可以以适当的方式进行组合以实现所需功能。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
以上虽然结合附图详细描述了本公开的实施例,但是应当明白,上 面所描述的实施方式只是用于说明本公开,而并不构成对本公开的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本公开的实质和范围。因此,本公开的范围仅由所附的权利要求及其等效含义来限定。

Claims (45)

  1. 一种设置在包括单个基站设备的无线通信***中的电子设备,包括处理电路,被配置为:
    根据用户设备测量的下行信号到达角度和网络侧设备测量的上行信号到达角度来估计所述网络侧设备与所述用户设备之间的距离;以及
    根据所述网络侧设备与所述用户设备之间的距离和所述上行信号到达角度来确定所述用户设备的位置。
  2. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    根据上行信号发射角度、下行信号发射角度、所述下行信号到达角度和所述上行信号到达角度来计算所述网络侧设备与用户设备之间的距离。
  3. 根据权利要求2所述的电子设备,其中,所述处理电路还被配置为:
    根据所述上行信号发射角度和所述下行信号到达角度来计算上行发射波束的方向和所述用户设备与所述网络侧设备之间的直达路径的方向之间的第一误差;
    根据所述下行信号发射角度和所述上行信号到达角度来计算下行发射波束的方向与所述直达路径的方向之间的第二误差;以及
    根据所述第一误差和所述第二误差来计算所述网络侧设备与用户设备之间的距离。
  4. 根据权利要求3所述的电子设备,其中,所述处理电路还被配置为:
    根据所述上行信号发射角度计算下行接收波束赋形向量,根据所述下行信号到达角度计算所述直达路径的下行信道矩阵的响应矢量,并根据所述下行接收波束赋形向量和所述响应矢量来计算所述第一误差,所述响应矢量表示所述下行信道矩阵中与所述下行信号到达角度相关的部分;以及
    根据所述下行信号发射角度计算下行发射波束赋形向量,根据所述上行信号到达角度计算所述直达路径的下行信道矩阵的导向矢量,并根据所述下行发射波束赋形向量和所述导向矢量来计算所述第二误差,所述导向 矢量表示所述下行信道矩阵中与所述上行信号到达角度相关的部分。
  5. 根据权利要求3所述的电子设备,其中,所述处理电路还被配置为:
    根据所述第一误差和所述第二误差获得所述直达路径的复信道参数;以及
    根据所述直达路径的复信道参数来计算所述网络侧设备与所述用户设备之间的距离。
  6. 根据权利要求5所述的电子设备,其中,所述处理电路还被配置为:
    根据通过多次发送上行信号和下行信号而计算的多个复信道参数的相位差来计算所述网络侧设备与所述用户设备之间的距离。
  7. 根据权利要求1所述的电子设备,其中,所述下行信号到达角度以及所述上行信号到达角度和所述用户设备与所述网络侧设备之间的直达路径相关联。
  8. 根据权利要求2所述的电子设备,其中,所述上行信号发射角度和所述用户设备的上行发射波束的方向相关联,并且所述下行信号发射角度和所述网络侧设备的下行发射波束的方向相关联。
  9. 根据权利要求3所述的电子设备,其中,所述处理电路还被配置为:
    从所述用户设备和所述网络侧设备之间的多个波束对中选择与所述直达路径最接近的波束对作为所述上行发射波束和所述下行发射波束。
  10. 根据权利要求9所述的电子设备,其中,所述处理电路还被配置为:
    根据所述多个波束对中的每个波束对的信道质量来选择与所述直达路径最接近的波束对。
  11. 根据权利要求10所述的电子设备,其中,所述处理电路还被配置为:
    在所述多个波束对中选择信道质量大于信道质量阈值并且信道质量最好的波束对作为与所述直达路径最接近的波束对。
  12. 根据权利要求11所述的电子设备,其中,所述处理电路还被配置 为:
    根据所述网络侧设备的覆盖范围来确定所述信道质量阈值。
  13. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    根据所述网络侧设备与用户设备之间的距离、所述上行信号到达角度和所述网络侧设备的位置来确定所述用户设备的位置。
  14. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    向所述用户设备发送定位指示消息,所述定位指示消息包括以下中的至少一种:定位开始时间、定位持续时间、用于所述用户设备的上行发射波束以及用于所述网络侧设备的下行发射波束。
  15. 根据权利要求1所述的电子设备,其中,所述电子设备是所述网络侧设备,并且所述处理电路还被配置为:
    利用下行发射波束向所述用户设备发送下行信号,并接收所述用户设备测量的下行信号到达角度;以及
    从所述用户设备接收利用上行发射波束发送的上行信号,并测量所述上行信号到达角度。
  16. 根据权利要求15所述的电子设备,其中,所述处理电路还被配置为:
    当从所述用户设备接收上行信号时,不产生接收波束,根据所述网络侧设备的不同天线上接收到的上行信号来测量所述上行信号到达角度。
  17. 根据权利要求1所述的电子设备,其中,所述电子设备是所述基站设备,并且所述处理电路还被配置为:
    从所述用户设备接收所述下行信号到达角度;以及
    从所述网络侧设备接收所述上行信号到达角度。
  18. 一种设置在包括单个基站设备的无线通信***中的用户设备,包括处理电路,被配置为:
    测量下行信号到达角度;以及
    发送所述下行信号到达角度,以用于网络侧设备或者为所述网络侧设备提供服务的基站设备根据所述下行信号到达角度和所述网络侧设备测 量的上行信号到达角度来计算所述网络侧设备与用户设备之间的距离,并根据所述网络侧设备与用户设备之间的距离和所述上行信号到达角度来确定所述用户设备的位置。
  19. 根据权利要求18所述的用户设备,其中,所述处理电路还被配置为:
    利用上行发射波束向所述网络侧设备发送上行信号,以用于所述网络侧设备测量所述上行信号到达角度,以及
    从所述网络侧设备接收利用下行发射波束发送的下行信号,并测量所述下行信号到达角度。
  20. 根据权利要求18所述的用户设备,其中,所述处理电路还被配置为:
    当从所述网络侧设备接收下行信号时,不产生接收波束,根据所述用户设备的不同天线上接收到的下行信号来测量所述下行信号到达角度。
  21. 根据权利要求18所述的用户设备,其中,所述处理电路还被配置为:
    接收定位指示消息,所述定位指示消息包括以下中的至少一种:定位开始时间、定位持续时间、用于所述用户设备的上行发射波束以及用于所述网络侧设备的下行发射波束。
  22. 根据权利要求18所述的用户设备,其中,所述处理电路还被配置为:
    在波束扫描期间,测量所述用户设备与所述网络侧设备之间的多个波束对中的每个波束对的信道质量;以及
    向所述网络侧设备上报所述多个波束对和每个波束对的信道质量。
  23. 一种由电子设备执行的无线通信方法,包括:
    根据用户设备测量的下行信号到达角度和网络侧设备测量的上行信号到达角度来计算所述网络侧设备与所述用户设备之间的距离;以及
    根据所述网络侧设备与所述用户设备之间的距离和所述上行信号到达角度来确定所述用户设备的位置。
  24. 根据权利要求23所述的无线通信方法,其中,计算所述网络侧设备与所述用户设备之间的距离包括:
    根据上行信号发射角度、下行信号发射角度、所述下行信号到达角度和所述上行信号到达角度来计算所述网络侧设备与用户设备之间的距离。
  25. 根据权利要求24所述的无线通信方法,其中,计算所述网络侧设备与所述用户设备之间的距离还包括:
    根据所述上行信号发射角度和所述下行信号到达角度来计算上行发射波束的方向和所述用户设备与所述网络侧设备之间的直达路径的方向之间的第一误差;
    根据所述下行信号发射角度和所述上行信号到达角度来计算下行发射波束的方向与所述直达路径的方向之间的第二误差;以及
    根据所述第一误差和所述第二误差来计算所述网络侧设备与用户设备之间的距离。
  26. 根据权利要求25所述的无线通信方法,其中,
    计算第一误差包括:根据所述上行信号发射角度计算下行接收波束赋形向量,根据所述下行信号到达角度计算所述直达路径的下行信道矩阵的响应矢量,并根据所述下行接收波束赋形向量和所述响应矢量来计算所述第一误差,所述响应矢量表示所述下行信道矩阵中与所述下行信号到达角度相关的部分,并且
    计算第二误差包括:根据所述下行信号发射角度计算下行发射波束赋形向量,根据所述上行信号到达角度计算所述直达路径的下行信道矩阵的导向矢量,并根据所述下行发射波束赋形向量和所述导向矢量来计算所述第二误差,所述导向矢量表示所述下行信道矩阵中与所述上行信号到达角度相关的部分。
  27. 根据权利要求25所述的无线通信方法,其中,计算所述网络侧设备与所述用户设备之间的距离还包括:
    根据所述第一误差和所述第二误差获得所述直达路径的复信道参数;以及
    根据所述直达路径的复信道参数来计算所述网络侧设备与所述用户设备之间的距离。
  28. 根据权利要求27所述的无线通信方法,其中,计算所述网络侧设备与所述用户设备之间的距离还包括:
    根据通过多次发送上行信号和下行信号而计算的多个复信道参数的 相位差来计算所述网络侧设备与所述用户设备之间的距离。
  29. 根据权利要求23所述的无线通信方法,其中,所述下行信号到达角度以及所述上行信号到达角度和所述用户设备与所述网络侧设备之间的直达路径相关联。
  30. 根据权利要求24所述的无线通信方法,其中,所述上行信号发射角度和所述用户设备的上行发射波束的方向相关联,并且所述下行信号发射角度和所述网络侧设备的下行发射波束的方向相关联。
  31. 根据权利要求25所述的无线通信方法,其中,所述无线通信方法还包括:
    从所述用户设备和所述网络侧设备之间的多个波束对中选择与所述直达路径最接近的波束对作为所述上行发射波束和所述下行发射波束。
  32. 根据权利要求31所述的无线通信方法,其中,选择与所述直达路径最接近的波束对包括:
    根据所述多个波束对中的每个波束对的信道质量来选择与所述直达路径最接近的波束对。
  33. 根据权利要求32所述的无线通信方法,其中,选择与所述直达路径最接近的波束对包括:
    在所述多个波束对中选择信道质量大于信道质量阈值并且信道质量最好的波束对作为与所述直达路径最接近的波束对。
  34. 根据权利要求33所述的无线通信方法,其中,所述无线通信方法还包括:
    根据所述网络侧设备的覆盖范围来确定所述信道质量阈值。
  35. 根据权利要求23所述的无线通信方法,其中,确定所述用户设备的位置还包括:
    根据所述网络侧设备与用户设备之间的距离、所述上行信号到达角度和所述网络侧设备的位置来确定所述用户设备的位置。
  36. 根据权利要求23所述的无线通信方法,其中,所述无线通信方法还包括:
    向所述用户设备发送定位指示消息,所述定位指示消息包括以下中的至少一种:定位开始时间、定位持续时间、用于所述用户设备的上行发射 波束以及用于所述网络侧设备的下行发射波束。
  37. 根据权利要求23所述的无线通信方法,其中,所述电子设备是所述网络侧设备,并且所述无线通信方法还包括:
    利用下行发射波束向所述用户设备发送下行信号,并接收所述用户设备测量的下行信号到达角度;以及
    从所述用户设备接收利用上行发射波束发送的上行信号,并测量所述上行信号到达角度。
  38. 根据权利要求37所述的无线通信方法,其中,所述无线通信方法还包括:
    当从所述用户设备接收上行信号时,不产生接收波束,根据所述网络侧设备的不同天线上接收到的上行信号来测量所述上行信号到达角度。
  39. 根据权利要求23所述的无线通信方法,其中,所述电子设备是基站设备,并且所述无线通信方法还包括:
    从所述用户设备接收所述下行信号到达角度;以及
    从所述网络侧设备接收所述上行信号到达角度。
  40. 一种由用户设备执行的无线通信方法,包括:
    测量下行信号到达角度;以及
    发送所述下行信号到达角度,以用于网络侧设备或者为所述网络侧设备提供服务的基站设备根据所述下行信号到达角度和所述网络侧设备测量的上行信号到达角度来计算所述网络侧设备与用户设备之间的距离,并根据所述网络侧设备与用户设备之间的距离和所述上行信号到达角度来确定所述用户设备的位置。
  41. 根据权利要求40所述的无线通信方法,其中,所述无线通信方法还包括:
    利用上行发射波束向所述网络侧设备发送上行信号,以用于所述网络侧设备测量所述上行信号到达角度;以及
    从所述网络侧设备接收利用下行发射波束发送的下行信号,并测量所述下行信号到达角度。
  42. 根据权利要求40所述的无线通信方法,其中,所述无线通信方法还包括:
    当从所述网络侧设备接收下行信号时,不产生接收波束,根据所述用户设备的不同天线上接收到的下行信号来测量所述下行信号到达角度。
  43. 根据权利要求40所述的无线通信方法,其中,所述无线通信方法还包括:
    接收定位指示消息,所述定位指示消息包括以下中的至少一种:定位开始时间、定位持续时间、用于所述用户设备的上行发射波束以及用于所述网络侧设备的下行发射波束。
  44. 根据权利要求40所述的无线通信方法,其中,所述无线通信方法还包括:
    在波束扫描期间,测量所述用户设备与所述网络侧设备之间的多个波束对中的每个波束对的信道质量;以及
    向所述网络侧设备上报所述多个波束对和每个波束对的信道质量。
  45. 一种计算机可读存储介质,包括可执行计算机指令,所述可执行计算机指令当被计算机执行时使得所述计算机执行根据权利要求23-44中任一项所述的无线通信方法。
PCT/CN2019/090460 2018-06-13 2019-06-10 电子设备、用户设备、无线通信方法和存储介质 WO2019237998A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980010573.3A CN111656828A (zh) 2018-06-13 2019-06-10 电子设备、用户设备、无线通信方法和存储介质
US17/056,028 US11496910B2 (en) 2018-06-13 2019-06-10 Electronic equipment, user equipment, wireless communication method, and storage medium
EP19820052.9A EP3793276A4 (en) 2018-06-13 2019-06-10 ELECTRONIC EQUIPMENT, USER DEVICE, WIRELESS COMMUNICATION PROCEDURE AND STORAGE MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810647895.6 2018-06-13
CN201810647895.6A CN110602781A (zh) 2018-06-13 2018-06-13 电子设备、用户设备、无线通信方法和存储介质

Publications (1)

Publication Number Publication Date
WO2019237998A1 true WO2019237998A1 (zh) 2019-12-19

Family

ID=68841737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090460 WO2019237998A1 (zh) 2018-06-13 2019-06-10 电子设备、用户设备、无线通信方法和存储介质

Country Status (4)

Country Link
US (1) US11496910B2 (zh)
EP (1) EP3793276A4 (zh)
CN (2) CN110602781A (zh)
WO (1) WO2019237998A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024060097A1 (zh) * 2022-09-21 2024-03-28 北京小米移动软件有限公司 终端定位方法及装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020194999A (ja) * 2019-05-24 2020-12-03 株式会社フジクラ Rfモジュール
CN113466840B (zh) * 2020-03-30 2022-09-20 阿里巴巴集团控股有限公司 测距方法、定位方法、装置、设备及***
CN111707987B (zh) * 2020-06-23 2023-11-07 杭州中芯微电子有限公司 一种基于单基站的定位***及其方法
US20220053436A1 (en) * 2020-10-15 2022-02-17 Sergey Sosnin Transmit and receive timing errors estimation and compensation
US11277180B1 (en) 2020-11-11 2022-03-15 Qualcomm Incorporated Apparatus and method for low overhead frequency-averaged beam pattern feedback in millimeter wave positioning systems
US20220311497A1 (en) * 2021-03-29 2022-09-29 Qualcomm Incorporated Method for indicating a beam correspondence failure
WO2023236073A1 (en) * 2022-06-08 2023-12-14 Qualcomm Incorporated Reference signal associations for predictive beam management

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120258729A1 (en) * 2011-01-13 2012-10-11 Telefonaktiebolaget Lm Ericsson (Publ) Enhanced Angle-of-Arrival Positioning
CN107318161A (zh) * 2017-07-10 2017-11-03 广州慧睿思通信息科技有限公司 定位基站和终端的方法
EP3306337A1 (en) * 2016-10-10 2018-04-11 Fraunhofer Gesellschaft zur Förderung der Angewand User equipment localization in a mobile communication network

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6594226B1 (en) * 1999-12-15 2003-07-15 Lucent Technologies Inc. Apparatus and method of enhancing transmit diversity
KR100480045B1 (ko) * 2001-04-20 2005-03-30 엘지전자 주식회사 이동통신 단말기의 위치 추적 장치 및 방법
CN101437288B (zh) * 2007-11-15 2010-09-08 展讯通信(上海)有限公司 通过基站的选择进行无线定位的方法和***
WO2010107351A1 (en) * 2009-03-17 2010-09-23 Telefonaktiebolaget L M Ericsson (Publ) Angle of arrival downlink signaling
WO2011016804A1 (en) * 2009-08-05 2011-02-10 Andrew Llc System and method for hybrid location in an lte network
CN102143576B (zh) * 2010-01-29 2014-12-10 中兴通讯股份有限公司 终端定位***和终端定位方法
CN103546963B (zh) 2012-07-10 2016-09-14 电信科学技术研究院 一种确定定位信息的方法和设备
KR20150059718A (ko) * 2012-10-22 2015-06-02 (주)와이파이브 상향링크 액세스 포인트를 이용한 위치추정장치 및 위치추정방법
US9814037B2 (en) * 2013-06-28 2017-11-07 Intel Corporation Method for efficient channel estimation and beamforming in FDD system by exploiting uplink-downlink correspondence
US9928673B2 (en) * 2015-07-16 2018-03-27 GM Global Technology Operations LLC Vehicle PEPS system using directional sensors
US10362493B2 (en) * 2015-12-17 2019-07-23 Legba, Inc. High-bandwidth beamforming LTE Base Station
US10021667B2 (en) * 2016-06-23 2018-07-10 Qualcomm Incorporated Positioning in beamformed communications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120258729A1 (en) * 2011-01-13 2012-10-11 Telefonaktiebolaget Lm Ericsson (Publ) Enhanced Angle-of-Arrival Positioning
EP3306337A1 (en) * 2016-10-10 2018-04-11 Fraunhofer Gesellschaft zur Förderung der Angewand User equipment localization in a mobile communication network
CN107318161A (zh) * 2017-07-10 2017-11-03 广州慧睿思通信息科技有限公司 定位基站和终端的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024060097A1 (zh) * 2022-09-21 2024-03-28 北京小米移动软件有限公司 终端定位方法及装置

Also Published As

Publication number Publication date
CN111656828A (zh) 2020-09-11
US11496910B2 (en) 2022-11-08
CN110602781A (zh) 2019-12-20
EP3793276A4 (en) 2021-09-08
US20210368358A1 (en) 2021-11-25
EP3793276A1 (en) 2021-03-17

Similar Documents

Publication Publication Date Title
WO2019237998A1 (zh) 电子设备、用户设备、无线通信方法和存储介质
US10284279B2 (en) Apparatus and method in wireless communications system
US10911117B2 (en) Electronic device in wireless communication system, method, and computer readable storage medium
US11516809B2 (en) Electronic apparatus, wireless communication method and computer-readable medium for measurements based on adjusted beam configurations
WO2020062444A1 (zh) 网络侧设备、用户设备、无线通信方法和存储介质
WO2018166368A1 (zh) 用于无线通信的电子设备和方法
WO2017050246A1 (zh) 用于无线通信的电子设备以及无线通信方法
WO2021088797A1 (zh) 网络侧设备、终端侧设备、通信方法、通信装置以及介质
RU2739588C2 (ru) Оконечное устройство, базовая станция, способ и носитель информации
US11513182B2 (en) User equipment in wireless communication system, electronic device, method and storage medium
US20230327831A1 (en) Electronic device and method for wireless communication, and computer readable storage medium
US11831581B2 (en) Electronic device, user equipment, method and computer readable storage medium
US20200396012A1 (en) Electronic device, method and storage medium for wireless communication system
KR20220122626A (ko) 라운드 트립 시간 절차를 이용한 nr-라이트 사용자 장비 기반 포지셔닝
US20220264248A1 (en) Electronic device and method for wireless communication, and computer readable storage medium
WO2015182292A1 (ja) 装置
KR20210108960A (ko) 무선 통신에 이용되는 전자 디바이스 및 방법, 및 컴퓨터 판독가능 저장 매체
US20230164608A1 (en) Electronic device and method for wireless communication and computer-readable storage medium
WO2021068817A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2021047444A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
US12052066B2 (en) Electronic device, wireless communication method and computer-readable storage medium
WO2023202493A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2022253127A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2023134571A1 (zh) 用于无线通信的电子设备和方法以及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19820052

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2019820052

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019820052

Country of ref document: EP

Effective date: 20201210

NENP Non-entry into the national phase

Ref country code: DE